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ABSTRACT 1 

The aim of this case-control study was to examine differences in neural correlates of pain 2 

facilitatory and inhibitory mechanisms between acute low back pain patients and healthy 3 

individuals. Pressure pain tolerance (PPT), electrical pain detection thresholds (EDT), pain ratings 4 

to repetitive suprathreshold electrical stimulation (SES) and conditioned pain modulation (CPM) 5 

were assessed in 18 patients with acute low back pain (LBP) and 18 healthy controls (CTRL). 6 

Furthermore, event-related potentials (ERPs) in response to repetitive SES were obtained from 7 

high-density electroencephalography. Results showed that the LBP group presented lower PPT and 8 

higher pain ratings to SES compared to the CTRL group. Both groups displayed effective CPM, 9 

with no differences in CPM magnitude between groups. Both groups presented similar reductions in 10 

ERP amplitudes during CPM, but ERP responses to repetitive SES were significantly larger in the 11 

LBP group. In conclusion, acute low back pain patients presented enhanced pain facilitatory 12 

mechanisms, whereas no significant changes in pain inhibitory mechanisms were observed. These 13 

results provide new insight into the central mechanisms underlying acute low back pain. 14 

 15 

This study was registered in the Clinical Trials Protocol Registration System (NCT00892411, 16 

available at https://clinicaltrials.gov/ct2/show/NCT00892411). 17 

 18 

PERSPECTIVES 19 

This article present evidence that acute low back pain patients show enhanced pain facilitation and 20 

unaltered pain inhibition compared to pain-free volunteers. These results provide new insight into 21 

the central mechanisms underlying acute low back pain. 22 

 23 
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KEY WORDS  1 

acute low back pain (LBP), conditioned pain modulation (CPM), endogenous inhibition, event-2 

related potentials (ERPs). 3 
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1. INTRODUCTION 1 

Low back pain has a life prevalence of over 70% 2, with less than one third resolving annually 14 2 

and with over 60% of patient experiencing pain after 12 months 35. The anatomical causes of acute 3 

low back pain are largely unclear. In recent years, attention has concentrated on the potential role of 4 

dysfunction of central nociceptive pathways in the pathophysiology of different pain conditions. 5 

Afferent signals encoding nociceptive information are dynamically modulated by spinal and 6 

supraspinal inhibitory/excitatory mechanisms before being integrated in the brain, resulting in the 7 

subjective feeling of pain 25,34,59. These central mechanisms play pivotal functions: inhibition of 8 

nociceptive inputs reduces the risk that pain compromises escape in potentially dangerous 9 

circumstances, whereas facilitation is involved in protective and recuperative behaviors to limit 10 

further tissue damage and promote healing 50.  11 

Central sensitization and endogenous inhibition are two central modulatory mechanisms that are 12 

frequently studied in the context of up/down regulation of nociceptive activity and pain. Central 13 

sensitization is defined as an increased excitability and synaptic efficacy of nociceptive neurons in 14 

the central nervous system 86. In humans, it can be experimentally induced by diverse noxious 15 

conditioning stimuli and can be assessed by electrophysiological or imaging techniques. On the 16 

other hand, conditioned pain modulation (CPM) is a frequently used paradigm to test endogenous 17 

inhibitory pain mechanisms triggered when the response to a painful stimulus is inhibited by the 18 

concurrent presence of another painful stimulus88. 19 

In humans, alterations of these mechanisms have been linked to the development of chronic pain 20 

3,48,73,87. Central sensitization has been reported in a number of chronic pain states, including 21 

migraine, fibromyalgia, whiplash injury, endometriosis, low back and neck pain and osteoarthritis, 22 

among others 6,8,29,32,57,72,74. Moreover, deficiencies in CPM have been observed in these and other 23 

chronic pain conditions 56,58,61,77. Only a few studies have investigated concurrent alterations of 24 
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these mechanisms in different chronic pain conditions 4,73,75, and little is known in acute low back 1 

pain. Research is required to better understand the role of central pain modulation in the 2 

pathophysiology of acute low back pain, as this could give insights into the mechanisms underlying 3 

acute low back pain, its recurrence, and transition to a chronic pain state. 4 

The aim of the present study was to examine differences in pain facilitatory and inhibitory 5 

mechanisms between acute low back pain patients and healthy individuals. For that purpose, 6 

psychophysical and electrophysiological responses were obtained from both groups before and 7 

during CPM induced by the cold pressor test (CPT). Psychophysical tests included pain threshold to 8 

electrical and mechanical stimulation, whereas the electrophysiological assessment consisted in the 9 

quantification of event-related potentials (ERPs) in response to repetitive painful electrical 10 

stimulation.  11 

  12 
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2. MATERIALS AND METHODS 1 

