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ENGLISH SUMMARY 

Pancreatic cancer is a highly aggressive disease. Over the past decade, the mortality 

rate of pancreatic cancer has remained stable and the disease continue to have a 

dismal overall prognosis. One of the main reasons for this poor prognosis is the 

difficulty of detecting the disease at early stages, emphasizing the need for further 

research to significantly improve early detection methods and therapeutic options. 

This thesis includes four studies. Study I is a review of the literature addressing genes 

that are aberrantly methylated and detectable in blood from patients with pancreatic 

cancer, with the aim of gaining knowledge about hypermethylated genes useful as 

blood-based markers for pancreatic adenocarcinoma. The review revealed that eight 

studies on cell-free DNA hypermethylation had been published. None of the genes 

previously examined had the potential to serve as an individual diagnostic marker, 

suggesting that a panel of several genes was needed to achieve sufficient 

performance. Based on the literature review, we selected a panel of 28 

hypermethylated promoter regions in plasma-derived cell-free DNA.  

The aim of study II was to test the selected panel of genes as a diagnostic marker for 

pancreatic adenocarcinoma. Consecutive patients with pancreatic adenocarcinoma (n 

= 95) were included prospectively. Three benign control groups were included: 

patients suspected of but without upper gastrointestinal malignancy (control group 1, 

n = 27), patients with chronic pancreatitis (control group 2, n = 97), and patients with 

acute pancreatitis (control group 3, n = 59). In study II we demonstrated that the mean 

number of hypermethylated genes in the whole gene panel (28 genes) was 

significantly higher for cancer patients (8.41 (95% confidence interval (CI): 7.62-

9.20)) than for the three benign control groups (control group 1 (4.89 (95% CI: 4.07-

5.71)), control group 2 (4.34 (95% CI: 3.85-4.83)) and control group 3 (5.34 (95% 

CI: 4.77-5.91))). Seventeen genes were more frequently hypermethylated in patients 

with pancreatic adenocarcinoma compared with the combined control group 1+2. We 

developed a diagnostic prediction model (BMP3, RASSF1A, BNC1, MESTv2, TFPI2, 

APC, SFRP1, SFRP2, and the covariate age > 65 years) that enabled the 

differentiation of pancreatic adenocarcinoma patients and control group 1+2 with 

76% sensitivity and 83% specificity (area under the receiver operating characteristic 

curve (AUC) of 0.86). Furthermore, the diagnostic prediction model was independent 

of cancer stage. 

The aim of study III was to test the selected panel of genes as markers for pancreatic 

adenocarcinoma staging. We demonstrated in study III that patients with stage IV 

disease had a significantly higher number of mean hypermethylated genes (10.24 

(95% CI: 8.88-11.60)) than patients with stage I, II and III disease (7.09 (95% CI: 

5.52-8.67), 7.00 (95% CI: 5.93-8.07) and 6.77 (95% CI: 5.08-8.46)). The 
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hypermethylation frequencies of seven genes were significantly increased in patients 

with stage IV disease compared with patients with stage I, II and III disease. We 

developed a prognostic prediction model (SEPT9v2, SST, ALX4, CDKN2B, HIC1, 

MLH1, NEUROG1, and BNC1) that could differentiate stage IV disease from stage 

I, II and III disease with a sensitivity of 74% and a specificity of 87% (AUC of 0.87). 

An additional prognostic prediction model (MLH1, SEPT9v2, BNC1, ALX4, 

CDKN2B, NEUROG1, WNT5A, and TFPI2) enabled the differentiation of potential 

resectable disease (stage I and II) from non-resectable pancreatic adenocarcinoma 

(stage III and IV) with 73% sensitivity and 80% specificity (AUC of 82%). 

The aim of study IV was to test the selected panel of genes as markers for survival of 

pancreatic adenocarcinoma. In an analysis adjusted for cancer stage and age, we 

found a significant hazard ratio of 2.03 (95% CI: 1.15-3.57) for patients with more 

than 10 hypermethylated genes compared with patients with less than 10 

hypermethylated genes. Several individual genes were associated with survival and 

varied with cancer stage. Overall, promoter hypermethylation had a negative 

influence on survival, but hypermethylation of a few specific genes seemed to have 

a positive effect on survival and could therefore represent less aggressive tumours. 

Based on the selected panel of 28 genes, we developed prediction models for survival 

(for the total group of patients and for subgroups (stage I-II and stage IV)), which 

enabled stratification of patients in risk groups according to survival time. 

In conclusion, the findings of our studies indicate that plasma-derived cell-free DNA 

promoter hypermethylation has potential as blood-based markers for the diagnosis, 

stage classification and prognosis of pancreatic adenocarcinoma. However, external 

validation is required to substantiate the results prior to clinical application.  
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DANSK RESUMÉ 

Kræft i bugspytkirtlen er en særdeles aggressiv kræftsygdom forbundet med en yderst 

dårlig prognose, som ikke er forbedret de seneste årtier. Den høje dødelighed er 

blandt andet forårsaget af, at diagnosen er vanskelig at stille i de tidlige 

sygdomsstadier. Ovenstående understreger, at der er behov for yderligere forskning 

indenfor området, for således at kunne forbedre den tidlige diagnostik og dermed 

kunne optimere behandlingen. 

Denne afhandling omfatter fire studier. Studie I er en gennemgang af den 

foreliggende litteratur omhandlende kræft i bugspytkirtlen og DNA methyleringer i 

blodet. Formålet med litteraturgennemgangen var at finde gener, som potentielt 

kunne være egnet, som blodbaseret markører for kræft i bugspytkirtlen. Der blev 

fundet otte studier om hypermethyleret cellefrit DNA. Ingen af de tidligere 

undersøgte gener havde potentiale som individuel diagnostisk markør, hvilket kunne 

antyde, at der var behov for et større gen panel for derved at øge den diagnostiske 

evne.  Baseret på studie I udvalgte vi et panel af 28 hypermethylerede promoter 

regioner i cellefrit DNA deriveret fra plasma.  

Formålet med studie II var at undersøge det udvalgte genpanel som diagnostisk 

markør for kræft i bugspytkirtlen. Konsekutive patienter med kræft i bugspytkirtlen 

(n = 95) blev inkluderet prospektivt. Tre kontrolgrupper uden kræft blev inkluderet: 

patienter mistænkt for, men uden påviselig kræft i den øverste del af 

mavetarmsystemet (kontrolgruppe 1 (n = 27)), patienter med kronisk betændelse i 

bugspytkirtlen (kontrolgruppe 2 (n = 97)) og patienter med akut betændelse i 

bugspytkirtlen (kontrolgruppe 3 (n = 59)). I studie II demonstrerede vi, at det 

gennemsnitlige antal hypermethylerede gener i genpanelet var signifikant højere hos 

kræftpatienterne (8.41 (95% CI: 7.62-9.20)) sammenlignet med de tre kontrolgrupper 

(kontrolgruppe 1 (4.89 (95% CI: 4.07-5.71)), kontrolgruppe 2 (4.34 (95% CI: 3.85-

4.83)) and kontrolgruppe 3 (5.34 (95% CI: 4.77-5.91)). Sytten gener var signifikant 

hyppigere hypermethylerede ved kræft i bugspytkirtlen sammenlignet med 

kontrolgruppe 1+2. Vi udviklede en diagnostisk prædiktionsmodel (BMP3, 

RASSF1A, BNC1, MESTv2, TFPI2, APC, SFRP1, SFRP2 og kovariaten alder > 65 

år), som muliggjorde differentiering mellem patienter med kræft i bugspytkirtlen 

uafhængig af stadie, og patienter i kontrolgruppe 1+2 med en sensitivitet på 76% og 

en specificitet på 83% (AUC = 0.86).  

Formålet med studie III var at undersøge det udvalgte genpanel som markør for 

stadieinddeling af kræft i bugspytkirtlen. I studie III fandt vi, at patienter med stadie 

IV sydom havde signifikant flere hypermethylerede gener (10.24 (95% CI; 8.88-

11.60)) sammenlignet med patienter med stadie I, II og III sygdom (7.09 (95% CI: 

5.52-8.67), 7.00 (95% CI: 5.93-8.07) og 6.77 (95% CI: 5.08-8.46)). Syv gener var 
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signifikant hyppigere hypermethylerede hos patienter med stadie IV sygdom 

sammenlignet med stadie I, II og III sygdom. Vi udviklede herefter en prognostisk 

prædiktionsmodel (SEPT9v2, SST, ALX4, CDKN2B, HIC1, MLH1, NEUROG1, og 

BNC1), som kunne skelne patienter med stadie IV sygdom fra patienter med stadie I, 

II og III sygdom med en sensitivitet på 74% og en specificitet på 87% (AUC = 0.87). 

En anden prognostisk prædiktionsmodel (MLH1, SEPT9v2, BNC1, ALX4, CDKN2B, 

NEUROG1, WNT5A, og TFPI2) gjorde det muligt at differentiere mellem potentiel 

resektabel sygdom (stadie I og II) og ikke resektabel sygdom (stadie III og IV) med 

en sensitivitet på 73% og en specificitet på 80% (AUC = 0.82) 

Formålet med studie IV var at undersøge det udvalgte genpanel som markør for 

overlevelse af kræft i bugspytkirtlen. Vi fandt i en analyse justeret for kræftstadie og 

alder, at patienter med mere end 10 hypermethylerede gener havde en hasard ratio på 

2.03 (95% CI: 1.15-3.57) sammenlignet med patienter med mindre end 10 

hypermethylerede gener. Desuden var flere individuelle gener associeret med 

overlevelse. Hypermethylering havde oftest en negativ indvirkning på overlevelsen 

og dermed associeret med en dårligere prognose. Vi fandt dog, at hypermethylering 

af få specifikke gener påvirkede overlevelsen i en positiv retning og derved kunne 

repræsentere en gruppe af mindre aggressive tumorer. Baseret på det udvalgte 

genpanel udviklede vi prædiktionsmodeller for overlevelse (for den samlede gruppe 

af patienter med kræft i bugspytkirtlen uafhængig af stadie og for undergrupper 

(stadie I-II og stadie IV)), som gjorde det muligt at opdele patienterne i risikogrupper 

i forhold til overlevelsestid.  

Baseret på resultaterne fra vores studier er promoter hypermethylering i plasma 

deriveret celle-frit DNA potentielt brugbar som blodbaseret markører for 

diagnosticering, stadieinddeling og prognosticering af kræft i bugspytkirtlen. Ekstern 

validering er dog påkrævet for at verificere vores resultater, og ligeledes en 

nødvendighed for at markørerne kan blive klinisk anvendelige.   
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IPMN Intraductal papillary mucinous neoplasm 

LUS Laparoscopic ultrasound 

N Lymph node 

M Distant metastasis 

MCN Mucinous cystic neoplasms 
MethDet 56 Microarray–mediated methylation analysis of 56 fragments 

MiRNA MicroRNA 

MOB Methylation on beads 

MSP Methylation-specific PCR  

OR Odds ratio  

PanIN Pancreatic intraepithelial neoplasia 

PET Positron-emissions-tomography 

PS WHO performance status 

QMSP Quantitative methylation-specific PCR 

RR Relative risk 

SD Standard deviation 

T Primary tumour 
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XIX 

LIST OF GENES  

ADAMTS1 A Disintegrin-like Metalloproteinase Thrombospondin Type 1 Motif 1 

APC Adenomatous Polyposis Coli 

ALX4 Aristaless-like Homeobox 4 

BNC1 Basonuclin Zinc Finger Protein 1 

BMP3 Bone Morphogenetic Protein 3 

BRAF B-Raf Proto-Oncogene, Serine/Threonine Kinase 

BRCA1 Breast Cancer 1 

BRCA2 Breast Cancer 2 

CDKN2A Cyclin-Dependent Kinase Inhibitor 2A (P16/P14ARF) 
CDKN2B Cyclin-Dependent Kinase Inhibitor 2B (P15) 

CHFR Checkpoint with Forkhead and Ring Finger Domains 

CFTR Cystic Fibrosis Transmembrane Conductance Regulator 

CTRC Chymotrypsin C 

DCC Deleted in Colorectal Carcinoma 

ESR1 Estrogen Receptor 1 

EYA2 EYA Transcriptional Coactivator and Phosphatase 2 

GSTP1 Glutathione S-transferase Pi 1 

HIC1 Hypermethylated in Cancer 1 

HLTF Helicase-like Transcription Factor 

HPP1 Hyperpigmentation, Progressive, 1  
KRAS Kirsten Rat Sarcoma Viral Oncogene Homolog 

MESTv1 Mesoderm Specific Transcript Variant 1 

MESTv2 Mesoderm Specific Transcript Variant 2 

MGMT O-6-Methylguanine-DNA Methyltransferase 

MLH1 MutL Homolog 1 

MSH2 MutS Homolog 2 

MSH6 MutS Homolog 6 

NEUROG1 Neurogenin 1 

NPTX2 Neuronal Pentraxin 2 

PENK Preproenkephalin 

PALB2 Partner and Localizer of BRCA2 

PMS2 PMS1 Homolog 2, Mismatch Repair System Component 
PRSS1 Protease, Serine 1  

PRSS2 Protease, Serine 2 

PTEN Phosphatase and Tensin Homolog 

RARB Retinoic Acid Receptor Beta 

RASSF1A Ras Associated Domain Family Member 1 

RNF43 Ring Finger Protein 43 

SEPT9v2  Septin 9 Transcript Variant 2 

SFRP1 Secreted Frizzled-Related Protein 1 

SFRP2 Secreted Frizzled-Related Protein 2 

SMAD4 Mother Against Decapentaplegic Homolog 4 

SPINK1 Serine Peptidase Inhibitor, Kazal Type 1 
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SST Somatostatin 

STK11 Serine/Threonine Kinase 11  

TAC1 Tachykinin, Precursor 1 (Substance P) 

TFPI2 Tissue Factor Pathway Inhibitor 2 

TP53 Tumour Protein P53 

UCHL1 Ubiquitin Carboxy-terminal Hydrolase L1 

VIM Vimentin 

WNT5A Wingless-Type MMTV Integration Site Family, Member 5A 
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1.1.  PANCREATIC CANCER 

Pancreatic cancer is one of the most challenging tumours worldwide. It is 

characterized as a highly aggressive disease that is usually diagnosed at advanced 

stages and is resistant to therapy, resulting in a dismal overall prognosis. Over the 

past decade, a downward trend in mortality has been observed for most other major 

cancer sites. However, the mortality rate for pancreatic cancer has remained stable.1 

The poor prognosis emphasizes the need to understand its pathogenesis to 

significantly improve early detection methods and therapeutic options. 

  

1.1.1.  ANATOMY AND FUNCTION OF THE PANCREAS 

The pancreas is j-shaped, approximately 15 cm long and has a weight of 70-100 

grams (Figure 1).2 

Figure 1. The pancreas 
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The pancreas is located in the deep part of the upper abdomen, behind the stomach 

and the peritoneum on the ventral side of the first and second lumbar vertebra. The 

head of the pancreas is surrounded by the curve of the duodenum, overlying the vena 

cava. The aorta and the superior mesenteric vessels lie behind the neck of the 

pancreas. The tail of the pancreas extends up to the spleen. Furthermore,  the pancreas 

is located near the liver, the gallbladder and the bile duct (Figure 1).2 

The pancreas is a glandular organ of the digestive system and consists of exocrine 

and endocrine functions (Figure 1). The exocrine pancreas represents 80-90% of the 

organ and comprises both acinar and ductal cells, where the acinar cells (or acini) are 

organized into lobules; the acinar cells are responsible for the synthesis, storage and 

secretion of enzymes such as amylase, lipase and trypsinogen. The acinar cells are 

located around a central lumen, which communicate with the duct system.2 The 

exocrine cells produce 1500-2000 ml of pancreatic juice daily, consisting of alkaline 

fluid and digestive enzymes, which is secreted through the pancreatic duct to the 

duodenum.2 The pancreatic ducts are lined by epithelial cells. The pancreatic 

secretion is maintained by a complex interaction between neural, hormonal and 

mucosal factors.3 The main function of the endocrine cells is to secrete multiple 

hormones, including insulin and glucagon, into the bloodstream to regulate glucose 

homeostasis. The endocrine cells are distributed in clusters called islets of 

Langerhans, which are located between the exocrine cells.2 

 

1.1.2. PATHOLOGY OF PANCREATIC CANCER 

Pancreatic cancer can arise from all cells of the pancreatic tissue, resulting in tumours 

from exocrine cells and tumours originating from endocrine cells. However, the most 

common type of pancreatic cancer is pancreatic adenocarcinoma arising from the 

pancreatic ductal epithelium. Pancreatic adenocarcinoma accounts for approximately 

80-90% of all pancreatic cancer cases.2,4  

This PhD thesis focuses solely on pancreatic adenocarcinoma. 

 

1.1.3. INCIDENCE 

The incidence of pancreatic cancer in the general population is low (life-time risk of 

1.3%).5 In 2014, 954 patients were diagnosed with pancreatic cancer in Denmark.6 

However, world-wide, approximately 337000 patients are diagnosed with pancreatic 

cancer annualy.7 In total, pancreatic cancer accounts for 2-3% of all adult cancer 

cases.1,8  
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1.1.4. RISK FACTORS 

Age and Gender 

According to worldwide data, pancreatic cancer is slightly more common in men than 

in women1,8; however the incidence in Denmark has been identical between genders 

for the past couple of years.6 Advanced age is one of the most important risk factors,6,8 

with a very low risk until the age of 50. The risk subsequently increases, with a 

median patient age of 71 years at the time of diagnosis.9 

 
Smoking and Alcohol 

Smoking is the most important modifiable risk factor for pancreatic cancer. Smoking 

is estimated to be responsible for approximately 20-30% of pancreatic cancer cases.10 

Smokers have a 74% higher risk for pancreatic cancer than non-smokers.11 In 

addition, smokers with a family history of pancreatic cancer have an even greater 

risk.12 Data regarding alcohol and the risk of developing pancreatic cancer are 

conflicting. However, high alcohol consumption tends to be associated with an 

increased risk of pancreatic cancer.10,11,13,14 

 

Obesity and Overweight 

Obesity and overweight have been linked to an increased risk of pancreatic 

cancer.10,15 Obese individuals have a 20% higher risk of developing pancreatic cancer 
than normal weight individuals.15  

 

Diabetes 

Diabetes is a risk factor for pancreatic cancer.11 Patients with long-term type two 

diabetes have a 50% increased risk of pancreatic cancer compared with non-diabetic 

individuals. Patients with type one diabetes also have an increased risk.16 

Furthermore, new-onset diabetes is a potential sign of disease.17 Approximately 25% 

of patients suffer from diabetes at diagnosis.18 

 

Pancreatitis 

There is strong evidence for an association between long-standing chronic 

pancreatitis and pancreatic cancer.19 Chronic pancreatitis is an inflammatory disease 

involving the pancreatic parenchyma, which is progressively destroyed and replaced 

by fibrotic tissue. The risk correlates with the duration of recurrent pancreatitis and 

chronic inflammation.19 Four percent of patients with chronic pancreatitis develop 

pancreatic cancer within 20 years of diagnosis.11,19 Patients with a rare type of 

pancreatitis, hereditary pancreatitis, have an even higher risk of pancreatic cancer, 

with an assessed life-time risk of 25-55%.19–21 

 

Genetic risk 

The majority of pancreatic cancer appears to be sporadic, and only 5-10% of 

pancreatic cancer cases are caused by inherited genetic factors. The genetic basis of 
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much of the inherited susceptibility to pancreatic cancer remains unexplained5. 

However, there are a number of tumour predisposition syndromes, that entail an 

increased risk of pancreatic cancer (Table 1).4,5,11,21 In addition, hereditary 

pancreatitis and cystic fibrosis also have an increased risk of pancreatic cancer due 

to a genetically determined early change in the pancreas tissue.4,11,21 

Familial pancreatic cancer (FPC) refers to families with two or more first-degree 

relatives (FDRs) diagnosed with pancreatic cancer without a known genetic defect. 

Individuals with two FDRs with pancreatic cancer have an estimated life-time risk of 

developing pancreatic cancer of 6-12%, whereas individuals with three or more FDRs 

have a life-time risk of 30-40%.4,20,21  
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Table 1. Tumour predisposition syndromes entailing an increased risk of pancreatic 

cancer 

 

Syndromes Genetic mutation Risk of pancreatic cancer 

Hereditary breast and ovarian cancer5,11,21,22 

 BRCA2 

 

3-10 fold increased risk. 

RR: 3.5 (95% CI: 1.87-6.58) 

Accounts for the highest percentage (15%) of known 

causes of inherited pancreatic cancer cases. 

 PALB2  Similar increased risk as BRCA2 mutation. 

Accounts for 3% of known causes of inherited pancreatic 

cancer cases.5,22 

 BRCA1 2-3 fold increased risk. 

RR: 2.3-2.55 

Peutz-Jeghers Syndrome5,11,21,22 

 STK11 132 fold increased risk. 

Life-time risk: 11-36% up to age 65-70. 

RR: 76 (95% CI: 36-160) 

Hereditary non-polyposis colorectal cancer (HNPCC or Lynch syndrome) 5,11,21 

 MLH1 

MSH2  

MSH6 

PMS2 

8.6 fold increased risk.  

Life-tine risk: 3.7 

 

Familial-atypical multiple mole melanoma (FAMMM)5,11,21 

 CDKN2A  13-22 fold increased risk.  

Life-time risk: 17% by age 75 years. 

Familial adenomatous polyposis (FAP)11 

 APC RR: 4.46 (95% CI: 1.2-11.4) 

Li- Fraumeni11 

 TP53 RR: 7.3 

Cystic fibrosis11 

 CFTR  2 fold increased risk before the age of 60 year. 

RR: 5.3 (95% CI: 2.4-10.1) 

Hereditary pancreatitis5,11,21,22  

 PRSS1– autosomal 

dominant 

SPINK1  

– autosomal recessive 

PRSS2 

CTRC 

26-70 fold increased risk.   

Life-time risk: 25-55% by age 70. 

 

RR: Relative risk. 

