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Determination of p-y Curves using Finite Element Modelling for
Bucket Foundations in Undrained Soft and Medium Clay

Mogens Bonde Hvidberg1 Lars Bo Ibsen2

Department of Civil Engineering, Aalborg University

Abstract

In many years the types of foundation, such as monopiles and bucket foundation which are used in the offshore wind
turbine industry, have been analysed analytically with formulations that are based on much slender piles, then are
used today. Because of that, the analytical calculation is not describing the connection between the horizontal bearing
capacity of the soil and the displacement of the foundation accurate, in particular for the bucket foundation because of
the much smaller slenderness of the profile. Numerical modelling is used to examine that bearing capacity the bucket
foundation has in soft and medium clay at different dimensions of the bucket, to a horizontal displacement. After that a
mathematical formulation is determined, based on (Reese et al, 1975), so it is possible to get a more accurate result in
an analytical calculation.

1 Introduction

The goal with this study is to investigate the soil reac-
tion to horizontal displacement of a bucket foundation in
clay using finite element modelling. This will be done
for undrained soft and medium clay. The finite element
program PLAXIS 3D is used to simulate the soil re-
action, because it has some advanced material models,
which are necessary to obtain an accurate result. There
are made six models, which vary in the geometry of the
bucket, i.e. the diameter, D and the length of the skirt, L.
Simultaneously the strength of the clay will vary, which
is described by the undrained shear strength, cu. There
are roughly four steps in the way to make the p-y curves
and thence a mathematical formulation of the soil reac-
tion on horizontal displacement.

1. The bucket will be exposed to a prescribed hori-
zontal displacement and the stresses between the
bucket and the soil will build up. The stresses are
then extracted from PLAXIS 3D.

2. The prescribed displacement will at this point be re-
moved and the plastic displacements are afterwards
extracted from PLAXIS 3D.

3. Step 1 and 2 are repeated until the required max-
imum displacement is reach or the soil body col-
lapses.

4. The p-y curves are then normalized, so they do not
depend on the depth, z, and the displacement, y, and
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a best fit can be made for every model. The mathe-
matical formulation is then build on the best fits.

2 Theory

The analytical formulations, which are used to describe
the soil reaction to a horizontal displacement today, are
based on field tests. These field tests are made on piles
with high slenderness. These formulations can however
not be used to describe the p-y curves for bucket foun-
dations, because the bucket has a low slenderness com-
pared to the piles in the field tests. The bucket foundation
will react in a more rigid way to a horizontal load, as it
can be seen in figure 1.

Figure 1: Reaction to a horizontal load.

2.1 Material Model

To model the behaviour of the soil accurately, the Hard-
ening Soil Small-Strain material model (HSsmall) is



used, which is an extended version of Hardening Soil.
In The Hardening Soil model the stiffness are stress-
dependent, but HSsmall describes the behaviour at small
strain more realistic by adding more stiffness at small
strains. As a result, the calculation time will increase,
but the time is well spent, due to the load scenario in
this study. If HSsmall is not chosen the deformations
might be overestimated and therefore underestimate the
stresses, which makes HSsmall a reasonable choice.

As the name indicates, HSsmall takes hardening into
account. There are two types of hardening, which
are shear hardening and compression hardening. Shear
hardening is mainly controlled by the triaxial loading
stiffness, E50, and compression hardening is mainly con-
trolled by the oedometer loading stiffness, Eoed . The
elastic region is controlled by the triaxial unloading stiff-
ness, Eur, which can be seen in figure 2

Figure 2: Yield criteria for HSsmall in 2D.

The tree stiffness moduli of elasticities and the shear
moduli are as a starting point stress-dependent, and fol-
low the power law in the form of eq. 1

E50 = Ere f
50 ·

✓
c · cos(j)�s 0

3 · sin(j)
c · cos(j)+ pre f · sin(j

◆m

(1)

There are however two ways in PLAXIS 3D to model
the undrained behaviour, where Undrained (B) is used.
In Undrained (B), the effective stiffness parameter and
the undrained strength parameter are used, which allows
cu to be an input parameter. This does, however, that
the moduli no longer are stress dependent, because j is
equal to zero [Brinkgreve et al., 2016].

