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Abstract
Inspired by the DANTALE II listening test paradigm, which
is used for determining the intelligibility of noisy speech, we
assess the hypothesis that humans maximize the probability of
correct decision when recognizing words contaminated by addi-
tive Gaussian, speech-shaped noise. We first propose a statisti-
cal Gaussian communication and classification scenario, where
word models are built from short term spectra of human speech,
and optimal classifiers in the sense of maximum a posteriori es-
timation are derived. Then, we perform a listening test, where
the participants are instructed to make their best guess of words
contaminated with speech-shaped Gaussian noise. Comparing
the human’s performance to that of the optimal classifier reveals
that at high SNR, humans perform comparable to the optimal
classifier. However, at low SNR, the human performance is in-
ferior to that of the optimal classifier. This shows that, at least in
this specialized task, humans are generally not able to maximize
the probability of correct decision, when recognizing words.

1. Introduction
For many years, automatic speech recognition (ASR) systems
have been inspired by models of the human auditory system and
speech perception [1, 2, 3]. Numerous theories have been pro-
posed of how the brain functions in response to auditory stimuli
(e.g. speech signals). In [4], it is hypothesised that human lis-
teners behave like optimal Bayesian observers, suggesting that
the sensory information is re-presented probabilistically in the
brain. In [5], Barlow proposes the principle of efficient coding
which suggests that the brain tries to maximize the mutual infor-
mation between the sensorium and its internal representation,
under constraints on the efficiency of those representations. Re-
cently Friston et al. [6, 7] proposed a free-energy principle sug-
gesting that the brain functions in a way that it optimizes the
free energy of sensations and the representation of their causes.
The free energy measures the difference between the probability
distribution of environmental quantities that act on the system
and an arbitrary distribution encoded by its configuration. The
system can minimize its free energy by changing its configura-
tion to affect the way it samples the environment or change the
distribution it encodes.

While the above works address how the brain functions in
response to acoustic stimuli, they do not explain how humans
recognize words in noise. In this paper, we investigate the hy-
pothesis that listeners maximize the probability of correct de-
cision when recognizing noisy words. To do so, we propose
a communication model which reflects key properties of the
DANTALE II intelligibility test [8]. In this listening test, speech
intelligibility is determined by presenting speech stimuli con-
taminated by noise to test subjects, and recording the fraction
of words understood. We then derive optimal classifiers based

on the model and compare the performance of the classifiers to
that of humans. Obviously, the performance of the model re-
lies strongly on assumption about how internal representations
of words and noise are stored in the brain.

In our recent work [9], we assumed for mathematic conve-
nience that humans are able to store the temporal waveforms of
each word and use those waveforms for word recognition. It is,
however, well known that inner hair cells in cochlea are unable
to phase lock to the signal waveforms of frequencies beyond
1.0-1.5 kHz [10, 11] and, hence, tend to represent (transmit) the
overall signal power rather than temporal details. Indeed, re-
cent work [12] suggests that humans might build internal statis-
tical models of the words based on characteristics of the spec-
tral contents of sub words. Inspired by this, we assume that
humans are able to learn and store the power spectral density of
short segments of the words. Based on these assumptions, an
optimal classifier is derived in the sense of maximum a posteri-
ori probability estimation, and its performance for speech sen-
tences contaminated by additive speech shaped Gaussian noise
is analyzed and compared to the performance of humans. Re-
sults show that humans perform comparable to that of the clas-
sifier at high SNRs, but the performance of the classifier is su-
perior at low SNRs. This indicates that humans generally do not
maximize the probability of correct decision when recognizing
Dantale words in additive Gaussian, speech-shaped noise.

