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Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada
shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small
scales in intermittentbursts. Nevertheless, mean field arguments are sufficient to account for the
ensemble averaged energy decayE(t);t22 or the parameter dependencies for the ensemble
averaged total energy in the kicked case. Within numerical precision, the inertial subrange
intermittency remains the same, whether the system is forced or decaying. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1375146#
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I. INTRODUCTION

Three dimensional turbulent flows are characterized b
highly chaotic and intermittent transfer of energy from t
outer length scale down to the dissipative, inner length sc
In this paper we will focus on two different kinds of turbu
lent flows: Decaying turbulence and periodically kicked tu
bulence. Both types of flow have already been analy
within a mean field theory,1,2 but here we would like to focus
also on intermittency effects which cannot be described
the mean field approach.3

To be more specific: Withdecaying turbulencewe mean
a homogeneous and isotropic turbulent flow for which fo
ing is ceased from some timet0 on. Therefore, eventually al
the energy will be damped because of dissipative effects,
the statistical properties of the decaying turbulent field ara
priori not clear. With periodicallykicked turbulencewe
mean a turbulent field forced with short and very strong
riodic pulses.

The motivation of the paper is to study the effect
nontrivial forcing on the properties of the turbulence. Mo
numerical or theoretical studies assume a Gaussian ran
noise forcing, acting on the largest scales only. But for m
practical flows the forcing protocol is obviously more com
plex and often periodic, be it pulsed flow through a pipeli
or the earth’s atmosphere driven by the periodical hea
through the sun. In between the kicks the turbulence is s
posed to be freely decaying. Therefore an understandin
decaying turbulence is required. Beyond this, decaying
bulence is of course one of the classical examples of tu
lent flow and an extended literature exists; see, e.g., R
4–8.

The aim of the paper is to explore the statistical prop
ties of turbulence both in the decaying and kicked ca
Therefore, we must have excellent statistics. This turns ou

a!Author to whom correspondence should be addressed; electronic
lohse@tn.utwente.nl
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be prohibitive in a direct numerical simulation~DNS! of the
Navier–Stokes equation and that is why we revert to stu
the problem in the context of the GOY shell model~named
after Gledzer, Ohkitani, and Yamada! of turbulence9 in
which a scaling regime of many decades can be achieved
our knowledge the present study is the first on the class
problem of decaying turbulence with the help of a sh
model.

Shell models are defined by a set of hierarchica
coupled ODEs for the velocity modes which try to reprodu
the physics of the inertial subrange of the Navier–Sto
dynamics, i.e., the energy flux downscale. The dynam
equations for the GOY models read9–12

S d

dt
1nkn

2Dun5 ikn~anun12un111bnun11un21

1cnun21un22!* 1gdn,0 , ~1!

were n50, . . . ,N21, kn52nk0 , an51, bn52d/2 and cn

52(12d)/4 and the boundary conditions areaN225aN21

5bN215b15c15c250 in order for the GOY model to
conserve the energy in the unforced and inviscid caseg
5n50). Traditionally, the free parameterd is chosen to be
d51/2. The values of the other parameter used wereN
522, g5(11 i )•1022, andn51026.

II. DECAYING TURBULENCE: GLOBAL PROPERTIES

The stationary~i.e., forced! simulations of Eq.~1! were
performed using fourth order Runge–Kutta with viscos
explicitly integrated. For the decay run we used the sa
algorithm but increased the time step keeping it 1/10 of
dissipative time scale. During the decay process indeed
dynamics becomes slower and slower and investigation
long time properties is only possible using a scheme with
adaptive time step.
il:
3 © 2001 American Institute of Physics
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We performed a very long stationary simulation of E
~1! from which we collected an ensemble of starting config
rations (;2500 independent runs! for studying the free de-
cay of GOY turbulence. The starting configurations of t
ensemble were collected after some eddy turnover time
order to be statistically independent. We let each of the st
ing configurations decay according to Eq.~1! ~i.e., with g
50 and all other parameters unchanged!.

