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Abstract

Discrete Element Method (DEM) simulations are a promising approach to accurately predict agglomeration and
deposition of micron-sized adhesive particles. However, the mechanistic models in DEM combined with high particle
stiffness for most common materials require time step sizes in the order of nano seconds, which makes DEM simulations
impractical for more complex applications.

In this study, analytically derived guidelines on how to reduce computational time by using a reduced particle stiffness
are given. The guidelines are validated by comparing simulations of particles with and without reduced particle stiffness
to experimental data. Then two well-defined test cases are investigated to show the applicability of the guidelines.

When introducing a reduced particle stiffness in DEM simulations by reducing the effective Young’s modulus from
E to Emod, the surface energy density γ in the adhesive Johnson-Kendall-Roberts (JKR) model by Johnson et al. [1]

should be modified as γmod = γ (Emod/E)
2/5

. Using this relation, the stick/rebound threshold remains the same but the
collision process takes place over a longer time period, which allows for a higher time step size. When rolling motion is
important, the commonly used adhesive rolling resistance torque model proposed by Dominik and Tielens [2, 3], Krijt
et al. [4] can be used by modifying the contact radius ratio (a/a0)3/2 to (amod/a0,mod)3/2, whilst keeping the other terms

unaltered in the description of the rolling resistance torque Mr,mod = −4FC (a/a0)
3/2

ξ. Furthermore, as the particle
stiffness is reduced from E to Emod, the time period for collisions (or oscillations when particles stick upon impact) ∆tcol

is found to vary as ∆tcol,mod = ∆tcol(E/Emod)2/5. As the collision duration and the collision time step size are directly
related, this criterion can be used to estimate how much the time step size can be changed as a reduced particle stiffness
is introduced.

Introducing particles with a reduced particle stiffness has some limitations when strong external forces are acting to
break-up formed agglomerates or re-entrain particles deposited on a surface out into the free stream. Therefore, care
should be taken in flows with high local shear to make sure that an external force, such as a fluid drag force, acting to
separate agglomerated particles, is several orders of magnitude lower than the critical force required to separate particles.

Keywords: Discrete Element Method, Reduced particle stiffness, Adhesive particles, JKR adhesive model, Rolling
resistance torque, Computational efficiency

1. Introduction

Discrete Element Method (DEM) simulations are typ-
ically used to accurately predict the motion of particles
in systems with high local particle volume fraction where
particle-particle collisions are important. Recently, the
motion of adhesive particles has received increased at-
tention [5] due to the wide range of applications which
include, but are not limited to, particulate fouling layers
in heat exchangers, food processing, sediment transport,
aerosol modelling, fluidized beds and dust coagulating to
form early stages of planets in space. As opposed to

∗Corresponding author: Tel.: +45 22508131
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other methods, DEM simulations resolve particle-particle
collisions directly using a mechanistic approach. As each
particle-particle collision is resolved over numerous time
steps, the required computational time is high compared
to other methods [6]. A widely used approach to
decrease computational costs is to decrease the particle
stiffness, namely Young’s modulus, and thereby make
collisions take place over longer time periods allowing
for an increased time step size. For collisions involving
non-adhesive particles, numerous studies suggest that
the particle stiffness can be reduced by several orders
of magnitude without altering the collisions in terms of
separating velocity after collision [7, 8]. However, when
introducing adhesive particles, recent studies have pointed
out that a reduced particle stiffness has to be balanced by
a reduced adhesive force. Therefore, Kobayashi et al. [9]
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introduced a dynamic van der Waals adhesion model upon
collision that scales the adhesive force Fad according to the
square root of the ratio of particle spring constants k as:
Fad,mod/Fad =

√
kmod/k, where subscript mod denotes

modified values. Gu et al. [8] extended the work and
included the fact that the van der Waals force is effective
over a finite distance before the particles come into
physical contact. Common for these studies is the fact
that they assume particle deformation to play a negligible
role on the adhesive force upon collision. This assumption
is valid for sufficiently small particles, where particle
deformation is negligible [10].

