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Chapter 3 

PROBABILISTIC MODELS FOR LOADS AND RESISTANCE VARIABLES 

3.1 INTROOUCTION 

In this chapter the aim is to examine the way in which suitable probabilistic models can be 

developed to represent the uncertainties that exist in typical basic variables. We shall first 

consider the problem of modeiling physical variability and then turn to the question of in­

corporating statistical uncertainty. 

Load and resistance parameters clearly require different treatment, since loads are generally 

time-varying. As discussed in chapters 9 and 10, time-varying loads are best modelled as sto­

chastic processes, but this is not a convenient representation for use with the methods of re­

liability analysis.being presented here (chapters 5 and 6). Instead, it is appropriate to use the 

distribution of the extreme value of the load in the reference period for which the reliability 
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is required; or, where there are two or more time-varying loads acting on a structure together, 

the distribution of the extreme combined load or load effect. The particular problems associated 

with the analysis of combined loading are discussed in chapter 10. 

The selection of probabilistic models for basic random variables can be divided into two parts -

the choice of suitable probability distributions with which to characterize the physical uncertain­

ty in each case and the choice of appropriate values for the parameters of those distributions. 

For most practical problems neither task is easy since there may be a number of distributions 

which appear to fit the available data equally well. As mentianed above, loadsand resistance 

variables require different treatment and will be discussed separately. However, i t is first neces­

sary to introduce the important subject of the statistical theory of extremes which is of rele­

vance to both load and strength variables. This topic is discussed in the next two sections. 

3.2 STATISTICALTHEORY OF EXTREMES 

In the modelling of loads and in the reliability analysis of structural systems it is necessary to 

deal with the theory of extreme values. For example, with time-varying loads, the analyst is 

interested in the likely value of the greatest load during the life of the structure. To be more 

precise, he wishes to know the probability distribution of the greatest load. This may be inter­

preted physically as the distribution that would be obtained if the maximum lifetime load were 

measured in an infinite set of nominally identical structures. 



38 3. PROBABILISTIC MODELS FORLOADSAND RESISTANCE VARIABLES 

In an analogous way, i f the strength o f a structure depends o n the strength o f the weakest af 

a number of elements - for example, a statically determinate truss - one is concerned with the 

probability distribution of the minimum strength. 

In general, one can estimate from test results or records the parameters of the distribution of 

the instantaneous values of load or of the strengthof individual components, and from this in­

formation the aim is to derive the distribution for the smallest or !argest values. 

3.2.1 Derivation of the cumulative distribution of the ith smallest value of n identically dis­

tributed independent random variables xi 

Assume the existence of a random variable X (e .g. the maximum mean-hourly wind speed in 

consecutive yearly periods) having a cumulative distribution function 1:"-;<. and a corresponding 

probability density function fx . This is often referred to as the pare n t distribution. Taking a 

sample size of n (e.g. nyears recordsand n values of the maximum mean-hourly wind speed) 

let the cumulative distribution function of the ith smallest value Xi in the sample be F x.n and 

its corresponding density function b e fx~ . 

T hen 
l 

fxn (x)dx = constant X probability that (i -l) values of X fall below x 
l 

X probability that (n- i) values of X fall above x 

l 

X probability that l value of X liesin the range x to (x+ dx) 

= cFk-l (x)(l- Fx(x))n-ifx(x)dx (3.1) 

where 

c= (i~(~)~;~ i)!= the number of ways of choosing (i- l) values less than x, 

together with (n- i) values greater than x (3.2) 

Thus 

(3.3) 

Th.is can be shown to be equal to 

d x 

Figure 3.1 
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_ n(n-1)! [<Fx(Y))i_ (n-i) (Fx(Y))i+l ( n-i ) 
Fx~(y)- (i -l)!(n-i)! i l (i+ l) + 2 x 

(Fx(Y))i+2 - (n-i) ( n-i ) (Fx(Y))n J 
(i+2) ... +( l) n-i n ( 3.4) 

Exercise 3.1. Show that equation (3.4) can bederived from equation (3.3) by expanding 
(l- Fx(x))n-i and integrating by parts. 

Equation ( 3.4) gives the probability distribution function for the ith smallest value o f n values 

sampled at random from a variable X with a probability distribution F x. 

Two special cases will now be considered in the following examples. 

Example 3.1. For i= n equation (3.4) simplifies to: 

(3.5) 

Thisis the distribution function for the maximuro value in a sample size n. 

Example 3.2. For i= l equation (3.4) simplifies to: 

(3.6) 

Thisis the distribution function for the minimum value in a sample size n. 

I t should be noted that F X n (x) may also b e interpreted as the probability o f the non-occur-
n 

rence of the event (X> x) in any of n independent trials,so that equation (3.5) follows imme-

diately from the multi plication rule for probabilities. Equation ( 3.6) may be interpreted in an 

analogous manner. See also c hapter 7. 

3.2.2 Normal extremes 

If a random variable is normally distributed with mean J.Lx with standard deviation ax the vari­

able has a distribution function Fx (see (2.46)) 

\

x l l l t-J.L l 
F (x) = -- - exp( -- ( X) ) dt x • __ ...[2; ax 2 ax (3.7) 

If we are interested in the distribution of the maximum value of n identically distributed normal 

random variables with parameters J.Lx and ax this has a distribution function 

Fxn(x) = \ . ro-= a exp(--2 ( 
0 

X) ) dt 
(

,x l l l t-J.L l )n 
n , __ v 21T X X 

(3.8) 

It should be noted that Fx n is not normally distributed. 
n 
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- l 

Figure 3 .2. 

o l 2 3 4 

The probability density function fx n = dd (F X n ) is shown in figure 3.2 for various values o f n 
n X n 

and with X distributed N(O, 1). 

3.3 ASYMPTOTIC EXTREME· VALUE DISTRIBUTIONS 

It is fortunate that for a very wide class of parent distributions, the distribution functions of the 

maximum or minimum values of large random samples taken from the parent distribution tend 

towards certain limiting distributions as the sample becomes large. These are called asymptotic 

extreme-ualue distributions and are of three main types, I, II and III. 

For example, if the particular variable of interest is the maximum of many similar but ind~ 

pendent events (e.g. the annual maximum mean-hourly wind speed at a particular site) there 

are generally good theoretical grounds for expecting the variable to have a distribution function 

which is very close to one of the asymptotic extreme value distributions. For detailed informa­

tion on this subject the reader should refer to a specialist text, e.g. Gumbel [3.8] or Mann, 

Schafer and Singpurwalla [3.11]. Only themost frequently used extreme-value distributions 

will be re ferred to here. 

3.3.1 Type I extreme-value distributions (Gumbel distributions) 

Type I asymptotic distribution of the /argest extreme: If the upper tail of the parent distribution 

falls off in an exponential manner, i.e. 

(3.9) 

where g is an increasing function of x, then the distribution function Fy of the largest value Y, 

from a large sample selected at random from the parent population, will be of the form 

Fy(Y) = exp(-exp(-a(y -u))) a>O (3.10) 

Formally, Fy will asymptotically approach the distribution given by the right hand side of 

equation (3.10) as n~ oo . 
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u 

Figure 3.3 

The parameters u and a are respectively measures of location and dispersion. u is the mode of 

the asymptotic extreme-value distribution (see figure 3.3). 

Themeanand standard deviation of the type I maxima distribution (3.10) are related to the 

parameters u and a as follows 

- + 'Y .,... + 0.5772 !J.y- u a-- u a (3.11) 

and 

1T a =--
Y VGa (3.12) 

where -y is Euler's constant. This distribution is positively skew as shown in figure 3.3. 

A useful property of the type I maxima distribution is that the distribution function Fyn for 
n 

the !argest extreme in any sample of size n is also type I maxima distributed. Furthermore, the 

standard deviation remains constant (is independent of n), i.e. 

(3.13) 

This property is of helpin the analysis of load combinations when different numbers of repe­

titions of loads ni need to be considered (see chapter 10). In this connection, it is useful to be 

able to calculate the parameters of the extreme variable Y~ from a knowledge of the para­

meters of Y. 

lf Y is type I maxima distributed with distribution function Fy given by equation (3.10) and 

with parameters a and u, then the extreme distribution of maxima generated in n independent 

trials has a distribution function 

Fyn (y) = exp(- n exp(- a(y- u))) 
n 

(3.14) 
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with mean given by 

- Æ !J.yn - !J.y + ay ~n(n) 
n 1T 

(3.15) 

Type I asymptotic distribution of the sma/lest extreme: Thisis of rather similar form to the 

Type I maxima distribution, but will not be discussed here. The reader should refer to ane of 

the standard texts- see [3.8], [3.11] or [3 .5) . 

3.3.2 Type Il extreme-value distributions 

As with the type I extreme-value distributions, the type II distributions are of two types. Only 

the type II distribution of the largest extreme will be considered here. ~ts distribution function 

Fy is given by 

Fy(Y) = exp(- (u/y)k) , y~ O, u> O, k> O 

where the parameters u and k are related to the mean and standard deviation by 

!J. y =u r (l - 1/k) 

l 

Oy = u(r(l- 2/k)- r 1 (l -l/k)]2 

where r is the gamma function defined by 

r (k) =~:e -uuk-l du 

with k> l 

with k> 2 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

It should be noted that for k~ 2, the standard deviation ay is not defined. It is also of interest 

that if Y is type II maxima distributed, then Z = ~n Y is type I maxima distributed. 

Exercise 3.2. Let Y be type II ma.xima distributed with distribution function Fy and 
coefficient of variation ay/!J.y. Show that the variable representing the largest extreme with 
distribution function (Fy(Y))n has the same coefficient of variation. 

The type II ma.xima distribution is frequently used in modelling extreme hydrologicaland me­

terological events. It arises as the limiting distribution of the !argest value of many independent 

identically distributed random variables, when the parent distribution is limited tovalues greater 

than zero and has an infinite tail to the right of the form 

(3.20) 

3.3.3 Type III exuem~value distributions 

In this case only the type III asymptotic distribution of the smaltest extreme will be considered. 

It arises when the parent distribution is of the form: 
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with x ;æ: e (3 .21) 

i.e. the parent distribution is limited to the left at a value x = e. 

In many practical cases e may be zero (i.e. representing a physicallimitation on, say, strength). 

The distribution of the minimum Y of n independent and identically distributed variables Xi 

asymptotically approaches the form 

y-~: 
F (y)= l- exp(- (--)13) 

Y k-~: 
with y ;æ:~:, p> O, k> e ;æ: O 

asn-+oo. 

The m e an and standard deviation o f Y are : 

and 

l 
Ily ~:+(k-~:)r(l+(f) 

(3.22) 

(3.23) 

(3.24) 

The type III minima distribution (3.22) is aften known as the 3-parameter Weibull distribu­

tion and has frequently been used for the treatment of fatigue and fracture problems. 

For the special case e = O, the distribution simplifies to the so-called 2-parameter Weibull 

distribution 

-(!.)ø 
Fy(Y) =l- e k 

Fy(Y) 

1-10-7 

1-10-6 
1-10~ 
1-10~ 

l- 10-3 
~normal_ 

1-10-2 

1-10"" ~ 
0.5 v 
10"" l 

IJ1 10-2 

10-3 l f/i l 
lO~ l ·' l 

lO~ l /1/ l 

10-6 l l 
l l 

./ --l ./ --l / -J..--\ ~------ --
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v~- - \_ ~ type I maxima 
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'-" \_log-norm1~ 
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Figure 3.4. Cumulative distributions of different distribution functions (1-'y = l, uy = 0.2). 

(3.25) 

y 
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with 

and 

l 
JJ. = kf(l +-) y ~ 

(3.26) 

(3.27) 

Comparisans of the type I maxima and type II maxima distributions with the normal and log­

normal distributions are shown in figure 3.4. The random variables in each case have the same 

meanand standard deviation , namely 1.0 and 0.2. 

3.4 MODELLING OF RESISTANCE VARIABLES- MODEL SELECTION 

3.4.1 General remarks 

In this section some general guidelines are given for the selection of probability distributions to 

represent the physical uncertainty in variables which affect the strength of structural compo­

nents and complete structures - for example, dimensions, geometrical imperfections and ma­

terial properties. Since each materlal and mechanical property is different, each requires indivi­

dual attention. Nevertheless, a number of general rules apply. Attention will be restricted here 

to the modelling of continuously distributed as opposed to discrete quantities. 

The easiest starting point is to consider the probability density function .fx of a random variable 

X as the limiting case of a histogram of sample observations as the number of sample elements is 

increased and theclassinterval reduced. However, for small sample sizes, the shape of the histo­

gram varles somewhat from sample to sample, as a result of the random nature of the variable. 

Figure 3.5 shows two sets of 100 observations of the thickness T of reinforced concrete slabs 

havinganominal thickness of 150 mm, which mustrates this point. These data were not, in faet, 

obtained by measurements in real structures but were randomly sampled from a logarithmic 

normal distribution with a mean ~-'T = 150mmand a coefficient of variation VT = 0.15 (see ap­

pendix A) . The corresponding density function fT is also shown in figure 3.5. 

For comparison, figure 3.6 shows data obtained from a real construction site. 

Å clear distinction must be made, however, betweenahistogram or a relative frequency dia­

gram on the one hand and a probability density function on the other. Whereas the former is 

simply a record of observations, the latter is intended for predicting the occurrence of future 

events- e.g. a thickness less than 100 mm. 

If the probability density function fx of a random variable X is interpreted as the limiting case 

of a histogram or relative frequency diagram as the sample size tends to infinity, the probability 

P given by 

,x2 
P= P(x1 <X..;;; x2 ) = \ fx(x)dx 

• xl 

(3 .28) 
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Figure 3.6. Histogram of slab thickness measurements. 
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clearly has a relative frequency interpretation; i.e. if a very large sample of variable X is obtained 

at random, the proportion of values within the sample falling in the range x1 < X ~ x2 is likely to 

to be very cl ose to P. However, t his interpretation may not in practice be to o hel p ful. All that 

can be said is that i f a variable X does in faet have a known probability density function fx, 

and if i t is sampled at random an infinite number of times, the proportion in the range l x1 , x2 [ 

will be P. 

The problem of modeiling is completely different. In general the engineer is likely to have only a 

relatively small sample of actual observations of X, along with some prior information obtained 

from a different source. The problem then is how best to use all this information. Befare this 

question can be answered it is necessary to define exactly what the variable X represents. Thisis 

best explained by means of an example. 

Example 3.3. Consider the mechanical propertiesofa single nominal size of continuously· 
cast hot-rolied reinforcing steel. Let us restrietour attention to a single property, the dy­
namic yield stress, ayd' determined at a controlled strain rate of 300 micro-strain per minute 
and defined as the average height of the stress-strain curve between strains of 0.003 and 0.005, 
i.e . 

l .. ~=0.005 
ayd = 0.002 \ ay{e)de (3.29) 

• ~ "'0.003 

where ay(e) is the dynamic yield stress at strain e. 

Let us assume that this property can be measured with negligible experimental error and that 
all the reinforcing bars from a single cast of steel arecut into test specimens 0.5 m long and 
then tested. If a d is plotted against Z, the position in the bar, the outcome will be of the form 
shown in figure ~.7 . Thisis an example of a st~p-wise continuous-state/continuous-time sto­
chastic process X( t) in which the parameter t may be interpreted as the distance Z along the 
reinforcing bar. (See chapter 9 for further details of stochastic processes) . 

The process is interrupted approximately every 600 m because the continuously cast steel is 
cut in to ingots and these are re-heated and ralled separately. The fluctuations in yield stress 
within each 600 m length are typically very small, i.e. in the arder of l · 2 N/mm2

• For each 
600 m length ~. the spatial average yield stress ayd is defined as 

- l d 
a yd =Q\ a yd d~ ( 3.30) 

Jo 
The variations in ayd from one ralled length to another are typically larger than the within· 
length variations and are caused mainly by differences in the temperature of the ingot at the 
start of rolling and by a number of other factors. Some typical data giving values of ·ayd for 
consecutive lengths of 20 mm diameter hot-ralled high-yield bars from the same cast of steel 
are shown in figure 3.8 (along with values for the static yield stress). These can be con­
sidered as a continuous-state/discrete-time stochastic process. It can be seen that there is a 
fairly strong positive cerrelation between ayd for adjacent lengths, as might be expected. 

If ~c is the totallength of reinforcement produced from a single cast of steel then the 
average yield stress for the cast can be defined as 

= l ., l!e 

ayd =Q\ aydd2 
c Jo 

(3.31) 
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Figure 3.7 Variations in dynamic yield stress along a 20 mm diameter hot-rolied reinforcing bar. 
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Figure 3.8. Within·caat variations in the yield stress of a 20 mm diameter hot·rolled reinforcing bar. 
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Provided that the variations in yield stress along each 600 m length of continuously ralled 
bar can be assumed to be small in comparison with variations in a yd, the average yield stress 
for the cast may be expressed as 

n 
= -l ~ (") 
ayd -n ~ ayd l 

!=l 

(3.32) 

where a yd (i) is the yield stress of the ith bar and n is the number of bars ralled from the 
c as t. 

If we are interested in the statistical distribution of the yield stress of reinforcing bars sup­
plied to a construction site, account must also be taken of the variations in cryd that occur 
from cast to cast. If the steel is to be supplied by a single manufacturer and very close con­
tro! is exercised over the chemical composition of each cast, variations in cryd will be very 
smal!; but if the chemistry is not well controlled significant diffc;Pnces between casts can 
occur. If bars are supplied by a number of different manufacturers, systematic differences 
between manufacturers will be evident even for nominally identical produets ( e.g. 20 mm 
diameter bars) because of differences in rolling procedures. 

A final effect which must be taken into account is the systematic change in mean yield 
stress with bar diameter as illustrated in figure 3.9. This phenomenon is quite marked and 
is rarely taken into account in structural design. 

Yield stress (N/ mm2
) 

550 
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Bar diameter(mm) 
400+-----~------~------+-----~-----

o lO 20 

x Balter and Wickham (1979) 
o Baker (1970) 
• Bannister ( 1968) 

30 40 

Figure 3.9. Mean yield stress for hot-rolied high yield bars of different diameters. 
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From the preceding example it is clear that there are many sources of physical variability which 

contribute to the overall uncertainty in the yield stress of a grade of reinforcing steeL Let us 

now define the quantity X as the random variable representing the yield stress of a particular 

grade of reinforcing steel irrespective of source and where »yield stress» is defined in a precise 

way. W e now wish to establish a suitable probability density function for X to use in further 

calculations. It is clear that the mathematical form of f will depend on the particular subset of x 
X, e.g.: 

Let A. be the event [bars are supplied by manufacturer i) 
l 

B. be the event [bars are of diameter j] 
J 

C be the event [bars are from a single cast of steel) 

Then in general the density functions fx, fX l At, fX IBj' fX IAtnBl ' fXIAt n 81 n C etc. will all be 
different; not only their parameters but also their shapes. It is also clear that the probability 

density function fx representing all bars, irrespective of size or manufacturer, will not be of a 

simple or standard form (e.g. normal, lognormal, etc.). It will take the form 

(3.33) 

where pi is the probability that a bar will be supplied by manufacturer i and where 

m 

fXIAt (x)= q l fx !At n Bt (x)+ q2fX lA t n 82 (x)+ · ·· +qm fX l At n Bm (x) ' J: qj = 1 
l 

(3.34) 

qj being the probability that the bar is o f diameter j. 

Equation (3.33) represents what is known as a mixed distribution model. 

lt should be noted that because of the systematic decrease in reinforcing bar yield stress with 

increasing diameter, equation (3.34) gives rise to a density function fx
1 
A

1 
which is flatter and 

has less pronounced tails (platykurtic) than any of the component distributions fxiAt n B( 

Furthermore, it is generally found that the density function fx
181 

representing barsofa par­

ticular size considered over all manufacturers is highly positive! y ske w. The reason for this is 

discussed in example 3.4 below. 

Example 3.4. The yield stress of hot-ralled steel piates of a single nominal thickness and 
grade of steel, supplied by a single manufacturer, can be shown to be closely represented 
by a log-normal probability distribution (see equation (2.51)), as illustrated by the cumula­
tive frequency diagrams in figure 3.10. If, however, data from a number of manufacturers 
are combined, the distribution becomes highly skew. This is because manufacturers with 
high produet variability have to aim for higher mean properties than manufacturers whose 
produets can be closely controlled to achieve the same specified yield stress, for a given 
probability of rejection. See figure 3.11. It should be noted that the scales chosen in figures 
3.10 and 3.11 are such that a logarithmic normal distribution plotsasastraight line. 
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Figure 3 .10. Cumulative frequency diagram for yield stresa of mild steel plates. 
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We now return to the question of selecting a suitable probability distribution to model the un­

certainty in the strength variable X. It should be clear from the preceding arguments that a 

procedure of random sampling and testing of, say, reinforcing bars at a construction site and 

attempts to fit a standard probability distribution to the data will not lead to a sensible out­

come. In particular, such a distribution will behave poorly as a predictor of the occurrence of 

values of X outside the range of the sample obtained. The only sensible approach is to synthe­

sise the probability distribution of X from a knowledge of the component sources of uncer­

tainty (as in equation (3 .33)). Admittedly this approach can be adopted only when such in­

formation is available. Expressing this problem in anether way, it is important that the sta­

tistical anal y sis o f data should be restricted to samples which are homogeneous (o r more pre­

cisely- for which there is no evidence of non-homogeneity). 

A further aspect of modellingmust now be introduced. Models do not represent reality, they 

only approx.imate it. As is well known in other branches of engineering, any one of a number 

of different empirical models may aften be equally satisfactory for some particular purpose, 

e.g. finite-element versus finite-difference approaches. The same is true of probabilistic models. 

The question that must be asked is whether the model is suitable for the particular application 

where it is to be used. 

For most structural reliability calculations, the analyst is concerned with obtaining a good fit 

in the lower tails of the strength distributions, but this may not always be important - for 

example, when the strengthof a structural member is gavemed by the sum of the strengths 

of its components. Thisis illustrated by the foliowing example. 

Example 3.5. Consider an axially-loaded reinforced concrete column, a cross-section of 
which is shown in figure 3.12. If, for the sake of simplicity, the load-carrying capacity of 
the column is assumed to be given exactly by: 

12 
R=r +~R. (3.35) c ..:... l 

i•1 

where re is the load-carrying capacity of the concrete (assumed known) and Ri is the ran­
dom load-carrying capacity of the ith reinforcing bar at yield. Then, if the various Ri are 
statistically independent, 

12 12 

E[ R)= E[rc +.};Ri)= re +.I E[Ri) (3.36) 
i•l i•1 

and 
12 12 

Var[R) = Var[rc + ~Ri)=}; Var[ Ri) (3.37) 
i•1 i .. l 

i.e . 

• • •• • : -+-: 
•• ••• 

Figure 3.12. Cross-section of reinforced concrete column. 
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12 

1-LR =re + L I-LR1 
i=1 

12 l 

a =(L az )2 
R Ri 

i=1 

(3.38) 

(3.39) 

Assuming further that the various Ri are also identically distributed normal variables, 
N(100, 20) with units of kN, and that re= 500 kN, then 

J..LR = 500 + 12 X 100 = 1700 kN and aR = 69.28 kN 

Since R is also normally distributed in this case, the value ofR which has a 99.99% chance 
of being exceeded is thus 

J..LR + <l> -l (0 .0001)aR = 1700-3.719 X 69.28 = 1442 kN 

This totalload-carrying capacity corresponds to an average load-carrying capacity of 
(1442- 500)/12 = 78.5 kN for the individual reinforcing bars, i.e. only 1.07 standard de­
viations below the mean. 

Forthis type of structural configuration (in faet, a parallel duetile structural system in the 
reliability sense - see c hapter 7) in which the structural strength is g ovemed by the average 
strength of the components, it can be anticipated from the above · although it will not be 
formally proved here · that the reliability of the structure is not sensitive to the extreme 
lower tails of the strength distributions of the components. Hence the lack of availability of 
statistical data on extremely low strengths is not too important, for such cases. 

Finally, i t should be emphasised that these condusions are based on the assumption that 
the various Ri are statistically independent. 

Exercise 3.3. Giventhat the column discussed in example 3.3 is subjected to an axialload 
of 1500 kN, calculate the probability that this load exceeds the load-carrying capacity. Re­
calculate the probability under the assumption that the various Ri are.mutually fully corre­
lated (p = + 1). 

3.4.2 Choice of distributions for resistance variables 

1t has already been menticned that unless experimental data are obtained from an effectively 

homogeneous source, formal attempts to fit standard forms of probability distribution to the 

data are hardly worthwhile. When data from two or more sources are present in a single sample, 

the overall shape of the cumulative frequency distribution is likely to depend as much, if not 

more, on the relative number of observations from each source than on the actual, but unknown, 

probability distribution of each sub-population. Extreme caution should therefore be exercised 

if the type of probability distribution is to bechosenon the basis of sample data alone. 

A preferable approach is to make use of physical reasoning about the nature of each particular 

random variable to guide the choice of distribution. A number of limiting cases will now be stu­

died. 
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The normal (Gaussian) distribution: As discussed in chapter 2, this is one of the most important 

probability distributions. It arises whenever the random variable of interest X is t he sum of n 

identically distributed independen t random variables, Yi, irrespective o f the probability :iistribu­

tion of Yi , provided themeanand variance of Yi are finite. 

Formally, if Y1 , Y2 , ... , Yn are independent identically distributed random variables with finite 

mean Ily and finite variance a~, and if X= Y1 + Y2 + ... + Y
0

, then as n~ oo 

X-n/l 
P( a < ..;n Y.;;; 13) ~ <1>(13)- <f>(a) 

ay n 
(3.40) 

for all a, 13 (a < 13 ), and where <f> is the standard normal distribution function . This is known as 

the centrallimit theorem. 

Provided a further set of conditions hold, the central limit theorem also applies to the sum of in­

dependent variables which are not identically distributed. The rate at which the sum tends to 

normality depends in practice on the presence of any dominant non-normal components . 

It is therefore clear that any structural mernher whose strengthis a linear function of a number 

o f independent random variables may in general b e considered to be g ovemed by the normallaw. 

Example 3.6. Consider again the reinforced concrete column discussed in example 3.5. Since 
the strength of the concrete is assumed known and the strengths of the reinforcing bars have 
been assumed to be independent, it may be concluded that the load-carrying capacity of the 
column R is normally distributed. (Whether this is true in practice clearly depends on a num­
ber of other factors and whether these assumptions are valid). 

It is sametimes argued that the normal distribution should not be used to model resistance varia­

bles because it gives a finite probability of negative strengths. However, this apparent criticism can 

be assumed to be relatively unimportant if the strength of a component can be considered to be 

the sum of a number of independent random variables, thereby invoking the centrallimit theorem. 

The logarithmic normal distribution: The logarithmic normal ( or log-normal) distribution is fre­

quently used for modeiling resistance variables and has the theoretical advantage of precluding ne­

gative values. The mathematical form and parameters of the log-normal distribution were discussed 

in chapter 2 (equation (2.51)). The log-normal distribution arises naturally as a limiting distribution 

w hen the random resistance X is the produet of a number of independen t identically distributed 

component variables, i.e. 

n 

x = z l z2 . .. z" = II zi 
i• l 

Clearly Y given by 

n 

Y = 2nX = 2nZ1 + 2nZ2 + .. . + 2nZ
0 

= I 2nZi 
i•l 

.(3.41) 

(3.42) 

tends to normality as n ~ oo, f oHowing the centrallimit theorem, regardless o f the probability 

distribution of 2nZi. The probability distribution of X, therefore, tends towards the log-normal, 

as n increases. 
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Whether X may be regarded as a log-normal random variable in any practical situation in which 

X is the produet of a number of random variables depends on the circumstances. The log-normal 

distribution is, however, used very widely in reliability studies. 

Example 3.7. Many frietion problems are govemed by relationships of the form 

P= ke"a (3.43) 

where k, p. .and a are variables. 

It is therefore to be expected that strength parameters which are affected by friction, 
(e.g. the shear strengthof cohesionless soils, cables, etc.) will tend to be log-normally dis­
tributed, since spatial variations in the coefficient of frietion p. Wlh give rise to expres­
sions of the form 

(3.44) 

The Weibull distribution: This distribution is used quite frequently to model the distribution 

of the strengthof a structural component whose strengthis govemed by size of its largest de­

fect. If it is assumed that certain components, such as welded joints, contain a large number 

of smal! defects and that the severity of these defects is distributed in an appropriate manner, 

the distribution of the component strength approaches the Weibull distribution. As discussed 

in section 3.3.3 it is one of the so-called asymptotic extreme value distributions. Its density 

function is given in equations (2.55) and (2 .56). 

O t her distributions: A number of other common distributions exist which may on occasions be 

useful for modelling the uncertainty in resistance variables- for example, the rectangular, beta, 

gamma and t-distributions. For information of these distributions the reader should consult a 

standard text, e.g. [3 .5]. 

3.5 MODELLING OF LOAD V ARlABLES ·MODEL SELECTION 

3.5.1 General remarks 

The term load is generally understood to mean those forces acting on a structure which arise 

from extemal influences - principally the effects o f gravity, and aerodynamic and hydrodyna­

mic effects, e.g. structural self-weight, superimposed loads, snow, wind and wave loads. The 

term action is now often used as a more general description to inelude both loads and imposed 

deformations. Examples of the latter are dimensional changes arising from temperature effects 

and differential settlement. Both loads and imposed deformations give rise to sets of action­

effects (often loosely referred to as load-effects) within a structure, e.g. bending moments and 

shear forces. 

Unlike resistance variables, most of which change very little during the life of a structure, loads 

and other aetions are typically time-varying quantities. The main exception of course is the self­

weight of permanent structural and non-structural components. As menticned earlier, time­

varying quantities are hest modelled as stochastic processes, but discussion of this topic is post­

poned to chapters 9 and 10. 
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It is often helpful to classify loads and other aetions in accordance with the foliowing three 

attributes [ 3 .9] . E ae h load o r action can be deseribed as 

• permanent or variable 

• fixed or free 

• static or dynamic 

These three independent attributes relate to the nature of the action with respect to 

• its variability in magnitude with time 

• its variability in position with time 

• the nature of the induced structural response 

Thus the load imposed by vehicles on a lightly-damped long-span bridge could be deseribed as 

being variable, free and dynamic. In general, loads and aetions eannot be sensibly classified 

without a knowledge of the structure on which they are acting. Forany particular action and 

structure, the attributes listedabove also govern the nature of the structural analysis that must 

be undertaken. 

55 

To some degree nearly allloads could be considered to be variable, free and dynamic , but whether 

each is classified as such depends on the response of the structure to the loading. 

Example 3.8. Consider a steel bridge loaded solely by a sequence of partialiy-laden vehicles. 
As far as the imposed loads are concerned, the probability of failure of the bridge by a sim­
ple plastic callapse mechanism depends only on the weight of the heaviest vehicle (assuming 
that only one vehicle can be on the bridge at any one time). However, the probability of 
failure by fatigue will also depend on (a) the weights of the other vehicles and (b) whether 
the individual vehicles induce any appreciable dynamic response. Clearly, there is only one 
source of loading, but the way in which it is classified and modelled is dictated by the fail­
ure mode being analysed. 

It should be noted that the preceding classification applies both to the aetions themselves 

and to the mathematical models that are used to represent them. 

A further distinction that should be made is between loading models used for the purposes 

o f normal (de terministic) design and those required for structural reliability analysis. To take 

the simplest case, although a permanent fixed load is considered to be an action which does 

not vary with time or in position, it must generally be classed as an uncertain quantity for the 

purposes of reliability analysis, since in general its magnitude will not be known. It must there­

fore be modelled as a random variable. However, for deterministic design purposesit can be 

represented by a single specified constant. 

It will not have escaped the attention of the reader that the modeiling of loads and aetions re­

quires a certain degree of subjective judgement. The same is true for resistance variables. This 

should not, however, be seen as a !imitation, since the aimisnot to produce a perfect image of 

reality (an impossible task), but to develop a mathematical model of the phenomenon which 

embodies its salient features and which can be used to make optimal design decisions using the 

data available . 
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Finally, i t should be noted that som e ))loads)) aet in a resisting capacity for som e failure modes · 

for example, a proportion of the self-weight of the structure in most over-turning problems. In 

such cases, these ))loads)) are strictly resistance variables from a reliability viewpoint. They are 

generall y easy to identify. 

3.5.2 Choice of distributions forloadsand other aetions 

We now consider the process of defiri.ing appropriate random variables and their associated pro· 

bability distributions to model single loads and other actions. The modeiling of combinations 

of loadsis discussed in chapter 10. As in the case of resistance variables, the process consists of 

three distinct steps 

• precise definition of the random variables used to represent the uncertainties in the loading 

• selection of a suitable type of probability distribution for each random variable, and 

• estimation of suitable distribution parameters from available data andanyprior knowledge. 

In many respects the first step is both the most important and the most difficult to deeide upon 

in practice. 

Example 3.9. Consider themodeiling of the asphalt surfacing on a long-span steel bridge. 
Should the surfacing be treated as a permanentor a variable load? How should spatial varia· 
tions in thls load be taken into account? Should variations in density as well as variations 
in thickness be modelled? What is the probability that an additionallayer of asphaltwill be 
placed on the bridge without removal of the original surfacing and how should this be al· 
lowed for? 

These are typical of the questions that must be asked in any realistic load modeiling prob· 
lem. They are also questions that can only be sensibly answered when the precise purpose 
of the proposed reliability analysis is known. 

The second step of selecting a suitable probability distribution for each random variable can 

rarely be made on the basis of sample data alone and as in the case of resistance variables physi· 

cal reasoning must be used to assist in this process. Som e general guidelines are given bel o w. The 

third step of evaluating suitable distribution parameters is discussed in section 3.6 . 

Permanent loads: The total permanent load that has to be supported by a structure is generally 

the sum of the self-weights of many individual structural elements and other parts. Forthis rea­

son (see page 53) such loads arewell represented by normal probability distributions. Whether 

the weights of individual structural elements can also be assumed to be normally distributed 

depends on the nature of the processes controiling their manufacture. 

When the total permanent load acting on a structure is the sum of many independent compo­

nents, it can easily be shown that the coefficient of variation of the totalload is generally much 

less than those of its components. 

Exercise 3.4. Giventhat the totalloadon a faundation is the sum of n independent but 
identically distributed permanent loads Pi, show that the coefficient o f variation of the 
totalload is only 1/vn times that of the individualloads. 
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Variable loads: For continuous time-varying loads which can be uniquely deseribed by a single 

quantity X (e.g. a magnitude), ane can define a number of d ifferent but related probability 

distribution functions. The most basic is the so-called arbitrary-point-in-time or first-order dis­

tribution of X. 

Let x( t ' ) be the magnitude of a single time-varying load X( t) at time t ' . For example , see figure 

3.13 which shows a continuous state/continuous time stochastic process. Then Fx is the arbi­

trary-point-in-time distribution of X(t) and is defined by 

Fx (x) = P{ X( t') .;;;; x) (3.45) 
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where t' is any randomly selected time. The corresponding density function fx is also illustrated 

in figure 3.13. Fx may take onawide range of form and depends on the nature of X(t) - i.e. 

whether X(t) is a deterministic or stochastic function of time, whether the load can assume both 

negative and positive values, etc . 

x(t) 

o 

Example 3.10. If the load X{t) has a detenninistic time-history given by 

x{t) = xsin{wt) 

i.e. x{ t) is a sinusoidally-varying force of known amplitude x, then it can be shown that 

fx {x) = l-oo -::;;:::1==;= rrv'xl - xl 

which is a U-shaped distribution. 

t' T 

x<-x 

-i...; x.;;; X. 

x> x 

X ,Y 

fx(x), fy(Y) 

Figure 3.13. Dluatration of continuoua time-varying load. 
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Example 3.11. Variations duetowaves in the surface elevation of the sea X(t) at any 
fixed point remote from the shore can be shown to have a first-order distribution F X 

which approximates very closely to the normal distribution (for periods of time in which 
the sea-state c an be assumed to be stationary) o 

However, when dealing with single time-varying loadsand so-called first passage problems (i.eo 

when failure occurs if and only if the load exceeds some threshold value), the form of the ar­

bitrary-point-in-time distribution is not of immediate relevance. The random variable which 

is of importance is the magnitude of the !argest extreme load that eecurs during the reference 

period T for which the reliability is to be determined. The latter might be the specified design 

life o r an y other period o f time. 

If the loading process X(t) can be assumed to be ergodie (see chapter 9), the distribution of 

the !argest extreme load can be thought of as being generated by sampling the values of xmax 

from successive reference periods T. If the values of xmax are represented by the random vari­

able Y, then Fy is the distribution function of the !argest extreme load. The corresponding 

density function fy is illustrated in figure 3ol3 and can be compared with the density function 

of the arbitrary-point-in-time distribution fx. 

Since, for a continuous loading process, the !argest extreme load that occurs during any rea­

sonably long reference period T corresponds to the !argest of a finite number of peak loads, 

it can be seen from sections 3.2 and 3.3 that the probability distribution of the !argest extreme 

is likely to be very closely approximated by one of the asymptotic extreme-value distributions. 

These distributions are frequently used for representing the maxima of time-varying loads. It 

should be noted, however, that the precise form and parameters of the extreme-value distribu­

tion depend very strongly on the autocerrelation function of the loading process X( t). The con­

cept of autocerrelation is discussed in chapter 9. 

For the present purposesit is sufficient to state that the maxima of time-varying loads can in 

most cases be represented by one of the asymptotic extreme-value distributions, with para­

meters estimated by one of the techniques given in section 306. 

3.6 ESTIMATION OF DISTRIBUTION PARAMETERS 

l t is assumed that the selection of the types of probability distribution for the various load and 

resistance variables has been made using the approaches and methods of reasoning discussed pre­

viously o The problem now is to estimate suitable numerical values for the parameters of these 

distributions using available data. For single distributions this requires justone set of data, but 

for the more complex mixed distribution models such as shown in equation (3.34) various sets 

of data are clearly required. 

The overall process of parameter estimation consists of 

• initial inspection of the data 

• application of a suitable estimation procedure 

• final model verification. 
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It eannot be emphasised too strongly that the blind application of statistical procedures can 

lead to very misleading results and that an initial inspection of the available data should always 

be undertaken befare an y formal calculations are made . 
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Let us consider the practical problem of estimating the parameters of a single distribution func­

tion from a single sample of experimental data. The first step is to check the data for obvious 

inconsistencies and errors. Manually recorded or copied data have a high probability of contain­

ing at least some transcription errors. These should be eliminated if possible. The second step 

is to plot the data in the form of a histogram to check for outliers and to confirm that its shape 

does not deviate markedlyfrom the sryape of the density function being fitted. If the histogram 

is clearly bi-modal when a uni-modal distribution is being fitted to the data or if the sample ap­

pears to be truncated when the variable is assumed to be unbounded, checks on the data source 

are clearly required. Inconsistencies are aften found to arise when the set of data has been ob­

tained from experimental test pragrammes in more than one labaratory. Sue h lu m ping o f data 

is aften necessary when the sample sizes would otherwise be very small, but this should be a­

voided if possible. Checks on the consistency of the means and variances of the various sub­

samples (see for example [3.5]) should generally be undertaken when practicable. 

The next step is to estimate the parameters of the selected distribution using one or more of the 

techniques deseribed in section 3.6.1 below. The basic methods are 

• the method of moments 

• the method of maximum likelihood 

• various graphical procedures 

• use of arder statistics. 

The last step is to check that the sample data are well modelled by the chosen distribution and 

parameters. Methods for doing this arebriefly reviewed in section 3.6.2. 

3.6.1 Techniques for parameter estimation 

Thisis a large subject in itself and only a brief description is possible here. Readers unfamiliar 

with the various concepts should also study a specialist text [3.11], [3.5], [3.8]. 

It is assumed in the foliowing that the distribution function is known or has been postulated 

and that its parameters are now to be estimated. Depending on the distribution type, one, two, 

three or more parameters will be involved. The general procedure is to obtain estimates of 

these unknown parameters in terms o f appropriate functions o f the sample values. The word 

estimate is used in this context advisedly. I t should be clear that because of the random nature 

of the variable no sample, however large , is completely representative of the source from which 

it derives; and indeed, small samples may be markedly unrepresentative. For example, in a ran­

dom sample of 10 independent observations drawn from a normal distribution, there is a prob­

ability of approximately 1:1000 that by chance all observations will be greater than the mean. 

Any attempt to estimate the parameters (IJ., a) o f the pare n t distribution from this particular 

sample will result in considerable error. This difficulty eannot be escaped, but the probability 

of large errors occurring decreases as the sample size increases. 
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In essence there are two types of estimates for distribution parameters that can be obtained 

-point estimates and interval estimates. A pointestimate is a single estimate of the parameter 

whereas interval estimates allow certain additional confidence or probability statements to be 

made. In this section only point estimates will be discussed. 
~ 

The different techniques of para~eter estimation summarised below cerrespond to the use 

of different functions of the sample data and give rise to different estimatars for the parameters. 

A number of desirable properties which characterize »good» estimatars are unbiasedness, efficien­

cy and consistency. (For a precise definition of these terms, see for example, [3.11]). No esti­

mater, however, has all these properties and in practice the choice of estimater is govemed by 

the particular requirements of the problem, or expediency. 

Method o f moments: Let the variable o finterest X have a probability density function fx, with 

parameters 81 , 8 2 , .. . , (J k. From equation (2.35) the jth moment o f X is given by 

~j= E[Xj] = \"" xjfx(x)dx 

·--
(3.46) 

Sine e fx is a function o f the k parameters 81 , 8 2 , . . . , (J k, the right h and side o f equation 

( 3.46) is also a function o f the same k parameters and ~j may be expressed as 

(3.47) 

Using equation (3.46) to generate the first k moments ~j we obtain k equations in the kun-

known distribution parameters ej" . 

If we now consider a random sample of the variable X o f size n with v::-Jues (x1 , x2 , ... , xn) 

the equivalent sample moments are given by 

l n . 
m.=- ~ (x.)l 

J n ..:::;,., l 
i .. l 

(3.48) 

Finally, the moment estimators ej, j= l, ... , k for the k unknown distribution parameters 8j 

may be obtained by equating the moments of X, ~, and the sample moments m, i.e. 

~-=m. 
J J j= l, ... ' k (3.49) 

Example 3.12. Let X be a normally distributed random variable, having parameters Il and 
a. The density function given by equation (2.45) is 

l l x J!. 2 f (x) = -- exp( -- ( ) ) x (J~ 2 (J 
(3.50) 

Assume that a random sample of n observations of X has been obtained, (x1 , x2 , . .. , xn ). 
The moment estimators for Il and a2 are now determined as follows. 

Using equation (3.46) it can be shown that 

(3.51) 
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(3.52) 

The equivalent sample moments are 

l n 
m 1 =; ,1; x i (3.53) 

i = l 

l n 
m =- ~ x~ (3.54) 

2 n.:;., 1 

i=l 

Hence by equating terms, the estimatars ji and a2 for the parameters Jl and a 2 may be 
obtained from 

l n 
ji=- Y'x. (3.55) n .-.t l 

and 
i=l 

l n a 2 = - ~ x~ - ji 2 n....,. l 

i=l 

giving 

l n n 2 a1 =- ( ~x~ - ( ~x.) / n) 
n~ 1 ~ 1 

i= l izl 

Altematively a1 may be expressed as 

l n -
al=- ~(x. -Jl)l 

n~ l 
i=l 

(3.56) 

(3 .57 ) 

(3.58) 

where ~is the sample mean. However, the form given in equation (3.57) is in faet prefer­
able from a computational point o f view. 

61 

ji and a1 given by equations (3.56) and (3.57) are thus the moment estimatars of Jl and al, 
respectively . I t should be noted, however, that the best unbiased estimator of a2 is not 
a1 butS2 =(n/(n-l))a 1 • 

Method o{ maximum likelihood: This method is generallymore difficult to apply than the 

method of moments, often involving iterative calculations, but maximuro likelihood estimatars 

of distribution parameters can be shown to have a number of desirable properties [3.11). 

Let the variable of interest X have a probability density function fx with unknown parameters 

B= (81 , 82 , ... , 8k) that are to be determined. Assume, in addition, that a particular random 

sample (x1 , x2 , .. . , xn) o f the random variable X has been obtained. The likelihood tunetion 

of this sample is defined as 

n 

L(Bixl , x2, ... , xn) = n fx(Xi IB) 
i•l 

(3.59) 

L expresses the relative likelihood of having observed the sample as a function of the parameters 

B. Referring to equation (2.68) it can be seen that the right hand side of equation (3.59) is the 

joint density function fx x X (x1 , x2 , . •• , x l B) of a sample with n elements x1 , x2 , ... 
l• 2• · ··• n n 

• • , X0 taken at random from the variable X. In this case, however, it is the sample values x1 , 

x2 , •. • , X
0 

that are known and the parameters B that are treated as variables. 
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~ 

The maximum-likelihood estimatars 8 of the parameters 8 are defined as the values of 8 that 

ma.ximize L, or, equivalently and more conveniently, the logarithm of L. The evaluation of e 
thus requires the solution of the set of k equations 

n "\' _a_ - -
~ a e . log(fx(xi i8))-0 
i=l J 

j = l, 2, . . . 'k (3 .60) 

taking due account of any constraints (e.g. O< o< oo for the parameteraofanormal distri­

bution). 

Exercise 3.5. Derive the ma.ximum-likelihood estimatars P. and a for the parameters 1J. 

and a of a normal distribution. Show that forthis distribution, ti:<-:;e estimatars are the 
same as those obtained by the method of moments. 

Graphical procedures: For most simple probability distributions, it is possible to plot the cumu­

lative distribution function Fx for different values of the variable x as a straight line, simply 

by pre-selecting an appropriate plotting scale or type of probability paper. See, for example, 

figures 3 .4 and 3 .l O. 

Example 3.13. Let the random variable X have a 2-parameter Weibull distribution with . 
parameters 13 and k and distribution function 

x ~ o, 13 > l, k> o (3.61) 

Then, z = Il n(- Il n( l- Fx (x))) is a linear function of y = !lnx, since 

Qn(- Qn(l- Fx(x))) = 13Qnx- 132nk (3.62) 

The variables x and y therefore plot as a straight line on natura! scales. Equivalent scales 
in the original quantities Fx(x) and x can therefore be constructed. 