During the decay stage we measure the total ene
E(t)5(n50

N21uun(t)u2 as a function of the decay timet ~the
time elapsed from when we switched off the forcing!. In Fig.
1 the decay of the total energy on asinglerun is shown, i.e.,
no ensemble average is performed here. The total en
decays in burst, i.e., it is constant for some time and t
very suddenly drops. As this behavior occurs on all sca
the steplike structure looks self similar. The averaged~over
the whole decay! decay exponent is close to22. For very
large times it decays exponentially. The derivative of t

FIG. 1. Time decay of the total energyE(t) as a function of timet for one
particular realization. Note the stepwise, self-similar behavior. The ave
slope22 is also shown.

FIG. 2. Time derivative of the energy in Fig. 1.
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energy decay is shown in Fig. 2 in order to better highlig
the bursty structure. Also from Fig. 2 one can immediat
realize that the typical time scales during the decay beco
larger and larger. The bursty structure of the energy deca
the GOY model has been analyzed in detail by Okkels a
Jensen13,14 and reflects the intermittent behavior of the e
ergy flux downscale.

We now ensemble average E(t) by collecting various
starting configurations as described above and letting th
decay. In Fig. 3 we show the time decay of the ensemb
averaged total energy. The steplike behavior of a single
alization of E(t) is now completely smeared out and th
decay law^E(t)&;t22 is revealed. For large times the ave
aged decay is of course again exponential.

We now set up a simple model which is able to descr
the averageenergy behavior during the decay process. T
model closely follows the mean-field model of Ref. 1. T
major assumption we make is to suppose that all the ene
is contained in the smallest shells corresponding to the la
est scales. For simplicity we assume that it is only in t
zeroth shell of Eq.~1!, E.^uu0u2&. During the first part of
the decay energy will disappear from the zeroth shell
being transferred to smaller scalesd/dt^uu0u2&;2^uu0u3&
and henced/dt ^E(t)&;2^E(t)&3/2 with the solution

^E~ t !&5@E~ t0!21/21 1
2 ~ t2t0!#22. ~2!

Notice that asymptotically this means that, fort@t0 , we ex-
pect the energy to decay quadratically in time,^E(t)&
;t22, just as seen in Fig. 3. The reason that the mean fi
argument works for the averaged decay is that the requ
time for the transport of pulses downscale is determin
by the large scale dynamics, see, e.g., Fig. 1~b! of
Schörghofer.15

As energy is removed from the system the effective R
nolds number will decrease further and further. In particu
there will come a time,t1 , for which even on the zeroth she
the dissipative term will dominate with respect to the nonl

e
FIG. 3. Ensemble averaged energy as a function of decay time. In ord
give an idea about the statistical error, four sets are shown~shifted in
y-direction!. Each one is obtained by averaging 2500 uncorrelated de
processes.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2015Phys. Fluids, Vol. 13, No. 7, July 2001 Decaying and kicked turbulence in a shell model
ear term in Eq.~1!. From that moment on, the equation f
the energy decay will be12 ^uu̇0u2&.2nk0

2^uu0u2& and hence
d/dt ^E(t)&;2nk0

2^E(t)& whose solution is an exponentia
damping,

^E~ t !&5E~ t1!•exp@22nk0
2~ t2t1!#. ~3!

As seen from Fig. 3, Eqs.~2! and ~3! correctly describe the
respective short and long term behavior of the energy de

III. INTERMITTENCY IN DECAYING TURBULENCE

The time behavior of an individual decay process
complicated because of the bursty structure of the decay
Fig. 2. The presence of bursts is an essential feature of in
mittency. During the decay process both the intensities of
bursts decrease and their duration increase orders of ma
tudes.

The question now is if or not the statistical properties
the turbulent fluctuations remain the same during the de
process. To answer this question we study the k-scaling
higher order moments. Rather than calculating the scalin
moments of the velocityun itself, which within the GOY
model shows unphysical period 2 and period 3 oscillation12

we focus on the scaling of energy flux moments12 Sn,p ,

Sn,p~ t !5^uI~unun11un121 1
4 un21unun11!up&. ~4!