2. Modelling and classification

2.1. The DANTALE II test paradigm

The Danish sentence test DANTALE II [8] has been designed in
order to determine the speech reception threshold (SRT), i.e. the
signal-to-noise ratio (SNR) for which, e.g. 50%, of the words
can be recognized correctly. The DANTALE II database con-
tains 150 sentences sampled at 20 kHz and with a resolution
of 16 bits. Each sentence is composed of five words from five
categories (name, verb, numeral, adjective, object). There are
10 different words in each of the five categories. In a particu-
lar realization of the test considered in this paper, the sentences
are contaminated with additive stationary Gaussian noise with
the same long-term spectrum as the sentences. Conducting the
test consists of two phases. In the first phase (training phase),
normal-hearing subjects listen to versions of the noisy sentences
to familiarize themselves with the sentence material and the
noise type. In the next phase (the test phase), the listeners
are exposed to the noisy sentences at different SNRs by head-
phones. The subject’s task is to repeat the words they hear, and
the number of correct words are collected for each presented
sentence.
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Figure 1: The word XNp
p is conveyed over a noisy acoustic chan-

nel, and Y is received. The classifier determines which word
was spoken.

2.2. Proposed communication model

In order to be able to treat recognition of speech as a classifica-
tion problem, a simple model (Fig. 1) for the DANTALE II test
paradigm is proposed. The model consists of three sections:

(i) Stimulus generation: a codebook of clean words, ran-
domly (uniformly) selected from the DANTALE II
database. (“Speaker” in Fig. 1)

(ii) Communication: a communication channel with a scale
factor and additive noise. The scale factor serves to mod-
ify the SNR and is randomly (uniformly) chosen from a
fixed set of SNR levels. The additive noise is zero-mean
coloured Gaussian and has a long term spectrum similar
to the average long term spectrum of the clean speech
test sentences. (Middle part of Fig. 1)

(iii) Classification: a classifier which is optimal in the
sense of maximum a posteriori probability estima-
tion.(“Human” in Fig. 1)

In this work, we make two important assumptions with respect
to humans ability to learn, memorize and classify words.

(i) We assume that test subjects are able to learn and store a
model of the words based on the spectral envelope con-
tents of sub words encountered during the training phase.
In a similar manner, we assume that subjects create an
internal noise model. In our classifier, this is achieved
by allowing the classifier access to training data in terms
of average short-term speech spectra of the clean speech
and of the noise.

(ii) Subjects are instructed to make a best guess of each noisy
word. We reflect this by designing a classifier which
maximizes the probability of correct word detection.

In addition, we impose the following requirements on the sub-
jective listening test and the classifier:

(i) When listening to the stimuli, i.e. the noisy sentences
(words), the subjects are not informed about the SNRs a
priori. In a similar manner, the classifier does not rely on
a priori SNR knowledge.

(ii) We assume that subjects do not know when the words
(noisy stimuli) start a priori.1 Similarly, the classifier has
no a priori information about the locations of the words
within the noisy sentences.

2.3. Signal Model

The DANTALE II stimulus generation/selection process for the
particular test with Gaussian speech shaped noise, considered

1In the DANTALE II listening test, the stimuli consist of a noise-
ramp-up, the noisy speech, and then a noise-ramp-down.

in this paper, is modelled as follows: A word from a fixed dic-
tionary containing M different words is selected. A real-valued

vector XNp
p = [xp(1), xp(2), ..., xp(Np)]

T , p ∈ {1, ...,M},
represents the time domain waveform of the pth word consist-

ing of Np samples. The word XNp
p is chosen uniformly from

the dictionary. The waveform is multiplied by a scale factor
controlling the SNR. The scale factor α is also uniformly se-
lected α ∼ U(a, b) where b > a > 0. The Gaussian speech
shaped noise waveform WNp is given by WNp ∼ N (0,Σw).
The received word Y is a random vector expressed as:

Y =
√
αXNp

p + WNp . (1)

Here, we first assume that all words have the same length
(Np = N, p = 1, ...,M), so we ignore superscript Np. We
segment each word, Xp, into L small frames and assume that
each frame is weak-sense stationary and can be modeled by
a zero-mean autoregressive Gaussian process of order n, e.g.
[13]:

fXp,z (Xp,z) = |2πΣxp,z |−
1
2 exp(−1

2
XT

p,zΣ
−1
xp,z Xp,z), (2)

where fXp,z is the probability density function (PDF) of the

zth frame of the pth word, and Σxp,z is the covariance of the

zth frame of that word (the length of each frame is K). If
axp,z = [1, axp,z (1), ..., axp,z (n)]