If we now obtain a random sample of size n from a known type of distribution function Fx, but 

with unknown parameters e' the cumulative frequency distribution for the sample can be ex­

pected to plot as a straight line if the appropriate plotting scale is used. It is usual to order the 

elements o f the sample (x1 , x2 , •.. , x
0

) to obtain the sequence x~, x~, ... , xj, ... , x~, where 

x~ is the smallest value and xf is the ith !argest value called the ith order statistic. It will be re­

called that the probability distribution function for the random variable Xj was derived in sec­

tion 3.2. 

One estimate of the cumulative distribution function Fx(xi) (i.e. the particular value of Fx for 

X= xi) is thus i/n, but preferable estimates are i/(n + l) or (i -1/2)/n, since for most distribu­

tion types they can be shown to be less biased. The cumulative frequency diagram is therefore 

obtained by plotting the points (xi, i/ (n + l)) using scales appropriate to the type of distribu­

tion function. It should be noted, however, that some random deviations from a straight line 

are to be expected, particularly for points at each end of the line. 

For ane and two-parameter probability distributions, estimates of the distribution parameters 

can then be obtained by drawing the ))best)) straight line through the plotted points either by 
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eye or using a formalleast-squares method. In both cases, it is the sum of the horizontal squared 

deviations from the line which should be minimised, not the vertical (assuming the a.xes are chosen 

as shown in figure 3.4). Finally, the estimates of the distribution parameters are obtained from 

the slope and position of the best straight line. 

Use o f arder statistics: The graphical method discussed above is in faet a simple application of 

arder statistics. A detailed discussion of this subject is beyond the scope of th is book. The general 

approach in estimating the parameters of distributions of known type is to use sets of coefficients 

or weighting factors in conjunction with the arder statistics to vbtain estimates of the parameters. 

The coefficients are chosen to give unbiased and highly efficient estimates for samples of particular 

size. The approach was first used and has subsequently been further developed by Lieblein [3.10) 

for extreme-value distributions. See also [ 3 .11]. T his approach should not be neglected in an y 

serious application of these methods. 

3.6.2 Model verification 

The final stage in the process of distribution selection and parameter estimation should be model 

verification. For situations in which only one set of data and no other information is avaiable, the 

approach is straightforward. The simplest method is to check whether the sample data plot as a 

reasonable straight line on the appropriate probability paper. If the distribution parameters have 

been estimated graphically, this step will have been takenaspart of the estimation procedure. The 

sample data shown in figure 3 .10 may be considered to be a »good» straight-line plot. Altematively, 

a formal goodness-of-fit test, such as the x2 testor the Kolmogorov-Smirnov test may be employed 

to ascertain the level of probability at which it is possible to reject the null hypothesis that »the 

random variable X has a particular distribution function with certain stated parameters». Such tests 

are widely described, e.g. [3 .5], and will not be given here. 

In many structural reliability problems, however, the basic variables are best deseribed by mixed 

distribution models for which the tests deseribed above are not applicable. In other cases, the ana­

lyst may prefer to use some preseribed distribution type to model a basic variable, e.g. a log-normal 

distribution to model a resistance variable, even though over the limited range of available data 

some other distribution type may in faet give a better fit. The formal use of goodness-of-fit tests 

in the context of structural reliability theory is therefore aften limited. 

3.7 INCLUSION OF STATISTICAL UNCERTAINTY 

As mentianed previously, the analyst is aften faced with the problem o f ha vin g insufficient data 

for one or all of the basic variables which affect the structural reliability. Let us assume, however, 

that there are good a priori reasons for assuming that a particular basic random variable X is 

gavemed by a particular type of probability distribution. The problem arises therefore of select­

ing the values of the parameters 8 for that distribution . 

One approach is to use single point estimates for the parameters- for example, the maximum-like­

lihood estimates - and to ignore the additional statistical uncertainty that arises when there are 

tao few data. This approach may not be too unconservative since any non-homogeneity in the 

data will tend to artificially enhance the variance. A better approach is to inelude the statistical 
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uncertainty in the parameters within the distribution of X itself, in terms of what is known as 

the predictive di$tribution of X. 

lf the probability density function of the random variable X, for known parameters 8 is written 

as fx (x l 8) then the predictive density hx for uncertain 8 is given by 

hx(x) = \·_ fx(xl8)fi- {8 1z)d8 
"IJ 

(3.63) 

where fi {8 1 z) is the postenor probability density for (j given a set of data z = (z l' z2' . . . 'zz ). 

f'i (8 l z) can be obtained from Bayes theorem (see equation (2 .24)) which can be expressed as 

(3 .64) 

where 

L (8 l z) is the likelihood o f 8 given the observation z, and 

fF (8) is the prior density of 8, before obtaining the data, and 

N is a normalising constant. 

For further information the reader is referred to Aitchison and Dunsmore [3.1] . 
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Chapter 9 

INTRODUCTION TO STOCHASTIC PROCESS THEORY AND ITS USES 

9.1 INTRODUCTION 

In the preceding chapters, loads and strengths have mainly been modelled by random vari· 

ables with associated distribution functions. However, a loadSon a given structure will usual­

ly be time-varying S(t). The function S(t) is stochastic (random) in the sensethat the value of S 

at a given time t is an outcome of a random variable. In this way, by modeiling the time history 

and the randomness of a physical quantity by an (infinite) number of random variables, a so­

called stochastic processis obtained. In section 9 .2 a more formal definition of this concept 

will be given, but it is not possible to give a detailed treatment of the t heory of stochastic pro­

cesses here. Only themost fundamental notions will be introduced and only one special type 

of stochastic processes will be deseribed in more detail. 

A very important problem in relation to a stochastic process is the barrier crossing problem. 

Consider, for example, the response of a structure expressed by the time-history of a given 

stress. When modeiling the time-history of the stress by a stochastic process it might be of 

interest to evaluate the probability that the process stays within specified bounds during the 

expected lifetime of the structure. This problem will also be briefly examined. 

9.2 STOCHASTIC PROCESSES 

As mentianed above a stochastic processis an indexed set {X( t) , t E T} of random variables X( t ), 

where all X( t ) are defined on the same samplespace n . Notethat two different kinds of variables 

are involved, namely the stochastic variables X(t) and the variable t , here called the index. The 

index set T is typically a time-interval, but can be any kind of finite set, a countably infinite set 

or a subset of R . For the sake of simplicity t will be assumed in the foliowing to be the vari-

able time. 

The probabilistic structure of a stochastic process can be deseribed in a way similar to random 

vectors. If the index set is a finite set then the stochastic process forms a random vector. The 

faet that a stochastic process is a set of random variables makes it natura! to describe its prohabil­

istic structure in a way similar to random vectors, but in this case the index set is infinite. 
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The definitions (9.1) and (9 .2) can easily be generalized to probability functions of any order n, 

n= 3 , 4, .. . 

In describing a stochastic process the following functions (o f time) are o f great interest. The 

mean ualue tunetion J.Lx (t) is defined as the expected value of X( t) 

J.Lx (t)= E[X(t)] = \.. x f{ x }(x; t )dx 
•·-oo 

(9.3) 

The autocorrelation tunetion Rxx ( t1 , t 2 ) is equal to t he f ollawing joint moment o f the ran­

dom variables X(t1 ) and X(t2 ) 

RxxCt1 , t 2 ) = E[X(t1 )X(t2 )] =~~ .. ~~- x1 x2f{x }(x1 , x2 ; t1 , t 2)dx1dx2 (9.4) 

The autocouarianee tunetion Cxx (t1 , t 2 ) is the covariance of the random variables X(t1 ) and 

X(t2 ) 

Cxx<tt, t2) = E[(X(tt) -J.Lx(tt))(X(t2) -J.Lx(t2)l 

= Rxx (tt • t2)- J.Lx (tt )Jlx (t2) (9.5) 

By setting t1 = t 2 =t in (9 .5), the uarianee tunetion a~(t) of the random variables X(t) is ob­

tained 

(9.6) 

Finally the autocorrelation eoeffieient Pxx (t1 , t 2 ) is defined in a similar manner to (2.80) by 

(9.7) 

For an important group of stochastic processes all finite dimensional distributions are invariant 

to a linear translation of the index set. This can also be expressed by the statement that all dis­

tributionsareinvariant to a translation of the time origin . Such processes arecalled strietly ho­

mogeneous or when the index parameter is time, strictly stationary. 

When this invariant assumption only holds for distributions of arder one and two the process 

is called weakly homogeneous or weakly stationary. In the following, the word stationary will 

be used in the last-mentianed meaning. 

An important consequence of the assumption of stationarity is that f{ x }(x ; t) and F{x}(x ; t) be­

comes independent of t sothat we can omit reference to t. Further, the second-order distribu­

tions (9.1) will only depend o n the difference o f the index parameter T = t1 - t 2 . The same 

is true for all the other statistics me:1tioned above. 
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In practical applications, the modelling of a physical quantity by a stochastic process must 

often be based on a single realisation of a stationary process. If only one realisation is at hand 

it is natura! to estimate the mean value in the foliowing way 

•T 
Jl = ~ \ x(r)dr 

.. o 
(9.8) 

If thistime average approaches Il x for T-+ oo the processis said to be ergodie in the mean 

ualue. In the same manner a process is ergodie in eorrelation if 

•T-T 
R(r) = T 

1 
T \ x(t + r)x(t)dt 

• o 
(9.9) 

approaches Rxx(r) for T-+ oo • If this property holds for all moments, the processis called 

ergodic. 

Notethat stationarity is an assumption behind the definition of an ergodie process sothat 

any ergodie process is stationary but not vice versa. 

9.3 GAUSSIAN PROCESSES 

In this section so-called Gaussian processes are treated. It has been stated several times that a 

linear transformation of a set of Gaussian (normal) random variables result inanewset of 

Gaussian random variables. This important property of Gaussian random variables is the main 

reason why they are used for modelling whenever it can be justified. In a similar manner, it 

can be shown that linear operations on a Gaussian process results in another Gaussian process. 

A process {X( t), t E T} is Gaussian if the random variables X(t1 ), X(t2 ) , . . . , X(tn) are jointly 

normal for any n, t 1 , t2 , . . . , tn. The probability density function for the corresponding n-di­

mensional nth order distribution is then given by (see (2.89)) 

f {X} (xl' .. . , xn ; tl' ... ' tn) = 

(9.10) 

where C is the autocovariance matrix 

(9.11) 
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and M .. is the i,jth element in C- 1
. It is clear from the definition (9 .10) that a Gaussian 

l] 

process is completely determined by the mean value function J.I.x (t) and the autocovariance 

function Cxx ( t1
, t2). Therefore, a stationary Gaussian process is always strictly stationary. 

An important property of a Gaussian process {X(t)} is that its derivative process {X(t)} is 

also a Gaussian process. Let x(t) be a realization of {X(t)} and let 

. d 
x(t) = dt x(t) (9 .12) 

be meaningful. The derivative process {X(t)} is then determined by tht: realizations x(t) when 

almost all realizations x(t) of {X(t)} are considered. 

Example 9.1. Consider two independent normal random variables X1 and X2 with J.I.x = 
J.I.x

2 
=O and a:k

1 
= a:k

2 
= a 1

• Let a stochastic process {X(t)} be given by 
1 

X(t) = X1 cos( w t)+ X2 sin(wt) (9.13) 

where w is a constant. The random variables X( ti), ti E T are clearly jointly normal and 
their statistics are de termin ed by the m e an and au tocorrelation o f the process {X( t)} . 

By (9.13) 

!J. x (t) = E[X(t)] = O 

and by the definition (9.4), 

= E[ X i] cosw t1 cosw t 2 + E[X~ ]sinw t1 sinw t 2 = a 1 cosw ( t1 - t 2) 

since E[X1 X2] =O. From (9.15) 

ai(t) = Rxx(t, t)- J.I.fc(t) = a 1 

(9.14) 

(9.15) 

(9.16) 

The process {X(t)} is therefore a stationary Gaussian process with zero meanand variance 
al. 

Example 9.2. Consider the same process {X( t)} as in example 9.1. The autocorrelation 
coefficient is 

Rxx<tl, t2) 
Pxx<tl' t2) = ax(tl )ax(t2) = cosw(tl - t2) (9.17) 

so that the joint distribution density function is given by 

2 2 
Xl - 2Xl X

2
COSWT + x 2 

l f{x} (x1 , x 2 ; t1 , t 2 ) = e 
21ra 1 .../1- cos4 w r 

2u 2 (l- cos' w r) (9.18) 
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An important property of the autocerrelation function Rxx(r) of a stationary stochastic process 

{X(t)} is the following. If Rxx(r) has a second derivative RXx(r) which is continuous at r= O 

then the derivative process {:le( t)}, defined by its realizations by (9.12), is also a stationary 

stochastic process. And it can be shown that 

(9.19) 

and 

EDcXI =o (9.20) 

. . d 
sothat there is no cerrelation between {X(t)} and {X(t)}. Further E[X) = dt E [X). 

Example 9.3. Let {X( t) } be a stationary Gaussian process with zero mean. It follows 
then from the remarks above that the joint density function f{x } {X} is 

(9.21) 

9.4 BARRIER CROSSING PROBLEM 

In this section it will be shown for a stochastic process {X( t )} how the number of crossings of a 

given barrier (threshold) in a given time-interval can be estimated. The presentation hereis in ac­

cordance with the book by Lin. Figure 9.3 shows a realization x( t) in the interval [t1 ; t 2 ] of 

a stochastic process {X( t )} and a constant barrier x( t) = ~. The number of upcrossings of this 

barrier in the time interval [ t 1 ; t2 ] is four. In the foliowing an upcrossing will be called a posi­

tive passage and a downcrossing a negative passage. 

x( t) 

Figure 9.3 
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To salve the problem of estimating the expected number of positive passages of a given barrier 

the so-called Heauiside step tunetion H is a useful too. Heaviside's step function H is defined 

by (see figure 9.4) 

for 

H(x) = for 

for 

x<O 

x=O 

x> O 

(9.22) 

By formal differentiation of the function H one gets the so-called Dirae delta tunetion 5 (x). 

5 (x) is not an ordinary function in the sensethat a definitevalue can be assigned to every x. 

For our purposes, it can be defined by 

5 (x) = lim .;d; 
e-O 21T E 

e 
x' 

-2e2 

What is required here, is only the property that integration of 5 (x) gives H{ x). 

(9.23) 

For a stochastic process {X( t)} and a given barrier x(t) = ~,i t is then convenient to define a 

new stochastic process {Y (t)} by 

Y(t) = H(X(t)- ~) 

o r 

y( t)= n 

l 
2 

Figure 9.4 

H(x) 

for x(t) < ~ 
for x(t) = ~ 

for x(t) > ~ 

(9.24) 

(9.25) 

5(x) 

x 
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x(t) 

Figure 9.5 

By formal differentiation of (9.24) the derivative process {"f} can be deterrnined by 

Y(t) = X(t)o(X(t)- ~> (9.26) 

where the existence of X(t) is assumed. For a realization x(t) of the process {X(t)} the corre­

sponding realizations y( t) and y( t) of the processes {Y(t)} and {Y( t)} are shown in figure 9.5. 

Note that the realization y( t) consists of a number of unit impulses. A positive unit impulse cor­

responds to a positive passage of the barrier and a negative unit impulse corresponds to a nega­

tive passage of the barrier. These impulses areunit impulses because integration of y( t) over 

ane impulse must yield + l or -l. 

By counting the number of such unit impulses in the time interval [ t1 ; t 2 J the total number n 

of crossings of the barrier x( t) = ~ is obtained. This can also be forrnulated in the foliowing way 

(9.27) 



9.4 BARRIER CROSSING PROBLEM 153 

From (9.27), the number n(t_h ,t2 ) of crossings or passagesofa given barrier can be calculated 

for any realization x( t) of the stochastic process {X( t)}. Such a set of numbers can be con­

sidered the outcome of a random variable N(~, t1 , t 2 ). The expected number of crossings can 

now be determined. 

,t
2 

,oo ,_oo 

\ ~ \ l x l cS(x-~>fxx<x. x;t )dxdxdt= 
" t l • - 00 .. - 00 

(9.28) 

where fxx = f{x}{x} is the joint density function for {X( t)} and {X ( t) }. 

It is convenient to consider the rate o{ crossings per unit time N' instead of the number of cros­

sings N in the time interval considered. N' and N are related in the foliowing way 

(9.29) 

Equation (9.28) can then be written in the more simple form 

E[N'(~. t)J = ~- lx l fxx(~ . x; t)dx 
~--

(9.30) 

Now assume that the stochastic process {X(t)} is stationary sothat fxx is independent of the 

time t. Then 

E[ N'<~ . t)J = \"" l xlfxx<~. x)dx =Ken 
"-oo 

(9.31) 

sothat the expected rate of crossing per unit time E[N'(~. t)] is independent of time, but of 

course dependent on the barrier ~ . The expected total number of crossings in the time interval 

[t1 ; t 2 ] is therefore (see (9.29)) 

(9.32) 

Using equations (9.31) and (9.32), the number of crossings of the barrier ~ is determined, i.e. 

upcrossings (positive crossings) as well as downcrossings (negative crossings). But for a station­

ary stochastic process it is reasonable to assume that any positive crossing is followed by a nega­

tive crossing. Therefore 

E[N~Cn l = E[N:_ cnl = ~ E[N'(Ol (9.33) 
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where N~ (0 i~the rate of positive crossings of the barrier ~ and N~ (0 is the rate o f negative 

crossings o f the barrier ~ . 

Notethat for positive crossings x > O sothat from (9.30) 

E[ N~ c ol=\"" xfxx<~. x)dx 
• o 

(9 .34) 

and similarly for negative crossings. Hence, for stationary processes, the joint density function 

fxx is aneven function in the variable x. The fundamental formula (9 .34) is called Rice's for­

mula. 

Example 9.4. Let {X(t) } be a stationary Gaussian process with zero mean. The joint 
density function fxx is then given by (9.21) . From Rice's formula (9.34) 

For~ = O the expected rate of positive zero crossings is 

l a· 
E[ N' (0)] =-_x 

+ 2rr ax 

(9.35) 

(9.36) 

Example 9.5. Consider a stationary non-Gaussian process {X(t)} with the foliowing 
joint density function 

l 2 (l + x) for (x, x) E [-1; O] X [-l; l] 

fxx(x, i)= ~(l - x) for (x, i) E (O; l] x [-1; l] (9.37) 

O othe~se 

x 

Figure 9.6 
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The expected rate af positive crossings af the barrier x( t) = ~is given by (9.34) 

. •l {!(l+ o 
E( N~ c n 1 = \ x ~ ( 1 ± ~ )dx = ! ( 1 - ~ > 

"0 

o 

for -l.;;;~ .;;; O 

for O.;;;~ .;;; l (9.38) 

otherwise 

Example 9.6. Consider the same stochastic process {X( t)} as in example 9.5, but in 
this case the joint density function (9.37) is approximated by a 2~imensional normal dis­
tribution in such a way that the two marginal density functions h ... ve the same means and 
variances. 

The marginal density functions for the distribution (9.37) are shown in figure 9.7. It 
is then easy to see that 

(9.39) 

The approximate normal distribution is therefore 

. 3· 12 -3 l -l 5 ·l f · (x x) = ~ e x · x 
XX ' 2rr 

(9.40) 

The expected rate af positive zero crossings for the corresponding stationary Gaussian pro­
cessis 

E(N' (0)] =_l_ ~ = 0.2251 
+ 2rr .J3 (9.41) 

-x 
- l l -l l 

Figure 9.7 

Exercise 9.1. Approximate the joint density function (9.37) by a 2-dimensional normal 
distribution in such a way that the rate af positive crossings af the barriers ~ = O and ~ = l /2 
is equal for the corresponding stochastic processes. 

(Answer fxx(x, i)= 0.56 e- 2·77 x
1 
-l.l2 i\ 
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9.5 PEAK DIS:TRIBUTION 

The results derived in section 9.4 can be used to investigate the statistics of the peak distribu­

tion o f a stochastic process {X( t)}, because peaks or troughs ( extrema in {X( t )}) occur w hen 

the stochastic process {:X(t)} has a zero crossing. The number of zero crossings of {X(t) } is 

equal to the number of extrema in {X( t)}. The formulas derived in section 9.4 can there­

fore be used when {X(t)} and d c(t)} are substituted for {X(t)}and {X(t)}. 

When the process {X( t) } is a narrow-band Gaussian process the distribution of the peaks can be 

determined in a very simple way. A realization of a narrow·band processis shown in figure 9.8. 

It is similar to a sinusoid, but the amplitude and phase are slowly varytng. The stationary response 

of a lightly damped linear system will often be narrow-banded, when the input processis a 

broad-banded Gaussian process, such as an earthquake excitation. 

In this case the expected number of peaks above the level~(~ > O) per unit time is, with good 

approximation, equal to the expected rate o f crossings o f the barrier ~, i. e . equal to E[ N~ ( ~) ]. 

Similarly, the expected total number o f peaks per unit time is equal to the expected rate o f zero 

crossings E[N~ (0)] . Therefore, the expected relative number of peaks above ~per unit time is 

~· 
E[ N~ <n l _ - 2ux 

E[N~ (O)]- e 

where the formulas (9.35) and (9.36) have been used. 

The distribution function F:::(O for the peak magnitude (~>O) is then given by 

~· 
- 2u' 

F:::(O=l-e x o~~ < oo 

and the density function f:::(~) by 

~· 
.1.. - 2u' 

f.".(~) = a z e x 
- x 

o~~ <oo 

This distribution is the so-called Rayleigh distribution. 

x( t) 

....ll 

Figure 9 .8 

(9.42) 

(9.43) 

(9.44) 
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Example 9.7. Let {X(t)} be a narrow-band Gaussian process with zero mean and let 
ax =l. The density function for t he peak magnitude is then given by (9.44) 

_..!. ~, 
f::: CO = ~ e 2 (9.45) 

0 .6 

0.5 

0.3 

0.2 

0.1 

1.0 2.0 3.0 4.0 

Figure 9.9 . Density function (9.45 ). 

Example 9.8. From an experimental investigation of the variation in bending moment with 
time in a given section of a beam it is concluded that the moment can be modelled by a sta­
tionary narrow-band Gaussian process {M(t)} with 

PM= 12 MNm aM = 2 MNm 

PM = O MNm/sec aM = 4.01 • 10-1 MNm/sec 

The rate of positive crossings of the barrier ~ = 18 MNm is then 

- (18 -12)2 

E[N' (18)] =..!. 4·01 • 10-
2 

e 2•4 = 3.54 · lo-s sec-1 

+ 2rr 2 

The density function for the peak magnitude is given by 

--1- ( -12)2 

f::: CO = ~ (~ -12)e 2· 4 t 

and the probability of getting peak magnitudes greater than ~ = 18 MNm is 
l - -(18 -12) 2 

PU > 18) =l- F:::(l8) =e 2•4 = 0.011 

(9.46) 

(9.47) 

(9.48) 

In the derivations above, only narrow-banded processes are considered, i.e. processes where the 

ratio 

a = expected number of zero crossings 
expected number of peaks 

(9.49) 

is approximately equal to l (see figure 9.8 ). It can be shown that the ratio a lies between zero 
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and one and thåt in general the density function f::: (0 for the peak magnitude is given by 

~ · ~· - l - -

f.,. (O = ~ v' la-al e 2a~(l - a ') + 2et$2 [l + erftf-( 22 - 2)-2)]e 2ax 
- v 21T x ax x a 

(9.50) 

where the error function erf is defined by 

(9 .51) 

Exercise 9.2. Show that (9.50) for a= l is equal to (9.44). 

When a is very small (a ~ 0) corresponding to a large number of peaks in relation to the num­

ber of zero crossings the formula (9.50) can be approximated by a normal distribution 

~ · 
-oo < ~ < oo (9.52) 

Example 9.8. Consider an ergodie Gaussian process {X( t )} with JJ.x = 5 and ax = 2. By 
analysing a realization of this process it is concluded that the ratio a of the expected num­
ber of zero crossings to expected number of peaks can beset equal to 0.6 . Further, the ex­
pected number of crossings of the barrier ~ = 9 is equal to 10-3

• 

The probability of getting peak magnitudes greater than 9 is then 
.g 

P(~> 9) = 1-\ f:::(~)d~ ._ .. 
where 

f:::(~)= 0.160·e- 0 ·195<~ - 5 >' + 0.075( ~ - 5)[1 + erf(0 .265~ )]e 
(~- 5)' 

8 

(9.53) 

(9 .54) 

By numericalintegration P(~> 9) can then be calculated from (9.53). Lower and upper 
bounds for P(~> 9) can be calculated by considering the cases a =O and a =l. 

For a =O, one gets from (9.52) 

P(~> 9) =l- <t> (9 
2 

5 ) = 0 .02275 

and for a =O from (9.44) 
l -- (9 - 5)' 

P(~ > 9) =e 8 = 0.135 

The standard deviation ax for the derivative process can be calculated by setting E[N~ (9)] 
equal to{- · 10-3

• One gets ax = 0.046. The expected rate of positive crossings of any bar­
rier can then be calculated from (9.35). 

Exercise 9.3. Consider an ergodie narrow-banded Gaussian process {X( t) }. By analysing 
a realization of this process it is concluded that the expected rates of positive crossings of 
the barriers ~=O, 5, and 10 are 10-2 , 10-3 , and lo-s , respectively. Determine themeanand 
the variance for {X(t)} and for {X(t)}. Sketch the density function for the peak magnitude 
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and ealcu~te the probability of obtaining peak values greater than 5. 

(Answer : P(~> 5) = 0.075). 
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Chapter 10 

LOAD COMBINATIONS 

10.1 INTRODUCTION 

Themodelting of load variables is treated briefly in section 3.5. It is stressed there that load 

variables and other aetions are typically time-varying quantities which are best modelled as 

stochastic processes. In section 3.5, it is also shown that when deating with a single time-uary­

ing load in connection with barrier crossing problems (see section 9.4) the detailed time vari­

ation is not of relevance. Thisis due to the faet that in such cases the distribution of the 

maximuro value of the loading process in a given reference periode can be derived from the 

arbitrary-point-in-time distribution (see figure 3.13 on page 57). When the loading pro­
cessis continuous then the probability distribution of the maximuro value (largest extreme) is 

likely to be very closely approximated by one of the asymptotic extreme value distributions, 

treated in section 3.3. In this way instead of modelling a single load variable as a stochastic pro­

cess {X(t)} it is modelled by a stochastic variable, say Y (see also section 9.5). Therefore, in 

reliability analysis, single load variables imply no special difficulties. A number of examples in 

chapters 5 and 6 of analysis and design of simple structures loaded by single loads illustrate 

this faet. 

When morethan one time-varying load variable acts in combination on a structure then the 

above simplification eannot be used because determination of the distribution of the combined 

load effect requires knowledge of the detailed variation with time of the individualloading pro­

cesses. Thisis illustrated in figure 10.1, where realisations p1 (t) and p2 (t) of two loading proces­

ses {P1 (t), O ~ t~ T} and {P2 (t) , O~ t~ T} are shown together with the sum p1 (t)+ p2(t). 

It is clear from figure 10.1 that the maximuro values of p1 (t), p2 (t) and p1 (t ) + p2 (t) during 

the reference period need not appear at the same instant of time. For the specific realisation 

shown here, the instants of time t1 , t 2 and t
3 

for maximuro of p1 ( t), p2 (t) and p1 (t) + p2 (t) 

areall different . Also notethat maximuro value of p
1 

(t ) + p2 (t) is considerably smaller than the 

sum of the maximuro values of p1 (t) and p2 (t) . It is obvious from these observations that know­

ledge of the detailed time variation of the two loading variables in the reference period T is re­

quired to determine the probability distribution of the sum of" the two load variables. Therefore, 

knowledge of the distribution of only the maximuro values of the individualloading processes 

gives insufficient information to evaluate the combined effect exactly. 



162 10. LOAD COMBINATIONS 

.... t 

T 

Figure 10.1 

The intention of chapter 10 is to give some information on problems connected with load com­

binations. However, a thorough presentation of these problems is beyond the scope of this 

book. The reader is referred to the references at the end of the chapter. The main intention is 

to give the necessary background for understanding the ideas behind an approximate method 

for dealing with load combinations. This method is very suitable for use in connection with the 

level2 methods presentedin chapters 5 and 6. 

10.2 THE LOAD COMBINATION PROBLEM 

One of the fundamental problems in deating with time-varying loads modelled by stochastic 

processes is connected with estimation of the probability that the stochastic process defined as 

the sum of the individual processes crosses a given barrier (threshold) during the reference period 

T. More specifically, let two loads (or load effects) be modelled by stationary and independent 

stochastic processes {X1 (t), O~ t~ T} and {X2 (t), O~ t~ T}. In the foliowing all stochastic 

processes will have the same index setsothat the shorter notations {X1 (t)}, {X2 (t)}, etc . and 

{X1 }, {X2 }, etc. can be used. The combination problem can then be formulated in the foliowing 

way. What is the probability that the process 

(10.1) 

has a value larger than x( t) = ~ during the reference period O ~ t ~ T? This probability 
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is 

P(maxX( t ) > ~. t E [O; T))= 

=P( X( O) > ~) + P( one or more upcrossings of ~ l X( 0) < O (10.2) 

where P(X(O) >~)is the probability that the process {X(t)} hasavalue greater than ~at t= O 

and the last term in (10.2) is approximately equal to 

n=oo 
P(one or more upcrossings of ~) = Y P (n upcrossings of O .-.- (10.3) 

n=l 

The expected number of upcrossings (positive crossings) of a level~ per unit time for a stationary 

processis denoted E[ N~ (Ol in section 9.4. It is convenient to use a shorter notation vx(O here. 

When vx(O = E[N: (0] is known, then the expected number of upcrossings in the time interval 

[O; T] is equal to vx(O·T, i.e . 

n=oo 
E[number of upcrossings] = vx(O·T =I n•P(n upcrossings of ~) 

n=l 

It follows from (10.2), (10.3) and (10.4) that 

P( max X(t) >~.t E (O; T])..; P(X(O) > ~) + vx(O·T 

(10.4) 

(10.5) 

In general P(X(O) > ~) ~ vx(O·T and for most practical reliability problems vx(O·T ~l. In 

such cases vx(O·T is a good approximation of P(maxX(t) >~.t E [O; T]), i.e. 

P( max (X( t)> ~'t E [O; T))._ V x en· T (10.6) 

The left hand side of (10.6) is equal to 1- F:::(O, where F::: is the distribution function of the 

maximum value of the stochastic process {X(t)} in the time interval [O; T]. Therefore, 

(10.7) 

where vx(O·T ~ l. By (10.7) the problem of calculating the distribution function F::: for the 

maximum value of {X(t)} = {X1 (t)+ X2 (t)} is reduced tothat of determining the rate of up­

crossings (the expected number of positive crossings) vxm = E[N~ ml for {X( t)}. Unfortunately, 

exact expressions for v x (0 are only known for som e special kinds o f processes. An obvious 

way of calewating vx(~) is to use Rice's formula (9.34) 

v x en =E [N: en l =\ .. x fx x (L x)di 
• o 

(10.8) 

where fx x is the joint density function for the process {X( t)} and its derivative process {X( t)} . 

The joint density function fx x can bederived by the so-called convolution integral 
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(10.9) 

where fx 'l( . and fx x are the joint density functions for x1' x1 and Xz' Xz' respectively. 
1 .. '1. 2 2 

Notethat equation (10.9) is a generalization of the well-known convolution integral in ele-

mentary probability theory. Also note that the first step in calculating fx x is to calculate 

fx x and fx x . Thisis in general difficult, but it has been done for same special stochastic 
l l 2 2 

processes. 

By inserting (10.9) in Rice's formula (10.8) ane gets 

vx(O=(" x\,... \"" fx x (x1 ,x1 )fx x (~ -x1 ,x --x1 )dx1 dx1 dx .) • • l l 2 2 
• x=O •x1 =-oo •' x

1 
=-oo 

(10.10) 

(10.10) can be written in a more convenient form by the substitution x = x1 + x2 

(10.11) 

where the domain w in the x1 x2-plane is shown in figure 10.2. 

In condusion the procedure for evaluating the distribution function F:::: for the maximum value 

of the stochastic process {X(t)} = {X1 (t)+ X
2

(t)} in the time interval [O; T] is 

. 
~ 

Figure 10.2 
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(l ) Calculate fx
1 
~and fx

2
_x

2 
for the two processes {X1 } and {X2 } 

(2) Find llx (O = E[N: (Ol by evatuating the integrals in (10.11) 

(3) Find an approximate expression for F::: from (10.7) 

165 

Step (2) above can only be performed exactly for special density functions. Usually numerical 

integration must be used. However, upper and lower bounds for liX (0 can be derived by chang­

ing the domain of integration (w) in (10.11) in an appropriate way . The upper bound is especial­

ly useful so its derivation will be shown here. 

The upper bound is obtained by changing the domain of integrati_on in the first integral on the 

right hand side from w to w1 and the domain of integration in the second integral on the right 

hand side from w to w 2 , where w 1 and w 2 are shown in figure 10.3. Clearly, an upper bound of 

liX (0 is then obtained 

+L __ L .. -- Co 
= \'.. lix (x)fx (~ - x)dx + ~·- liX (~- x)fx (x)dx 

. l 2 -' 2 l 
·-~ ·-~ 

(10.12) 

where li~ (x) and llx
2 
(~ -x) arerates of upcrossings for the processes {X 1 } and {X2 }. The inte­

grals in (10.12) are much more convenient than the integrals in (10.11) because they only involve 

rates of upcrossing of the processes {X 1 } and {X2 } and the corresponding density functions . It 

has been shown in the literature (see the references at the end of chapter lO) that the upper bound 

(10.12) is very close to the exact result, sothat it can be used as an approximation for llx(O. 

llx(O:::::: ~-- lix (x) fx (~- x)dx + ('" lix (~-x) fx (x)dx 
l 2 ' 2 l -- ~--

(10.13) 

. 
"2 

Figure 10.3 
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Only the sum of two independent processes has been treated above. However, the same proce· 

dure can be useQ. for sums of three or more processes . For example, for the sum {X} of three 

independent processes {X1 } , {X2 } and {X
3

} one gets 

v x(~) ~ \'.. [v,., (x)fx +x ( ~ -x)+ vx (x) fx +x (~-x)+ vx (x) fx + x (~- x)]dx 
"' - oo 401. 2 3 2 l 3 3 l 2 

(10.14) 

where the density functions f}\+ xl are determined as usual by the convolution integral 

fx
1
+xi(x) =\"" fx

1
(t)fxi(x-t)dt 

' - oo 

(10.15) 

(10.14) can easily be generalized to sums of morethan three independent processes. 

10.3 THE FERRY BORGES -CASTANHETA LOAD MODEL 

In this section a simple load model suggested by Ferry Borges and Castanheta will be presented. 

In this model realloading processes are greatly simplified in such a way that the mathematical 

problems connected with estimating the distribution function of the maximum value of a sum 

o f loading processes are avoided. Further, the Ferry Borges- Castanheta load model is ve ry 

suitable in connection with the level 2 methods presentedin chapters 5 and 6. 

For each load process {Xi} i t is assumed that the load changes after equal so-called elementary 

intervals of time Ti . Thisis illustrated in figure 10.4, where the reference period T (e.g. l year) is 

divided in to n. intervals o f equallength T. = T f n. . n. is called the repetition number. Further i t 
l l l l 

is assumed that the load is constant in each elementary interval. The loadsin the elementary in-

tervals are identically distributed and mutually independent random variableswithadensity 

function (point-in-time distribution) fX.. This density function is shown as a continuous 

density function in figure 10.4 but it can also beadensity function of the mixed type (see page 

22). Thisis convenient if, for example, it is desirable to have the load value O with a finite prob­

ability. Let the point-in-time distribution for load process {Xi} be fX. and the corresponding 

distribution function F X. then the distribution of the maximuro value in the reference period 

T is (FX.)nl, i.e. (see (3.5)) 

() x1 t 

- n1 • T!r1 
~ 

~ 

l--

-
t 

o T 

Figure 10.4 
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F max ~(xi) = (Fx,(xi))nl 
T : 

(10.16) 

Therefore, forthis so-called rectangular pulse process it is a simple task to calculate the dis­

tribution of the maximuro value in the reference period T. 

When cernbinations of load processes {X1}, {X2}, ... , {Xr} are considered it is assumed in 

the Ferry Borges - Castanheta load model that the loads are stochastically independent with 

integer repetition numbers ni, where 

(10.17) 

and where (Z+ is the set o f positive natura! nu robers ) 

nJni_ 1 E z. for i E {2, 3, ... , r} (10.18) 
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The conditions (10.17) and (10.18) are illustrated in figure 10.5 where r= 3 and n1 = 2, n2 = 6 

and n3 = 12. 

Although the Ferry Borges - Castanheta load model presented above is a gross simplification of 

the realloading situation, experiences seem to verify that themodel is capable of reflecting 

the most important characteristics of load combinations. 

r,(t) 

-t 
o 

T l 
T 

.. t 

o T 

Figure 10.5 
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10.4 COMBINATrON RULES 

It has been emphasized earlier that two loading processes will usually not reach their maximum 

value in a given reference period T at the same instant of time. It is therefore too conservative 

to replace max {X1 (t) + . . . +X (t) } by max {X1 (t)}+ . . . + max {X2 (t)}. On the other hand, 
T r T T 

max {X1 (t) + ... + ~(t)} is a very complicated stochastic variable to use in practice, so some 
T 

kind of approximation must be made. 

Using Turkstra 's rule, max {X1 (t) + . . . + X (t)} is replaced by r stochastic variables, 
T r 

namely 

(10.19) 

where t* is an arbitrary point in time. By this rule the reliability of a structure is only checked 

at those points in time where the individualload processes reach their maximum value . There­

fore, the reliability of a structure will be overestimated. However, it has been shown that this 

overestirnation is usually very small. 

A more refined rule has been formulated in connection with the Ferry Borges · Castanheta load 

model presentedin section 10.3. In this model the loading processes {X1 } , {X2}, . .. , {Xr} are 

rectangular load processes with n1 , n2 , ... , nr repetitions in the reference period T, where 

nl ~ n2 ~ .. . ~ nr. 

For r= 2, the rule gives the foliowing 2 cernbinations for the loads: 

Cernbination No.ofrepetitions of load 

No. l 2 

l n l nz/nl 

2 l n2 

Table 10.1 

For r= 3, the rule gives the foliowing 4 combinations: 
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Cernbination 
1 

No. ofrepetitions of load 

No. l 2 3 

l n l n2 /nl n3 /n2 

2 l n2 n3/n2 

3 n l l n3 /nl 

4 l l n3 

Table 10.2 

In general with r aetions 2r-l different cernbinations of load have to be considered. 

Example 10.1. Let the number of rectangular pulse processes be r= 3 and let the num­
ber ofrepetitions be n1 = 3, n2 = 6 and n3 = 30 in the reference period T. According to 
table 10.2 the foliowing cernbinations have to be checked: 

Cernbination 1: Max(3 rept. of X1
) + Max(2 rept. of X2) + Max(5 rept. of X3) 

Cernbination 2: (l rept. of X1 ) + Max(6 rept. of X2) + Max( S rept. of X3 ) 

Combinatia n 3: Max( 3 rep t. o f X1 ) + (l rep t. o f X2) + Max( l O rep t. o f X3 ) 

Cernbination 4: (l rep t. o f X1 ) + (l rep t. o f X2 ) + Max( 30 rep t. o f X3) 

Examples 10.2 and 10.3 show how the reliability index Ø can be calculated for a structure 

loaded by r = 2 time-varying loads modelled by Gaussian rectangular pulse processes. 

Example 10.2. Consider the indetenninate beam shown in figure 10.6 with two time-de­
pendent loads p1 (t) and p 2 (t). Let p(t) = p1 (t) + p 2 (t). Let p1 (t) bearealisation of a sto­
chastic process {P1 (t)} and p 2(t) of a stochastic process {P2(t)}. Further, let {P1 (t) } be a 
Gaussian pulse process with J..Lp

1 
(t) = 3 kN and ap

1 
(t) = 0.3 kN and with n1 = l repetitions 

in the design life (reference period) T= l year. Likewise, let {P2 (t) } be a Gaussian pulse 
process with J..Lp

2
(t) = 2 kN and ap

2
(t) = 0.2 kN but with n 2 = 12 repetitions in the design 

life l year. Realisations of the pulse processes are shown in figure 10.7. 

~~----------....,~-----'}p( t)= p l ( t ) + p2(t) 
7@:25m 

>tv • " 
S m v 

71 

Figure 10.6 
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.. t 

l / 2 year l year 

-t 
1/2 year l year 

Figure 10.7 

The maximum value P2 max of the load process {P2(t)} is then 
' 

P = max [P2.
1

) 2,max 
i= l' ... '12 

(10.20) 

where P2i is the load level in pulse i. Due to the independence of the pulses and their identi­
cal Gaussian distributions the distribution function Fx

2 
for X2 = P2,max is given by 

x2 - J.Lp 
F (x ) = <1> 12 ( 2 

) (l O .21) 
X 2 2 ap 

2 

Note that X2 is not Gaussian distributed. Therefore, in connection with level 2 reliability 
analysis or design a transformation must be performed, for example as shown in section 6.4. 
By this transformation the distribution of X2 = P2,max is replaced by ·a normal distribution 
with mean J.Lx and standard deviation a}c , where (see (6.37) and (6.38)) 

2 2 

x* -2 
cp{<l>-1(<1>12( 2 ))) 

a' = 
0 ·2 ·0.20 (10.22) 

x2 x*- 2 x*- 2 
12·<1>11( 2 )ep( 2 ) 

0.2 0 .2 

x* -2 
J.L' =x* _ <1>-1(<1>12( 2 )) a' 

X 2 2 0 .2 X 2 
(10.23) 

x; is the x2 -coordinate for the design point. 

Example 10.3. Consider the samebeamas in example 10.2 and with the same loads. Further, 
let the safety margin M be given by 

5 
M=M --(P+ F 2 l max [P2i]) 

i = l, . .. , 12 
(10.24) 

where the criticallimit moment MF is a normally distributed random variable with J.I.M = 
20 kNm and aM = 2 kNm. Introduce the random variable X 1 =MF -i P1. X1 is no~al­
ly distributed wfth 

J.Lx = 20-7.5 = 12.5 kNm 
l 

ax
1 

= J2 2 + ( ~ • 0.3)
1 = 2 .14 kNm 

The safety margin can then be reformulated 

(10.25) 

(10.26) 
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( 10.27 ) 

In the nonnalised coordinate system the failure surface is then given by 

(12.5 + 2.14 x1 )- 2.5(p)c + a)c x2 ) =O 
2 2 

(10.28) 

The reliability index 13 can now be calculated by the same iterative technique as used in 
example 6.8. With the usual notation 

2.5 .u )c - 12.5 
13 = 2 

, (10.29) 
2.14 a 1 - 2.5ax a 2 2 

l 
a 1 =-k· 2.14 

a 2 = + ~ · 2.5 a)c
2 

where a }c and .u x aregiven by (10 .22) and (10.23) with 
2 2 

x; -2 
0.2 

13 

Start 

3.00 

al -0.717 

a z 0.717 

(x;-2) 
2.151 0.2 

, 
0.128 a x 

2 

, 
2.31 .u x 

2 

Iteration No. 

l 2 3 

3.87 3.11 3.11 

-0.989 -0.990 -0.991 

0.148 0.141 0.138 

0.573 0.439 0.429 

0.121 0.119 0.119 

2.31 2.32 2.32 

Table 10.3. The reliability index is (j = 3.11. 

(10 .30) 

(10.31 ) 

(10.32) 

Exercise 10.2. Show that the reliability index for the structure in example 10.3 is 13 = 3.19 
if the number ofrepetitions n2 is equal to 6 (and not 12) but with all other data unchanged. 

Example 10.4. Consider the same structure as in examples 10.2 and 10.3. The variation of 
the reliability index 13 with the number ofrepetitions n2 for the load process {P2 (t)} is · 
shown in figure l O .8. 
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3.3 

3.2 

3.1 

3.0 

o 4 8 12 16 20 

Figure 10.8 

Example 10.5. Consider again the structure analysedin examples 10.2 and 10.3, but now 
the structure has to bedesigned so that it has a reliability index (3 = 4.00. Let the critical 
limit moment MF be normally distributed with unknown mean value J.L MF and standard 
deviation a M = O .1 · J.LM • All other data are unchanged. 

F F 
The safety margin with X1 = MF, X2 = P1 and X 3 = P2,max is 

(10.33) 

where X1 is N(J.LMF , 0.1 J.LMF ), X2 is N(3, 0.3) and Xa is ;::" N(J.Lx3 , ax3 ). The formulae for 
the iterative process are 

1.5 + 3 a 2 + 2.5J.Lx + 1oax. a 3 
a 3 3 

J.LMF l + 0.4 a1 
(10.34) 

l 
al = - k J.LM F 0.1 (10.35) 

l 
a2 =k 0.75 (10.36 ) 

a 3 = ~ 2.5 aX,
3 

(10.37) 

and the iteration scheme is : 

Iteration No. 
Start 

l 2 3 

J.LM 20.5 23.0 23.1 
F 

al - 0 .577 - 0.928 -0.944 -0.944 

a 2 0.577 0.340 0.307 0.307 

a3 0.577 0.152 0.124 0.123 

, 
0.134 0.122 0.120 0.120 a x 3 

, 
J.Lx 3 2.30 2.31 2.32 2.32 

Table 10.4. With J.LMF = 23.1 kNm the reliability index (3 = 4.00. 
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In the final example 10.6 it is shown how the reliability index Ø can be calculated for a struc­

ture with 3 tim&-varying loads modelled as Gaussian pulse processes. 

Example 10.6. Consider the simply supported beam shown in figure 10.9. The beamis 
loaded by 3 uniformly distributed time-dependent loads p1 (t), Pz(t) and p3 (t). The Ferry 
Borges - Castanheta load modeiling is used for the corresponding load processes {P1 (t) }, 
{P2(t)} and {P3 (t)}. Themodeiling data are shown in table 10.3. The safety margin is 

l 
M= MF -2 · 25(P1 + max [P2i] + max [P3i]) (10.38) 

i=1 , . . . ,6 i =1, . . . ,180 

where the criticallimit moment MF is assumed to be N(l2.50 kNm, 1.25 kNm) . Note 
that in the last term in (10 .38) the number of elementary interval.,. is only 180 due to the 
faet that the load process {P 2 (t)} is only assumed to be active for 1/2 year with n2 = 6 
elementary intervals. 