HereI denotes the imaginary part. TheSn,p are free of the
period 2 and period 3 artifacts in the spectrum and show v
clean scaling properties.12 With the angular bracketŝ•••&
we again denote ensemble average conditioned to a g
decay timet. However, to obtain better statistics, here w
had in addition to average over a short period of time. W
chose a tenth of a decade and the given times refer to theend
of that small time interval.

The numerical results are shown in Fig. 4 where we h
plotted various moments of the fluxes as a function of de
time. One evident feature is the decrease of the Reyn

FIG. 4. Second order flux momentSn,2 at six different decay times. The
upper curve is the original situation, the following curves reflect the sit
tion one, two, three, four, and five decades in time later. Besides ense
averaging over 2500 ensembles, the respective data are also average
one tenth of a decade in time.
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number as the decay goes on. This results from the str
increase of the dissipative scale and consequently the s
ening of the inertial range. In the remaining inertial subran
~ISR! the slope looks very similar, but whether it really is th
same cannot yet be judged from this type of plot.

Therefore, in order to explore whether the scaling in t
forced and in the unforced cases are really the same,
calculate the ratio between powers of the fluxes compute
different decay times, see Fig. 5. Though in the forced c
the forcing is limited to the zeroth shell, slight deviation
spread over the first three shells or so. However, in the
the scaling properties and thus the intermittency really se
to be the same, within statistical errors. Note that getting
conclusion from DNS would be very hard, due to the sm
extension of the inertial subrange.

This result on the lack of dependence of intermittency
the forcing resembles analogous conclusions from analyz
the effect of the viscous subrange on the ISR scaling:
both the GOY model and also for DNS, She a
co-workers16,17 found the same degree of ISR intermittenc
independent of whether normal or hyperviscosity was e
ployed. Moreover, Benziet al.18 tested the independence o
intermittency from various eddy viscosity models with
GOY treelike models. Only slightly beyond the onset of tu
bulence may there be a small dependence on the typ
viscosity within the GOY model.19

IV. KICKED TURBULENCE

Kicked turbulence has been analyzed within the fram
work of a mean field theory.2 In the kicked case the GOY
model is forced with a deltalike~in time! forcing gdn,0 with
frequencyf. With deltalike forcing we mean that the forcin
gdn,0 is periodically turned on for a small timeDtkick

! f 21. The presence of the forcing will sustain the ener
flux. The turbulence level achieved in kicked turbulence d
pends on both the forcing strengthA5gDtkick and the forc-

-
ble
over

FIG. 5. Ratio ofSn,6(t) to Sn,6(t0) one, two, three, four, and five decade
after t0 when the decay started. For clarity the curves are again shifte
y-direction.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. ~a! Total energy in the GOY
as a function of time, in the lamina
regime (f 56•1026, A50.01). ~b!
Closely after the laminar regime (f
51•1024, A50.01). ~c! Close to the
turbulent regime (f 51•1023, A
50.01). ~d! In the turbulent regime
( f 51.5•1021, A50.01).
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ing frequencyf. We employ the GOY model dynamics t
explore this dependency beyond the simple mean field
proach of Ref. 2.

The qualitative behavior of the energy, as a function
kicking frequency, can be seen in Fig. 6. In Fig. 6~a! we can
see the energy behavior in the laminar regime. After e
kick the system jumps at~almost! constant upper levels
From this value it then decays for a long period before
other kick is applied.

In Fig. 6~b! we are in the transition regime toward tu
bulence. The time between two kicks has been decrease
compared to Fig. 6~a! and hence the system does not ha
sufficient time to fully relax. The kicks still heavily influenc
the macroscopic behavior.

In Fig. 6~c! the kicking frequency has been further i
creased and we are close to the turbulent regime. We
regions where the energy starts to pile up for a while, a
which it relaxes very fast through bursts of energy. The m
roscopic energy behavior is described by a competition
tween the kicking~with timescale 1/f ) and the energy deca
between the kicks~with the time scale of the large edd
turnover time!.