This case-control study comparing patients with acute low back pain with pain-free controls was 2 

approved by the ethics committee of the Canton Bern, Switzerland (No. 103/08) and registered in 3 

the Clinical Trials Protocol Registration System (NCT00892411, available at 4 

https://clinicaltrials.gov/ct2/show/NCT00892411), as part of a large prospective cohort study on 5 

low back pain. Data collection for the part pertaining to the preset study was performed between 6 

January 1, 2009 and October 31, 2011 at the Department of Anesthesiology and Pain Therapy, 7 

University Hospital, Inselspital Bern, Switzerland. All participants gave written informed consent. 8 

2.1. Participants 9 

The study involved consecutive acute low back pain patients (LBP group) and healthy pain-free 10 

controls (CTRL group). LBP patients received 200 Swiss Francs, whereas volunteers from the 11 

CTRL group received 100 Swiss Francs for their participation. Patients were referred from primary 12 

care physicians. Inclusion criteria were acute low back pain of less than 6 weeks, age 18 to 80 13 

years, pain of 4 or more on a numerical rating scale (NRS) ranging from 0-10 (whereby 0=no pain 14 

and 10=worst pain). Healthy controls were recruited by advertisement and among staff from the 15 

Department of Anesthesiology and Pain Medicine, Bern University Hospital. Participants were not 16 

informed about the specific study hypothesis. Healthy volunteers were selected to match patients in 17 

the acute low back-pain population for gender and age (±3 years). Exclusion criteria for both groups 18 

were: inability to understand the tests, lacking knowledge of German language, history of chronic 19 

low back pain or other chronic pain conditions, radicular pain (as defined by leg pain associated 20 

with an MRI finding of a herniated disk or foraminal stenosis with contact to a nerve root), 21 

neurological conditions potentially affecting sensory function (i.e., polyneuropathy, diabetes 22 

mellitus, or alcohol abuse), pregnancy (ruled out by pregnancy test), breast-feeding, intake of oral 23 
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contraceptives or hormones, intake of strong opioids and antidepressants during the previous 2 1 

weeks, and intake of other analgesics or drugs known to modulate pain up to 48 hours before 2 

testing. Additional exclusion criteria for healthy controls were any pain at the time of testing. 3 

2.1.1. Sample size considerations 4 

The original protocol required 40 acute low back pain that were randomly assigned in a 1:1 ratio to 5 

either undergo assessment of electroencephalographic (EEG) activity as response to painful 6 

stimulation or electrical stimulation with assessment of pain and reflex detection threshold. Thus, 7 

20 acute low back pain patients and 20 healthy pain-free controls were assigned to this study.  8 

2.2. Descriptive variables 9 

Gender, age, height, weight, body-mass index (BMI) and duration of pain in weeks were recorded. 10 

Additionally, pain intensity at the time of testing and maximum and minimum pain intensity in the 11 

24 h prior to the experiment were assessed using the same NRS as described above. Volunteers 12 

were also asked to complete the following questionnaires: Beck Depression Inventory (BDI) 7, 13 

State-Trait-Anxiety-Inventory (STAI) 44 and Catastrophizing Scale of the Coping Strategies 14 

Questionnaire (CSQ) 69.  15 

2.3. Psychophysical and electrophysiological tests 16 

2.3.1. Pressure stimulation 17 

Pressure pain tolerance (PPT) was measured with an electronic pressure algometer (Somedic AB, 18 

Sweden), using a probe with a surface area of 1 cm2. Pressure stimulation was performed at the 19 

center of the pulp of the 2nd toe of the left foot. The pressure was increased from 0 kPa at a rate of 20 

30 kPa/s to a maximum pressure of 1000 kPa. Pain tolerance was defined as the point at which the 21 

subject felt pain as intolerable. Volunteers were instructed to press a button when this point was 22 
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reached. The algometer displayed the pressure intensity at which the button was pressed. If the 1 

subject did not press the button at a pressure of 1000 kPa, this value was considered as threshold. 2 