Effective parameters for soft and medium clay are
given in a table, which can be seen in [Hvidberg, 2017],
however the shear modulus, Gre f

0 , and g0.7 are not in the
table, and are necessary in order to use HSsmall. Gre f

0
is set to be four times Eoed and g0.7 is definite by eq. 2
[Brinkgreve et al., 2016].

g0.7 ⇡
1

9Gre f
0

(2c0(1+ cos(2j 0))�s 0
1(1+K0)sin(2j 0))

(2)
It is necessary to find a cu that correspond to the

effective parameters, and this is done using SoilTest,

which is a program in PLAXIS, and eq. 3, which is the
SHANSEP formulation [Hvidberg, 2017] [Steenfelt and
Sørensen, 2013].

✓
cu

s 0
0

◆

oc
= A · (OCR)m (3)

All the input parameters can be seen in table 1.

cu 61 66 [kN/m2]
g’ 7 9,1 [kN/m3]

pre f 100 100 [kPa]
Ere f

50 1840 3000 [kN/m2]
Ere f

oed 2500 1200 [kN/m2]
Ere f

ur 5520 9000 [kN/m2]
g0,7 6,79E�4 4,90E�4 [-]
Gre f

0 22080 36000 [kN/m2]
K0 0,55 0,51 [-]

power m 1 1 [-]
POP 0 50 [-]

Table 1: Parameters in HSsmall.

3 Numerical model

To model the reaction in the soil to a displacement and
form the p-y curves, six numerical models are made
in PLAXIS 3D. The models will vary in diameter, D,
length of the skirt, L, and the undrained shear strength,
cu, which can be seen in table 2.

Model nr. D [m] L [m] cu [kPa]
1 10 10 61
2 10 10 66
3 15 15 61
4 15 15 66
5 20 20 61
6 20 20 66

Table 2: Model overview.

3.1 Model set-up

First of all, to ensure accurate results, the model domain
has to be big enough for the soil failure mechanism to
fully develop. This is investigated in the convergence
analysis, and the size of the model domain is shown in
figure 3.

There can arise stress and strain concentrations around
sharp edges, like the bottom of the bucket. In order to
avoid this, an extended fictive bucket is modelled, with
the length of 0.2L [Vaitkunaite, 2012], both horizontal
and vertical, as it is seen in figure 3.

To make the p-y curves, the stresses between the
bucket and the soil, which are called the interface
stresses, are required. For the model to provide accurate
interface stresses, the mesh is refined around the bucket.
The fineness factor is found from the convergence anal-
ysis and is set to 0.15.



Figure 3: Dimensions of the model domain as a function of D and L.
The bucket foundation is green, extended bucket is red and
volume with refined mesh is blue.

3.2 Calculation stages

To generate the data to the p-y curves, various stages
must be calculated. There are five basic stages. The
first two stages (phase 0 and 1) are the initial phase and
the installation phase, wherein respectively the soil and
the construction are defined in the model. In the third
stage (phase 2) all the deformations from the installa-
tion are set to zero. In the fourth stage (phase 3,5,7...) a
prescribed displacement is activated to move the bucket
horizontal. In the fifth stage (phase 4,6,8...) the pre-
scribed displacement is deactivated and only the plastic
deformation will remain because of the elasto-plastic be-
haviour in the soil. Stage four and five are repeated until
all the wanted phases are completed or the soil body col-
lapses.

3.3 Data processing

It is necessary to process the output to get the p-y curves.
The stresses are taken from the interfaces, as they pro-
vide more reliable results and are processed in the same
way as [Østergaard et al., 2015]. The output stresses
from the interface are the effective normal stress s 0

N and
the two shear stresses, t1 and t2. The distribution of s 0

N
and t1 are shown in figure 4. The shear stress t2 is ig-
nored, because it acts vertical along the skirt and do not
contribute to the soil reaction pressure on the bucket.