CI: Confidence interval. 
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1.1.5. DIAGNOSING AND STAGING 

Diagnosing early-stage pancreatic cancer is challenged by the lack of symptoms in 

the early stages of the disease. If patients present with symptoms, it is likely to be 

unspecific symptoms such as abdominal pains, weight loss, fatigue and jaundice4. 

Such symptoms are also related to chronic pancreatitis, an essential differential 

diagnosis and a known risk factor for pancreatic cancer.19,23  

Several different imaging modalities are used in the diagnostic work-up, such as 

positron emission tomography (PET) scan, computed tomography (CT) scan, 

endoscopic (EUS) or laparoscopic ultrasound (LUS) and endoscopic retrograde 

cholangiopancreatography (ERCP).4,5 Some of these methods are invasive and entail 

a risk of complications. However, histological evaluation is often necessary. Despite 

the use of these techniques, diagnosis may remain difficult. In extreme cases, surgery 

may be needed to establish a definite diagnosis, which also implies a risk of 

overtreatment. 

The only clinical available biomarker for pancreatic cancer is carbohydrate antigen-

19-9 (CA-19-9). However, CA-19-9 lacks sufficient sensitivity and specificity for 

use as a diagnostic marker.24–27 In addition, 10% of the population lacks the ability to 

produce CA-19-9 due to Lea-b- blood group status, which makes its utility less 

apparent.24,25,28 It would be a major advance for patients if additional minimal 

invasive markers were available to facilitate the detection of the disease at an early 

stage. A blood-based diagnostic marker for pancreatic cancer would be ideal for 

screening high-risk individuals and patients with an intermediate risk of pancreatic 

cancer, such as patients with chronic pancreatitis and late-onset diabetes. 

Furthermore, such a marker could serve as a supplement to existing clinical tools in 

the diagnostic work-up of patients suspected of pancreatic cancer.   

Pancreatic cancer is staged according to the extent of disease, as defined by the 

primary tumour (T), lymph node (N) and distant metastasis (M) system (Table 2).29 

Only 20% of patients have localized cancer at time of diagnosis. The remaining 

patients either have locally advanced or metastatic disease.30 Correct staging is very 

important because treatment and prognosis are stage-specific.4,31 
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Table 2. Pancreatic cancer AJCC staging 7th edition29 

 T N M 5-year survival rate 

Stage 0 Tis N0 M0 - 

Stage IA T1 N0 M0 14% 

Stage IB T2 N0 M0 12% 

Stage IIA T3 N0 M0 7% 

Stage IIB T1/T2/T3 N1 M0 5% 

Stage III T4 Any N M0 3% 

Stage IV Any T Any N M1 1% 

Primary tumour (T) 

Tis Carcinoma in situ (also includes the PanIN-3) 

T1 Tumour limited to the pancreas, 2 cm or less in greatest dimension 

T2 Tumour limited to the pancreas, more than 2 cm in greatest dimension 

T3 Tumour extends beyond the pancreas but without involvement of the celiac axis 

or the superior mesenteric artery 

T4 Tumour involves the celiac axis or the superior mesenteric artery (unresectable 

primary tumour) 

Regional Lymph Nodes (N) 

N0 No regional lymph node metastases 

N1 Regional lymph node metastases 

Distant Metastases (M) 

M0 No distant metastases 

M1 Distant metastases 

AJCC: American Joint Committee on Cancer stage classification. 

 

 

1.1.6. TREATMENT AND PROGNOSIS 

The only curative treatment for pancreatic cancer is complete tumour resection. Only 

stage I and II pancreatic cancer are potentially resectable.4,31 The most commonly 

used procedure is pancreatoduodenectomy, also known as the Whipple procedure 

(Figure 2).2 The Whipple procedure involves complex and extensive surgery, 

including the removal of a portion (the caput/head) of the pancreas involving the 

tumour, the duodenum, the gallbladder and part of the bile duct. The remaining 

organs are reattached to permit digestion of food (Figure 2).2,4,31 
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Figure 2. The Whipple procedure 

 

 

Unfortunately, only 10-20% of patients receive curatively intended treatment. 

Despite surgery, 50% of patients experience recurrence.4,30 For a small subgroup of 

patients with resectable tumours and no co-morbidity, a 5-year survival rate of up to 

54% has been demonstrated.32 Patients who are ineligible for curative treatment due 

to more advanced pancreatic cancer are offered palliative treatment with 

chemotherapy or chemo-radio-therapy.30 The median survival time of patients who 

do not undergo surgery is only 3 to 6 months.30,31  

Difficulties in detecting the disease at an early stage, aggressive malignant behaviour 

and a largely radio-/chemotherapy-resistant phenotype result in very high mortality 

(Table 2). Pancreatic cancer is one of the leading causes of cancer death worldwide, 

with an overall 5-year survival rate of only 5-7%.7,9 

Minimally invasive markers for pancreatic cancer prognosis and survival are lacking. 

However, CA-19-9 has prognostic properties, as elevated levels are more common in 
advanced cancer stages. In addition, a preoperative increased level of CA-19-9 is 

associated with decreased survival and a low resectability rate.25,33 

Additional prognostic markers would be highly beneficial and could facilitate the 

initial identification of patients with more aggressive tumour biology, help direct 

patient expectations, optimize therapeutic decision making and promote 

individualized therapy. 
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1.2. DEVELOPMENT OF PANCREATIC CANCER 

The development of pancreatic cancer occurs over several years. The carcinogenesis 

involves multiple biological alterations, including an accumulation of both inherited 

and acquired genetic and epigenetic modifications.34,35  

There are three known types of precursor lesions, which represent alternate routes to 

pancreatic cancer formation.  

Pancreatic intraepithelial neoplasia (PanIN) 

The most common type of precursor is PanIN (Figure 3), microscopic lesions arising 

from the pancreatic ducts. PanINs are classified into three grades depending on the 

degree of architectural and cytological atypia.34 Low-grade PanIN-1 is common, 

whereas high-grade PanIN-3 (carcinoma in situ) is more rare and is usually found 

together with invasive pancreatic carcinoma.4,36 The overall risk of PanINs 

developing into cancer is one percent, with the highest risk for PanIN-3.34 

 

 

Figure 3. The neoplastic development of PanIN 

 

 
 

 

Intraductal papillary mucinous neoplasm (IPMN) 

IPMNs are far less common than PanINs.34 They are radiographically detectable 

cystic tumours that communicate with the pancreatic duct and are present in 

approximately 2% of adults and 10% of individuals above 70 years of age.4 They are 

divided into adenoma, borderline and intraductal papillary mucinous carcinoma 

(IPMC) according to the degree of dysplasia.34 IPMNs are associated with an overall 

risk of invasive cancer of 20-50%, with those arising from the main pancreatic duct 

having a considerably higher risk than those originating from the branch duct.4,34 
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Mucinous cystic neoplasms (MCN) 

MCNs are large mucin-secreting neoplasms with a size of 1-3 cm and are associated 

with an ovarian type stroma. MCNs are very rare; however, the incidence is much 

higher in women than in men (20:1). Approximately 20% of MCNs are associated 

with pancreatic cancer, and all MCNs have potential to progress into carcinoma in 

situ.34  

 

Genetic mutations in precursor lesions and pancreatic cancer 

The most common type of somatic mutation in pancreatic cancer is mutation of the 

KRAS gene (a single point mutation involving a single amino acid substitution from 

G to D at codon 12).22,34 Oncogenic KRAS activates the MAP kinase and/or the PI3K 

pathways, leading to increased cell proliferation, cell division and cell 

survival.4,22,34,36 Furthermore, oncogenic KRAS stimulates the desmoplastic stroma. 

KRAS mutation is present in the majority of pancreatic cancers, including in more 

than 90% of PanINs of all grades,4,34,36 and approximately 50% of IPMNs and MCNs, 

and the prevalence increases with the degree of dysplasia.4,34  

Mutation in BRAF, which is also involved in the MAP kinase pathway, is observed 

in 7-15% of pancreatic cancer cases34 and in a small number of PanINs.4,36  

Mutation in the GNAS gene (encoding the G-protein subunit alpha-s, which activates 

adenylate cyclase leading to cyclic AMP production) is present in 40-80% of IPMNs 

and is commonly observed in pancreatic cancer arising from IPMNs.4,37  

CDKN2A is a tumour suppressor gene encoding two tumour suppressor proteins: P16 

and P14. P16 is an inhibitor of the cyclin D-dependent kinases CDK4 and CDK6, 

which indirectly prevents phosphorylation of the retinoblastoma protein and 

consequently arrests the cell cycle. Loss of P16 function leads to cell proliferation by 

entry into the cell cycle. P16 inactivation is observed in 95% of pancreatic cancer 

cases and is the most frequently inactivated tumour suppressor gene in pancreatic 

cancer.34  However, the inactivation is caused by a variety of mechanisms, including 

homozygous deletion, intragenic mutation and promoter methylation.34 CDKN2A 

mutation is also observed in all precursors (PanINs, IPMNs and MCNs), with 

increasing incidence with increasing lesion grade.4,34,36 

The tumour suppressor gene SMAD4 is involved in the TGF beta pathway and in 

activation of P21 transcription. P21 is a cell cycle inhibitor, and loss of function 

results in uncontrolled proliferation. SMAD4 mutation generally appears late in the 

neoplastic progression (PanIN-3, IPMC and cancer arising from MCNs) and is 

present in approximately 55% of pancreatic cancer cases.4,34,36    

Mutation of the tumour suppressor gene TP53 (encoding Tumour protein 53) is also 

a late event in neoplastic development. Tumour protein 53 regulates the G1-S cell 

cycle checkpoint, maintaining G2-M arrest and inducing apoptosis.37 Loss of Tumour 

protein 53 enables cellular survival and division in the presence of DNA damage37. 

Inactivation of the TP53 gene is present in 75% of pancreatic cancer cases, including 

12% of PanIN-3, 30% of IPMN adenoma/-borderline,  and 50-60% of IPMCs.4,34,36  
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Inactivating mutations in the RNF43 gene (which encodes a ubiquitin ligase and acts 

as a tumour suppressor inhibiting the Wnt pathway) are frequently detected in MCNs 

and in approximately 50% of IPMNs.4,37 

 

MicroRNAs (miRNAs) in pancreatic cancer 

MiRNAs, which are small non-coding RNAs (20-22nt), have also been linked to 

cancer initiation and progression. Alterations in the expression of miRNAs can occur 

in early to late precursor lesions towards pancreatic cancer and can be caused by 

several different mechanisms. MiRNAs are involved in the negative regulation of 

mRNA translation. More than 130 miRNAs have been documented as deregulated in 

pancreatic cancer.34,38,39 

Telomere length 

Telomeres are DNA-protein complexes that contain repetitive nucleotide sequences 

at the ends of the chromosome arms. Telomeres prevent chromosome fusion and help 

maintain genomic stability. Telomere length is shortened in pancreatic cancer and it 

is detectable even in low-grade PanINs and IPMNs.37 

 

Acinar-to-ductal metaplasia 

Ductal cells may be intuitively considered the cell of origin for ductal 

adenocarcinoma. However, several studies have suggested multiple cell types as 

potential cells of origin in pancreatic adenocarcinoma. Acinar cells usually have a 

strong ability to undergo regeneration and renewal in response to tissue injury, but 

loss of acinar cell identity due to pancreatic injury, may lead to acinar-ductal 

metaplasia.40 Acinar cells expressing KRAS mutation can be reprogrammed into 

ductal cells and subsequently form PanIN.37 Additionally, centroacinar cells, which 

are situated at the terminal ends of the pancreatic ducts, have also been suggested as 

the cell of origin for pancreatic adenocarcinoma. Inactivation of the tumour 

suppressor gene PTEN in centroacinar cells in mice activates the Akt pathway, 

leading to ductal metaplasia and malignant transformation.37 

 

 

1.3. EPIGENETICS 

In the context of molecular biology, Art Riggs et al. (1996) defined epigenetics as 

“The study of mitotically heritable changes in gene expression that occur without 

changes in the DNA sequence”.41 Mitotic heritability is a phenomenon related to cell 

division and causes identical expression of genes in the mother and daughter cells, 

resulting in identical phenotypes of the two cells. The central aspect of epigenetics 

involves chromatin dynamics. Condensed chromatin (heterochromatin) is associated 

with gene silencing and inactivation. An open, lightly packed chromatin structure 

(euchromatin) is associated with gene transcription and activation (Figure 4). 

Epigenetic modifications change the chromatin structure and, consequently the gene 
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expression change. The main epigenetic modifications include histone 

modification/chromatin remodelling and DNA methylation.35,38,42 The epigenetic 

modifications are reversible and therefore potential therapeutic targets in cancer 

treatment.38,42  

Figure 4. The chromatin structure with epigenetic marks 

 

 
 

Histone modification/chromatin remodelling 

Histone proteins (Figure 4) are the foundation of chromatin and modified by various 

posttranslational modifications to alter chromatin structure and the compaction of 

DNA. Acetylation and deacetylation of lysine residues within the histone tails are 

epigenetic mechanisms that regulate gene expression. Acetylation of histone 3 and/or 

histone 4 lysine residues is mediated by histone acetylases (HATs), and results in 

chromatin relaxation, gene transcription and activation. Deacetylation is mediated by 

histone deacetylases (HDACs) and induces a tightly packed chromatin structure and 

gene silencing.35,38,43 HDAC activity is increased in various type of cancers, including 

pancreatic cancer. HDAC inhibitors (HDACIs) have been developed. Certain 

HDACIs induce the death of cultured pancreatic cells, and are promising as 

epigenetic drugs in cancer treatment.42,43  

Methylation of lysine on histone 3 is another epigenetic mechanism regulating gene 

expression. Polycomb complexes and heterochromatin protein 1 both mediate gene 

silencing by methylation of specific lysine residues on histone 3.35,38,43 
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1.3.1 DNA HYPERMETHYLATION  

DNA methylation consists of the addition of a methyl (CH3) residue to a cytosine 

preceding a guanosine, known as a CpG dinucleotide (Figure 5). The methyl group 

is added to the number five carbon of the cytosine pyrimidine ring. The reaction is 

catalysed by a family of enzymes known as DNA methyltransferases 

(DNMTs).34,35,38,43 CpG dinucleotides are located in CpG-rich regions known as CpG 

islands. In the entire human genome, approximately 50-70% of CpG dinucleotides 

are methylated. The majority of methylated CpG dinucleotides are located in 

repetitive intragenomic sequences. In addition, 60% of genes in the human genome 

contain one or more CpG islands in the promoter region. However, only 5% of these 

promoter sequences are methylated under normal conditions.34,38 Methylated DNA 

results in a tightly packed chromatin structure (heterochromatin), and unmethylated 

DNA is associated with lightly packed chromatin (euchromatin) (Figure 4 and Figure 

5). Healthy cells regulate cellular differentiation, X-chromosome inactivation, 

genomic imprinting, intragenomic elements and genome stability by DNA 

methylation.34,43,44 

Aberrant DNA methylation (hypo- and hypermethylation) is a fundamental part of 

carcinogenesis (Figure 5). Global DNA hypomethylation of repetitive sequences is a 

part of early carcinogenesis and causes chromosomal instability when large parts of 

the genome are affected. DNA hypermethylation often occurs in the CpG islands of 

the promoter sequences of genes. Hypermethylation in the promoter regions of 

tumour suppressor genes results in downregulation or silencing of tumour suppressor 

function. Hypomethylation in promoter regions of oncogenes may result in increased 

gene expression.34,38,42 Carcinogenesis and DNA hypermethylation is associated with 

the overexpression of DNMT.34,38 Three types of DNMTs exist. DNMT1 is involved 

in the maintenance of methylation and preserving the methylation pattern from the 

mother cell to the daughter cell. DNMT3A and DNMT3B are involved in de novo 

methylation.22,43 The epigenetic modifications and the mechanism by which promoter 

hypermethylation results in gene silencing are currently not fully understood. 

However, it has been suggested that methylation induces gene repression by 

inhibiting the access of transcription factors to their binding sites and by recruiting 

methyl-CpG-binding proteins and histone-modifying enzymes. DNA methylation, 

like other epigenetic mechanisms, is a reversible process. The DNMT inhibitor 5-

aza-2-deoxycytidine enables demethylation and is approved for the treatment of 

myelodysplastic syndrome.35,38,43 
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Figure 5. Methylation of cytosine 

 

 
 

 

 

1.4.  CELL-FREE DNA 

The presence of cell-free nuclear acids in peripheral blood has been known for 

decades.45,46 Cell-free DNA in the serum of patients with cancer was first described 

in 1977, in a study that showed that patients with cancer had a larger amount of cell-

free DNA (range between 0 and > 1000 ng per ml of blood) than healthy individuals.47 

In 1983, similar results were described for pancreatic disease: Patients with 

pancreatic cancer had significantly higher levels of cell-free DNA compared to 

patients with chronic or acute pancreatitis.48 It was later shown that the amount of 

cell-free DNA varies with cancer type and stage of the disease.49 In recent years, free 

circulating or cell-free DNA have become of major interest as tools for minimal 

invasive diagnostics, i.e., “liquid biopsy”. It is an alternative approach to cancer tissue 

biopsy for analysing genetic and epigenetic aberrations, and several studies have 

shown that circulating tumour DNA fragments contain genetic and epigenetic 

alterations identical to those in the primary tumour.46,49–51  
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The biology of circulating tumour DNA remains unclear.46,52 However, the release of 

nucleic acids into the blood is thought to be related to the apoptosis and necrosis of 

cancer cells or secretion by cancer cells (Figure 6).46,53 Furthermore, it has been 

suggested that a part of the cell-free DNA may origin from circulating tumour cells 

undergoing cell death or acting as micrometastases.46,53 Nuclear acids are cleared 

from the blood by the liver and the kidney.46 The half-life of cell-free DNA is only 

15 minutes to a few hours,46,54,55 suggesting its potential utility for monitoring tumour 

burden to assess response to treatment, minimal residual disease and relapse.  

 

Cell-free tumour-derived DNA has a length of 70 to 200 base pairs (bp),46 with a peak 

of approximately 166 bp.52 A fragment size of 166 bp is the length of the DNA 

wrapped around a nucleosome and its linker and may result from the action of a 

caspase-dependent endonuclease that cleaves the DNA after a core histone.52 The 

irregular distribution of nucleosomes along the genome may contribute to the varying 

fragment lengths. Furthermore, studies have shown that the sizes of the fragments 

vary with type and stage of cancer.52 In addition, circulating tumour-derived DNA in 

plasma is shorter than wild-type cell-free DNA.52 

 

 

Figure 6. The release of cell-free DNA into the blood 

 
 

Tumours are usually heterogenic, with a mixture of different cancer cell clones and 

normal cell types, resulting in the release of both tumour-derived and wild-type cell-

free nuclear acids into the blood during tumour progression.46 One of the major 
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challenges in working with cell-free DNA is differentiating circulating tumour DNA 

from circulating non-tumour DNA.52 This challenge is enhanced by the fact that 

several benign conditions, such as inflammatory disease, acute coronary syndrome, 

trauma and sepsis, also are associated with an increased level of cell-free DNA due 

to the shedding of nucleic acids into the blood by apoptotic and necrotic cells.56  

 

 

1.5. METHODS TO INVESTIGATE DNA METHYLATION 

Various methods are available to determine the methylation status of specific 

genomic sequences.57 There are methods based on restriction endonucleases, whose 

activity is influenced by methylation of the recognition site, and methods that use 

proteins with different affinities for methylated and non-methylated DNA. 

Furthermore, chemical reactions that modify either cytosine or 5-methylcytosine, 

such as  bisulfite treatment, are widely used.58 Bisulfite treatment followed by either 

microarray or sequencing are suitable and commonly used methods for studies of 

unknown candidate genes.57 Digestion-based assays followed by PCR or bisulfite 

treatment followed by PCR and sequencing are suitable methods for studies of known 

candidate genes.57 

  

We performed bisulfite treatment for methylation analysis followed by real-time 

PCR. Bisulfite treatment will be described in detail below.  

 

 

1.5.1. BISULFITE TREATMENT 

Bisulfite treatment is a method frequently used for methylation analysis. Hayatsu et 

al. (1970) examined the addition of bisulfite to uracil and cytosine. When cytosine 

was treated with bisulfite, 5,6-dihydrouracil-6-sulfonate was formed via two steps 

(Figure 7).59 Step 2 in Figure 7 was later shown to be the rate-determining step.60 In 

addition, when uracil was treated with bisulfite, a rapid reaction occurred, forming 

5,6-dihydrouracil-6-sulfonate (Figure 7).59 

Hayatsu et al. also demonstrated that 5-methylcytosine reacts with bisulfite to form 

thymine. The reaction of 5-methylcytosine and bisulfite, however, was much weaker 

than the reaction between cytosine and bisulfite. This discovery by Hayatsu et al. 

formed the basis for the discrimination between cytosine and 5-methylcytosine by 

bisulfite treatment.59 Non-methylated cytosine treated with sodium bisulfite was 

deaminated to form 5,6-dihydrouracil-6-sulfonate, which was converted to uracil on 

treatment with mild alkali (Figure 7). In addition, bisulfite treatment converted 5-

methylcytosine to thymine. However, the reaction was very weak, as the methyl-

substitution at position five of cytosine made the amino group at position four almost 



 

39 

resistant to bisulfite deamination; thus, 5-methylcytosine remained largely intact 

during bisulfite treatment (Figure 7).59 

Figure 7. Bisulfite treatment 

 

Previously there were several disadvantages to methods based on bisulfite 

conversion. First, the method was a time-consuming procedure, requiring several 

hours to achieve complete conversion of cytosine to uracil. Second, the recovery of 

the bisulfite-converted DNA was very poor (approximately 5%).61 Previous methods 

described deamination using a sodium bisulfite solution of 3-5 M with an incubation 

period of 12-16 hours at 50˚C.62 In 2004 Hayatsu and Shiraishi described a rapid 

bisulfite-treatment protocol.58,60 They demonstrated that the rate of deamination was 

approximately proportional to the bisulfite concentration and, furthermore, that 

higher temperature increased the deamination rate without affecting the deamination 

of 5-methyl-2’-deoxycytidine.60
 Treatment with 9 M bisulfite at 90˚C for 10 minutes 

resulted in 99.6% conversion of 2’-deoxycytidine into 2’-deoxyuridine and less than 

10% deamination of methylcytosine, while the other bases were unaffected.60 Later 

the same year, similar results were described for human genomic DNA: A bisulfite 

concentration of 10 M at 90˚C resulted in complete conversion of cytosine to uracil 

within 20 minutes, without significantly influencing 5-methylcytosine.58 In addition, 

the high temperature and concentration of bisulfite did not cause more extensive 

DNA degradation than conventional treatment.58
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Pedersen et al. (2012) published a protocol on high recovery of cell-free methylated 

DNA.63
 The method was based on the rapid bisulfite-treatment protocol published by 

Hayatsu and Shiraishi in 2004.58,60 Previous methods, including the protocol by 

Hayatsu and Shiraishi, were not suitable for analysing sample material containing 

only sparse amounts of DNA due to degradation of DNA and inappropriate 

conversion of 5-methylcytosine as a result of prolonged bisulfite treatment. Using 

standard procedures, a starting material of < 200 ng DNA led to a loss of more than 

95% of the bisulfite-treated DNA during desulfonation and purification.61 Pedersen 

et al. managed to extensively optimize the method, resulting in a recovery of 

approximately 60% of the deaminated DNA. The major improvement of the method 

was achieved by alterations in the purification procedure after deamination. Lysis and 

extraction buffers were replaced by ethanol, leading to great increase in the recovery. 