T denotes the vector of the

linear predictive (LP) coefficients of Xp,z , and σ2
xp,z is the vari-

ance of the prediction error respectively, the covariance matrix
Σxp,z is obtained as [13]

Σxp,z = σ2
xp,z (A

T
xp,zAxp,z )

−1, (3)

where AXp,z is the K × K lower triangular Toeplitz matrix

with [1, axp,z (1), ..., axp,z (n), 0, 0, 0]
T as its first column. We

assume that all frames are mutually independent, which implies
that fXp(Xp) can be written as:

fXp(Xp) =

L∏
z=1

fXp,z (Xp,z) =

(
L∏

z=1

|2πΣxp,z |−
1
2

)

exp

(
−1

2

L∑
z=1

XT
p,zΣ

−1
xp,z Xp,z

)
.

2.4. Optimal Classifier

2.4.1. Optimal Bayesian Classifier

The classifier chooses which word was spoken. The classifier
makes a decision by maximizing the posterior probability:

P (Xp was sent |Y was received), (4)

where P (Xp|Y) is the conditional probability mass function
(PMF) of Xp, given Y. The classifier selects the spoken word
Xp∗ maximizing the posterior probabilities:

p∗ = argmax
p∈{1,...,M}

{P (Xp|Y)}. (5)

Lemma 1. The optimal p∗, maximizing (5) is given by (see
Appendix A.1 for the proof):

p∗ = argmax
p∈{1,...,M}

∫ b

a

(
L∏

z=1

|2πΣYz |−
1
2

)
exp(

L∑
z=1

YT
z Σ

−1
Yz

Yz

−2 )dα,
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where Yz is the zth frame of the received word. ΣYz =
αΣxp,z + Σw is the covariance matrix of that frame, and L
is the number of frames.

2.4.2. Approximate Bayesian Classifier (continuous α)

One may argue that subjects are able to identify the SNR and
thereby the scale factor α after having listened to a particu-
lar test stimulus, before deciding on the word. In this case,
we should maximise f(Xp, α|Y) rather than P (Xp|Y), where
f(Xp, α|Y) is the conditional joint probability density function
(PDF) of Xp and α, given Y. This leads to the following opti-
misation problem:

(p∗, α∗) = argmax
p∈{1,...,M},α∈[a,b]

{f(Xp, α|Y)}. (6)

Lemma 2. The optimal pair (p∗, α∗), maximizing (6) is given
by :2(see Appendix A.2 for the proof)

p∗ = argmax
p∈{1,...,M}

{
−

L∑
z=1

(
YT
z (Σ

∗
Yz
)−1Yz + log |Σ∗Yz

|
)}

,

where Σ∗Yz
= α∗Σxp,z +Σw and α∗ is obtained by solving the

following equation with respect to α:

L∑
z=1

(
−YT

z

((
αΣxp,z +Σw

)−1
Σxp,z

(
αΣxp,z +Σw

)−1
)

Yz

+tr
((

αΣxp,z +Σw
)−1

Σxp,z

))
= 0.

2.4.3. Approximate Bayesian Classifier (discrete α)

In the version of the DANTALE II listening test considered in
this paper, a fixed limited set of SNRs are used, and it could
be reasonable to assume that the subjects can identify all these
SNRs through the training phase. In this case, the scale fac-
tor is a discrete random variable (αi, i ∈ {1, ..., S}) rather
than a continuous one. Thus, we maximise P (Xp, αi|Y), where
P (Xp, αi|Y) is the PMF of Xp and αi, given Y. The optimiza-
tion problem in (6) can be rewritten by:

(p∗, i∗) = argmax
p∈{1,...,M},i∈{1,...,S}

{P (Xp, αi|Y)}. (7)

Lemma 3. The optimal pair (p∗, i∗), maximizing (7) is given
by:

(p∗, i∗) =argmax
p∈{1,...,M},i∈{1,...,S}

−
L∑

z=1

(
YT
z (Σ

i
Yz
)−1Yz + log |Σi

Yz
|
)
,

where Σi
Yz

= αiΣxp,z +Σw.