When the particle diameter is large (typically dp >
10 µm), particle deformation cannot be neglected when
describing the adhesive force. The importance of particle
deformation on the adhesive behaviour is described by
Tabor [11] through the dimensionless Tabor parameter λT

where R, γ, E and Dmin define effective particle radius,
surface energy density, effective Young’s modulus and
minimum atomic separation distance between particles
(typically taken to be 1.65 Å [12, 13]):

λT =

(
4Rγ2

E2D3
min

)1/3

(1)

1

R
=

1

ri
+

1

rj
,

1

E
=

1− ν2
i

Ei
+

1− ν2
j

Ej
(2)

where r and ν refer to particle radius and Poisson’s ratio
respectively and subscripts i and j refer to particle i, j.
The study by Johnson and Greenwood [10] shows that
the adhesive Johnson-Kendall-Roberts (JKR) model by
Johnson et al. [1] is valid for λT > 3, the Derjaguin-Muller-
Toporov (DMT) model by Derjaguin et al. [14] is valid for
λT < 0.1 and the model by Maugis [15] is valid in between
the two when 0.1 ≤ λT ≤ 3.

With an increasing number of studies on collisions of
adhesive particles being carried out, the aim of this paper
is to emphasise the importance of reducing the particle ad-
hesiveness when a reduced particle stiffness is introduced.
For this purpose an analytically derived criterion on how to
adjust the surface energy density to account for a reduced
particle stiffness for collisions in the JKR limit (λT > 3)
is presented. This paper is structured as follows: Firstly,
the adhesive DEM modelling framework is briefly outlined.
Secondly, the criterion on how to reduce particle stiffness
is presented for both collisions and rolling behaviour.
Thirdly, numerical simulations of adhesive particles are
compared to experimental data found in literature. Lastly,
two simple test cases are investigated in more details to
show the applicability of the proposed criterion. These test
cases represent types of collisions commonly encountered
in the particle agglomeration and deposition processes:

1. Binary head-on adhesive particle/particle or parti-
cle/wall collisions forming agglomerates or deposi-
tion.

2. Collisions of single adhesive particles with a wall.
Here the particles are affected by a constant external
force parallel to the wall (e.g. a gravity force,
time-independent fluid force or a constant magnetic
force). Here focus is on the rolling resistance torque,
which causes particles to stick to a surface, despite
being affected by a constant force.

2. Modelling Framework

The translational and rotational motion of particles
is obtained using the DEM, where Newton’s equation of
motion is solved to obtain the instantaneous translational
and rotational position for each particle:

m
d2x

dt2
= F con + F ext (3)

I
dω

dt
= M con + M r (4)

where the forces contributing are the contact force upon
impact F con and an external force F ext which could
represent a gravity force, a time-independent fluid force
or a constant magnetic force. Likewise, the total torque is
the sum of a contact torque M con and a rolling resistance
torque M r. The contact force is split into normal and
tangential contributions (F con,n and F con,t), where the
normal contact force is the sum of a spring force, an
adhesive force and a damping force contribution:

F con,n = F spring,n + F jkr,n + F damp,n (5)

In the tangential direction, spring and damping force
contributions are taken into account through:

F con,t = F spring,t + F damp,t (6)

Figure 1 gives an overview of the force contributions acting
on a particle upon collision with another particle (partly
shown on the left).

2.1. Adhesive contact between particles and a surface

Numerous approaches have been suggested to account
for an adhesive force. Common for the approaches is that
they rely on a surface energy density γ to describe the
adhesive force. For small λT, the contact independent van
der Waals formulation by Hamaker [16] is used in studies
such as [8, 9, 17, 18] to account for the adhesive force.
For higher λT (softer particles), the contact dependent
adhesive JKR force proposed by Johnson et al. [1] is used
in studies such as [19, 20]. In the present study, focus is
on the simplified JKR model suited for DEM simulations
and used in studies such as [13, 21, 22]. The simplified
JKR model has the same force-displacement relation as
the original model, requires the same 8/9 of the critical
force F = (8/9)FC = (8/9)3πRγ to break contact but
assumes contact is broken as soon as the normal overlap
becomes negative in the particle separation process. At
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Figure 1: Illustration of contact forces upon collision of two adhesive
particles shown with solid black lines. The particles are still
approaching each other so that the normal damping force points
in the direction opposite of motion.

equilibrium condition when the adhesive force balances the
spring force, the contact radius is given by [23]:

a0 =

(
9πγR2

E

)1/3

(7)

as in the original JKR model. The normal spring force
described by the Hertzian contact model is modified as
follows due to an adhesive force:

F jkr,n = 4
√
πγEa3n (8)

F spring,n = −4E

3R
a3n (9)

where the relation between contact radius a and normal
overlap δn (see figure 1) for adhesive JKR contact is given
by [13, 22]:

a4 − 2Rδna
2 − 4πγ

E
R2a+R2δ2

n = 0 (10)

which can be solved using an iterative approach or the
analytical expression derived by Parteli et al. [13]. Fur-
thermore, a normal damping force contributes to the
contact normal force by dissipating kinetic energy in the
particle material:

F damp,n = −2
5

6
β
√
Snmvn (11)

where β accounts for the energy lost upon collision through
the coefficient of restitution e while Sn takes the particle
properties into account:

β =
ln (e)√

ln2 (e) + π2

(12)

Sn = 2E
√
Rδn (13)

where m is particle mass, vn is the relative normal velocity,
and n is the normal unit vector. In the tangential

direction, the spring force contribution is:

F spring,t = −St∆st (14)

where ∆st is tangential displacement between the particles
and St = 8G

√
Rδn with the effective shear modulus G:

1

G
=

2− νi

Gi
+

2− νj

Gj
(15)

Where the shear moduli for particle i,j are related to
the Young’s modulus through Gi = Ei/(2(1 + νi)) and
Gj = Ej/(2(1 + νj)). Likewise, energy is dissipated in the
tangential direction by a damping force:

F damp,t = −2

√
5

6
β
√
Stmvt (16)

where vt is the relative tangential velocity of the particles.
In the case of adhesive contact, the tangential force is
truncated to fulfil [24, 25]:

|F con,t| ≤ µs |FN + 2FC| (17)

where µs is the sliding friction coefficient.

2.2. Adhesive rolling, sliding and twisting resistance

To predict the formation of agglomerates or particles
sticking to a wall, a description of adhesive rolling plays
a major role [2–4]. Due to the small particle inertia of
micron-sized particles, twisting (rotation along the axis
connecting two particles) and sliding (relative tangential
motion without rotation) are less important than rolling,
to accurately predict formation/break-up of agglomerates
[19, 26]. Therefore, focus is on the adhesive rolling be-
haviour and how to modify the adhesive rolling resistance
model to account for the reduced particle stiffness.

When a particle is in normal equilibrium with a wall,
the centre of contact and projected centre of gravity are
coincident, see figure 2(a). However, when an external
force F ext is applied, a small shift between the centre of
contact and projected centre of gravity will build up, as
illustrated in figure 2(b). The result of this asymmetric
contact region is a torque M r opposing rotation and
trying to obtain the symmetric contact region as in
figure 2(a). If the particle is rolled less than a critical
rolling distance (ξ < ξcrit), the particle rolls back to
obtain the same contact point when the external force is
removed. However, when the particle is rolled a distance
longer than the critical rolling displacement (ξ > ξcrit),
the particle is moved irreversibly. While Dominik and
Tielens [2, 3] suggest a critical rolling displacement in the
order of an atom diameter, the more recent study by Krijt
et al. [4] relates the critical rolling displacement to the
equilibrium contact radius a0 and a material dependent
adhesion hysteresis parameter ∆γ/γ to obtain improved
experimental agreement through:

ξcrit =
a0

12

∆γ

γ
(18)
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F ext

(a) (b)

Projected centre
of contact

Projected
centre of

mass

Coincident
projected centre of
contact and
mass

ξ 6= 0ξ = 0

Figure 2: Adhesive particle in contact with a wall and in normal
equilibrium (F jkr,n = F spring,n): (a) Zero force applied results in
particle centre of mass and centre of contact being coincident; (b) An
external force applied F ext 6= 0 results in a non-coincident projected
centre of mass and centre of contact.

In general as a particle rolls, the rolling displacement ξ is
obtained by integrating the rolling velocity:

ξ =

(∫ t1

t0

vL(t)dt

)
· tr (19)

where the rolling velocity vL is defined as:

vL = R (ωi − ωj)× n +
1

2

ri − rj

ri + rj
vS (20)

which can conveniently be implemented into the DEM
method by incremental changes between two successive
time steps. The rolling resistance torque is then given
by [2, 3]:

Mr =

{
krξ if ξ < ξcrit

krξcrit if ξ ≥ ξcrit

(21)

with rolling stiffness kr = 4FC (a/a0)
3/2

. As the rolling
displacement ξ cannot exceed the critical rolling dis-
placement ξcrit, the rolling displacement is numerically
truncated to fulfil:

|ξ| ≤ |ξcrit| (22)

3. Reduced Particle Stiffness

3.1. Modified adhesive JKR model for reduced particle
stiffness

When a reduced particle stiffness is introduced in DEM
simulations, the particles will inevitably overlap more
during collision. If the surface energy density γ is left
unchanged, the result is a more adhesive collision as the
kinetic energy lost upon collision is increased significantly.
Therefore, a reduced particle stiffness has to be balanced
by a reduced surface energy density for the outcome of the
collision to remain the same. For the separation energy
required to separate two particles in contact to remain