The optimized method by Pedersen et al. enabled analysis of samples only containing 

sparse amounts of DNA, as in methylation analysis of plasma cell-free DNA.63
 

The extraction and deamination procedures used in the studies presented in this PhD 

thesis are based on the method described by Pedersen et al.63
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The hypothesis:  

DNA promoter hypermethylation occurs during the development and progression of 

pancreatic adenocarcinoma. The alterations are detectable in cell-free DNA and 

usable as blood-based markers for pancreatic adenocarcinoma. 

The aims: 

1. To perform a systematic review of the literature primarily 

concerning DNA-hypermethylation as blood-based markers for 

pancreatic adenocarcinoma (Study I/Paper I) 

 

2. To determine if plasma-derived cell-free DNA promoter 

hypermethylation can be used as a diagnostic marker for 

pancreatic adenocarcinoma (Study II/Paper II) 

 

3. To determine if plasma-derived cell-free DNA promoter 

hypermethylation can be used as markers for pancreatic 

adenocarcinoma staging (Study III/Paper III) 

 

4. To determine if plasma-derived cell-free DNA promoter 

hypermethylation can be used as markers for survival of 

pancreatic adenocarcinoma (Study IV/Paper IV). 

 

 

2. OBJECTIVES 
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3.1. STUDY DESIGN 

Study I was a review of the literature on pancreatic adenocarcinoma and DNA 

hypermethylation analysed in blood samples.  

Study II was conducted as a cross-sectional observational study of patients with 

pancreatic adenocarcinoma and patients with benign disease (patients with acute or 

chronic pancreatitis and patients suspected of but without upper gastrointestinal 

malignancy) at the time of diagnosis, to evaluate the diagnostic value of a selected 

panel of hypermethylated promoter regions in plasma-derived cell-free DNA. 

Study III was conducted as a cross-sectional observational study of patients with 

pancreatic adenocarcinoma at the time of diagnosis, to evaluate a selected panel of 

hypermethylated promoter regions in plasma-derived cell-free DNA as markers for 

pancreatic adenocarcinoma staging. 

Study IV was conducted as an observational cohort study of patients with pancreatic 

adenocarcinoma, to evaluate a selected panel of hypermethylated promoter regions 

in plasma-derived cell-free DNA as markers for survival. 

 

3.2. METHOD STUDY I 

A systematic search of the literature was performed in June 2014 using the PubMed 

and Embase databases. The following MeSH terms/thesaurus terms and free text 

were used: pancreatic disease, pancreatic cancer, pancreatic neoplasm, methylation, 

DNA hypermethylation, CG rich sequence, CpG island, cell-free DNA, blood, 

plasma, serum, fluids and secretions. To identify additional studies within the field, 
the reference lists of all relevant review articles were reviewed.  

 

3.3. METHOD STUDY II, III AND IV 

3.3.1. PATIENTS WITH SUSPECTED OR BIOPSY-VERIFIED 
PANCREATIC ADENOCARCINOMA 

Patients with suspected or biopsy-verified upper gastrointestinal cancer who were 

admitted to the Department of Gastrointestinal Surgery, Aalborg University Hospital, 

between February 2008 and February 2011 were considered for inclusion in a 

3. MATERIALS AND METHODS 
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previous study of upper gastrointestinal malignancy and thromboembolism64. 

Consecutive patients were included prospectively before diagnostic work-up and 

treatment.  

Exclusion criteria were previous or concomitant cancer, known congenital 

thrombophilia, previous venous thromboembolism, connective tissue disease, or 

ongoing anticoagulant therapy.64 

After diagnostic work-up (gastroscopy, EUS, LUS, magnetic resonance imaging 

(MRI) scan, CT scan or PET scan), the subjects were divided into subgroups based 

on the final diagnosis. In study II, the subgroups of patients diagnosed with pancreatic 

adenocarcinoma and patients suspected of but without evidence of upper 

gastrointestinal malignancy were included. For study III and IV, only patients with 

pancreatic adenocarcinoma were included. 

 

Patients diagnosed with pancreatic adenocarcinoma were staged according to TNM 

classification 7th Edition.29 CT and PET scans of the thorax and abdomen were 

performed in the diagnostic work-up of all patients. Histopathological analysis of 

biopsy specimens obtained by either EUS or LUS confirmed the cancer diagnosis. 

The T and N categories were determined by histopathological analysis for patients 

who underwent intended curative surgery. If surgery was not performed, the final 

clinical decision determined the T and N categories. All patients were discussed at a 

multidisciplinary team conference, where consensus was reached on staging and 

treatment.64 

 

WHO performance status (PS) and the American Society of Anesthesiologists (ASA) 

score were registered at the time of inclusion. 

 

3.3.2. PATIENTS WITH CHRONIC PANCREATITIS 

Patients diagnosed with chronic pancreatitis who were hospitalized or had a 

scheduled appointment in the outpatient clinic at Aalborg University Hospital from 

August 2013 to August 2014 were considered for inclusion in study II. 

The diagnosis of chronic pancreatitis was based on the Lüneburg criteria, and chronic 

pancreatitis was defined as a score ≥4.65 

Exclusion criteria were previous cancer history, known immunological connective 

tissue disorder or ongoing anticoagulant therapy. Patients with autoimmune 

pancreatitis were not excluded. 
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3.3.3. PATIENTS WITH ACUTE PANCREATITIS 

Patients diagnosed with acute pancreatitis at the Department of Surgical 

Gastroenterology, Aalborg University Hospital, or Department of General Surgery, 

Hospital of Vendsyssel, from November 2013 until May 2015 were considered for 

inclusion in study II. 

Inclusion criteria were acute pancreatitis defined as upper abdominal pain and 

increased serum amylase or acute pancreatitis verified by ultrasound, CT- or MRI 

scan. Exclusion criteria were previous cancer history. 

 

3.4. BLOOD SAMPLING 

All blood samples were obtained by skilled technicians using venipuncture according 

to the procedure recommended by the European Concerted Action on Thrombosis.  

Routine analysis was performed immediately afterwards. EDTA plasma for 

methylation analysis was centrifuged 20 min. (4000 rpm) at 4 C˚ and stored at -80 C˚ 

within two hours after sampling until further methylation analysis. 

 

3.4.1 PATIENTS WITH PANCREATIC ADENOCARCINOMA AND 
PATIENTS SUSPECTED OF BUT WITHOUT UPPER 
GASTROINTESTINAL MALIGNANCY 

Blood samples were collected on admission before diagnostic work-up and treatment. 

Patients with pancreatic adenocarcinoma had blood samples drawn every 3 months 

for a two-year period. Patients who were offered surgical treatment had additional 

blood samples obtained postoperatively on day 3-5 and day 8-10.    

 

3.4.2 PATIENTS WITH CHRONIC PANCREATITIS 

Routine blood samples and EDTA-plasma for methylation analysis were obtained at 

enrolment and every 6 months for two years. 
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3.4.3 PATIENTS WITH ACUTE PANCREATITIS 

Routine blood sample analysis was performed on a near daily basis according to the 

department’s standard practice. EDTA-plasma for methylation analysis was obtained 

every second day for the first week of hospitalization and once a week during the 

remaining hospital stay, as well as one and six months after discharge. 

 

3.5 ANALYTICAL METHODS 

The purification of cell-free DNA and bisulfite treatment were based on the protocol 

published by Pedersen et al. in 2012 mentioned above.63  

All methylation analyses were performed by a single scientist. The analyses were 

performed non-blinded for study II and blinded for study III and study IV.  

 

3.5.1 EXTRACTION OF CELL-FREE DNA 

Cell-free DNA was extracted using the easyMAGTM platform (NucliSens® 

[bioMérieux SA, France]) according to the manufacturer’s recommended protocol 

for plasma. 

Approximately 500 µl EDTA plasma was used for the extraction of cell-free DNA. 

The purified DNA was eluded in 35 µl elution buffer (NucliSens® [bioMérieux SA, 

France]). Five µl were used for DNA quantitation and the rest was deaminated.63 

 

3.5.2 BISULFITE TREATMENT AND DEAMINATION 

Thirty µl of DNA extract was mixed with 60 µl of deamination solution (10 M 

(NH4) HSO3-NaHSO3) and deaminated for 10 minutes at 90 C˚ and subsequently 

cooled at room temperature. The solution containing the DNA-bisulfite adducts was 

afterwards purified using the easy-MAG platform (NucliSens® [bioMérieux SA, 

France]) according to manufacturer’s instructions, except for changes made to the 

lysis buffer, the extraction buffers A and B, and the elution buffer: 

- 2 ml easyMAG lysis buffer (NucliSens® [bioMérieux SA, 

France]) was replaced by 1 ml 50% ethanol. 
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- The extraction buffer A and B (NucliSens® [bioMérieux SA, 

France]) were both replaced by 33% ethanol in H2O. 

The desulfonation was performed by eluding the DNA in 25 µl 10 mM KOH.63  

 

3.5.3 FIRST-ROUND PCR 

A first round of PCR was necessary in order to amplify the amount of deaminated 

DNA of interest. The first round of PCR was conducted using a mix of outer 

methylation-specific primers (Appendix A: List of primer and probe sequences).  

The reaction buffer for each sample consisted of 25 µl containing PCR stock, 13 µM 

MgCl2, 0.6 mM dNTP, 250 nM of each outer methylation-specific primer, 1.5 U Taq 

polymerase (MyTaqTM [Bioline, Singapore]), and 0.3 U UNG (Invitrogen). The 

reaction mix was distributed to individual 200 µl PCR tubes and incubated for 5 

minutes at 37 ˚C (UNG activity), followed by incubation at 95 ˚C for 5 minutes and 

cooling to room temperature. 

To each PCR tube, containing the first-round reaction mix, 25 µl of purified 

deamination product were added.  

PCR was performed for 20 cycles at 92 ˚C for 15 seconds, 55 ˚C for 30 seconds, 

and 72 ˚C for 30 seconds. 

 

3.5.4 SECOND-ROUND PCR  

Each gene was analyzed separately in the second-round PCR, using inner 

methylation-specific primers and methylation-specific (HEX or FAM) probes for 

each gene in the panel.   

Ten µl of mix containing 0.4 µM inner methylation-specific primers and methylation-

specific probes were distributed in 30 individual wells in a 96-well PCR plate. Ten 

µl of first-round PCR product were added to 710 µl of reaction mix containing PCR 

stock, 250 µM dNTP, 10 µM MgCl2, and 15 U Taq polymerase (MyTaqTM [Bioline, 

Singapore]). Twenty µl of the reaction mix were added to each of the 30 wells 

containing the inner methylations-specific primers and methylation-specific probes. 

Real-time PCR was carried out for 45 cycles at 94 ˚C for 15 seconds, 55 ˚C for 30 

seconds, and 72 ˚C for 30 seconds. 
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3.5.5 GENE PANEL 

A panel of 28 genes was selected for methylation analysis (Appendix B: List of genes 

in the panel). The genes were primarily selected based on the literature review in 

study I. All genes selected for methylation analysis had previously been detected as 

hypermethylated in either plasma- or serum-derived cell-free DNA, pancreatic juice 

or tumour tissue from patients with pancreatic adenocarcinoma. Additional genes 

were selected based on a pilot study performed by our group on colorectal cancer 

(unpublished data), which determined that these genes were of particular interest for 

adenocarcinoma.  

The hemimethylated MESTv1 gene was used as the reference gene in both the first 

and second rounds of PCR. 

 

3.5.6 PRIMER DESIGN – PROBE DESIGN 

The software Beacon Designer® [PREMIER Biosoft International, Palo Alto, CA] 

was used to design primers and probes for the selected genes. Methylation of the 

primers and probes were evaluated by MethPrimer® [The Li Lab, Peking, China].66 

The primers were designed to be rich on CpGs and to be located in the promoter 

region, which was interpreted as the region up-stream of exon one. The aim was to 

design primers resulting in PCR products with a length less than 140-150 bp, as 

cell-free DNA fragments most likely have a length of 160 bp. The methylation-

specific primers and probes were designed and optimized for this present study. 

However, effort was made to design primers for previously tested promoter 

sequences (Appendix A: Primer and probe sequences). 

 

3.5.7 DILUTION SERIES 

To certify the sensitivity, global methylated DNA was used to ensure that each gene 

promoter was detected with comparable sensitivity. A first-round PCR was 

performed with 1, 10, 100, 1000 and 10000 copies of deaminated DNA. Each gene 

was always detected when using 100 and more copies. Furthermore, there was a 90% 

detection rate when using 10 copies. To guarantee specificity, we used unmethylated 

MESTv1, which never was detectable in global methylated DNA. 
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3.6 ETHICAL ISSUES 

The study was approved by the Research Ethics Committee for the North Denmark 

Region (N-2013037) and registered at ClinicalTrails.gov (NCT02079363). The 

database was approved by The Agency of Danish Data Protection (2008-58-0028). 

Oral and written informed consent were obtained from patients with acute and 

chronic pancreatitis. 

Patients with pancreatic adenocarcinoma and patients suspected of but without upper 

gastrointestinal malignancy had all provided oral and written informed consent for 

the previously mentioned study on thromboembolism.64 Blood samples from these 

patients had been stored in a biobank. It was not possible to obtain new informed 

consent from this patient group as more than 90% of the patients with pancreatic 

adenocarcinoma had died. The Research Ethics Committee for the North Denmark 

Region granted exemption for consent regarding the subjects with pancreatic 

adenocarcinoma and control group 1, as knowledge about the methylation profile 

would not have any consequences for these patients.  

  

3.7 STATISTICS 

The studies were characterized as exploratory pilot studies, and thus no power 

calculation was performed prior to the studies. The studies were performed based on 

the sample material available from the biobank. 

Level of cell-free DNA 

The median level (ng/ml) of cell-free DNA for each group was calculated. The 

nonparametric Wilcoxon rank sum test was used to compare the cancer group with 

the benign control groups.  

 

Hypermethylated genes 

Each gene in the gene panel was analysed as a binary variable. A threshold cycle (Ct) 

of 0 was interpreted as a non-methylated gene and Ct > 0 was interpreted as a 

hypermethylated gene.  

The total number of hypermethylated genes was calculated for each patient. The 

mean numbers of hypermethylated genes were compared as numerical data using the 

nonparametric Wilcoxon rank sum test due to statistically significant differences in 

the standard deviation (SD) among the groups. A p-value below 0.05 was considered 

statistically significant unless otherwise stated. Kendall’s rank test was used for 

correlation analysis of the total number of hypermethylated genes and the level of 

cell-free DNA. 
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Validation of dichotomous data  

Dichotomous data was validated by calculating ∆ Ct, which we defined as the 

difference between the Ct value of the hemimethylated reference gene MESTv1 and 

the Ct value of each gene for which Ct > 0. To assess the amount of information lost 

in study II due to dichotomization, histograms of ∆ Ct for the cancer group and 

control group 1 combined with control group 2 were produced (data not shown). A 

similar approach was used for study III; histograms of ∆ Ct for stage I, II and III vs 

IV, and stage I and II vs III and IV were produced (data not shown).  

 

All data were analysed using STATA 14.0 software [StataCorp LP, Texas]. 

 

3.7.1 PAPER II 

Pancreatic adenocarcinoma was the primary outcome of the prediction model in study 

II. 

 

The hypermethylation frequency of each gene and the (exact) 95% confidence 

interval (CI) were calculated for each patient group. The mean number of 

hypermethylated genes in each patient group and the 95% CI were calculated.  

 

Development of the diagnostic prediction model 

1. Screening of each individual variable as a diagnostic marker for pancreatic 

adenocarcinoma: Logistic regression was performed separately for each 

gene in the gene panel and for the covariates smoking status, gender and age 

> 65 years. The p-value and the area under the receiver operating 

characteristic curve (AUC) were calculated. 

 

2. The selection of variables: Variables having a p-value less than 0.2 were 

selected for further analysis. 

 

3. Model selection: Stepwise backwards elimination in logistic regression 

models was performed to select the relevant variables using 0.05 as the 

significance level for removal from the model. For each intermediate model, 

the AUC value was calculated. 

 

4. Determination of the best model: The decision was based on the model 

complexity combined with the model performance according to the AUC.   

 

5. Interactions between the variables: The significance of interactions between 

all pairs of variables was assessed in the final model. Interactions with a p-

value less than 0.01 were considered statistically significant. 
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6. Validation: To account for optimism in the internal validation of 

discriminative model performance (measured by the AUC) leave pair out 

cross validation was used.67 For the calibration performance, Hosmer-

Lemeshow test was performed. 

 

7. Probability score: For each patient, a probability score was calculated. 

 

 

 

3.7.2 PAPER III 

The primary outcome of study III was stage according to AJCC staging of pancreatic 

adenocarcinoma.29 Prediction models to differentiate (stage I, II and III vs IV) and 

(stage I and II vs III and IV) were developed. 

 

Patients were divided into groups according to AJCC29 staging based on the TNM 

classification. The mean number of hypermethylated genes and the (exact) 95% CI 

were calculated for each group according to stage.  

  

 

Development of the prognostic prediction model 

 

1. Screening of each individual variable as a prognostic marker for pancreatic 

adenocarcinoma staging: Logistic regression was performed separately for 

each gene in the gene panel and for age > 65, gender, ASA score and PS. 

The p-value and the AUC were calculated. 

 

2. The selection of variables: Variables having a p-value less than 0.3 were 

selected for further analysis. 

 

3. Model selection: To select the relevant variables stepwise backwards 

elimination in logistic regression models was performed using 0.10 as the 

significance level for removal from the model. For each intermediate model, 

the AUC value was calculated. 

 

4. Determination of the best model: Model performance according to the AUC 

combined with model complexity determined the best model. 

 

5. Interactions between the variables: The significance of interactions between 

all pairs of variables were assessed in the final model. Interactions with a p-

value less than 0.01 were considered statistically significant. 
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6. Validation: Leave pair out cross validation67 was used to account for 

optimism in the internal validation of discriminative model performance 

(measured by the AUC). Hosmer-Lemeshow test was performed for 

calibration performance. 

 
7. Probability score: For each patient a probability score was calculated. 

 

 

3.7.3 PAPER IV 

The primary outcome of study IV was overall survival of pancreatic adenocarcinoma 

patients. Survival time was calculated as the difference between date of inclusion in 

the study (the date the patient was referred to the hospital suspected of or with 

symptoms of upper gastrointestinal malignancy) and the date of censuring/date of 

death. The date of death was available in the medical records. 

Patients were divided into quartiles based on the total number of hypermethylated 

genes and Kaplan-Meier survival curves were used to evaluate the survival according 

to the total number of hypermethylated genes. 

As described in details below, survival analysis was performed using Cox 

proportional hazards regression for the total patient group and for subgroups 

according to cancer stage ((I and II) and (IV)).  

 

Survival prediction model development 

 

1. Screening of each individual variable as a predictor of survival: Regression 

was performed for each gene in the gene panel and for age > 65, gender, 

ASA score and PS. The hazard ratios (HR) and p-values were calculated. 

Variables with a p-value less than 0.3 were considered as potential 

predictors and selected for further analysis 

 

2. Variable selection: Stepwise backwards elimination in Cox regression 

models was performed to select the relevant variables using 0.05 as the 

significance level for removal from the model. For each intermediate model 

Harrell’s overall concordance (c) statistic was calculated.68 

 

3. Determination of the best model: The model with the best performance 

measure according to Harrell’s c was determined as the final model. 
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4. Interactions between the variables: The interaction between all variables 

was checked in the final models. Interactions with a p-value less than 0.01 

were considered statistically significant. 

 

5. Validation: The May-Hosmer goodness of fit test was performed for 

calibration performance. 

Subsequently, the patients were divided into risk groups according to the final 

survival prediction models. Kaplan-Meier survival curves were used to illustrate the 

survival of the risk groups. 
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Patients 

Ninety-five patients with pancreatic adenocarcinoma were included (Figure 8), and 

35 patients suspected of but without upper gastrointestinal malignancy were included 

as a control group containing patients with symptoms mimicking those of pancreatic 

cancer (control group 1) (Figure 8). We subsequently excluded seven patients from 

control group 1 as a review of the medical records revealed that one patient had 

developed duodenal cancer shortly after inclusion and that four patients were 

diagnosed with different types of cancer (pulmonary cancer, pancreatic cancer, 

neuroendocrine tumour and cancer vocalis) more than 1½ years after inclusion. An 

additional two patients were excluded due to a lack of sample material. 