2.3.2. Electrical stimulation 3 

Electrical stimulation was performed through surface electrodes (Ag/AgCl, Ambu Neuroline, Ambu 4 

A/S, Ballerup, Denmark) placed at the innervation area of the left median nerve, on the wrist, and 5 

delivered by a computer-controlled constant current stimulator (NoxiTest IES 230, Aalborg 6 

University, Denmark). Each stimulus consisted of a single, 2-ms square-wave pulse. The 7 

stimulation intensity was established as a multiple of the subjective pain detection threshold (EPT), 8 

the latter defined as the minimum current intensity reported as painful for a single stimulus. In order 9 

to find the EPT, the current intensity was gradually increased from 1 mA in steps of 0.5 mA until a 10 

painful sensation was elicited. The procedure was repeated three times, and the mean of the three 11 

pain thresholds was multiplied by 1.5 to obtain the suprathreshold electrical stimulation (SES) 12 

intensity that was used subsequently in the whole experiment. Repetitive SES consisted of trains of 13 

5 stimuli, with an inter-stimulus interval of 200 ms (stimulation frequency: 5 Hz, total train 14 

duration: 1 s). Each train was repeated 120 times at a random inter-train interval ranging from 4 to 6 15 

s, resulting in stimulation blocks of approximately 10 min.  16 

2.3.3. Cold pressor test and conditioned pain modulation 17 

For the cold pressor test (CPT), the participants immersed the right hand in a container with ice-18 

saturated water (0.7 ± 0.1 °C, regularly mixed and constantly monitored with a digital thermometer) 19 

to the wrist level, for a maximum of 2 min. The container had an inner compartment and an outer 20 

compartment separated by a mesh screen. The mesh screen prevented direct contact between the ice 21 

(placed in the outer compartment) and the hand of the subject (placed in the inner compartment). 22 

Volunteers were instructed to withdraw the hand when they felt the pain as intolerable and the time 23 

of hand immersion was recorded. If the hand was not withdrawn at 2 min, this time was recorded 24 
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for data analysis as a measure of pain tolerance. The CPT also served as conditioning stimulus for 1 

the measurement of conditioned pain modulation (CPM). Following the CPT, volunteers were 2 

requested to immerse only the fingers of the right hand in the ice-saturated water, and maintain 3 

them immersed for the duration of the electrical stimulation block (approximately 10 min).  4 

2.4. Electroencephalographic recordings  5 

Continuous high-density EEG data were acquired with a 128-channel system (asalab®, ANT Neuro 6 

B.V., The Netherlands), using an EEG cap (Waveguard®, ANT Neuro B.V., The Netherlands) with 7 

an electrode placement scheme in accordance with the International 10-5 system. All the electrodes 8 

were referred to the left mastoid (M1) ipsilateral to the site of stimulation, and the ground electrode 9 

was incorporated in the cap between AFz and Fz on the nasion-inion line. The electrodes impedance 10 

was kept below 5 kΩ and recordings were made using asa® 4.7.3 software (ANT Neuro B.V., The 11 

Netherlands) at a sampling rate of 2048 Hz.  12 

2.5. Experimental procedure 13 

The same investigator, AYN, performed all the experiments, assisted by ACN. During the testing 14 

session the volunteers were lying in a bed, in a quiet room. Each subject underwent a training 15 

session for all tests in order to familiarize with the stimulation procedures before starting the data 16 

collection. Electrical stimulation was performed at the left wrist, whereas ice water stimulation was 17 

performed on the right hand, as typically the conditioning has to be performed on a remote area 39. 18 

PPT, EPT to single electrical stimulus and pain ratings to repetitive SES were initially assessed as 19 

described in section 2.3, and then EEG data were recorded during repetitive SES for 10 min 20 

(BASELINE condition). Afterwards, the cold pressor test was performed: immediately following 21 

the initial 2 min (or the longest time that the volunteers were able to keep the whole hand 22 

submerged), the PPT was assessed again. EEG data were then recorded again during repetitive SES 23 
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for 10 min, while only the fingers of the right hand remained immersed in ice water (CPM 1 

condition). The fingers were immersed again in ice water in order to sustain the CPM effect for a 2 

longer interval and to allow for the considerable longer duration required for ERP recording. During 3 

the CPM condition, PPT was reassessed at 3, 5 and 10 min. A summary of the experimental 4 

procedure is shown in Fig. 1. 5 

2.6. Data analysis 6 

2.6.1. Conditioned pain modulation 7 

The magnitude of the CPM effect, namely ∆CPM, was defined as the difference between PPT 8 

measured immediately after, 3, 5 and 10 min after the CPT, and the PPT at baseline (i.e. before 9 