Equation (10.38) can be rewritten 

25 
M= X1 - 8 max [X2i + max [X3i]] 

j:1, . .. ,6 i=1, ... , 30 

where 

X1 =MF- ~5 P1 is N(10.9375 , 1.3975) 

X2i is N(- 0.20, 0.40) 

is N(- 2.00, 1.00) 

Load process No. of 
.Upt(t)' kN Opi(t)' kN repetitions 

{P
1

(t)} n1 = 1/year 0.50 0.20 

{.P2 (t)} n2 = 6/t year -0.20 0.40 

{P 3 (t)} n3 = 360/year -2.00 1.00 

Table 10.5 

111111111111111111111111111111111 p3 (t ) 

llllllllllllllllllllllllllllllll l p2
(t) 

IIII IIIII III IIIII l IIIIIIII III li l l P t <t> 

Æ . A 
~ "'5 m 

Figure 10.9 

(10 .39) 

Distribution 

Gaussian 

Gaussian 

Gaussian 
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Let X 4 =. , max. [X3i] be approximated by a normal distribution N(~x3 , a_X
3

) and let 
!=1, . .. , 30 

X5 = X2 + X4 . X5 will then be normally distributed N(- 0 .20 +~x' , v' 0.402 + (ax )2
). 

3 3 

Finally, let X6 = . max. [X5i] be approximated by a normal distribution N(~x5 , ax
5 

) . 

!=1, .. . ,6 

All approximationsaremade at the design point ~X + xi a .X . In the normalised coordinate 
system the failure surface is then given by 

1 1 

(10.935 + 1.3975 xl)-
2
8
5 (~x + a.X x6) =o 

5 5 

and the iteration formulas are 

25 ~x - 10.935 
{3 = 8 5 

1.3975 cx 1 -
2
8
5 

a.X
5 

cx 6 

l 
cx 1 =-k 1.3975 x1 = cx 1{3 

l 
l 25 l 

cx6 = k1 8 ax5 x6 = x5 = cx6{3 

l 
cx 2 =k 0.40 x

2 
= cx

2
(3* 

2 
l , 

cx4 = k2 ax3 x3 = x4 = cx4(3* 

~x + 0.20- ~x + 13a 6 a.X 
13* - 5 3 5 

- Jo.402 + (ax rz 
3 

The iteration scheme is as follows: 

Iteration No. 
Start 

l 2 3 4 

' 1.000 0.503 0.513 0.701 0.783 a x 3 

' ~x3 -2.000 -0.005 -0.008 -0.233 -0.435 

' 1.077 0.358 0.541 0.698 0.777 a x 5 

' -2.200 0.557 0.442 0.302 0.121 ~X5 

13* 3.000 0.450 2.951 3.386 3.662 

ex l -0.707 -0.781 -0.637 -0.539 -0.499 

cx6 0.707 0.625 0.771 0.842 0.867 

cx2 0.707 0.622 0.615 0.496 0.455 

cx4 0.707 0.783 0.789 0.868 0.891 

(3 3.00 5.17 4.45 3.88 3.77 

Table 10.6 

5 

0.811 

-0.521 

0.802 

0.045 

3.738 

-0.487 

0.874 

0.442 

0.897 

3.76 

} 

} 

(10.40) 

(10.41) 

(10.42) 

(10.43) 

(10.44) 
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It is important to notethat the values for llP.(t) and aP.(t) in table 10.5 are values adjusted 
l L 

in such a way that the approximated normal distributions for the maximum distributions 
are acceptable. 
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Chapter 11 

APPLICATIONS TO STRUCTURAL CODES 

11.1 INTRODUCTION 

Structural codes are documents which, by their very nature, are subject to periodic revision 

and amendment, but the decade 1970 · 80 was a time of marked activity in code development. 

This is still continuing. The main features have been 

• the replacement of many simple design rules by mor~ scientifically·based calculations de· 
rived from experimental and theoretical research, 

• the move towards limit state design · whereby the designer andfor code writer specifles 
the relevant performance requirements (limit states) for each structure explicitly; and where 
separate sets of calculations are required to check that the structure will not attain each 
limit state (at a given level of probability), 

• the replacement of single safety factors or load factors by sets of partial coefficients, 

• the improvement of rules for the treatment of combinations of loads and other actions, 

• the use of structural reliability theory in determining rational sets of partial coefficients, 
and 

• the preparation of model codes [11.7) for different types of structural materiais and forms 
of construction; and steps towards international code harmonisation, particularly within 
the European Economic Community (EEC). 

It should not be thought that all these developments have been fully co-ordinated, or that all 

the changes to practical codes that have taken place are necessarily of great benefit. Indeed 

many recent changes in structural codes have not been met with enthusiasm by practising en­

gineers, often for good reason. Nevertheless, each of the features mentianed above is of rele­

vance to future code development. 

In comparison with the idealised models used for calculation purposes, the actual behaviour 

of most structures is extremely camplex and there is a tendency, as more research is undertaken 

and more becomes known, forthedesign procedures set out in structural codes to become in­

creasingly lengthy and involved. Such changes generally increase design costs and increase the 

risk of majorerrors being made. They eannot be classed as improvements unless the new pro· 

cedures result in improved standards of safety andfor reduced costs of construction and main· 

tenance. 
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It is therefore clear that the »best» codes are not necessarily those with the most scientifically 

advanced desigrr-clauses. As will be discussed later, there may often be advantages in using sim­

plified design rules. The effect of this will be to make the overall construction slightly less econ­

omic and the reliability of those structures designed to the code marginally more variable, for 

an y specified standard o f reliability. 

In previous chapters, various aspects of structural reliability theory have been discussed, to­

gether with the problems of modeiling load and resistance variables. In this chapter we con­

sider how these techniques can be used in the development of conventional structural codes. 

11.2 STRUCTURAL SAFETY AND LEVEL l CODES 

As menticned in chapter l, level l design ,methods were deseribed as »design methods in which 

appropriate degrees o f structural reliability are provide d o n a structural element basis ( occasion­

ally on a structural basis) by the use of a number of partial safety factors (partial coefficients) 

related to pre-defined characteristic or nominal values of the major structural and loading vari­

ables». A level l code is therefore a conventional deterministic code in which the nominal 

strengths of the structural members designed to that code are governed by a number of partial 

coefficients or by equivalent means. 

The safety and serviceability of practical structures are achieved by the use of suitable partial 

coefficients in design, together with appropriate control measures. Both are essentialand it is 

helpful to distinguish their individual roles. 

Let us first examine the role of partial coefficients. Consider a structure subjected to a random 

time-varying load Q having a specifled nominal magnitude Clsp. The structure is proportioned 

to carry a design load Qd = 'YQClsp• where 'Y Q is a partial coefficient on live load. The effects of 

increasing 'Y Q by, say, 20% will in general be 

• an increase in the nominal capacity of the structure to support the load Q, 

• an increase in the actual capacity of the structure to support the load Q, 

• an increase in the sizes of the structural members and the self-weight of the structure, 

• an increase in the cost of the structural system, 

• some increase in the actual capacity of the stnicture to resist any other load Q', and 

• an increase in the safety of the structure as characterised by a reduction in the probability 
that i t will fail in an y given reference period T. 

If the design strength of a material is given by ed = esp h m, where esp is the specifled material 

strength and 'Y m is a partial coefficient, an increase in 'Y m will in general have the same effects 

as an increase in 'Y Q . 

There are some circumstances, however, when increases in 'Y Q or in 'Y m maynot give rise to 

these effects. For example, the actualload-carrying capacity of a structural member, as opposed 

to its nominal capacity, may decrease or maynot significantly increase.if, for example, any 

change in 'Y Q o r 'Y m results in the designer using larger diameter reinforcing bars which, in spite 

of having the same specified yield stress as the bars they are replacing, may have a lower mean 
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yield stress (see figure 3.9). Similarly , small changes in "YQ or T' m maysametimes have no eifect 

on either the di~ensions or the safety of some structural members. This is because of the dis­

crete nature of many structural components (e.g. ralled steel beams ) and the need to round up 

to the next section size above when designing. In such cases the actual strength, and hence the 

reliability, is not a continuous function o f t he partial coefficients. 

We now consider the reasons for using partial coefficients as opposed to single safety factors or 

load factors. The main reason is that only by using partial coefficients can reasonably con­

sistent standards of reliability be achieved over a range of different designs within any ane code. 

As will be discussed in section 11.4, the most consistent standards can be achieved by associat­

ing a partial coefficient or same other safety element with each major :.vurce of uncertainty (i.e. 

with each basic variable) . Partial coefficien_ts are also essential for the rational treatment of load 

combinations, and in particular for situations in which the totalload effect in part of a struc­

ture is the difference of two load effects of approximately similar magnitude but ariginating 

from different load sources- e.g. the effects of gravity loadsand wind loadsin the up-wind col­

umns of a tall building. 

We now return to the question of controi measures. The safety and serviceability of a structure 

are influenced as much,if not more, by the nature of the control measures that are in operation 

• as by the magnitude of the partial coefficients that are used in design. Control takes two main 

forms 

• quality controi of materials and fabrication, and 

• controls to avoid the occurrence of major or gross errors in the design and construction 
processes. 

Control of the first type is aimed at reducing variability in the mechanical properties of struc­

tural materiais and maintaining appropriate mean properties. For example, the variability in the 

yield stress of steel can be reduced by improved control on chemical composition and rolling 

conditions. Such control will, in general, reduce the probability of structural failure and thus in­

crease safety. Both the form and the parameters o f the probabilistic models for resistance vari­

ables discussed in chapter 3 are dependent on the standards of quality controland inspection 

that are in operation. 

Control of the second type is clearly more difficult to achieve since the sources of possible 

errors arealmost unlimited. Thisis the subject of chapter 13. 

We continue here with the problem of devising a suitable procedure for evaluating partial coef­

ficients or other safety elements for a level1 code. The term safety element is used as a generic 

term for partial coefficients and additive safety elements (see section 11.3.3). A logical sequence 

of steps is as follows 

• set limits on the range of structures and materiais for which the code will be applicable, 

• specify the deterministic functional relationships to be used as the basis for each design 
clause, 

• select the general form of the probabilistic models for the various load and resistance vari­
ables and model uncertainties, 
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• specify appropriate quality control measures and acceptance criteria for the manufacture 
and fabric~tion of basic materiais and components, 

• determine the parameters of the relevant models from loading data and from materiais 
data obtained under the specified standards of quality control and inspection, 

• select a suitable safety format - the number of partial coefficients and their position in the 
design equations (i.e. the variables associated with partial coefficients), etc., 

• select appropriate representative values of all basic random variables (e.g. nominal, charac­
teristic or mean values) to be used as fixed deterministic quantities in the code, 

• determine the magnitude of the partial coefficients to be used in conjunction with the 
above representative values to achieve the required standards o f reliability. 

Procedures such as this have already been used in the application of structural reliability theory 

to practicallevel1 codes, e.g. (11.6), [11.10), [11.12). Same of these steps have already been con­

sidered in same detail, e.g. themodeiling of load and resistance variables, and others, e.g. quality 

control procedures, are beyond the scope of this hook. In the remainder of this chapter we shall 

concentrate on the question of choosing suitable safety formats for structural codes and on the 

calculation of partial coefficients. 

11.3 RECOMMENDED SAFETY FORMATS FOR LEVEL l CODES 

The safety format of a code is defined as the way in which the various clauses of the code regu­

late the degree o f safety, or more generall y the reliability, o f structures designed to the code. 

In particular, it concems: the number of partial coefficients or other safety elements to be used, 

their positions in the design equations, and rules for load combinations. 

The foliowing recommendations for level l codes are based on the work of the International 

Joint Committee on Structural Safety [11.7], [11.8], and are likely to form the basis of a new 

international standard to replace ISO 2394: General principles for the verification of the safety 

of structures. 

11.3.1 Limit state functions and checldng equations 

As discussed in chapters 4 and 5, the general conditions for a limit state not to be exceeded may 

be expressed as 

(11.1) 

where 

X are the n basic random variables which influence the limit state, and 

f is the limit state function (failure function). 

The variables X may be sub-divided into variableloadsand aetions Q, permanent loads a; ma­

terial properties E, geometricalparameters D, and model uncertainties Xm (see equation (1.1)). 

In addition, each limit state function is likely to involve one or more constants c. Equation 

(11.1) may therefore be re-written as 
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f( Q, G, E, D. xm, C) > o \ 11.2) 

For the purposesofa level l code. the equivalent determmistic eriterion for safety ch ecking (i.e. 

checking the sufficiency of a structure or structural member whose design properties are given ) 

is 

( 11.3) 

where 

f is the same limit state function as above, involving n quantities id .md m constants c, and 

qd is the deterministic design ualue of the random variable Q, etc. 

If the aim is to design, as opposed to check, a particular structural member, it may aften be pos­

sible to invert equation ( 11.3) to give the minimum design value o f som e convenient resistance 

variable - for exarnple, a dimension D' or a section modulus, e.g. 

(11.4) 

where 

f' is a function related to f, involving (n -1) quantities id and m constants c. 

Hence, the process of designing a structural member involves 

• determination o f the design loacis qd, 
• selection of materiais and determination of the design values of"their relevant mechanical 

properties e d, 

• selection of primary dimensions dd to satisfy the particular engineering and architectural 
requirements, and 

• determination of the remaining unknown dd to satisfy equation (11.4). 

In many casesit maynot be possible or convenient to express equation (11.4) in explicit form 

in which case the design process will involve a number of trial-and-error calculations to find the 

minimum value of d' that satisfies the inequality (11.3). This will be recognised as the normal 

approach to design. 

Let us now re-examine equation (11.2). Formany structures it is possible to re-write this as 

(11.5) 

where 

r represents a resistance function and R = r(·), 

s represents a load effect o r action effect function and S = s ( ·), 
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XR is a model uncertainty associated with the particular form of the resistance function , 

x5 is a modecuncertainty associated with the particular form of the load effect or action 
effect function, 

and where DR and 0 5 aresets of different dimensions. 

In equation (11.5) the resistance function r and the load effect function s areshownas un­

coupled; and because they share no common variables the two terms are also statistically 

independent. If such uncoupling is possible, then the deterministic checking equation corre­

sponding to equation ( 11 .3) may be expressed as 

where 

'Y R is a partial coefficient on the computed resistance 

-y s is a partial coefficient on the computed load effect 

and where the subscript d denates the design value of the variable. 

(11.6) 

The design process generally involves iterative or trial-and-error calculations to find a set of 

dimensions dRd which in conjunction with the design values of the load and strength vari­

ables satisfies the checking equation. 

Equation (11.6) is themost general form of the checking equation for a structure in which 

R and S can be uncoupled. In this case, the safety or serviceability of a structure (the prob­

ability that the limit state defined by the particular form of the functions r and s will not 

be reached) c an clear ly be increased o r decreased by ad justing an y o r all o f the (n - l) inde­

penden t design values id (e.g. ~ or ed) and the two partial coefficients "Y R and "Y s. Substi­

tuting these values into equation (11.6) gives the required value of the remaining quantity · 

generally a dimension. Because there is an infinite number of sets of (n -l) values id which 

will give the same design, the problem facing the code writer is to select the »best>• set of 

values id. Thisis discussed in section 11.4. 

It should be noted that in practice the quantities R and S mayaften be correlated beacuse 

of common parameters. For example, the self-weight of a reinforced concrete beam and hence 

the mid-span bending moment S will be weakly correlated with the beam's moment-carrying 

capacity R, as both are functions of beam depth. 

11.3.2 Characteristic values of basic variables 

The term characteristic value was introduced in the late 1950's at the time when probabilistic 

concepts were first being introduced in to structural codes; and when it was recognised that 

few basic variables have clearly defined upper or lower limits that can sensibly be used in de· 

sign. Characteristic values of aetions and materlal properties based on a preseribed probability 

p of not being exeeecled were considered to be more rational than arbitrary selected values. 
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The characteristic value x .. o r" a baste random vanable X is derined as the p•h fractile or X 
" 

given by 

where 

F-1 is the inverse distribution function of X, and x 

( 11.7) 

p is a probability which depends on the type of variable being considered (i.e. a load or 

a strength). 
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The selection of the probability p is to a large extent arbitrary but is influenced by the follow­

ing considerations 

• characteristic values of loads and other aetions are values which should rarely be exceeded, 

• characteristic values of material strength properties should normally be exceeded by actual 
properties. 

• the values of p should neither be so large nor so smal! that the values xk are not occasional­
ly encountered, 

• it is aften sensible to use previously adopted nominal values as specified characteristic 
ualues, xsp . 

The distinction between characteristic uaiue and specified characteristic ualue (specified value) 

should be made clear. The former is a fractile of a random variable, whereas the latter is same 

specified single value of the same quantity - a constant. For practical reasons it is generally 

necessary for the user of a level l code to work with specified valuas c·f all the design variables 

rather than with actual characteristic values, same of which will not be known at the design 

stage. For example, the actual characteristic value of the 28-day cube or cylinderstrengthof 

concrete is likely to depend on the particular supplier or contractor and is not known in ad­

vance. In this case it is necessary for the quality controlprocedures specifled by the code 

writers to be such that the actual characteristic strength of the material exceeds the specified 

strength by an appropriate margin o r with a stated probability. Similarly, the user o f a code 

should normally work with specified deterministic values of loads and other actions; it is the 

responsibility of the code writers to relate these values to the distributions of the actualloads 

and actions, and to recommend associated partial coefficients or other safety elements. 

11.3.3 Treatment of geometricalvariables 

Geometricalvariables are of two main types - structural dimensions (e.g. the depth of a beam) 

and geometrical imperfections (e.g. the out-of-straightness of a column). 

Structurai dimensions: The uncertainties in most structural dimensions D are generally small 

and forthis reason the mean value !lo may be taken as the characteristic value (i.e. dk= !l0 ). 

Tolerance limits are specified in codes for most structural dimensions, and if these are of the 

form 

d -e:s;;; D ~ d +e sp sp (11.8) 
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d 

Figure 11.1 (a ) Figure 11.1 (b ) 

then the actual characteristic value dk and the specified nominal value d
5
P will generally be 

very close · see figure 11.1 (a). It should be noted, however, that unless the standard of inspec­

tion is high the probability that the dimension D will exceed the specified tolerance may not 

be negligible. See, for example, figure 3.6. 

Geometrical imperfections: The strength of many structural members, for example most plates, 

columns and shell structures, depends not only on cross-sectional and overall dimensions but 

also on the magnitude of relevant geometrical imperfections l. 

For such structures it is normal to specify an upper limit e on the imperfection magnitude, i.e. 

(11.9) 

In this case, e can be taken as the specified characteristic value of I, isp . The probability that 

isp will be exeeecled will generally be small and will depend on the standard of inspection. The 

actual characteristic value of the imperfection ik can conveniently be chosen as the 95% fractile 

o f I and the acceptance criteria designed so that isp exceeds ik by an appropriate margin (o r 

with a stated probability) · see figure 11.1 (b). 

A histogram of some typical plate-panel imperfections (plate-panel out-of-flatness) obtained 

from measurements on the steel box-girder bridge at Austin the U.K. is shown in figure 11.2. 

The quantity Ø is the ratio o f measured imperfection to the specifled maximum imperfection e. 

ø 

0 .25 0.50 0.75 1.00 1.25 1.50 

Figure 11.2 Plate panel imperfections · Aust Bridge. 
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Design ualues o f d imensions and imperfections: Typically, the standard deviations oi geometrical 

variables are independent of nominal dimensions (e.g. for given site conditions . the standard de­

viation in the thickness of a 100 mm slab is likely to be about the same as that of a 200 mm 

slab: giving a reduction in the coefficient. o f variation for increasing nominal thickness l. Forthis 

reason the most uniform standards of reliability can be obtained over a range of different struc­

tures by using design values dd and id of the geometrical variables related to the specified values, 

as follows 

i = i ~ _l . 
d sp 1 

where ~d and ~i are additive safety elements. 

(11.10) 

(11.11) 

Formany structures. however, the probability of failure is insensitive to smal! variations in 

structural dimensions. For these cases, ~d and ~i should be set to zero and the uncertainties 

in D and I should be allowed for by modifications to the partial coefficients on the other de­

sign variables. A formal method for doing thisis discussed in section 11.4. 

11.3.4 Treatment of material properties 

We shall restriet our attention to the strength properties of structural materials, denoted E. 

For each variable, the characteristic value ek should be such that it has a reasonably high prob­

ability q ( = l - p) o f being exceeded in an y single trial o r test. Typically, q is taken to be be­

tween 0.95 and 0.99, corresponding to the 5% and 1% fractiles of the variable E. However, as 

mentianed in section 11.3.2, the user of a level1 codemayaften not know the actual charac­

teristic values for his materlal properties in advance, anditis generally necessary to design using 

specified characteristic values, esp. The acceptance criteria får a materlal should be devised so 

that ek exceeds esp at astatedlevel o f probability P e. It should be noted here that the uncer­

tainty associated with the event (ek > e
5
P) arises as aresult of imperfect knowledge of the ma­

terial supplied and the difficulties of obtaining sufficient sample data at the appropriate time. 

The probability Pe must be clearly distinguished from the probability p mentianed above. 

The design ualue ed of the strength of a materlal is obtained from the specified or characteristic 

strength as follows 

es n 
e=~ 
d -y 

m 

where "f m is a partial coefficient on strength. 

11.3.5 Treatment of loads and other aetions 

(11.12) 

The classification and modelling of loadsand other aetions were discussed in chapter 3. Most 

loads differ from other basic variables in that they vary significantly with time and are general­

ly not arnenable to effective control. There are some notable exceptions to both these generali­

sations. 
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Because of the time-varying nature of most loads, the problem of assessing the combined ef­

fect of a numb~r of different loads acting on a structure has been seen so arise. This was dis­

cussed in chapter 10 in the context of reliability analysis. As might be expected a rather simi­

lar problem arises in treating combined loads within the framework of a deterministic level 

l code. 

Characteristic ualues: The uncertainty in most permanentloadsis smalland for this reason 

i t is customary to use the meanor nominal values of permanent loacis in most design calcula­

tions. For the same reason it is appropriate that the characteristic value gk of each permanent 

load G is taken as its mean value /J G . Ila may be considered to be the average permanent load 

taken over all nominally similar structures and obtained by using mean dimensions and mean 

densities. 

For a t ime-varying load Q, the characteristic value qk is normally defined as that value which 

has a preseribed probability p of not being exceeded within a given reference period. It is there­

fore the pth fractile of the extreme .value distribution o f the load corresponding to that refer­

ence period. Up to the present date (1982) few nationalloading committees have attempted 

to rationalise their specified loads along these lines, but progress is being made in this direction. 

Wind loading codes areperhaps themost advanced in this respect, e.g. [11.2]. The nominal 

loads specifled in most loading codes vary rather widely in terms of their probability of ex­

ceedance. 

Single time-varying loads: If a structure or structural component is subjected to only perma­

nent loacis G and ane time-varying load Q, the load-combination problem does not arise.In 

this case, the values gd and qd to be used in the design or safet;: checking process (cf. equa­

tion (11.6)) are obtained from 

(11 .13) 

(11.14) 

where r fG and r f Q are partial coefficients and gk and qk are characteristic values of the ran­

dom variables G and Q, respectively. 

For failure modes in which part of the permenent load acts in a stabilising or resisting. sense 

and part in a de-stabilising or loading sense, different values o f r f G should be used for the two 

components; r fG ~ l w hen the load is stabilising the structure and r fG ;;;;. l when i t is not. 

Combinations of time-varying loads: When a structure has to resist a number of stochastically 

independent t ime-varying loacis, it is clear that the probability of two or more loads exceeding. 

their characteristic values simultaneously is small. If the totalload effect in a member were to 

be determined from 

(11.15) 
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where 

YfGl and gkl are the values of 1'rc and qk for the firstof m permanent loads. 

qkl is the characteristic value o f the first o f n time-varying loads Q i, 
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r f Q l is the partial coefficient associated with the load Q1 w hen t his load is ae ting alone. and 

c is the load effect function. implying a linear or, where appropriate , a non-linear analy­

sis of the structure under the action of the factored loads, 

the resulting load effect S would be extremely conservative. Forthis reason it is necessary to 

introduce a set of reduction factors 1/loi (1/l oi.;;;; l) to be applied to the time-varying loads Qi to 

take account of the reduced probability of the desi511 values of the loads being exeeecled simul­

taneously. The total design load effect is therefore given by (cf. Turkstra's rule, p. 168), 

(11.16) 

In princip le, i f there are n time-varying loads, i t is necessary to undertake n design checks (e­

quation ( 11.6)) o n the structure, using a separate set o f 1/10 factors for each check and with 

1/1 Ojj = l for the jth check. 

For the jth design check equation (11.16) may then be re-written as 

(11.17) 

where 

gd = (gdl' · · · ' gdm ), etc. 

The need for a number of design checks using different sets of 1/1 0 factors arises from the faet 

that throughout a structure the contribution of each separate load Qi to the max.imum load­

effect in any member, varies considerably from member to member. For example, although 

snow loading may dominate the load effect in the roof beams of a multi-storey building, the 

same loads have only a small influence on the totalload effects in the ground floor columns. 

In practice, with detailed knowledge of the structure being designed or checked, it is often pos­

sible to reduce the number of safety checks significantly. 

Equations (11 .6) and (11.16) arethemost general form of checking equations that are envis-
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aged for use in level l codes. Some rather less general forms of checking equations have also 

been suggested f 11.7]. In practical codes the design requirements may be made considerably 

simpler. 

11.4 METHODS FOR THE EVALUATION OF PARTlAL COEFFICIENTS 

Any reader who is unfamiliar with the theory of level l codes may be sarnewhat concerned 

by the apparent complexity of the safety checking rulesset out in section 11.3 and by the 

apparent arbitrariness of some of the steps. Because of the inherently probabilistic nature 

of most structural safety problems, it is clear that safety checking prol.~dures which are 

couched in deterministic terms will have same degree of arbitrariness. This eannot be avoided. 

The design clauses given in level l codes should be interpreted as a set of decision rules, the 

outcome of which can be modified by changes to a set af control parameters - the partial coef­

ficients. The process of selecting the set af partial coefficients to be used in a particular code 

should be seen as a process of optimization such that the outcome of all designs undertaken 

to the code is in some sense optimal. This should not be confused with the concept af opti­

mizing individual structures. Whether or not a formal optimization is undertaken in practice, 

i t is useful to think of the partial coefficient selection processin this way. I t is then clear that 

the possibility exists for using any simplified set af design clauses together with a modified set 

of partial coefficients which on average will achieve the same degree af safety as the more com­

plex set. The penalty to be paid for using the simplified design rules is same increase in ma­

terials usage. 

In the remainder af this section various formal procedures for the determination of partial 

coefficients are discussed. 

11.4.1 Relationship of partial coefficients to level 2 design point 

It was shown in chapter 5 that for the reliability analysis of a particular structure, the level 2 

roethad involves the mapping af the set af n basic random variables X to a set of independent 

standard normal variables Z. This results in the mapping of the limit state failure surface given 

by 

(11.18) 

to a failure surface in standard normal space 

(11.19) 

The reliability index (J is defined in Z space as the shortest distance from the arigin to the 

failure surface and is given by ( see ( 5 .34)) 

n 1 

(J = min (l: zf>2 

i e aw i • l 
(11.20) 
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The point on the failure surface which is closest to the arigin is referred to as the design point 

(see figure 5.5):and has co-ordinates (13o: 1 . ~ o:2 , ... , Øo:
0

), where (s3e (5.35)) 

n af - -.!. a f -
o: i =- ( _[ (.6o:))ll 2az.Wo:) 

k=l azk l 

i = L 2, . . .. n (11.21) 

with 

(11.22) 

and z-• = .(3ii. 

By using the inverse mapping 

i= l, 2, ... , n (11.23) 

we obtain the set of values x" for the original basic variables X corresponding to the design 

point z" . If the variables X areall normally distributed, then the set of values i" are the val­

ues of the variables at which failure is most likely to occur (if this event were to happen), i.e. 

max fx (x.) = fx (x~) 
- i l i l 
XE Wt 

i= l, 2, .. . , n (11.24) 

where w r is the failure region. 

If X arenon-normalthen equation (11.24) is only approximate. 

I t can now be seen that if the values i" were to be used as the design values id in a deterministic 

level l design calculation, the resulting structure would have a reliability index (3 and a relia­

bility 6{ = l - <Il (- (3). Thus, i f 6{ is an acceptable reliability for the structure, a satisfactory 

set of partial coefficients is given by 

where x s pi is the specifled value o f the resistance uariable Xi, and by 

xd x~ Fi'(<ll(zj)) 
'Y· =<~z: -L=_..:..,! __ _ 

l Xspl Xspl Xspl 

where x5 P
1 

is the specifled value of the loading uariable ~· 

Example 11.1. If X; is a normally distributed loading variable, then 

Fx·' ( <11 (z~)) Il x + ex. f3ax 
f ) f J l 

'Yj = x = x 
spl spl 

(11.25) 

(11.26) 

(11.27) 



190 11. APPLICATIONS TO STRUCTURAL CODES 

Assuming that the parameters 1.1. x and ax . o f the variabie X
1
. are known o r c an b e es ti· 

'J • l 

mated. thctt x
5
P

1 
is given and that the reliability index 13 is specified. the evaiuation of the 

partial coefficient "Y j requires only a knowledge of the sensitivity factor o: i" 

Example 11.2. If Xi is a log-normally distributed resistance variable, then 

l ~ 
llx exp(--

2 
Qn(V.2 +l)+ a:.IJ(Qn(V.2 +1)) 2

) 
l l l l 

x 
~ ___ 5 P_1.._ __ 

f./. x ex p( o: . .B V.) 
i l l 

where 

f./. x is the mean o f X i, and 
l 

vi is the coefficient of variation o f xi . 

(11.28) 

Again, if the parameters l.l.x and V.
1 

are known, and x and .6 are given, then 1
1
. can be 

· i 5 P1 
evaluated from a knowledge o f the sensitivity factor a . . 

l 

Equations (11.27) and (11.28) and similar relationsbips for other types of probability distribu­

tion are only of direct use, when the values a are known. In general, the value of o:i depends not 

only on the parameters of the random variable Xi, but on the values of the parameters of the 

other random variables, on the value of Ø and on the nature of the limit state function. 

For a particular structure and failure mode, the sensitivity factors a may be evaluated from 

equation (11.21). However, the use of this equation implies a reliability analysis of the structure 

and if this is to be undertaken there is littie point in foliowing it with a level l safety check. 

Furthermore, this approach leads to a partial coefficient on every basic variable, which is too 

many for practical use in design. 

A procedure is therefore required for the determination of a limited number of partial coeffi· 

cients or additive safety elements(~ n, where n is the number of basic variables) which will be 

applicable over a range of different failure modes and for a range of different structural types 

covered by a code of practice. Such a procedure is discussed in section 11.4.3. Before this, we 

shall consider an approximate direct method for the evaluation of partial coefficients. 

11.4.2 Approximate d.irect method for the evaluation of partial coefficients 

The difficulty with the approach suggested above was seen to lie in the evaluation of suitable 

sensitivity factors a. Experience shows that over fairly large ranges o f design parameters the 

individual factors a i often do not change dramaticall y. Furthermore, because 

it is .always possible to choose a conservative set of sensitivity factors for use with equation 
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t ll.26). o: 1 = ± o:2 "; ... =:!:an=± l is such a set. when the sign of the factor 1s taken as posi­

tive for loadin~variables and negative for resisting variables: although in most practical cases 

this would be tao conservative . 

. -\ssuming that the limit state function may be split into a resistance term R and a load effect 

term S. as in equation ( 11.6 ), i t has been proposed [ 11.51 that the sensitivity fac tors should be 

expressed as 

o:R . ~aR aR . ,1 ,l 
( 11.29) 

- 4 o:s . ~ o:so:s . 
, l , l 

(11.30) 

where 

o:R . is the sensitivity factor for the ith resistance variable. 
, l 

o:S ,i is the sensitivity factor for the ith loading variable, 

o: R and a 5 are estimates of the sensitivity factor for the composite variables R and 

S in the limit state function R -S = O, 

&R . is a factor which depends on the relative importance of the ith resistance vari-
,1 

able, and 

&s . is a factor which depends on the relative importance of ·the ith loading variable . 
, l 

Assuming that the truevalues (i are known (i.e . from a level 2 analysis ) and the variables X are 

ranked ( talting due account of sign) sothat 

(11.31) 

O~ a 8 . ~l 
,l 

(11.32) 

where nR + n8 =n, the total number of basic variables, the quantities R1 and S1 may be 

termed the leading resisting and loading variables, respectively. 

For a wide range of structural members, the foliowing empirically-based values can be shown 

to be satisfactory 

(11.33) 

ci . = vT -..;r=T R,1 i= l , 2, ... , nR (11.34) 

& =.fl-vi 1 S ,l i= l, 2, . . . , n8 (11.35) 

Hence, for the loading variables R1 and S1 , &R, l = iis , l = l giving o: R, l =- 0.8 and o: S, l = 0.7. 

This approach is viable only if the designer has prior knowledge of the relative importance (sen­

sitivity ranking) of the various variables. This information can be gained by experience and by 

the occasionallevel 2 analysis. 
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Having estimated the sensitivity factors a from equations 111.29) to (11.35) , the partial coef­

ficients "f. and r
1
-, o r the design val u es o f the variables x~ and x~, may b e obtained directly 

l . l J 
from equations (11.25) and (11 .26) . This processis illustrated in the following simple example. 

Ex.ample 11.3. The encastre steel beam shown in figure 11.3 is to be designed against 
plastic callapse to resist a uniformly distributed superimposed load Q and a permanent 
load G. Q, G, the yield stress af the steel EY, andthemodel uncen ainty Xm affecting 
the plastic moment af resistance af the section are assumed to be normally distributed 
random variables, with the parameters given in table 11.1. The yield stresses at the plastic 
hinge positions A, B and C are assumed to be the same and the geometrical variables are 
assumed to have n o uncertainty. I t is desired to evaluate the partial coefficients "f Q , 'Y G, 

"fE and "fx for a reliability index Ø = 4, and to determine the required plastic modulus z . 
Y m p 

By consideration af the mean values and coefficients af variation af the variables and the 
nature af the limit state function it may be assumed that 

T hus, 

a Q = a 8åS,l = 0.7 X 1.0 = 0.7 

aE =aRåRl =-0.8X 1.0=-0.8 
y • 

aX =aR åR 2 =-0.8 X (y'2 -1) = -0.331 
m ' 

aG = Ci"8å8,2 = 0.7 x (y'2 -1) = 0.290 

Variable Il x a x V x X, p 

Q kN/m 40.1 6.015 15% 50.0 

G kN/m 30.0 1.5 5% 30.0 

E y N/mm1 293.6 23.49 8% 255.0 

~ 1.0 0.06 6% 1.0 

Table 11.1 

~ l l l ~ l ' l ~ l l ~ lG,Q 

t----- ----=1 -- -- --o-- -- -- . 
B 

Figure 11.3 
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and the design val u es x • are gtven by 

x· = fJ. x + ax Øax = 0.921 
m ·m · m · m 

These values and the partial coefficients found from equations ( 11.25) and ( 11.26) are 
listed in tab le 11.2. 

Variable xsp x· -y 

Q kN/m 50.0 56.9 1.13 

G kN/m 30.0 31.7 1.06 

E y ~/mm2 255.0 218.4 1.17 

x m l. O 0.92 1.09 

Table 11.2 
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By application of virtual work, the required plastic modulus zp may now be determined 
from 

+ !:- ~ 10~ 
('y0 gsp 'YQ~p) 4 - 4( -y zp) -y (11.36) 

E,. ~ 

Substituting the appropriate values from table 11.2 gives zp = 6.89 X 105 mmJ. 

Finally, i t is o finterest to use the level 2 roethad to determine the reliability af this struc· 
ture when the plastic modulus has the value found by theabove method. The failure func­
tion can be written as 

M = 16 z E X - ~ 1 (G + Q) x l 06 = O P Y m (11.37) 

Using the roethads af chapter 5 and the parameters from table 11.1 gives a reliability in· 
dex {3 = 4.45. Thisis larger than the originally selected value af 4.0 showing that the ap· 
proximate method af determining partial coefficients is safe, at least for the structure and 
set af variables examined. 

It must be stressed that great care must be taken when using the spproximate method for the 

evaluation af partial coefficients if the relative magnitudes af the sensitivity factors a are not 

known. Care must also be taken when there is appreciable statistical uncertainty in the para­

meters af the probability distributions of the basic variables because af lack af data. Methods 

of including statistical uncertainty were introduced in section 7 of chapter 3. See also [11.11) . 
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11.4.3 General method for the evaluation of partial coefficients 

Practical codes should have the smallest number of partial coefficients that is consistent with 

reasonably uniform standards of reliability; moreover, the same partial coefficients should be 

applicable to a wide range of structural components. This means that they must be applicable 

over a range of sensitivity factors without being unsafe or unduly conservative. A suitable gen­

eral method for the evaluation of such a set of partial coefficients is now presented. 

The first stage of this process is to deeide upon an appropriate standard of reliability or target 

failure probability for the structures ( or more generall y, structural components, e.g. beams, 

columns, slabs) that will bedesigned using the new code. Thisis also a pre-requisite for the pro­

cedure deseribed in section 11.4.2. The choice is generally made by a ~·.-acess of probabilistic 

calibration to an existing code. e.g. see [11.6]. 
-

Studies of the reliability of structural components designed to traditional codes typically show 

very wide ranges of reliability. An appropriate choice for the target failure probability Pr t for a 

newcode is the weighted average of the failure probabilities exhibited by components designed 

to existing codes, provided that the least reliable component exhibited satisfactory performance 

in actual service. The latter is not always easy to verify because existing codes maynot have been 

in use for a sufficiently lang period of time and structures may have been subjected to only a 

fraction of their design loads. The weighting factors w. should be selected torepresent the pre-
1 

vious frequency of usage of each structural component included in the calibration and should 

be such that I wi = 1.0. 

Use of the weighted average failure probability rather than, say, the weighted average reliability 

index means that the target failure probability Prt tencis to be gaverned by the less reliable com­

ponents in existing codes. This assumes a measure of economy in the new code, but car.e has to 

be taken that these re liabillties are not to o low. 

A more elireet approach to the choice of target failure probabilities has been recommended by 

the Nordie Committee on Building Regulations (NKB) (11.10). In this, the target failure probab­

ility depends on the consequences of failure and on the nature of the failure mode, as shown in 

table 11.3. 

F allure Failure type 
consequences I Il III 

Not serious 

Serious 

Very serious 

Table 11.3. Target failure probabilities and corresponding reliability indices [11.10] . ·-
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The target failure probabilities given in table 11.3 are for a reference period of l year, but 

should be treated as operational or national prahabillties and not as relative frequencies. The 

failure types are defined as 

duetile failure with reserve strength capacity resulting from strain hardening 

II duetile failure with no reserve capacity 

III brittie failure and instability 

Having chosen a target failure probability, the problem o f selecting a set o f partial coefficients 

r for a code, or part of a code, may now be reduced to the application of the foliowing simple 

principle. Choose the set of partial coefficients r, so as to minimise the quantity S given by 

m 

S== z wi~(Pn(r), Prt) (11.38) 
i=l 

Subject to the constraint 

m 

Z wi Pr/Y) == Prt with 
i~l 

(11.39) 

and where 

is an agreed function o f the quantities Pfi (:Y) and Pr t, 

is the failure probability of the ith structural component designed using the 
set o f partial coefficients r' 

is the target failure probability, 

w== (w1 , ... ,wm) is a set of weighting factors indicating the relative importance of each of 
the m structural components included in the partial factor evaluation. 

In general terms, the aim of this approach is to minimise the deviations of the prahabillties Pn 

from the target probability o f failure Pr t, w hilst maintairung the average probability o f failure 

at the target level. Experience has shown that the values of the partial coefficients are general­

lyveryinsensitive to the form of the objective function used (equation (11.38)). Suitable func­

tions are: 

(11.40) 

and 

m m 
s2::: .J: wi(-<1>-1 (Pn(::Y)) + <1>-1 (Pft))l =I wi(jli(::Y) -Øt)l (11.41) 

i•l i•l 

where Ø is the reliability index. 

.. ,. - ·- .. · - p-- - - . ··- . .. --
.. .;: ·; . t.:~' . . • • . ·.:;;. ,.... ·~. : · . .-\. . ... :,;,~:._";,.. --.;·. _·;._; .:.. . -:.:• ... .-! , ·F· .... ~ .. -..·;. ~~~ 
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Clear ly , man y other possibilities exist. Obtaining the solution to equations ( 11.38) and l 11.39) 

is a problem of constrained minimisation for which a number of standard techniques and com­

puter programs are available. Nevertheless, the total amount of computational effect is consider­

able because all the probabilities Pn need to be re-evaluated for each adjustment to the partial 

coefficients ::Y. 

The code writer is free to choose as many parti:ll coefficients or additive safety elements as is 

considered appropriate for a given code. A practical number is generally considerably less than 

the number of basic random variables. A reduction in the number of partial coefficients can be 

achieved by constraining the unwanted coefficients to be unity. Provided equation (11.39) is 

satisfied, the effect of these additional constraints is to increase the de•."iations from the target 

failure probability Prt and to increase the average amount of materlal used when designing to 

the code. The penalty to be paid for increased simplicity in the code safety format is therefore 

some increase in the initial cost of construction. 

When applying this procedure over a number of codes for different construction materials, e.g. 

steel and concrete , a further constraint that should be considered is to make the partial coef­

ficients on loadsand other aetions the same in each code, irrespective of construction material. 

Such an approach has many practical advantages. 

Finally, a note of caution. In chapter 5 i t was mentianed that the reliability index as defined by 

equation (5.9) is not invariant with regard to the choice of failure function. A similar problem 

of lack of invariance arises when the partial coefficients used in a codearenot directly associated 

with their corresponding sources of uncertainty. This occurs w hen the number of partial coeffi­

cients is constrained to same small number. In such cases, the partial coefficients should be used 

only with the precise form of the design equations (failure functions) for which they were derived. 

11.5 AN EXAMPLE OF PROBABILISTIC CODE CALIBRATION 

The general method for the evaluation af partial coefficients which was deseribed in the previous 

section involves a considerable amount of effort and computation and is not easily illustrated 

by a simple example. Forthis reason, same results that were obtained during the probabilistic 

calibration [11.6] of the U.K. Steel Bridge Code BS 5400: Part 3 [11.3] are included here as an 

illustration af the method. 

11.5.1 Aims of calibration 

BS 5400: Part 3 is a level l code in which the degree af structural reliability is contalled by a 

number of partial coefficients (partial factors). The code replaces an earlier British Standard, 

BS 153 [11.1] and was developed mainly for the purposes of incorporating technical improve­

ments in many of the design clauses; but at the same time the opportunity was taken to ration­

aiise the safety provisions and to change from a permissible stress to a limit state approach. 

In evaluating the partial coefficients, the agreed policy was to achieve the same average relia­

bility for components designed to the new code as the average inherent in designs to the pre­

vious code BS 153, but at the same time to reduce the scatter in the reliability of the various 
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components. An obvious limitation af this work is that it was restricted to a study af structural 

components rather than structural systems. 

A flow-<:hart showing the various steps in the calculation procedure is given in figure 11.4. 

Obtain data an Define set af structural components and weighting 
load and strength factors w . based an frequency af usage, such that 

" - l parameters ~wi -1.0 
'-- i 

~ 
Design components to limits af BS 153 

Devise suitable ~ 
probabilistic 

I-rø Determine failure probabilities Pr( 153 l t models for loads 
and strengths 1 

Determine Pr t =~w i p f ( 153 lt 
l 

~ 
Choose approximate values of partial coefficients ::; 

---------~----------~--------- --, 

Modify partial 
~ '"- Design components to BS 5400: Part 3 

coefficients ::; 1 
4. Determine failure prahabillties Pr/Y) 

NO 
~ 

Does P = Pft Calculate P = I. w . Pr-6) . l l 

and is i 

S a minimum? • l-- Determine S= Z wi ~(Pn6), Pft) 

~YES i 

L STOP 
---------------------------~ 

Figure 11.4. Probabilistic calibration of BS 5400: Part 3 to BS 153. 
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i 1.5 .2 Results o f calibration 

Figure 11.5 shows the scatter in the computed failure probabilities for the major structural com­

ponents designed to the limits of BS 153 which were inelucled in the calibration calculations. 

The failure prahabillties exhibit very wide scatter varying over many orders of magnitude. In 

addition , there are significant differences in the average reliability of different types o f compo­

nent. Neither of these facts is surprising since the code was Jriginally based on deterministic 

concepts with no regard for the relative magnitude of t he various uncertainties . I t should be 

noted that the modeiling did not allow for the possibility of grosserrors in design or construc­

tion and forthis reason the probabilities should be interpreted as a measure of relative safety 

and not as failure frequencies. 

The target failure probability Prt for the new code BS 5400: Part 3 was determined as the 

weighted average of the failure probabilities fo r components designed to BS 153 and was 

0.63 X 10~. In calculating this value, stiffened compression flanges and unwelded plate panels 

were excluded, the former because they had not been shown to behave satisfactorily in service 

and the latter because the data on model uncertainty were considered inadequate . 

The partial coefficients for the new code were determined for use with checking equations of 

the form 

where 

fy is the yield stress of the steel, 

G1 is structural self weight, 

G2 is superimposed permanent load, 

Q is traffic loading, 

'Ymt is a partial coefficient on yield stress which applies throughout the code, 

(11.42) 

'Ym2 is a partial coefficient on the computed resistance which varies with type of component,and 

'YfGt' 'Yra2 and 'YfQ are partial coefficients an loads . .. 
Values af the partial coefficients obtained by minimising the quantity S defined by equation 

(11.38), subject to the constraint given by equation (11.39), are Iisted in column l of table 11.4. 

The other columns in thistable show the values of partial coefficients 'Ym2 when other constraints 

are introduced. For example, column 3 shows the effect of setting 'Ymt == 1.0, 'YfQ == 1.5 and 'YfG 

= 1.13 (given here as a weighted average of 'YfGt and 'YfG2 ), and thus effectively eliminating 'Ymt 

from the code. 