A total of 103 patients with chronic pancreatitis (control group 2) were enrolled in 

the study. In collaboration with the Department of Medical Gastroenterology, 

Aalborg University Hospital, 88 patients who had a scheduled time in the outpatient 

clinic were enrolled. The remaining 15 patients were enrolled during hospitalization 

at either the Department of Medical Gastroenterology or Department of 

Gastrointestinal Surgery, Aalborg University Hospital. Patients in control group 2 

were followed for at least two years. We subsequently excluded five patients due to 

a cancer diagnosis in the follow-up period. Two patients had pulmonary cancer, one 

patient had oral cancer, one patient had corpus uteri cancer, and one patient was 

diagnosed with pancreatic cancer.  Unfortunately, we had to exclude one additional 

patient due analytical failure. 

A total of 62 patients with acute pancreatitis (control group 3) were enrolled in the 

study. Forty-nine patients were enrolled from Aalborg University Hospital, and 13 

patients were enrolled from the Hospital of Vendsyssel. We subsequently excluded 

three patients: one due to a lack of sample material and two due to analytical failure. 

 

Validation of dichotomous data   

No difference was observed in the distribution of ∆ Ct in study II and study III, which 

indicated that no significant amount of information was lost by dichotomizing the 

genes as hypermethylated or non-methylated regardless of the observed Ct value. In 

addition, we stratified the distribution of Ct values (0, 0-25, 25-30, and > 30) for each 

gene within each patient group (data not shown). A slight difference in Ct values was 

observed between the groups, with a tendency towards lower Ct values in the cancer 

group than in the benign control groups. However, the limited study power did not 

allow the evaluation of this difference in the multivariable analyses.  

 

4. SUMMARY OF RESULTS 
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Figure 8. Flow diagram of the inclusion of patients
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4.1. STUDY I/PAPER I 

 

DNA Hypermethylation as a Blood-Based Marker for Pancreatic Cancer: 

A Literature Review 

 
The literature search yielded 720 potential articles. Only full-text studies in English 

addressing pancreatic adenocarcinoma and methylated genes in blood samples were 

included. The subsequent review of the literature is illustrated in Figure 9. Eight 

primary studies of cell-free DNA promoter hypermethylation in plasma or serum 

(Table 3) and two studies of DNA hypermethylation in whole blood/leukocytes were 

identified. When analysing whole blood, it is essential to consider that the majority 

of DNA is derived from leukocytes and that the effects of circulating cancer cells and 

potentially cancer-specific cell-free DNA are minimal.69 

 

Figure 9. Review of the literature 

                   

 

 

 

 

 

 

 

 

 

 
A systematic search of the literature was performed in June 2014. 

A total of 461 potential publications were found in PubMed. 

A total of 501 potential publications were found in Embase. 

After elimination of duplicates, the literature search yielded 720 potential articles.                   

720 
Potential articles 

 22 articles excluded  

(Full article not in English) 

122 articles excluded 

(Only abstracts, full article does 

not exist) 

576 

Potential articles 

 
476 

Potential articles 

 

100 articles excluded (Due to 

irrelevant heading) 

291 articles excluded 

(After reading full abstract) 

175 articles excluded 

(After reading full article) 

185 

Potential articles 

 

10  

Final articles 

 

Including: 

8 primary articles of DNA promoter hypermethylation in plasma or serum 

and  

2 primary articles of DNA hypermethylation in whole blood/leukocytes 

from patients with pancreatic cancer 
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The studies based on plasma or serum-derived cell-free DNA are listed in Table 3. 

The majority of the studies included a limited number of patients, and most of the 

genes were only examined in a single published study, without further validation 

(Table 3 and Table 4). Most of the studies lacked well-defined control groups of 

patients with benign pancreatic disease to enable differentiation of pancreatic cancer-

specific hypermethylations and hypermethylation in response to unspecific 

pancreatic disease. Apart from the studies based on microarray, only methylation 

status of a single gene or a small gene panel was analysed. The hypermethylation 

frequency of each individual gene according to patient group is listed in Table 4. No 

single gene was identified as an individual diagnostic marker, which may suggest that 

a panel of several genes is needed to achieve sufficient performance.  

 

 

Table 3. Studies on pancreatic adenocarcinoma and cell-free DNA methylation in 

plasma/serum 

Reference Genes 

examined 

Method Pancreatic 

cancer 

Chronic 

pancreatitis 

Gallstone 

disease 

Healthy 

controls 

Joo Mi Yi, 

201370  

BNC1 

ADAMTS1 
MOB 42 --- --- 26 

Melson, 

201371  
 Microarray 30 --- --- 30 

Kawasaki, 

201372  

APC 

DCC 

CDKN2A 

P14 

RASSF1A 

MSP 47 --- --- --- 

Park, Ryu, 

201273  
NPTX2 QMSP 104 60 5 --- 

Park, Baek, 

201223  

NPTX2 

UCHL1 

SFRP1 

PENK 

CDKN2A 

RASSF1A 

MSP 16 13 --- 29 

Melnikov, 

200974  
 Microarray 30 30 --- 30 

Liggett, 

200775  
 Microarray 30 30 --- 30 

Jiao Li, 

200776  

PENK 

CDKN2A 
MSP 83 --- --- --- 

MOB: Methylation on beads. 

QMSP: Quantitative methylation-specific PCR. 

MSP: Methylation-specific PCR. 
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Table 4. Frequency of cell-free DNA hypermethylation. 

Gene Pancreatic cancer Chronic 

pancreatitis 

Gallstone 

disease 

Healthy controls 

BNC170 79% (33/42)  - - 11,5% (3/26) 

ADAMTS170 48% (20/42) - - 7,7% (2/26) 

NPTX273 84% (87/104) 33% (20/60) 0% (0/5) - 

NPTX223 37,5% (6/16) 30,8% (4/13) - 0% (0/29) 

PENK23 31,3% (5/16) 15,4% (2/13) - 0% (0/29) 

PENK76 29,3% (22/(83-8)) - - - 

CDKN2A23 25% (4/16) 15,4% (2/13) - 3,4% (1/29) 

CDKN2A72 17% (8/47) - - - 

CDKN2A76 24,6% (14/(83-26)) - - - 

RASSF1A23 6,3% (1/16) 7,7% (1/13) - 0% (0/29) 

RASSF1A72 34% (16/47) - - - 

UCHL123 25% (4/16) 15,4% (2/13) - 0% (0/29) 

SFRP123 31,3% (5/16) 23,1% (3/13) - 0% (0/29) 

APC72 23,4% (11/47) - - - 

DCC72 6,4% (3/47) - - - 

P1472 14,9% (7/47) - - - 

 

 

 

4.2. STUDY II/PAPER II 

Cell-free DNA Promoter Hypermethylation in Plasma as a Diagnostic Marker for 

Pancreatic Adenocarcinoma 

Baseline characteristics of the patients 

Overall, 95 patients with pancreatic adenocarcinoma were included in study II 

(Figure 8). As a benign control group, 27 patients suspected of but without evidence 

of upper gastrointestinal malignancy were included (control group 1) (Figure 8). In 

addition, 97 patients with chronic pancreatitis (control group 2) and 59 patients with 

acute pancreatitis (control group 3) were included. The baseline data for the four 

groups are shown in Table 5. The mean age of the patients with pancreatic 

adenocarcinoma was 66 years, significantly older than patients in the control groups.  
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Table 5. Baseline characteristics of all patients 

  Pancreatic 

cancer 

Control group 

1 

Control group 

2 

Control group 

3   

  N % N % N % N % 

N  95  27  97  59  

Mean age, years (range) 66 (45-85) 60 (37-82) 57 (22-87) 56 (22-87) 

Sex, male (%)   57 60 12 44 67 69 32 54 

Smoking status  currently  30 32 11 41 64 66 23 39 

 previous 33 35 7 26 24 25 11 19 

 never 30 32 9 33 9 9 23 39 

 unknown status 2 2 0 0 0 0 2 3 

Stage 
I (IA and IB) 11 12       

II (IIA and IIB) 29 30       

 III 13 14       

 IV 42 44       

Tumour 

location  

Caput 61 64       

Corpus 6 6       

 Cauda 12 13       

 Unknown 16 17       

Control group 1: Patients suspected of but without upper gastrointestinal malignancy. 

Control group 2: Patients with chronic pancreatitis. 

Control group 3: Patients with acute pancreatitis. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.  

 

 

Level of cell-free DNA 

The median level of cell-free DNA was significantly higher in the cancer group 

(11.60 ng/ml (range: 0.60-957.17)) compared with control group 1 (6.17 ng/ml 

(range: 1.06-48.43)), control group 2 (2.18 ng/ml (range: 0.11-115.44)) and control 

group 3 (4.09 ng/ml (range: 0.65-62.42)). Furthermore, the correlation between the 

number of hypermethylated genes and the level of cell-free DNA was statistically 

significant (p-value < 0.0001), with a Kendall’s τ of 0.34. 

 

Hypermethylated genes 

The hypermethylation frequency of each gene in each patient group is presented in 

Appendix C. The mean number of hypermethylated genes in the whole gene panel 

(28 genes) was significantly higher for cancer patients (8.41 (95% CI: 7.62-9.20) 

compared with the three benign control groups (Table 6). 
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Table 6. Mean number of hypermethylated genes in each patient group in study II 

Group N 

Mean 

number of 

methylated 

genes 95% CI P-value 

Pancreatic cancer 95 8.41 (7.62-9.20)  

Control group 1: Suspected of but without cancer 27 4.89 (4.07-5.71)  

Control group 2: Chronic pancreatitis 97 4.34 (3.85-4.83)  

Control group 3: Acute pancreatitis 59 5.34 (4.77-5.91)  

Control group 1+2 124 4.46 (4.04-4.88) <0.0001* 

Control group 1+2+3 183 4.74 (4.40-5.08) <0.0001** 

The means were compared as numerical data with the nonparametric Wilcoxon rank sum test. P-values less than 0.05 

were considered statistically significant. 

CI: Confidence interval. 

* Significant difference between patients with pancreatic cancer and control group 1+2.   

** Significant difference between patients with pancreatic cancer and control group 1+2+3.   

 

 

Development of the diagnostic prediction model  

To develop a diagnostic prediction model, we chose to combine the control group of 

patients suspected of but without upper gastrointestinal malignancy and the control 

group of patients with chronic pancreatitis because these patients were likely to have 

had symptoms or clinical presentations resembling those of pancreatic 

adenocarcinoma. Therefore, we considered the development of a biomarker to 

differentiate these patients from patients with pancreatic adenocarcinoma of utmost 

clinical relevance. Patients with acute pancreatitis were not included in this part of 

the analysis because a clinical presentation of severe acute inflammation is rarely 

observed in pancreatic cancer.  

The hypermethylation frequencies of seventeen genes (APC, ALX4,  BMP3, BNC1, 

ESR1, HIC1, MESTv2, NPTX2, RARB, RASSF1A, SFRP1, SFRP2, SEPT9v2,  SST, 

TFPI2, TAC1, and WNT5A) (Table 7 and Appendix C) were significantly higher in 

the cancer group compared with the combined control group 1+2. There was no 

significant difference in gender, and thus this variable was excluded from the 

subsequent analysis. In our study, smoking was a protective factor for cancer, which 

strongly contradicts with the view of smoking as a well-known risk factor for 

pancreatic cancer, as previously mentioned. This finding likely reflects our control 

group, which mainly included patients with chronic pancreatitis, who have a 

substantially greater use of tobacco compared with the general population.77,78 We 

chose to exclude smoking from the model because it is a risk factor for cancer. There 

was a significant difference in age between the cancer group and the control group. 

Age was incorporated as a covariate in the diagnostic prediction model because the 

incidence of pancreatic cancer increases with age and hypermethylation of certain 

genes can be an age-related phenomenon.79 
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Table 7. Variables in the study II 

 OR 95% CI P-value AUC 

ALX4 4.29 (1.62-11.35) 0.0034 0.57 

APC 4.16 (2.21-7.84) 9.67 x 10-6 0.65 

BMP3 7.37 (3.20-16.95) 2.64 x 10-6 0.64 

BNC1 9.32 (3.90-22.25) 5.02 x 10-7 0.65 

BRCA1 1.21 (0.49-2.98) 0.6804 0.51 

CDKN2A 2.27 (0.66-11.17) 0.1652 0.52 

CDKN2B 2.42 (0.91-6.40) 0.0757 0.53 

CHFR 0.43 (0.04-4.19) 0.4668 0.51 

ESR1 2.23 (1.22-4.07) 0.0095 0.58 

EYA2 2.30 (0.91-5.80) 0.0778 0.54 

GSTP1 4.01 (0.41-39.18) 0.2323 0.51 

HIC1 3.69 (1.37-9.91) 0.0097 0.55 

MESTv2 2.99 (1.63-5.49) 0.0004 0.62 

MGMT 2.24 (0.52-9.62) 0.2778 0.51 

MLH1 1.48 (0.66-3.31) 0.3448 0.52 

NPTX2 3.37 (1.88-6.02) 4.34 x 10-5 0.64 

NEUROG1 1.50 (0.59-3.86) 0.3969 0.52 

RARB 1.81 (1.04-3.15) 0.0348 0.57 

RASSF1A 5.28 (2.69-10.39) 1.4 x 10-6 0.65 

SFRP1 3.30 (1.81-6.03) 0.0001 0.62 

SFRP2 2.00 (1.12-3.58) 0.0197 0.57 

SEPT9v2 6.97 (1.94-25.03) 0.0029 0.56 

SST 3.04 (1.75-5.30) 8.69 x 10-5 0.64 

TFPI2 12.16 (3.51-42.04) 7.96 x 10-5 0.60 

TAC1 3.25 (1.86-5.69) 3.63 x 10-5 0.64 

VIM - - * - 

WNT5A 11.31 (1.39-92.08) 0.0234 0.54 

PENK - - * - 

sex 0.85 (0.49-1.48) 0.5750 0.52 

age60 3.88 (2.17-6.92) 4.58 x 10-6 0.66 

age65 4.14 (2.33-7.33) 1.14 x 10-6 0.67 

age70 4.05 (2.04-8.02) 6.06 x 10-5 0.62 

All variables were analyzed by simple logistic regression comparing the pancreatic cancer group and control groups 

1+2. 

Bold marks the genes, where there is significant difference (p < 0.05) in hypermethylation frequency between the cancer 

group and control groups 1+2. 

*VIM and PENK could not be evaluated by logistic regression as none of the patients in the control group had 

hypermethylation of the two genes, however chi-square test found significant difference between the cancer group and 

the control group 1+2. Despite that, VIM and PENK were excluded from the following analysis because only few cancer 

patients had VIM or PENK hypermethylation. 

Control group 1: Patients suspected of but without upper gastrointestinal malignancy. 

Control group 2: Patients with chronic pancreatitis. 

OR: Odds ratio. 

CI: Confidence interval. 

AUC: Area under the receiver operating characteristic curve. 
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The hypermethylation of twenty genes was determined as potential predictors and 

included, together with the covariate age > 65, in multivariable logistic regression 

analysis. Stepwise backwards elimination was performed (Figure 10), and a 

diagnostic prediction model was developed containing the eight most significant 

genes (Model 13: BMP3, RASSF1A, BNC1, MESTv2, TFPI2, APC, SFRP1, and 

SFRP2) and the covariate age > 65 years. The model had an AUC of 0.86 (95% CI: 

0.81-0.91) (Figure 10 and Figure 11a). Model 1, containing the twenty most 

significant genes, had the most superior AUC of 0.87.  However, model 13 was 

determined as the final model because it contained a limited number of variables and 

because leaving out the 12 least significant genes only resulted in a minimal loss of 

predictive power. The mean probability of having pancreatic adenocarcinoma was 

0.67 (95% CI: 0.61-0.72) for the cancer group and 0.26 (95% CI: 0.22-0.29) for 

control groups 1+2. With a probability cut-point of 0.50, the diagnostic prediction 

model 13 had a sensitivity of 76% and a specificity of 83%. In addition, the 

performance of the model was independent of cancer location. The model contained 

no significant variable interactions, was well calibrated and had an estimated 

optimism in AUC of 0.03. The model was developed based on the total group of 

patients with pancreatic adenocarcinoma representing all cancer stages. To ensure 

performance for early-stage disease, the model was tested on the subgroup of patients 

with stage I and II tumours. Similar high performance was observed with an AUC of 

0.86 (95% CI: 0.79-0.93) (Figure 11b), (probability cut-point of 0.50: sensitivity 73% 

and specificity 83%), and an optimism in AUC of 0.06.  

 

To exclude pancreatic cancer in the control group, a three-phase CT scan was 

performed in patients (n = 6) with a probability score of 0.6 or above. Unfortunately, 

in one patient with chronic pancreatitis (probability score of 0.9), the CT scan was 

suspicious of malignancy in the head of the pancreas with partial constriction of the 

superior mesenteric vein. In addition, ERCP was performed with fine needle biopsy, 

revealing IPMN in the head of pancreas invading the common bile duct. Although 

the histological evaluation failed to detect malignancy, the disease was considered 

malignant due to the invasive nature. The patient was evaluated as ineligible for 

surgery due to poor general health status and died a couple of months later.   
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Figure 10. Diagnostic prediction model: Stepwise backwards elimination 

 

 
Stepwise backwards elimination of genes with the corresponding p-value and the area under the receiver operating 

characteristic curve (AUC). Model 13 was determined as the final model. 

 

Figure 11. Performance of diagnostic prediction Model 13 

 

a)                                                   b) 

                
Model 13: BMP3, RASSF1A, BNC1, MESTv2, TFPI2, APC, SFRP1, SFRP2 and the covariate age > 65 years. 

a) Model performance on the total patients group. 

AUC=0.86 (95% CI: 0.81-0.91) (probability cut-point of 0.50: sensitivity of 76% and a specificity of 83%). 

b) Model performance for the subgroup of patients with stage I and II disease. 

AUC = 0.86 (95% CI: 0.79-0.93) (probability cut-point of 0.50: sensitivity 73% and specificity 83%). 

AUC: Area under the receiver operating characteristic curve. 

CI: Confidence interval. 
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4.3. STUDY III/PAPER III 

DNA Promoter Hypermethylation in Plasma-Derived Cell-Free DNA as a 

Prognostic Marker for of Pancreatic Adenocarcinoma Staging. 

Baseline characteristics of the patients 

In study III, 95 patients with pancreatic adenocarcinoma were included. The baseline 

characteristics of the patients are listed in Table 5 and Table 8.  

Table 8. Baseline characteristics of patients with pancreatic adenocarcinoma (N = 95)  

Stage I (Ia+Ib) II (IIa+IIb) III IV 

N 11 29 13 42 

Age (mean) (SD) 70 (10.81) 67 (8.21) 65 (8.25) 65 (9.21) 

Sex (men:women) 6:5 19:10 10:3 22:20 

ASA 1  4 36% 14 48% 8 62% 12 29% 

ASA 2  4 36% 11 38% 3 23% 18 43% 

ASA 3  3 27% 4 14% 2 15% 12 29% 

ASA: American Society of Anesthesiologists score. 

SD: Standard deviation. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.  

 

Level of cell-free DNA according to cancer stage 

There were no significant differences in the median level of cell-free DNA among 

the different stages of the disease.  

 

Hypermethylated genes 

The hypermethylation frequencies of each gene according to cancer stage are listed 

in Appendix D. The mean number of methylated genes was significantly higher for 

patients with stage IV pancreatic adenocarcinoma compared with stage I, II and III 

disease (Table 9). 

Table 9.  Mean number of hypermethylated genes according to stage 

Stage N Mean 95% CI P-value 

I (IA and IB) 11 7.09 (5.52-8.67)  

II (IIA and IIB) 29 7.00 (5.93-8.07)  

III 13 6.77 (5.08-8.46)  

IV 42 10.24 (8.88-11.60)  

I and II 40 7.03 (6.17-7.88)  

III and IV 55 9.42 (8.26-10.58) 0,0078* 

I, II and III 53 6.96 (6.23-7.70) 0,0002** 

CI: Confidence interval. 

*Significant difference between stages I and II vs III and IV. 

**Significant difference between stages I, II and III vs IV. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.  
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Stage I, II and III vs stage IV 

We compared patients with stage I, II and III pancreatic adenocarcinoma with 

patients with stage IV disease and found that the hypermethylation frequency of 

seven genes (ALX4, BNC1, HIC1, SEPT9v2, SST, TFPI2, and TAC1) was 

significantly higher in stage IV disease compared with stage I, II and III disease.  

A prognostic prediction model was developed to differentiate patients diagnosed with 

pancreatic adenocarcinoma with distant metastases (stage IV) from patients without 

metastases (stage I, II and III). No significant differences in gender, age, ASA score 

or PS were observed between the groups, and thus these variables were not analysed 

further. Seventeen of the 28 examined genes were included in the multivariable 

logistic regression analysis because these variables had individual p-values of less 

than 0.3. Stepwise backwards elimination was performed (Figure 12). Model 10 

(SEPT9v2, SST, ALX4, CDKN2B, HIC1, MLH1, NEUROG1, and BNC1) was 

determined as the final model with an AUC of 0.87 (95% CI: 0.80-0.95) (Figure 12 

and Figure 13). With a probability cut-point of 0.55, prognostic prediction model 10 

had a sensitivity of 74% and a specificity of 87% for stage IV disease. The mean 

probability score for patients with stage I, II and III was 0.26 (95% CI: 0.20-0.31), 

compared with a mean probability score of 0.67 (95% CI: 0.59-0.76) for patients with 

stage IV disease. Model 10 contained no significant interactions between variables, 

was well calibrated and had an estimated optimism in AUC of 0.05.  

 

Figure 12. Prognostic prediction model stage I, II and III vs IV: 

Stepwise backwards elimination 

 

 
Stepwise backwards elimination of genes with the corresponding p-value and the area under the receiver operating 

characteristic curve (AUC). Model 10 was determined as the final model to differentiate stage I, II and III vs stage IV 

disease. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.  
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Figure 13. Performance of prognostic prediction Model 10:  

Stage I, II and III vs IV 

 

 
Model 10: SEPT9v2, SST, ALX4, CDKN2B, HIC1, MLH1, NEUROG1, and BNC1.  

AUC: Area under the receiver operating characteristic curve. 

AUC = 0.87 (95% CI: 0.80-0.95) (probability score cut-point of 0.55: sensitivity 74% and specificity 87%). 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.  