CPT). Positive values of ∆CPM indicated successful pain inhibition and the volunteer is said to 10 

respond to CPM testing 64. 11 

2.6.2. Event-related potentials 12 

EEG data was analyzed offline in MATLAB (Mathworks, Inc., USA). In particular, EEG data was 13 

pre-processed using EEGLAB 20. For each subject and each condition, continuous EEG data were 14 

band-pass filtered between 0.5 and 100 Hz, notch-filtered at 50-Hz and re-referenced to the average 15 

of all channels. A time window of interest was defined by segmenting the data into epochs of 2000 16 

ms that included 500 ms of pre-stimulus. The obtained epochs (120 in total) were visually inspected 17 

to discard noisy channels and those epochs that contained gross artifacts due to e.g. movement and 18 

muscle activity. In order to remove artifacts related to the electrical stimulation, eye movements and 19 

blinks, the remaining epochs were evaluated using Infomax Independent Component Analysis 20 

(ICA) 45. The ICA algorithm separated the scalp EEG signals into statistically independent 21 

components of different brain and artifact sources, and the “clean” EEG signals were obtained by 22 

eliminating the contributions of the artifactual components. These components were identified by 23 
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inspecting their time course, spectra and scalp topography 38. Subsequently, the rejected channels 1 

were spatially interpolated with a spherical spline. Finally, epochs were averaged across trials and 2 

baseline-corrected using the mean amplitude of the pre-stimulus period in order to obtain the ERPs. 3 

A step-by-step guide for the pre-processing analysis applied using EEGLAB can be found at 4 

https://sccn.ucsd.edu/wiki/EEGLAB_TUTORIAL_OUTLINE. As a result of the pre-processing 5 

stage, one averaged waveform was obtained for each subject, channel and condition. 6 

2.6.3. Statistics 7 

Descriptive variables are reported as mean ± standard deviation or as median (interquartile range), 8 

depending on whether the underlying data satisfied the normality assumption or not (Shapiro-Wilk 9 

test). Differences in descriptive variables between groups were analyzed using an unpaired t test or 10 

a Mann-Whitney rank sum test, depending on whether the underlying data satisfied the normality 11 

(Shapiro-Wilk test) and equal variance (Levene’s test) assumptions or not, respectively. Differences 12 

in ∆CPM between groups were assessed by an analysis of covariance (ANCOVA) using time as a 13 

covariate. 14 

ERP statistics were performed using Letswave (http://nocions.github.io/letswave6/). A point-by 15 

point, mixed-model analysis of variance (ANOVA) was performed to evaluate the effects of the 16 

factors condition (BASELINE vs. CPM) and group (CTRL vs. LBP) on the amplitude of the ERPs 17 

in the time window of interest (2000 ms in total, from500 ms before the stimulus to 1500 ms after 18 

the stimulus). Since point-by-point analysis involves several statistical inferences made 19 

simultaneously, a clustersize-based permutation testing approach was used to control the multiple 20 

comparisons problem 49. This methodology defines clusters of significant differences in time (by 21 

grouping the time points for which the p-value in the individual F-test is smaller than 0.05), while 22 

controlling the false alarm rate. The size of each cluster was defined as the sum of the F-values 23 

within the cluster. Then permutations are performed (250 in total), by shuffling the data between 24 
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conditions. Each permutation will result in a new set of clusters that are used to build the 1 

permutation distribution. Finally, the significant clusters from the original data are identified as 2 

those whose size is over a threshold was defined as the 95th percentile of the z-distribution from the 3 

largest cluster obtained during the permutation testing. 4 

  5 
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3. RESULTS 1 

3.1. Descriptive variables 2 

During EEG assessment, recorded files from two patients and two healthy controls were corrupted 3 

and data were irrecoverable, so the final analysis was performed on 18 subjects per group. An 4 

overview of the volunteers’ characteristics and statistical tests results can be seen in Table 1. Eight 5 

patients were regularly using diclofenac (median 150mg/day, IQR 75 mg/day), six were regularly 6 

using ibuprofen (median 1600 mg/day, IQR 0 mg/day), and one was using mefenacid (1500 7 

mg/day). Only one patient used a weak opioid, tramadol slow release 100 mg bid, combined to 8 

ibuprofen 1600 mg/day. No significant differences were found in age and BMI between groups. 9 