The quantity S is given in the penultimate row af table 11.4 for each of the sets of partial coef­

ficients calculated and can be seen to increase as additional constraints are introduced. The ., 
quantity I wi9i given in the last row of the table is the ratio of the amount of steel used when 
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0 .63 x 10 .q 

f l 11 
S truts l :l 11 li 

~on·composite L. ----------~:~----f:::3:3:::J:::E:::::J3::::::::::::::3-beam flanges r l l l 

Stiffened com- IL---fJ3B:~: t-----------pression flanges l u : . æ .. 
Increasing safety 

Webs r--------f:3ffi:EiæffEjHEj~----------------
l l 
l : 

Plate panels l ____ : _ ... _, _,_. _...__'_"...~.'!_ui_"_" ___ L--_____ _.... __ __,_ 
"nw•ld•d : j 

. l -
O 5 10 15 -log10Pf 

.._ __ ."l not included in determination of Pr t 
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Figure 11.5. Faiture probabilities for components designed to BS 153 and early flange rul es (from [ 11.6 1 ). 

Non-composite 
beam flanges 

t Prt = 0.63 x 10-6 

l 

Stiffened com· 
pression flanges r------------fl~-----~:3:311Btt3---------

Less·steel 
• l More st ';! 

Webs r----------1rnBJH-----18æE~~~tE:J--------------

Plate panels 

0 .5 

o 5 

..__ __ ."1 range o f Cailure probabilit ies Pr 

PtWt+··'· ·J change in steel usage 9 

1.0 1.5 o 

10 

Figure 11.6. Failure pro babilities for components designed to BS 5400 and the effect on steel usage (from 
[11.61). 
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i 
l 2 3 4 ;) 6 7 

Fully op-

l timise d 

i coeffs. Increasing constrai.:~s . 
Ir 1.16 1.13 1.13 1.13 1.13 1.13 1.13 l j fG 
,,.fQ 1.47 1.50 1.50 1.50 1.50 

l 
1.50 1.50 

l 1.08 1.08 l. O l. O l. O l. O l. O 1 "Y ml 
-- -~-- l 

~------ -- r----~--· -1-----

"Y m2 for: 

S truts 0.98 0.98 1.03 1.05 l. O 

Beam flanges 1.09 1.08 1.17 1.15 1.2 

Stiffened com-
1.27 1.28 1.37 1.35 1.4 pression flanges 

1.3 1.35 
Webs 1.25 1.25 1.34 1.35 1.3 

Plate panels 1.08 1.08 1.14 1.15 1.1 

Ties 1.09 1.09 1.18 1.20 1.2 

Y' w.pr.[X 10~] 
-l l .632 .632 .632 .658 1.146 1.072 0.288 

i 

s .073 .086 .142 .225 .282 5.95 8.80 

Y'w.8. 
..... 11 

.936 .938 .939 .942 .933 1.00 1.04 
i 

Calculated Rounded or arbitrary 

coefficients coefficients 

Table 11.4. Partial coefficients for various degre3s of constraint (from [11.6]). 
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designing with the newcode (with the partial coefficients given) to the amount used when de­

signing with ori_ginal code BS 153. Use af any af the sets af partial coefficients in columns 1-4 

would therefore give asavingaf approximately 6% in steel consuroption compared with BS 153. 

Further constraints an the number af partial coefficients used reduces this saving. In practice, 

the balance between the simplicity af the safety format and the savings in materlal must bede­

cided by the code-writing committee. 

No code calibration study should be considered to be complete until the effects af the change in 

safety format on the design af all components within the scope af the code have been examined. 

It is important to know the range of failure probabilities for each type af component when using 

the proposed set of partial coefficients. I t is also af interest to know t!"~ changes in the quanti­

ties of materiais that will be used compared with earlier codes. The latter is perhaps the most 

tangible measure of change in safety levels. Thisis illustrated in figure 11.6. 
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4. FIRST ORDER RELIABILITY METHODS 

4.1 Introduetion 

11.02.98 

In this section the problem of estimating the reliability or equivalently the probability 
of failure is considered. Generally, methods to measure the reliability of a structure 
can be divited into four groups, see Madsen et al. [1], p.30: 

- Level I methods: The uncertain parameters are modelled by one characteristic 
value, as for example in codes based on the partial coefficients concept. 

- Level II methods: The uncertain parameters are modelled by the mean values and 
the standard deviations, and by the cerrelation coefficients between the stochastic 
variables. The stochastic variables are implicitly assumed to be normally distri­
buted. The reliability index method is an example of a level II method. 

- Level III methods: The uncertain quantities are modelled by their joint distri­
bution functions. The probability of failure is estimated as a measure of the 
reliabili ty. 

- Level IV methods: In these methods the consequences (cos t) of failure are also 
taken into account and the risk ( consequence multiplied by the probability of 
failure) is used as a measure of the reliability. In this way different designs can be 
comparedon an economic basis taking in to account uncertainty, costs and benefits. 

If the reliability methods are used in design they have to be calibrated so that 
consistent reliability levels are obtained. This is further discussed in a later note. 

Level I methods can e.g. be calibrated using level II methods, level II methods can 
be calibrated using level III methods, etc. 

In this note level II and III reliability methods are considered. Several techniques 
can be used to estimate the reliability for level II and III methods, e.g. 

- simulation techniques: Samples of the stochastic variables are generated and the 
relative number of samples corresponding to failure is used to estimate the prob­
ability of failure. The simulation techniques are different in the way the samples 
are generated. Simulation techniques are deseribed in note 6. 

- FORM techniques: In First Order Reliability Methods the limit state function 
(failure function, see below) is linearized and the reliability is estimated using 
level II or III methods. FORM techniques for level II methods are deseribed in 
this note. FORM techniques for level III methods are deseribed in note 5. 

- SORM techniques: In Second Order Reliability Methods a quaciratic approxima­
tion to the failure function is determined and the probability of failure for the 
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quaciratic failure surface is estimated. SORM techniques are discussed in note E. 

In section 4.2 basic variables and failure functions are defined. Next, a linear failurc 
function is considered in section 4.3 and the reliability index f3 is defined. In section 
4.4 non-linear failure functions are considered. The so-called invariance problem 
is discussed, and the Hasofer & Lind reliability index f3 is defined. A numerical 
algorithm for determination of the reliability index is shown. Finally it is shown 
how a sensitivity analysis of the reliability ·index with respect to a deterministic 
parameter can be performed. 

4.2 Basic Variables and Limit State Functions 

It is assumed in this section and in section 5 and 6 (note 5 and 6) that only one 
failure mode is considered and that a reliability measure related tothis failure mode 
is to be estimated. Further it is assumed that it is possible to give a mathematical 
formulation of this failure mode. An important step in a reliability analysis is to 
deeide which quantities should be modelled by stochastic variables and which should 
be modelled by deterministic parameters. The stochastic variables are denoted X = 
(X 1 , ... , X n)· The n s tachastic variables could model physical uncertainty, model 
uncertainty or statistical uncertainty. The physical stochastic variables can be load 
variables ( e.g. traffic load), resistance variables ( e.g. yield strengt h) o r geometrical 
variables (e. g. length or cross-sectional area of a beam). The variables in X are 
also denoted basic variables. Realizations of the basic variables are denoted x = 
(x1, ... , x n), i.e. x is a point in the n-dimensional basic variable space. 

The joint density function for the stochastic variables X is denoted fx(x). The 
elements in the vector of expected values and the covariance vector are 

J.Li = E[Xi] , i= 1, . . . ,n 

Cii=Cov[Xi,XiJ, i,j = l, ... ,n 

(4.1) 

(4.2) 

The standard deviation of Xi is denoted Ui. The variance of Xi is a[ = cii· The 
coefficient of cerrelation between Xi and Xi is defined by 

Gi i 
Pij = -- , i, j = l, ... , n 

UiUj 
(4.3) 

It is easy to see that -l ~ Pii ~ l. 

Application of FORM, SORM and simulation methods requires as notedabove that 
it is possible for given realizations x of the basic variables to state whether the 
structure (or component/failure mode) is in a safe state or in a failure state. The 
basic variablespace is thus divided into two sets, the safe set ws and the failure set 
wp. The two sets are separated by the failure surface (limit state surface). It is 
assumed that the failure surface can be deseribed by the equation 

g(x) = g(x1, .. . ,xn) = O 
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ere g( x) is denoted the failure functiorr. 

mally the failure furretion is defined such that positive values of g corresporrd to 
afe states and negative values corresporrd to failure states, see figure 4.1. 

{
>o 

g(x) :::; o 

g(x)>O 
sale 

X E Ws 

x E W f 

g(x)<O 
fa il ure 

g(x)=O 

Figure 4.1. Failure furretion g(x). 

( 4.4) 

It is important to note that the failure surface does not define a unique failure 
function, i.e. the failure surface can be deseribed by a number of equivalent failure 
functions . However, whenever possible differentiable failure furretions should be used. 
In structural reliability the failure furretion usually results from a mechanical analysis 
of the structure. 

If, in the failure furretion x is replaced by the stochastic variables X the so-called 
safety margin M is obtained 

M= g(X) (4.5) 

M is a stochastic variable. The probability of failure Pt of the comporrent is 

P1 = P(M :S O) = P(g(X) :S O)= 1 fx(x)dX 
W f 

(4.6) 

Example 4.1 
In the fundamental case only two basic variables are used, namely the load variable 
P and the strength variable S . A failure furretion can then be formulated as 

g(p, s)= s- p (4.7) 
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The failure surface g(p, s) = O is shown in figure 4.2. The safety margin corresp<.. 
ding to ( 4. 7) is 

M=S-P ( 4.8; 

Instead of the failure function ( 4. 7) the following equivalent failure function can be 
u s ed 

(4.9) 

p 

g(p, s) = s - p = o 

tailure 

s 

s a fe 

Figure 4.2. 

* * * 

4.3 Reliability Analysis for Linear Safety Margins 

A safety margin which is linear in basic variables can be written 

( 4.10) 

where ao, a1, ... ,an are constants. The expected value J-L M and the standard deviation 
C1Mare 

" •1 

aM = Va.Tca. [ l. c\. l CA.~ F .j ~ 1j 
·,~\ j-.1 

If the basic variables are independent ( 4.12) simplifies to 

C1M = . fa2a2 + ... + a2a2 V l X1 n Xn 

4 

( 4.11) 

(4.12) 

(4.13) 



a measure of the reliability of a component with the linear safety margin ( 4.10) 
~ reliability index /3 can be used 

(4.14) 

This definition of the reliability index was used by Cornell [2]. 

If the basic variables are normally distributed and the safety margin is linear then 
M becomes normally distributed. The probability of failure is, see figure 4.3, 

J.LM P1 =P( M~ O)= P(J.LM +U O" M ~O)= P(U ~ --)=<P( -/3) 
O" M 

( 4.15) 

where <P is the standard normal distribution function and U is a standard normally 
distributed variable with expected value zero and unit standard deviation (J.Lu 
O, o-u= 1). 

<p(u) 

u 

Figure 4.3. Illustration of reliability index and probability of failure. <p is the stan­
dard normal density function. 

Example 4.2 
Consider the fundamental case with the linear failure function ( 4. 7). If the stochastic 
variables P and S are independent then the reliability index becomes 

f3 = J.LM = J.LS- J.LP 
O" M J o-~ + o-~ 

Assume that P and S are normally distributed with expected values J.LP = 2, J.LS = 
3.5 and standard deviations o-p = O, 3, o-s = O, 25. 

The reliability index becomes 

(3 = 3.5-2 

v'0.252 + 0.32 
= 3.84 

* * * 
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Example 4.3 - Geometrical Interpretation of Reliability Index 

Consider a simple problem with two basic independent variables X 1 and X 2 and 
linear failure function 

( 4.16) 

If normalized stochastic variables U1 and U2 with zero expected value and unit 
standard deviation are introduced by 

U
. _ x i - J-L x; 
1- i= l, 2 

17X; 
( 4.17) 

then the failure function can be written 

or equivalently if the reliability index /3 is introduced 

where 

i= 1,2 

g(u)=O 

g(x)=O 

Figure 4.4. Linear failure function in the 'X-space and in the normalized :U-space. 
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,1gure 4.4 the failure function in the x-space and in the :U-space is shown. It is seen 
at /3 is the shortest distance from origo to the failure surface in the normalized 

.Jace and that the coefficients a 1 and a2 areelements in a unit vector normal to the 
lailure surface. 

* * * 

4.4 Reliability Analysis with Non-Linear Failure Functions 

In general the failure function is non-linear and the safety margin M = g(X ) is thus 
not normally distributed. 

A first approximation to obtain anestimate of the reliability index in this case could 
be to linearize the safety margin with the point corresponding to the expected values 
as expansion point 

(4.18) 

The reliability index can then be estimated from (4.11)- (4.14). However, as noted 
above the failure surface g(x) = O can be defined by many different but equivalent 
failure functions. 

This implies that the reliability indexbasedon the linearized safety margin becomes 
dependent on the mathematical formulation of the safety margin. This problem is 
also known as the invariance problem. 

In 1974 Hasofer & Lind [3] proposed a definition of the reliability index which is 
invariant with respect to the mathematical formulation of the safety margin. 

In thi s section i t is assumed that the stochastic variables X i, i = l, ... , n are indepen­
dent. Further, it is implicitly assumed that the variables are normally distributed. 
The first step in calculation of the Hasofer & Lind reliability index f3H L is to define 
a transformation from X to stochastic variables U which are normalized. The nor­
malized variables Ui, i = l, ... , n with expected values O and standard deviation l 
are defined by 

U
. _ x i - J-L x, , -

<lX; 
i=l,2, ... ,n (4.19) 

By this transformation the failure surface in the new u-space is given by, see figure 
4.5 

( 4.20) 
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tailure set 

safe set 

Figure 4.5. Failure functions in the x-space and the u-space. 

It should be noted that the u-space is rotationally symmetric with respect to the 
standard deviations. 

The Hasofer & Lind reliability index f3 is defined as the smallest distance from the 
origin O in the u-space to the failure surface 9u(u) =O. This is illustrated in figure 
4.6. The point A on the failure surface closest to the origin is denoted the {3-point 
or the design point. The Hasofer & Lind reliability index defined in the u-space 
is invariant to different equivalent formulations of the failure function because the 
definition of the reliability index is related to the failure surface and not directly 
to the failure function. The reliability index is thus defined by the optimization 
problem 

/3 = Il!!n ~ t u1 g,.(u)=O . 
l=l 

( 4.21) 

The solution point for u is denoted u*, see figure 4.6. 
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approximating tangent 
hyperplane (:!-o:Tu =O 

Figure 4.6. Geometrical illustration of the reliability index /3. 

If the failure surface is linear it is easy to see that the Hasofer & Lind reliability 
index is the same as the reliability index defined by (4.14). The Hasofer & Lind 
reliability index can thus be considered as a generalization of the Cornell reliability 
index. 

The numerical calculation of the reliability index f3 defined by ( 4.21) can be per­
formed in a number of ways. ( 4.21) is an optimization problem wi t h a quaciratic 
objective furretion and one non-linear constraint. A number of algorithms exists for 
solution of this type of problem, e.g. the NLPQL algorithm by Schittkowski [4]. 
Here a simple iterative algorithm will be described. For simplicity the index u will 
beomittedon the failure furretion g(u) in the following. 

At the /3-point u* it is seen that the foliowing relation must be fulfilled 

u* = >.v g(u*) ( 4.22) 

where >. is a proportionality factor. In order to formulate an iteration scheme it is 
assumed that a point UO close to u* is known, i.e. 

( 4.23) 

A firstorder approximation of g(u) in uO then gives 

'g(u*) ~ g(tf) + Vg(tff(u* - tf)= g(tf) + Vg(tf)T 6u (4.24) 

Application of ( 4.22) and ( 4.23) gives 

g(u*) ~ g(uO) + \lg(tff(u*- tf)~ g(tf) + \lg(UO)T(>.Vg(tf)- tf) (4.25) 
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from which .,\ can be determined using that g(U*) = O 

(4.26 

The foliowing iteration scheme can then be formulated: 

l . guess (uD) 
set i= O 

2. calculate g(ui) 

3. calculate \lg(ui ) 

4. calculate an improved guess of the ,B-point using ( 4.22) and ( 4.26) 

( 4.27) 

5. calculate the corresponding reliability index 

( 4.28) 

6. If convergence in ,B (e.g. if I,Bi+l -,Bil ~ 10-3 then stop, else i= i+ l and goto 
2. 

If a unit normal vector a to the failure surface at the ,B-point u* is defined by 

- \lg(U*) 
a = - ---'---'-

IVg(u*)l 
( 4.29) 

then the ,B-point u can be written, see ( 4.22) 

u*= ,Ba ( 4.30) 

It is noted that a is directed towards the failure set. The safety margin corresponding 
to the tangent hyperplane obtained by linearizing the failure furretion at the ,B-point 
can t hen b e wri t ten 

(4.31) 

Further using that aT a = l i t is seen from ( 4.30) that the reliability index ,B can be 
written 

,B -T-* =a u ( 4.32) 

lO 



fixe d a i t is seen t hat 

( 4.33) 

i.e. the components in the a-vector can be considered as measures of the relative im­
portance of the uncertainty in the corresponding stochastic variable on the reliablity 
index. However, i t should b e noted t hat for dependent ( correlated) basic variables 
the components in the a-vector eannot be linked to a specific basic variable, see the 
next section. 

An important sensitivity measure relted to a i is the so-called omission sensitivity 
factor (i suggested by Madsen [5] . This factor gives the relative importance on 
the reliability index by assuming that stochastic variable no. i is fixed, i.e. it is 
considered as a deterministic quantity. If variable no. i is fixed on the value u? then 
the safety margin in the normalized space is written 

with the reliability index 

The emission sensitivity factor (i is defined by 

If especially u? = O is chosen then 

l 
(i= J 2 1- a. 

t 

( 4.34) 

( 4.35) 

( 4.36) 

( 4.37) 

it is seen that if lad < 0.14 then (i- l < 0.01, i.e. the error in the reliability index 
is less than l% if a variable with lal < 0.14 is fixed. Theomission sensitivity factor 
can be generalized to non-normal and dependent stochastic variables, see Madsen 
[5]. 

In this section it is assumed that the stochastic variables are normally distributed. 
The normalized variables U defined by the linear transformatin ( 4.19) are t hus also 
normally distributed. If the failure furretion in the u-space is not too non-linearthen 
the probability of failure P1 can be estimated from 

PJ = P(M ~O)~ P((J- aTU ~O)= ~(-(3 ) ( 4.38) 
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where ~ is the standard normal distribution function. The accuracy of ( 4.38, 
further discussed in section 6. 

Example 4.4 

~ 
r A t/2 t/_2 

..," "If. ""' 

Figure 4.7. 

Consider the s trueture in figure 4. 7. The maximum defiection is 

l pl3 

Umax = 48 ei 

where e is the modulus of elasticity and i the moment of inertia. p, l, e and i are 
assumed to be outcomes of stochastic variables P, L, E and I with expected values 
1-L and standard deviations u. 

!-L[·] 

p 2 kN 
L 6m 
E 2 · 107 kN/m2 

I 2 ·10-5 m4 

The failure eriterion is assumed to be 
Urnax > _1_ 

l - 100 

o- [. J 

0.6 kN 
,.._.Om 

3 · 106 kN/ m2 

2 · 10-6 m4 

The failure function can then be formulated as follows with l = 6 m: 

g(p, l, e, i) = 48ei- 100pl2 = 48ei- 3600p 

The three stochastic variables X 1 =P, X2 =E and X3 =I are normalized by 
P-2 

U1 = --o.5 -t P= 0.6U1 + 2 

E- 2 · 107 
1 

U2 = 0.
3

. 107 -t E= (0.3U2 + 2)10 

I- 2 · 10-5 

U3 = 0.
2 

. 105 -+ I = (0.2U3 + 2)10-5 
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failure function in the u-space becomes 

gu(u) = 48(0.3uz + 2)(0.2u3 + 2)100- 3600(0.6u t + 2) 

_·he derivatives with respect to u 1 1 u2 and u 3 are 

å gu 
a1 =- = -2160 

åu1 

ågu ( ) a2 = -å = 1440 0.2u3 + 2 
U2 

ågu ( ) 
a3 = -å = 960 0.3u2 + 2 

U3 

Using ( 4.26) - ( 4.28) the following iteration scheme can be used: 

iteration l 2 3 4 

Ul l 1.29 1.90 1.91 
U2 l - 1.89 - 2.20 - 2.23 
U3 l - 1.32 - 1.21 - 1.13 
{3 1.73 2.64 3.15 3.15 

a1 - 2160 - 2160 - 2160 - 2160 
a2 3168 2500 2532 2555 
a3 2208 1376 1286 1278 

l: a~ 19.58 106 12.81 106 12.73 106 12.83 106 

l: a; u; 3216 - 9328 - 11230 - 11267 

gu(u) 14928 1955 3.5 8.1 
A - 0.598 10- 3 - 0 .881 10-3 - 0.882 10-3 - 0.879 10-3 

5 

1.90 
- 2.25 
- 1.12 

3.15 

The reliability index is thus (3 = 3.15 and the corresponding a-vector is a = *u = 
(0.601 - 0.711 - 0.36). 

The (J-point in basic variable space is 

(p* 1 e*, i*) = ( 0.6 · 1.90 + 2, ( -0.3 · 2.25 + 2)107
, ( - 0.2 · 1.12 + 2)10-5

) 

= (3.14, 1.33 107
' l. 78 10- 5

) 

The omission sensitivity factor ( 3 corresponding to a fixed variable u 3 = O is, see 
( 4.37) 

l 
(3 = = 1.07 J l - ( - 0.36)2 
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1.e. the error in f3 is approximately 7% by assuming U3 deterministic. 

* * * 
Another very important sensitivity measure is the reliability elasticity coefficient 
defined by 

d/3 p 
ep= dp f3 ( 4.39) 

where p is a parameter in a distribution furretion ( e.g. the expected value or the 
standard deviation) or p is a constant in the failure function. From ( 4 .39) i t is seen 
that if the parameter p is changed l % then the reliability index is changed ep %. 
d/3 l d p is determined as follows : 

The failure furretion is written 

g(u,p) =o ( 4.40) 

If the parameter p is given a small increment then f3 and the /3-point change, but 
( 4.40) still has to be satisfied, i.e. 

d/3 l d p is determined from 

Using (4.29) - (4.30) and(4.41) df3ldp becomes 

d/3 - .!. t -/3 ~ aui 
dp - f3 i=l IV gi au j 8p 

1 ag 
----
IY'gl ap 

(4.41) 

( 4.42) 

( 4.43) 

i.e. d/3 l d p can be estimated on the basis of a partial differentiation of the failure 
furretion with respect to the parameter p. l Y' g l is al read y determined in connedion 
with calculation of f3. 

14 



1mple 4.4 ( continued) 

.1at is the reliability elasticity coefficient e1 for the length l? Using ( 4.43) d(3 /dl is 

d(3- _l_ åg 
dl - I'Vgl ål 

and thus 

= ~(-200p*l) 
L: a~ 

= -1.05 

l 
e1 = -1.05:8 = -2.00 

i.e. if the length is increased by l % then the reliability index decreases approximately 
by 2 %. 

* * * 
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OPGAVE 4.1 

For 3 ukorrelerede stokastiske variabler XI' x2 og x3 gælder 

E[XI] =? 
E[X2] = 1.0 
E[X3) = 1.3 

ax1 = 0.1E[X1) 

ax2 = 0.1 
axa = 0.4 

Idet de stokastiske variable regnes normalfordelte og svigtbetingelsen er: 

ønskes [X1] bestemt, således at sikkerhedsindekset j3 er lig 4.0. 

OPGAVE 4.2 

Betragt bjælken 

* * * 

Lasten p er ensfordelt og det maximale moment er mmax = 1 ~8 pl. Svigt indtræder, 
hvis ffimax ~ ffiF. 

p, l og m F er udfald af ukorrelerede stokastiske variable P, L og M F med 

Spørgsmål l : 

E[P]=2.0 kN/m 
E[L]=4.0 m 
E[MF] =5 kNm 

Bestem sikkerhedsindekset j3 

Spørgsmål 2: 

ap=0.4 kN/m 
aL=0.4 m · 
<7MF=0.4 kNm 

Bestem a-værdier og udeladelsesfølsomhedsfaktorer for P, L og MF. 

Spørgsmål 3: 

Bestem pålidelighedselasticiteter for J-Lp, a p, J-L L, <7L,J.LMF og <7Mr Vurder resulta­
terne. Hvad vil en 10 % ændring af de enkelte værdier betyde for {3? 
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.:.AVE 4.3 

agt en bjælke påvirket med en enkeltkraft p: 

lir+ B~ o o 
~ Jl v 

~ 
Il 

,R 
Spørgsmål l: 

Sikkerhedsindekset {3 ønskes bestemt for henholdsvis en moment svigtbetingelse: 

l l db · · b · 1 - 1-Z h - .1.. P.f. ·d ffimax ~ ffiF og en u ØJmngs etmge se: Umax ~ 100 1 vor Umax - 4 8 e i 1 1 et 
følgende ukorrelerede stokastiske variabler haves: 

E[PJ=4.0 kN 
E[L]=5.0 m 
E[MF] =20 kNm 
E[I] = 10-4 m4 

E[E] = 2 107 kN/m2 

Spørgsmål 2: 

ap=l.O kN 
O'L ~ O m 
O'MF=2kNm 
a J=0.2 10-4 m4 

O'E=0.5 107 kN / m2 

Lav en følsomhedsanalyse 1 hvor indfl.ydelsen af P belyses. 

17 



' 
~ OpG~MV ~(/-.) ~ 'X'.-It~~ 

JI.J A l · l l . f / l l ( f 'l J 'lp ~ . .c.J""'t\} StO:.<, IJOJ IWI) e. 05 ,(O'f'l'f. lj....;-J(J~I5'.1'v! C<-fn 

X 1 {trt cl e,klll~ p, tY, 

,, P t o?.. 

1,} / ( J· 1 r l J; j r å;v> S ro-rVI ~ a ~ l.- '/' / 

- -

· er. norYv~a.i / X -}'~:l V Oi,· 
/ ' . 

s) '7revr, ,:; (tr,;,cjit--_ )J h o-t~ovt«.../~c/d;tc _, u•r- (l·teU cc IA~''r?Y..;tfi'J< ,ø, .}a hlt. 

l~ J .lr er fcc; rr·e levt,~_r"''.- ~ lftn" r&... -:;~l Jofl ~,ut,.-.C/{ / ,. X..J ... 
du:) .1' t~ ; - ./-r-i (/..-VI ~ '-1./ cJi ~ ~ :: T (J 

v / 
{S.J1)- es·."; 

u 
~ 1: ~ ~ ~~~?t tr'1 (; V - V'-'(;Vm : 

ø!).(C:V} = øCXJ ~ _g (~(YJ) ~ ~r~cf u»~ o 

1) ~eh~ V;'Y> (1 v~ lftv-&J;~ (t,.zi- t~. f_~J 0vi~ CCJ"-fVv} €A' 

·lk_e- t;V\tæ/ ·~ tA - IJ~cJol 



Dalsgaard Sørensen & Ib Enevoldsen 
org University 

agaardsholsvej 57 
~-9000 Aalborg 

11.02.98 

5. FIRST ORDER RELIABILITY ANALYSIS WITH CORRELATED 
AND NON-NORMAL STOCHASTIC VARIABLES 

5.1 Introduetion 

In note 4 it was deseribed how a first order reliability analysis can be performed for 
uncorrelated and normally distributed stochastic variables. The reliability method 
which is also narned the "First Order Reliability Method" (FORM) results in a relia­
bility index {3. In this note i t is deseribed how a reliability index {3 can be determined 
when the stochastic variables are correlated and non-normally distributed. 

5.2 Reliability Index for Correlated, Normally Distributed Variables 

Let the stochastic variables Xi, i = l, ... , n be normally distributed with expected 
values J.I-X1 , • •• 1 1'-Xn, standard deviations ax1 , ••• ,ax" and with cerrelation coeffi­
cients Pij , i,j = l, ... , n. Further, let a failure function g(x) be given. In order to 
determine a reliability index for this failure mode a transformation from correlated 
to uncorrelated stochastic variables is added to the procedure deseribed in section 
4.4. This transformation can be performed in several ways, e.g. by determining 
eigenvalues and eigenvectors, see Thoft-Christensen & Baker [5.ll . Here Choleski 
triangulation is used. The procedure deseribed in the foliowing requires that the 
cerrelation coefficient matrix p is positive definite. 

The first step is to determine normalized variables }'i, i = l, ... , n with expected 
value O and standard deviation l 

y.. _ xi - J.~-x, 
t- , i= l, ... , n 

a x, 
(5.1) 

It is easy to see that Y will have a covariance matrix (and cerrelation coefficient 
matrix) equal to p. 
The next step is to define a transformation from Y to uncorrelated and normalized 
variables U with expected values O and standard deviations l. The transformation 
is written 

(5.2) 

where T is a lower triangular matrix (i.e. Tij = O for j > i). It is seen that the 

covariance matrix Gy for Y can be written 

= --T = --T = T = --T _T ==T -
Gy= E[Y Y l= E[T U U T l= T E[U U l T =T T = p (5.3) 

l 



- =-T -
The elements in T are then determined from T T = p as 

Tn =l 

etc. 

Example 5.1 
Let the three normalized stochastic variables Y = (Y1, Y2, Y3) have the cerrelation 
coeffi.cient matrix 

[ 

l 0.5 0.2] 
p = 0.5 l 0.4 

0.2 0.4 l 

The transformation matrix T is then calculated using (5.4) 

[ 
l o o l T= 0.5 0.87 O 

0.2 0.34 0.92 

The stochastic variables Y can thus be writtcn 

Y1 = U1 

Y2 = 0.5Ul + 0.87U2 

Y3 = 0.2U1 + 0.34U2 + 0.92U3 

where (U1 , U2 , U3 ) are uncorrelated and normalized variables. 

* * * 
The transformation form X to U can now be written 

X= J-L x+ D T U (5.5) 

where D is a diagonal matrix with standard deviations in the diagonal. Using (5.5) 

the failure fundion can be written g(x) = g(Ji x+ D T u) = O and a reliability index 
f3 can be determined as shown in section 4.4. 

Example 5.2 

A failure mode is modelled by a failure furretion with 3 normally distributed variables 
X1,X2,X3: 
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where J..LX 1 = 25.0, ax 1 = 0.25, J.LX 2 = 4.0, ax 2 = 0.2, f.LX3 = 2.0 and ax3 =O.l. 
The variables are correlated as the variables in example 5.1. The standardized 
normalized and uncorrelated u-variables are obtained from example 5.1 and (5.5) 
as 

XI = f.LXI +O' XI UI 

X2 = f.LX2 _ + O'X2 (0.5UI + 0.87U2) 

X3 = J.LX3 + ax3 (0.2UI + 0.34U2 + 0.92U3) 

The failure furretion in the u-space can then be written 

The failure furretion can be used to find f3 as explained in section 4.4 by the iteration 
scheme used in example 4.4. 

The solution is f3 = 3.86 (Pt = 5.67 · 10-5 ), u* = {1.051, 2.426, 2.812} and 
a= {0.27, 0.63, 0.73}. 

* * * 

5.3 Reliability Index for Independent, Nan-Normally Distributed Variab­
les 

Generally the stochastic variables are not normally distributed. In order to deter­
mine a measure of the reliability of a component (failure mode) with non-normally 
distributed variablesit is natural, as for normally distributed variables, to establish a 
transformation to standardized ( uncorrelated and normalized) normally distributed 
variables and to determine a Hasofer & Lind reliability index f3. 

A simple transformation from Xi to Ui can be defined by the identity 

(5.6) 

where Fx; is the distribution furretion for Xi. Given a realisation u of U a realization 
x of X can be determined -by 

(5.7) 

and the failure surface can be written 

(5.8) 
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In the algorithm for determination of f3 (see section 4.4) the gradient of the failure 
function with respect to Ui is needed. From (5.8): 

og og oxi ag cp(<I> - 1 (Fx; (xi))) --
OUi OXi Oui Oxi / x;(xi) 

where / x;(xi) = dFx; (xi)j dxi is the density function for Xi . 

Example 5.3 Lognormal Variable 

(5.9) 

For a lognormal distributed variable X with expected value J-L and standard deviation 
u the distribution function is 

(5.10) 

where 

UL= 
(72 l 2 

ln( 2 +l) and J.LL = lnJ.L - - uL 
J-L 2 

The transformation (5. 7) becomes 

(5.11 ) 

* * * 
Example 5.4 Gumbel Variable 

For a Gumbel distributed variable X with expected value J-L and standard deviation 
u the distribution function is 

Fx(x) = exp(- exp(-a(x- b))) (5.12) 

where 

a = _ 7r _ and b = J-L - 0.5772 
V6 u a 

The transformation (5. 7) becomes 

l 
x = b- - ln( - ln <I>( u)) 

a 
(5.13) 

* * * 
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The inverse transformation to (5.7) is 

(5.14) 

When the transformation defined above is applied in connection with the ,8-algorithm 
in section 4.4 it is also known under the name of princip/e of normal tail approxima­
tion. In the normal tail approximation a normal distribution with parameters Pi and 
u~ is determined for each non-normal stochastic variable such that the distribution 
function values and the density function values are the same at a point xi: 

where /x; is the density function for xj. 
The solution for (5.15)- (5.16) is 

N ormalized variables are defined by 

l 
Xj-f.l· 

u·- l 
l - (7~ 

l 

and the failure function is written 

The gradient of the failure function with respect to Ui is 

åg åg(x) åxi 
-=---
åui åxi åui 

åg(x) l = --(7· 

åxi ' 

_ åg(x) cp(<I>-1(Fx;(xD)) 
åxi /x;(xD 

5 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 



At the ,B-point u* and the corresponding point x* in the x-space the gradient estima­
ted by (5.9) is equal to the gradient estimated by (5.21) if xi = xi, i= 1,2, ... ,n. 
This indicates that if the current guess of the ,B-point in the algorithm ui is used as 
u' in (5.17)- (5.21) and if the points u1

, u2
, ..• converge to u* then the transforma­

tion defined by (5. 7) is equivalent to the transformation defined by the normal tail 
approximation, see Ditlevsen [5.1] for further details. 

Example 5.5 

Consider the safety margin: 

M= g(X) = X1 - 2Xi 

where 

X1: is log-normally distributed with expected value JJ.l = 10 and standard deviation 
a 1 = 3 (or LN(lO.O, 3.0)). From (5.10) (J.LL,aL) = (2.26, 0.294) is obtained. 

x2: is Gumbel distributed with expected value 11-I = l and standard deviation 
a 1 = 0.1 (or EXl(l.O, 0.1)). From (5.12) (a, b)= (12.8, 0.955) is obtained. 

The transformation from the physical x-space to the standard normal u-space is 
found from (5.11) and (5.13): 

l 2 
g(u) = exp(aLu1 + J.LL )- 2(b- -ln( -ln <I>(u2))) 

a 

By application of the ,B-iteration scheme explained in section 4.4 f3 can be found as 
f3 = 4.040 and u*= { -2.587, 3.103}, a= { -0.640, 0.768}. 

* * * 
5.4 Reliability Index for Dependent, Nen-Normally Distributed Variables 

In this section two techniques are deseribed which can be used to determine a reliabi­
lity index when the stochastic variables are dependent and non-normally distributed, 
namely methods based on the Rosenblatt transformation, see [5.2] and the Nataf 
transformation, see [5.3]. It should be noted that if all the stochastic variables are 
normally and log-normally distributed then the technique deseribed in section 5.2 
can be used because the log-normal variables can easily be transformed to normal 
variables, see example 5.6. 

Example 5.6 

Consider 3 stochastic variables Xi, i = l, 2, 3 with expected values JJ.[·], standard 
deviations a[·] and coefficients of variation V[·] as shown in this table: 
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XI 

x2 

x3 

and cerrelation matrix p 
l 

l 

JL[·] 

JLX1 

JLX2 

/LX a 

syrn. 

u[·] V[·] 

u x l ux~/JLxl 

ux2 ux2/JLx2 

U X a uxa/ JLXa 

XI is assumed to be normally distributed, but x2 and x3 are log-normally distribu­
ted. Two new variables are defined by Yi = ln X i, i = 2, 3. They become normally 
distributed. The expected values and standard deviations of the normally distribu­
ted variables X 1 , Y2 and Y3 become, see example 5.3, 

JL[·] u[·] 

XI JLX1 u x l 

Y2 l l 2 JLY2 = n JLX2 - 2UY2 Uy2 = Jln(Vf<2 + l ) 

y3 l l 2 ILYa = n /L X a - 2UYa uy3 = Vl~(Vf<3 +l) 

The new cerrelation matrix p1 
of cerrelation coeffi.cients between X 1 , Y2 and Y3 can 

be obtained from the definition of the covariance between two stochastic variables: 

-l 
p= 

Example 5.7 

l 
syrn. 

l 

l 

Consider a normal distributed variable X 1 and two log-normal distributed variables 

7 



x2 and x3 with the statistic parameters: 

J-t [·l a[·] V [·] 

x1 10.0 2.0 0.20 
x2 5.0 2.5 0.50 
x3 7.0 0.35 0.05 

l 
(syrn.) 

p= 0.2 l 

0.5 0.3 l 

From example 5.6 the foliowing parameters are obtained for X 1 , Y2 = ln X 2 and 
Y3 = lnX3 

J-t [.] a[·] 

x1 10.0 2.0 
y2 1.50 0.472 
y3 1.94 0.05 

and 

l 

-l 
p = 0.21 

(syrn.) 
l 

0.50 0.37 l 

It is seen that the absolute value of the cerrelation coefficients become higher ( which 
will always be the case). Furthermore, it is seen from the example and the expressions 
in the p' -matrix that the difference between P~ j and Pii vanishes for small coefficients 
of variations V, which is also the reason why the difference between P~j and Pij is 
sometimes negleded. 

Fromthis example i t is conducled that a failure fundion of normallyand log-normally 
distributed stochastic variables can be transformed to a failure fundion of normally 
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distributed variables. The failure furretion in the u-space can then be obtained from 
=p' and the transformation explained in section 5.2. Next the reliability index {3 can 
be obtained as usual. 

* * * 
For dependent stochastic variables X i, i = l , ... , n the Rosenblatt transformation, 
see [5.2], can be used to define a transformation to the u-space of uncorrelated and 
normalized normally distributed variables Ui, i = l, ... , n. The transformation is 
defined as, see also (5. 7) 

x1 = Fx1l(if>(ui)) 

X2 = Fx;IX1 (i!>(u2)1Xt = xi) 
(5.22) 

where FxdXt• .. Xi-1 (xdXl = Xl l ••• l Xi-l =Xi-d is the distribution furretion of xi 
given x l =X} l ••• l Xi-l =Xi-l: 

Fx;jX1 · .. X;_ 1 (xdX1 = x1, . . . , Xi-l =Xi-d = 

f
x; 
-oo fx1 .. ·X;_ 1X; ( X1, · · · , Xi - l, t)dt (5.23) 

fx~· .. X; _1 (xl, ... ,xi-d 

/x1 ... x;(x1 , ... ,xi) is the joint density function of X 1 , •.. ,Xi. The transformation 
starts for given u 1 , ... , Un by determination of x1 . Next x2 is calculated using the 
value of x 1 determined in the first step. X3, ••• , X n are then calculated in the same 
stepwise manner. 

The inverse transformation from x1, ... , X n to u1 , ... , U n is defined by 

u1 = if>-1(Fx1 (xl)) 

u2 = ci> - 1(Fx2 1X1(x21XI = xt)) 
(5.24) 

The Rosenblatt transformation is very useful when the stochastic model for a failure 
mode is given in terms of conditional distributions. For example, this is often the 
case when statistical uncertainty is included. Examples 5.8 and 5.9 show how the 
Rosenblatt transformation can be used. 
Example 5.8. Evaluation of Maximuro Wave Height 

The wave surface elevation ry(t) can for short periods (8 hours) be assumed to be 
modelled by a stationary Gaussian stochastic process with zero mean. The wave 
surface is then fully described, if the spectral density s'111(w) of the elevation process 
is known. w is the frequency. A commonly used spectral density is the JONSWAP 
spectrum, see [5.4] 
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(a) 

where 1 = 3, kb = 1.4085, kp = 0.327 exp( -0.315/) + 1.17 and k, = l - 0.285ln(! ). 
H s is the significant wave height and T z is the zero crossing period. The exponent 
a 1s 

where 

CJ = { 0.07 for 
a 0.09 for 

The distribution furretion of the maximum wave elevation Hm within a given time 
period [0, T] can be estimated from, see Davenport [5.9] 

where 

Ei 
vo =y~ 

and mi, i= O, 2 is the ith spectral moment 

(b) 

(c) 

(d) 

(e) 

H s and T z are usually modelled as stochastic variables. Here H s is modelled by a 
Rayleigh distribution with the parameter s 

and Tz by a conditional distribution given Hs 

FrziHs(t iHs = h) = l- exp ( - (k/h) )'(h)) 

lO 

(f) 

(g) 



where 

k(h) = 6.05exp(0.07h) 

r(h) = 2.35exp(0.21h) 

The probability that Hm is larger than h is 

P( Hm > h)= P( h- Hm (Hs, Tz) ~ O) 

(h) 
(i) 

(j ) 

The distribution function for Hm given Hs. and Tz is given by (b ). The distribution 
function for Tz given Hs is given by (g), and the distribution function for H5 is 
given by (f ). (j) can then be estimated by FORM using the failure function 

g= h- Hm(Hs, Tz) (k) 

and the three stochastic variables H m, H s and T z. The transformation to standar­
dized variables U1 , U2 and U3 can be established by the Rosenblatt transformation 

<P(UI) = FH5 (Hs) 

<P(U2 ) = Frz!Hs(TziHs) 

<P(U3) = FHm(HmiHs , Tz) 

The reliability index f3 for (k) is determined by the algorithm in section 4.4 and 

(l) 

P( Hm > h)~ q>( -/3) (m) 

For the parameters s = 4.0m, T = 8 hours, f3 as a function of hm is shown in figure 
5.1. 

{J 

6 

5 

4 

3 

2 

1 

o hm 
+---+---4---4---~---r---r---r---+---+---+--~--~----

o 1 2 3 4 5 6 7 8 9 10 11 12 

Figure 5.1. 
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Example 5.9 

Consider a failure furretion with two stochastic variables X 1 and X 2: (Madsen et al. 
[5.5], p. 77) 

g(x) = 18- 3xl - 2x2 (a) 

xl and x2 are dependent with a joint two-dimensional exponential distribution 
function: 

and the corresponding probability density function: 

Realisations u 1 and u2 of standard normal variables U1 and U2 are obtained from 
the Rosenblatt transformation as: 

u 1 = q,-1 (Fx
1 
(x!)) 

u2 = q,-1 (Fx2 IX1 (x2 lxi)) 

where 

Similarly, 

and 

Then i t is possible to obtain Fx2 1X1 ( x2IX1 = x l) as 

F ( l )-J~~fx1 x2 (Xt,x2)dx2 
X2 IX1 X2 Xt - f ( ) xl Xt 

= l- (l+ x2)exp[-(x2 + x1x2)] , x1 >O, x2 >O 

For the transformation from the x-space to the u-space the formulas become 

Xt = Fx
1

1 (<P(u1)) = -ln(-<P(ut) +l) 

x2 = F_x;IX1 (<P(u2)IX1 = x1) 
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from which x 2 can be found as the solution to 

The obtained failure function in the u-space is seen in figure 5.2. 

Figure 5.2. Failure surface in standard normal space. 

The ,8-optimization problem ineludes a local and a global minimum. The ,B-point 
(which is also the global minimum) is ur= {2.78, O.l.} with .BI = 2.78 and Pt ~ 
2.68 ·10-3 . Further the local minimum point u;= {-1.30, 3.25} is identified with 
.82 = 3.50. 

* * * 
An alternative way to define the transformation from the U-space to the x-space 
is to use the Nataf tran:J/ormation, see [5.3] and [5.6]. This transformation is in 
general only an approximate transformation. The basic idea is to establish the 
marginal transformations defined in section 5.3 (as if the stochastic variables were 
independent) and to use a cerrelation coeffi.cient matrix p in the y-space, which is 
obtained from the cerrelation coeffi.cient matrix p in the x-space by multiplying each 
cerrelation coeffi.cient by a factor F which depends on distribution types and the 
statistical parameters. To describe the Nataf transformation it is thus sufficient to 
consider two stochastic variables Xi and X j. 

Marginal transformations of Xi and Xj to normally distributed variables Yi and Yj 
with expected value O and standard deviation l is, see (5.7) 

xi = F;/(~(Yi)) 

Xj = Fx1 (~(Yj)) 
J 

(5.25) 

The stochastic variables Yi and Yj have an ( equivalent) cerrelation coeffi.cient pfj 
which in the Nataf transformation is determined such that dependence between Xi 
and Xj is approximated as well as possible. 
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Pij is determined as follows. Normalized variables Zi and Zj are introduced by 

z k= x k- f.lxk k= i,j 
(]'x k 

(5.26) 

The cerrelation coefficient Pij between Xi and Xj is Pij = E[ZiZj ]· From (5.25) and 
(5.26) it is seen that 

(5.27) 

Further, from (5.2) it is seen that uncorrelated variables Ui and Uj can be introduced 
by 

Yi = Uj 

(5.28) 

Pij can then be related to the ( unknown) equivalent cerrelation coefficient Pij by 

=i: i: Fx}(fP~~)- f.LX; 

=i: i: Fx,1 (fP~~)- f.LX; 

Fx.1(fP(yj))- f.LX; e 
___;_;:.L__~ __ _.:_ c.p2(Yi, Y j, Pi j )dyidYj 

O'X; (5.29) 

Fx/(fP(pfjui + v1 -(Pi)2uj)) - f.LX; 

c.p( U i )c.p( u j )du i du j 

where <p2( ) is the two-dimensional normal density function. From (5.29) Pij can be 
deterined by iteration. -

Based on Pii the following approximate joint density function fx, x; (x i, X j) is obta­
ined: 

(5.30) 

where Yi = fP - 1(Fx,(xi)). 