0 δn,0 δn,0,mod2 δn,0,mod1

−
(8
/9

)F
c
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(8
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rc

e
F

N
=
F

sp
ri

n
g

+
F

jk
r

Original model
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Figure 3: Comparison of force-displacement relations using the
original JKR model and different modified versions: —— Original
Hertz and JKR model [1]; · · · · · · Reduced Young’s modulus but
unaltered surface energy density; - - - - Reduced Young’s modulus
and modified surface energy density given by the criterion in
equation (24).

constant, the following criterion has to be fulfilled:∫ δn,0

0

(Fjkr + Fspring) dδn =∫ δn,0,mod

0

(Fjkr,mod + Fspring,mod) dδn

(23)

where δn,0 = (1/3)a2
0/R is the normal overlap at equi-

librium. Inserting expressions for Fjkr and Fspring from
equation (8) and (9) with the contact radius given by
equation (10) into equation (23) gives an expression for
the modified surface energy density as a result of modified
effective Young’s modulus:

γmod = γ

(
Emod

E

)2/5

(24)

Details on how this derived from (23) are given in appendix
A. The result in (24) is actually the same criterion Gu
et al. [8] found for the contact independent van der
Waals formulation [16] FvdW = AHR/(6D

2
min) with the

effective Hamaker constant AH = 24πD2
minγ. Figure 3

shows a comparison of the original JKR model, the JKR
model with reduced particle stiffness and the JKR model
with reduced particle stiffness and reduced surface energy
density using equation (24). As the figure shows, by only
reducing the particle stiffness (by the Young’s modulus E)
the same force (FN = −(8/9)FC) is required to break con-
tact. However, the equilibrium overlap is increased signifi-
cantly as δN,0,mod = (1/3)a2

0,mod/R = (3π2γ2R/E2
mod)1/3.

By reducing both the stiffness and adhesiveness (by the
surface energy density γ) using equation (24), the force-
displacement relation is changed so that the separa-
tion energy remains the same as in the original model.
The result is a higher overlap distances during collision
and consequently larger time step sizes. However, the
normal force required to break contact is reduced to

4



0 ξcrit ξcrit,mod2 ξcrit,mod1

0
M

r,
m

o
d
2
M

r
M

r,
m

o
d
1

Rolling distance
∫
vLdt

A
d

h
es

iv
e

ro
ll
in

g
re

si
st

an
ce

to
rq

u
e

Original model
Reduced stiffness
Reduced stiffness and adhesiveness

Figure 4: Comparison of torque-rolling distance relations using the
original JKR model and different modified versions: —— Original
adhesive rolling resistance torque model by [2–4]; · · · · · · Reduced
Young’s modulus but unaltered surface energy density; - - - - Reduced
Young’s modulus and modified surface energy density given by the
criterion in equation (24).

FN = −(8/9)FC,mod = −(8/9)3πRγmod. This can pose
some impracticalities for systems with large external forces
acting to separate the particles. This is discussed further
in section 6.

3.2. Modified adhesive rolling torque model for reduced
particle stiffness

In the prediction of particle deposition, the adhesive
rolling resistance model acts to stop particles from rolling
on a surface even when a constant external force is applied
parallel to the surface. When introducing a reduced
particle stiffness model, it is important that the particles
will deposit predicted by the original model.

When a reduced particle stiffness is introduced in the
rolling torque model, the equilibrium contact radius a0

in (7) is increased. As a consequence, the critical rolling
displacement distance in (18) is increased as well causing
particles to roll a longer distance before beginning to
roll irreversibly with constant rolling resistance torque
opposing rolling. This is shown in figure 4, which shows
the rolling torque on particles in normal equilibrium with
a surface (a = a0) affected by constant external force.
Likewise, if both the particle stiffness and adhesiveness are
reduced using (24), both the critical rolling distance and
the critical rolling torque are changed as shown in figure 4
as well.

Therefore, the only way to retain the behaviour of the
original model is to keep all terms but the (a/a0)3/2 term
unaltered. The (a/a0)3/2 term is modified to include mod-
ified values for the instantaneous and equilibrium contact
radii, so that (a/a0)3/2 is replaced by (amod/a0,mod)3/2.