Regarding the psychological assessment, the LBP group presented higher BDI and STAI-trait 10 

scores compared to healthy volunteers, but no significant differences in STAI-state or 11 

catastrophizing scores.  12 

3.2. Psychophysical and electrophysiological tests 13 

Statistical test results for the psychophysical and electrophysiological tests are presented in Table 2. 14 

In summary, the LBP group presented significantly lower baseline PPT compared to the CTRL 15 

group. None of the volunteers from any of the groups reported a PPT higher than 1000 kPa. 16 

Additionally, even though there were no significant differences in EPT, the LBP group reported 17 

significantly higher subjective pain ratings to repetitive SES. 18 

3.3. Cold pressor test and conditioned pain modulation 19 

For the CPT, no significant difference was detected in immersion times between groups, with 5 20 

volunteers from the CTRL group (27.8 %) and 4 volunteers from the LBP group (22.2 %) reaching 21 

the maximum immersion time for the hand of 2 min. . CPT successfully induced CPM, as assessed 22 
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by a decrease in PPT after CPT compared to baseline (Fig. 2). The magnitude of ∆CPM was 1 

significantly related to the elapsed time (F1,141 = 17.90, p < 0.001). After controlling for the effect of 2 

the elapsed time, there was no significant difference in the magnitude of ∆CPM between groups 3 

(F1,141 = 0.578, p = 0.448). 4 

3.4. Event-related potentials 5 

In general, subjects from both groups presented clear ERP components that are typically elicited 6 

when applying electrical stimulation to the skin at suprathreshold levels 80. Early waves commonly 7 

described as N20 and P30, presented evident lateralized scalp topography with negative and 8 

positive excursions, respectively, contralateral to the stimulation site (Fig. 3, 20 ms and 30 ms). 9 

These waves were followed by two negative deflections in central-parietal electrodes frequently 10 

described as N70 and N120 (Fig. 3, 70 ms and 120 ms). The following wave was a positive peak in 11 

central electrodes, symmetrically distributed, with a latency of ~225 ms (P200). The P200 was 12 

coincident with the arrival of the second pulse of the stimulus train. After the fifth stimulus, the late 13 

components of the ERP waveforms had a similar topography as the response to the first stimulus, 14 

although the ERP amplitude was evidently decreased (Fig. 3, 870 ms, 920 ms and 1110 ms).  15 

Grand-mean ERP waveforms are shown in Fig. 4, together with results of the point-by-point 16 

ANOVA performed in each time point and channel. There was a significant main effect of 17 

condition in the post-stimulus window, between ~45 – 400 ms and ~800 – 1200 ms. A significant 18 

difference was also found prior to stimulus onset, between -140 – -20 ms. Scalp responses to 19 

electrical stimulation were significantly smaller during the CPM condition for both groups. 20 

Furthermore, there was a significant main effect of group in post-stimulus window (after the fifth 21 

pulse in the stimulus train), between ~910 – 980 ms and ~1075 – 1135 ms, where LBP patients 22 

showed larger ERP responses after the fifth stimulus compared to the CTRL group in both 23 
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conditions. The significant differences of both factors were mainly located in the right central 1 

region, contralateral to the site of electrical stimulation. No interaction effects were observed. 2 

  3 
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4. DISCUSSION  1 

In this study, differences in pain modulatory mechanisms between acute low back pain patients and 2 

healthy individuals were studied using psychophysical and electrophysiological tests. Patients 3 

presented lower PPT and higher pain intensity ratings to repetitive SES compared to the control 4 

group, although no differences were detected in EPT to single electrical stimulus. Furthermore, both 5 

groups displayed effective CPM, reflected in positive differences in PPT immediately after and up 6 

to 10 min after CPT compared to baseline. No differences in immersion time or in the magnitude of 7 

the CPM effect assessed by PPT were found between groups at any time point. Additionally, 8 

electroencephalographic evidence showed that both groups presented similar reductions in ERP 9 

amplitudes in response to electrical stimulation during CPM, although responses to repetitive SES 10 