(5.29) has been solved for Pij by der Kiureghian & Liu [5.6] for a number of distri­
bution functions and approximations for the factor 

e 
F = Pij 

Pi j 
(5.31) 
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has been obtained. With p= Pij and Vi= ax)J.Lx; examples of approximations for 
F are shown in table 5.1. 

For n = 2 it should be checked that IP~2 1 ~ l. For n > 2 the corresponding 
requirement is that pe is positive definite. In der Kiureghian & Liu [5.6] or Ditlevsen 
& Madsen [5.7] approximations forFare also shown for Gamma, Frechet, Uniform, 
Rayleigh and Gumbel distributions. 

X; X i F 

normal log-normal Vj / Jln(1 + Vj2 ) 

log-normal log-normal ln(1 +p V; Vi )/(py'ln(1 +V?} ln(1 + Vj2)) 

exponential log-normal 1.098 + 0.003p + 0.025p2 + 0.019Vj + 0.303Vj2 - 0.437pVj 

Weibull log-normal 1.031 + 0.052p + 0.002p2 + 0.011 Vj + 0.220Vj2-
0.210V; + 0.350V? + 0.005pVj - 0.174pV; + 0.009V; Vj 

exponential normal 1.107 

Weibull normal 1.031- o, 195V; + o.32Bv? 

exponential exponential 1.229- 0.367p + 0.153p2 

Weibull exponential 1.147 + 0.145p + 0.010p2 - 0.271V; + 0.459V/- 0.467V;p 

Weibull Weibull 1.063- o.004p- o.oo1p2 - o.2V; + o.337v? - o.2Vj 
+0.337Vj2 + 0.007(pV; + pVj - V;Vj) 

Table 5.1. 

Example 5.10 
Consider the same problem as in example 5.9 but use the Nafaf transformation 
instead of the Rosenblatt transformation. The correlation coefficient between X 1 
and x2 is 

p= 100100 

X!X2fX1 X2 (X!, X2)dx1dx2 

= 100100 

x1x2(x1 +x2 +x1x2)exp(-(x1 +x2 +x1x2))dx1dx2 

= -0.40366 

The factor F for two exponentially distributed variables is 

F= 1.229 - 0.367 p+ 0.153p2 = 1.402 
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The equivalent coefficient thus is 

pe = Fp = -0.566 

The transformation form (u1,u2) to (x1,x2) is given by (5.25) and (5.2) (or (5.28) 
for two stochastic variables) 

X t = -ln(l -<P( Ui)) 

x2 = -ln(l - <P(peu1 + Vl - (pe)2u2)) 

Using the failure furretion in example 5.9 the two ,B-points are determined as 

.Bt = 2.797 

.82 = 3.658 

u; = (2.80, 0.07) 

u; = ( -2.02, 3.05) 

* * * 
5.5 Sensitivity Measures 

a= (0.99, 0.02) 

a= ( -0.55, 0.83) 

As deseribed in note 4 three important sensitivity measures can be used to char­
acterize the sensitivity of the reliability index with respect to parameters and the 
stochastic variables, namely: 

a-vector 
The elements in the a-vector characterize the importance of the stochastic variables. 
From the linearized safety margin M= ,B- aTU it is seen that the variance of M 

(5.32) 

For independent stochastic variables a1 thus gives the percentage of the total uncert­
ainty associated with Ui (and Xi) · Iffor example X2, X3 and X 4 are dependent then 
a~+ a5 +a~ gives the percentage of the total uncertainty which can be associated 
with x2, x3 and x4 altogether. 

Reliability elasticity coefficient ep 
ep is defined by ( 4.39). For a parameter p in the failure function g(u, p) = O, ep 1s 

obtained from ( 4.43) 

l 8g p 
ep = IV gi 8p P (5·33) 

For parameters p in the distribution furretion for X, which is related to standardized 
variables U by U = T(X , p), ep is o b tained as 

(5.34) 
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where u* and X* are the ,B-points in the u-space and the x-space. 

Omission sensitivity factors ~ 
As deseribed in section 4.4 the factor 

(5.35) 

gives a measure of the change in the reliability index if stochastic variable no. z 1s 
fixed. This stochastic variable is assumed to be independent of the other stochas­
tic variables. As dexcribed in Madsen [5.8) the omission sensitivity factor can be 
generalized to dependent stochastic variables. 
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OPGAVE 5.1 

Der betragtes et konstruktionselement, hvor udmattelsessvigtbetingelsen kan skrives 

(*) 

hvor dkr er et kritisk skadesmål og s er en konstant proportional med spændings­
amplitudernes størrelse. c og n antages at være udfald af stokastiske variable C og 
N. 

N antages normalfordelt med forventningsværdi [N]= 2.5 og variationskoefficient 
V[N]=O.l. C antages logaritmisk normalfordelt med [C]=2.0 10-13 og V[C]= 0.25. 
C og N antages korrelerede, idet p( N, C)=-0.2. 

Spørgsmål l: 

Opskriv en sikkerjedsmargen for svigtbetingelsen ( * ), hvori kun indgår ukorrelerede 
stokastiske variabler. 

Spørgsmål 2: 

Bestem sikkerhedsindekset f3 med hensyn til svigtbetingelsen ( * ), idet dkr=l.O og 
s=8000. 

* * * 

OPGAVE 5.2 

En svigtfunktion er givet ved 

hvor x1, Xz, X3 og x4 er udfald af stokastiske variabler: 

x1 : w(J.LI, u1) 
Xz : N(J.Lz,uz) 
X3 : LN(J.l3 , u3) 
X4 : EXP(J.l4) 

(Weibul-fordelt ), J.ll = 100, u1 = 5 
(Normal-fordelt), J.lz = 10;u2 = l 
( Lognormal-fordelt ), J.l3 = 10, u3 = 5 
(Exponential-fordelt ), J.l4 = 5 

Korrelationsmatricen af korrelationer mellem X -variablerne er 

[ 

l 
= 0.2 l 
p= 

0.1 0.7 
0.05 0.4 

Spørgsmål l: 

(syrn. ) 
l 

- 0.2 l 

Opskriv svigtfunktionen i det standardiserede u-rum. 
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6. SORM AND SIMULATION TECHNIQUES 

10.02.98 

First Order Reliability Methods can be expected to give reasonable results when the 
failure functions are not too non-linear. FORM techniques are deseribed in notes 
4 and 5. If the failue functions in the standardized u-space are rather non-linear 
then Second Order Reliability Methods (SORM) techniques, where a second order 
approximation of the failue function is established, can be used. These techniques 
are deseribed in section 6.1. 

Other techniques which can be used for such types of problems are simulation te­
chniques. Simulation methods which are deseribed in sections 6.2- 6.7, can also be 
powerful when the failure functions in the u-space have morethan one ,B-point, i.e. 
there are severallocal, probable failure regions. 

In simulation methods realisations ( outcomes) ~ of the stochastic variables X are 
generated for each sample. When simulation methods are used to estimate PJ the 
fai lure function is calculated for each realisation 'f and if the realisation is in the 
failure region then a contribution to the probability of failure is obtained. In section 
6.2 different techniques to generate realisations of stochastic variables are described. 
In the literature a large number of simulation methods are described. Section 6.3 to 
6. 7 contain a description of some of the most important methods, namely: 

• Crude Monte Carlo simulation 

• Importance sampling 

• Importance sampling based on the ,B-point 

• Monte Carlo sampling by excluding part of safe area 

• Directional simulation 

• Latin hypercube simulation 

• Adaptive simulation 

Finally in section 6.8 it is deseribed how importance m easures can be obtained by 
simulation. 

6.1 Second Order Reliability Method (SORM) 
Compared withaFORM estimate of the reliability of a component (or failure mode) 
an improved estimate can be obtained by using a second order approximation of the 
failure surface at the ,B-point u* in the u-space 

l = g(u) ~ V'g(u*f(u - u*)+ 2(u- u*)r D(u - u*)= o (6.1) 
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where D is the Hessian matrix of second order partial derivatives of the failure surface 
at the ,B-point 

Dl·1
· = å

2 
g l ":":"* .; ;· - l 2 n 

å å u=u ' ., - ' ' o o o ' 
Ui Uj 

(6.2) 

In the foliowing i t is deseribed how a second order reliability index can be determined. 
The ,B-point and the gradient vector can be written, see ( 4.29) and ( 4.30) 

u*= ,Ba \7g(u* ) = - l\7g(u*) la (6.3) 

An orthogonal transformation from u to y is defined by 

(6.4) 

where the nth row in R is equal to a 

,i=l, ... ,n (6.5) 

The remairring rows in R can be found by standard Gram-Schmidt orthogonalization. 

(6.1) can then be written 

1 T===T 
.8- Yn + 2 l\7g(u*)ly R D R y= O (6.6) 

where Y= (yi,yz, .. . ,Yn-I,Yn- .B)T. 

The solution of (6.6) with respect to Yn using up to second order terms in YI, Y2, . . . , Yn-l 
gives the hyperparabolic surface 

---4T = ---4 
Yn = .8- y A y (6.7) 

~ T . -
where y = (YI, . . . , Yn-d and the elements m A are 

l == T 

Aii :- 2 l\7g(u*)l {R D R }ii i,j = 1,2, .. . ,n -l (6.8) 

A second orthogonal transformation from y' to v is defined by 

(6.9) 

where the columns in Hare the eigenvectors of A. (6.7) can then be written 

n-l 

Yn = .B - L AjV[ (6.10) 
i= l 
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where Ai, i = l, 2, ... , n- l are the eigenvectors in A. The eigenvectors and -values 
can e.g. be found by Jacobi-iteration or subspace-iteration for large problems, where 
only the largest eigenvalues are important, see e.g. (6.11]. 

The probability of failure Pt estimated using the second-order approximation of the 
failure surface is 

The approximation is illustrated in figure 6.1 which also shows the first-order ap­
proximation (see ( 4.38)) 

p SO 
f 

U t 
~--------------------~-

(6.12) 

Figure 6.1. Illustration of firstand second order approximations of the failure surface. 

to the exact probability of failure Pt = P(g(U) ~ 0). It should be noted that due to 
the rotational symmetry of the normal density function the points in the area close 
to the /3-point ( which is the point closest to origo) has the !argest probability density. 
Therefore, the largest contributions to the probability of failure come fromthis area. 
Further it is noted that the n-dimensional normal density function for uncorrelated 
variables 'Pn( ) ex: exp( -r2 /2) decreases fast with the distance r from origo. If the 
failure surface is rather non-linear then a second order approximation of the failure 
surface can be expected to give a much better estimate of the probability of failure 
than the first-order approximation. Finally it should be noted that for /3 -t oo the 
first (and second) order estimates of the probability converge to the exact result: 
Pfo -t Pt . 
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Basedon (6.11) Breitung (6.1] has derived an approximation to PJ0
: 

(6.13) 

Improvements to (6.13) have been suggested by for example Tvedt [6.2] and [6.3]. 

A second order reliability index {350 can be defined by 

(6.14) 

The approximation in (6.13) - (6.14) assumes that the matrix 1 + 2f3A is positive 
definite. 

6.2 Simulation of Stochastic Variables 

A necessary tool in simulation techniques for estimation of the probability of failure is 
to simulate outcomes of stochastic variables with an arbitrary distribution. Forthis a 
method to generate uniformly distributed numbers is first described. Next i t is shown 
how the invers method can be used to generate outcomes of stochastic variables with 
a general distribution. Finally methods to generate outcomes of normally distributed 
variables are described. 

Simulation of uniformly distributed numbers 

The numbers generated by algorithms implemented on computers are usually not real 
random but only pseudo-random numbers. The reason is that they are generated 
by a rule (equation) such that the sequence of numbers is repeated after a number 
of outcomes. Further the same sequence of numbers is obtained if the generator is 
started again with the same starting conditions. 

In this subsection a stochastic variable V which is uniformly distributed between O 
and l is considered. The distribution furretion is : 

Fv(v) = { ~ if o ~ v~ l 

els e 
(6.15) 

The most widely used techniques to simulate ( generate) pseudo-random numbers of 
V is the multiplicative congruential generators, see Hammersley & Handscomb [6.2] 
and the XOR generator, see Ditlevsen & Madsen [6.5]. In multiplicative congruential 
generators the pseudo-random numbers are determined sequentially by 

Vi= avi-l + c(modulo m) (6.16) 

where m is a large integer (usually a large power of 2) and a, c and Vi-l are integers 
between O and m - l. The starting seed number is vo. The numbers vi/ m are 
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then used as pseudo-random numbers uniformly distributed between O and l. The 
sequence of numbers repeat after at most m steps. The full period m is obtained if 

l) c and m have no common divisor 

2) a= (modulo p) for every prime factor p of m 

3) a = (modulo 4) if m is a multiple of 4. 

On many computers the foliowing generator is used 

Vi = 89069vi-I +!(modulo 232
) ( 6.17) 

The numbers generated by (6.16) arenot completely independent. It can be shown 
that the cerrelation between successive numbers lies in the interval, see Hammersley 
& Handscomb [6.2] 

l 6c c a l 6c c a 
[---(1--)-- , ---(1--)+-] 

a am m m a am m m 
(6.18) 

Numerical in vestigations have shown that if the multiplicative congruential generator 
is used to generate outcomes of stochastic vectors then the generated vectors are 
not uniformly distributed in the n-dimensional space. An algorithm which generates 
numbers much more random in the n-dimensional space is the so-called XOR random 
number generator, see Ditlevsen & Madsen [6.3]. 

Simulation of random numbers by the inverse method 

F v( v) Fx(x) 

l 

x 

Pigure 6.2. Illustration of the inverse method. 
For a general stochastic variable X the distribution fundion is Fx (x). In the invers 
method two steps are needed to generate an outcome x of X : 

l) generate an outcome v of V (e. g. using a multiplicative congruence generator) 

2) determine the outcome of x by 

(6.19) 
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The method is illustrated in figure 6.2. It is seen that the distribution furretion for 
X with outcomes generated by this procedure is 

F_x(x) = P(X :S x)= P (Fx 1(V ) :S x)= P(V :S Fx (x )) = Fx(x ) (6.20) 

Example 6.1 

Let X be exponential distributed with distribution furretion 

Fx(x) = l- exp( -Ax) 

Outcomes of X can be generated by 

x= _.!_zn(l- v) 
,\ 

where the number vare generated by (6.16). 

* * * 
The Box-Muller method to simulation of normal distributed numbers 

Outcomes u1 and u2 of 2 independent normally distributed stochastic variables U1 

and U2 both with expected value J.L = O and standard deviation u = l can be 
generated using 

{ U1 = J-2lnV1 cos(21rV2) 

U1. = J-2lnV1 sin(21rV2) 
(6.21 ) 

where vl and v2 are independent stochastic variables uniformly distributed between 
O and l. 

Outcomes are determined by the foliowing two steps : 

l) generate outcomes VI and V2 of vl and v2 

2) calculate the outcomes u1 and u2 using (6.21) 

It is easy to show that U1 and U2 defined by ( 6.21) are independent and normally 
distributed. 

Simulation of normally distributed numbers using the central limit theo­
rem 

From the centrallimit theorem it follows that 

u for n--+ oo (6.22) 

where vl, v2 , ... are independen t equidistributed random variables uniformly distribu­
ted between O and l (expeeted value J.LV =t and variance u~= J0

1(x- t?dx = 112 ). 
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U is asymptotically normal distributed with expected value !LV =n t -a and variance 
2 - l o-u- nl2. 

A reasonable choice is a= n/2 and n = 12. Then U becomes approximately normal 
with expected value O and standard deviation l. 

Simulation of correlated normally distributed numbers 

A vector X = (X1 , ••. ,Xn) which is normally distributed with expected value lix 
and covariance matrix C x can be written, see (5.5) 

(6.23) 

where the elements in U are uncorrelated with zero mean and unit standard de­
viation. Using the techniques deseribed above to generate outcomes of normally 
distributed variables and (6.23) realisations of X can be generated. 

In the foliowing sections different simulation methods to estimate the probability of 
failure are described: 

Pt = P(g(U) ~ O) 

where the failure furretion g is assumed to be modelled in the u-space. 

6.3 Crude Monte Carlo simulation 

In crude Monte Carlo simulation P1 is estimated by 

N 
A l L A P1 = - I[g(uj )] 

N . 
J=l 

(6.24) 

(6.25) 

where N is the number of simulations and frj is sample no. j of a standard normally 
distributed stochastic vector U. The indicator function I[g(u)] is defined by 

_ { o if g(u) > o 
I[g(u)] = l if g(u) ~O 

The standard error o f P 1 is estimated by 

(s af e) 
(failure) 

(6.26) 

Confidence intervals for the estimate of the probability of failure can be determined 
using that P, becomes normal distributed for N~ oo. 
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6.4 Importance sampling 

The idea in importance sampling is to concentrate the sampling in the area of the 
total sample space which has the !argest contribution to the probability of failure. 
In this way the standard error of the estimate of P1 can be reduced significantly. P1 
is written 

P1 = J· · ·J I[g(u)lfu(u)dul · · ·dun 

= J· · ·J J[g(y)] ;~~~? fs(Y)dyl · · · dyn (6.27) 

where fs(Y) is the sampling density furretion and fu(Y) = <p(yi) · · · <p(Yn) is the 
standard normal density furretion for U. 

In theory, if the sampling density fs is chosen to be proportional to fu in the failure 
region then the standard error on PJ would be zero. Unfortunately, this choice is 
not possible because PJ is not known beforehand. In the foliowing it is shown how 
fs can be chosen reasonable. 

Using importance sampling P1 is estimated by 

N .::.. 
P = 2_ "'I[ (.::.. ·)] fu(~j) 

f N L g Y J j - (-.) 
j=l s y J 

(6.28) 

where fs(Y) is the sampling density furretion from which the sample vectors Yj are 
generated. 

The standard error of the estimate P! is 

s= (6.29) 

Example 6.2 Estimation of the probability of failure 

Let X 1 be the loadon an element and X 2 the strengthof an element. Failure occurs 
if XI ~ Xz. If a failure furretion g is defined by 

then the probability of failure is 

P1 = P(Xz- XI$ O)= P(g(X) $O)= 1oo 1oo I[g(x)Jfx(x)dxidxz 
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where fx(x) is the joint density furretion of the stochastic variables modelling the 
load and the strength. 

In importance sampling the simulations are concentrated in the area which contri­
butes most to the probability of failuire. Pt is estimated by (6.28): 

where !y(Y) is the sampling density furretion from which the sample vector Yj is 
generated. Figure 6.3 shows the general difference between crude Monte Carlo si­
mulation and importance sampling. 
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x2 

fx1Cxt), fx/x2) 
x 1-load 

Figure 6.3. Crude Monte Carlo simulation and importance sampling. 

Example 6.3 

Consider the example from Madsen et al. (6.6], where the cross-section of a reinforced 
concrete beam is analysed. n = 7 stochastic variables are used. The failure function 
is written 

lO 



variable dis t. Il a 

X ! bending moment N 0.01 MNm 0.3 
X2 e ff. depth of reinforcement N 0.3 m 0.05 
XJ yield stress of reinforcement N 360 MPa 0.1 
X4 area of reinforcement N 226 10- 6 m 2 0.05 
x s factor N 0.5 0.1 
X6 width of beam N 0.12 m 0.05 
X7 compressive strengthof concrete N 40 MPa 0.15 

Table 6.1. Statistical data. Il is the expected value and a is the standard deviation. 
N indicates normal (Gauss) distribution. 

The statistical data are shown in table 6.1 . The stochastic variables are assumed to 
be independent. A transformation to normalized stochastic variables (with expected 
value o and standard deviation l) ui , i= l , 2, ... , 7 is established by 

x i = aiui + J.Li , i = 1, 2, 3, 4, 5, 6, 7 

The failure furretion is now written 

g(u) = (a2u2 + 112)(a3 u 3 + J.LJ)(a4u4 + J.l4) 

(asus + J.Ls)(a3u3 + J.LJ?(a4u4 + J.l4)2 ( ) ...:...._ __ -'--....:.....:...-----=----'------=-- - O" J u l + Il l 
( 0"6 U6 + J.l6 )( 0"7U7 + J.l7) 

Crude Monte Carlo simulation and importance sampling are used. 

In importance sampling PJ is estimated by (6.28) with y = :fr +u* and fs(Y) = 
fuCY- u*) , i.e. the samples are concentrated around the point u*. :fris a sample 
generated from the standard normal vector U. In this example u* is chosen to (see 
n ex t section) 

u*= (2.5, - l, -2, -l, o, o, O) 

The standard error is estimated by (6.29). 

N crude M C 
1000 o 

(O) 
10000 0.000300 

(0.000173) 
100000 0.000350 

(0.000059) 

Table 6.2. 

Imp. samp. 
0.000344 

(0.000016) 
0.000333 

(0.000005) 
0.000337 

(0.000002) 

The numerical results are shown in table 6.2 with standard errors in (). It is seen 
that the standard error in importance sampling decreases much faster than in crude 
Monte Carlo simulation. 

* * * 
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6.5 Importance sampling based on the .B-point 

Ul L_ ________________________ __ 

Figure 6.4. Importance sampling around the ,B-point. 

If the ,B-point has been determined before simulation techniques are used importance 
sampling can be very effective with the ,B-point as the point around which the sam­
plings are concentrated, see figure 6.4. Such a technique is deseribed in this section. 
The sampling density function fs in (6.28) is the normal density of uncorrelated 
variables with expected values ui , i= l, 2, ... ,n and common standard deviations a. 

Pt is estimated by 

(6.30) 

where fu(u) is the standardized normal density function and :fri is a sample generated 
from standardized normal variables. 

The standard error is estimated by (6.29). The efficiency of the importance sampling 
can be expected to be dependent on the choice of standard deviation of the sampling 
density, see figure 6.5. 
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Figure 6.5. Different standard deviations of the sampling density, a1 < a2 < 0"3. 

It should be noted that if a failure mode has multiple ,B-points importance sampling 
based on only one ,B-point is not efficient. In this case more general methods have 
to be used, see section 6.7. 

6.6 Monte Carlo sampling by excluding part of safe area 
U j 

. . . . . D2 
Figure 6.6. Monte Cå.~lo ~årriplmg by excluding part of safe area. 

In this technique the space is separated into two disjoint regions D1 and D2, see figure 
6.6. It is assumed that D 1 is selected such that no failure occurs in this region. Here 
D1 is chosen as the region inside a sphere with radius {3 . The probability of being 
in D1 is 

n 

PI= P(L u; :s; /32
) = x2 (n,,B2

) (6.31) 
i= l 

where x2 (n, /32
) is the x2 distribution furretion with n degrees of freedom. 
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The probability of failure is estimated from 

N 
~ l - P1 '""" ~ 

P1 = N G I[g(u1 )] 
j= l 

(6.32) 

where :frj is sample no. j from D 2 (simulated from a standard normal distributed 
stochastic vector U= (U1 , ... , Un) but only those samples outside D1 are used). 

The standard error is 

(6.33) 

The standard error is thus reduced by a factor (1 -pi) when compared with crude 
Monte Carlo simulation. Usually this is a significant reduction. However, it should be 
taken into account that it is more difficult to generate the samples to be used. If the 
samples are generated by taking the samples from simulation of normal distributed 
variables with lfil > f3 then in average 1!P1 

samples should be generated before one 
sample is outside the /3-sphere. So only in cases where the failure fundion require 
much more computational work than the generation of the samples :fr it can be 
expected that this technique is efficient. 

Example 6.4 

Consider an example where the failure surface in standardized coordinates can be 
written 

The reliability index is determined to f3 = 3.305 and the design point is u* 
(0.540, -3.548, - 0.188). The estimate of the failure probability using ( 4.38) is 

P t = <I?( -3.305) = 0.000228 

The failure probability is estimated by simulation using the foliowing techniques : 

Crude Monte Carlo (C.M.C.) simulation. 

Importance sampling (Imp.samp.) using the design point. The standard 
deviation a of the sampling density is chosen to 1/2, l and 2. 

Crude Monte Carlo simulation by excluding the /3-sphere (C.M.C. - {3). 

The simulation results are shown in table 6.3 with standard errorsin (). It is seen 
that importance sampling and Crude Monte Carlo simulation by excluding the /3-
sphere are much better than crude Monte Carlo simulation. Further it is seen that 
in this example a = l is the hest choice for importance sampling. 
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N 100 1000 10 000 
C. M. C. o o 0.000200 

(O) (O) (0.000141 ) 
Imp.samp. 0.000306 0.000196 0.000195 

(7 = 1/2 (0.000193) (0.000021) (0.000010) 
Imp.samp. 0.000146 0.000215 0.000232 

f7=1 (0.000034) (0.000014) (0.000005) 
Imp.samp. 0.000153 0.000163 0.000234 

f7=2 (0.000070) (0.000024) (0.000011) 
C.M.C.- {3 0.000129 0.000219 

(0.000073) (0.000003) 

Table 6.3. 

6. 7 Other Simulation Techniques 

In this section some other simulation methods are described, namely directional 
sampling, latin hypercube simulation and adaptive simulation techniques. 

Directional simulation 

Instead of formulating the reliability problem in rectangular coordinates i t is possible 
to formulate i t in polar coordinates. Directional simulation methods is basedon such 
a formulation and wa.s first suggested by Deak [6. 7] in connedion with evaluation of 
the multi-normal distribution function. 

The n-dimensional standardized normal vector U is written 

(6.34) 

where the radial distance R > O is a stochastic variable and A is a unit vector of 
independent stochastic variables, indicating the direction in the u-space. 

In uniform directional simulation A is uniformly distributed on the n-dimensional 
unit (hyper-) sphere. It then follows that the radial distance R has a distribution 
such that R2 is chi-square distributed with n degrees of freedom. If R is independent 
of A then the probability of failure can be written 

P, = P(g(U) :::; O) = r P(g(RA) :::; O lA= a) f A (a)da 
Junit sphere 

(6.35) 

where JA (a) is the constant density of A on the unit sphere. 

It is now assumed that the origin u= O is in the safe area (g(O) > O) and that the 
failure region defined by {u: g(u) :::; O} is star shaped with respect to the u= O, i.e. 
every half-line starting form u= O only crosses the failure surface once. 
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set 

g(li)=O 

Figure 6.7. Uniform directional simulation 

The probability P(g(RA) ::; DIA= a) in (6.35) can then be calculated by 

P(g(RA) ::; DIA= a)= 1= !R( s lA= a)ds =l- x~(r(a)2 ) 
r(a) 

(6.36) 

where x~() is the x~ distribution with n degrees of freedom. r (a) is the distance 
from the origin u = O to the failure surface, i.e. g( r (a)a) = O in the a direction. 

An unbiased estimator of Pt is 

(6.37) 

where N is the number of simulations and 'fri is a simulated sample of A. Several 
generalisations are possible, e.g. to inelude importance sampling, see Melehers [6.8] 
and Ditlevsen & Madsen [6.5] . 

Latin hypercube simulation method 

The description of the Latin hypercube simulation method is based on McKay et al. 
[6.9]. 
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Figure 6.8. Latin hypercube simulation method. 

The basic idea in this method is to assure that the entire range of each variable is 
sampled, in order to obtain an efficient estimate of the probability of failure. The 
range of each variable is divided into m intervals. The probability of an outcome in 
each interval should be equal. 

In the simulation procedure the samples are generated in such a way that an interval 
of each variable will be matehed just one time with an interval from each of the 
rest of the variables. In figure 6.8 the latin hypercube method is illustrated by an 
example with n = 2 stochastic variables and m = 7 intervals. 

The simulation procedure for the latin hypercube method is : 

l For each variable generate one point from each of the intervals. Uij , J 
l, 2, ... ,m thus represents the the m points for variable i. 

2 The first point li~ in the latin hypercube sample is generated by sampling one 
value utj from each axis Ui. The second point is generated in the same way, 
except that the values u;j are deleted from the sample. In this way m points 
are generated. 

3 The probability of failure from this sample is estimated from 
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4 This procedure is repeated N times and the finalestimate of P1 is 

N m 

Pt = :m 2:: ?= I[g (ftki)] 
k=l ]=1 

where flkj is realisation no j in the kth latin hypercube sample. 

There is no simple form for the standard error of this simulation method but in 
general the standard error is of the magnitude m

1
N t imes the standard error of crude 

Monte Carlo simulation. 

Adaptive simulation methods 

The description of the adaptive simulation methods is based on Melehers [6.8] and 
Karamchandani [6.10]. In order to develop a good importance sampling density 
it is necessary to know the region of the failure domain in which the probability 
density is relatively large. Usually our knowledge of this nature is poor. However, 
if the sample points are spread out (i.e. not clustered together ), the value of the 
probability density of the points will vary. The regions that have higher probability 
densities can then be identified and the sampling density can be modified to generate 
sample points in these regions. However, it is still desirable to generate sample points 
that are spread out in order to explore the extent of the failure region in which the 
probability density is relatively large. 

The initial sampling density is suggested to be standard normal with standard de­

viation l but with the expected value point moved to a point fl(o) in or close to the 
failure region. This can be di:fficult, but based on the initial knowledge of which 
variables represents load variables and which variables represents strength variables 
such a point can be selected (for strength variables u<o) should be negative and for 
load variables u<o) should be positive). The initial density is used until a sample 
point is generated in the failure domain. 

When multiple points in the failure region are generated the sampling density is 
modified such that the regions around the points with the largest probability density 
are emphasized. The simplest approach is to loca te the expected value point at the 
point in the failure region with the !argest probability density. 

Another approach is to use a so-called multimodal sampling density which generates 
samples around a number of points in the failure region, but emphasizes the region 
around a point in proportion to the probability density at the point. This allows 
us to emphasize more than one point and is eloser to the ideal sampling density 
( which is proportional to the probability density at each point in the failure domain). 

L t {..:..(l ) ..:..(2 ) ..:..(k)} b th t f o t o h f "l o h" h d e u , u , ... , u e e se o p om s m t e a1 ure regwn w 1c ar e use to 
construct the multimodal sampling density. The corresponding multimodal density 
l S 

k 

h b< u) = L w i f~) (u) (6.38) 
j=l 
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where f(j) (u) is the density function of a normally distributed stochastic vector with 
u 

uncorrelated variables, standard deviations l and expected value point equal to fi(j ) . 

The weights are determined by 

fu(fi(i>) 
wJ·= ----""~-'-:-:-:--

k ~(i) 
l:i=l fu(u ) 

(6.39) 

The multimodal sampling density is illustrated in figure 6.9. 

Sample outcome in the tailure domain 

r sampling d ensity CJj t6 (u) (proportional~ t~ 
.--....,----.,.._ the original probability density at u(;) 

and centered at a (j)) 

r Original 
- 1 probability 

-....:, density 
\ 

U j 

Figure 6.9. Multimodal sampling density (from [6.10]). 

An estimate of the probability of failure can now be obtained on the basis of N 
simulations where the importance sampling technique is used : 

N (;..(j)) 

Pt = ~"' !f! ~ . I[g(fiU>)] 
N~ h; r-(J)) 

J= l U' u 

6.8 Importance Measures 

(6.40) 

In many cases it is very interesting to know how sensitive an estimated probability 
of failure is with respect to a change of a parameter p. p is here assumed to be the 
expected value or the standard deviation of a stochastic variable. The transformation 
from the basic stochastic variables X to standardized normal variables is written 

X = T(U,p) (6.41) 
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and the probability of failure is defined by 

Pf = P (g(X ) :S O) 

= J I [g(x)lfx(x)dX 

=J I [g(T(u,p))lfu(u)dU (6.42) 

In crude Monte Carlo simulation P! is estimated by 

N 

?, = ~ Ll[g(T(~, p))] 
j=l 

(6.43) 

By direct differentiation the gradient a:; of Pf with respect to p can be estimated 
by introducing a small change b.p in p and calculating 

A N N 
oP1 b.P1 l ( l """ - .=.J l """ -.=.J ) a~ 6 =-z;: N~ I[g(T(u ,p+ b.p) )] - N~ I[g(T(u ,p))] 

p p p ]=l J=l 

(6.44) 

The two terms in (6.44) are estimated separately. This estimate of b.P1 can be 
expected to be both inaccurate because it is the difference between two "uncertain" 
estimates and time consuming because two sets of samples has to be generated. 

Alternative a:;, can be written 

(6.45) 

where fx(p)(x) is the density function of X with the parameter p. Corresponding to 

(6.43) and (6.45) the foliowing estimates can be obtained by simulation 

N 

?, = ~L I[g(~)] 
j=l 

(6.46) 

A N of (.=.J ) 
oP1 = ~"""I[ (~)] X(p) x l . o N6 g o ~ 

P i=l P fx(p/x ) 
(6.47) 
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The samples~ are generatedfrom the density furretion fx(p)(x) using for example 
the inverse simulation method. The advantage of this formulation is that the same 

samples can be used to estimate both P, and a~, . This increases the accuracy and 
reduces the computational effort compared with direct differentiation. 

Simila r formulations can be derived for other simulation types. 

6.9 References 

[6.1] 

[6.2] 

[6.3] 

[6.4] 

[6.5] 

[6.6) 

[6.7] 

[6.8] 

[6.9] 

[6.10] 

[6.10] 

l 

Breitung, K.: Asymptotic approximations for multinormal integrals. Jour­
nal of the Engineering Mechanics Division, ASCE, Vol. 110, 1984, pp. 
357-366. 

Tvedt, L.: Two second order approximations to the failure probability. 
Veritas report RDIV /20-004-83, Det norske Veritas, Norway, 1983. 

Tvedt, L.: Second order reliability by an exact integral. Leeture notes in 
engineering, Vol. 48, Springer Verlag, 1989, pp.377-384. 

Hammersley, J.M. & D.C. Handscomb: Monte Carlo methods. John Wiley 
& sons, New York, 1964. 

Ditlevsen, O. & H.O. Madsen: Bærende Konstruktioners sikkerhed. SEI­
rapport 211, Statens Byggeforskningsinstitut, 1990 (in Danish). 

Madsen, H.O. , S. Krenk & N.C. Lind: Methods of Structural Safety. 
Prentice-Hall, 1986. 

Deak, I.: Three digit accurate multiple normal probabilities. Numerical 
Mathematik, Vol. 35, 1980. 

Melchers, R. : Simulation in time-invariant and time-variant reliability 
problems. Proceedings , IFIP WG 7.5, Munich, September 1991, pp. 39-
82. 

McKay, M.D., Beckman, R.J. & W.J. Conover : A comparison of three 
methods for selecting values of input variables in the analysis of output 
from a computer code. Technometrics, Vol. 21, No. 2, 1979. 

Karamchandani, A. : New methods in systems reliability. Department of 
civil engineering, Stanford University, Report No. RMS-7, Ph.D. thesis, 
May 1990. 

Bathe, K.-J. Fini t e element procedures in engineering analysis. Prentice­
Hall, 1982. 

21 



OPGAVE 6.1 

De følgende 10 tal er uafhængige udfald af en stokastisk variabel ensformigt fordelt 
mellem O og l : V 0.014 0.456 0.892 0.935 0.189 0.344 0.307 0.732 0.203 0.065 

Spørgsmål l : 

Bestem 10 normalfordelte tal (med forventningsværdi O og standardafvigelse l ) v.h.a . 
Box Muller metoden. 

Spørgsmål 2 : 

Bestem 10 normalfordelte tal (med forventningsværdi O og standardafvigelse l) v.h .a. 
invers metoden. Benyt evt. følgende approximation til den inverse normalfordeling 

<1.>_ 1 (F) = { -(J(F ) if O< F :::; 0.5 
{3(1 -F) if 0.5 :::; F < l 

where 

,t= N 
and 

ao = 2.30753 al= 0.27061 bl = 0.99229 b2 = 0.04481 

Spørgsmål 3 : 

Betragt 2 korrelerede normalfordelte variabler V1 og V2 med forventningsværdi O og 
kovariansmatrix 

Bestem 5 udfald af VI og v2. 

OPGAVE 6.2 

Vis at U1 and U2 i Box-Muller transformationen (6.22) er uafhængige og normalfor­
delte med forventlingsværdi O og spredning l. 

OPGAVE 6 .3 

Betragt et element modelleret ved 2 stokastiske variabler X 1 og X 2 

xl : last 
x2 : styrke 

Svigtfunktionen skrives 

g(x) = X2- XI 
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X 1 antages normalfordelt med forventningsværdi 10 og spredning l : N(lO,l) 
X 2 antages normalfordelt med forventningsværdi 12 og spredning l : N(l2,1) 

Benyt følgende 20 udfald af en standardiseret normalfordeling (N(O,l)) 

0.440 
-1.0151< 
-0.175 
1.639 
-0.108 
-0 .819t 
1.5101 

-1.424/ 
-0.521Y 
2.310' 

til at estimere sandsynligheden for svigt ved 

l) crude Mon te Carlo simulering 

2) importance sampling med u*= (1.5, -1.5) 

23 

-0.190 
"1.517 
-1.526 

·· 0.708 
' 1.411 

f -0.696 
0.250 

Y-0.685 
1'1.458 
-0.307 
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7. RELIABILITY EVALUATION OF SERIES SYSTEMS 

7.1 Introduetion 

11.02.98 

So far, in the previous notes, only reliabilities of individual failure modes or limit 
states have been considered. In this note it is deseribed how the individual limit 
states interact on each other and how the overall systems reliability can be estimated 
w hen the individual failure modes are combined in a series system of failure elements. 

In section 7.2 a series system is defined, followed by section 7.3 where it is explained 
how the FORM-approximation of the reliability of a series system is obtained and 
how the correlation between failure elements are interpreted. In section 7.4 it is de­
scribed how the multi-dimensional normal distribution function needed for the series 
system reliability estimation can be evaluated using bounds and approximations. 
Finally, section 7.5 introduces sensitivity analysis of series systems. 

7.2 Modelling o f Series Systems 

A failure element or component, see figure 7.1, can be interpreted as a model of a 
specific failure mode at a specific location in the structure. 

Figure 7.1. Failure element. 

The combination of failure elements in a series system can be understood from the 
statically determinate (non-redundant) truss-structure in figure 7.2 with n structural 
elements (trusses). Each of the n structural elements is assigned 2 failure elements. 
One with a failure function modeiling material yielding failure and one with a failure 
function modeiling buekling failure . 

Figure 7.2. Statically determinate truss structure. 
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For such a statically determinate strudure i t is clear that the whole structural system 
fails as soon as any structural elemen t fails, i.e. the strudure has no load-carrying 
capacity after failure of one of the structural elements. This is called a weakest link 
system and is modelled as a series system. The series system which then becomes 
the systems reliability model consists of 2n failure elements shown in figure 7.3. 

1 2 i m=2n 

-D----0- --D-

Figure 7.3. Weakest link system modelled in a series system of failure elements. 

It is in this connedion important to notice the difference between strudural com­
ponents and failure elements and the difference between a structural system and a 
systems reliability model. 

If failure o f one failure element is defined as systems failure the reliabili ty o f the series 
system can be interpreted as the reliability of failure. That also ineludes the case 
of statically indeterminate structures where failure of more than one failure element 
eannot be accepted. 

7.3 FORM Approximation o f the Reliability o f a Series System 

Consider a structural system where the system reliability model is a series system of 
m failure elements. Each of the failure elements is modelled with a safety margin 

Mi = 9i(X) , i = l , 2, · · · , m (7.1) 

The transformation between the standard normal stochastic U -variables and the 
stochastic variables X can be obtained as explained in note 5 and is symbolically 
written as X= T (U) . Furthermore, it is known from notes 4 and 5 that the FORM 
probability of failure for failure element i can be wri tten 

Pt; = P(Mi $ O) = P(gi(X ) $ O) = P(gi(T(U)) $ O) 
(7.2) 

The series system fails if just one of the elements fails, i.e. the probability of failure 
of the series system is 

m m m 

i= l i=l i=l 

Thus, if all the failure fundions as in (7.2) are linearized at their respective ,B-points 
the FORM approximation of Pf of a series system can be written 

m 

(7.4) 
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.vhich by use af De Margan's laws can be written 

m m 

i=l i=l 

where <I>m is the m-dimensional normal distribution furretion (see the following sec­
tion 7.4). It has been used that the correlation coefficient Pii between two linearized 
safety margins Mi = /3i - aTU and Mj = /3j - aJU is 

-T­
Pij = ai ai (7.6) 

From (7.5) a formal or so-called generalized series systems reliability index /3 5 can 
be introduced from 

(7.7) 

as 

(7.8) 

Example 7.1 Illustration of the FORM approximation 

Consider the two-dimensional case with 3 failure furretions gi(T(u)) = O, i = l, 2, 3 
shown in figure 7 .4. 

In figure 7.4 the exact failure domain which is the union of the individual element 
failure domains is hatched. Furthermore, the reliability indices /3i, i = l, 2, 3 and the 
safety margins linearized at their corresponding /3-points ui, i = l, 2, 3 are shown. 
It is seen that (7. 7) or (7.8) is an approximation w hen the failure fundions are 
non-linear in the u-space. 
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Figure 7.4. Illustration of the FORM-approximation. 

* * * 
Example 7 .2 The Meaning o f Pi i 

Consider the two linearized safety margins Mi = f3i - a:fU and Mj = /3i - a:JU 
shown in tigure 7. 5 

Figure 7 .5. Illustration of Pi j. 

From figure 7.5 i t is seen t hat 

n -T-cos Uij = O: j a: j = Pi j 

where Bij is the angle between the a:-vectors O: i and a: j or simply between the linea­
rized safety margins. Le., the cerrelation coefficients Pii can be comprehended as a 
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neasure of the angle between the linearized safety margins and hereby as a measure 
>f the extent of the failure domain. 

* * * 
Example 7.3 The Importance of Pii In a Series System 

Again the safety margins Mi and Mj from the previous example are considered. In 
figure 7.6 four cases are shown with f3i = 3.0, Øi = 3.0 and Pii equal -1.0, 0.0, -JD.5 
and 1.0, respectively. 

r--------------.-ut o 

Figure 7.6. Illustration of Pii. 

The generalized systems reliability index Øs of the four cases in figure 7.6 can be 
found from (7.8) as 2.782, 2.783, 2.812 and 3.000, respectively. 

In figure 7.7 {Js = -<:P-1(1- <:P2(3.0,3.0;p)) is shownas a function of p. 

From figure 7.6 and 7.7 it is seen that 2.782 = <:P- 1(2(1- <:P( -3))) s; øs s; <:P- 1((1-
<:P( -3))) = 3.000 corresponding to the cerrelation p= -1.0 and and the fully cor­
related case p = 1.0, respectively, i.e. it is always unsafe to assume that the failure 
elements are fully correlated if this is not the case. 
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Figure 7.7. {3 5 = -!f>-1(1 - !f>2 (3.0, 3.0; p)) as function of p. 

* * * 

7.4 Evaluation o f Series Syste ms Reliabilities 

From the previous section it is obtained that if f3i and Pij, i, j = l, 2, · · · , m are 
known the problem is to evaluate the m-dimensional normal distribution furretion 
!f>m(/J; p) in (7.8) for the FORM approximation of {3 5 . 

!f> m (/J; p) is defined as: 

(7.9) 

where 'Pm is the m-dimensional normal density function 

(7.10) 

The multi-dimensional integral in (7.9) can only in special cases be solved analytically 
and will foreven small dimensions, say five , be too costly to evaluate by numerical 
integration. Instead so-called bounds methods are used for hand calculations and 
so-called asymptotic approximative methods are used for computational calculations. 

7.4.1 Reliability Bounds for Series Systems 

In t he following, so-called simple bounds and Ditlevsen bounds will be introduced 
a.S bounds for the reliability of series systems. 

Simple Bounds 

Simple bounds can be introduced as 

m 

rp}f P(Mi :::; O) :::; Pf :::; L)P(Mi :::; O) ) 
i=l 

(7.11) 

where the lower bound corresponds to the exact value of Pf if all the elements in 
the series system are fully correlated. 
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1 the terms of reliability indices (7.11) can be written 

m m 

-cl>- 1(2:::: cl> ( -øi))::; øs::; ~røi (7.12) 
i=1 

When the failure of one failure element is not dominating in relation to the other 
failure elements the simple bounds are generally too wide and therefore often of 
minor interest for practical use. 

Ditlevsen Bounds 

Much better bounds are obtained from the second-order bounds called Ditlevsen 
bounds [7.4]. The derivation of the Ditlevsen bounds can be seen in [7.1], [7.4], [7.6] , 
[7.7] or [7.8] . The bounds are 

m i-1 

Pf2: P(M1 ::; O)+ L max{P(Mi ::; O)- L P(Mi ::; o n Mj ::; 0) , O} (7.13a) 
i=2 j=1 

m m 

(7.13b) 

and in terms of the FORM approximation in reliability indices: 

m i-1 

ci>( -Ø5
) 2: ci>(-ØI) + Lmax{cl>(-Øi)- Lcl>z(-Øi ,-ØjiPij),O} (7.14a) 

i=2 j = 1 

m m 

(7.14b) 

The numbering of the failure elements influences the bounds. However, experience 
suggests that it is a good choice to arrange the failure elements according to decre­
asing probability of failure, i.e. P(M1 :S O) 2: P(Mz :S O) 2: · · · 2: P(Mm :S 0). The 
Ditlevsen bounds are usually much more precise than the simple bounds in (7.16) -
(7.18) but require the estimation of cl>z( -Øi , -Øii Pii) in (7.14). 

From (7.9) it follows that 

fPci>z(Øi, Ø i i Pi i) åcl>z(Øi, Ø i; Pi i) 
åØiåØi 0Pii 

(7.15) 
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Therefore, 

{ Pij Oif?2 (f3i ,/3j;t) 
ii!2(f3i , /3j i Pii) = i!?2(/3i , /3j;O) + Jo åt it=zdz 

= i!?(f3i )i!?(/3i ) + 1 Pii <p2(f3i, /3i ; z )dz 

(7.16) 

Hereby only a one-dimensional integral has to be solved for the evaluation of i!?2 ( f3i, /3j; Pi i , 
It is also possible to estimate if?2( -/3i, -/3i; Pii ) = P(Mi ~O n Mi ~ O) from simple 
bounds which arederived from figure 7.8. 

u2 

c 

Figure 7.8. Figure for simple bounds of if?2( -/3i, -/3i; Pii )· 

From figure 7.8 it is seen that P(Mi ~ O n Mi ~O) equals the probability contents in 
the hatched angle BAE. Therefore, P is greater than the probability contentin the 
angle BAD and in the angle CAE. However, P is less than the sum of the probability 
contents in the angles BAD and CAE. This observation makes it possible to derive 
simple bounds for Pij = i!?2 ( - f3i, -Ø i; Pii ). 