 

 

Stage I and II vs stage III and IV 

We also compared patients with pancreatic adenocarcinoma stage I and II to patients 

with stage III and IV disease, to determine if the gene panel could distinguish 

potential resectable disease from non-resectable disease. The hypermethylation 

frequency of four genes (ALX4, BNC1, SEPT9v2, and SST) was significantly higher 

(p-value < 0.05) in patients with stage III and IV pancreatic adenocarcinoma 

compared with patients with stage I and II pancreatic adenocarcinoma. A prognostic 

prediction model to differentiate potentially resectable disease (stage I or II) from 

non-resectable disease (stage III or IV) was developed. No statistically significant 

differences in the covariates of gender, age, ASA score and PS were observed 

between the groups. Genes with a p-value < 0.3 in the univariate screening (14 of 28 

examined genes) were included in the multivariable logistic regression analysis using 

stepwise backwards elimination (Figure 14). Model 7 (MLH1, SEPT9v2, BNC1, 

ALX4, CDKN2B, NEUROG1, WNT5A, and TFPI2) was determined as the final 

model, with an AUC of 0.82 (95% CI: 0.74-0.90) (sensitivity of 73% and specificity 

of 80% with a probability cut-point of 0.66) (Figure 14 and Figure 15). There were 

no significant variable interactions in the model. The model was well calibrated and 

had an estimated optimism in AUC of 0.06. 
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Figure 14. Prognostic prediction model stage I and II vs III and IV:  

Stepwise backwards elimination 

 

 
Stepwise backwards elimination of genes with the corresponding p-value and the area under the receiver operating 

characteristic curve (AUC). Model 7 was determined as the final model to differentiate stage I and II vs stage III and IV 

disease. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.  

 

 

Figure 15. Performance of prognostic prediction Model 7:  

Stage I and II vs III and IV 

 

 
Model 7: MLH1, SEPT9v2, BNC1, ALX4, CDKN2B, NEUROG1, WNT5A, and TFPI2. 

AUC: Area under the receiver operating characteristic curve. 

AUC = 0.82 (95% CI: 0.74-0.90) (probability cut-point of 0.66: sensitivity 73% and specificity 80%). 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification. 
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4.4. STUDY IV/PAPER IV 

Cell-Free DNA Promoter Hypermethylation in Plasma as a Predictive Marker for 

Survival of Patients with Pancreatic Adenocarcinoma 

The baseline characteristics of the patients in study IV were identical to those of the 

patients in study III and are listed in Table 5 and Table 8. 

 

Survival analyses according to the total number of hypermethylated genes  

Patients were divided into quartiles based on the total number of hypermethylated 

genes. There were no significant differences in HR among the 1st, 2nd and 3rd quartiles. 

However, the 4th quartile had a HR of 2.74 (95% CI: 1.51-4.98), which was highly 

significantly different (p-value < 0.001) from the 1st quartile (Figure 16a). We 

combined the 1st, 2nd and 3rd quartiles (1-10 methylated genes) and compared them to 

the 4th quartile (more than 10 methylated genes) (Figure 16b). We adjusted the 

analysis for cancer stage and age and found a significant HR of 2.03 (95% CI: 1.15-

3.57) for patients with more than 10 hypermethylated genes. Six-month, one-year and 

two-year survival were superior for patients with 0-10 hypermethylated genes (73% 

(95% CI: 61%-82%), 56% (95% CI: 43%-66%), and 28% (95% CI: 19%-39%), 

respectively) compared with patients with more than 10 hypermethylated genes (28% 

(95% CI: 12%-46%), 12% (95% CI: 3%-28%) and 4% (95% CI: 0.3%-17), 

respectively) (Figure 16b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CELL-FREE DNA PROMOTER HYPERMETHYLATION AS BLOOD-BASED MARKERS FOR PANCREATIC 
ADENOCARCINOMA. 

70
 

Figure 16. Survival according to the total number of hypermethylated genes 

 

a) 

 

 
 

b) 

 

 
 

 

For each patient the total number of hypermethylated genes was calculated. Based on that calculation, patients were 

divided into quartiles. The Kaplan-Meier curves illustrate the survival estimates according to the total number of 

hypermethylated genes in plasma-derived cell-free DNA.  

a) Light blue line: 1st quartile (1-5 hypermethylated genes). 

Dark blue line: 2nd quartile (6-7 hypermethylated genes). 

Pink line: 3rd quartile (8-10 hypermethylated genes). 

Red line: 4th quartile (>10 hypermethylated genes). 

There were no significant differences in the HR among the 1st, 2nd and 3rd quartiles. However, the 4th quartile had a HR of 

2.78 (95% CI: 1.53-5.05). 

b) Light blue line: 1st quartile, 2nd quartile and 3rd quartile (1-10 hypermethylated genes) were combined as survival 

estimates were identical for the first three quartiles. 

Red line: 4th quartile (>10 hypermethylated genes) 

The 4th quartile had a HR of 2.88 (95% CI: 1.78-4.65) compared with the combined group of the 1st, 2nd and 3rd quartiles. 

HR: Hazard ratio. 

CI: Confidence interval. 
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Development of prediction models for survival of pancreatic adenocarcinoma 

 

The total group of patients with pancreatic adenocarcinoma 

We first analysed the total group of cancer patients (n = 95) without considering the 

subsequent stage classification. The purpose was to develop a prediction model for 

the survival of patients diagnosed with pancreatic adenocarcinoma, for use prior to 

staging. Eight genes (BNC1, GSTP1, MLH1, SFRP1, SEPT9v2, SST, TFPI2, and 

WNT5A) yielded a statistically significant HR by univariate screening (Appendix E). 

Furthermore, patients with an ASA score of three compared with an ASA score of 

one had a HR of 2.63 (95% CI: 1.49-4.63) and PS > 0 compared with PS = 0 resulted 

in a HR of 2.49 (95% CI: 1.61-3.84). The HRs for age and gender were not 

significant.     

Fourteen genes were determined as potential predictors. These variables were used 

to develop a prediction model for survival together with an ASA score of three and 

PS > 0. The model including ASA score of three, GSTP1, SFRP2, BNC1, SFRP1 and 

TFPI2 was determined as the final model with the best performance (Harrell’s c of 

0.73) (Table 10). PS was eliminated in the stepwise selection. SFRP2 

hypermethylation was a protective factor, rendering an individual HR of 0.45 (95% 

CI: 0.27-0.73). There were no significant interactions between variables in the model, 

and the model was well calibrated (p-value = 0.9956). Patients were divided into four 

risk groups based on the prediction model. Figure 17 illustrates the survival curves 

of the groups and the gene combination together with the corresponding HRs.  

   

Table 10. Survival prediction model for the total patient group 

 
Model ASA = 3 BNC1 GSTP1 SFRP1 SFRP2 TFPI2 

HR 3.34 2.00 9.55 1.94 0.45 2.52 

95% CI (1.91-5.84) (1.26-3.18) (2.70-33.82) (1.24-3.02) (0.27-0.73) (1.42-4.47) 

Harrel’s c = 0.73 

HR: Hazard ratio. 

CI: Confidence interval. 

ASA: American Society of Anesthesiologists score. 
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Figure 17. Survival analysis for the total group of patients with pancreatic 

adenocarcinoma prior to staging 

a) 

 

 b) 

 

a) Survival prediction model for the total group of patients prior to stage classification, developed by multivariable Cox 

regression analysis using stepwise backwards elimination. 

The patients in risk group 2, risk group 3 and risk group 4 had a HR of 2.65 (95% CI: 1.24-5.66), 4.34 (95% CI: 1.98-

9.51) and 21.19 (95% CI: 8.61-52.15), respectively, compared with patients in risk group 1. 

b) The gene combinations together with the corresponding HRs are illustrated for the survival prediction model (ASA = 

3, BNC1, GSTP1, TFPI2, SFRP1, and SFRP2). 

HR: Hazard ratio. CI: Confidence interval. ASA: American Society of Anesthesiologists score. 

Light blue: Risk group 1. 

Dark blue: Risk group 2. 

Pink: Risk group 3. 

Red: Risk group 4. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.  
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Subgroup analysis for stage I and II pancreatic adenocarcinoma (n = 40) 

First, we analysed patients with potentially resectable pancreatic adenocarcinoma 

(stage I and II). The aim was to develop a model to predict survival of this specific 

subgroup of patients at time of diagnosis and prior to any treatment. In the univariate 

Cox regression analysis, we found that hypermethylation of two genes (SFRP2 and 

CDKN2A) (Appendix E) was significantly associated with overall survival. The 

covariates gender and age were not significantly associated with overall survival and 

were therefore excluded from further analysis. An ASA score equal to three 

compared to an ASA score of one yielded a HR of 4.85 (95% CI: 1.85-12.76). 

Furthermore, PS > 0 was associated with an increased HR of 3.39 (95% CI: 1.64-

7.02) compared with PS = 0. However, surgeons routinely use the ASA score in the 

evaluation of patient operability. We therefore chose to exclude PS from further 

analysis and solely include the ASA score in the multivariable analysis regarding 

stage I and II disease. Based on the univariate screening, hypermethylation of nine 

genes were potential predictors for survival. These genes, together with an ASA score 

of three were evaluated by multivariable Cox regression analysis. The final prediction 

model for survival of stage I and stage II pancreatic adenocarcinoma included an 

ASA score of three and hypermethylation of SFRP2 and MESTv2 (Harrell’s c of 0.75) 

(Table 11). There were no significant interactions between any of the variables in the 

model. The variable with the greatest impact on survival in this subgroup was an ASA 

score of three (Table 11). Once again, SFRP2 hypermethylation proved to be a 

protective factor with a HR of 0.18 (95% CI: 0.07-0.45), whereas MESTv2 

hypermethylation had a negative impact on survival (HR of 2.39 (95% CI: 0.97-

5.94)). Based on the survival prediction model, patients were divided into four risk 

groups. Figure 18 illustrates the survival of the risk groups according to the final 

model. Patients in risk group 1 had two-year survival of 80% (95% CI: 50%-93%) 

and three-year survival of 47% (95% CI: 21%-69%) compared with patients in risk 

group 2 with two year survival of only 22% (95% CI: 7%-43%) no patients alive after 

three years (Figure 18). Three patients were alive without residual disease or 

recurrence after five years of follow-up. All three patients had an ASA score of less 

than three and SFRP2 hypermethylation at the time of diagnosis. An ASA score of 

three (group 3 and 4) resulted in poor survival independent of hypermethylation 

status (Figure 18). 

 

 

Table 11. Survival prediction model for stage I and stage II pancreatic adenocarcinoma  
 
Model ASA = 3 MESTv2 SFRP2 

HR 14.13 2.39 0.18 

95% CI (4.46-43.81) (0.97-5.94) (0.07-0.45) 

Harrel’s c = 0.75 

HR: Hazard ratio. 

CI: Confidence interval. 

ASA: American Society of Anesthesiologists score. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification.  
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Figure 18. Survival analysis for stage I and II pancreatic adenocarcinoma 

 

 

a) 

 
 

b) 

 

 
 

 
a) Survival prediction model for the stage I and II patients, developed by multivariable Cox regression analysis using 

stepwise backwards elimination. 

The patients in risk group 2, risk group 3 and risk group 4 had a HR of 4.83 (95% CI: 2.01-11.57), 9.12 (95% CI: 2.18-

38.25) and 70.90 (95% CI: 12.63-397.96), respectively, compared with patients in risk group 1. 

b) The gene combinations together with the corresponding HRs are illustrated for the survival prediction model (ASA = 

3, MESTv2, and SFRP2). 

HR: Hazard ratio. CI: Confidence interval. ASA: American Society of Anesthesiologists score. 

Light blue: Risk group 1. 

Dark blue: Risk group 2. 

Pink: Risk group 3. 

Red: Risk group 4. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification. 
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Subgroup analysis for stage IV pancreatic adenocarcinoma (n = 42) 

The purpose of the subgroup analysis of stage IV disease was to develop a prediction 

model for the survival of pancreatic adenocarcinoma patients with distant metastases. 

We used an approach similar to that described above for stage I and stage II disease. 

In the univariate screening three genes (BMP3, SFRP1 and TFPI2) yielded a 

significant HR (Appendix E). The HRs for age, gender and ASA score were 

insignificant and therefore excluded from the multivariable analysis. PS is routinely 

used by oncologist in the determination of treatment for stage IV patients. However, 

PS was excluded from further analysis because it was not significantly associated 

with survival of stage IV disease (p-value = 0.074). A prediction model was 

developed based on hypermethylation of eleven potential predictor genes. The 

variables BMP3, MGMT, NPTX2, and SFRP1 were included in the final model, 

which reached a Harrell’s c of 0.71 (Table 12) and was well calibrated (p-value = 

0.5494). NPTX2 hypermethylation was the only variable with a HR of less than one 

(Table 12). Based on the prediction model for stage IV pancreatic adenocarcinoma, 

patients were divided into two risk groups (Figure 19). Patients in risk group 2 had a 

HR of 5.23 (95% CI: 2.13-12.82) compared with patients in risk group 1. The 6-

month and one-year survival (64% (95% CI: 38%-82%) and 59% (95% CI: 33%-

78%)) of patients in risk group 1 were significantly superior to those of patients in 

risk group 2, with 6-month survival of 14% (95% CI: 3%-30%) and no patients in 

risk group 2 alive after one year (Figure 19). 

 

 

Table 12. Survival prediction model for stage IV pancreatic adenocarcinoma 
 
Model BMP3 MGMT NPTX2 SFRP1 

HR 2.65 2.11 0.45 2.77 

95% CI (1.11-6.29) (0.57-7.87) (0.17-1.18) (1.15-6.67) 

Harrel’s c = 0.71 

HR: Hazard ratio. 

CI: Confidence interval. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification. 
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Figure 19. Survival analysis for stage IV pancreatic adenocarcinoma 

 

 

a) 

 
 

b) 

 

 
 

 
a) Survival prediction model for the stage IV patients, developed by multivariable Cox regression analysis using stepwise 

backwards elimination. 

The patients in risk group 2 had a HR of 5.23 (95% CI: 2.13-12.82) compared with patients in risk group 1. 

b) The gene combinations together with the corresponding HRs are illustrated for the survival prediction model (BMP3, 

MGMT, NPTX2, and SFRP1). 

HR: Hazard ratio.  

CI: Confidence interval. 

Light blue: Risk group 1. 

Red: Risk group 2. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification. 
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5.1. LIMITATIONS OF THE STUDIES 

General limitations of the studies 

In addition to the literature review, we conducted three studies to evaluate 

hypermethylation of plasma-derived cell-free DNA as blood-based diagnostic and 

prognostic markers for pancreatic adenocarcinoma. Our studies were all exploratory 

and analysed the gene panel in a single group of patients with pancreatic 

adenocarcinoma or benign disease. The evaluation of each prediction model in an 

independent cohort is considered the gold standard for biomarker validation to 

substantiate the results because prediction models built on a single data set can 

produce an overestimation of test performance due to overfitting. It was, however, 

impossible for us to reach this standard during the development phase, as pancreatic 

adenocarcinoma is a relatively rare disease. 

 

The pancreatic adenocarcinoma patients and the patients suspected of but without 

upper gastrointestinal malignancy were primarily included as part of a study of upper 

gastrointestinal malignancy and thromboembolism, which may have caused selection 

bias due to the exclusion criteria of the primary study.  

 

In addition, only a limited amount of sample material was available from patients 

with pancreatic adenocarcinoma, which made it impossible to conduct replicate 

analysis. Approximately 500 μl of EDTA plasma was used for DNA extraction. 

Although we used an optimized method with a high recovery of cell-free methylated 

DNA,63 more sample material would most likely lead to improved sensitivity. 

 

We performed bisulfite treatment for methylation analysis followed by first- and 

second-round methylation-specific PCR. This method is quantitative when using 

hemimethylated MESTv1 as a reference gene.63 However, due to limited power, the 

effect of this difference could not be evaluated in multivariable analyses. 

Consequently, we analysed hypermethylation as a binary variable, which resulted in 

a loss of quantitative information. 

Furthermore, the method we used for methylation analysis did not provide 

information regarding the numbers or proportion of CpGs methylated in the 

investigated part of the promoter sequence. Detailed information about CpG 

methylation could have been obtained by DNA sequencing of the PCR products.  

Inter-study comparison is difficult when studying DNA hypermethylation because 

several methods have been described for methylation analysis. In addition, the use of 

different primer sequences for the same gene may lead to conflicting results, which 

is a general limitation of studies within this field.57  

5. DISCUSSION 
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At the end of the analyses, we discovered that UNG (Invitrogen) tended to decrease 

the sensitivity compared with COD UNG (ArcticZymes). We determined that heating 

did not completely inactivate UNG (Invitrogen), which potentially could result in 

DNA degradation, whereas COD UNG (ArcticZymes) was completely thermolabile. 

We analysed all samples using UNG (Invitrogen), as it was impossible to repeat all 

analyses using COD UNG (ArcticZymes) due to the lack of sample material. 

Limitations of study II 

The methylation analyses in study II were performed non-blinded. Furthermore, 

patients with pancreatic adenocarcinoma and the patients in the control groups were 

not matched according to age. This can be a potential disadvantage because 

epigenetic changes are a part of ageing.79 To address this problem and to avoid 

variable selection driven by possible differences in general methylation status 

between patients of different ages, we incorporated age as a covariate in the 

diagnostic prediction model.  

 

It would have been relevant to compare the performance of the diagnostic prediction 

model with that of CA-19-9. Unfortunately, CA-19-9 was only available for one third 

of the patients, since this test was first implemented in our department during the 

study period. 

 

Patient compliance was a major challenge in the subgroup of patients with alcoholic 

chronic pancreatitis. Many patients failed to attend the primary visit or follow-up 

appointments, despite several remainders both by phone and mail. This may have 

caused an underrepresentation of patients with current alcohol abuse in the control 

group. However, our analysis revealed no difference in methylation profiles between 

patients with chronic alcoholic pancreatitis and patients with chronic pancreatitis of 

another aetiology.  

 

Limitations of study III and IV 

In study III and IV, some of the subgroups contained a limited number of patients, 

which may be responsible for the lack of differences in methylation profile between 

stage I and IIa vs IIb and stage I and II vs III in study III. Similar to study IV, the 

subgroup of stage III patients contained only 13 patients, making it impossible to 

develop a survival prediction model for stage III disease. 

 

5.2. STRENGTHS OF THE STUDIES 

We tested promoter hypermethylation in plasma-derived cell-free DNA using a broad 

gene panel in a large group of consecutive patients with pancreatic adenocarcinoma 

included prospectively before diagnostic work up and before treatment. The study 

was conducted as a single-center study, and only a few health professionals were 
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responsible for patient inclusion, enabling a uniform and consistent comprehensive 

diagnostic work-up of all patients to ensure correct diagnosis and stage classification. 

Study II was designed to compare the methylation status of malignant and benign 

pancreatic disease. We consecutively included a large and extremely relevant control 

group consisting of patients with benign disease, which is clinically difficult to 

differentiate from pancreatic cancer. We developed a diagnostic prediction model for 

pancreatic adenocarcinoma with high performance, independent of cancer stage. As 

external validation was not possible, we performed internal validation using leave 

pair out cross validation, which revealed only a modest optimism in performance.  

Diagnostic and prognostic biomarkers for pancreatic cancer are lacking. We 

developed both a diagnostic test and prognostic tests for stage classification and 

survival of pancreatic adenocarcinoma, which all are blood-based markers and 

therefore have several advantages compared to tissue-based markers. Furthermore, 

biomarkers based on hypermethylated cell-free DNA do not appear to depend on 

blood group status, which is an essential advantage compared with CA-19-9.  

The analyses for study III and IV were performed blinded. The methylation analysis 

for all three studies was based on an optimized method of bisulfite treatment. This 

method enables high recovery of cell-free methylated DNA from samples with 

minute amounts of DNA (< 0.01 ng/ml) and thus has improved sensitivity compared 

with previous methods. In addition, the method results in deamination of DNA in less 

than two hours.63 

 

5.3. DISCUSSION OF THE FINDINGS IN RELATION TO THE 

PUBLISHED LITERATURE 

The gene panel 

We designed a panel of 28 genes primarily based on study I (the literature review), 

which addressed genes aberrantly methylated in pancreatic adenocarcinoma. Several 

approaches exist for designing a gene panel. We used this strategy to evaluate the 

overall performance of genes that previously had been examined separately as 

markers for pancreatic cancer. Based on the selected panel of hypermethylated genes 

in cell-free DNA, we developed both diagnostic and prognostic models for pancreatic 

adenocarcinoma.  

Because we solely analysed plasma, we were unable to determine if the 

hypermethylated cell-free DNA originated from the tumour. If our objective had 

included an assurance of tumour specificity, we should have used an approach 

analysing both hypermethylation of tumour tissue and plasma. Genes 

hypermethylated in both tumour tissue and plasma-derived cell-free DNA improve 
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the confidence of tumour origin, provided that the same genes are non-methylated in 

samples from healthy individuals.57 

Regardless, all genes in our panel, with the exception of ALX4, MESTv2, SEPT9v2, 

and SST, had in previous literature been detected as hypermethylated in primary 

tumour tissue and, in addition, in either pancreatic juice, plasma or serum from 

patients with pancreatic adenocarcinoma. 

 

Number of hypermethylated genes in plasma-derived cell-free DNA 

Previous studies have shown that healthy individuals only have sparse amounts of 

cell-free DNA47,48 as well as only very few detectable hypermethylated genes in cell-

free DNA.23,73,80 Similar to other studies, we demonstrated that hypermethylated cell-

free DNA is detectable in all stages of pancreatic adenocarcinoma,23,81 even in stage 

I disease, making it a potential marker for early-stage diagnostics.49 In addition, we 

detected hypermethylated cell-free DNA in patients with chronic pancreatitis and in 

patients with symptoms mimicking upper gastrointestinal cancer, albeit to a much 

lesser extent. Furthermore, we analysed the hypermethylation profiles of patients 

with acute pancreatitis. A previous study described increased levels of cell-free DNA 

during acute pancreatitis.82 In addition, we demonstrated that DNA hypermethylation 

can be detected in patients with acute pancreatitis at less pronounced levels compared 

with patients with pancreatic adenocarcinoma but slightly higher levels compared 

with patients with chronic inflammation of the pancreas.  