were significantly larger in the acute low back pain patient group. 11 

4.1. Psychophysical assessment 12 

Psychophysical assessment indicated that acute low back pain patients presented lower PPT and 13 

higher pain ratings to repetitive SES compared to healthy individuals. These results can be 14 

interpreted as a state of pain hypersensitivity in acute pain patients 8,51 . Pain hypersensitivity is 15 

commonly observed in several chronic pain conditions, such as fibromyalgia, whiplash and 16 

osteoarthritis, among others 6,8,18,29,32,57,72,74. With regards to the mechanisms behind these changes, 17 

evidence from animal experiments suggests that one of the contributors of pain hypersensitivity is 18 

an abnormal, widespread and long lasting increase in spinal excitability, either due to an increase of 19 

the number of responsive neurons or an expansion of the neuronal receptive fields 16,21,43. These 20 

changes are normally attributed to central mechanisms since electrical stimulation completely 21 

bypasses skin receptors, and currently there are no theories that account for an increase in peripheral 22 

nerve sensitivity remote to the site of injury / pain 86. Alternative explanations to this observations 23 
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related to peripheral changes are less likely: in the case of pressure pain, peripheral receptor 1 

sensitization could account for localized hyperalgesia at the site of pain (in this case, the low back), 2 

but not for generalized widespread hyperalgesia tested at remote sites (in this case, the toes) 60.  3 

Enhanced pain facilitatory mechanisms are not the only possible explanation for these observations, 4 

since it could be hypothesized that alterations in endogenous inhibitory systems may play a role in 5 

pain hypersensitivity. Indeed, some of the aforementioned chronic pain conditions are also 6 

associated to deficiencies in endogenous pain inhibition 56,58,61,77. In this regard, the results of this 7 

study do not provide psychophysical evidence of alterations in pain inhibitory mechanisms in acute 8 

low back pain patients, as assessed by immersion times and by changes in pressure pain thresholds 9 

during CPM. Both groups presented effective CPM immediately after CPT and up to 10 min later, 10 

although the magnitude of the CPM effect decreased over time. Furthermore, no differences 11 

between groups were found at any time point. 12 

Only very few studies have investigated CPM in the acute pain stage, mostly in relation to 13 

prediction of postoperative pain 42,89. Specifically regarding low back pain, a recently published 14 

study from our group also investigated the time course of CPM in patients with acute and chronic 15 

low back pain 51. The reported results indicated that both groups of patients presented effective 16 

CPM immediately after CPT, with only small differences in the time course of CPM between 17 

patients and healthy individuals. Taking into consideration studies involving chronic low back pain 18 

as well 37,52, the existing psychophysical evidence seems to indicate that inhibitory mechanisms 19 

related to CPM are largely unaltered in patients with acute low back pain. However, until now there 20 

were no studies providing electrophysiological data that would support this hypothesis. 21 

4.2. Electrophysiological assessment 22 

The EEG analysis showed that both healthy volunteers and LBP patients presented reduced ERPs 23 

during CPM. In this regard, the majority of previous CPM studies in healthy volunteers reported a 24 
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consistent amplitude reduction of the late ERP components 5,9,27,28,40,53,62,67,83,85. In contrast, chronic 1 

pain patients generally did not display changes in the ERP amplitudes during CPM 1,13,63,78, 2 

although there are some examples in which cortical changes have been observed 65. It is worth 3 

noting that expectations of analgesia/hyperalgesia can induce changes in CPM responses at spinal 4 

and supraspinal level in healthy volunteers 30 , although it was later shown that the modulatory 5 

effects of expectations on spinal nociception are disrupted in fibromyalgia patients 31. In relation to 6 

acute pain patients, no previous studies have investigated the electrical brain activity during CPM. 7 

The present electrophysiological evidence is in line with the psychophysical results, all suggesting 8 

that acute low back pain patients might not have alterations in endogenous inhibition at this stage. 9 

Regarding the brain responses to repetitive painful stimulation, the obtained ERP components 10 

presented a visible reduction in the amplitude between the first and last stimulus of the train 11 

consistent with results reported previously 15,36. This phenomenon is called repetition suppression, 12 

and there are two proposed models to explain it: as a bottom-up process in which neuronal activity 13 

is reduced due to fatigue of synaptic mechanisms or as a top-down process that reflect attenuation 14 

of surprise responses to unexpected sensory input 81. Under the bottom-up hypothesis, the 15 

differences observed after the last stimulus between groups may partially reflect an augmented 16 

afferent volley in the LBP group, possibly explained by an enhancement due to central 17 

hyperexcitability. Whereas data from chronic back pain patients indicate a deficit in habituation to 18 

repeated stimulus presentations 26, to our knowledge this is the first study to report significant 19 

differences in neural correlates of pain facilitation between acute LBP patient and healthy 20 

volunteers, specifically in ERP amplitudes after the last stimulus in a sensitized acute pain state.  21 