In that way, particles have the same behaviour when in
normal equilibrium with a surface as in the original model
but uses modified values before equilibrium is established.

It should be noted that as a natural consequence of
introducing a reduced particle stiffness, the particles will
travel longer distances upon collision due to the changed
force-displacement relation, see figure 3. When collisions
with a plane wall at an oblique angle are considered,
the result is particles travelling a slightly longer distance
before coming to rest. However, this is typically not of
importance in DEM simulations involving many particles.

4. Validation by Experimental Data

Collisions of small spheres have been studied thor-
oughly. At sufficiently low impact velocities, the collisions
are dominated by adhesive forces in the contact region re-
sulting in sticking behaviour, where the effective coefficient
of restitution eeff is zero. At higher impact velocities when
the particles are unable to stick, the effective coefficient
of restitution increases rapidly with increasing impact
velocity. At sufficiently high velocities where the collisions
become increasingly unaffected by adhesive forces, the
effective coefficient of restitution approaches the coefficient
of restitution e.

In the following, simulation results obtained by inte-
grating (3) for both non-modified and modified stiffness
using (24) are compared to experimental data presented by
Dahneke [27]. As noted by Krijt et al. [28], expected colli-
sion outcomes typically differ slightly from experiments as
even small imperfections in particle or wall material result
in a non-perfect collision. Therefore, the fitted values
suggested by Krijt et al. [28] are used when comparing
to experiments. Figure 5 shows how the simulation results
with both non-modified and modified stiffnesses compare
to experimental data.

Figure 5 shows that the DEM methodology described
above is capable of predicting the effective coefficient of
restitution. Furthermore, by reducing the particle stiffness
from E to Emod and modifying the surface energy density
by analytical solution in (24), the exact same results are
indeed obtained. More details on how introducing softer
particles allows for a higher time step size are given in
section 6.

5. Test Cases

5.1. Dimensionless quantities

To generalise the analysis, particle properties are
reported based on a set of dimensionless quantities that
control different aspects of the adhesion and rolling pro-
cesses, which ultimately govern the agglomeration and
deposition processes. Based on the effective Young’s
modulus E, effective radius R, relative particle velocity
before impact v, particle density ρp, collision angle ψ,
and coefficient of restitution e, the adhesion process
is fully described. The above mentioned parameters
form three governing parameters: an elasticity parameter
describing the ratio between particle stiffness and particle
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Figure 5: Comparison to experiment by Dahneke [27] with PSL
spheres colliding with a plane wall of polished quartz. Collision
properties are dp = 1.27 µm, E = 271 MPa, γ = 0.11 J/m2,
ρp = 1026 kg/m3 and e = 0.86 (fitted to experimental data at high
velocities), see Krijt et al. [28] and supplementary online material for
collision properties. When a reduced particle stiffness is introduced
in the simulations, the surface energy density is modified using the
criterion proposed in (24).

inertia λ = E/(ρpv
2), an adhesiveness parameter describ-

ing the ratio between particle adhesiveness and particle
inertia Ad = 3γ/(ρpv

2ri) · (1 + β3)/((1 + β2)β) [29], and
the effective coefficient of restitution describing the ratio
between relative velocity after collision (subscript f) and
before collision eeff = (vi,f − vj,f)/(vj − vi). To describe the
effect of adhesiveness on the collision, the coefficient of
restitution is reported as a scaled value between 0 and
1, giving the ratio between the effective and the non-
adhesive coefficient of restitution ê = eeff/e. In the case of
collision with a wall at an oblique angle ψ, the collision
angle is accounted for in the elasticity parameter and
adhesiveness parameter, so that λ = E/

(
ρpv

2sin2ψ
)

and

Ad = 3γ/(ρpv
2sin2(ψ)ri) · (1 + β3)/((1 + β2)β). In the

case of particle-wall collisions, the adhesiveness parameter
reduces to Ad = 3γ/(ρpv

2sin2(ψ)rp), where rp is the
particle radius.

To describe adhesive rolling, the adhesion hysteresis
parameter ∆γ/γ is used as well. To describe adhesion
followed by rolling on a plane wall, the external force
is made non-dimensional by the yield force required to
overcome the critical rolling resistance torque, forming
F̂ = Fext/Fyield, where Fyield = Mr/R. In the case of
normal equilibrium a = a0, the yield force reduces to
Fyield = 4FCa0(∆γ/γ)/12. That is, F̂ < 1 describes
processes where particles eventually come to a halt due
to adhesive forces in the contact region. Likewise, F̂ ≥
1 describes rolling processes where particles will keep
rolling regardless of the adhesive rolling resistance torque.
The effective coefficient of restitution eeff of an adhesive
collision processes is generally lower than that of a non-
adhesive collision e.

