

Aalborg Universitet

Pressure-Promoted Relaxation: Access to Forbidden Glassy States

Invited Talk

Smedskjær, Morten Mattrup; Svenson, Mouritz Nolsøe

Publication date: 2017

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Smedskjær, M. M., & Svenson, M. N. (2017). *Pressure-Promoted Relaxation: Access to Forbidden Glassy States: Invited Talk.* Abstract from 12th Pacific Rim Conference on Ceramic and Glass Technology, Waikoloa, United States.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Pressure-Promoted Relaxation: Access to Forbidden Glassy States

Morten M. Smedskjaer, Mouritz N. Svenson

Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark

Abstract: The structure and properties of glass can be modified through compression near the glass transition temperature (T_g) , but once the compressed glass undergoes annealing near T_g at ambient pressure, the modified structure and properties will relax. First, we show how the property relaxation is correlated with both the local and the medium-range structural relaxation in a sodium borate glass that has first been compressed at its T_g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. The pressure-induced structural conversions are reversible during ambient pressure annealing near T_g , but exhibit a dependence on the annealing temperature. However, the conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism. Second, we also show that by first compressing an aluminosilicate glass at 1 GPa at T_g , followed by sub- T_g annealing *in situ* at 1 GPa, it is possible to combine the effects of hot compression and ambient pressure annealing. Through density, hardness, and heat capacity measurements, we demonstrate that the effects of hot compression and sub- T_g annealing can be combined to access a "forbidden glass" regime of high density and hardness that is inaccessible through thermal history or pressure history variation alone.