 

Furthermore, we discovered that patients with distant metastases had an even higher 

number of hypermethylated genes compared with patients with localized disease. We 

were unable to demonstrate that the number of hypermethylated genes in plasma-

derived cell-free DNA also increased from stage I to stage III disease. This might be 

due to a lack of power in our study. Distant metastasis has been reported to result in 

a larger amount of cell-free DNA.49 However, the level of cell-free DNA was not 

associated with cancer stage in our study. The association between metastatic 

pancreatic adenocarcinoma and a higher number of hypermethylated genes in cell-

free DNA has not been described previously. Two small studies were not able to 

show this association, which could be due to a lack of power or differences in genes 

analysed.23,83 However, our results for hypermethylated cell-free DNA are consistent 

with those of a study on pancreatic cancer tumour tissue that observed DNA 

hypermethylation in early precursor lesions (PanIN-1)) and an increase in the number 

of hypermethylated genes from PanIN-1 to PanIN-3.84 Together with our results, 

these observations suggest that hypermethylated promoter regions accumulate during 

the course of pancreatic adenocarcinoma development and progression.  

We also demonstrated that the number of hypermethylated genes in cell-free DNA 

influenced survival. Patients with more than ten hypermethylated genes in cell-free 

DNA were more likely to die during the first year after diagnosis than patients with 

fewer hypermethylated genes. Similarly, in head and neck squamous cell carcinoma 
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tissue, hypermethylation of more than six of eleven examined genes was associated 

with poor overall survival and decreased disease-free survival.85 

 

 

Diagnostic value of plasma-derived cell-free DNA promoter hypermethylation  

In our study, 17 of the 28 promoter regions in the gene panel were more frequently 

hypermethylated in patients with pancreatic adenocarcinoma than in patients in the 

control groups. Furthermore, hypermethylation of BMP3, MESTv2, SST, TFPI2, 

TAC1, ALX4, HIC1, SFRP2, SEPT9v2, and WNT5A has not previously been analysed 

in cell-free DNA of patients with pancreatic adenocarcinoma.  

BNC1 hypermethylation in cell-free DNA was described by Yi et al. as having a 

sensitivity of 79% and a specificity of 89% when comparing pancreatic cancer with 

healthy individuals.70 In our study, hypermethylated BNC1 had a sensitivity of only 

36% and a specificity of 94%. Previous studies of NPTX2 hypermethylation in cell-

free DNA have yielded conflicting results. A small study evaluating a panel of six 

genes (NPTX2, UCHL1, SFRP1, PENK, CDKN2A and RASSF1A) described NPTX2 

hypermethylation as having 38% sensitivity and 83% specificity,86 whereas another 

study demonstrated a sensitivity of 84% with a specificity of 69%.73 We found 

NPTX2 hypermethylation to have 75% sensitivity but a specificity of only 53%. 

Hypermethylation of SFRP1 in cell-free DNA was previously demonstrated to have 

31% sensitivity and 86% specificity,86 similar to our findings. In our study, RASSF1A 

hypermethylation had a sensitivity of 42% and a specificity of 88%. The reported 

sensitivities of RASSF1A in cell-free DNA range from 6%86 to 34%72 with a 

specificity of approximately 90%.86 Furthermore, our study only managed to detect 

limited hypermethylation of PENK and CDKN2A, with sensitivities of 2% and 6%, 

respectively, in contrast to previous studies of cell-free DNA that have described 

PENK hypermethylation as having a sensitivity of approximately 30% and 88% 

specificity.76,86 Similarly, CDKN2A hypermethylation in cell-free DNA has 

previously been detected with 17%72 to 25%76,86 sensitivity and 86% specificity.86 

The inconsistency between our findings and previous results may be due to the use 

of non-identical primer sequences and different analytical methods.  The uneven 

distribution of cancer stages between the studies and differences in the compositions 

of the control groups also contributed to the different results. 

Consistent with previous studies of DNA hypermethylation as blood-based markers 

for pancreatic cancer, none of the examined genes in our panel had the potential to 

function as an individual diagnostic marker, suggesting that a panel of genes is 

needed to achieve sufficient performance. Only a few studies, have analysed 

pancreatic cancer and a panel of hypermethylated genes in cell-free DNA. Park et al. 

published a small study analysing a panel of six genes using methylation-specific 

PCR, which enabled discrimination between pancreatic cancer and healthy controls. 

However, the panel was unable to differentiate malignant from benign pancreatic 

disease,86 which could be due to a lack of power. Melnikov et al. (2009) analysed 

plasma DNA using microarray–mediated methylation analysis of 56 fragments 
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(MethDet 56). A panel of five hypomethylated promoter regions had 76% sensitivity 

and 59% specificity for pancreatic cancer compared with healthy individuals.87 

Liggett et al. (2010) described the most promising results using MethDet 56. A panel 

of 14 gene promoters (both hypo- and hypermethylation) enabled the differentiation 

of pancreatic cancer from chronic pancreatitis with a sensitivity of 91% and a 

specificity of 91%.88 However, no further validation of the results has been published.   

 

We analysed hypermethylation in a 28-gene panel by methylation-specific PCR and 

developed a diagnostic prediction model for pancreatic adenocarcinoma. The model 

contained eight promoter sequences (BMP3, RASSF1A, BNC1, MESTv2, TFPI2, 

APC, SFRP1, and SFRP2) and the covariate age > 65 years. Our test enabled the 

differentiation of patients with pancreatic adenocarcinoma and a benign control 

group (patients with chronic pancreatitis and patients suspected of but without upper 

gastrointestinal malignancy) with 76% sensitivity and a specificity of 83%. Our 

control group was highly clinically relevant as these patients had symptoms or 

diagnostic imaging mimicking those of pancreatic cancer, which is a well-known 

clinical challenge in the diagnostic work-up of patients suspected of pancreatic 

cancer. In addition, the diagnostic value of our test was independent of cancer stage, 

which is of utmost clinical importance because only early-stage pancreatic 

adenocarcinoma (stage I-II) is potentially curable. Our diagnostic test performed well 

and was superior to CA-19-9, which currently is the only clinically implemented 

blood-based test for pancreatic cancer. Although the performance of our diagnostic 

test and previously described gene panels do not allow any of them to be used as a 

stand-alone test for pancreatic cancer diagnosis, validation of our test may enable its 

application in combination with other modalities in the work-up of patients suspected 

of pancreatic cancer. In addition, there is potential for further improvement of our 

diagnostic test by expanding the gene panel with other relevant genes; however, 

additional studies will be warranted. Furthermore, it would be interesting and of high 

clinical relevance to evaluate the performance of our diagnostic test in patients with 

pancreatic cancer precursor lesions.  

 

 

Plasma-derived cell-free DNA promoter hypermethylation with regard to pancreatic 

adenocarcinoma staging 

Our studies showed that cell-free DNA hypermethylation of seven individual genes 

(ALX4, BNC1, HIC1, SEPT9v2, SST, TFPI2, and TAC1) was associated with distant 

metastasis. In general, studies of the prognostic value of hypermethylated cell-free 

DNA are lacking. However, a few studies of pancreatic cancer tissue have indicated 

prognostic value of hypermethylated DNA. HIC1 hypermethylation has been 

detected more frequently in pancreatic cancer tissue from stage III-IV disease 

compared with stage I-II disease, consistent with our findings in plasma.89 Similarly, 

cell-free DNA hypermethylation of TFPI2 in colorectal cancer patients was also 

associated with stage IV disease.90 Furthermore, hypermethylated ALX4 has been 

detected in colorectal cancer tissue, albeit at the same frequencies in all stages of the 
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disease,91 in contrast to the findings of our study. Similar, SEPT9v2 hypermethylation 

has been detected in cancer tissue and cell-free DNA from colorectal cancer patients 

at the same frequency in all stages of the disease.91,92 This indicates that 

hypermethylation of SEPT9v2 occurs earlier in the development of colorectal cancer 

than in the development of pancreatic cancer.93 In addition, there is a commercialized 

blood-based diagnostic test for colorectal cancer available, that is based on SEPT9 

hypermethylation.94 

Because none of the genes in our panel had the potential for use as a single marker 

for staging patients with pancreatic adenocarcinoma, we developed two prediction 

models for this purpose. A panel based on the hypermethylation status of eight genes 

(SEPT9v2, SST, ALX4, CDKN2B, HIC1, MLH1, NEUROG1, and BNC1) enabled 

with high performance (AUC of 0.87) the distinction of pancreatic adenocarcinoma 

patients with distant metastasis (stage IV) from patients without distant metastasis 

(stage I-III). Another panel (MLH1, SEPT9v2, BNC1, ALX4, CDKN2B, NEUROG1, 

WNT5A, and TFPI2) enabled the differentiation of potentially resectable disease 

(stage I and II) from non-resectable disease (stage III and IV), albeit with lower 

performance (AUC of 0.82). To our knowledge, we are the first to develop prediction 

models based on hypermethylated cell-free DNA, for pancreatic adenocarcinoma 

staging. Both tests are of high clinical relevance and may supplement existing tools 

for stage classification and aid the difficult evaluation of tumour resectablity.  

As previously mentioned, our studies indicate that hypermethylated promoter 

sequences in cell-free DNA accumulate during the development and progression of 

pancreatic adenocarcinoma. Furthermore, our studies indicate that promoter 

hypermethylation changes during the course of the disease, as illustrated by the 

varying composition of the gene panels developed for the various applications. Only 

BNC1 recurred in the diagnostic and prognostic gene panels, and six out of eight 

genes in the two panels for stage classification overlap. Taken together, these 

observations indicate, that hypermethylation of certain genes occurs at different 

stages of neoplastic development.  

 

Promoter hypermethylation of cell-free DNA may represent different subtypes of 

pancreatic adenocarcinoma 

We also investigated the association between cell-free DNA hypermethylation and 

survival of patients with pancreatic adenocarcinoma. Our findings showed that 

hypermethylation of several individual genes was associated with survival. Overall, 

promoter hypermethylation had a negative impact on survival, whereas 

hypermethylation of a few specific genes seemed to have a positive effect on survival. 

 

We observed that CDKN2A hypermethylation was significantly associated with 

decreased survival in patients with early-stage pancreatic adenocarcinoma. However, 

this finding is subject to great uncertainty as only one patient with stage I-II disease 
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had CDKN2A hypermethylation. CDKN2A hypermethylation has previously been 

observed in pancreatic cancer tumour tissue,95 in other solid tumours,96–98 and in 

various medias related to pancreatic cancer,99–101 including cell-free DNA.86 Previous 

studies have reported low expression of CDKN2A in pancreatic adenocarcinoma  

tissue to be associated with decreased survival in early-stage disease, in line with our 

results.95,102 

 

Furthermore, our study showed that hypermethylation of SFRP2 had a positive 

impact on survival of stage I and II pancreatic adenocarcinoma. The SFRP2 gene 

encodes the secreted frizzled-related protein 2, which modulates the Wnt signalling 

pathway (both as an antagonist and an agonist).103 Hypermethylation of SFRP2 has 

previously been associated with the development of colorectal cancer,104–106 gastric 

cancer,107 and pancreatic cancer.108,109 However, SFRP2 hypermethylation in cell-

free DNA has not previously been associated with improved prognosis of stage I and 

II pancreatic adenocarcinoma.  

 

In our study hypermethylation of three individual genes (SFRP1, BMP3, and TFPI2) 

was significantly associated with decreased survival in stage IV disease. SFRP1 

encodes secreted frizzled-related protein 1, which similar to SFRP2, acts as a 

modulator (however, only antagonistic) of the Wnt signalling pathway to affect cell 

proliferation, differentiation and apoptosis.103 Upregulation of the Wnt pathway due 

to promoter hypermethylation of SFRP1 genes has previously been associated with 

cancer formation. Promoter hypermethylation of SFRP1 has previously been detected 

in tumour tissue,108 pancreatic juice110 and cell-free DNA86 in pancreatic cancer. 

SFRP1 hypermethylation has not previously been associated with impaired prognosis 

in stage IV pancreatic adenocarcinoma. However, studies of breast cancer111 and 

renal cancer112 have identified hypermethylation of SFRP1 in tumour tissue as an 

independent risk factor for decreased overall survival. Furthermore, in our study, 

hypermethylation of BMP3 and TFPI2 were associated with impaired survival of 

patients with stage IV disease. The BMP3 gene encodes methylated bone 

morphogenetic protein 3, which is involved in the TGF beta pathway and influences 

cell proliferation, differentiation and apoptosis.113–115 Studies have indicated a 

diagnostic value of BMP3 hypermethylation in stool from patients with pancreatic 

cancer109 and colorectal cancer.109,116 We are the first to describe a prognostic value 

of hypermethylated BMP3. The TFPI2 gene encodes tissue factor pathway inhibitor 

2 protein, which is associated with cell adhesion and the clotting cascade.117 TFPI2 

hypermethylation has also been described in several types of cancer,90,118,119 including 

pancreatic cancer tissue120 and IPMN tissue,121 as well as in pancreatic juice from 

pancreatic cancer patients.122 We are the first to describe a prognostic value of TFPI2 

hypermethylation in cell-free DNA for pancreatic adenocarcinoma. However, 

hypermethylation of TFPI2 in hepatocellular carcinoma tumour tissue is associated 

with advanced cancer stage and shorter survival,118 in accordance with our results for 

pancreatic cancer. Similarly, TFPI2 hypermethylation in the serum of melanoma 

patients has been suggested as a marker for metastatic disease.119 
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Based on our selected gene panel, we developed prediction models for survival of 

patients with pancreatic adenocarcinoma. We developed a model based on the total 

group of cancer patients, without considering stage classification. In addition, we 

developed survival prediction models according to cancer stage, with the aim of 

developing prognostic markers, which add knowledge about tumour biology and 

disease aggressiveness within each cancer stage. The prediction models enabled the 

stratification of patients in risk groups according to survival. 

   

Both cancer stage-specific models contained a hypermethylated gene variable with a 

positive impact on survival. SFRP2 hypermethylation had a positive impact on the 

prognosis of patients with stage I and II disease. A similar trend was observed for 

NPTX2 hypermethylation in stage IV disease. The NPTX2 gene encodes neuronal 

pentraxin 2 protein.123 Previous studies have described a diagnostic value of NPTX2 

hypermethylation with regard to pancreatic cancer.23,124 Furthermore, NPTX2 

hypermethylation has been associated with poor prognosis of patients with 

glioblastoma,125 in contrast to our findings. Various causes may underlie the 

conflicting findings in pancreatic cancer and glioblastoma, but this discrepancy may 

reflect differences in tumour biology or a varying impact of NPTX2 hypermethylation 

according to cancer stage. This discrepancy may also be due to the use of different 

analytical methods or non-identical primer sequences, which would result in analysis 

of different part of the gene. 

 

Our study indicates a biological variation within pancreatic adenocarcinoma that 

influences patient outcome. Our findings show that hypermethylation of some genes 

seems to have a positive impact on prognosis, whereas hypermethylation of other 

genes has a negative impact. According to our study, patients lacking 

hypermethylated genes in cell-free DNA, stage I and II patients with SFRP2 

hypermethylation and stage IV patients with hypermethylation of NPTX2 appear to 

have less aggressive tumours, resulting in improved survival compared with other 

patients. These findings are consistent with a study by Thomson et al. (2015) of 

pancreatic adenocarcinoma tumour tissue, which described a “survival-” methylation 

signature associated with short survival time and a “survival+” methylation signature 

associated with long survival time. The Wnt signalling pathway, among others, was 

involved in the “survival-“ signature,126 consistent with our finding that 

hypermethylation of SFRP1 results in decreased survival. Two previous studies based 

on a six-gene and a 13-gene expression profile in pancreatic adenocarcinoma tissue 

also stratified patients into a low-risk and a high-risk group.127,128 Similarly, our 

survival prediction models enabled the stratification of patients in risk groups 

according to survival. The prognostic tests previously described regarding pancreatic 

adenocarcinoma are all tissue-based, in contrast to our survival prediction tests, 

which have the advantage of being blood-based. Our tests have the potential to 

provide prognostic information in addition to the TNM classification regarding the 

survival of patients with pancreatic adenocarcinoma. This would clearly benefit 
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patients and clinicians’ therapeutic decisions and facilitate the correct choice of 

treatment.   

   

 

Blood-based biomarkers/liquid biopsies 

The diagnostic and prognostic prediction models described in study II, III and IV are 

all blood-based tests. Blood-based markers have several advantages over tissue-based 

markers. The current standard of care for diagnosing pancreatic cancer involves 

examination of tumour tissue either by fine needle aspiration cytology or histological 

examination of biopsies or surgical specimens. All invasive procedures entail a risk 

of complications. Blood-based tests are minimally invasive, involving only limited 

discomfort, and have no major complications.49 They can easily be repeated to enable 

close monitoring of the disease to evaluate response to treatment or early detection 

of recurrence.50  

Blood-based markers for pancreatic disease are urgently needed as tumours in the 

pancreas may occur in areas that are difficult to access. In addition, the size of the 

tumour may limit the ability to sample tissue adequately, and tissue biopsies may not 

be an accurate representation of the tumour due to intra-tumour heterogeneity.50 

There can also be molecular differences between the primary tumour and metastatic 

lesions, and thus a tissue biopsy from the primary lesion most likely will not represent 

the metastatic lesions.50 Markers based on hypermethylated plasma-derived cell-free 

DNA could potentially provide information about both the primary tumour and the 

metastatic lesions simultaneously.49 In cases where tumour tissue specimens are 

unavailable from either the primary tumour or the metastatic lesions, blood-based 

markers may represent an alternative or a supplement to existing tools used in the 

diagnostic work-up and treatment of patients with pancreatic adenocarcinoma.49  

 

Other biomarkers for pancreatic cancer  

In addition to hypermethylation of cell-free DNA, various approaches are available 

for the development of cancer biomarkers. Schultz et al. (2014) published a large 

comprehensive study of miRNA in whole blood as a diagnostic marker for pancreatic 

cancer.39 They developed two diagnostic panels containing four and ten miRNAs, 

respectively. In combination with CA-19-9, the panels reached an AUC of 0.92 when 

comparing pancreatic cancer patients with healthy subject and a few patients with 

chronic pancreatitis. Most promising, the panel of ten miRNAs combined with CA-

19-9 performed with similarly high performance (AUC of 0.91) in stage I-II 

patients.39 Future studies evaluating the ability of miRNAs to differentiate patients 

with pancreatic cancer and patients with benign pancreatic disease or symptoms 

mimicking pancreatic cancer would be of great clinical interest.  

Currently, the IMMrayTM PanCan-d test [Immunovia, Lund, Sweden], which is based 

on a wide antibody microarray, is the most studied diagnostic test for pancreatic 

cancer. Four studies have been published, all reporting very high performance (AUC 

> 0.90) for the differentiation of healthy individuals and stage III-IV pancreatic 
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cancer.129–132 Unfortunately, the performance declined substantially when the test was 

used to discriminate late-stage pancreatic cancer and benign pancreatic disease (AUC 

of 0.86130 and AUC of 0.70131). In addition, the AUC was only 0.71 when 

differentiating stage I disease from healthy individuals.132 

Circulating autoantibodies to phosphorylated alpha-enolase133 and ezrin134 have also 

been suggested as potential diagnostic biomarkers for pancreatic cancer. In 

combination, alpha-enolase and CA-19-9 reached an AUC of 0.95 for discriminating 

stage I-II pancreatic cancer from a control group of healthy subjects and patients with 

chronic pancreatitis.133 A similar result was found for ezrin.134 

Cell-free nucleosomes have been evaluated in a single small study as diagnostic 

biomarkers for pancreatic cancer. An ELISA-based immunoassay platform 

(Nucleosomics® [VolitionRX, Singapore] measuring epigenetic changes managed to 

differentiate stage II pancreatic cancer and a control group of both healthy individuals 

and patients with benign pancreatic disease with an AUC of 0.92.135  

The results based on alpha-enolase, ezrin and cell-free nucleosomes are promising as 

they are based on early-stage disease. However, the studies only contained a limited 

number of patients. Similar to our findings, these results need to be validated in 

independent patient cohorts. Additionally, it is of utmost importance to evaluate the 

test performance in early-stage pancreatic cancer and a control group solely 

containing relevant patients (e.g., patients with chronic pancreatitis) to enable 

differentiation of malignant and benign molecular changes in pancreatic disease. 

Such studies are essential for the clinical application of a diagnostic biomarker.   

 

  



CELL-FREE DNA PROMOTER HYPERMETHYLATION AS BLOOD-BASED MARKERS FOR PANCREATIC 
ADENOCARCINOMA. 

88
 

 



 

89 

 

6.1. STUDY I/PAPER I 

None of the genes previously examined had the potential to function as an individual 

diagnostic marker, suggesting that a panel of several genes is needed to achieve 

sufficient performance. Further research is warranted before a blood-based diagnostic 

marker for pancreatic cancer based on promoter hypermethylation can be applied 

clinically. 

6.2. STUDY II/PAPER II 

Several genes are more frequently hypermethylated in the cell-free DNA of patients 

with pancreatic adenocarcinoma compared with patients with benign pancreatic 

disease. In addition, patients with pancreatic adenocarcinoma have a higher number 

of hypermethylated genes than patients with benign pancreatic disease. A panel of 

eight genes can distinguish between patients with pancreatic adenocarcinoma and a 

clinically relevant control group, indicating that hypermethylated cell-free DNA is 

potentially usable as a blood-based diagnostic marker for pancreatic adenocarcinoma.  

6.3. STUDY III/PAPER III 

DNA hypermethylation of plasma-derived cell-free DNA is detectable even in early-

stage pancreatic adenocarcinoma. Hypermethylations accumulate and change during 

neoplastic development and with aggravating cancer stage. Panels of genes can 

differentiate patients with pancreatic adenocarcinoma according to cancer stage. The 

prediction models for cancer staging may represent a supplement to existing clinical 

tools in stage classification of pancreatic adenocarcinoma.  