Initial
position

Final
possible states

(a) (b) (c) (d) (e1) (e2)

vj

vi
vi,f

vj,f

vi,f = 0

vj,f = 0

Figure 6: Overview of the different stages of a particle-particle
collision: (a) Particles approaching each other; (b) Just prior to
contact the particles are still unaffected and move with velocity
v; (c) particles reach maximum normal overlap δn; (d) Particles
begin to separate; (e1-e2) Depending on the strength of the adhesive
force the particles will either remain in contact (e1) or separate
completely (e2).
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Figure 7: Numerical simulations showing head-on particle-particle
adhesive collisions by the non-modified model showing the effective
coefficient of restitution as function of the elasticity parameter at
various adhesive parameters Ad = γ/(ρpv2R) for a coefficient of
restitution e = 0.3.

5.2. Binary Adhesive Collision

Binary particle collisions are encountered in most
problems being solved using the DEM method. Therefore
it is important that the model proposed for reduced par-
ticle stiffness simulations yields similar results for particle
collisions. This is investigated in the following with figure 6
giving an overview of the head-on particle-particle collision
being simulated to validate the proposed model. By
varying the elasticity parameter λ and the adhesiveness
parameter Ad, the particles either stay attached, as in
figure 6(e1), or separate with velocity vf as in figure 6(e2).
Figure 7 shows how variations in elasticity parameter
at different adhesiveness parameter affect the effective
coefficient of restitution. The figure shows how the
particles stay attached below a certain critical elasticity
parameter. This critical elasticity parameter depends on
the adhesiveness parameter and increases with increasing
adhesiveness parameter. As the results show, decreasing
the particle stiffness does, in most cases, result in a
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Figure 8: Numerical simulation showing head-on particle-particle
adhesive collisions showing how the effective coefficient of restitution
remains constant when the particle stiffness is reduced (or increased)
when the surface energy density is changed using the criterion
proposed in (24). Again, results are shown for coefficient of
restitution e = 0.3.

different effective coefficient of restitution. The exception
is at sufficiently low elasticity parameters, where the
particle stay attached upon collision. Furthermore, the
figure shows that as long as eeff/e ≈ 1, corresponding to
high elasticity parameters, the elasticity parameter can be
reduced with only small changes in effective coefficient of
restitution as the collision behaves as non-adhesive.

Figure 8 shows how using the criterion in (24) makes
the effective coefficient of restitution independent of changes
in elasticity parameter from a base value λ = 106. As
figure 8 shows, the effective coefficient of restitution eeff/e
retains the values from λ = 106 in figure 7 when the
elasticity parameter is changed at various adhesiveness
values. Even though the stiffness of particles undergoing
binary particle-particle collisions can be greatly reduced,
studies by Kobayashi et al. [9] and Gu et al. [8] show that
collisions involving larger agglomerates behave differently
when the particle stiffness is reduced beyond a certain
point. In this study, this phenomenon is addressed in the
following section where particle deposition on both a clean
surface and a surface with an initial layer of particles is
investigated.

5.3. Deposition on a Plane Surface

Most problems being solved using DEM involve parti-
cles colliding with a plane surface. This case is different
from the previous head-on particle collisions as particles
may roll on the surface or other particles and eventually
come to rest due to adhesive rolling resistance torque
described by equation (21). Therefore, this section is
focused on the validity of the proposed model for particles
with reduced stiffness colliding with a plane surface.
Figure 9 gives an overview of the oblique angle particle-
wall collision process investigated.
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Figure 10: The three possible outcomes of an adhesive collision with
a plane wall and the effect of increasing/decreasing adhesiveness
parameter Ad = 3γ/(ρpv2sin2(ψ)rp) and coefficient of restitution e.
The particle is affected by a constant external force Fext parallel
to the wall (see figure 9) and the yield force is given by
Fyield = 4FCa0(∆γ/γ)/12.

Initial
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Final possible states

v

F ext

(a) (b) (c) (d) (e2)
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ω

F ext

(e3)

ω = 0

(e1)

v

F ext
ψ

Figure 9: Overview of the different stages of the particle-wall
collision: (a) The particle moving towards the wall; (b) Just prior
to contact the particle is still unaffected by the wall and moves with
velocity v at an angle ψ to the wall while affected by an external
fluid/gravity force F ext; (c)-(d) Particle in contact with the wall. If
the particle stay in contact with the wall, the normal equilibrium is
established here; (e1-e3) The particle will either rebound and move
away from the surface (e1), stay at the surface but keep rolling with
a constant angular velocity ω 6= 0 (e2) or stay in place as a result of
adhesiveness with shifted centre of contact and centre of mass ω = 0
(e3), see figure 2(b).

