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Topological constraint theory has previously been applied to predict the composition dependence of

glass hardness for a variety of different composition families. Some recent findings have cast doubt

on the correlation between glass hardness and the number of rigid constraints per atom in silicate

glasses. In this letter, we revisit the prediction of hardness for borosilicate and phosphosilicate glasses

using four different types of constraint counting approaches: total number of constraints per atom,

angular constraints per atom, total constraint density, and angular constraint density. We find that the

counting approaches using total constraint density or angular constraint density give an improved

prediction of glass hardness. We therefore conclude that glass hardness is governed by the density of

rigid constraints under an indenter, rather than by the number of rigid constraints per atom. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4991971]

Glass hardness is of great importance for developing

high-tech glass devices, e.g., scratch-resistant glass covers

for smart phones and touch sensitive electronic devices.1–7

Hardness (HV) is defined as the applied load divided by the

projected area of the deformed region of the material and is a

measure of the ability of a material to resist permanent defor-

mation under a load. Due to the non-crystalline structure and

the nonequilibrium nature of glass, direct prediction of glass

hardness from first principles has proven challenging.8

While hardness is often correlated with elastic moduli—

since elastic deformation is an important part of the indenta-

tion process—this correlation is not universal.9,10

Topological constraint theory has proven to be a power-

ful tool for predicting the composition dependence of several

glass properties.11–17 This theory treats the atomic structure

of glass as a network of rigid constraints, where the macro-

scopic properties of a glass are related to the composition,

temperature, and pressure dependence of these constraints.

Smedskjaer, Mauro, and Yue established a constraint count-

ing model where the hardness of borate glasses can be pre-

dicted within experimental uncertainty.18,19 According to

this model, a certain critical number of constraints (ncrit)

must be present for the material to display mechanical resis-

tance, i.e., for hardness to become nonzero in three dimen-

sions. When the average number of atomic constraints, n, is

less than this critical value (n< ncrit), the mechanical

response is liquid-like, i.e., there is no resistance to an

incoming indenter and hence no measurable hardness. When

n> ncrit, there are enough constraints to make a rigid net-

work that produces a solid-like mechanical response. A value

of n¼ 2 gives a network that is rigid along one dimension,

such as in selenium glass, which consists of one-dimensional

rods with rigid radial bonds and intra-chain bond angles. A

value of n¼ 3 indicates a network that is rigid in three

dimensions, such as silica, which consists of a fully

connected network of corner-sharing tetrahedra. A network

must be rigid in at least two dimensions to be mechanically

resistant. This corresponds to ncrit¼ 2.5 (Ref. 18) and repre-

sents a network that is exactly rigid in two dimensions of the

three-dimensional space, such as in planar sheets of gra-

phene. The hardness of a glass is therefore proportional to

the number of additional constraints in excess of ncrit
18

HV xð Þ ¼ dHV

dn

� �
n xð Þ � ncrit½ � ¼ dHV

dn

� �
n xð Þ � 2:5½ �; (1)

where x represents the glass composition as a variable and

n(x) is the number of rigid constraints per network-forming

atom at the temperature of the hardness measurement as a

function of chemical composition (x). The rigidity of the con-

straints depends on the temperature of the system. At high tem-

peratures, the network is flexible since there is enough thermal

energy to overcome the bond constraints. As the temperature

decreases, additional constraints become rigid due to the

reduced thermal energy. Since the hardness of a glass is typi-

cally measured at room temperature, the number of rigid con-

straints per atom should also be calculated at room

temperature. In Eq. (1), dHV/dn is the load-dependent propor-

tionality, which is determined empirically, i.e., the slope of a

linear fit of HV as a function of n. It should be mentioned that

HV must be a non-negative quantity. In this work, HV refers to

the hardness measured at room temperature. This model was

first applied to a series of soda lime borate glasses, with excel-

lent agreement between modeled and measured values of hard-

ness. However, the model performed less accurately for

predicting the hardness of two silicate glass systems, viz.,

borosilicate and phosphosilicate glasses.20,21

Some recent findings have offered alternative approaches

for correlating the number of rigid constraints to the hardness

of the glass. When predicting the hardness of a series of cal-

cium aluminosilicate (CAS) glasses, Lamberson found poor

fitting quality using Eq. (1) (Ref. 22) and proposed a correla-

tion of hardness with constraint density, i.e., the number of
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rigid constraints per unit volume rather than per atom, giving

an improved fit quality for her glasses with [SiO2] < 85 mol.