In Fig. 6~d! we are in the fully turbulent regime. Her
the individual kicks are no longer important for the macr
scopic energy behavior and they act as a sort of ave
constant forcing. This case nearly corresponds to the cas
continuous forcing. Energy can build up over many kicki
timescales before it is released through an energy bu
whenever the phase relation is appropriate.13,20This behavior
is the analog to the bursty structure of Figs. 1 and 2 in
decaying case: Energy can only be transported downsca
the phase relations happen to be appropriate.13 If not, an
Downloaded 20 Apr 2005 to 130.89.112.66. Redistribution subject to AIP
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energy plateau forms in the decaying case or the energy p
up in the kicked case.

To get the dependence of the total energy just before
kick (El) and just after the kick (Eu) as a function of the
kicking frequency and the kicking strength we again p
formed ensemble averages of many realizations. In Fig. 7
showEl andEu as a function off for three different forcing
strengthsA. Just as in the mean field case2 three regimes can

FIG. 7. Numerical computation of the energy levels.El ~lower curves! and
Eu ~upper curves! as a function of the frequencyf for three different kicking
strengthsA. For largef the slope is roughlyEu;El; f .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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be seen:~i! A laminar regime in which the upper energ
level is constant and corresponds to the total energy in
during the kick and where the time between the kicks
sufficiently large so that the energy completely decays;~ii ! a
transitional regime; and~iii ! a turbulent regime where th
average upper and lower energy level are equal as the for
is experienced as a continuous forcing. The energy le
roughly scale withf 1. In the last regime the features a
different from those of the third regime in the mean fie
theory2 where the average energy of the lower level is
ways less than that of the upper level. The reason is tha
the dynamical model energy can build up over many forc
periods due to phase blocking. Therefore, it is experience
a continuous forcing.

Nevertheless, at least the scaling can be obtained b
similar argument as employed in the mean field theory:2 If
the energy of the GOY can be~roughly! approximated by the
energy contained in the largest shell,El;^uu0u2&, then di-
rectly after the kick it will beEu;^uu01gDtkicku2&5^uu0

1Au2&5El12AAEl1A2. Between two kicks the system i
freely decaying. Therefore we can apply in between t
kicks the mean field result of Refs. 1 and 2 to connectEu and
El . If the decay starts from an energy valueEu , after a time
1/f , when the next kick is applied, the energy will be d
cayed toEl . The two energy levels are connected throu
the equation1,2

1

f t
53@F~Re~El !!2F~Re~Eu!!#. ~5!

Here the functionF(Re) is defined as1

F~Re!5
1

2 Re2 $2g1Ag21Re2%1
1

2g H g1Ag21Re2

Re J ,

~6!
with g59. The Reynolds number and the energy in the GO

are connected by Re(E(t))5A 2
3@LAE(t)/n#. Here,L is the

integral scale andt5L2/n a viscous time scale.
Solving Eq.~5! we can find the value of the upper,Eu ,

and lower,El , energy levels as a function of the forcin
strengthA and frequencyf. In Fig. 8 this dependence is plo
ted, revealing the basic features as in the numerical Fig
For large Re@g, we haveF(Re)51/Re and one findsEu

;El; f , just as in the numerical case.

V. CONCLUSIONS

We summarize our main findings:
The GOY model is employed to study both decaying a

periodically kicked turbulence. Energy is transferred towa
the small scales in intermittentbursts, leading to stepwise
behavior in the decaying case or energy pileups and su
quent bursts in the kicked case. In spite of this intermitt
behavior, mean field arguments as developed in Refs. 1
2 are sufficient to account for the ensemble averaged en
decay^E(t)&;t22 or the parameter dependenceEu;El; f
for the ensemble averaged total energy in the kicked c
The reason that mean field arguments work here is that
decay and the kicking is determined by the large scale
namics.
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For what concerns the statistical properties of decay
turbulence, our finding supports the idea that decaying
bulence has the same intermittency as stationary turbule
In particular this finding allows us to conclude that at least
the GOY model ISR intermittency is independent on t
forcing mechanism of turbulence. The only relevant dyna
ics during the decay process seems to be a shortening o
inertial range~decrease of Reynolds number! but leaving the
same intermittency properties.
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