Figure 4: Distribution of the effective normal stress s 0
N and the shear

stress t1 at a movement in the y-direction.

To determine the soil reaction force, the stresses are
integrated over the skirt area, in the way of eq. 4

Fy =
Z

A
(s 0

n · sinq + t1 · cosq)dA (4)

To avoid having to use eq. 4 on every interface ele-
ment, the bucket is divided down the skirt into layers.
Every layer is then divided into slices, as it can be seen
in figure 5. The average stress in each slice is multiplied
with the area to find the average force of the slices. The
sum of each average force in a layer is then divided by
the thickness of the layer to find p for that layer.

Figure 5: The subdivision of the bucket.

4 Results

The results are going to be processed as follows:

1. The raw data from the numerical models are plot-
ted.

2. The effect from stress concentrations by the edge
are trimmed away.

3. The bearing capacity, p, is normalized with a new
formulation of the ultimate bearing capacity, pu and
the displacement is normalized with an expression
of at which displacement pu arise, yp.

4. A mathematical formulation is formed by taking
fundamental basis in (Reese et al, 1975) which is
a formulation for stiff clay below the water table.

4.1 Plotting the p-y curves

For every layer of the bucket division they will be plotted
a p-y curve. The associated depths to the p-y curves are
the depth at the middle of each layer. Because of the
stress concentrations at the edge of the bucket, the top
and bottom curves are trimmed away. The p-y curve for
model 6 is plotted in figure 6.
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Figure 6: Raw data from model 6 with trimmed edges.

4.2 Normalizing the p-y curves

There is made a new formulation for the ultimate bear-
ing capacity, pu, which take fundamental basis in the pu
formulation from [Matlock, 1970], where the soil is ex-
posed to two types of failure, which are seen in figure
7.

Figure 7: Failure mechanisms for a pile or bucket exposed to a hori-
zontal load.

The ultimate bearing capacity from every p-y curve in
the models are plotted against Q, which are described by
eq. 5. The first expression describes a linear increase
in Q, which corresponds to the top failure mechanism at
figure 7 and the second expression describes a constant
Q, which corresponds to the bottom failure mechanism
at figure 7. The same tendency can be seen in the ulti-
mate bearing capacity from the p-y curves in the model,
and the plots are seen in figure 8 to 11, where the soft
and medium clay are divided. At first X=1.

Q = min

(
(3 · cu + g 0 · z)D+ cu · z
X · cu ·D

(5)
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Figure 8: Pmax as a function of Q for top failure mechanism.
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Figure 9: Pmax as a function of Q for bottom failure mechanism.
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Figure 10: Pmax as a function of Q for top failure mechanism.
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Figure 11: Pmax as a function of Q for bottom failure mechanism.

The chance between the to failure mechanism happen
at a critical depth, which is described by eq. 6 for figure
8 to 11, where 15 is to total number of layers, and 10
is the layer where the chance between the two failure
mechanisms are noticed.



zt =
L
15

·10+
L
15

·0.5 (6)

To find the X value in eq. 5, the two expressions are
put equal to each other at zt , for all six models. The
X values from the models are then plotted against the
vertical effective stress, s 0

1, at the bottom of the bucket,
as seen in figure 12 and 13. This is done to find one
expression for X to respectively soft and medium clay,
which are described by eq. 7.
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Figure 12: X as a function of s 0
1 for soft clay.
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Figure 13: X as a function of s 0
1 for medium clay.