%. Bauchy et al. proposed another approach for calculating

hardness based on counting the number of angular constraints

per atom, neglecting the contribution of the two-body radial

constraints.23 Radial constraints are the two-body constraints

which correspond to the rigid bond lengths between pairs of

atoms, and angular constraints are the three-body constraints

which correspond to rigid bond angles.13 According to their

argument, angular and radial constraints have different contri-

butions to the resistance of the glass to different types of

deformation. Bauchy et al. and Jiang et al. argued that hard-

ness is related more to the resistance to shear flow,23,24 and

thus hardness should depend predominantly on the number of

angular constraints. They applied this model to a complex

material, calcium-silicate-hydrate (CSH), the binding phase of

concrete, which contains both non-crystalline and crystalline

phases, and showed good linear correlation between hardness

and the number of angular constraints per atom. Based on

these results, they argued that hardness is dominated by the

weak atomic constraints, and topological models of hardness

should consider angular constraints only instead of the total

number of rigid constraints.

In this work, we analyze the room temperature hardness

data of previously published borosilicate and phosphosilicate

systems to compare these various constraint counting

approaches when modeling glass hardness with topological

constraint theory. We calculate hardness of the two glass

series using four different constraint counting approaches:

total number of constraints per atom, angular constraints per

atom, constraint density, and angular constraint density. By

comparing the fitting ability of the different counting

approaches, we find that the counting approaches using total

constraint density or angular constraint density yield the most

accurate fit to hardness data for silicate glasses. Therefore, the

total constraint density or angular constraint density can be

used as a metric for predicting silicate glass hardness.

In this study, the borosilicate and phosphosilicate glasses

were prepared using the melt-quenching method. The nominal

molar compositions of the borosilicate glasses are (0.75–y)

SiO2�yB2O3�0.15Na2O�0.10CaO, where y¼ 0, 0.06, 0.12, 0.24,

0.375, 0.51, 0.63, and 0.75. The molar compositions of the

phosphosilicate glasses are 0.3Na2O�0.7[zSiO2 � (1� z)P2O5],

with z¼ 0, 0.14, 0.29, 0.43, 0.54, 0.89, and 1.00. The composi-

tions of all glasses have been analyzed using wet chemistry

methods, and the measured compositions are used as input in

the models. The densities of all of the glass samples were

determined using Archimedes principle. The Vickers micro-

hardness (HV) values of the glasses were measured using a

Duramin 5 indenter (Struers A/S) in air at room temperature.

For the borosilicate glasses, the indentations were performed at

a load of 0.25 N for a duration of 5 s. For the phosphosilicate

glasses, the indentations were performed at a load of 0.49 N for

duration of 15 s. The hardness of each sample was measured at

30 widely separated locations. The details of sample preparation

and hardness measurements have been described elsewhere.20,21

For the modeling of glass hardness, we first calculate the

total number of constraints per atom and the angular con-

straints per atom for the two glass systems, and then apply

Eq. (1) to calculate hardness. Figure 1 in Ref. 13 illustrates

the counting of radial and angular constraints. The detailed

constraints calculations for the borosilicate and phosphosili-

cate glasses have been described in Refs. 20 and 21, respec-

tively. When using the total number of constraints per atom,

ncrit is set equal to 2.5 as described earlier; however, when

using the angular constraints per atom, ncrit is lower and

varies with composition since the radial constraints are not

included as part of the calculation.

The density and molar mass data are used to convert the

total number of constraints per atom and the angular con-

straints per atom to total constraint density and angular con-

straint density, respectively, using the following equation:

n0 xð Þ ¼ n xð Þ � q xð Þ � NA

M xð Þ ; (2)

where n0(x) is the constraint density, n(x) is the number of

constraints per atom, q(x) is the glass density, NA is

Avogadro’s number, and M(x) is the molar mass. When con-

sidering n(x) as the number of angular constraints per atom,

n0(x) refers to the angular constraint density.

Each glass network has its own set of bond constraints,

which are a function of the underlying glass chemistry.25–27

These constraints may include two-body radial constraints,

three-body angular constraints, and, for some systems, con-

straints associated with modifier clustering. Here, we con-

sider both the total number of constraints for a given system,

as well as the radial and angular constraints separately, for

the borosilicate and phosphosilicate glasses. As shown in

Figs. 1(a) and 2(a), the number of radial constraints per atom

for the two glass systems is comparable, and there is little

variation in the number of radial constraints as a function of

composition within each glass family. However, the number

of angular constraints per atom differs significantly between

the two glass systems, and it shows large compositional

dependence within each glass family. Hence, it is clear that

the angular constraints per atom play the dominant role in

governing the evolution of the total number of constraints

per atom in each system. A similar trend is found for the

composition dependence of total constraint density, but with

more pronounced variations [Figs. 1(b) and 2(b)]. The phos-

phosilicate glasses are slightly underconstrained, having a

total number of constraints fewer than the number of degrees

of freedom, while the borosilicate glasses are overcon-

strained at room temperature.