6.4. STUDY IV/PAPER IV 

Hypermethylation of more than ten genes in plasma-derived cell-free DNA is an 

independent risk factor for decreased survival in patients with pancreatic 

adenocarcinoma. Furthermore, the survival of pancreatic adenocarcinoma patients is 

associated with promoter hypermethylation of specific genes that vary depending on 

cancer stage. Overall, promoter hypermethylation has a negative impact on survival. 

However, hypermethylation of a few specific genes seems to result in improved 

prognosis. Prediction models based on the gene panel enabled the stratification of 

patients with pancreatic adenocarcinoma in risk groups according to survival time. 

These prediction models may work as prognostic biomarkers that supplement the 

TNM classification and facilitate more personalized cancer treatment.   

6. CONCLUSIONS 
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6.5. FINAL CONCLUSSION 

Plasma-derived cell-free DNA promoter hypermethylation has the potential to be 

used as blood-based markers for the diagnosis, stage classification and prediction of 

survival of pancreatic adenocarcinoma. External validation of these results, however, 

is required before clinical application. 
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Unfortunately, the incidence of pancreatic cancer has slightly increased in recent 

decades, and patient survival has not improved.9 Currently, pancreatic cancer is the 

4th leading cause of cancer death worldwide. In addition, the incidence of pancreatic 

cancer in the US has been estimated to increase by 55% by the year 2030.136 Sadly, 

the number of deaths due to pancreatic cancer may also increase dramatically over 

the next few decades unless substantial improvements in early diagnosis and cancer 

therapy emerge. 

Pancreatic adenocarcinoma was previously viewed to arise primarily by genetic 

alterations, i.e., the activation of oncogenes and the inactivation of tumour suppressor 

genes.137 However, today we know that crosstalk between genetic and epigenetic 

alterations, including DNA methylation, is involved in carcinogenesis and the 

determination of cancer subtypes.  

Our studies, among many others, have shown that this knowledge has the potential 

to provide new diagnostic and prognostic information for use in cancer management. 

Unfortunately, no study has yet led to changes in clinical practice with regard to the 

diagnostic work-up of pancreatic cancer. Further research is warranted, and extensive 

validation of biomarkers are required before clinical application.  

The discovery of specific epigenetic events involved in the carcinogenesis of 

pancreatic adenocarcinoma is of great importance because epigenetic mechanisms 

are reversible, in contrast to genetic changes. Therefore, epigenetic events could 

serve as novel therapeutic targets for pancreatic cancer, which hopefully would lead 

to enhanced efficacy of adjuvant and palliative therapy.44 

Overall, epigenetics can provide a basis for biomarker development for pancreatic 

cancer, with the potential to improve early detection, ease the diagnostic work-up and 

facilitate tailored treatment to hopefully improve patient survival. 

 

  

7. PERSPECTIVES  
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As mentioned earlier, external validation of the results in an independent cohort is 

needed to verify our results. We expect to perform the first external validation on 

sample material from the biobank BIOPAC in collaboration with a research group at 

Herlev Hospital, Denmark. We plan to analyse the 28 genes in approximately 250 

patients with pancreatic adenocarcinoma and in 100 patients with chronic 

pancreatitis. This will allow external validation of study II, III and IV to be performed 

simultaneously. 

In addition, we plan to analyse the follow-up samples from patients with pancreatic 

adenocarcinoma with regard to disease relapse/recurrence and in response to both 

surgical and palliative treatment. 

Furthermore, we plan to analyse the samples from patients with acute pancreatitis 

with respect to aetiology and changes in the methylation profile during the cause of 

an acute inflammatory reaction of the pancreas. We have planned a similar approach 

for patients with chronic pancreatitis with the additional purpose of identifying 

patients with a high risk of developing pancreatic cancer.  

  

8. FUTURE RESEARCH 
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Appendix A.  

DNA sequences for probes and primers 

Gene  DNA sequence Position 
Amplicon 

size 

TAC1 M1 NC_000007.14 ATC GTA AGG TAT TGA GTA GGC  97732062 to 97732082  

TAC1 M2  TCT CGA TAA CTA CCG CCG   97732109 to 97732126                                                       64 

TAC1 M beacon  
(HEX)CGA TCG ATC C+GA AC+G C+GC TCT CGA 

TCG(Dabcyl)  
97732086 to 97732100  

TAC1 Am  TAA GGA GGT TGG GAT AAA TAT C  97732043 to 97732064  

TAC1 Bm  TCT CGA TAA CTA CCG CCG                                                        97732109 to 97732126                                                   83 

SST M1 NC_000003.12 GCG TCG AGA TGT TGT TTT GTC 187670279 to 187670299  

SST M2  CCA AAA CCA AAA CGA TAA ACA ACG 187670234 to 187670257 65 

SST M beacon  
(HEX)CGA TCG ACC AAC +GC+G CAC TAA CGA 

TCG(Dabcyl) 
187670260 to 187670274  

SST Am  TAG TTC GGT TTT CGC GGC GTC 187670260 to 187670274  

SST Bm  CCA AAA CCA AAA CGA TAA ACA ACG 187670234 to 187670257                                   81 

APC M1 NC_000005.10 AGT GCG GGT CGG GAA GC 112737732 to 112737748  

APC M2  AAT CGA CGA ACT CCC GAC G                                                112737805 to 112737823 91 

APC M beacon  
(HEX)CGC GAT CGT TG+G ATG +CG+G AAT CGC 

G(Dabcyl) 
112737773 to 112737785  

APC Am  ATT GCG GAG TGC GGG TC 112737725 to 112737741  

APC Bm  AAT CGA CGA ACT CCC GAC G       112737805 to 112737823                                            98 

MLH1 M1 NC_000003.12 TGG TTT TTT GGC GTT AAA ATG TC 36993529 to 36993552  

MLH1 M2  AAA TAA CTT CCC CCG CCG         36993606 to 36993623                                              94 

MLH1 M beacon  
(HEX)CGC GAT CTC +GTC CAA CC+G CC+G AAT ATC 

GCG(Dabcyl) 
36993569 to 36993592  

MLH1 Am  TGG TTT TTT GGC GTT AAA ATG TC 36993529 to 36993552  

MLH1 Bm  CAT CTC TTT AAT AAC ATT AAC TAA CCG     36993626 to 36993652                       123 

SFRP1 M1 NC_000008.11 GGA GTT GAT TGG TTG CGC 41309508 to 41309525  

SFRP1 M2  CGC GAC ACT AAC TCC G                                                         41309435 to 41309450 90 

SFRP1 M beacon  (HEX)CGC GAT G+GT T+CG +GTC G+TA ATC GCG(Dabcyl) 41309482 to 41309493  

SFRP1 Am  GAG GCG ATT GGT TTT CGC 41309567 to 41309584  

SFRP1 Bm  CGC GAC ACT AAC TCC G 41309435 to 41309450                                                   149 

CHFR M1 NC_000012.12 GTT TCG GTT TTA GTT TCG TAT TTC 132887175 to 132887198  

CHFR M2  CGA CTC CTA CGT CTA AAC GCG                                            132887257 to 132887277 102 

CHFR M beacon  (HEX)CGC GAT CCG +CA+C GT+C CAT CGC G(Dabcyl) 132887235 to 132887244  

CHFR Am  GTT TCG GTT TTA GTT TCG TAT TTC 132887175 to 132887198  

CHFR Bm  CCC TAA AAA CGA CTC CTA CG                                               132887267 to 132887286 111 

RASSF1A M1 NC_000003.12 GGG AGG CGT TGA AGT C 50340882 to 50340897  

RASSF1A M2  GTA CTT CGC TAA CTT TAA ACG                                         50340821 to 50340841 76 

RASSF1A M beacon  (HEX)CGC GAT TCG +TT+C G+GT TCG CTC GCG(Dabcyl) 50340846 to 50340859  

RASSF1A Am  GGG AGG CGT TGA AGT C 50340882 to 50340897  

RASSF1A Bm  A ATA AAC TCA AAC TCC CCC G                                        50340782 to 50340801   115 

CDKN2A M1 NC_000009.12 TTT CGA GTA TTC GTT TAT AGC 21975019 to 21975036  

CDKN2A M2  TTT CTT CCT CCG ATA CTA ACG      21974925 to 21974945                                        111 

CDKN2A M beacon  
(HEX)CGA CGT G+AA +AGA +TAT CG+C G+GT ACG 

TCG(Dabcyl) 
21974988 to 21975002  

CDKN2A Am  TGT TCG GAG TTA ATA GTA TTT TTT TC 21975033 to 21975058  

CDKN2A Bm  TTT CTT CCT CCG ATA CTA ACG     21974925 to 21974945                                        133 

RARB M1 NC_000003.12 GGG TAT CGT CGG GGT AGA TTC 25428402 to 25428423  

RARB M2  TCG ACC AAT CCA ACC GAA ACG                                      25428495 to 25428515                                   113 

RARB M beacon  
(HEX)CGC GAC GAA +TA+C GTT +CCG AAT CGC 
G(Dabcyl) 

25428421 to 25428435  

RARB Am  AGT AGG GTT TGT TTG GGT ATC 25428388 to 25428408  

RARB Bm  TCG ACC AAT CCA ACC GAA ACG                                       25428495 to 25428515                                      127 

ESR1 M1 NC_000006.12 GGG ATT GTA TTT GTT TTC GTC 151807705 to 151807725  

ESR1 M2  ACG CAA CGC ATA TCC CG                                                     151807793 to 151807809                                              104 

ESR1 M beacon  
(HEX)CGC GAT GAA +CGA +CCC G+AC GAT CGC 

G(Dabcyl) 
151807722 to 151807735  

ESR1 Am  GTT TTG GGA TTG TAT TTG TTT TC 151807700 to 151807722  

ESR1 Bm  ACG CAA CGC ATA TCC CG                                                      151807793 to 151807809                                                  109 

BRCA1 M1 NC_000017.11 TCG TGG TAA CGG AAA AGC GCG 43125409 to 43125429  

BRCA1 M2  CCG TCC AAA AAA TCT CAA CG    43125346 to 43125365                                         83 

BRCA1 M beacon  (HEX)CGA TCG G+CG GCG +TG+A GCG ATC G(Dabcyl) 43125362 to 43125371  

BRCA1 Am  GT TTT TTG GTT TTC GTG GTA AC 43125420 to 43125441  

BRCA1 Bm  AAA CCC CAC AAC CTA TCC CCC G 43125327 to 43125348                                    114 

MESTv2 M1 NC_000007.14 CGA CGT TTT AGT TTC GAG TC 130486250 to 130486269  

MESTv2 M2  CGC TTC CTA AAA CCA AAA ATT CTC G    130486312 to 130486336                        86 

MESTv2 M beacon  (HEX)CGA TCG G+TG +GT+C G+GG TTC GAT CG(Dabcyl) 130486278 to 130486289  

MESTv2 Am  GCG ATG GGT TTG TGC GC 130486225 to 130486242  

MESTv2 Bm  GAA AAA CCG ATT ACG CAT ACG                                  130486337 to 130486355     130 

MGMT M1 NC_000010.11 GAT ATG TTG GGA TAG TTC GC 129467213 to 129467232  

MGMT M2  GCA CTC TTC CGA AAA CGA AAC G     129467311 to 129467332                             119 

MGMT M beacon  
(HEX)CGC GAT CG+T ATC G+TT +TG+C GAT +TTA TCG 

CG(Dabcyl) 
129467279 to 129467294  

MGMT Am  GAT ATG TTG GGA TAG TTC GC 129467213 to 129467232  

MGMT Bm  AAA AAA CTC CGC ACT TCC G     129467322 to 129467342                                      129 

SEPT9v2 M1 NC_000017.11 GTT TAG TAT TTA TTT TCG AAG TTC 77373542 to 77373560  
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SEPT9v2 M2  CCT CCG CGC GAC CCG    77373467 to 77373481                                                   91 

SEPT9v2 M beacon  
(FAM)CGA CGT ATT TAG TTG CGC GTT GAT CGA CGT 

CG(Dabcyl) 
77373511 to 77373530  

SEPT9v2 Am  GTT TAG TAT TTA TTT TCG AAG TTC 77373542 to 77373560  

SEPT9v2 Bm  GCC GAA AAC GCT TCC TCG      77373442 to 77373459                                        118 

VIM M1 NC_000010.11 ATA TTT ATC GCG TTT TCG TTC 17229337 to 17229357  

VIM M2  ACG AAC CTA ATA AAC ATA ACT ACG                                 17229416 to 17229439                          102 

VIM M beacon  
(FAM)CGA CGT GTT CGC GTT ATC GTC GTC GAC GTC 

G(Dabcyl) 
17229377 to 17229395  

VIM Am  GAG GTT TTC GCG TTA GAG AC 17229296 to 17229315  

VIM Bm  ACG AAC CTA ATA AAC ATA ACT ACG                              17229416 to 17229439                             143 

EYA2 M1 NC_000020.11 CGG AGG TAG CGG TAA C 46894866 to 46894881  

EYA2 M2  CGA TAC GAA CGA ACG AAC G    46894941 to 46894959                                           93 

EYA2 M beacon  
(FAM)CGC GAT TTC GGT TTC GTC GGA TTC GTA TCG 

CG(Dabcyl) 
46894914 to 46894933  

EYA2 Am  AGG AGG CGG AGG TAG C 46894860 to 46894875  

EYA2 Bm  CGA CGC GAT ACG AAC G   46894949 to 46894964                                               104 

BMP3 M1 NC_000004.12 AGT GGA GAC GGC GTT C 81031024 to 81031039  

BMP3 M2  CTT ACT ACG CTA ACC CAA CG                                                81031101 to 81031120                                               96 

BMP3 M beacon  
(FAM)CGT CGA GCG GGT GAG GTT CGC GTA TCG 

ACG(Dabcyl) 
81031052 to 81031069  

BMP3 Am  TAG CGT TGG AGT GGA GAC 81031015 to 81031032  

BMP3 Bm  CCA ACC CCA CTT ACT ACG                                                      81031112 to 81031129                                                 114 

ALX4 M1 NC_000011.10 TTT TTC GGA GGC GAT AAG TTC 44309934 to 44309954  

ALX4 M2  CGA ACC CGA CTC TTA ACG     44309869 to 44309886                                                     85 

ALX4 M beacon  
(FAM)CGC GAT TGT CGG TCG TCG TTA AAG TAT CGC 

G(Dabcyl) 
44309902 to 44309920  

ALX4 Am  GTC GGG AGG GTT CGT C 44309968 to 44309983  

ALX4 Bm  CGA ACC CGA CTC TTA ACG    44309869 to 44309886                                                      114 

SFRP2 M1 NC_000004.12 GTT TTT CGG AGT TGC GCG C 153789028 to 153789046  

SFRP2 M2  CCG AAA AAC TAA CAA CCG ACG                                            153788948 to 153788968                                           98 

SFRP2 M beacon  
(HEX)CGA CGT TTG TAG CGT TTC GTT CGC GTT GTT 

ACG TCG(Dabcyl) 
153789000 to 153789023  

SFRP2 Am  GTT TTT CGG AGT TGC GC GC 153789028 to 153789046  

SFRP2 Bm  CTC TTC GCT AAA TAC GAC TCG                                              153788922 to 153788942                                         124 

NEUROG1 M1 NC_000005.10 GTT GAT TTG ATC GTC GGC 135535925 to 135535942  

NEUROG1 M2  CTC GCC TAC AAA AAC CAC G   135535879 to 135535897                                                  63 

NEUROG1 M beacon  
(HEX)CGC GAT GCC C+GA CC+G ATC TCC TAA ATC 

GCG(Dabcyl) 
135535899 to 135535916  

NEUROG1 Am  GTT TAT ACG AGT TGA TTT GAT C 135535931 to 135535952  

NEUROG1 Bm  CTT AAC CTA ACC TCC TCG    135535860 to 135535882                                                      92 

NTPX2 M1 NC_000007.14 AGG TTA GAG TGT CGA GTA GC 98617280 to 98617299  

NTPX2 M2  TCG AAA ATC GCG TAC ACC G                                               98617342 to 98617360                                              80 

NTPX2 M beacon  
(HEX)CGC GAT CGG TG+C GGT TGT GAG A+CG GTG ATC 

GCG(Dabcyl)   
98617306 to 98617322  

NTPX2 Am  TTC GGT AGG TTA GAG TGT C 98617274 to 98617291  

NTPX2 Bm  CTA TCG TCT CGA AAA TCG CG       98617349 to 98617368                                           94 

TFPI2 M1 NC_000007.14 TAT TTT TTA GGT TTC GTT TCG GC 93890809 to 93890831  

TFPI2 M2  AAA CGA CCC GAA TAC CCG                                                     93890759 to 93890776                                                 72 

TFPI2 M beacon  
(HEX)CGC GAT CGT CGG T+CG GA+C GTT CGT TGA TCG 

CG(Dabcyl) 
93890787 to 93890804  

TFPI2 Am  TAT TTT TTA GGT TTC GTT TCG GC 93890809 to 93890831  

TFPI2 Bm  CGA CTT TCT ACT CCA AAC G                                                  93890745 to 93890763                                              86 

BNC1 M1 NC_000015.10 GTA GGT AGT TAG TTG GTT TTC 83284403 to 83284423  

BNC1 M2  GAA ACA AAC GAC CCG AAA CG   83284467 to 83284486                                       83 

BNC1 M beacon  
(FAM)CGC GAT CGT ATT TA+C GGG AGT +CGG AGT TTG 

ATC GCG(Dabcyl) 
83284440 to 83284461  

BNC1 Am  GTA GGT AGT TAG TTG GTT TTC 83284403 to 83284423  
BNC1 Bm  GCG AAA ATT CTC TAT ACG     83284491 to 83284505                                               102 

CDKN2B M1 NC_000009.12 TAT TGT ACG GGG TTT TAA GTC 22009107 to 22009127  
CDKN2B M2  TTC CCT TCT TTC CCA CG   22009019 to 22009035     108 

CDKN2B M beacon  
(HEX)CGC GAT CGA +CGA +CGG GAG GGT AAT GGA 

TCG CG(Dabcyl) 
22009082 to 22009099  

CDKN2B Am  GGT CGT TCG GTT ATT GTA C 22009120 to 22009138  

CDKN2B Bm  TTC CCT TCT TTC CCA CG    22009019 to 22009035                                                     119 

WNT5A M1 NC_000003.12 CGT GGA ATA GTT GTT TGC 55487294 to 55487311  

WNT5A M2  TTA AAA CAA AAC TAA AAT ACG   55487177 to 55487197                                    134 

WNT5A M beacon  
(HEX)CGC GAT CAA CCT AAT C+GA AAC +GCA ACT 

AAA GAT CGC G(Dabcyl) 
55487247 to 55487269  

WNT5A Am  CGT GGA ATA GTT GTT TGC 55487294 to 55487311  

WNT5A Bm  CGA ACC TAA ACT CCC G     55487159 to 55487174                                                   152 

PENK M1 NC_000008.11 AGG CGA TTT GAG TCG TTT TTA C 56446123 to 56446144  

PENK M2  GAC AAC CTC AAC AAA AAA TCG    56446032 to 56446052                                      112 

PENK M beacon  
(HEX)CGC GAT CAA AGT TGT +CGG T+CG GGA GG ATC 

GCG(Dabcyl) 
56446096 to 56446113  

PENK Am  CGC GTT ATT TCG GGA ATC 56446148 to 56446165  

PENK Bm  GAC AAC CTC AAC AAA AAA TCG     56446032 to 56446052                                   133 

H1C1 M1  NC_000017.11 TTC GGT TTT CGC GTT TTG TTC 2056080 to 2056100  

H1C1M2  CGA AAA CTA TCA ACC CTC G   2056153 to 2056171                                      91 

H1C1 M beacon  (FAM)CGC GAC GGT CGT CGT TCG GGT TCG CG (Dabcyl) 2056131 to 2056146  

H1C1 Am   GAT ATA ACG TTT TTT TCG CGT C 2056054 to 2056075  

H1C1 Bm  ATA CCC GCC CTA ACG CCG    2056179 to 2056196                                                142 

GSTP1 M1 NC_000011.10 TCG GGG TGT AGC GGT C 67583673 to 67583688  

GSTP1 M2  CCC AAT ACT AAA TCA CGA CG   67583741 to 67583760                                           87 

GSTP1 M beacon  
(HEX)CGCGAT GTC G+G+C GGG AGT TCG ATC GCG 

(Dabcyl) 
67583701 to 67583715  

GSTP1 Am  AGG GCG TTT TTT TGC GGT C 67583649 to 67583667  

GSTP1 Bm  CCC AAT ACT AAA TCA CGA CG   67583741 to 67583760                                           111 

*MESTv1 M1 NC_000007.14 CGC GGT AAT TAG TAT ATT TC 130492085 to 130492107  

*MESTv1 M2  GCT ACG ACA CTA CGC TTA CG    130492135 to 130492159                                    74 
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*MESTv1 M beacon  
(HEX)CGC GAT CGG +TA+G T+TG +CGT TAT CGC 

G(Dabcyl) 
130492121 to 130492133  

*MESTv1 U1  TGT TGT GGT AAT TAG TAT ATT TT 130492088 to 130492107  

*MESTv1 U2  CAA CCA CTC CAA CAT ACA CTA CA   130492154 to 130492171                            83 

*MESTv1 U beacon  
(FAM)CGC GAG +TA+G T+TG +TG+T TT+T GTT CGC 

G(Dabcyl) 
130492123 to 130492137  

**MESTv1 A  GGT TTT AAA AGT T/CGG TGT TTA TT 130492052 to 130492074  

**MEST1v1 B  CCI AAC AAC TAC AAC CAC TCC      130492162 to 130492182                           130 

a, * Hemimethylated reference gene MEST transcript variant 1 

b, ** Un-methylated primer for the reference gene MEST transcript variant 1 

M1: Methylation-specific forward primer for the array (inner primer) 

M2: Methylation-specific reverse primer for the array (inner primer) 

M beacon: Methylation-specific probe 

Am: Methylation-specific forward primer for the nested/semi-nested PCR (outer primer/first round of PCR) 

Bm: Methylation-specific reverse primer for the nested/semi-nested PCR (outer primer/first round of PCR) 
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Appendix B.  