The probability contents Pi and Pi in the angles CAE and BAD, respectively, are 

and (7.17) 

where /i and li can be found from figure 7.8 as 

(7.18) 
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herefore, for Pii > O, the following bounds exist 

max(pi,Pi) ~ <l!2(- f3i, -/3i;Pij) ~Pi+ Pi 

md similarly for Pij < O 

O~ <l!2(-/3i,-/3j;Pij) ~ min(pi,Pj) 

(7.19) 

(7.20) 

These bounds are easy to use and P ij can be approximated as the average of the 
lower and the upper bounds. If the gap between the lower and the upper bounds is 
too wide, a more accurate method, such as numericalintegration of (7.16) should be 
used. 

Example 7.4 Simple Illustration of Ditlevsen Bounds 

Consider a simple example with 3 failure elements in a series system. Each of the 
elements i = l , 2, 3 has a finite failure domain Di with uniform and equal probability 
density as shown in figure 7.9 

Figure 7.9. Illustration of Ditlevsen bounds. 

The lower Ditlevsen bound on PJ = P (D1 U D2 U Da) is 

Pj 2 P(D1) + P(D2 ) - P(D2 nD1) + P(Da) - P(Da n D1 )- P (Da n D2) 

from which it is seen that the hatched domain in figure 7.9 is the difference between 
the lower Ditlevsen bound and the exact PJ. 
The upper Ditlevsen bound on PJ = P(D1 U D2 U Da) is 

From which it is seen that the dotted domain in figure 7.9 is the difference between 
the upper Di tlevsen bound and the exact PJ. 

* * * 
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Example 7.5 FORM Evaluation of {3 5 of a Series System 

Consider a series system of 4 failure elements. After the transformation of the 
stochastic (physical) variables X 1 and X 2 in to the standard normal s pace o f variables 
U1 and U2 the four failure elements are deseribed by the following failure functions 

g3(u) = exp(u1 + 4)- u2 

The failure functions gi(u) =O, i = l, 2, 3, 4 are shown in figure 7.10. 

The reliability indices f3i with the corresponding P f;, a-vectors and {3-points are 
shown in tab le 7 .l 
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Figure 7.10. Four failure functions for a series system. 
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l Ø i 1>( -Øi) Q il Qi2 u il ui2 

l 3.51 2.276·10-4 -0.283 0.959 -0.99 3.36 
2 3.54 2.035·10-4 -0.707 0.707 -2.50 2.50 
3 3.86 5.738·10-5 -0.875 0.483 -3.38 1.86 
4 4.00 3.174·10-5 0.00 1.000 0.00 4.00 

Table 7.1 Information of failure elements. 

From table 7.1 the correlation matrix p can be obtained from (7.6) 

1.00 
syrn. 

0.878 1.00 
p= 

0.712 0.961 1.00 

0.962 0.714 0.492 1.00 

Simple Bounds 

From (7.18) the simple bounds of øs can be obtained as: 

øs 2: -1>-1(2.276 ·10- 4 + 2.035 ·10-4 + 5.738 ·10-5 + 3.174 ·10-5 ) = 3.28 

Øs :::; min{3.51; 3.54; 3.86; 4.00} = 3.51 

Ditlevsen Bounds 

For Ditlevsen bounds it is necessary to evaluate 1>(- Øi, - Øj;Pij),i,j = 1,2, 3,4 for 
j < i w hich c an b e done approximately by ( 7 .17) - ( 7. 20). In the foliowing matrix 
/i and /j from (7.18) are shown. (Ti from (7.18) is shown in the lower triangle and 
/j is shown in the upper triangle) 

0.839 1.082 -1.253 

0.956 - 0.617 0.971 

1.938 1.659 2.170 

2.297 2.107 2.415 

From (7. 17) -(7.20) it is then possible to obtain the foliowing table with bounds of 
1>( - Øi, - Øj; Pij) 
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t,) 2,1 3,1 4,1 3,2 4,2 4,3 

Pi 4.09 0.801 2.84 4.18 0.526 0.0476 

Pi 3.86 0.599 0.246 0.535 0.220 0.0451 
a= max{pi , Pi} 4.09 0.801 2.84 4.18 0.526 0.0476 

b= Pi+ Pi 7.95 1.40 3.09 4.71 0.776 0.0927 
0.5(a+b) 6.02 1.10 2.96 4.45 0.636 0.0702 

Table 7.2 List of probabilities (p· 10-5 ). 

It is now from table 7.1 and 7.2 possible to obtain the Ditlevsen bounds: 

Ditlevsen Lower Bound 

In the lower Ditlevsen bound the upper bounds of ip2(-f3i , -/3iiPii) are used, i.e. 

ip( -{35 ) ~ 2.276 · 10-4 + max{2.035 · 10-4 - 7.95 · 10-5 , O} 

+ max{5.738 · 10- 5
- (1.40 + 4.71) · 10-5

, O} 

+ max{3.174 · 10-5
- (3.09 + 0.776 + 0.0927) · 10-5

, O} 

= 3.52. 10- 4 

Ditlevsen Upper Bound 

In the upper Ditlevsen bound the lower bounds of ip2(-f3i,-/3iiPii) are used, i.e 

ip( -{35
):::; 2.276 · 10-4 + 2.035 · 10-4 + 5.738 · 10-5 + 3.174 · 10-5 

- 4.09 ·10- 5
- max{0.801·10 - 5 , 4.18 · 10- 5 } 

- max{2.84 · 10- 5 ,0.526 · 10- 5 ,0.0476 · 10-5 } 

= 4.09 · 10-4 

corresponding to 

3.36 :::; {3 5 :::; 3.39 

If instead the average approximations of ip2 ( -f3i, -/3ii Pii) in the hottom row of 
table 7.2 are used only approximations of the bounds are obtained (i.e, there is no 
guarantee that {3 5 is within the bounds) 

3.36 :::; {3 5 
:::; 3.37 

If ip( -f3i, - /3ii Pii) is calculated exactly from (7.16) the foliowing exact bounds are 
obtained: 

3.381 :::; {3 5 :::; 3.383 
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It is seen that the Ditlevsen bounds in this case are narrow. This will often be the 
case. 

* * * 
Example 7 .6 Failure Element with Two ,B-Points 

Consider again example 5.8 where the failure furretion in the u-space was found as 
shown in figur e 7 .11. 

Instead of estimating the probability of failure as PJ =<I>( -,BI)= <I>( -2.78) = 2.68 · 
10-3 the probability of failure is estimated as PJ = P(M1 ~ O U M2 ~O) where M 1 
and M2 are safety margins from linearization at the ,B-points u; and u;, respectively 
(see figure 7.11). The safety margins are written M1 = .81 -a[U and M2 = .82 -af U. 
With ,81 = 2.784, .82 = 3.501 (Ph = 2.31·10-4

) and the a-vectors a 1 = (0.999, 0.036) 
and 0!2 = ( -0.370, 0.929). The cerrelation coefficient is p12 =a[ 0!2 = -0.337. The 
probability offailure is then obtained as P1 = 1- <I>2(,81,,82;p12) which is 

P! = <I>( -,Bl)+ <I>( -,82)- <I>2( -,Bl, -,82; P12) 

<I>2( -,81, -,82; P12) is estimated from (7.17) -(7.20). From (7.18) i t can be obtained 
that 1'1 = 4.2101 and 1'2 = 4.715 which by use of (7.17) results in p1 = 3.25 · 
10-9 and P2 = 2.960 · 10-9 . An average estimate from (7.10) is then obtained 
as <I>2( -,Bl, -,82; P12) = 1.48 · 10-9

. P1 then is P1 = 2.68 · 10-3 + 2.32 · 10-4 
-

1.48 · 10-9 = 2.91 · 10-3 which corresponds to ,as= 2.758. Compared to the exact 
result ,as= 2. 755 obtained by numericalintegration with formula (c) in example 5.8 
inserted into ( 4.6) this is a satisfactory estimate. 

1 

Figure 7.11. Failure furretions from example 5.8. 

* * * 

7.4.2 Numerical Methods for Evaluation of <I>m 
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Approximation based on the average correlation coefficient 

If as a special case all the correlations between the elements are the same, i.e. Pi ,j = 
p, i, j= l , 2, · · · , m, i=/= j then it can be shown that, see (7.7] or (7.10] 

(7.21 ) 

For series systems the probability of failure then is 

(7.22) 

w hen the correlation coefficients arenot allequalan approximation of the probability 
of failure can be obtained by using an average correlation coefficient p as p in (7.22). 
p is determined from 

(7.23) 

The approximation based on the average correlation coefficient can be considered as 
the first term in a Taylor expansion of Pf at the average correlation coefficient point 
with respect to the correlation coefficients 

Using (7.22) with p = p an approximation of P1 is obtained. The approximation 
will in many cases be conservative. 

Example 7.7 

Consider the series system of example 7.5 again. The average correlation coeffi.cient 
become 

l 
p= 6(0.878 + 0.712 + 0.961 + 0.962 + 0.714 + 0.492) = 0.786 

with P= (3.51, 3.54, 3.85, 4.00) in (7.22) the average correlation coefficient approxi­
mation becomes PJ = 4.28 · 10-4 corresponding to (35 = 3.33 which from example 
7.5 is seen to give a conservative estimate of the series system reliability. 

* * * 
Advanced Asymptotic Methods 

It has already been mentianed that the bounds methods in section 7.4.1. can be used 
in hand calculations. However, in professional reliability programsother more precise 
and more refined methods are used. Two of these methods are the Hohenbichler 
approximation, see [7.5], and the approximation by Gollwitzer and Rackwitz (7.3]. 
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These methods are in general very precise and m ak e i t pos si ble to calculate cl> m 

within reasonable computer time. 

7.5 Sensitivity Analysis o f Series Systems Reliabilities 

From (7.8) it can be shown that the sensitivity of Øs with respect to a model para­
meter p can be found as 

(7.24) 

However, to get an estimate of the sensitivity of a systems reliability index øs i t is 
often sufficient to use: 

(7.25) 

where dØd dp can be obtained as already deseribed in note 4 and åcl>m(Ø, p)/ åØi 
can be determined either numerically by finite differences or by the semi-analytical 
methods deseribed in [7.9) where also details of sensitivity analysis can be found. 
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8. RELIABILITY OF SYSTEMS OF PARALLEL SYSTEMS 

8.1 Introduetion 

11.02.98 

In this note it is deseribed how the reliability of a system can be evaluated when 
more than one failure element have to fail before the whole system is defined to 
be in a state of failure. This is performed by introduetion of parallel systems in 
section 8.2, followed by sections 8.3 and 8.4 where the FORM approximation of the 
reliability of a parallel system and reliability evaluation techniques are introduced, 
respectively. In section 8.5 it is deseribed how the parallel systems are combined 
into a systems reliability model of a series system of parallel systems and how the 
reliability evaluations can then be performed. 

8.2 Modelling of Parallel Systems 

The introduetion and the necessity of parallel systems for the reliability modelling of 
some structural systems can be illustrated by considering the statically indeterminate 
(redundant) truss-structure in figure 8.1 with N structural elements (trusses) . Each 
of the N structural elements is assigned 2 failure elements. One with a failure 
function modeiling rnaterial yielding failure and one with a failure function modeiling 
buekling failure. 

Figure 8.1 Statically indeterrninate truss structure. 

For such a statically indeterrninate (redundant) structure it is clear that the whole 
structural systern will not always fail as soon as one of structural element fails , be­
cause the structure has a load-carrying capacity after failure of sorne of the structural 
elements. This load carrying capacity is obtained after a redistribution of the load 
effects in the structure after the element failure. Failure of the entire redundant 
structure will then often require failure of more than one structural element. (It is 
in this connection very important to define exactly what is understood by failure of 
the structural system). Clearly the number of systems failure modes in a redundant 
structure is generally high. Each of these system failure modes can be modelled by 
a parallel systern consisting of generally n elements, where n is the nurnber of failure 
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elements whieh have to fail in the speeifie systems failure mode before the entire 
strueture is defined to be in a state of failure. The parallel system with n elements 
is shown in figure 8.2. 

l 

Figure 8.2. Failure mode of a redundant strueture modelled as a parallel system. 

Sinee a redistribution of the load effeets has to take plaee in a redundant struetu­
ral system after failure of one or more of the struetural elements it beeomes very 
important in parallel systems to deseribe the behaviour of the failed struetural ele­
ments after failure has taken plaee. If the struetural element has no strength after 
failure the element is said to be perfectly brittle. If the element after failure has a 
load-bearing eapaeity equal to the load at failure, the element is said to be perfectly 
ductile. 

In figure 8.3 a perfeetly brittie and a perfeetly duetile element are shown with an 
example of the behaviours and the symbols used for perfectly brittie and perfectly 
duetile elements, respectively. 

(ailure 
load k 

- ·- ... 
detleetion 

load k f• ilure 

... 
detleetion 

Figure 8.3. Perleetly brittie and perfeetly duetile elements with symbols. 

Clearly all kinds of structural eomponents and material behaviours eannot be de­
seribed as perfeetly brittie or perfeetly ductile. All kinds of eombinations in between 
exist, i.e. some, but not all, of the failure strength eapaeity is retained. One of these 
modellings are the elastie-residual model shown in figure 8.4. 
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Figure 8.4. Elastic-residual element behaviour. 

Before the reliability modeiling in a parallel system of failure elements can be perfor­
med the structural behaviour of the considered failure mode must be clarified. More 
specificly the failure of the structural elements and consequenses with determina­
tion of residual load-carrying capacity and load redistribution in each step in the 
structural element failure sequence must be described. Then the failure functions 
of the failure elements in the parallel system can be formulated. Failure function 
no. l models failure in parallel system element no. l without failure in any other 
elements. Failure function no. 2 models failure in parallel system element no. 2 
with failure in the structural element corresponding to failure element no. l (i.e. 
after redistribution of loacis ). Failure function no. 3 then models failure of parallel 
system element no. 3 with failure in the structural elements corresponding to failure 
element nos. 2 and l, etc. etc. 

The obtained failure functions can then be used in the reliability evaluations of the 
parallel system without further consideration of the structural system and structural 
behaviour. 

Example 8.1 Structural Parallel Systems 

As a special case of parallel systems so-called structural parallel systems as fibre 
bundles are considered in this example. 

Consider a fibre bundle with n perfectly duetile fibres modelled by a parallel system. 
The strength Ri, i = l , 2, · · · , n of the individual fibres is identically normal distri­
buted N(p, a) withacommon correlation coefficient p. The fibre bundle is loaded 
by a deterministic load S = nSe, where Se is the constant load on each fibre. The 
reliability indices of the fibre are the same for all fibres and equal to 

The strength R of the duetile fibre bundle is obtained as the sum of the individual 
fibre strengths, i.e. R is normally distributed with: 

and 

The reliability index of the parallel system (fibre bundle) then is 
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/3P _ J.lR- S _ nJ.L- n(J.L- /3a) _øJ n 
- aR - Jna2 +n(n-l)a2p- l+p(n-1) 

where i t is used that S = n Se = n( J-L - /3a ). 

It is also possible to obtain f3P of a duetile fibre bundle when the fibres are not 
correlated by a common cerrelation coefficient p. This can e.g. be done by use of 
the average cerrelation coefficient defined in (7.23) and used in the above expression, 
see (8.4) . 

Another case of a fibre bundle is the Daniels system (8.7] of n perfectly brittle fibres. 
The strengths o f the n fibres are r1, r2, · · · , r n , where r1 s; r2 s; · · · s; r n. The 
strength of the fibre bundle then is 

r8 = max{nr1,(n -l)r2,·· · ,2rn-l,rn} 

Now, let ri, i= l, 2, · · · , n be realizations of independent random variables Ri with 
identical distribution functions. r 8 is similarly the realization of R 8 • Daniels showed 
that Rs is normally distributed N(J.LR,, aR,) for n ---+ oo, where 

where r0 is the maximum point of the furretion r(l - FR(r)). The result is valid 
under the condition that r0 is unique and r(l- FR(r)) =O for r---+ oo. 

For a eloser description also for small values of n, see (8.8 p. 249]. 

* * * 

8.3 FORM Approximation of the Reliability of a Parallel System 

After the failure furretions of the failure elements in a parallel system have been 
formulated it is possible to estimate the reliability by FORM from the foliowing 
description. 

Consider a parallel system of n failure elements each modelled with a failure furretion 
and a safety margin: 

Mi= 9i(X), i= 1,2,··· ,n (8.1) 

The transformation between the standard normal U-variables and the stochastic 
variables X can be obtained as explained in note 5 and is symbolically written as 
X = T(U). 
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The parallel system fails if all of the elements fail , i.e. the probability of failure of 
the parallel system is defined as the intersection of the individual failure events: 

n n n 

P{= P(n{Mi ~O})= P (n{gi(X) ~ O})= P(n{gi(T(U)) ~O}) (8.2) 
i= l i=l i= l 

Then a so-called joint ,B-point is introduced as the point in the failure domain ( defined 
from (8.2)) closest to the origin, see figure 8.5. The nA out of the n failure furretions 
which equal zero at u* are then linearized at u*: 

where 

Qj= 
-"V u9i(T(u*)) 

l "V u9i(T(u*))l 

(8.3) 

and (8.4) 

thus, {J1 
is an n A -vector of indices at element level 7J1 = (.B/, .Bf,· · · , .B~A) calculated 

from (8.4) by use of the joint .B-point and not the individual ,B-points as in calculation 
of an element reliability index ,B. 

--------~0~---------====J------------------------~lUI 
(3~ =ar i.i* 

Figure 8.5 Illustration of the FORM-approximation of a parallel system. 

The FORM-approximation of P{ of a parallel system can then be written 

i= l i= l 

5 
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where <PnA is the nA-dimensional normal distribution function and the cerrelation 
coefficient Pij between two linearized safety margins Mi = {3/ - aTU and Mj = 
{3 ) -ru . · -a · 1s 

J J 

(8.6) 

From (8.5) a formal generalized parallel systems reliability index {3P can be intro­
duced by 

(8.7) 

as 

(8.8) 

T he joint {3-point is from its defini tion determined as the solution of the foliowing 
optimization problem: 

min 
u 

s. t. 

1-r­. 1 =-u u 
2 

9i(u) :::; o , 
(8.9) 

i ·= 1,2,· · · ,n 

The solution of the joint {3-point problem can be obtained by a general non-linear 
optimization algorithm as NLPQL (8.1] or the problem specific algorithm JOINT3 
deseribed in (8.2]. 

Example 8.2 Illustration of the FORM-approximation 

Consider the two-dimensional case with 3 failure functions 9i(T(u)) = O, i = l, 2, 3 
shown in figure 8.6. 
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Figure 8.6 Illustration of the FORM-approximation. 

In figure 8.6 the exact failure domain as the intersection of the individual element 
failure domains is hatched. Furthermore, the nA = 2 active safety margins linearized 
at the joint ,B-point u* are shown. 

It is seen that (8.7) or (8.8) is an approximation when the failure functions are 
non-linear in the u-space or if so-called secondary joint ,B-points exist (a secondary 
Ø-point is shown in figure 8.6 as u2 ). For high reliability levels the approximation in 
(8.8) including the na active constraints of (8.9) is often sufficiently accurate. 

* * * 
The formulation in (8.9) requires that at least one of the failure functions is greater 
than zero in the origin. If this is not the case the problem can be converted to a 
series system problem by writing the safe domain as a union. For further explanation 
and inelusion of the secondary joint ,B-points for a more precise estimation, see [8.3]. 

In some references a cruder and older formulation of the FORM parallel system 
reliability is utilized. The failure domain is estimated as the intersection of the 
linearized failure funtions at the individual ,8- points, i.e. only the individual ,B­
point optimization problems are solved and not the joint ,B-point problem in (8.9). 
Example 8.3 The Importance of Pii in a Parallel System 

For illustration of the importance of Pii consider the margins Mi = ,8/- aTU and 
Mj = ,Bf - af U. In figure 8. 7 four cases are shown with Øi = 3.0, Ø i = 3.0 and Pii 

equal -1.0, 0.0, J[5 and 1.0, respectively. 
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Pij =- l 
() = 180' 
(3P = oo 

Pij = v'Q.5 
() = 45' 
(3P=4.48 

Figure 8. 7 Illustration of Pi i. 

Pij = O 
() =90' 
(3P = 4.63 

Pij = l 
(). =0' 

(3P =3.00 

+-------------~._Ul o 

The generalized parallel systems reliability index {J P of the four cases in figure 8. 7 
can be found from (8.8) as oo, 4.63, 4.48 and 3.00, respectively. 

In figure 8.8 {JP = -ip- 1 ( ip2 (-3.0,-3.0;p)) is shownas a furretion of p. 
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7 .0 

-l o 

Figure 8.8. /3P = -<I>-1 (<I>2 (-3.0,-3.0;p)) as a function of p. 

From figure 8.8 it is seen that 3.00 S f3P S oo corresponding to the fully positive 
correlated and the fully negative correlated cases, respectively. 

* * * 

8.4 Evaluation of Parallel Systems Reliabilities 

The result from the previous section is that if /3/ and Pi j , i, j = l, 2, · · · , n11 are 
known the problem is to evaluate the nA-dimensional normal distribution function 

<I> n A ( -731; p) in (8.8) for the FORM approximation of /3P. As deseribed in note 
7, this can generally not be performed by numerical integration within a resonable 
camputing time for higher dimensions. Instead bounds or approximate methods are 
used. 

In the following, simple bounds and a second order bound will be introduced as 
bounds for the reliability of parallel systems. 

Simple Bounds 

If only the active constraints of (8.9) are assumed to influence the reliability of the 
parallel systern the simple bounds can be introduced as 

(8.10) 

where M/, i = l,·· · , n A are the linearized safety margins at the joint /3-point. The 
upper bound corresponds to the exact value of Pf if all the nA elements are fully 
correlated with Pii = l. 
In the terms of reliability indices /31 (8.11) can be written 
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rft~x (3/ :::; (3P :::; oo 
t= l 

(8.11) 

If all cerrelation coefficients Pii between the nA elements are higher than zero the 
foliowing simple bounds are obtained: 

n A n a rr P( M/:::; o):::; PJ:::; ~rP(M/:::; o) (8.12) 
i= l 

where the lower bound cerrespond to uncorrelated elements. i.e Pi,j = O, i =/=j. In 
terms of (3J (8.12) becomes 

n A 

d}jlx (3/ :::; (3p :::; -<I> -l en <I>( -(3/)) 
i=l 

(8.13) 

The simple bounds will in most cases be so wide that they are of little practical use. 

Second Order Upper Bound 

A second order upper bound of PJ can be derived as 

Pj:::; ;fn P(M/:::; onMf:::; O) 
t,J=l 

(8.14) 

The corresponding lower bound of (3P is 

(8.15) 

In (8.15) it is seen that the probability of failure of a parallel system of two elements 
<I>2( -(3/ , -(3j, Pii) is necessary. These probabilities are the same as the probabilities 
used in the Ditlevsen bounds for series systems, see note 7. In note 7 both a method 
by numericalintegration (7.16) and a bounds method (7.17) - (7.20) are described. 
Hereby the tools for evaluation of the bounds are described. 

More refined and complicated bounds can also be developed, see [8.4], but will not 
be shown here. 
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Example 8.4 FORM Evaluation of /3P of a Parallel System 

Consider a parallel system of 4 failure elements. After the transformation of the 
stochastic (physical) variables x l and x2 into the standard normalspace of variables 
U1 and U2 the four failure elements are deseribed by the following failure functions: 

9I (u) = exp u1 - u2 +l 

ga(u) = exp( u1 + 2) - u2 

The failure functions 9i(u) = O, i = l, 2, 3, 4 are shown in figure 8.9. 

g3 (u)=o g
1
(u)=o 
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Pigure 8.9. Four failure functions for a parallel system. 
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It is seen directly from figure 8.9 that n A = 2 and the joint ,B-point is the intersection 
between 93 and 94 • The joint ,B point can be found to be u* = ( - 1.23; 2.16). The 
a-vectors are found from (8.4) as a 1 = ( -0.908; 0.420) and a2 = (0.233; 0.971), i.e 

-J 
the cerrelation coefficient from (8.6) is P12 = 0.18. From (8.3) ,B = (2.02; 1.81). 

The simple bounds are obtained from (8.13): 

max{l.81,2.02} ~,eP~ -1>-1(1>(-1.81)1>(-2.02)) 

o r 

2.02 ~ ,Bp ~ 3.17 

The second ord er lo w er bo und will in t his t wc-dimensional case b e exact i f 1>2 (-,B(, -.Bf; P12) 
is evaluated exact. The result is 

,Bp = 2.92 

If instead the bounds technique from note 7 ((7.17)-(7.20)) is used the bounds are 
obtained as 2.84 ~ ,BP ~ 3.04 or by taking the average of the bounds in (7.19) 
,Bp = 2.92. 

* * * 
Advanced Asymptotic Methods 

The bounds methods can be used in hand calculations. However, as deseribed in 
note 7 (section 7.4.2) for series systems, other more precise and more refined methods 
are used in professional reliability programs. 

8.5 General Systems Reliability 

It is clear that a real redundant structural system generally has many failure modes, 
i.e. different sequences of element failure. Each sequence can then be modelled by 
a parallel system. If one of these parallel systems fails then the whole system fails, 
i.e. the overall systems reliability model is a series system of the failure modes or 
parallel systems. This is schematically shown in figure 8.10. 
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Figure 8.10. Systems reliability model as a series system of parallel systems. 

It is also possible to formulate the systems reliability model as a parallel system of 
series systems, see [8.5). 

Example 8.5 Systems Reliability Model of a Truss Structure 

Consider the truss structure with two applied concentrated loads shown in figure 
8.11. 

Figure 8.11. Statically indeterminate truss structure. 

It is seen in figure 8.11 that the truss structure becomes statically determinate if 
any of the elements 1,2,3,4,5 or 6 is removed (fails). It is furthermore seen that the 
structure fails if any pair of the elements 1,2,3,4,5 and 6 fails. The structure also 
fails if one of the elements 7,8,9 or 10 fails. The systems reliability model is then a 
series system with 19 elements where 15 of the elements are parallel systems each 
with two failure elements. The elements in the series system are: {1,2}, {1,3}, {1,4}, 
{1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,8}, {7}, 
{8}, {9} and {10}. 

* * * 

8.6 Reliability of Series Systems of Parallel Systems 

The probability of failure of series systems of n p parallel systems each with mi, i = 
l, 2, · · · , n p failure elements can be written as a union of intersections 

np m; 

Pf =P( u n{gij(X) ~o}) (8.16) 
i=l j=l 
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where 9ii is the failure function of element j in parallel system i. 

The FORMestimate of the generalized systems reliability index Ø5 is written as in 
note 7, see (7.1) - (7.8) 

(8.17) 

where 7JP is an np-vector of generalized reliability indices for the individual parallel 

systems calculated as in (8.8) and pp is a matrix of the corresponding approximate 
correlation coefficients between the parallel systems. 

For approximation of the coefficients in the correlation matrix pp each of the parallel 
systems is approximated by a failure element with a linear safety margin, see [8.6] 

p _pT­
Mp; = Øi - ai U , i=1,2,··· , n (8.18) 

where the vectors ar' i = l , 2, ... , n are determined such that the sensitivity of ø p 

with respect to changes in the joint Ø-point: V u• ØP are equivalent w hen obtained 
from (8.18) (formulated as ør = arT u*) and when obtained from (8.8) . Further­
more, a normalization is performed for calculation of correlations: 

-P 
P a · - t Cl·=--
t iafl' i=1,2, .. ·,n (8.19) 

where, the elements of ar are obtained as 

(8.20) 

In (8.20) the influence on ØP in (8.18) of the correlations f} are neglected. n A ; is the 
number of active constraints in the i-th parallel system. da k/ du j is oh tained from 
differentiation of (8.4 ): 

(8.21) 

The elements in the matrix of correlation coefficients between the parallel systems 
are then calculated from 
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(8.22) 

Now {3 5 can be estimated from (8.17). For further explanations and details of relia­
bility estimation of series systems of parallel systems, see [8.6]. 

Comments on General Systems Reliability Models 

The reliability modeiling of a general system as a series system of parallel systems 
is healthy seen from a reliability theoretical point of view but from a structural 
engineering point of view in many cases unrealistical. This is due to the faet that 
the parallel systems reliabilities are dependent on the history of the load effects in 
the individual elements or in other wordson l) the residualload carrying capacity of 
a failed element or elements and 2) how the overallload effects in the entire structure 
are redistributed at each step in a sequence of element failures. This leads to the 
condusion that failure of more than one structural element of major importance 
often eannot be treated in a realistical manner. More generally it can be said that 
the systems reliability model is totally dependent of the structural response model 
and thus it should not be refined more than the structural response model justifies. 

8 . 7 Sensitivity Analysis o f General Systems 

The sensitivities for evaluation of the obtained systems reliability indices in (8.17) 
or (8.9) can in principle be obtained as explained in section 7.5. The sensitivity 
evaluation of a generalized reliability index of series system of parallel systems or of 
a parallel system, however, requires much more numerical effort and several pertur­
bation analyses of optimality conditions of the inelucled optimization problems, see 
[8.6]. 
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Structural reliability: Level l approaches 

John Dalsgaard Sørensen 
Institute of Building Technology and Structural Engineering 
Aalborg University 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 

l. Intro d uction 

18.03.98 

During the last two decades calibration of partial safety factors in level l codes 
for structural systems and civil engineering structures has been performed on a 
probabilistic basis in a number of codes of practice, see e.g. OHBDC (Ontario 
Highway Bridge Design Code) (1] , NBCC (National Building Code of Canada) (2], 
Ravindra &Galambos (3], Ellingwood et al. (4] and Rosenblueth & Esteva (5]. The 
calibration is generally performed for a given class of structures, materiais andfor 
loadsin such a way that the reliability measured by the firstorder reliability index f3 
estimated on the basis of structures designed using the new calibrated partial safety 
factors are as close as possible to the reliability indices estimated using existing design 
methods. Procedures to perform this type of calibration of partial safety factors are 
deseribed in for example Ravindra & Lind (6], Thoft-Christensen & Baker (7]. 

A code calibration procedure usually ineludes the foliowing basic steps, see e.g. 
Nowak (8]: 

definition of scope of the code, 

definition of the code objective, 

selection of code format, 

selection of target reliability index levels, 

calculation of calibrated partial safety factors and 

verification of the system of partial safety factors. 

A first guess of the partial safety factors is obtained by solving an optimization 
problem where the objective is to minimize the difference between the reliability for 
the different structures in the class considered and a target reliability level. In order 
to ensure that all the structures in the class considered have a satisfactory reliability, 
constraints are imposed on the reliability for the whole range of structures. In this 
note it is shown how this optimization problem can be formulated and solved. Next, 
the partial safety factors determined in this way are adjusted taking into account 
current engineering judgement and tradition. 

In section 2 it is shown how partial safety factors can be determined for a single 
failure mode using the results from a firstorder relaibility method, see leeture note 
POS and P09. In section 3 a general procedure for estimating partial safety factors is 
described. This procedure can be used to calibrate partial safety factors for a class 



of structures. 

2. Estimation of partial safety factors for one failure mode 

In code calibration based on first order reliability methods (FORM) it is assumed 
that the limit state function can be written 

g(x,p,z)=O (l) 

where x= (x1, ... ,xn) is a realization of X= (X1, .. . ,Xn) modeiling n stochastic 
variables describing the uncertain quantities. Externalloads (e.g. wave), strength 
parameters and model uncertainty variables are examples of uncertain quantities. 
p = (p1 , ... , PM) are M deterministic parameters, for example well defined geome­
trical quantities. z = (z1 , ... , ZN) are N design variables which are used to design 
the actual structure. Realizations x of X where g( x, p, z) ~ O corresponds to failure 
states, while g( x, p, z) >O corresponds to safe states. 

Using FORM (First Order Reliability Methods) the reliability index {3 is determined. 
The corresponding estimate of the probability of failure is 

(2) 

where ~ is the standard normal distribution function. 

If the partial safety factors and if the number of design variables is N = l then the 
design (modelled by z) can be determined fromthedesign equation 

G(xc,p,z,i)~O (3) 

xc =(x}, ... , x~) are characteristic values corresponding to the stochastic variables 
X. i = ( 11 , ... , l m) are m parti al safety factors. The partial safety factors i are 
usually defined such that li >l, i= l, ... , m. In themost simple case m= n. 

The design equation is closely connected to the limit state function (1). In most 
cases the only difference is that the state variables x are exehanged by design values 
xd obtained from the characteristic values xc and the partial safety factors i· 

The characteristic values are for load variables usually the 90 %, 95 % or 98 % 
fractiles of the distribution function of the stochastic variables, e.g. 

xf = Fx;1 (0.98) 

where Fx; is the distribution function for Xi. The design values for load variables 
are then obtained from 

(4) 

The characteristic values arefor strength variables usually the 10 %, 5% or 2% 
fractiles of the distribution function of the stochastic variables. The design values 
for strength variables are then obtained from 

c 
d xi 

X· =-
' li 

(5) 
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For geometrical variables usually the median (50 % fractile) is used and the design 
values are 

(6) 

If n = m = 2, x 1 is a load variable and x2 is a strength variable : 

c 

G((xl,x2),p,z,(/I,/2)) = g((xt,xg),p,z) = g((x~/1, x2),p,z) (7) 
/2 

A reliability analysis by FORM with the limit state function (1) gives the reliability 
index f3 and the {3-point x*. Partial safety factors can then be obtained from 

x~ 
/i=_, 

x! 
' x! 

/i=_, 
x~ 

' 

for strength variables 

for load variables 

If more than one variable load type are important then e.g. the Thrkstra rule can 
be used to model the combined effect, see e.g. Thoft-Christensen & Baker [7]. Let 
X 1 , ... , X v model v different variable load variables. The variables modeiling per­
manent loads are denoted X v+ b ... , Xv+p and the remaining stochastic variables are 
denoted Xv+p+I, ... ,X n. The design equation is written 

G(xc, p, z, 1) 
XC c 

( c ,T, c ,T, c c v+p+l Xn ) =g Xl/l 'J!' I, ... , XV /v 'J!' v, xv+IIv+I' ... ,x v+ p lv+p, ' ... , -,p, z 
/v+p+l /n 

(8) 

where W i :::::; l. v combinations are investigated. In combination j W i = l and W i < l 
for i =/=j. 

3. General procedure for estimating partial safety factors 

Code calibration can be performed by judgement, fitting, optimization or a combina­
tion of these, see Madsen et al. [11]. Calibration by judgement has been the main 
method until 10-20 years ago. Fitting of codes is used when a new code format 
is introduced and the parameters in this code are determined such that the same 
level of safety is obtained as in the old code. The level of safety can be measured 
by the reliability index (3. In code optimization the foliowing steps are generally 
performed, see [11] and [8] : 

l) Definition of the scope of the code, i.e. the class of structures to be considered 
is defined. 

2) Definition of the code objective. The code objective may be defined at any 
higher level than the level of the reliability method used in the code. In a level 
l reliability method ( which uses a single characteristic value of each uncertain 
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quantity and partial safety factors) the objective may be to obtain on average 
the same reliability (measured by the target reliability index {3) as obtained by 
a reliability method on a higher level. 

3) Definition of code format. The code format includes: 
- how many partial safety factors to be used 
- where to use the partial safety factors in the design equations 
- rules for load combinations 

4) Determination of the frequency at which each type of safety check is performed. 

5) Definition of a measure of closeness between code realizations and the code ob­
jective. 

6) Determination of the. "hest" code format, i.e. calculation of the 'optimal' partial 
safety factors which gives the closest fit to the objective measured by the closeness 
criteria. 

7) verification of the system of partial safety factors. 

Structural failure modes (limit states) are generally divided in: 

Ultimate limit states 
Ultimate limit states correspond to the maximum load carrying capacity which can 
be related to e.g. formation of a mechanism in the structure, excessive plasticity, 
rupture due to fatigue and instability. 

Conditional limit states 
Conditionallimit states correspond to the load-carrying capacity if a local part of 
the structure has failed. A local failure can be caused by an accidential action or by 
fire. The conditionallimit states can be related to e.g. formation of a mechanism in 
the structure, exceedance of the material strengthor instability. 

S erviceability limit states 
Serviceability limit states are related to normaluse of the structure, e.g. excessive 
defiections, local damage and excessive vibrations. 

In general, the target reliability index can be determined by calibration to the relia­
bility level of existing similar structures. Alternatively or supplementary the target 
reliability indices can be selected on the basis of e.g. the recommneded minimum 
reliability indices specifled in NKB [10). The maximum probability of failure ( or equ­
ivalently the minimum reliability) are related to the consequences of failure specifled 
by safety classes and failure types: 

The foliowing safety classes are considered: 

Less serious: 

Serious: 

1- and 2-storey buildings which only occassionally hold persons, for 
instance stock buildings, sheds, and some agricultural buildings, 
small pylons, roofs and internal walls. 

Buildings of more than two storeys and hall structures which only 
occassionally hold people, small 1- and 2-storey buildings often 
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used for people, for example houses, offices or produetions buil­
dings, tall pylons, scaffolds and moulds, external walls, staircases 
and rails. 

Very serious: Buildings of more than two storeys, hall structures, and stages 
which will often hold many persons and e.g. be used for offices, 
sports or production. 

1- and 2-storey buildings with large spans often used by many 
persons, stands, pedestrain bridges, road bridges, railroad bridges. 

The foliowing failure typeJ are considered ( see NKB (lO]) : 

Failure type I: Duetile failures where it is required that there is an extra carrying 
capacity beyond the defined resistance, i.e. in the form of strain 
hardening. 

Failure type II: Duetile failures without an extra carrying capacity. 

Failure type III: Failures such as britle failure and instability failure. 

For ultimate limit states NKB recommend the foliowing maximum probabilities of 
failure based on a reference period of l year: 

Safety class Failure type I Failure type II Failure type II 
Less serious 10 -a 10 "4 10 "5 

Serious w-4 w-s w-6 
Very serious 10-5 10-6 10-7 

Table l. Maximum probabilities of failure. 

The minimum reliability indices corresponding to the maximum probabilities in table 
l are 

Safety class Failure type I Failure type II Failure type II 
Less serious 3.1 3.7 4.3 
Serious 3.7 4.3 4.7 
Very serious 4.3 4.7 5.2 

Table 2. Target (minimum) reliability indices. 

As explained above calibration of partial safety factors is generally performed for a 
given class of structures, materiais or loadsin such a way that the reliability measured 
by the first order reliability index f3 estimated on the basis of structures designed 
using the new calibrated partial safety factors is as close as possible to the target 
reliability index or to the reliability indices estimated using existing design methods, 
see Thoft-Christensen & Baker (7], Ditlevsen & Madsen (12], Ostlund [13], Shinozuka 
et al. (14], Vrouwenvelder [15] and Hauge et al. [16]. Procedures to perform this 
type of calibration of partial safety factors are deseribed in e.g. Thoft-Christensen 
& Baker [7]. 
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In the following this procedure is deseribed and extended in some directions. For 
each failure mode the limit state function is written, see (l) 

g(x,p,z)=O (9) 

Using FORM (First Order Reliability Methods) reliability index /3 can be determi­
ned. 

If the number of design variables is N = l then the design can be determined from 
the design equation, see (3) 

(lO) 

If the number of design variables is N > l then a design optimization problem can 
be formulated: 

mm C(z) 
s.t. Ci(z) =O , i = l, ... , me 

Ci(z) ~O ,i= me + l, .. . ,m 

Z~ < z,· < z!' ,; - l N 
l - - l '.- ' • • • , 

(11) 

(12) 

(13) 

(14) 

C is the objective function and Ci , i = l, 2, ... , mare the constraints. The objective 
function C is often chosen as the weight of the structure. The me equality con­
straints in (12) can be used to model design requirements (e.g. constraints on the 
geometrical quantities) and to relate the load on the structure to the response (e. g. 
finite element equations). Often equality constraints can be avoided because the 
structural analysis is incorporated directly in the formulation of the inequality con­
straints. The inequality constraints in (13) ensurethat response characteristics such 
as dispiacements and stresses do not exceed codified critical values as expressed by 
the design equations (10). The inequality constraints may also inelude general design 
requirements for the design variables. The constraints in (14) are so-called simple 
bounds. z! and z f are lower and up per bounds to Z i. Generally the optimization 
problem (11)- (14) is non-linear and non-convex. 

The application area for the code is deseribed by the set I of L different vectors 
Pi, i = l, ... , L. The set I may e.g. contain different geometrical forms of the 
structure, different parameters for the stochastic variables and different statistical 
models for the stochastic variables. 

The partial safety factors "Y are calibrated such that the reliability indices correspon­
ding to the L vectors p are as close as possible to a target probability of failure Pj 
or equivalently a target reliability index f3t = -<I?-1 (Pj). Thisis formulated by the 
foliowing optimization problem 

min 
"Y 

L 

W( "'Y)= L wj(/3;(-r)- f3t)2 
j=l 
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where Wj,j = l, ... , L are weighting factors O::::::f=l Wj = l) indicating the relative 
frequency of appearance of the different design situations. lnstead of using the 
reliability indices in (15) to measure the deviation from the target for example the 
probabilities of failure can be used. Also, a nonlinear objective function giving 
relatively more weight to reliability indices smaller than the target compared tothose 
larger than the target can be used. /3j('l) is the reliability index for combination j 
obtained as deseribed below. In (15) the deviation from the target reliability index 
is measured by the squared distance. 

The reliability index /3j( r) for combination j is obtained as follows. First, for given 
""Y the optimal design is determined by solving the design equation (10) if N = l or 
by solving the design optimization problem (11)-(14) if N > l. Next, the reliability 
index {3j( r) is estimated by FORMon the basis of (9). 

It should be noted that, foliowing the procedure deseribed above for estimating the 
parti al safety factors two ( or more) parti al safety factors are not always uniquely 
determined. They can be functionally dependent, in the simplest case as a product, 
which has to be equal to a constant. 

In the above procedure there is no lower limit on the reliability. An improved pro­
cedure which has a constraint on the reliability and which talces the non-uniqeness 
problem into account can be formulated by the optimization problem 

m1n 

' 
L m 

W(r) = Lwi[C/3i(""Y) - f3t? +cSL('Yi --yj,?] 
j=l i=l 

s.t. f3i( ""Y) 2: f3fin , i = l, ... , L 

1!::; 'Yi::; 'Yi ,i= l , ... ,m 

(16) 

(17) 

(18) 

where Wj,j =l, ... , L are weighting factors CL:f=l Wj = 1). eS is a factor specifying 
the relative importance of the two terms. /3i( r) is the reliability index for combi­
nation j obtained as deseribed above. -yj, is anestimate of the partial safety factor 
obtained by considering combination j in isolation. The second term in the objective 
function (16) is added due to the non-uniqueness-problem and has the effect that the 
partial safety factors are forced in the direction of the "simple" definition of parti al 

• 
safety factors. For load variables : 'Y = :c. If only one combination is conside-

red then 'Yji = if. where xji is the design point. Experience with this formulation 
J l 

has shown that the factor eS should bechosen to be of magnitude one and that the 
calibrated partial safety factorsarenot very sensitive to the exact value of eS. 

The constraints (17) have the effect that no combination has a reliability index 
smaller than {3fin and the constraints in (18) aresimple bounds on the partial safety 
factors. 

This type of code calibration has been used in Burcharth [17] for code calibration of 
rubble mound breakwater designs. These structures are known to have reliabilities 
which vary considerably. The reason is that the structures are used under widely 
different conditions. 
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As discussed above a first guess of the partial safety factors is obtained by solving 
these optimization problems. Next, the final partial safety factors are determined 
ta.king into account current engineering judgement and tradition. 

Example l 

In this example partial safety factors are determined for one failure mode in one 
application (L= 1). Consider example 4.4 from note 4 with three normal distributed 
and independent stochastic variables P, L, E and I. Expected values and standard 
deviations are· 

Jl[.] u[·] 

p 2 kN 0.6 kN 
L 6m ""'Om 
E 2 ·107 kN/m2 3 ·106 kN/m2 

I 2 ·10-5 m4 2 ·10-6 m4 

The result of the reliability index is 

{3 = 3.15 

and the corresponding {3-point in basic variablespace is 

(p*, e*, i*)= ((3.14, 1.33 107 , 1.78 10-5 ) 

Characteristic values are chosen according to 

P : 98 % fractile pc = JlP + 2.05up = 3.2 

E: ' 5 % fractile ec = JlE- 1.65uE = 1.52 107 

I : 50 % fractile ic = Jli = 2 10-5 

Partial safety factors are then 

p* 3.14 
{P = - = - = 0.98 ~ l 

pC 3.2 
ec 1.52 

{e = e* = 1.33 = 1.14 
ic 2 

'V· = - = - = l 12 11 i* 1.78 . 

* * * 
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5. Design value format in Eurocodes 

In the Eurocodes [18] the so-called design value format is proposed to estimate partial 
safety factors . According to that format the design value xd of an uncertain variable 
X is estimated from 

where Fx is the distribution fornetion for X and (3 is the target reliability index, 
e.g. (3 =3.8. 

a the the a-coefficient associated with the type of stochastic variable considered. 
The following values are recommended: 

For strength variables : a= 0.8 

For dominating loads: a= -0.7 

For non-dominating loads : a= -0.4 x O. 7 = -0.28 

When the design value have been estimated the partial safety factor is estimated by 

for strength variables 

for load variables 

where (} is an uncertainty factor, typically = 1.05. xc is the characteristic value, see 
section 2. 

The foliowing distribution typs are recommended : 

For permanent loads: a Normal distribution 

For variable loads : a Gumbel distribution 

For strength : a Lognormal distribution 
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OPGAVE 1 
Lad den simultane tæthedsfunktion fxx for de stokastiske processer {X(t)} og {}C(t)} være 

givet ved 

• . _ { : (l - x
2 
)(l- lil) 

fxx<x. x)-

o 

Processen antages smalbåndet. 

Spørgsmdll 

for(x,i)E[-l,l]X [-1,1] 

ellers 

Bestem antal positive passager pr. tidsenhed E(N~ (01 af niveauet~. hvor O~~ =e;;; l. 

Spørgsmdl2 

Bestem tæthedsfunktionen f::: for toppenes højde og skitser f::: . 