When we use total constraint density, the glass hardness

is calculated using the following variation of Eq. (1):

HV xð Þ ¼ dHV

dn

� �
n0 xð Þ; (3)

where n0(x) refers to total constraint density. We propose

that hardness is directly proportional to the magnitude of the

total constraint density. If there is zero total constraint den-

sity, then the hardness should be zero. There is only one

fitting parameter in this model, viz., the constant of propor-

tionality. As displayed in Fig. 3(a), good agreement is found

between the modeled and measured values of hardness for

both the borosilicate glasses and phosphosilicate glasses.

These results indicate that the hardness converges at zero

when the total constraint density is zero, which gives a

011907-2 Zheng, Yue, and Mauro Appl. Phys. Lett. 111, 011907 (2017)



common intercept for these two systems. This significantly

simplifies the process for modeling of glass hardness and

may perhaps indicate a universal law of glass hardness.

With angular constraint density, the glass hardness is

calculated using the following variation of Eq. (1):

HV xð Þ ¼ dHV

dn

� �
n0 xð Þ � n0crit

� �
; (4)

where n0(x) refers to angular constraint density and the zero

hardness intercept, n0crit; is treated as an empirical fitting

parameter rather than assuming a particular value as in Eq.

(1). Figure 3(b) shows the modeled hardness using Eq. (4) as

a function of angular constraint density, where good agree-

ment is seen between the modeled and measured hardness

values. While in Eqs. (1) and (3), the zero hardness inter-

cepts, ncrit, are a universal values, in Eq. (4), the zero hard-

ness intercept n0crit is not a fixed value, since the proportion

of angular constraints varies with different glass systems.

When considering the angular constraint density, the value

of n0crit in Eq. (4) should correspond to a system with ncrit

¼ 2.5 in Eq. (1), corresponding to a hardness of zero. Hence,

n0crit can be viewed as the critical value of angular constraint

density to achieve nonzero hardness, and depends on the

FIG. 1. (a) The number of radial, angular, and total constraints per atom, n
(atom�1), as a function of composition for the borosilicate glasses, (0.75-y)

SiO2�yB2O3�0.15Na2O�0.10CaO, with y¼ 0 to 0.75. (b) The composition

dependence of constraint density, n0(nm�3).

FIG. 2. (a) The number of radial, angular, and total constraints per atom, n
(atom�1), as a function of composition for the phosphosilicate glasses,

0.3Na2O�0.7[zSiO2 � (1� z)P2O5], with z¼ 0 to 1. (b) The composition

dependence of constraint density, n0 (nm�3).

FIG. 3. Measured and modeled hardness as a function of (a) total constraint

density and (b) angular constraint density, (n0) (nm�3) for the borosilicate

glasses (0.75-y)SiO2�yB2O3�0.15Na2O�0.10CaO with y¼ 0–0.75 and phos-

phosilicate glasses 0.3Na2O�0.7[zSiO2 � (1� z)P2O5], with z¼ 0–1.00. The

solid line represents the linear fit of the measured data to Eq. (3).
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number of different types of bonds, their strengths, and the

molar volume of the glass. Then, the hardness values of the

glasses are linearly proportional to the number of additional

angular constraint density in excess of n0crit. As indicated in

Fig. 3(b), n0crit varies when using angular constraint density for

the borosilicate glasses and phosphosilicate glasses.

Figure 4 shows a comparison of the experimental hard-

ness data for the borosilicate glasses with the four different

types of constraint models considered earlier. The predictive

ability of the four hardness models can be quantified using

the coefficients of determination (R2) summarized in Table I.

There is a clear improvement in fitting quality when consid-

ering the total constraint density rather than the total number

of constraints per atom [Fig. 4(a)]. As displayed in Table I,

the R2 values of the model using total constraint density is

much higher than that of using the total number of con-

straints per atom. As shown in Fig. 4(b) and Table I, the

hardness model based on angular constraint density also

shows very good agreement with the experimental data with

the highest R2 value, while the modeled hardness using angu-

lar constraints per atom gives poor agreement with very low

R2 value. It should be noted that the hardness prediction

using angular constraint density is slightly better than that

using total constraint density, with a marginally higher R2

value. Either counting approach based on constraint density

dramatically improves the fitting quality compared to using

constraints per atom.