The top-down alternative stems from considering evidence related to the functional significance of 22 

the ERPs. Recent studies suggest that ERPs reflect the neural correlates underlying the detection 23 

and reorientation of attention towards a potentially threatening stimulus, regardless of its sensory 24 
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modality 46,47,55,68,82,84. Attentional bias towards pain-related information has been previously 1 

described in chronic pain patients and explained as a probable state of hyper-vigilance 17,19,33. It 2 

might therefore be possible that the LBP patients presented a top-down attentional modulation 3 

towards the stimulated hand, which could partially explain the larger brain responses in the LBP 4 

group compared to healthy subjects.  5 

Finally, it is worth mentioning that differences were found between the psychological profiles of 6 

patients and healthy volunteers, specifically related to depression and trait anxiety. In this regard, it 7 

has been shown that higher levels of anxiety and catastrophizing are usually associated with 8 

enhanced subjective pain outcomes 22,23 but not with measures of spinal excitability, e.g. the 9 

nociceptive withdrawal reflex 8,18,57,66,76.  10 

4.3. Strengths and limitations 11 

Psychophysical and electrophysiological evidence were integrated in the present study to study pain 12 

facilitatory and inhibitory mechanisms in acute low back pain patients in the same experimental 13 

protocol. In this regard, it has to be noted- that the psychophysical assessment as well as the 14 

electrophysiological measurements quantified in this study provide only indirect evidence of the 15 

underlying mechanisms, and these mechanisms are not necessarily specific for pain. With regards to 16 

CPM, current experimental protocols do not allow to distinguish between specific inhibitory 17 

mechanisms at spinal or supraspinal level and the contribution of attention and expectation on the 18 

resulting brain responses 30,31,41,54,71. Furthermore, it is not possible to determine whether this 19 

inhibition is specific for nociception or not 70,79. The same can be observed for facilitatory 20 

mechanisms and their correlation to brain activity 10,11,24. Even though ERP responses present 21 

components correlated to somatosensory input, they are largely influenced by the context (e.g. 22 

saliency, novelty, relevance) 47,55,68,82,84, which makes it difficult to draw conclusions regarding the 23 

specific spinal and supraspinal contribution to the observed changes. Furthermore, no sizable 24 
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changes were detected in measures of pain inhibition, but this cannot be taken as direct evidence 1 

that no real difference exists; indeed, such differences might be detected using a larger sample or 2 

alternative assessment methods, and so further research into this issue is necessary to confirm these 3 

prospects.  4 

Finally, it was not possible to find a direct explanation for the activity in the pre-stimulus interval, 5 

since all the surveyed studies in relation to anticipatory or non-cued effects in the pre-stimulus 6 

interval display frontal negativity and not positivity, as observed in our results 12 . Analysis of the 7 

corresponding scalp maps revealed that this activity was synchronized to the stimulus and present in 8 

both groups, that it was localized fronto-centrally and modulated by CPM, so it is possible to 9 

hypothesize that it was generated by an unknown sensory cue within the experimental setup. 10 

Nevertheless, this artifact does not influence the main outcomes of the study. 11 

4.4. Conclusion 12 

This is the first study to investigate changes in correlates of pain modulatory mechanisms in acute 13 

low back pain patients. Results showed that acute low back pain patients presented enhanced pain 14 

facilitatory mechanisms, whereas no significant changes in pain inhibitory mechanisms were 15 

observed. Future studies should be aimed at isolating and identifying specific mechanisms of 16 

inhibition and facilitation, determining at which time point in the transition from acute to chronic 17 

pain the inhibitory mechanisms begin to fail, and clarifying the mechanisms behind these 18 

alterations. 19 

  20 
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FIGURE CAPTIONS 

Fig. 1. Experimental procedure. During BASELINE, pressure pain tolerance (PPT) was first 

assessed, and then suprathreshold electrical stimulation (SES) was applied to the left median nerve 

for 10 min. Afterwards, conditioned pain modulation (CPM) was induced by immersing the right 

hand up to the wrist into ice water (cold pressor test, CPT) for a maximum of 2 min, after which 

only the fingers remained immersed. PPT was assessed immediately after (Immed), and SES was 

applied again for 10 min. During this time, PPT was assessed at 3, 5 and 10 min. 