As the figure shows, three possible outcomes are
expected as collision parameters are varied: rebound
behaviour, particle deposition followed by rolling mo-
tion and particle deposition where the particle rolls a
certain distance before coming to a halt. For most
DEM simulations of particulate deposition, it is important
that the outcome (rebound, rolling or sticking) remains
the same when the particle stiffness is reduced. Sim-
ulations of particles colliding with a wall at oblique
angles ψ ∈ ]0;π/2] were done. The three possible
outcomes are located as shown in the dimensionless map
in figure 10, where elasticity and adhesiveness parameter
are modified to account for the collision angle ψ so
that: λ = E/(ρpv

2sin2ψ) and Ad = 3γ/(ρpv
2sin2(ψ)rp).

A high elasticity parameter, high coefficient of restitution
or low adhesiveness parameter will all inherently cause the
particles to rebound. When the particles stay attached
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Figure 12: Coefficient c in equation (25) as function of coefficient of
restitution e.

to the wall, the external force F̂ dictates if the particles
stay in place due to adhesiveness (F̂ < 1) or keep rolling
(F̂ ≥ 1).

To find the critical elasticity parameter causing parti-
cles to rebound from figure 10, the bisection algorithm is
used with convergence criterion |δn/rp| = 10−7. Figure 11
shows the critical elasticity parameter as function of
adhesiveness parameter at various coefficients of restitu-
tion. All the lines of constant coefficient of restitution in
figure 11 follow the equation:

λcrit = c ·Ad5/2 (25)

where the value of c is solely a function of the coefficient
of restitution e as shown in figure 12. That is, the
above equation can be used to find the critical elasticity
parameter giving the border between rebound and sticking
behaviour.

6. Summary and discussion

6.1. Summary

A method has been presented for reducing the particle
stiffness for DEM simulations using a Hertzian approach

to predict collisions of adhesive micron-sized particles for
which the adhesive model by Johnson-Kendall-Roberts
(JKR) model is applicable. The following conclusions can
be drawn:

• When using the simplified JKR model (equation
(8)), the particle Young’s modulus can be reduced
from E to Emod as long as the surface energy density
is reduced as well using γmod = γ(Emod/E)2/5. That
way, the border between sticking and rebounding be-
haviour remains the same when the particle stiffness
is reduced.

• To use the rolling resistance model by Dominik and
Tielens [2, 3], Krijt et al. [4] (equation (18) to (22))
for reduced particle stiffness simulations, only the
term (a/a0)3/2 should be changed to use modified
values. That way, the border between rolling and
sticking remains the same. As a natural result of the
reduced particle stiffness, the particles will travel a
longer distance before the equilibrium condition is
reached.

6.2. Discussion on computational time and limitations

As the particle stiffness is reduced, the time step size
can be greatly increased. Figure 13 shows the velocity
during a collision of a small PSL sphere impacting a
polished quartz surface, corresponding to the experiment
by Dahneke [27].

As the figure shows, the separation velocity is unaf-
fected by a change in particle stiffness when the surface
energy density is modified using (24). However, the
particle collision process now takes place over significantly
longer time periods. When resolving a collision over
fixed number of time steps (Silbert et al. [30] suggests
∆tcol/δt ≈ 50), the time step size can now be greatly
increased. By looking at how the collision time ∆tcol

scales with a reductions in particles stiffness, it is found
that ∆tcol,mod = ∆tcol(E/Emod)2/5, see figure 13. This
criterion can be used to estimate the possible speed-up
for adhesive DEM simulations when introducing a reduced
particle stiffness.

As a consequence of a reduced particle stiffness, the
critical force required to separate two agglomerated par-
ticles is reduced as well. This fact is important when
simulating particles in flow or magnetic fields where local
external forces on particles can be strong. A such example
could be a strong shear flow field. Therefore, care should
be taken when introducing reduced particle stiffness to
make sure that the critical force FC = 3πRγmod still
remains significantly higher than typical external forces
trying to separate the particles.