Spørgsmdl3 

Bestem sandsynligheden for toppe i intervallet [0,6; 0,7]. 

OPGAVE 2· ' ' 
Den simultane tæthedsfunktion f x x for de stokastiske processer {X (t)} og {X (t)} 
antages at være 

( 
.) {c(2-lxl)(4 -x2

) for (x,x)E[- 2,2)x[- 2,2] 
fxx x,x = 

O ellers 

hvor c er en konstant. 

' Spørgsmål l: 
Bestem konstanten c og skitser den· simultane tæthedsfunktion. 

Spørgsmå12 
Bestem sandsynligheden for toppe i intervallet [1, 2), når den ikke-Gaussiske proces ap­
proksimeres med en Gaussisk proces med samme middelværdier (J.tx og J.l x) og varianser 
(oJ og oJ). 





TIME-VARIANT RELIABILITY 

Aalborg University, Dept. of Bui/ding Technology and Structural Engineering 
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 

l Introduetion 

In the preceeding leetures all variables have been considered to be either time-invariant 
stochastic variables or deterministic parameters. However, loads such as wave-loads and 
wind-loads are usually modelled as time-varying stochastic processes. In this case we are 
usually interested in determining the probability that the load within a given period of 
time exceeds a given threshold, the socalled barrier crossing problem. Further, it is of 
interest to determine the distribution of the maximum and minimum values of the process. 

2 Barrier Crossing 

In many engineering applications it is necessary to determine the reliability of structural 
components subject to stochastic process loading. Then the probability that the structural 
component enters, during some given time interval, a critical state {failure) must be 
determined. Let failure occur w hen the process X (t) exceeds som e threshold e. The 
probability of failure in the interval [O; T] then is 

P1 (T)=l-P(X(t)<e, Vt E [O;T]) (1) 

In the following a number of different methods by which solutions to eq. l can be obtained 
are presented. 

2.1 Simulation 

Monte Carlo simulation of stochastic processes has attracted much attention in the recent 
years. Partly because the development of more effi.cient computers has made the method 
more attractive and partly because it often is the only available method to determine the 
reliability of complicated nonlinear structural systems. The most commonly used method 
for simulating Gaussian processes is the socalled spectral representation method proposed 
by Borgman [2]. 

N-1 

XN (t;)= L: .j2Sx (wk) ~w cos (wkt; + ek) (2) 
k=O 

where Sx (w) is the one-sided spectrum of the stochastic process and Wk = k~w. The 
phases, e k, are stochastic variables, independent and uniformly distributed in the interval 
[O; 21r]. The process XN (t) is asymptotically Gaussian as N becomes large due to the 
centrallimit theorem. Further, it it important to notice that the process XN (t) is periodic 
with the period l:. 1t is evident that for longer time histories and finer spectral resolution 
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the computation time becomes excessive. Fortunately, this problem can be overeorne 
by performing the summation in eq. (2) by Fast Fourier Transformation. The failure 
probability now can be determined by simulating a large number of realizations of X (t) 
and determining the relative number of times X (t) exceeds the threshold value, {. 

(3) 

where Nc denotes the number of realizations which exceeds the threshold value and N 
denotes the number of realizations of X (t). 
The simulation method is not restricted to Gaussian processes. It is, however, more 
complicated to simulate Non-Gaussian processes. The major disadvantage of the method 
is the faet that it takes a very large number of simulations in order to determine an 
outcrossing probability if the outcrossings events are rare. In that case the method is very 
inefficient even if the Fast Fourier Transformation is applied to perform the summation. 

2.2 Rice's In- and Exelusion Series 

Let Pk denote the probability of exactly k outcrossings in the interval [O; T]. It is then evi­
dent that the probability of no outcrossings or the complementary first passage probability 
IS 

00 

Po 1- L:Pk 
k= l 

00 00 •(k) 
- l + E Pk ~ (-l f i 

00 ( -l)i 00 ., ( k ) 
- l + t; ~E t. i Pk 

00 (-l)i 00 • 

- l+ I: -.,-I: k(k -l) ... (k-'+ l)pk 
i=l '· k=l 

00 ( -l)i 
- l +I: -.1-mi 

i=l '· 

where mi denotes the ith factorial moment of the number of outcrossings, i.e. 

mo - l 
00 

mi - I: k (k - l) ... (k - i + l) P k fori ~ l 
k=l 

and where it has been used that 

( 7 ) = O for i > k 

(4) 

(5) 

(6) 

Eq. ( 4) is the socalled Rice's n in- and exelusion n series ( see Rice [4]) which in faet provides 
an exact solution to the barrier crossing problem. Of course, the mi (i= l, 2 ... ) must exist 
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and the series in eq. ( 4) must converge in ord er to rnake eq. ( 4) a valid representation. 
The series provides lower and upper bounds for the survival probability upon truncation 
after an odd or even term, respectively. The cornputational effort involved in evaluating 
Pi (T) according to this rnethod, however, is extensive. Further an increasing nurnber of 
terms has to be taken into account as m1 increases. Normally the series is truncated after 
the first term which provides an upper lirnit for the failure probability 

(7) 

where m 1 is nothing but the rnean nurnber of outcrossings. It is evident that Pi can only 
be approxirnated by m 1 if the outcrossing probability is very srnall, i.e. Pi ~ l. 

2.3 The Poisson Assumption 

Let the process N+ (t, O be a process that increases by one each time the process X (t) 
exceeds the threshold ~ and let N+ (0, O = O. Obviously N+ (t, O is a counting process 
which counts the nurnber of exits of X (t) across ~· 
If it is now assumed that the probability of having two or more outcrossings in ]t, t+ ~t] 
is negligible cornpared to the probability of having exactly one outcrossing, if flt is suf­
ficiently srnall, and further that the outcrossings in ]t, t + flt] are independent of the 
previous outcrossings in ]O, t], then N+ (t) is a Poisson process. The probability that the 
nurnber of outcrossings N+ (t,~) is equal to n now can be deterrnined as 

(8) 

where ~ (t,~) is the rnean value of N+ (t, O in the interval ]O, t], 

~(t,~)= E [N+ (t,~)] = m1 (9) 

The probability of failure now is 

(10) 

For broad-banded processes the rorrelation length is of the magnitude equal to the zero 
up-crossing period. In this case the maxima between succeeding zero-upcrossings are 
virtually uncorrelated. Hence, the outcrossings from the safe domain related to these 
maxima will also be independent and eq. (10) is valid. 
For narrow-banded processes, the outcrossings in case of low to medium barrier levels 
tend to occur in dumps, see fig. l. In this case the crossing events are highly correlated, 
and eq. (10) is no longer appropriate. However, at higher barrier levels only the highest 
peak in a dump is likely to imply an outcrossing. This suggest that the outcrossings tend 
to become independent as ~ --+ oo. Actually, this hypothesis can be formally proved for 
Gaussian processes, see C r arner and Leadbetter [3]. 

2.4 Initial Conditions 

By eqs. (4) and (10) one determines the probability that X (t) at some time crosses the 
threshold, ~. l t has not been taken in to account t hat the process might start in the failure 
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x( t) 
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Figure 1: Outcrossings of a narrow-band process. 

region, i.e. X (O) > ~· By taking the initial condition into account the failure probability 
can be defined as 

P,(T)=1-(1 - P,(O))P(X(t)<~ Vt E [O,T]IX(O)<~) (11) 

where P1 (O) =P (X (O) < ~) is a simple time-invariant reliability problem. 
By differentiation of eq. (11) one obtains 

dP~iT) = h (t) p (X (O)<~) (12) 

where h (t) is the probability density function of the time to the first barrier crossing 
conditional on X (O) < ~. No exact solutions for h (t) are available evenfor very simple 
problems. Renee, it is necessary to determine some approximation by which the failure 
probability can be determined. 

3 Mean N umber o f Outcrossings 

In order to determine the mean number of exits of X (t) across the level~ it is convenient 
to consider the stocha.stic process Y (t) given by 

Y (t)= H (X (t) - ~) {13) 

where H(.) is Heavisides step function. By differentation of Y (t) the derivative process 
Y can be determined by 

Y (t) =X (t) 6 {X (t)-~) (14) 

where 6 (.) denotes the dirac delta function. In eq. (14) it has been a.ssumed that X (t) is 
a differentaible process. For a realization of X (t) the corresponding realizations of Y (t) 
and Y (t) are shown in figure 2. 
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Figure 2: Realizations. 

In figure 2 it is seen that Y (t) consists of a series of unit pulses which occurs each time an 
outcrossing of X (t) occurs. The nurnber of outcrossings, N (T, e), within the timeinterval 
]O, T] now can be deterrnined by integrating the absolutevalue of Y (t) 

N (T, e)= foT lY (r) ldr = foT IX (r) 16 (X (r)- e) dr (15) 

The rnean nurnber of outcrossings now is 

E[N(T,e)] - for E(X(r)6(X(r)-e))dr 

- foT i: i: 1±16 (x- e) fxx (x , X, r) dxdxdr 

_ frjoo l±lfxx(e,x,r)dxdr (16) Jo -oo 

where fxx is the joint density function of X and X. It should be noted that by deriving 
eq. (16) both the upcrossings and downcrossings have been taken into account. However, 
for a stationary process it is reasonable to assurne that any positive crossing is followed 
by a negative crossing. 

(17) 

where N- (T, e) counts the nurnber of downcrossings of X (t) of the level e. This implies 
t hat 

(18) 
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It is often convenient to consider the rate of outcrossings pr unit time, v+ (t, O which is 
defined by 

(19) 

which is the socalled Rice's formula , see (4]. For stationary processes the outcrossing 
intensity does not depend on t i.e. v+ (t , e) = v+ (e) . 
Higher order factorial moments and factorial moments of the number of outcrossing of 
a given safe domain by a vector process can be determined on the basis on the socalled 
Belyaev 's formula, see [1]. This formula, however, can only be solved analytically in a few 
special cases and a numerical solution is generally a non-trivial task. 

3.1 Initial Conditions 

We have now determined the mean number of outcrossings of X (t) without taking into 
account the initial conditions. The mean number of N+ (t) given X (O) < e is often 
approximated by the unconditional mean value, m1 . By using eq. (11) one then obtains 

P1 (T)= l - (l- P1 (O))exp (-E (N+ (T, O]) (20) 

It has, however, been shown t hat a better approximation for the mean number of out­
crossings given X (O) <e is given by 

whereby 

E (N+ (T, e) IX (O) < e) ~ E [N+ (T, e)] 
l - P1 (O) 

( 
E[N+(T,e)]) 

P1 (T)= l- (l- P1 (O)) exp - l_ p! (O) 

(21) 

(22) 

This expression has been shown to yield very accurate results even for relatively low 
threshold levels, where the outcrossings arenot independent. 

3.2 Gaussian Processes 

Let X (t) be a stationary Gaussian process with mean value JJ.x and standard deviation 
ux. Since X (t) is a stationary process the mean value of X is JJ.x = O. The standard 
deviation of X is denoted u x. The joint density furretion of X and X is 

. l ( l ((x- p.x )2 (x )2)) fxx (x, x)= 2 exp --2 + -
'lrUXUj( UX Uz 

(23) 

For a given threshold e the outcrossing intensity now can be determined on the basis of 
Rice's formula, eq.(19) 
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x exp -- + - dx 1oo . 1 ( 1 ( (~ - J.Lx) 
2 

( x ) 2)) . 
O 27rf7Xf7j( 2 f7X f7x 

---exp -- xexp -- - dx 1 ( 1 (~ - J.Lx) 
2

) 1oo ( 1 ( x ) 
2

) 
27rf7Xf7j( 2 f7X O 2 f7j( 

(24) 

For ~ = J.Lx one finds the zero-crossing intensity 

+() 1f7x v J.Lx = --
27r f7X 

(25) 

4 Distribution of Local Extremes 

The problem will, without loss of generability, be confined to normalized processes, that is 
processes with zero mean and unity standard deviation. First consider the simple case of 
a stationary narrowband Gaussian process, X (t). A realization of a narrowband process 
is shown in figure 3. For an ideally narrowband process the rate of zero-crossings is equal 
to the rate of occurrence of maxima. Further the rate of crossings of the level Xm is equal 
to the rate of occurrence of maxima above Xm· Therefore, the ratio v+ (xm) j v+ (O) may 
be interpreted as the complementary distribution function of the local maxima, Xm 

Differentiation of eq. (26) yields the density function of the local maxima 

fxm (xm) = Xmexp (-x;) 

which is the density function of the Rayleigh distribution. 

(26) 

(27) 

For non-narrowband Gaussian processes an expression for the distribution of local maxima 
can bederivedon the basis of Rice's formula, eq. (19). Using the faet that the occurrence 
of a maximaof x (t) implies a downcrossing of x (t) of the level e= o, and by introducing 
the socalled irregularity factor 

expected number of zero crossings of X (t) 
a=~~---~-~~~--~-~~~~ 

expected numberof peaks of X (t) 
N 

(28) 
1\r,., 

Rice [4] have derived the following expression for the density function of the local maxima 
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Figure 3: Realization of a narrowband process. 

where ~ (.) denotes the standard normal distribution and <p(.) denotes the standard nor­
mal density function. The irregularity factor a takes on values in the interval between 
zero and one. lt can be shown that when a= l (an ideally narrowband process) eq. (29) 
gives the Rayleigh distribution, eq. (27). When a is approximately equal to zero, the 
density function of the local extremes, eq. (29), tends to the Gaussian density function 
with zero meanand standard deviation ux. This shows that maxima occur randomly and 
with equal probability of being above and below zero. 

5 Global Extremes b}IV "Af.,, P<} 

It is often on interest to have information about the largest of the max n interval 
[0, T]. In this interval the expected number of local maxima is N m - aN, where N 
denotes the expected number of zero-crossings. Again consider a Gaussian process with 
zero mean and unity standard deviation. The distribution of the extreme, FT (xm) can 
be found as follows 

FT (xm) = Fxm (xm)Nm = (1 -(l- Fxm (xm)))Nm 

Integration of eq. (29) gives 

(30) 

l- Fxm (xm) =l-~ ( Vlx: a 2 ) + aexp-( -;~) ~ ( J~~ma2 ) (31) 

Assuming that Xm is large leads to the asymptotic result 

l- Fxm (xm) R: aexp (-x;) 

where it has been used that for large z 

(32) 

(33) 

where ep (.) denotes the standard normal density function. Now introduce the variable y 
given by 
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(34) 

and using the faet that the largest of N m observed maximais located araund the 1/ N m 

fractile, which implies that the variable y is of arder unity for increasing Nm, we obtain 

FT (xm) - ( y )Nm 1--N m 
- ex p (N m log (l - ; m)) 
~ exp (-y) 

exp ( -Nexp (-x;)) (35) 

The mean value and the standard deviation of the maximum value in the interval [0, T] 
now can be determined on the basis of eq. (35). It is found that 

. l 0.577 
y2logN + -/2logN (36) 

2 
(J'ma:r -

1r2 l 

6 2logN 
(37) 

In the Danish codes of practice for wind engineering design is basedon eqs. (36) and (37). 
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AnnexE 
(informative) 

Principles of reliability-based design 

E.1 Introduetion 

The objectives of this annex are: 

to give some background information about this International Standard; 

to complete clause 8 with more detailed descriptions about principles and methods; 

to give recommendations concerning the application of probabilistic methods. 

<O IS< 

Probabilistic methods can. in principle, be used for all verification problems which can be deseribed with the aid ol 
mathematical relations when the set of random events can be identified. Their use can be d ivided into two mam 
groups: calibration of safety elements (e.g. partial factors). and direct application for design purposes. Thr 
application for design purposes generally concerns advanced problems of such a character that makes the commo 
verif ication methods less suitable. Design assisled by testing and the assessment of existing structure are two kinds 
of problems which are often arnenable to probabilistic treatment. 

This annex is mainly for the use of: 

those who have the task of producing nat1onal and international codes or recommendations; 

designers wishing to be informed about reliability based design; 

researchers 1n the field of probability based design. 

The annex contains some general aspeels of design based on probabilistic methods. lt may be regarded as a state­
of-the-art report. Clauses E.4 to E.7 apply mainly to ultimate limit states, but in many cases they are also applicable 
to Irreversible serv1ceability limit states. They are generally not applicable to problems involving reversible 
serviceability limit states. 

E.2 Uncertainty modeiling 

This clause treats the uncertainties ol bas1c variables . i.e. actions, materiat properties and geometncal data. lt is 
assumed that the basic variables also inelude random variables 8 which are assumed to represent the model 
uncertaint1es (see 7.3) associated with analys1s models. 

E.2.1 Sources of uncertainties 

Accord1ng to 6.1, three types o! uncertainties may be 1dentifled: 

mherent random variability or uncertainty; 

uncerta1nty due to inadequate knowledge; 

stat1stical uncertainty. 

These types can be further subd1vided as follows : 

a) lnherent random variabilities and uncertainties can be divided into those uncertainties which can, and 
cannot, be affected by human activities. Many kinds of action parameters (e.g. snow load on ground. wind speed 
and earthquake ground motion intensity) belong to the second category. So do strength values (e.g. soi 
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parameters). The first category concems. for example, the uncertainties of strength values of steel or concrete or of 
the dimensions of steel beams. These uncertainties can be decreased by the use ol more advanced produetion and 
quality control methods which, on the other hand, may cause costs to increase. Thus, within certain limits, the level 
of uncertainty can be chosen with regard to economic consequences. Therefore, the dislinetion between the two 
categories may be important il economic optimization is considere~ . 

b) Uncertalnties due to lnadequate knowledge can also be subdivided into two categories. One category 
includes, for example, the model uncertainties of action effect models or resistance models for which knowledge 
can be increased (and thus uncertainty can be decreased) by research or other similar activities . Also measurement 
errors beleng to this category of uncertainties. In the other category belong, for example . uncertainties wh1ch 
depend on future development. One example is the future devatopment of the traftic loads on road bridges and 
imposed loads on floors. The possibility ol decreasing these uncefiainties by research or similar act1vit1es 1s very 
limited. 

c) Statistical uncertainties are associated with the statistical evaluation ol results ol tests or observations. They 
may result from: 

lack ol identification and separation of ditterent statistical populations; 

a Jimited number oftest results which cause uncertainties in the estimation ol statistical parameters (e.g. mean 
and standard deviation): 

negleeting systematic variations ol the observed variables (e.g. ol climatic variables); 

excessive extrapolations of statistical information; 

negleeting possible correlations; 

using statistical distributions for describing uncertainties which are partly or not at all of a statistical character 
(compare E.2.2). 

The statistical uncertainties can normally be decreased by increasing test and observational ettorts. 

E.2.2 Ditterent ways to obtain basic data 

The numerical values ol the parameters which characterize the model and its uncertainties can be obtained in many 
ditterent ways. such as: 

a) observation or measurements 

b) analysis 

c) decision 

d) judgement 

Otten, the basic data are obtained through a combinalien of these ways . 

Some simple examples may be given as follows. 

The concrete tensile strength is otten determined from measurement (ol the compressive strength) and 
analysis (using some conversion function). 

The maximum load which should be Iitted by a crane is determmed by decision. Additional dynamic forces are 
determined in other ways. 

Traffie loads on bridges are otten determined by observation combined with a judgement about future 
development. Decision making may also be important. 

51 



ISOIFDIS 2394:1998(E) C ISO 

The basic variables which describe the uncertainties should be characterized by parameters such as the mear 
value, the standard deviation, cerrelations with other variables and also by their probability distributions. 11 the 
numerical values of these parameters are determined according to ·a) and b) above, the procedure normally 
ineludes analysis of statistical data and the results can be presented in statistical terms. lf the values of the basic 
variables are determined mainly by decision making and/or judgement, the results can generally not be presented 
directly in statistical terms. However, if it is assumed (see 8.1) that it should be possible to tre at all basic variables 
with probabilistic procedures, statistical parameters (mean value, standard deviation. etc.) have to beassigned also 
to those basic variables for which the determination of the values does not give statistical data. This must be 
achieved in a fairly subjective way which may also inelude the selection of delerministic values. Thus. for example. 
a possible overload above the allowed load on a floor in a store house could be considered by taking the allowed 
load as a mean and some expected overload as a standard deviation. 

Those uncertainties which are due to gross measurement errors, scale effects, etc., should be eliminated as much 
as possible by quality assurance measures (see annex A). tf this is done, two main kinds of uncertainties remain: 
model uncertainties and statistical uncertainties. lf possible, these two kinds of uncertainties should be separated by 
statistical methods (see annex 0). 

E.2.3 The choice of probabllity distribution functions 

Only in a few cases is the amount of available data such that a probability distribution tunetion can be determined 
unambiguously. In most cases one has to select (among well-known analytic distributions) a distribution which has 
reasonable properties with regard to the particular basic variable under consideration. The foliowing 
recommendations apply to most applications. 

For permanent action values and for arbitrary point-in-time values of variable actions, a Gaussian distribution 
may be convenient if the non·zero probability of negative values is not disturbing. A log normal distribution, a 
Weibull distribution, a gamma distribution or an extreme value distribution may also be convenient especially il 
the distribution is intended torepresent a maximum value within a chosen reference time. 

For material properties and dimensions, a Gaussian distribution or a log-normal distribution may be convenient. 
The log-normal distribution is preferred if the non-zero probability of negative values associated with the choice 
of a Gaussian distribution is disturbing. 

The choice of probability distribution tunetions should be made with caution. Possible bias should be considered. tf 
the actual distribution has a multimodal character, a choice of one single distribution (among the well·known 
analytical distributions) may cause considerable errors. 

E.3 Failure criteria 

E.3.1 Ultimate limit states 

lt is assumed that the tailure criteria for a structure are governed by a tunetion g{.K) of the basic variables K so that: 

[}(.K) > o for the desirable state (safe set) 

g(K} = O for the limit state 

g(K) <O for the undesirable state (unsafe set). 

This is illustrated in tigure E.1 for a case with two basic variables X, and X2; i. e. K= (X,, X2) 
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Undesirable state 
g (X,,X1 J•O 

Desirable state 
g(X1, X 21•0 

L1m1t state 
g ( X ,, X 1 l = 0 

Agure E.1 - Illustration of the tunetion ~ 

x, 

The basic variables 6 may be time dependent. For instance, extreme environment loads may vary with time. 
Structural material may deteriorale with time due to corrosion or other phenomena. The resistance may also 
decrease with time due to fatigue. In the general case. some ol the variables 6 must be represented by stochastic 
p roeesse s. In particular, the time variability ol 6 implies that maxima or mimma ol the components ol }5. do not occur 
at the same time. The time dependency implies that the probability ol tailure is associated with a chosen reference 
time fo. 

The reliability (probability ol survival or of no failure) ol a structure is defined as 

... (E.1) 

11 the reliability ol one element, or one cross-section of an element, is studied with regard to a particular tailure 
mechanism and a particular load combination. the lunetion ~ can often be deseribed by one single expression 
derived from the mechanical behaviour. Then the analysis can bedeseribed as an element analysis. 

11 morethan one tailure mechanism for an element or if morethan one element is studied simultaneously. then the 
lunetion g(XJ can be considered to be composed ol several lunetions g1(6). 9200 .. .. Thisis illustrated in ligure E.2 
by an example with two lunetions g,( X,. X2) and 92(X1 • X2) ol two basic variables X1 and X2. Figure E.2 shows two 
extreme cases. 

For the case in ligure E.2a). the tailure domain (undesirable state) is determined by 

. . . (E.2) 

For the case in Figure 2b), the tailure domain is determined by 

. . . (E.3) 
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x , x, 

Figure E.2- Failure domains (shaded) in two extreme cases 

An analysis whieh takes account of several conditions ~~ <O simultaneously is deseribed as a system analysis . 
The definition of the system lunetion g{X) is strongly dependent on the characteristies of the system; i.e. il it is < 
·weakest-iink system· (figure E.2a)] or a "redundant system• (figure E.2b)] or some combination of these two cases. 

E.3.2 Serviceablllty limit states 

For some serviceabiiity limit states, the passage of a particular limit state from the desirable state to the undesirable 
state ean be considered to oceur under fairly dislinet conditions. This means that the limit state. with reasonable 
approximation, can be considered as a mechanicai reaiity. However, for many servieeability limit states the 
transition from the desirable state to the undesirable state oceurs under more diffuse conditions. The transition 
implies a more or less slowly decreasing degree of serviceability. Thus, in prineiple, a degree of serviceability, 
1..1 (O :s 1..1 :s 1) can be defined and can by introdueed as a tunetion of some servieeability parameter, A (e.g. detleetion 
ot a beamor vibration intensity of a floor). This is illustrated in tigure E.3, where it is assumed that there are two limit 
values of A.: A1 for which the structure is fully serviceable, and A2 for whieh the strueture is completely 
unservieeable. In some casesit may be possible to express the degree of serviceability in economic terms. 

·._ ) 
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Figure E.3- Degree of serviceability 1..1 as a tunetion of the serviceability parameter A 
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E.4 Specified reliability levels 

E.4.1 Safety of people 

ISOIFDIS 2394:1998(E) 

Structural reliability is important first and foremost if people may be killed or injured as a result of collapse. An 
acceptable maximum value for the tailure probability in those cases might be found from a comparison with risks 
resulting from other activities. Taking the overall individual lethal accident rate of 1()-4 per year as a reference, a 
value of 1()-6 seems reasonable to use. The maximum allowable probability of tailure of the structure then depends 
on the conditional probability ol a person being killed. given the tailure of the structure: 

P( f l year) P( dl ~(1 o-s year-1 ... (E.4) 

The probability P( d! ~ is the probab1lity that a person present in the building at the time of collapse is killed. lf a 
building is seldom visited by human beings, a further reduction factor may be introduced in equation (E.4). 

Requirement (E.4.1) is presented as a requirement per year. This should be considered as an average over some 
reference period. In general, it is allowable to have a large tailure rate in some part of the reference period and a 
smaller value in another part. The reference period need not necessarily be the lifetime of the structure, 10 to 20 
years may often be reasonable. In general, one may accept deviations from the yearly average only for a much 
shorter period ol time. 

Equation (E.4) gives a minimum requirement for human safety from the individual point ol view. In many cases 
authorities explicitly want to avoid accidents where large numbers of people may be killed. In that case, the 
additional requirement is ol the type: 

Ffl year)(A N -a ... (E.S) 

where N is the expected number ol fatalities. The numbers A and a are constants, for instance A = 0,01 or 0.1 and 
a = 2. Modifications of the numerical values are possible in special cases (e.g. if there is an emergency evacuation 
plan). 

E.4.2 Economic optimization 

From an economic point ol view, the target level of reliability should depend on a balance between the 
consequences ol tailure and the costs ol safety measures. In a formal way, the objective may be to minimize the 
total lifet1me cost, given by: 

... (E.6) 

where 

Go is the building cost: 

Cm is the expected cost of maintenance and demolition; 

q is the cost ol failure; 

P, is the lifetime probability of failure. 

The summation is over all (independent) tailure modes and load combinations. This formula is highly simplilied and 
may need further retinement befare it can be used in practical applications. In addition to economic considerat ions, 
authorities may want to specity some minimum reliability level il the safety of human lives is involved. This may lead 
to a constrained optimization problem with equation (E.6) as object tunetion and equation (E.4) andfor (E.S) as 
constraints. 

Note thai. alternatively, IPrCt may be considered to be covered by insurance. 
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E.4.3 Examples of eaUbration 

In general it is very difficult to apply the above principles directly in practice. The main point is that there is a 
substantial difference between the notational probability of tailure in the design procedure and the actual tailure 
frequency (which to a considerable extent is due to human errors). F_or this reason, target levels for reliability are 
often based on calibration. Using calibrated reliability values, one should keep in mind that they are related to a 
specific set of structural and probabilistic models. Using the calibrated values in conneelion with other models could 
lead to unintentionally high or low levels of reliability. 

The numerical values of the reliability are often deseribed on the basis of the reliability index /3 defined by 
/3 = cp-1 (P1). The relationship between /3 and P1 is given in table E.1. 

Table E.1- Relationship between f3 and P1 

P t 10-1 1Q-2 1Q-3 1()-4 1Q-S 1()-6 10-7 

/3 1,3 2.3 3.1 3.7 4.2 4,7 5.2 

Table E.2 gives an example of calibration life time target ,(}values, depending on the consequences of tailure and 
the relative cost of safe design. 

Table E.2- Target ,6-values (llfe-time, examples) 

Relative costs of Consequences of føllure 
safety measures 

s man som e moderate g re at 

High o A 1.5 2,3 B 3.1 

Moderate 1.3 2.3 3.1 c 3.8 

Low 2.3 3.1 3.8 4.3 

Some suggestions are: 

A: for serviceability limit states. use f3 = O for reversible and /3 = 1 ,5 for irreversible limit states. 

B: for fatigue limit states, use f3 = 2,3 to f3 = 3,1, depending on the possibility of inspection. 

C: for ultimate limit siates design, use the safety classes /3 = 3, 1, 3,8 and 4,3. 

These numbers have been derived with the assumption of lognormal or Weibull models for resistance, Gaussianr ) 
models for permanent loadsand Gumbel extreme value models for time-varying loads and with the design value , . 
method according to E.6.2. lt is important that the same assumptions (or assumptions close to them) are used if the 
values given in table E.2 are applied for probabilistic calculations. 

Finally. it should be stressed that a ,(}value and the corresponding tailure probability areformal or notional numbers, 
intended primarily as a tool for developing consistent design rules, rather that giving a description of the structural 
tailure frequency. 

E.S Calculation of failure probabilities 

E.5.1 Time-invariant problems 

A comparatively simple case is obtained if all the basic variables ~ can be considered as time-invariant. The 
probability of failure, P1, can then be calculated from 

Pr = f t!L~ld! . . . (E.7) 
Faiture domain 
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where f...(.! ) is the joint probability density tunetion ol the basic random variables~ (and not random processes). 
The tailure domains are in general given by intersections and unions ol domains given by Qij{K'J s O. Here j is the 
member number and i is the tailure mode number. 

Failure probabilities may be computed by 

exact analytical methods 

numerical integration methods 

approximate analytical methods (FORM/SORM3l methods ol moments) 

simulation methods 

or a combinalien ol these methods. 

In some cases, equation (E.7) can be integrated analytically. When the number. n ol random variables is small , say 
n :;; s. various types ol numerical integration may be conveniently applied. 

The main steps in the approximative FORM method are: 

transform the variables ~ into a space ol standard normal variables, U. and a corresponding transformalion ol 
the tailure surface ~ = O into f1J(J.l) = O; 

in the FORM method the tailure tunetion g{j.!) is approximated by a tangent hyperplane at the design po1nt. 
which is the point on gljl) closest to the origin; 

the tailure probability P, according to FORM is then given by P,= tP(-{J) . where {J is the distance from the origin 
to the design point. 

The analytical method may be refined by approximating the tailure surface g(J1) = O by a quadratic surface in the 
design point (SORM) . 

Simulation methods can be divided mto 

zero-one indicator based methods. which are non·analytical, and operate in the original space ol variables K_; 

conditlonal expectation methods which are semi-analytical methods. 

Zero·one indicator methods comprise 

direct Monte·Carto simulation with the sampling density taken as the original probability density; 

importance sampling where the Monte·Carto technique is applied withadensity (fictitious) lunetion close to the 
design point; 

adaptive sampling in which importance sampling is applied with successive updating ol the density function. 

Conditional expectation methods consists ol the foliowing techniques: 

directional simulation (suitable for unions of events); 

axis orthogonal simulation (suitable for intersection ol events). 

J ) FORM is an abbreviation for First Order Reliability Method. Sometimes FOSM, First Order Second Moment Method is used. 
SORM means Second Order Reliability Method. 
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E.5.2 Transformation of time-variant into time-invariant problems 

Two classes of time-dependent problems are discussed, namely those associated with 

overload (first-passage) failure; 

fatigue or other cumulative failures. 

The time dependence is due to variability over time ol aetions andtor strength (degradation) . Time-dependent 
quantities in general need to be represented by stochastic processes. 

In the case ol a first-passage failure. a single action process may be replaced by a probability distribution 
representing the uncertainty over the given period for which the tailure probability is to be calculated. The mean 
value may be taken to be the expected maximum value in the chosen reference period; and with a random 
uncertainty corresponding to that of the expected maximum. 

In the case of fatigue failure. the tailure lunetion may be formulated in terms ol SN-data and the Miner-Palmgren 
rule. The faiture lunetion will then be time-independent when it is reierred to a given time period. 

E.5.3 General problem 

In general. calculation of the tailure probability is concerned with determining 

P1 = P (ur.g;i(A• () <O for some t e [O. T]} ... (E.8) 

where 9ii are the tailure lunetions ("limit functions") in the space ol the basic variables. In equation (E.8) . 
g;1 s O, 912 s O, etc. In general. specity a tailure sequence ol a structure in a given tailure mode (t). For instance. a 
stiftened panel subjected to lateral and axial forces may fail in two basic modes: 1) buckling. 2) bending. The time 
dependence may be related to loads; or resistance (e.g. due to strength degradation). Some ol the variables X may 
be lunetions ol time and spatial coordinates. and may involve differential or integral expressions. 

E.6 Design value methods 

E.6.1 General 

11 is assumed that the limit state considered can be specified by a calculation model in terms of one (or several) 
function(s) g( ... ) of a set of variables X1• X2 , ... Xn. compnsing actions, material properties, etc .. so that a condition 
for the structure not to fait of the form 

... (E.9) 

can be associated with the limit state. The design requirement may then be written as: 

... (E.10) 

where xld• x2d• ... Xrxj are design values. defined in E.6.2. 

E.6.2 Design values according to FORM 

The design value xld ol variable X, depends on: 

the parameters of the variable X, 

the assumed type ol distribution 

the target safety index {J for the limit state and design situation of concern (see E.4.3) 
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a factor a ; describing the sensitivity to variations in X; with regard to attaining the limit state, according to the 
definition given in a FORM calculation (see E.5.1 ). 

For an arb1trary distribution F(x;) the design values is given by: 

11 X, is assumed to be normally d1stributed, then 

xld = J.J;(1-a;/3V;) 

A lognormal distribution gives: 

xid = ~; exp(-a;{Jv;) 

where 

~ - J.J , 
'- ~1+ v,2 

For small values of V, (e.g. V; s 0,25), ~; • J.J ; and v; • V;. 

E.6.3 Sensitivity factors according to FORM 

lf the random variables are independent, the factors a; in a FORM analysis have the follow~ng properties: 

-1 s a; s 1 

... (E.11 ) 

... {E.12) 

... (E.13) 

... {E.14) 

... {E.15) 

The values of a, should in principle be found from a number of representative FORM calculations (see E.S). In 
principle this would require many iterative calculations which, of course, is very inconvenient. However, based on 
experience, a set of standardized a, values has been developed, which is presentedin table E.3. Notethat the sum 
of squares may be greater than 1,0 as a result ol conservatism. To limit the error in using table E.3, it is usually 
required that O, 16 < (Jg/(JR < 6,6, where S is the dominating load and R is the dominating resistance parameter. 

Table E.3- Standardized a-values 

X, a , 

Dominating resistance parameter 0.8 

O!her resistance parameters 0.4 x 0.8 "' 0.32 

Dominating load parameter -0,7 

Other load parameters -0.4 x 0,7 = -0.28 

NOTE- The princople ol standardozed a-values was already present in ISO 2394:1986. annex B. where the same a-
values as on table E.3 were proposed. 

In applying table E.3, one does not know in advance which variable should be regarded as "dominating·. The only 
way to find this out, is by making all variables "dom1nating·. one at the time, and see which one governs the design. 
Sometimes this can be done at the level of the code writer, sometimes it is the task of the designer (for instance by 
checking various load cases). 

EXAMPLE 

Cons1der the elementary case ol one resistance parameter R and one load parameter S, both normally d istributed. 
Assume that the target reliability index {J= 3.8. Then from equation (E.12): 
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Rd = J.lR - 3,04 aR and ~ = J.ls + 2,66 as 

Now one should check equation (E.1 0), which in thi s case reduces to·Rd > ~· 

E.7 Reliability verification in codes 

E.7.1 Partial Factor Method basedon design values 

In design codes, design values Xo are not introduced directly. Random variables are first introduced by means ol 
representative values xk. In addition, there is a set of partial safety factors and load combination factors (see clause 
9). In most cases the basic requirement can be formulated as: 

... (E.16) 

with: 

... (E.17) 

Rd = R(fd, ~. ~ ... ) .. . (E.181 · ...._ 

} 
Here S is the load effect, and R is the corresponding resistance, with: 

Fd = YtFk or Fd = YtYioFk =design value of a load parameter 

fd = VYm = design value of a material property 

cl(j = Bnorm ± 6a = design value of geometrical property 

gd is the design value of a model factor 

The index k denotes characteristic value. 

The design value g normally enters the equations by means ol partial factors YSd and 'YRcl for the total model, such 
t hat: 

... (E.19) 

... (E.20) 

Partial safety factors may be derived by firs t finding the design values according to E.6.1 to E.6.3 and by the' 
application of the equations: 

... (E.21) 

The procedure deseribed above is cumbersome from a practical point of view. Therefore. the foliowing 
simplifications are often made: 

on the loading side: ... (E.22) 

on the resistance side: 

... (E.23) 

) 

In this case YF and YM (or YR) should be calibrated in such a way that they result in the samevalues as the original. ) 
equations. 

'-• 
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E.7.2 Partial factorsbasedon eaUbration 

Calibration of partial factors is deseribed in literature in several books and papers4 l. 

In the procedure outlined in E. 7.1, the Partial Factor method is in~roduced as an elaboration of the Design V a lue 
method. An alternative method is to start with some arbitrary partial factor format and to require that the partial 
factors are chosen in such a way that the reliability of the resulting structures is as close as possible to some 
selected target value. 

Assume the partial factor format can be written as: 

( ,k, 'k2 r- r- ) > o g--,-- , ···Yt1rk1• Y12rk2 ··· -
Ym1 Ym2 

. .. (E.24) 

where 

fk, is the characteristic strength of material i 

Ym1 is the partial factor for material i 

Fki is the representative value for load j 

Yti is the partial factor for load j 

Now. define a representative set of n test elements. which should be chosen to cover adequately the scope of 
application of the code in terms of: 

types of aetions 

types of structural dimensions 

types of materiais 

types of limit states 

For a given set of partial factors (ym1, Ym2 ... Yt1, '1'12 •.. ) the set of representative structural elements can be 
designed. Each element will then possessalevel of reliability which will deviate more or less from the target value. 
Using the reliability index {3, the aggregate deviation D can be expressed as: 

n 2 

D= L[f1k(Ymi· Y ti)- f3t] 
k=1 

... (E.25) 

{3, is the target value of {3 

{>y. = /3 for element k as a result of a design using (Ym1, Ym2· Y11 , Yf2) 

Clearly, the set of partial factors which minimizes this aggregated deviation D can be considered as the best set of 
factors. lf not all elements are considered of equal importance, weight factors may be introduced. 

lnstead of {3, one may also use the probability of tailure itself. 1t may be realistic to penalize values smaller than the 
target probability to a lesser degree than values exceeding the target. One may also try to optimize the economic 
criteria, equation (E.6) for a wide set of representative structural elements. 

4
) See. for example: Thoft-Christensen and Baker: Structural Reliability Theory and lts Applications. 1982. 
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Annex F 
(informative) 

Combination of aetions and estimation of action values 

F.1 Introduetion 

C ISO 

The problem ol estimation. in a general way, ol action values to be used in ditterent types ol combinabons ol aetions 
is very complicated. The properties ol various individual aetions are generally very ditterent concerning both main 
characteristics and details. Therefore. il many kinds ol aetions are Iitted into a common system (e.g. this 
International Standard), the deseriplien ol the action parameters and the estimation of their values have to be either 
very schematic or very complicated. In this International Standard, in particular in !his annex. a fairly simple and 
schematic deseriplien has been chosen. 

With reference to the partial factors format and the definitions in 9.2, !his annex treats the following: 

estimation ol statistical properties and characteristic values ol variable actions; 

estimation ol combinalien values intended for combinalien of action in the ultimate limit states; 
.,..., 

estimation ol frequent and quasi·permanent values intended mainly for combinalien ol aetions in the 
serviceability limit siates and in accidental combinations. 

The frequent and the quasi-permanent values are defined in such a way !hat makes them suitable as dominating 
· action values in many cernbinations in the serviceability limit states. However, in arder not to have too many kinds of 

action values. they may also be used as non-dominating action values in other kinds ol combinations. Thus. for 
example, in annex G quasi-permanent values are used as non-dominating action values in frequent combinations. 

Normally the magnitude of the action values follows the sequence (with decreasing values) characteristic -
cernbination - frequent - quasi-permanent 

The trealment ol cernbination values in F.3.2 also gives procedures for combinalien ol aetions which can be used in 
the framework ol probabilistic design methods. 

No information will be given about physical interaction ettects (e.g. for wind and snow. earthquake and fire, wind 
and read trattic. etc.). 

) 

F.2 Estimation of statistieal properties and eharaeteristie values for variable aetions :~) 

F.2.1 General conditions 

The method deseribed here can be used for the estimation ol characteristic values on the basis ol observations. In 
ether cases the estimation ol the values has to be based on subjective judgement. The melhad is evaJualed for the 
simple case when the action (or the event causing the action) can be deseribed by a ene-dimensional ergodie 
stochastic process. For stochastic processes in more !han one dimension, the same basic principles can olien be 
used. 

With reference to 2.3.12, definition ol the characteristic value ol a variable action is given as follows. The 
characteristic value is chosen so thai il can be considered to have a specified probability ol being exceeded towards 
unfavourable values during a chosen reference period. 

Thus. two parameters have to be chosen to deline the characteristic value: 

the reference period, tr 

the specilied probability (1 - p). i.e. the probability of !J.Q! being exceeded is p. 
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NOTE- A process in time is stationary il for all values ol t. and for all values ol r the stochastic variable X( t, ... r) has the 
same probability distribution as Xlt;). Il is assumed thai t. and (t,+ r) are within the reference period. A process 15 ergod1c 
il averaging over the variable X at a given time and averaging over lime t give the same result. 

F.2.2 Method 

The action observations are assumed to cover a total observation period which can be divided into a number. r. ol 
equal time intervals, r. called unit observation periods. The maximum value Q ol the action for each unit observat1on 
period is determined. See l igure F .1 . 

From the r observations the probability distribution lunetion Fa( Q) can be determined (e.g. using order statistics). 
Other methods (e.g. determination directly from the stochastic process) are available and are in some cases 
prelerable. 

"' :l .. 
> 
c 

.2 
u 
< 

Total observatton ttme 

Figure F.1 -Action process 

o 

Figure F.2- Probability 
density f u netion fa( Q) 

In many cases it is useful to lit some well-known analytic probability distribution tunetion to the observed values ol 
Fa(G) (see ligure F.2). 11 this is done, it is important to recognize that this distribution lunetion should be regarded 
as an approximation which, strictly speaking, is valid only within the limits of the observation values. 

The characterist1c value. O.C. can be obtained from the equation 

Fa( O.Cl = ptltt ... (F.1) 

F .2.3 Return period 

In some cases a convenient way to characterize O.C is to use its return period T, defined as the mean duration 
between consecutive occurrences ol O.C being exceeded. T can be calculated from the expression 

T= r = r ltr Ir 
1- Fa(~) 1_ Prt t, 

11 Fa( 0.C) is close to unity. the expression for T is al most independent ol r and c an be approx1mated by 

1 
T=---r 

ln{1/ r) r 

... (F.2) 

. .. (F.3) 

The return period is in many cases the most illustrative parameter to deline the characteristic value. Return periods 
ol 50 to 100 years are reasonable for characteristic values ol aetions used in the design ol ordinary permanent 
buildings. 
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F.2.4 Uncertalnties 

In most cases the characteristic value is chosen in such a way tl:lat events during which the observed values 
exceed the characteristic value are fairty rare. Therefore the statistical uncertainties in the estimation ol the 
characteristic value may be considerable. 

11 the reference period, tr. is increased or the acceptable probability of the value being exceeded, 1-p, is decreased. 
the uncertainty in the characteristic value will increase il the ether conditions are not changed. 

11 tr and p are given by the definition of the characteristic value, the main way to decrease the stat1stical 
uncertainties is to increase the number, r, of observations. This can be done either by increasing the total 
observation period or by decreasing the unit observation period (compare ligure F. 1 ). However in many cases data 
from observations already made have to be used and it is not possible to increase the total observation period. The 
unit observation period, r, eannot be decreased in an arbitrary way. lt has to be sufficiently long so that the 
maximum values in two successive unit observation periods can be approximately considered as statistically 
independent. lf thisis not the case, then additional uncertainties will arise. 

For aetions of natural erigin (such as wind, snow, temperature, etc.) the total observation period for a single 
observation place is normally not longer than about 50 years. Thus in such cases when the unit observation period 
is chosen equal to one year, the number of values obtained is fairty small, r- 50. lf the reference period is chosen , 
as 50 years or more, the available data may not permit anything more than an estimation of the mean value of th · ) 
probability distribution tunetion for the maximum value within 50 years. The type of distribution and the standarc. 
deviation have to be determined using good judgement. This may inelude a comparison with similar observations 
made at ditterent places. Of course if the reference period chosen is considersbly shorter (e.g. one year) the results 
will normally be more accurate. However, for a building withadesign working life of about 50 years, this does not 
enhance the accuracy of the predictions. 

F.3 Estimation of combination values 

F.3 .1 General 

The basic principle for cernbinations of aetions applied in 9.5 implies that: 

one action is chosen as the dominating action and is introduced by means of its characteristic vatue 0 1k: 

a second action is introduced with a reduced combination value 'PQ2~: V'02 s 1. The cernbination factor V'oz 
depends on the characteristics of both the dominating and the non-dominating action; 

a third action is introduced with a further reduced combinalien value V'ro0:3k: V'03 s; ~p02. The value of ll'o : ) 
depends on the characteristics of all three actions. This processis repeated if necessary. ' · 

T hus a sequence o f ll'o values is introduced: 11'01 = 1 • 11'01 ~ 11'02 ~ 11'031 · .. ... . 

This principle may be justified from a theoretical point of view but it makes the cernbination of aetions fairly 
complicated. lt may result in several ditterent cernbination values for a particular action. Forthermore the number ol 
possible cernbinations increases very rapidly with the number ol ditterent action values. 