The proof of Lemma 3 mostly follows the proof of Lemma
2, and has been eliminated due to space limitations.

2.5. Temporal Misalignment

In order to take into account the requirement (ii) that subjects
do not know when the sentence (word) starts a priori, a win-
dow with the same size as the word is shifted within the stim-
uli and for each shift, the likelihoods P (Xp|Yw) for the op-
timal Bayesian classifier, P (Xp, α|Yw) for the approximated
Bayesian classifier when α is continuous, and P (Xp, αi|Yw)

2We assume that a ≤ α∗ ≤ b, otherwise the nearest point should
be chosen.
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Figure 2: Comparison of human’s performance with the opti-
mal classifiers for word detection. (OBC: Optimal Bayesian
classifier, ABD: Approximate Bayesian classifier with discrete
α, ABC: Approximate Bayesian classifier with continuous α,
AHP: average human performance).

for the approximated Bayesian classifier when α is discrete are
calculated. Yw denotes the portion of Y for each shift w. Fi-
nally p∗ is given by:

p∗ = argmax
p∈{1,...,M}

{max
w
{P (Xp|Yw)}},

(p∗, α∗) = argmax
p∈{1,...,M},α∈[a,b]

{max
w
{P (Xp, α|Yw)}},

(p∗, i∗) = argmax
p∈{1,...,M},i∈{1,...,S}

{max
w
{P (Xp, αi|Yw)}}.

3. Simulation Study
In the DANTALE II database, each word (M = 10) has 15
different realizations (Xj

p, j ∈ {1, 2, ..., 15}, where subscript

j denotes the jth realization of the pth word). In our simu-
lations, we use 14 different realizations of words for training
(building covariance matrices), and one realization of the words
for testing. In this way, we assume that the listeners learn one
statistical model (covariance matrices) of sub words for all re-
alizations of that word through the training phase. To build the
covariance matrix for each frame, after segmenting each word
into L non overlapping frames (the size of each frame is 20 ms
and L = 20), a long vector containing the same frame of 14
realizations is created [X1

p,z,X2
p,z, ...,X14

p,z]. Then the vector of
the LP coefficients (axp,z ) of this long vector is obtained, and
finally the covariance matrix of this frame (Σxp,z ) is calculated
using (3). We refer to this model as “noisy model”. Fig. 2
demonstrates the performance of the classifiers as a function of
SNR. Using the leave-one-out method, where 14 realizations
are used for training and the last one for testing, we obtain 15
results whose average is used as the final result (green solid
curves). It might also be reasonable to assume that subjects are
able to store one statistical model for each realization of a word.
In this model, the covariance matrix for the zth frame of the jth

realization of the pth word (Σj
xp,z ) is obtained based on LP co-

efficients derived from frame Xj
p,z . The results for this model

(“clean model”) is shown by dashed solid curves.

3.1. Human performance

In order to measure the human performance, we performed a
listening test where the DANTALE II material was used. 18
normal-hearing subjects participated in this test. They were
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presented to the DANTALE words contaminated by speech-
shaped noise by headphones and they chose the words they
heard using a GUI interface3. In the training phase, the sub-
jects were exposed to 12 noisy sentences at 6 different SNRs,
where each SNR was repeated twice. The sentences in the
training phase are also composed from the DANTALE II data
base. In the test phase, each subject listened to 48 sentences (6
SNRs × 8 repetitions). The average result for this listening test
is shown in Fig. 2 (abbreviated as AHP). The fitted line is a
ML (Maximum Likelihood)-fitted logistic function of the form

f(x) =
1− 1

10
1+exp(cx+d)

+ 1
10

. The 50% SRT is approximately -10

dB which is well in line with similar tests performed in litera-
ture [14] for this noise type.