Additionally, it should be noted that for collisions
involving many particles with a local volume fraction ap-
proaching the closed-pack solution, the adhesive behaviour
might be changed slightly if the particle stiffness is reduced
too much, Emod/E < 10−3 [8, 9].
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Figure 13: Velocity as function of time during a collision for a PSL
sphere colliding with a polished quartz wall with an impact velocity
of 5 m/s. When the particle stiffness is reduced from Emod/E = 100

to Emod/E = 10−1 and Emod/E = 10−2, the surface energy density
is modified using the criterion proposed in (24).
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Appendix A. Details on derivation of the criterion
in (24)

Instead of deriving (24) from (23) directly, we use
integration by substitution to rewrite (23) in terms of
contact radius a instead of normal overlap δn:∫ a(δn=δn,0)

a(δn=0)

(Fjkr + Fspring) da =∫ a(δn=δn,0,mod)

a(δn=0)

(Fjkr,mod + Fspring,mod) da

(A.1)

Next, expressions for the contact radius at δn = 0, δn =
δn,0 and δn = δn,0,mod are found. The contact radius at
zero-overlap is found by isolating a in (10) with δn = 0:

a4 − 2Rδna
2 − 4πγ

E
R2a+R2δ2

n = 0 (A.2)

The two real roots are:

a1 = 0 (A.3)

a2 =

(
4πγR2

E

)1/3

(A.4)

Here we are interested in the non-zero root a2, which is
the lower limit of the integrals in (A.1):

a(δn = 0) =

(
4πγR2

E

)1/3

(A.5)

The upper limits for a at δn = δn,0 and a at δn = δn,0,mod

are the equilibrium contact radius given directly by (7):

a(δn = δn,0) =

(
9πγR2

E

)1/3

(A.6)

a(δn = δn,0,mod) =

(
9πγmodR

2

Emod

)1/3

(A.7)

Next, we look for an expression for dδn. First, we derive an
expression for δn(a) using (10). We obtain two solutions:

δn,1 =
Ea2 + 2R

√
Eγaπ

ER
(A.8)

δn,2 =
Ea2 − 2R

√
Eγaπ

ER
(A.9)

Here only the solution in (A.9) fulfills the criteria in (A.5)
and (A.6). Next, we find the derivative dδn/da using (A.9)
and isolate for dδn:

dδn =

(
2a

R
−

2
√
γπ

√
Ea

)
da (A.10)

Carrying out the integral in (A.1) with the limits given by
(A.5), (A.6) and (A.7) and inserting the expression for dδn
from (A.10), we obtain:

γ5/3

E2/3
=
γ

5/3
mod

E
2/3
mod

(A.11)

which reduces to the expression in (24).
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Nomenclature

Ad adhesiveness parameter (-)
AH effective Hamaker constant (J)
a contact radius (m)
dp particle diameter (m)
Dmin minimum separation distance (m)
E (no subscripts) effective Young’s modulus (Pa)
Ei, Ej Young’s modulus for particle i, j (Pa)
e coefficient of restitution (-)
F force (N)
FC critical force (N)
I particle moment of inertia (kg m2)
k spring constant (N m−1)
kr rolling stiffness (N)
M particle torque (Nm)
m (no subscripts) effective particle mass (kg)
mi, mj particle mass for particle i, j (kg)
n normal unit vector (-)
R effective particle radius (m)
rp particle radius (m)
ri, rj particle radius for particle i,j (m)
S damping force coefficient (kg s−2)
t time (s)
v relative velocity (m s−1)
vL relative rolling velocity (m s−1)
vS slip velocity (m s−1)
x particle position (m)

Greek letters
β coefficient used for damping force (-)
∆γ/γ adhesion hysteresis value (-)
∆tcol time period for oscillations or collision (s)
δt collision time step size (s)
δst tangential displacement (m)
δ normal overlap (m)
γ surface energy density (J m−2)
λ elasticity parameter (-)
λT Tabor parameter (-)
µs sliding friction coefficient (-)
ν Poisson’s ratio (-)
φ adhesiveness parameter (-)
ρp particle density (kg m−3)
ψ collision angle (-)
ω particle angular velocity (s−1)
ξ rolling displacement (m)

Subscripts
0 equilibrium condition
ad adhesive
crit critical
con contact
damp damping
eff effective
ext external
f final
mod modified values
i particle i
j particle j
n normal direction
r rolling resistance
t tangential direction
vdW van der Waals

Acronyms
DEM Discrete Element Modelling
DMT Derjaguin-Muller-Toporov model
JKR Johnson-Kendall-Roberts model
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