The scenario for the phosphosilicate glasses is quite sim-

ilar to that of the borosilicate glasses, as depicted in Fig. 5.

The predicted trends of hardness as a function of glass com-

position using both constraint density approaches exhibit bet-

ter agreement with the measured hardness compared to

either type of constraint counting on a per atom basis. It can

be seen in Table I that the fitting using angular constraint

density is the best with the highest R2 values. The counting

approach using total constraint density yields the second best

fitting quality with slightly lower R2 values. The fitting qual-

ity using angular constraints per atom is the worst with the

lowest R2 values.

Lamberson attempted to predict the hardness of a series

of calcium aluminosilicate (CAS) glasses by topological

constraint theory.22 She found a breakdown in the correlation

between hardness and total number of constraints per atom

and proposed constraint density as an improved method to

predict hardness. Since hardness is a measure of pressure,

i.e., force per unit area, it is reasonable to infer that con-

straint density is the controlling factor for mechanical prop-

erties. During the indentation process, the indenter is

FIG. 4. Composition dependence of Vickers hardness (HV) for the borosili-

cate glasses. The squares represent the experimental HV data. (a) The circles

and triangles represent the modeled HV data using total constraint density

and total constraints per atom. (b) The circles and triangles represent the

modeled HV data using angular constraint density and angular constraints

per atom, respectively.

TABLE I. R2 values for the four types of fit using different counting

approaches for the borosilicate and phosphosilicate glasses.

Glass series

Borosilicates PhosphosilicatesCounting approach

Total constraints per atom 0.424 0.549

Total constraint density 0.920 0.837

Angular constraints per atom 0.015 0.026

Angular constraint density 0.938 0.867

FIG. 5. Composition dependence of Vickers hardness (HV) for the phospho-

silicate glasses. The squares represent the experimental HV data. (a) The

circles and triangles represent the modeled HV data using total constraint

density and total constraints per atom. (b) The circles and triangles represent

the modeled HV data using angular constraints density and angular con-

straints per atom, respectively.
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interacting with certain volume of the glass rather than a

fixed number of atoms. Even if the number of constraints per

atom is high, the resistance to deformation of a glass with a

low constraint density may not necessarily be high.

Therefore, constraint density plays a more dominant role for

determining hardness. It should be noted that each bond con-

straint corresponds to a certain energy since different kind of

bond has different bonding energy,28 and thus the constraint

density also represents an energy per unit volume. In other

words, hardness is correlated to the energy per unit volume.

Our findings for the borosilicate and phosphosilicate systems

are further evidence in support of this argument, since both

the total constraint density and angular constraint density

approaches give better prediction of glass hardness compared

to models based on number of atomic constraints.

Bauchy et al. have extended the topological model to

calcium-silicate-hydrate (CSH), showing that hardness is

dominated by angular constraints.29,30 They proposed that

the indentation process should preferably involve breaking

or reformation of angular constraints, and therefore the hard-

ness should be driven only by the weaker atomic constraints,

i.e., the angular constraints. Their modeled hardness using

angular constraints per atom agreed very well with the exper-

imental data. Our results show that the composition depen-

dence of constraints for borosilicate and phosphosilicate

glasses is indeed dominated by the variation in number of

angular constraints, both on a per atom and per unit volume

basis. We have shown that the hardness prediction using

angular constraint density is slightly better than that using

total constraint density. This finding is further support that

the angular constraints play a key role during the indentation

process.

In summary, the best linear constraint model of silicate

glass hardness is obtained based on the density of angular

constraints. Total constraint density works nearly as well,

since the composition dependence of the total constraints is

dominated by the variation in the angular constraints. The

total constraint density model of Eq. (3) has the additional

advantage of being a simpler model with only one fitting

parameter. Based on our findings and combining the

approaches of Lamberson and Bauchy, we propose that the

density of rigid total constraints or rigid angular constraints

should be used as a metric for predicting silicate glass hard-

ness. Additional research should be conducted to study the

dominant drivers of hardness for other families of glass

chemistry and determine whether Eq. (3) is indeed a univer-

sal model for glass hardness.

We are grateful for many valuable discussions with Morten

Smedksjaer and Christian Hermansen (Aalborg University),
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