4. Discussion
As seen in Fig. 2, all three classifiers (OBC, ABC, ABD) per-
form very similar on all tasks. Thus, in this test the alphabet of
the SNR and prior assumptions on it is insignificant. For low
SNRs, the performance of all optimal classifiers converges to
0.1. This is because at high noise levels, the classifiers choose
words randomly (from M = 10 words). Fig. 2 also shows
the performance of the optimal classifiers (red dashed curves)
for the deterministic model [9] (which assumes that classifica-
tion can be made based on knowledge of word waveforms). We
observe that the classifiers performance when relying on sta-
tistical models (i.e. noise and speech covariances) is closer to
the performance of humans. This is in line with results from
[12], where the performance of a simple hidden markov model
(HMM)-based recognition system (trained on DANTALE II
database) is similar to that of humans. It can be seen that
the optimal classifiers both based on the statistical models and
the deterministic model outperform the humans’ performance at
low SNRs and coincide with the humans’ performance at high
SNRs. It is worth mentioning that the optimal classifiers are
based on potentially debatable statistical assumptions with re-
gard to speech signals (e.g. Gaussian samples and statistically
independent sub-words). However, if a truly optimal classifier
was used, then the performance of the classifiers (“noisy” and
“clean” models) would improve further. This suggests that un-
der certain assumptions, humans do not maximize the probabil-
ity of correct decision when recognizing DANTALE words in
additive Gaussian, speech-shaped noise.

A. Proof of lemmas
A.1. Proof of lemma 1

Using Bayes’ theorem, (4) can be written as [15]:

P (Xp|Y) =
fY|Xp(Y|Xp)P (Xp)

fY(Y)
, (8)

where fY|Xp is the conditional PDF of the received word, given
word Xp, fY is the PDF of the received word, and P (Xp) is
the probability that Xp is spoken. Since P (Xp) =

1
M
, ∀p, and

fY(Y) is independent of Xp, from (8), (5) can be rewritten:

p∗ = argmax
p∈{1,...,M}

{P (Xp|Y)} = argmax
p∈{1,...,M}

{fY|Xp(Y|Xp)}.

3The authors would like to thank Asger Heidemann Andersen for
making the interface available to us.

If the received word is divided into L small frames, from (2), it
is easy to show that

fYz |Xp,α(Yz|Xp, α) = |2πΣYz |−
1
2 exp

(
−1

2
YT

z Σ
−1
Yz

Yz

)
,

where fYz |Xp,α(Yz|Xp, α) is the conditional PDF of the zth

frame of the received word, given Xp and α, and ΣYz =
αΣxp,z +Σw. With the assumption that frames of the received
word are mutually independent, we get:

fY|Xp,α(Y|Xp, α) =

L∏
z=1

fYz |Xp,α(Yz|Xp, α)

=

(
L∏

z=1

|2πΣYz |−
1
2

)
exp

(
−1

2

L∑
z=1

YT
z Σ

−1
Yz

Yz

)
. (9)

Since Xp and α are mutually independent, fY|Xp =∫ b

a
fY|Xp,αfαdα. Using (9), we have:

p∗ = argmax
p∈{1,...,M}

{∫ b

a

fY|Xp,α(Y|Xp, α)dα

}

=argmax
p∈{1,...,M}

∫ b

a

(
L∏

z=1

|2πΣYz |−
1
2

)
exp

(∑L
z=1 YT

z Σ
−1
Yz

Yz

−2

)
dα.