 Characteristics of genes used in the gene panel 

Gene Mechanism of action 

ALX4 - Expressed in the mesenchymal cells of developing bones, limbs, hair, teeth, and 

mammary tissue.  

- May be involved in the epithelial to mesenchymal transition in cancer.  

APC - Encodes a tumour suppressor protein that acts as an antagonist of the Wnt/β-catenin-

pathway.  

- Involved in cell migration, adhesion, transcriptional activation, apoptosis and 

angiogenesis.  

- Defects in the gene cause familial adenomatous polyposis coli. 

BMP3 - Encodes a protein belonging to the TGF-β superfamily, which can bind to TGF-β 

receptors, leading to recruitment and activation of SMAD family transcription 

factors and, regulating gene expression.   

- Induces bone formation.  

BNC1 - Encodes a zinc finger protein present in the basal cell layer of the epidermis and in 

hair follicles.  

- Regulates keratinocyte proliferation. 

- May be a regulator of rRNA transcription. 

BRCA1 - Encodes a nuclear phosphoprotein that plays a role in maintaining genomic stability.  

- Acts as a tumour suppressor. 

- Is part of the BRCA1-associated genome surveillance complex, which is associated 

with RNA polymerase II and interacts with histone deacetylase complexes. 

- Plays a role in transcription and DNA repair. 

- Mutations in BRCA1 are involved in inherited breast and ovarian cancers. 

CDKN2A - Encodes tumour suppressor proteins: P16 and P14.  

- P16 is an inhibitor of CDK4 and CDK6 that indirectly prevents phosphorylation of 

the retinoblastoma protein and consequently arrests the cell cycle.  

- P14 is an ARF product that functions as a stabilizer of the tumour suppressor protein 

P53.  

CDKN2B - The gene lies adjacent to the tumour suppressor gene CDKN2A in a region that is 

frequently mutated and deleted in a wide variety of tumours. 

- Encodes a cyclin-dependent kinase inhibitor that forms a complex with CDK4 or 

CDK6 and prevents the activation of CDK kinases. 

- The protein is a cell growth regulator that controls cell cycle G1 progression. 

CHFR - Encodes an E3 ubiquitin-protein ligase. 

- Is involved in regulating cell cycle entry into mitosis. 

ESR1 - Encodes an oestrogen receptor involved in DNA binding and activation of 

transcription. 

- Oestrogen receptors are involved in breast cancer, endometrial cancer, and 

osteoporosis. 

- May be involved in angiogenesis and lymphangiogenesis. 

EYA2 - Encodes a member of the eyes absent (EYA) family of proteins. 

- The protein may play a role in eye development. 

- May act as a transcriptional activator. 

GSTP1 - Glutathione S-transferases (GSTs) are a family of enzymes that play an important 

role in detoxification. 

- GSTP1 proteins are thought to play a role in susceptibility to cancer and other 

diseases. 

HIC1 - Encodes a transcriptional repressor. 

- Is involved in the TGF-β signalling regulation of angiogenesis in cancer. 

- Hypermethylation or deletion has been associated with different tumours.  
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MGMT - Encodes an enzyme involved in DNA repair.  

- Cells lacking MGMT expression have induced angiogenic expression.  

MEST   - Encodes a member of the alpha/beta hydrolase superfamily.  

- Is imprinted, exhibiting preferential expression from the parental allele in foetal 

tissue and isoform-specific imprinting in lymphocytes.  

- The loss of imprinting of this gene has been linked to certain types of cancer and 

may be due to promoter switching.  

MLH1 - Encodes a protein involved in the DNA mismatch repair system.  

- Is also involved in DNA damage signalling, a process that induces cell cycle arrest 

and can lead to apoptosis in case of major DNA damages. 

NEUROG1 - Encodes a transcriptional regulator involved in neuronal differentiation.  

- Is involved in the regulation of the Wnt/β-catenin pathway and target gene 

transcription. 

NPTX2 - Encodes a member of the neuronal pentraxins. 

- The protein is related to C-reactive protein. 

- Plays a role in excitatory synapse formation. 

- The protein is upregulated in Parkinson’s disease. 

PENK - Encodes a preproprotein that is processed to multiple protein products, including 

Met- and Leu-enkephalins. 

- Mimics the effects of opiates by binding to opioid receptors 

RARB - Encodes a member of the thyroid-steroid hormone receptor superfamily of nuclear 

transcriptional regulators.  

- The receptor binds retinoic acid, regulating cell growth and differentiation.  

RASSF1A - Encodes a tumour suppressor protein.  

- Involved in DNA repair, cell cycle control and apoptosis.  

SEPT9 - Encodes a tumour suppressor protein that is a member of the septin family.  

- Involved in cytokinesis, cell cycle control, cell division and angiogenesis. 

SFRP1 - Encodes a member of the SFRP family.  

- Modulators of the Wnt/β-catenin pathway. 

SFRP2 - Encodes a member of the SFRP family.  

- Modulators of the Wnt/β-catenin pathway. 

SST - Encodes the hormone somatostatin. 

- Somatostatin is expressed throughout the body and inhibits the release of numerous 

secondary hormones by binding to somatostatin receptors.  

- The hormone is an important regulator of the endocrine system.  

TAC1 - Encodes four products of the tachykinin peptide hormone family: substance P, 

neurokinin A, neuropeptide K, and neuropeptide γ.  

- Acts as a neurotransmitter that interact with nerve receptors and smooth muscle 

cells.  

TFPI2 - Encodes a member of the kunitz-type serine proteinase inhibitor family.  

- The protein can inhibit a variety of serine proteases including factor VIIa/tissue 

factor, factor Xa, plasmin, trypsin, chymotrypsin and plasma kallikrein. Involved in 

angiogenesis.  

- Is as a tumour suppressor gene in several types of cancer. 

VIM - Encodes a member of the intermediate filament family.  

- Is involved in maintaining cell shape and integrity of the cytoplasm and stabilizing 

the cytoskeleton.  

- It functions as an organizer of numerous of critical proteins involved in attachment, 

migration, and cell signalling.  

WNT5A - Encodes a member of the Wnt/β-catenin pathway. 

Gene functions are cross-matched with the ref-seq database on www.ncbi.gov 
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Appendix C.  

 

Hypermethylation of each gene by patient group 

Gene Pancreatic cancer (N = 95) Screened negative  (N = 27) Chronic pancreatitis (N = 97) Acute pancreatitis (N = 59) 

 n % 95% CI n % 95% CI n % 95% CI n % 95% CI 

ALX4 17 17.84 (10.78-27.10) 2 7.41 (0.91-24.29) 4 4.12 (1.13-10.22) 1 1.69 (0.04-9.09) 

APC 78 82.11 (72.90-89.22) 12 44.44 (25.48-64.67) 53 54.64 (44.21-64.78) 40 67.80 (54.36-79.38) 

BMP3 32 33.68 (24.31-44.11) 5 18.52 (6.30-38.08) 3 3.09 (0.64-8.77) 6 10.17 (3.82-20.8) 

BNC1 34 35.79 (26.21-46.30) 2 7.41 (0.91-24.29) 5 5.15 (1.69-11.62) 4 6.78 (1.88-16.46) 

BRCA1 10 10.53 (5.16-18.51) 4 14.81 (4.19-33.73) 7 7.22 (2.95-14.30) 19 32.20 (20.62-45.64) 

CDKN2A 6 6.32 (2.35-13.24) 1 3.70 (0.09-18.97) 2 2.06 (0.25-7.25) 7 11.86 (4.91-22.93) 

CDKN2B 12 12.63 (6.70-21.03) 2 7.41 (0.91-24.29) 5 5.15 (1.69-11.62) 7 11.86 (4.91-22.93) 

CHFR 1 1.05 (0.03-5.73) 0 0 (0.00-12.77) 3 3.09 (0.64-8.77) 1 1.69 (0.04-9.09) 

ESR1 74 77.89 (68.21-85.77) 17 62.96 (42.37-80.60) 59 60.82 (50.39-70.58) 45 76.27 (63.41-86.38) 

EYA2 13 13.68 (7.49-22.26) 0 0 (0.00-12.77) 8 8.25 (3.63-15.61) 9 15.25 (7.22-26.99) 

GSTP1 3 3.16 (0.66-8.95) 0 0 (0.00-12.77) 1 1.03 (0.03-5.61) 0 0 (0-6.06) 

HIC1 15 15.79 (9.12-24.70) 0 0 (0.00-12.77) 6 6.19 (2.30-12.98) 4 6.78 (1.88-16.46) 

MESTv2 75 78.95 (69.38-86.64) 12 44.44 (25.48-64.67) 57 58.76 (48.31-68.67) 39 66.10 (52.61-77.92) 

MGMT 5 5.26 (1.73-11.86) 0 0 (0.00-12.77) 3 3.09 (0.64-8.77) 0 0 (0-6.06) 

MLH1 14 14.74 (8.30-23.49) 6 22.22 (8.62-42.26) 7 7.22 (2.95-14.30) 17 28.81 (17.76-42.07) 

NPTX2 71 74.74 (64.78-83.10) 17 62.96 (42.37-80.60) 41 42.27 (32.30-52.72) 29 49.15 (35.89-62.50) 

NEUROG1 10 10.53 (5.16-18.51) 3 11.11 (2.35-29.16) 6 6.19 (2.30-12.98) 4 6.78 (1.88-16.46) 

RARB 44 46.32 (36.02-56.85) 12 44.44 (25.48-64.67) 28 28.87 (20.11-38.95) 27 45.76 (32.72-59.24) 

RASSF1A 40 42.11 (32.04-52.67) 4 14.81 (4.19-33.73) 11 11.34 (5.80-19.39) 10 16.95 (8.44-28.97) 

SFRP1 42 44.21 (34.02-54.77) 7 25.93 (11.11-46.28) 17 17.53 (10.55-26.57) 11 18.64 (9.69-30.91) 

SFRP2 37 38.95 (29.11-49.50) 5 18.52 (6.30-38.08) 25 25.77 (17.42-35.65) 4 6.78 (1.88-16.46) 

SEPT9v2 14 14.74 (8.30-23.49) 0 0 (0.00-12.77) 3 3.09 (0.64-8.77) 1 1.69 (0.04-9.09) 

SST 61 64.21 (53.72-73.79) 16 59.26 (38.80-77.61) 30 30.93 (21.93-41.12) 15 25.42 (14.98-38.44) 

TFPI2 22 23.16 (15.12-32.94) 1 3.70 (0.09-18.97) 2 2.06 (0.25-7.25) 0 0 (0-6.06) 

TAC1 56 58.95 (48.38-68.94) 4 14.81 (4.19-33.73) 34 35.05 (25.64-45.41) 15 25.42 (14.98-38.44) 

VIM 3 3.16 (0.66-8.95) 0 0 (0.00-12.77) 0 0 (0-3.73) 0 0 (0-6.06) 

WNT5A 8 8.42 (3.71-15.92) 0 0 (0.00-12.77) 1 1.03 (0.03-5.61) 0 0 (0-6.06) 

PENK 2 2.11 (0.26-7.40) 0 0 (0.00-12.77) 0 0 (0-3.73) 0 0 (0-6.06) 

CI: Confidence interval. 
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Hypermethylation of each gene by cancer stage 

Gene Stage I (N = 11) Stage II (N = 29) Stage III (N = 13) Stage IV (N = 42) 

 n % 95% CI n % 95% CI n % 95% CI n N 95% CI 

ALX4 1 9.09 (0.23-41.28) 2 6.90 (0.85-22.77) 0 0 (0.00-24.71) 14 33.33 (19.57-49.55) 

APC 8 72.73 (39.03-93.98) 24 82.76 (64.23-94.15) 10 76.92 (46.19-94.96) 36 85.71 (71.46-94.57) 

BMP3 1 9.09 (0.23-41.28) 9 31.03 (15.28-50.83) 5 38.46 (13.86-68.42) 17 40.48 (25.63-56.72) 

BNC1 1 9.09 (0.23-41.28) 5 17.24 (5.85-35.77) 4 30.77 (9.09-61.43) 24 57.14 (40.96-72.28) 

BRCA1 1 9.09 (0.23-41.28) 4 13.79 (3.89-31.66) 2 15.38 (1.92-45.45) 3 7.14 (1.50-19.48) 

CDKN2A 1 9.09 (0.23-41.28) 0 0.00 (0.00-11.94) 0 0 (0.00-24.71) 5 11.90 (3.98-25.63) 

CDKN2B 2 18.18 (2.28-51.78) 5 17.24 (5.85-35.77) 2 15.38 (1.92-45.45) 3 7.14 (1.50-19.48) 

CHFR 0 0.00 (0.00-28.49) 1 3.45 (0.09-17.76) 0 0 (0.00-24.71) 0 0.00 (0.00-8.41) 

ESR1 7 63.64 (30.79-89.07) 21 72.41 (52.76-87.27) 11 84.62 (54.55-98.08) 35 83.33 (68.64-93.03) 

EYA2 2 18.18 (2.28-51.78) 4 13.79 (3.89-31.66) 1 7.69 (0.19-36.03) 6 14.29 (5.43-28.54) 

GSTP1 0 0.00 (0.00-28.49) 0 0.00 (0.00-11.94) 1 7.69 (0.19-36.03) 2 4.76 (0.58-16.16) 

HIC1 0 0.00 (0.00-28.49) 4 13.79 (3.89-31.66) 0 0 (0.00-24.71) 11 26.19 (13.86-42.04) 

MESTv2 8 72.73 (39.03-93.98) 24 82.76 (64.23-94.15) 9 69.23 (38.57-90.91) 34 80.95 (65.88-91.40) 

MGMT 1 9.09 (0.23-41.28) 0 0.00 (0.00-11.94) 1 7.69 (0.19-36.03) 3 7.14 (1.50-19.48) 

MLH1 0 0.00 (0.00-28.49) 3 10.34 (2.19-27.35) 3 23.08 (5.04-53.81) 8 19.05 (8.60-34.40) 

NPTX2 9 81.82 (48.22-97.72) 19 65.52 (45.67-82.06) 8 61.54 (31.58-86.14) 35 83.33 (68.64-93.03) 

NEUROG1 1 9.09 (0.23-41.28) 1 3.45 (0.09-17.76) 1 7.69 (0.19-36.03) 7 16.67 (6.97-31.36) 

RARB 5 45.45 (16.75-76.62) 13 44.83 (26.45-64.31) 5 38.46 (13.86-68.42) 21 50.00 (34.19-65.81) 

RASSF1A 5 45.45 (16.75-76.62) 10 34.48 (17.94-54.33) 6 46.15 (19.22-74.87) 19 45.24 (29.85-61.33) 

SFRP1 4 36.36 (10.93-69.21) 12 41.38 (23.52-61.06 4 30.77 (9.09-61.43) 22 52.38 (36.42-68.00) 

SFRP2 4 36.36 (10.93-69.21) 10 34.48 (17.94-54.33) 2 15.38 (1.92-45.45) 21 50.00 (34.19-65.81) 

SEPT9v2 0 0.00 (0.00-28.49) 1 3.45 (0.09-17.76) 0 0 (0.00-24.71) 13 30.95 (17.62-47.09) 

SST 6 54.55 (23.38-83.25) 15 51.72 (32.53-70.55) 5 38.46 (13.86-68.42) 35 83.33 (68.64-93.03) 

TFPI2 4 36.36 (10.93-69.21) 2 6.90 (0.85-22.77) 1 7.69 (0.19-36.03) 15 35.71 (21.55-51.97) 

TAC1 5 45.45 (16.75-76.62) 14 48.28 (29.45-67.47) 5 38.46 (13.86-68.42) 32 76.19 (60.55-87.95) 

VIM 1 9.09 (0.23-41.28) 0 0.00 (0.00-11.94) 0 0 (0.00-24.71) 2 4.76 (0.58-16.16) 

WNT5A 1 9.09 (0.23-41.28) 0 0.00 (0.00-11.94) 2 15.38 (1.92-45.45) 5 11.90 (3.98-25.63) 

PENK 0 0 (0.00-28.49) 0 0.00 (0.00-11.94) 0 0 (0.00-24.71) 2 4.76 (0.58-16.16) 

CI: Confidence interval. 

Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification. 
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Hazard ratio for each gene based on univariate Cox regression analysis 

Gene All stages (N = 95) Stage I/II (N = 40) Stage III (N = 13) Stage IV (N = 42) 

 HR P-value 95% CI HR P-value 95% CI HR P-value 95% CI HR P-value 95% CI 

ALX4 1.43 0.20 (0.83-2.47) 0.82 0.78 (0.19-3.43) 1.00 - - 0.96 0.91 (0.50-1.86) 

APC 0.99 0.97 (0.58-1.70) 0.88 0.76 (0.38-2.01) 0.40 0.21 (0.09-1.69) 1.34 0.51 (0.56-3.19) 

BMP3 1.41 0.13 (0.91-2.18) 0.80 0.59 (0.37-1.77) 0.71 0.58 (0.21-2.41) 3.21 0.00 (1.58-6.53) 

BNC1 2.10 0.00 (1.36-3.25) 1.26 0.61 (0.52-3.06) 1.93 0.30 (0.55-6.75) 1.69 0.11 (0.88-3.21) 

BRCA1 0.76 0.44 (0.38-1.52) 0.88 0.82 (0.31-2.52) 0.00 1.00 - 2.42 0.16 (0.70-8.34) 

CDKN2B 0.80 0.49 (0.42-1.51) 0.79 0.59 (0.33-1.90) 1.18 0.84 (0.25-5.63) 1.82 0.33 (0.55-6.03) 

CHFR 0.38 0.34 (0.05-2.76) 0.53 0.53 (0.07-3.90) 1.00 - - 1.00 - - 

ESR1 1.21 0.45 (0.74-1.99) 0.89 0.75 (0.44-1.82) 0.68 0.64 (0.14-3.40) 1.27 0.57 (0.56-2.89) 

EYA2 1.41 0.26 (0.78-2.55) 1.93 0.15 (0.79-4.71) 0.54 0.57 (0.07-4.37) 1.31 0.54 (0.55-3.16) 

GSTP1 6.91 0.00 (2.08-22.96) 1.00 - - * 1.00 - 2.33 0.26 (0.54-9.99) 

HIC1 1.37 0.27 (0.78-2.39) 1.49 0.46 (0.51-4.34) 1.00 - - 0.92 0.82 (0.45-1.88) 

MEST1v2 1.45 0.16 (0.86-2.45) 1.97 0.13 (0.81-4.79) 1.88 0.36 (0.49-7.22) 1.21 0.63 (0.56-2.64) 

MGMT 2.21 0.09 (0.88-5.54) 3.02 0.29 (0.39-23.38) 0.71 0.75 (0.09-5.71) 3.45 0.06 (0.96-12.44) 

MLH1 1.85 0.04 (1.03-3.32) 1.54 0.49 (0.46-5.18) 0.95 0.94 (0.24-3.70) 1.79 0.15 (0.81-3.96) 

NPTX2 1.05 0.85 (0.65-1.68) 1.12 0.75 (0.55-2.29) 0.70 0.55 (0.22-2.26) 0.62 0.26 (0.27-1.42) 

NEUROG1 1.41 0.32 (0.72-2.74) 2.51 0.22 (0.57-11.00) 0.38 0.37 (0.05-3.13) 0.85 0.70 (0.38-1.93) 

RARB 1.07 0.73 (0.71-1.62) 1.03 0.93 (0.53-1.99) 1.64 0.42 (0.49-5.43) 0.98 0.95 (0.53-1.82) 

RASSF1A 1.30 0.22 (0.86-1.97) 1.35 0.39 (0.68-2.68) 1.08 0.90 (0.34-3.49) 1.33 0.38 (0.70-2.51) 

SFRP1 2.11 0.00 (1.38-3.23) 1.60 0.17 (0.82-3.13) 3.50 0.08 (0.86-14.22) 4.57 0.00 (2.02-10.34) 

SFRP2 0.73 0.17 (0.46-1.14) 0.31 0.01 (0.14-0.71) 2.47 0.28 (0.48-12.86) 1.08 0.81 (0.58-2.02) 

SEPT9v2 2.37 0.00 (1.32-4.27) 3.37 0.25 (0.43-26.37) 1.00 - - 1.22 0.55 (0.63-2.38) 

SST 1.63 0.03 (1.06-2.51) 1.15 0.67 (0.60-2.23) 2.44 0.15 (0.72-8.33) 1.67 0.23 (0.73-3.80) 

TFPI2 2.22 0.00 (1.34-3.68) 1.39 0.50 (0.53-3.63) 5.48 0.17 (0.50-60.52) 2.59 0.01 (1.25-5.39) 

TAC1 1.44 0.09 (0.95-2.20) 1.06 0.87 (0.55-2.04) 1.28 0.69 (0.37-4.45) 1.69 0.16 (0.81-3.52) 

VIM 1.55 0.46 (0.49-4.94) 1.20 0.86 (0.16-8.94) 1.00 - - 1.89 0.39 (0.45-8.00) 

WNT5A 2.32 0.03 (1.09-4.94) 3.02 0.29 (0.39-23.38) 7.05 0.05 (0.97-51.19) 1.05 0.91 (0.41-2.72) 

CDKN2A 1.71 0.22 (0.73-3.97) 9.24 0.05 (1.03-82.68) 1.00 - - 0.76 0.56 (0.29-1.95) 

PENK 2.03 0.33 (0.49-8.40) 1.00 - - 1.00 - - 0.96 0.95 (0.23-4.02) 

Variable analyzed by simple Cox regression analysis.  

Bold marks the genes with a statistically significant HR. 

HR: Hazard ratio. 

CI: Confidence interval. 
Note: Stage is in accordance with The American Joint Committee on Cancer (AJCC) stage classification. 

*One patients with stage III disease had hypermethylation of GSTP1. This patient died only eight days after the diagnosis, resulting in a HR of 

19.32x10^16 (p-value = 1) for GSTP1 hypermethylation in stage III disease. 
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