Combinaliens according to 9.5, with representative action values according to 9.2, imply that for a particular action 
there is only one cernbination value, V'o~ which is used in all cases when the action is non-dominating. This single 
cernbination value, ll'o~1 should bechosen in such a way that result is conservative. 

F.3.2 Cernbination of aetions according to the Ferry Borges-Castanheta model 

F.3.2. 1 General 

Consider the case that two aetions O,(t) and Oz(t) are to be combined. Assume that these aetions can be deseribed 
by square-wave processes according to ligure F.3. The foliowing assumptions aremade about the processes: 

l _,. 
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0 1(1) and ~(l) are stationary ergodie processes; 

all intervals r1 are equal; 

all intervals r2 are equal; 

0 1 and ~ are constant dunng each interval r 1 and r2 respectively; 

the values of 0 1 for the diHerent intervals are mutually independent: the same holds for ~; 

0 1 and ~ are independent. 

o o,'" .. 

t , 

Figure F.3- Square-wave processes for 0 1(1) and ~(l) 

For each ol the actions, three kinds ol variables are defined. 

1} The arbitrary·point·in-time variable a with the probability distribution f u netion Fa( Q} 

2} The maximum value Omax during the reference time. with the probability distribution function: 

Famax(O) = [Fo.(O})' . . . (F.4) 

3) The maximum value Oc (the index c indicates combination) during the interval r1. For~ this value ~c is equal 
to the maximum value occurring during the interval r 1 with the probability distribution function: 

Fa2c(Q) = [Fo.(0}]'2lr1 ... (F.S) 

For o, the combination value is equal to the point-in-time value, i.e. 

0 1c =o,· ... (F.6) 

NOTE- 11 F0 (0) and Fama,(O) ate estimated directly. r has to bechosen so thai equation (F.4) is approximately satisfied. 
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The three different probability distribution tunetions for Oz are shown in figure F.4 . 

o 
o 

Figure F.4- Probability distribution functions for Oz 

Assume a linear relationship between the action effect S and the actions: 

. . . (F.7) 

The maximum action effect Smax from 0 1 and Oz during the reference period t, can then be written as: 

... (F.8) 

The maximum should be taken over all intervals r 1 within the reference period. 

As an approximation. the resulting action effects could be calculated as the maximum of the foliowing two 
cernbinations (Turkstra's rule) : 

if 0 1 is considered as the dominating action 

if 0 2 is considered as the dominating action 

Written as a formula: 

. .. (F.9) 

11 the structure is designed according to a probabilistic method, then the action values in equation (F.8) or (F.9) • 
should be treated as random variables with probability distribution functions, as given by ligure F.4 . 

lf the structure is designed according to a partial factors format. then the general format for the design value ol Smax 
can be written as: 

... (F.10) 

with: 

and s1milarly for Oz. 

The values of the combinalien values '1'01 0 1k can be derived in various ways. as will be explained in the next 
subclauses. 
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F.3.2.2 Combination values according to Turksta's Rule 

A classical approach for deriving the combination factors lf'o in a partial factors format is based on Turkstra's rute, 
equation (F.9). This means thai Qcd (index 1 or 2 is omitted for convenience) is selected as a fraelite ol the Oc 
distribution (see tigure F.4). With reference to E.6.3, the fraelite is ~hosen as Ø(-0,4 as/J): 

... (F.11) 

where as= -0,7 is a sensitivity factor for the action Q. 

This leads to the foliowing formal expression tor lf'o: 

Qcd Fa~ [ IP(0,4 x 0,7 ,B)j Fa .!.a, [ IP(0,4 x 0,7 ,8)' l 
lf'o = --= = --+--:----:--'-

Gnax d F~u [IP( O,? ,8)] Fo.!.a. [ IP(0,7 ,8)] 
... (F.1 2} 

For the Gumbel distribution, this equation becomes: 

1- 0,78v{o.S77 + l~-tn(1P{-0.4as.8))j +In r} 
lf'o=---~-.-~-~---~~~ 

1- o.7av{o.s77 + 1~-tn( ø(-as.B))j} 
.. . (F.13) 

where Vis the coefficient ol variation of the probability distribution lunetion Fomax(O). 

NOTE- A numerical example is given alter F.3.2.4. 

F.3.2.3 Combination values according to the Design Value Method 

According to the Design Value Method (see annex E). the design load effect Smax d should have probability ol 
exceeding the limit value for the reference period tr equal to: 

... (F.14) 

with as= -0,7. 

G1ven the characteristics ol the loads 0 1 and 0:2 one may require, equivalently, thai the probability ol exceeding the 
limit value of the design load effect du ring an interval period r1 should be equal to: 

P{ Se> Scdl = Ø(as/J)Ir, ... (F.15) 

The corresponding "reliability index· equals: 

... (F.16) 

Within each interval the loads are constant, and the results ol annex E can be applied. This means that the design 
values Omax d = Yoq._ and Q cd = Yo lf'0q._ may be derived f rom: 

Fac {yoq._} = Ø(,Bc) 

F ae {Yo lf'oq._) = Ø(0.4,8c) 

So, lflo follows from: 

lt is also possible to express '1'0 on the basis of the distribution tunetion of Omax: 

... (F.17) 

... (F.18) 

... (F.19) 
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. .. (F.201 

In some applications rmay be vary large, so it is useful to develop equ.ation (F.20) further: 

'P _ Fa.!.a. {exp[-rcP(-0.4.8c)l} 

o - Fa .!.a.! øco.7 ø>J 
.. (F.21) 

where .Bc is given by equatlon (F .16). 

F.3.2.4 Combination values for intermittent loads 

lt is not necessary for the load to be non-zero during the total reference period. The models deseribed in F.3.2.2 and 
F.3.2.3 are capable ol accounting for loads which have a finile probability ol being zero during the interval r 
(intermittent loads). In that case, however, this probability ol having zero load should be included in the distribution 
function. One should be careful not to take the conditional distribution lunetion for the load, given that the load is not 
zero. 

EXAMPLE 

As an example, consider the case where ,8 = 3,8, as = 0,7 and V= 0,20. For a Gumbel distribution, the 'Po values 
given in tabte F.1 are found. 

Table F.1 

r Design value method Turkstra rule 
equation (F.20) equation (F.12) or (F.13) 

1 '1'0 = 0,66 '1'0 = 0,66 

10 '1'0 = 0.50 '1'0 = 0.45 

100 '1'0 = 0.34 '1'0 = 0.24 

lt appears that, in this example, Turkstra's rule, as proposed here, is a slightly unconservative approximation ol the 
Design Value Method. 

F.4 Estimation of frequent values 
C.) 

F.4.1 Duration of time action an action value is exceeded 

The first definition ol frequent values given in 9.2 is associated with the tailure condition specified according to case 
b) ol 5.1.3. lt implies that il is possible to estimate the frequent value in the foliowing way. The point-in-time values 
ol an action are deseribed as a lunetion ol time by a process [e.g. according to ligure F.Sa)]. A given level. 0 1, ol 
the action values is exceeded during a number ol periods ol time with lengths 11, 12 • t3 •. . , i.e. during a total period ol 
time l. t; within the chosen reference time 1,. The frequent val u e 0 1 = 'P1 Dtt is t hus exceeded du ring a specified 
relative duration: 

68 

I,. r; 
'7 =-­

l r 
. . (F.22) 



C ISO ISOIFOIS 2394:1998(E) 

o 

o, 

r, Tome 

b l 

Figure F.S- Exceeding the frequent value 0 1 

The probability distribution lunetion Fo(O) of the point·in-time action values, Q', reierred tothose periods when Q is 
not equal to zero, is shown in tigure F.5b). The probability, p·,ot exceeding the action value 0 1 is equal to: 

p'= 1-Fo·(Ot) ... (F.23) 

For an ergodie process the value of 11 can be obtained from: 

, ,. 
,t_, l • 

'1 =--=p ·q . . . (F.24) 
Ir 

where q is the probability of a non-zero value ol Q. 

Thus, il the value of T/ is specified, the frequent action value 0 1 can be obtained from: 

Q, = FoJ( 1-%) .. . (F.25) 

and the action reduction factor is equal to: 

'l',=l?l. 
Ok 

.. . (F.26) 

where the characteristic action value ~ can be determined according to F.2. 

When observed data are available, the method deseribed above can be used directly for the estimation of the action 
values. In other cases, the estimation of the values has to be based on subjective judgement. 

11 two or several aetions in a combination contribute to an action effect, S', the value of p· in equation (F.24) should 
in principle bederived from the probability distribution function, Fs·(s) for the point-in-time values ol the combined 
load effect. However, in practical applications there is normally only one action with a frequent value in a frequent 
combination. The other aetions are introduced with their quasi-permanent values. This has been considered as a 
reasonable compromise to account for the effect of several variable actions. 

The specified values of T/ are usually fairly smal!, mostoften less than 0,1 . 

F.4.2 Frequency of exceeding an action value 

11 the second definition of a frequent value given in 9.2 is used then, the value should be determined in such a way 
that the number of upcrossings (see tigure F.6) per unit time. i.e. the upcrossing rate, does not exceed a specified 
value, CVS· 

The upcrossing rates may be determined from direct observation or using other properties of the process (e.g. the 
spectral density function). 
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Figure F.6- Upcrossings of the frequent value 0 1 and of the mean value JJo 

tf the upcrossing rate ~ of the mean value JJO· for the point-in-time values (see tigure F.6) is known. and il the 
action process .. is a Gaussian stationary ergodie process. then the frequent action value 0 1 corresponding to a 
specified upcrossing rate ws can be obtained from 

. . . (F.27) 

where OQ• is the standard deviation for the point-in-timevalues 0'. 

Thus the action reduction factor is 

... (F.28) 

where the characteristic action value ~ can be determined according to F.2. 

lf two or more aetions ~. each one causing an action effect S~ contribute to the total action effect S' so thai 
S'= rs·~ then the upcrossing rate~ of the mean value JJs• can be obtained from 

"' 2 2 2 _L.-Wi Og· , 
Wm- L 2 

O· 
S o 

where 

w, is the..;ypcrossing rate of the mean value JJs•; 

os·; is the standard deviation for S'; 

... (F.29) 

Similarly to the previous case, the definition of frequent value is associated with the ta ilure condition specified by 
case c) in 5.1.3. 

F.S Estimation of quasi-permanent values 

The definition ol quasi-permanent values (see 9.2) is atmost the same as the definition ol frequent values for the 
case treated in F.4.1 (i.e. with regard to duration of exceeding the frequent value). The only difference Iies in the 
numerical values. The numerical values of '1 for frequent action values Iie in the interval O to 0,1 while the values a re 
equal to about 0.5 for quasi-permanent action values. Thus, the same procedure thai was deseribed in F.4.1 and 
equations (F.22) to (F.24) can be applied for the estimation of quasi-permanent values. 
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G.1 General 

Annex G 
(informative) 

Example of a method of combination of aetions 

Th1s annex contams an example ol a method (among many other possibilities) or combinalian ol act1ons based on 
the principles given in 9.5. 

The basic principle ol the method is the following: 

one action is considered as dominating and is introduced into the combinalian with an extreme design value: 

all other aetions are introduced with more likely values. 

The likely values ol permanent aetions are obtained by multiplying the partial factors by a factor ~· The value ol .; 
is ditterent for unfavourable and tavaurable permanent actions. 

The likely values ol variable aetions are obtained by multiplying the characteristic values by a factor 'P. 

The likely values ol aeeidental aetions are zero. 

Often it is not a priori given which action should be considered as dominating to obtain the most unfavourable case 
and it is necessary to study several cases. 

G.2 Applications 

In table G.1 design values for ultimate limit states are given for three types ol combinalian with dominating 
permanent action, variable action and accidental action, respectively. The combinabons should be read horizontally. 

Table G.1 - Design values for load eombination- Ultimate limit states 

Design Design values 

situation Permanent aetions Variable aetions Aeeidental 

Dom1nating Not dominating Dominating Not dominating aetions 

Persisleni YG~ - Yo 'f' o O. -
and transient - ~G~ Y o O. Yo 'f' o O. -
Accidental - ;yG~ - Yo 'f', O. Ae, 

YG is a partial factor tor permanent actions: 

Yo 1s a part1at factor vanable actions. 

In table G.2 design values for serviceability limit siates are given for three types of combination: characteristic, 
frequent and quasi-permanent combinations, respectively. 

Table G.2- Design values for load combination- Serviceability limit states 

Type of Design values 

eombination Permanent Variable 

Dominating Not dominating 

Characterisllc YGGk YoO. -
Frequent YGG. 'f'tYoO. 'f'2YoO. 
Quasi-permanent YG~ 'f'2YoO. 
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The characteristic combinations are used mainly in the case when exceeding a limit state eauses seriou!' ., 
permanent damage. 

The frequent combinations are used mainly in those cases when exceeding a limit state eauses local damage, large 
deformations or vibrations which are temporary. 

The quasi-permanent combinations are used in those cases when Iong-term effects are determinative. 

In special cases other combinations may be defined. 
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John Dalsgaard Sørensen 
Department of Building Technology and Structural Engineering 
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Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark 

RELIABILITY MODELLING OF FATIGUE FAILURE 

l Introduetion 

This note gives an introduetion to the main steps in a probabilistic fatigue analysis 
in welded joints. As an example tubular joints in fuced offshore platforms of the steel 
jacleet type is considered, but the probabilistic modeiling is general and can be used 
for other types of structures. Both a deterministic (code based) and a probabilistic 
approach are described. Initially the fatigue loading is described, here as an example 
wave loading. Next stress analysis is considered. Based on a spectral analysis the 
stress spectra for critical points (hot spots) in the joint can then be determined 
using an infl.uence matrix approach. From the stress spectra stress ranges can be 
determined and the number of stress cycles can be estimated, e.g. by the Rain Flow 
oounting method. 

Two models for the fatigue strength are described, namely the classical SN approach 
and a fradure mechanics approach where the size of the crack is compared with a 
aitical crack length, e.g. the thickness of the tubular member. 

The classical determiniatic fatigue analysis using the SN approach is deseribed and 
illustrated by an example. Probabilistic analyses based on the SN approach and on 
the fracture mechanics approach are described. Limit state functions are formulated 
and it is shown how the reliability can be estimated by first order reliability methods. 

2. Fatigue loading 

With respect to fatigue failure of welded offshore structures wave loading is the most 
important load case. Current is insignificant because the time variation is very slow 
oompared with wave loading. The fatigue load due to wind excitation can contribute 
by 10-15 % of the total fatigue load but usually it is of minor importance. In this 
øection we therefore concentrate on wave loading. 

The statistical properties of sea waves are most often modelled using so-called abort­
term sea states. The duration of a sea state is normally taken as 3 hours. Within 
each sea state the wave elevation is assumed to ·be modelled by a stationary stochastic 
proc:.ess {'l(t)}. The wave elevation 'l( t) is assumed to be normal distributed with 
expected value p"= O and standard deviation u". The auto-spectrum of {'l( t)} can 
be modelled by a number of different spectra, e.g. 

• Pierson-Moslrowitz 

l 

April 12, 1995 

• JONSWAP 

The Pierson-Moskowitz spectrumhas the foliowing form 

( ) 
47r3 H; ( 3 l 4 s"" w =-T 5 exp -l61r (-T ) ) zw zw 

(2.1) 

where w is the cyclical frewuency, Hs is the significant wave height and Tz is the 
zero upcrossing period. The parameters Hs and Tz are constant within each sea 
state. In figure 2.1 a typical wave spectrum is shown. 

Long-term observations of the sea is usually performed by observing the sea surface 
for 20 minutes every third hour. For each observation Hs and Tz are estimated. 
The relative number of pairs of H s and Tz can be represented in so-called scatter 
diagrams, see figure 2.2. Based on the observations it is also possible to fit the 
Iong-term distribution functions for H s, e.g. by a Weibull distribution 

FHs(h,) =l- exp( -(i~~: )"T) , h,~ Ho (2.2) 

Where "'{, Ho and Hc are parameters. 

From figure 2.2 it is seen that H s and Tz are dependent. Basedon the observations 
a Iong-term distribution function for Tz given H s can also be fitted, for example by 
a two-parameter Weibull distribution 

FTsiHs(t, l h,)= l- exp( -(-t'-)k,(h,)) 
kl(h,) 

(2.3) 

Where k1(h,) and k2(h,) are functions of h, . In (2) the foliowing models are obtained 
basedon data from the Northem North Sea (h, in meters). 

kt(h,) = 6.05exp(0.07h,) 

k2(h,) = 2.35exp(0.2lh,) 

lO 

~~ 
> 

;;\IO 

.. . , 
·~------,---

0 . ';, L O 1.5 
... (s·l ) 

Figure 2.1. Pierson-Moskowitz spectrum. 

--H5 = 10m, T1 =10s . 
------ Hs = 8 m, T1 = 9.S s. 
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Figure 2.2. Representative scatter diagram for central North Sea, from (4]. 

Generally the distribution functions for Hs and Tz are dependent on the wave 
direction e. H eight directions (N, NE, E, SE, S, SW, W, NW) with probabilities 
of occurrence Pe" i = l, 2, ... , 8 are used then the distribution function for H s is 
written according to (2.2) 

h,- Ho, )'Y') 
FHs(h, , 0;) =l- exp( -(H c, -H o, h,~ Hon i= 1, ... ,8 (2.6) 

The parameters in (2.3)-(2.5) can be considered independent of the direction. Toget­
her with the parameters in {2.6) for the 8 directions the probabilities Pe,, i = l, ... , 8 
for waves in the eight directions constitute the data for the Iong-term stochastic 
model. 

Measurements of the directional characteristics of the wave elevation shows a vari­
ation of both the mean direction and a spread with frequency. The spreading of 
the waves can result in a significant reduction in the wave loading. The directional 
spectra are assumed to be modelled by 

S~~( w, 0) = S~~(w)>It(S) (2.7) 

where the spreading function >11(0) e.g. can be modelled by 

>~t( e)= _ 1_ r( .s+ l} 1 
2v;rr(.s + !)(cos(2(e - 0))]2' (2.8) 
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r is the Gamma-function, s is a constant and 0 is the mean direction. Usually s = l 
is used in practice. 

3. Stress Analysis 

Above it is deseribed how the wave load can bedeseribed by the spectral density S~~ 
and the distribution functions FHs and FrziHs· The next step is then to perform a 
stochastic response analysis to find the the cross-spectral density functions S s. s, (w) 
for the cross-sectional forces in a given structural element. Details of such an analysis 
can be found in e.g. Langen & Sigbjørnson (3]. 

In the foliowing it is deseribed how to estimate the autospectral density function for 
the local hot-spot stresses in a given hot spot. 

Figure 3.1 Calculation of infiuence coefficients (from [1]). 

In order to illustrate the procedure consider the K-joint in figure 3.1. The cross­
sectional forces on the joint can be determined using a beam model of the structure. 
These forces will be in equilibrium. A local stress analysis of the joint can therefore 
be performed by fixing one of the cross-sections (see figure 3.1) and applying the 
cross-sectional forces from the beam model as externalloads on the joint. The cross­
sections where the forces are determined should be located in some distance from 
the join~ in order to be able to apply the cross-sectional loads as distributed line 
loads on a shell element model of the joint, i.e. the stress distribution is unaffected 
by the joint. 
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BRACEWAU. 

Figure 3.2 Stress variation through thickness (from [1)). 

The local fatigue inducing hot spot stress q in a critical point, namely the principal 
stress perpendicular to the crack, see figure 3.2 is estimated by 

N 

q= L:ak sk 
k= l 

(3.1) 

where N is the number of cross-sectional forces applied as loads to the joint ( = 18 in 
figure 3.2 where eaeh cross-section has 6 degrees of freedom). ak is the coefficient of 
influence giving the stress in the critical point for a unit load St. 

Based on the cr088 spectral densities for the cross-sectional forces the auto spectral 
density of the fatigue hot spot stress q can be determined from 

N N 

s .... (w) = LLakat Ss.s,(w) 
k=l lzl 

(3.2) 

Fbr computational reasons it is more convenient to calculate the cross spectral den­
sities S s. s, of the load effects first. Next when the aut<rspectral density of a stress 
is required this can be calculated using (3.2). H the result of the spectral analysis 
had been the autospectral density of the fatigue stress, a new spectral analysis would 
be required whenever the fatigue stress in a new location is needed. This would be 
rather unfortunate as a full spectral analysis is very time consuming. 

The location of themost critical hot spots is usually not known in advance. Therefore 
8 (or 12) points located as shown in figure 3.1 are investigated. The autospectral 
density functions are determined for each location and a fatigue analysis is performed 
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as deseribed in the foliowing sections. This is done for the 8 points in the brace and 
for the corresponding 8 points on the intersection in the chord. 

4. Fatigue strength 

4.1 SN approach 

Assuming that the fatigue damage is accumulated Iinearly in an interraction free 
ma.nner the damage accumulation law attributed to PalmgTen [6] and Miner [7] can 
be applied. Faiture occurs when the accumulated damage exceeds l, i.e. the fai!ure 
criteria is 

~-"-i- ->1 
LJ N(flqi) -

l 

(4.1) 

where n; is the number of stress cycles at a particular stress range level /lu and 
N( /lu;) is the number of constant amplitude stress cycles at that stress range level 
which leads to failure. The summation in (4.1) is over the number of different stress 
range levels. Even though (4.1) appears to be simple there is no evidence indicating 
that other damage laws are more suitable. The relation 

N= N(flq) (4.2) 

has a random character because repeated experiments where the fatigue lifetime is 
measured for constant amplitude stress range loading show a significant scatter. 

Most often a relationsship of the type 

N= K flq-m ' flq > o (4.3) 

is assumed and the material parameters m and K are fitted to experimentally obta­
ined data. 

But also modifications to ( 4.3) are used, e. g. 

o r 

with 

N= { ~ flq-m 

N = {K flq-m 
K1 flq-mt 

K S0m = K1 SiJm' 

flq > So 

llu$.So 

/lu> So 
flq$.So 
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In (4.4) So isaso-called stress range threshold below which no fatigue damage takes 
place. 

It is seen from (4.1) and (4.3) that a failure criteria can be written as 

o r 

l 
1 - K L n;Åuf' ~ O 

i 

l 
1- K LÅuf' ~O 

if the summation is over all individual stress range cycles. 

4.2 Fracture mecbanics approach 

(4.6) 

(4.7) 

The most simple and generally applicable crack growth equation is due to Paris & 
Erdogan [8]: 

:; = C(ÅK)m ,ÅK >O (4.8) 

where a is the crack size (depth), N is ihe number of stress cycles, ÅK is the stress 
intensity factor range in a stress cycle. C and m are materlal constants. 

According to (4.8) a plot of log 1fl versus log(ÅK) should be linear but a typical 
plot obtained experimentally would be more like the one shown in ligure 4.1. 

dø 
tostiN Kr c 

loa(M
111

) loa(M) . 

Figure 4.1 Crack growth rate as function of alterning stress intensity. 
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The agreement between ( 4.8) and experiments is seen to be reasonable in region 
II (almost linear) whereas ( 4.8) overestimates the crack growth rate in region I 
and understimates the crack growth rate in region III. ÅKa, is a thresshold stress 
intensity range below which the crack will not grow. K1c is the value of the stress 
intensity factor at which the crack becomes unstable and brittie fracture takes place. 
The stress intensity factor (SIF) can be shown to have the form: 

ÅK = Y Åu ..,fia (4.9) 

Where 

y is a geometry function 

a is the crack depth/length 

Åu is the hot spot fa.tigue stress range. 

ÅK is a factor accounting for a redistribution of the hot spot fatigue stresses. The 
reason for this redistribution is the influence of the crack itself and other local geo­
metry boundary conditions. 

By inserting ( 4.9) in to ( 4.8) we obtain 

da 
dN =C Y(a,c)m Åum(v'?rCi)m (4.10) 

Where a, c is the crack depth/length. 

By integrating (4.10) we obtain (assuming Y( a)= l : infinite plate solution) 

{ 

( 
(2-m)/2 ) 2/(2- m) 

a + 2-m C1rm/2 Åum N for m i' 2 
a(N) = o 2 

a0 exp(C1rÅu2 N) for m= 2 
( 4.11) 

where ao the initial crack depth/length. 

For offshore joints it is generally not sufficient to model cracks as beeing one di­
mensional. This is because both the crack depth and the crack length influences 
the geometry function Y= Y(a,c). In some approaches 1.5 dimensional cracks are 
considered, i.e. (4.10) is applied to estimate the crack depth but the crack length is 
estimated by an approximation of the type 

c= <ro + a1 a+ a2a
2 + a3a

3 (4.12) 

Such a function is called a forcing function. The coefficients a; are determined such 
that the stress intensity range is an upper value. Therefore this approach is not 
suitable in probabilistic fracture mechanies. lnstea.d we consider the generalization 
of (4.10) to hvo dimensionalsemi-eliptical cracks. 
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Figure 4.2 Semi-elliptical surface crack in plate. 

Fbr reason of simplicity, we first consider a flat plate with a semi-elliptical surface 
crack under tension or bending fatigue loads, see fi.gue 4.2. The depth of the crack is 
a and its length is 2c, while the thickness of the plate is t. Shang-Xian [5) assurned 
that the growth rates at the deepest point A and the end point C of the crack follow 
independently the Paris/Erdogan equations. 

:; = C.(.t:.K.)m witha(O) = ao (4.13) 

de 
dN = Cc(C.Kc)m withc(O) = co (4.14) 

The variation in the three-dimensional stress field is accounted for by the constants 
C. and C c, while C.Kø and C.Kc denote respectively the ranges of the stress intensity 
factor at the deepest point A and the summit C, see figure 4.2. 

From tbe two coupled equations, the differential equation of the shape change is 
derived as 

de = C c [ C.Kc] m 

da C4 C.K4 

withc(ao) = co (4.15) 
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together with 

dN l 
da = C4 (ÅK4 )m withN(ao) =O (4.16) 

4.3 Fatigue cycle counting 

The statistics of the amplitude or stress-ranges and the corresponding number of 
stress-ranges in a given time intemal must be obtained in order to assess the fatigue 
damage. 

If the fracture mechanics approach (see section 4.2) is used crack growth is governed 
by Paris' law. In order to illustra.te how fa.tigue cracks ca.n be counted a one dimen­
sional crack model is used in the following. Integration of (4.10) gives for constant 
stress-range amplitudes .t:.u 

1Ac da 
øo (Y(a)y'iro)m =C· C.um ·N ( 4.17) 

where a 0 and ae are the initial and the final (critical) crack size, respectively. Y( a) 
is the geometry function, .t:.u is the constant amplitude stress-range a.nd N is the 
nurnber of stress cycles. A generalisation to variable stress-range amplitudes ca.n be 
obtained by using instead of .t:.um the equivalent stress range to power m, E[.t:.um] 

N 

E(C.um) = ~ L C.uf' 
i=l 

( 4.18) 

negleeting any sequence effects . .t:.um is trea.ted as a stochastic variable and Ex[ J 

denotes the expectation operation witb respect to the stocbastic variable X . 

If SN curves (see section 4.1) are used to model tbe fatigue strengthit is seen from 
(4.7) that also in this case the damage accurnula.tion is govemed by (4.18). 

For offshore structures the expectation ( 4.18) must be performed for a given sea 
state because the state term statistics of tbe stresses are conditional on the sea 
states. Therefore an expectation over tbe sea states must also be performed 

[ 

l NHsTzl l 
EHsTzl [E[C.umlJ = EHsTzl -N-- L (C.uiHsTzB)m 

HsTzl i= l 

( 4.19) 

where NH.Tzl is the expected number of stress cycles given Hs,Tz and 9. This 
expectation operation can in general be performed as a simple summation over the 
non-zero cells in the scatter diagram. In figure 4.5 three different sample curves of 
stress histories are sbown. 
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Figure 4.3. Three examples of stress-variations around the mean stress level. 

The first case corresponds to constant amplitude loa.d.ing, where the stress-ranges 
are the same for all stress cycles. The second case corresponds to a stationary ideal 
narrow band Gaussian process. Again the stress cycle is easily defined in terms of 
the stress process between two constitutive upcrossings of the mean value. The third 
case, which is the more general case with broad banded stress variation, is not quite 
as obvious. In this case one has to use counting methods. 

In the foliowing section 4.3.1 narrow band stress spectra are considered. Next broad 
band spectra are considered. In section 4.3.2 and 4.3.3 it is shown how the range 
counting and the rainflow counting methods can be used to estimate E[Acrm] and 
the expected number of stress cycles N. 

4.3.1 Narrow band spectra 

Fbr a narrow-banded Gaussian process, the stress-ranges are Rayleigh d.istributed. 
The mean value in (4.18) is then 

E[Aum] = (2v'i)mcr;'r(l + m/2) (4.20) 

where u" is the standard deviation of tb e stress process 

er.,= ..;mo (4.21) 

mo is the zero'th spectral moment ofthe stress spectrum S.,.,(w). Generally the ith 
moment is defined by 

m; = 2 L"" wiS.,.,(w)dw ,i= 0,1,2, ... 

The number of stress cycles N in the time interval [O, T] is estimated from 

l Ei_T 
N = voT = 21r V ~~ 

11 
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where 110 is the mean zero crossing rate and m2 is given by ( 4.22). 

4.3.2 Broad band spectra - range counting 

In the range counting method a half stress cycle is defined af the difference between 
successive local extrenes, see figure 4.4. The range counting method uses only local 
information. Therefore information on larger stress cycles can be lost if smal! stress 
reversals are superimposed on the larger stress cycles. The method gives a lower 
bound on the fatigue damage. 

_l 

Figure 4.4. Range counting method. 

The mean number of stress cycles in a time interval [0, T] is equal to the mean 
number of local maxima in the time interval 

l §iT 
N = vmT = 21r V;;; 

where m4 is given by ( 4.22). 

( 4.24) 

Using an double envelope process to model the stress process it can be shown that, 
see [11] 

E[Aum] = am(2v'i)m cr;'r(l + m/ 2) ( 4.25) 

where the regularity factor a is defined by 

m2 -~ 
a = Jmomc - 11m 

( 4.26) 

( 4.25) deviates from ( 4.20) by the factor a m. In the limit where the processis narrow 
banded (a= l ) (4.25) and (4.20) are identical. 

4.3.3 Broad band spectra - Rainflow counting 

Ra.inflow counting is considered to give the most accurate pred.ictions of the fatigue 
life when compared to actual fatigue life results. Ra.infiow counting is widely used. 

12 
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Material hysterises loops are sametimes used to justify its use. Rainfl.ow counting is 
illustrated in figure 4.4 where the !argest cycles are extracted first and the smaller 
cycles are considered to be superimposed on the larger cycles, see (9) and (10). 

__l 

Figure 4.5. Rainfl.ow counting. 

The rainfl.ow counting method counts the number of stress cycles by converting a 
realisation of the stress process {a(t)} to a point process of pea.ks and troughs as 
shown in figure 4.6. The peaks are identified by even numbers and the troughs by 
odd numbers. The foliowing rules are imposed on "rain dropping on the roofs", so 
that cycles and half cycles are defined, see Wirshing & Sheheta (12). 

l) A rain-flow is started at each peak and trough. 

2) When a rain-flow part started at a trough comes to a tip of the roof, the flow 
stops if the opposite trough is more negative than that at the start of the path 
under consideration (e.g. in figure 4.6, path [1-8), path (9-10), etc.]). For a path 
started at a peak, it is stopped by a peak which is more positive than that at 
the start of the rain path under consideration ( e.g. in figure 4.6, path [2-3), path 
{4-5) and path (6-7]). 

3) H the rain fiawing down a roof intercepts a flow from the previous path, the 
present pathis stopped, (e.g. in figure 4.6, path (3-3a), path (5-5a), etc.) 

4) A newpathis not starteduntil the pathunder consideration is stopped. 

Half-cycles of trough-originated range magnitudes h; are projected distances on the 
X a.xis (e.g. in figure 4.6, [1-8), (3-3a), (5-5a) etc.). H the realisation of u(t) is 
suffi.ciently long, any trough-originated half-cycle will be followed by anether peak 
originated half-cycle of the same range. 
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u( t) 
u( t) 

14 

13 

Figure 4.6. illustration of rainflow cycle counting applied to sample of u( t) (from 
[12)). 

Due to the complexity of the rainfl.ow algorithm i t is very difficult to deri ve a density 
function /A" for the stress ranges and to estimate the number of stress cycles. 

However, basedon extensive computer simulations, Dirlik (13) has derived empirical 
expressions for fA": 

l [D1 ( s ) D2s h"(s) = 2~ 0 exp - 2Q~ +-= 

( 
s

2 
) D3 s ( s

2 
) ] exp --- + --exp --

8moR2 2~ 8mo 

where 

D1 = 2({3- er2 )/(1 + er2
) 

R = (er- {J- Di)/(1 - er - D1 + Dn 

D2 = (l - er- D, + D~)/(1 - R) 

D3 = 1-D1-Dz 

Q = 1.25( er - D3 - DzR)/ D1 

fJ= m1 ~ 
mo v m. 
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(4.29) 

( 4.30) 

(4.31) 

( 4.32) 

(4.33) 
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Using {4.27) E(llum] can be estimated numerically. 

The expected number of stess cycles N is estimated by 

N= vmT 

5. Deterministic fatigue analysis - SN approach 

{4.34) 

The stress analysis deseribed in section 3 and the counting methods in section 4.3 
give the density function of the stress ranges and the expected number of stress 
cycles per time unit. This analysis is performed for each sea state and for each wave 
direction. 

In this section it is deseribed how an SN based fatigue analysis can be performed 
using the results from the stress analysis and assuming that all parameters except the 
stress variation are deterministic. The standard deviation of the stochastic process 
{u( t)} modeiling the stress in a given point is denoted U ~r · 

For simplicity it is assumed that the stress process is Gaussian with a narrow banded 
spectrum. H the stress spectrum is not narrow banded then the formulas in section 
4.3.2 and 4.3.3 must be used instead of those shown below. The stress ranges llu 
are then Rayleigh distributed with standard deviation u t). ø = 2u" 

tlu ( tlcr) 
h"(llu} = 4u~ exp - Su~ , llu ~O (5.1} 

Miner's rule is used to determine the damage for variable amplitude loading. The 
damage in one stress cycle with range llu; is calculated by, see (4.1}. 

tlD· - _l_ - (llu;}m 
1 

- N(tlu;} - K (5.2} 

Failure is assumed to occur w hen the accumulated damage D exeeds l. D is obtained 
by a summation over all wave directions and sea states (i.e. aver all cells in a scatter 
diagram for the long term statistical model) and integration over all stress ranges, 
see also section 4.3 

00 "" f Tvo ·· D= ~L.JP;Q;; N(;.~/c,."(tlu)dtlu 
l ) o 

=L LP;Q;j !oo Tvo,;;llum ~u exp (- f1~2 ) dtlu 
. . K 4u" ;1· Ser, 1·,· ' J o t , 

=L L P;Q;i T";/ {2.J2}mu;:;;r{1 + m/2) 
i j 
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where 

P; is the probability of waves from direction i 

Q;j is the probability of sea state j when the wave direction is i 

T is the length of the time period considered (e. g. 30 years) 

vo,ij is the mean number of cycles per time unit for direction i and sea state j 

u,,ij is the standard deviation of stresses for direction i and sea state j 

r is the gamma function 

From (5.3) the determiniatic fatigue life T can be determined corresponding to D = l. 

The bilinear SN-curves defined in ( 4.4) and ( 4.5) can be written 

N _ { Ktlu-m 
Ktlu-m+6 

tlu > So 

tlu ~So 

In this case (5.3} becomes 

D = ~ ~ P;Qol';t (2J2)" •:.o; [r (l + ; ; ( 2,;-:;,.J ') + 

So 
1 

m +o S0 ( ) ( ( )2)] 
2./2u ,,ij 1 + - 2 i 2./2u • ,ij 

{5.4) 

(5.5) 

Where r ( a; b) 
r ( a)- r{ a; b). 

J",O t 4
-

1e-tdt is the incomplete gamma function and l( a, b) 

Example 

An example from (l] is briefly shown below. In table 5.1 and 5.2 the probabilities 
for occurrence of waves in the 8 main directions and the scatter diagram are shown. 
The Pierson-Moskowitz spectrum is used for the water surface elevation and s = l in 
the spreading function ll1(9) is used, see (2.8). A stress analysis is performed using 
the infl.uence coefficient approach, see section 3. 
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Wave approach from Probability of Occ:urrence 

N 0.0956 

NE 0.0689 

E 0.0857 

SE 0.1179 

s 0.1118 

sw 0.1698 

w 0.1748 

NW 0.1756 

Tabel 5.1. Directional distribution of wave occurrences (from (1)). 

T z (zero up-crossing period) (s) 

1-2 2-3 3--4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 SUM 

O-Q.5 o 9 74 19 l o o o o o 113 

0.5-1.0 o o 62 163 31 3 o o o o 259 

1.0-1.5 o o o 112 93 16 3 o o o 224 

1.5-2.0 o o o 13 89 31 7 .l o o 141 

2.0-2.5 o o o o 49 45 6 l o o 101 

H s 2.5-3.0 o o o 12 61 9 2 ·o o o 82 

(m) 3.0-3.5 o o o o o 29 11 l o o 41 

3.1).....i.0 o o o o o 8 11 l o o 20 

4.0-4.5 o o o o o 2 8 2 o o 12 

4.5-6.0 o o o o o o 5 l o o 6 

5.0-5.5 o o o o o o 2 2 o o 4 

5.5-6.0 o o o o o o 2 l l o 4 

SUM o 9 136 307 275 195 64 12 l o 1000 

Th.bel 5.2. Sea scatter diagram (from [1)). 

The fatigue strengthis modelled by the T curve from [14] 

logN = 12.16-3 log(tl.u) , tl.u;::: 53N/mm2 {5.6) 

logN = 15.51-5 log(tl.u) ,tl.u < 53N/mm2 (5.7) 

i.e. m = 3 in the upper part and m = 5 in the lower part of the SN curve. Al­
ternatively the foliowing modified T-curve can be used where the change in slope is 
neglected, i.e. 

log N = 12.16 - 3log(6.u) 6-u ~ ON /mm2 (5.8) 
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The SN curves are shown in figure 5.1 

Using (5.3) and (5.5) deterministic fatigue life times are calculated for two hot spots, 
see tabel 5.3. 

T-curve 
hot spot l 488 
hot SI>()~ 2_ 107 

Table 5.3. Deterministic fatigue life times (in years). 

540 

uo 

g$ 
JU 

zoo 
.::- 110 
l I6C 
3 lU 

tuø .... 
:1 ICXI 
~ 
"' IO 

6IJ 

sø 

"' 
J() 

ID 
". 

< ;: 
\ 

Modilied curve )-', 

øS ~ • 
6IMaa (qdø) 

Figure 5.1. SN curves 

. 

6. Probabilistic fatigue analysis 

6.1 SN approach 

Modified T -curve 
111 
40 

In a probabilistic SN fatigue analysis some of the parameters in the model descri­
bed in section 4.1 are modelled by stochastic variables in order to take into acco· 
unt randomness and uncertainty. The following parameters could be modelled by 
stochastic variables 
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• Hs and Tz: the uncertainty in the wave elimate can be modelled by a scatter 
diagram and corresponding probabilities or by distribution functions for H s and 
Tz, e.g. (2.2) and (2.3). 

• '11(6): a model uncertaity factor could be multiplied to the wave energy spreading 
function. 

• parameters in wave spectrum, e.g. the bandwidth parameter. 

• a model uncertainty factor could be multiplied to the transfer functions giving 
the stresses in the joints. Also parameters such as the marine growth, Cv and 
CM in Morison's equation could be modelled by stocha.stic variables. 

• a factor could be multiplied to ak to model the uncertainty in the stress concen­
tration factors. 

• The parameters K and m defining the SN curve could be random. U sually m is 
assumed to be deterministic. 

• The Miner sum at failure, i.e. l in ( 4.6) is replaced by a stochastic variable ~ 
with expected value l and some standard deviation modeiling the uncertainty in 
the Miner damage accumulation model. 

The stocha.stic variables are denoted X. A lirnit state function (failure function) 
corresponding to fatigue falure at time T can then be written 

g( X, T) = ~ - D( T) (6.1) 

where D is given by (5.3). It is noted that vo,ij and u",ij are implicit functions 
of Hs, Tz, olf(6), parameters in wave spectrum, model uncertainty factorson the 
transfer functions, marine growth, Cv, CM and SCF. 

Using first order reliability methods (FORM), see [2) or [11), the reliability index 
{J can be calculated for different times T. The corresponding probability of failure 
estimated as 

Pt(T) = P(g(X,T) S O)!::!! <I>(-{J(T)) 

where <I> is the standard normal distribution function. 

Example 

(6.2) 

In the example from section 5.1 (and [l]) 5 stocha.stic variables are introduced, 
namely variables modeiling uncertainty in 

• the environmenta.l description 

• the load model 

• the stress ana.lysis ( covariance = 20 % on load coefficients) 

• the fatigue strength ( covariance = 64 % on N in SN curve) 

• the damage eriterion ( covariance = 20 % on ~) 
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The result of a reliability analysis is shown in figure 6.1 for hot spot l and 2 using 
the T-curve and the modified T-curve. It is seen that the determiniatic fatigue lives 
from table 5.3 all corresponds to a reliability levelabout /3 = 1.4 ( ~ P t = 0.08). If 
the requirement to the Miner sum is more strict, e.g. D S 0.1 instead of D S l then 
a reliability levelabout /3 = 4.7 (~ Pt = 1.3 w-6 ) is obtained. 

In table 6.1 the importance of the different types of uncertainty is shown. It is seen 
that the uncertainty in the fat igue strength model is very important. 
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Figure 6.1 Reliability index for hot spot l and 2 (from [1]). 

Source of uncertainty 

Environmental description 

Load model 
Stress analysis 

Fatigue strength 

Damage eriterion 

Importance 

1 % 

19% 

13% 
60% 

7% 

Table 6.1 Sources of uncertainty and their importance (from [1]). 

6.2 Fracture mechanics approach 

In a probabilistic fracture mechanics fatigue analysis some of the parameters in the 
model deseribed in section 4.2 are modelled by stocha.stic variables in order to take 
into account randomness and uncertainty. As in section 6.1 the foliowing parameters 
could be modelled by stochastic variables 

• Hs and Tz: the uncertainty in the wave elimate can be modelled by a scat ter 
diagram and corresponding probabilities or by distribution functions for H s and 
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Tz, e.g. (2.2) and (2.3). 

• ~(9): a model uncertaity factor could be multiplied to the wave energy spreading 
function. 

• parameters in wave spectrum, e.g. the bandwidth parameter. 

• a model uncertainty factor could be multiplied to the transfer functions giving 
the stresses in the joints. Also parameters such as the marine growth, C D and 
CM in Morison's equation could be modelled by stochastic variables. 

• a factor could be multiplied to O:k to model the uncertainty in the stress concen­
tration factors. 

• The parameters C and m in Paris's la.w. Dsually m is assumed to be deterministic. 

• The initial crack lengths and the parameters defining the geometry function in 
the stress intensity factors. 

The stochastic variables are denoted X. H for simplicity a. one-dimensional crack 
growth model is used (see (4.10)) and failure is defined as the event that the crack 
at time T exceeds the critical crack length ae then the limit state function (failure 
function) can then be written 

1°• da 
g( X, T)= 

50 

(Y(a),/ifii)m -C· E[Åcrm(Hs, Tz))N(Hs, Tz) ::5O (6.3) 

where E[Åcrm) and N are defined in section 4.3. Using firstorder reliability roetbods 
(FORM), see [2) or [11), the reliability index Ø can be calculated for different times 
T. 

Example 

The same example as in section 6.1.1 is considered. 5 stochastic variables are intro­
duced, namely variables modeiling uncertainty in 

• the environmental description 

• the load model 

• the stress analysis (covariance = 20% on load coefficients) 

• the stress intensity factor. The uncertainty is modelled by multiplying a factor 
which is lognormal distributed with mean l and standard deviation O.l. 

• the crack growth parameter C in Paria's law. lnC is assumed to be normal 
dstributed with expected value -29.75 and covariance =50% (units: N and=) 

The result of a reliability analysis is shown in figure 6.2 for hot spot l and 2. It is 
seen that the reliability indices are almost identical to those estimated by the SN 
approach. However, for other stochastic models and pararnaters different results for 
the two approaches can generally be expected. 

J 
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In table 6.2 the importance of the different types of uncertainty is shown. It is seen 
that the uncertainty in the crack growth parameter C is very important. 
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Figure 6.2 Reliability index for hot spot l and 2 (from [1)). 

Source of uncertainty 

Environmental description 

Load model 
Stress analysis 

Stress intensity factor 
Crack growth parameters 

Importance 

1% 
19% 
20% 

10% 
60% 

Table 6.2 Sources of uncertainty and their importance (from [l)). 

6.3 Simple example 

From (4.11) and (6.3) it is seen that if Y( a) = l and N = vT then failure can be 
modelled by the limit state function 

g= a~2-m)/2 _ a~2-m)/2 +2-m C1rm/2vTÅcrm 
2 

It is assumed that the parameters can be modelled by : 

22 



; 
/ 

April n:, 1995 

l 

di st. J.~[·) u[·) l 

l 

XI ao E 0.1 
x2 ae N 40 lO 
x3 !n C N -33 0.47 
x. !:l. u w 60 lO 

11 D 108 cycles/yeax 
m D 3 

Table 6.3. N: Normal, E: exponential, W: Weibull, D: deterministic. Dimensions in 
mm and N. 

The results are: 

T (years] p a1 a2 a3 a• 
2.5 5.50 0.49 -0.03 0.77 0.41 
5.0 4.38 0.52 -0.02 0.74 0.43 
7.5 3.78 0.53 -0.02 0.72 0.45 

10.0 3.32 0.54 -0.02 0.70 0.46 
12.5 2.99 0.55 -0.02 0.69 0.46 
15.0 2.72 0.56 -0.02 0.68 0.47 
17.5 2.50 0.57 -0.02 0.67 0.48 
20.0 2.31 0.58 -0.02 0.66 0.48 
22.5 2.15 0.58 -0.01 0.66 0.48 
25.0 2.00 0.59 -0.01 0.65 0.49 

lt is seen that the reliability index P decreases from 5.50 to 2.00 when T goes from 
2.5 yeax to 25 years. Further, that ao , In C and l:iu arethemost important stochastic 
variables in this example. 
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