A.2. Proof of lemma 2

According to Bayes’ theorem, f(Xp, α|Y) can be written as:

f(Xp, α|Y) =
fY|Xp,α(Y|Xp, α)fXp,α(Xp, α)

fY(Y)
, (10)

where fY|Xp,α is the conditional probability density function
(PDF) of the received word, given word Xp and α, fY is the
PDF of the received word, and fXp,α(Xp, α) is the joint PDF of
Xp is spoken and α is used. Xp and α are mutually indepen-
dent, so fXp,α(Xp, α) = P (Xp)fα = 1

M(b−a)
. Using (10) and

(9), (6) can be expressed as:

(p∗, α∗) = argmax
p∈{1,...,M},α∈[a,b]

{fY|Xp,α(Y|Xp, α)}

= argmax
p∈{1,...,M},α∈[a,b]

(
L∏

z=1

|2πΣYz |−
1
2

)
exp

(
−1

2

L∑
z=1

YT
z Σ

−1
Yz

Yz

)
.

By applying the logarithm, we get :

(p∗, α∗) = argmax
p∈{1,...,M},α∈[a,b]

−
L∑

z=1

(
YT

z Σ
−1
Yz

Yz + log |ΣYz |
)
.

Above equation indicates that the decoder chooses the pair
(p, α) maximizing g = −∑L

z=1

(
YT

z Σ
−1
Yz

Yz + log |ΣYz |
)
.

Yz is assumed as a constant at the decoder, so using

that
∂ log |ΣYz |

∂α
= tr

(
Σ−1

Yz

∂ΣYz
∂α

)
, and that

∂Σ−1
Yz

∂α
=

−Σ−1
Yz

∂ΣYz
∂α

Σ−1
Yz

, we find

α∗ ⇒ ∂g

∂α
= 0⇒

L∑
z=1

(
−YT

z

(
Σ−1

Yz
Σxp,zΣ

−1
Yz

)
Yz+

tr
(
Σ−1

Yz
Σxp,z

))
= 0

p∗ = argmax
p∈{1,...,M}

{
−

L∑
z=1

(
YT

z (Σ
∗
Yz
)−1Yz + log |Σ∗Yz

|
)}

,

where Σ∗Yz
= α∗Σxp,z +Σw.

1166



5. References
[1] K. Wang and S. Shamma, “Self-normalization and noise-

robustness in early auditory representations,” Speech and Audio
Processing, IEEE Transactions on, vol. 2, no. 3, pp. 421–435,
1994.

[2] R. M. Stern, “Applying physiologically-motivated models of au-
ditory processing to automatic speech recognition,” in invited talk
at the International symposium on auditory and audiological re-
search, 2011.

[3] X. Yang, K. Wang, and S. A. Shamma, “Auditory representations
of acoustic signals,” Information Theory, IEEE Transactions on,
vol. 38, no. 2, pp. 824–839, 1992.

[4] D. C. Knill and A. Pouget, “The bayesian brain: the role of un-
certainty in neural coding and computation,” Trends in neuro-
sciences, vol. 27, no. 12, pp. 712–719, 2004.

[5] H. B. Barlow, “Possible principles underlying the transforma-
tions of sensory messages,” Sensory Communication, pp. 217–
234, 1961.

[6] K. Friston, “The free-energy principle: a unified brain theory?”
Nature Reviews Neuroscience, vol. 11, no. 2, pp. 127–138, 2010.

[7] K. Friston, J. Kilner, and L. Harrison, “A free energy principle
for the brain,” Journal of Physiology-Paris, vol. 100, no. 1, pp.
70–87, 2006.

[8] K. Wagener, J. L. Josvassen, and R. Ardenkjær, “Design, opti-
mization and evaluation of a danish sentence test in noise: Diseño,
optimización y evaluación de la prueba danesa de frases en ruido,”
International Journal of Audiology, vol. 42, no. 1, pp. 10–17,
2003.

[9] M. Z. Jahromi, J. Østergaard, and J. Jensen, “Detection of spoken
words in noise: Comparison of human performance to maximum
likelihood detection,” in 2016 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, 2016.

[10] J. O. Pickles, An introduction to the physiology of hearing. Aca-
demic press London, 1988, vol. 2.

[11] C. J. Plack, The Sense of Hearing. Psychology Press, 2013.
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