Fig. 2. Magnitude of the conditioned pain modulation effect (∆CPM) as a function of time. CTRL: 

control group; LBP: acute low back pain patients group; Immed: immediately after the cold pressor 

test (CPT). 

Fig. 3. Grand average scalp topographies of event-related potentials (ERPs) in response to repetitive 

suprathreshold electrical stimulation (SES) at selected time points. Each row depicts the 

topographical distributions for the control group (CTRL) and acute low back pain patients group 

(LBP) in the baseline condition (BASELINE) and during conditioned pain modulation (CPM). 

Fig. 4. Event-related potential (ERP) analysis. A) Grand average waveforms of ERPs in response to 

repetitive suprathreshold electrical stimulation (SES) at electrode C2 for the control group (CTRL) 

and acute lowFig back pain patients group (LBP) in the baseline condition (BASELINE) and during 

conditioned pain modulation (CPM). Shaded areas indicate the standard deviation. Left panels show 

the condition effect (BASELINE vs. CPM) on the magnitude of the ERPs; right panels show the 

group effect (CTRL vs. CPM). Grey zones define the significant clusters (p < 0.05). B) Scalp 

topographies of the magnitude of the clustered p-values describing the condition effect (right) and 

group effect (right) on the ERPs. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 1. Descriptive and psychological variables. 

 Healthy controls 
(CTRL, n = 18) 

Acute low back pain 
patients (LBP, n = 18) 

Test statistic 

Age (years) 36.3 (13.1) 38.5 (14) U = 156.000, p = 0.862 

BMI (kg/m2) 25.6 ± 4.1 24.9 ± 3.9 t34 = 0.528, p = 0.601 

BDI(score 0-63) 2.0 (3.0) 4.0 (3.8) U = 82.500, p = 0.012 

STAI-state (score 20-80) 34.0 (7.5) 33.5 (7.0) U = 152.500, p = 0.776 

STAI-trait (score 20-80) 29.5 (8.8) 37.0 (8.8) U = 81.000, p = 0.011 

CSQ catastrophizing (mean 
score 0-6) 

1.2 (1.5) 1.5 (1.8) U = 130.000, p = 0.318 

Duration of pain (weeks) NA 1.5 (1.8) NA 

Maximum pain intensity 
over the last 24 h (NRS 0-10) 

NA 7.0 (2.0) NA 

Minimum pain intensity 
over the last 24 h (NRS 0-10) 

NA 2.0 (2.0) NA 

Average pain intensity over 
the last 24 h (NRS 0-10) 

NA 5.0 (2.8) NA 

Values are presented as mean ± standard deviation or median (inter-quartile range). BMI: body 

mass index; BDI: Beck depression inventory; STAI: state-trait anxiety inventory; CSQ: coping 

strategies questionnaire; NA: not applicable. 
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Table 2. Psychophysical and electrophysiological tests. 

 Healthy controls 
(CTRL, n = 18) 

Acute low back pain 
patients (LBP, n = 18) 

Test statistic 

PPT baseline (kPa) 561.8 ± 177.7 418.3 ± 166.4 t34 = 2.501, p = 0.017 

EPT (mA) 10.1 ± 4.4 10.9 ± 3.8 t34 = -0.660, p = 0.514 

Pain ratings to repetitive 
SES (NRS 0-10) 

6.6 ± 1.0 7.2 ± 0.9 t34 = -2.065, p = 0.046 

CPT immersion time (s) 68.5 (74.5) 43.5 (50.8) U = 121.0, p = 0.196 

Values are presented as mean ± standard deviation or median (inter-quartile range). PPT: pressure 

pain tolerance; EPT: electrical pain threshold; SES: suprathreshold electrical stimulation; NRS: 

numerical rating scale; CPT: cold pressor test. 
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Highlights 
 

• Pain inhibition and facilitation are assessed in acute low back patients. 
• Mechanisms were assessed using psychophysical and electrophysiological tests. 
• Patients presented enhanced pain facilitation but no difference in pain inhibition. 