X =

8
>>><

>>>:

1.1475 · ( g 0 ·L
100kPa

)+3.7 for soft clay

1.0606 · ( g 0 ·L
100kPa

)+3.7 for medium clay

(7)

The new expression for the ultimate bearing capacity
can therefore be determined by eq. 8 for soft clay and
eq. 9 for medium clay.

pu =

(
0.3549 ·Q+256.34 z < zt

0.3676 ·Q+144.95 z > zt
(8)

pu =

(
0.3689 ·Q+60.441 z < zt

0.3557 ·Q+116.18 z > zt
(9)

To find an expression for the displacement at the ulti-
mate bearing capacity, yp, a mean value of the displace-
ment at the peak was taken for each model, and the mean
value was plotted against the stiffness, E50 and the diam-
eter, D. This was done separately for soft and medium
clay, as it can be seen in figure 14 and 15, and yp can be
determined from eq. 10.
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Figure 14: yp as a function of E50 and D.
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Figure 15: yp as a function of E50 and D.

yp =

8
>>>><

>>>>:

0.0136 ·
✓

100kPa
E50

·D
◆
+0.0022 for soft clay

0.036 ·
✓

100kPa
E50

·D
◆

for medium clay

(10)

When pu and yp are found the raw p-y curves are nor-
malized, as it can be seen in figure 16 for model 6.
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Figure 16: The normalization of model 6.

5 Mathematical formulation

There is made a best fit for every model, which takes fun-
damental basis in (Reese et al, 1975), which is described
in [Meyer and Reese, 1979]. The fitting parameters a to
f in eq. 11 are determined by the program MATLAB,
where As, T1 and T2 are found in table 3.

As T1 T2
Soft clay 0,5 4 14
Medium clay 0,35 5 17

Table 3: Parameters for the intervals.

p
pu

=

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

a ·
✓

y
yp

◆b
y < As

a ·
✓

y
yp

◆b
� c ·

✓
y�As · yp

As · yp

◆d
y < T1 ·As

a · (T1 ·As)b �B�
✓

e
yp

◆
· (y�T1 ·As · yp) y < T2 ·As

f ·A0,5
s �0,75 ·As �B y > T2 ·As

(11)

where:

B = c ·
✓

T1 ·As �As · yp

As · yp

◆d

The best fit and the fitting parameters can be seen in
respectively figure 17 and table 4
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Figure 17: Best fit for model 6.

a 1.2188
b 0.28374
c 0.12513
d 0.9803
e 0.10843
f 2.0885

Table 4: Fitting parameters for the best fit to model 6.

To make one mathematical formulation for respec-
tively soft and medium clay, each fitting parameter is
plotted against s 0

1, to find one expression that describes
a single parameter, which is shown for the a-parameter
for soft clay in figure 18.
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Figure 18: Description for a-parameter.

The mathematical formulation can now be plotted
against the raw data and the best fit, as seen in figure
19, where the fitting parameters are determined by eq.
12 for soft clay and eq. 13 for medium clay.
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Figure 19: Mathematical formulation.

soft clay

8
>>>>>>>><

>>>>>>>>:

a = 0.21571 · x+0.88393
b = 0.037957 · x+0.24483
c = 0.14248 · x�0.035626
d =�0.45671 · x+1.8703
e = 0.042507 · x+0.058906
f = 0.12129 · x+1.5847

(12)

Medium clay

8
>>>>>>>><

>>>>>>>>:

a = 0.041319 · x+0.1,1477
b = 0.044769 · x+0.20007
c = 0.0057473 · x+0.11467
d = 0.031703 · x+0.92231
e =�0.010308 · x+0.12753
f = 0.21297 · x+1.7035

(13)

where:
x =

s 0
1

100kPa

6 Conclusion

By using the finite element program PLAXIS 3D, it was
possible to make numerical models to describe the bear-
ing capacity, for bucket foundations in soft and medium
clay, to a prescribed displacement. From the calculated
p-y curves it was possible to determine a mathematical
formulation, which can be used to make an analytical
calculation of the bearing capacity of a bucket founda-
tion with arbitrary dimensions placed in an arbitrary soft
or medium clay.

The mathematical formulations are based on tree nu-
merical models each, so a natural place to start is calcu-
lating some more models with other dimensions, to op-
timize the formulations with respect to the dimensions.
Furthermore, the mathematical formulations have to be
studied for other soft and medium clays to optimize the
dependency for the strength and stiffness, because there
is not a finale definition of then a clay is soft or medium.
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