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Chapter 3
PROBABILISTIC MODELS FOR LOADS AND RESISTANCE VARIABLES

3.1 INTRODUCTION

In this chapter the aim is to examine the way in which suitable probabilistic models can be
developed to represent the uncertainties that exist in typical basic variables. We shall first
consider the problem of modelling physical variability and then turn to the question of in-
corporating statistical uncertainty.

Load and resistance parameters clearly require different treatment, since loads are generally
time-varying. As discussed in chapters 9 and 10, time-varying loads are best modelled as sto-
chastic processes, but this is not a convenient representation for use with the methods of re-
liability analysis. being presented here (chapters 5 and 6). Instead, it is appropriate to use the
distribution of the extreme value of the load in the reference period for which the reliability

is required; or, where there are two or more time-varying loads acting on a structure together,
the distribution of the extreme combined load or load effect. The particular problems associated
with the analysis of combined loading are discussed in chapter 10.

The selection of probabilistic models for basic random variables can be divided into two parts -
the choice of suitable probability distributions with which to characterize the physical uncertain-
ty in each case and the choice of appropriate values for the parameters of those distributions.
For most practical problems neither task is easy since there may be a number of distributions
which appear to fit the available data equally well. As mentioned above, loads and resistance
variables require different treatment and will be discussed separately. However, it is first neces-
sary to introduce the important subject of the statistical theory of extremes which is of rele-
vance to both load and strength variables. This topic is discussed in the next two sections.

3.2 STATISTICAL THEORY OF EXTREMES

In the modelling of loads and in the reliability analysis of structural systems it is necessary to
deal with the theory of extreme values. For example, with time-varying loads, the analyst is
interested in the likely value of the greatest load during the life of the structure. To be more
precise, he wishes to know the probability distribution of the greatest load. This may be inter-
preted physically as the distribution that would be obtained if the maximum lifetime load were
measured in an infinite set of nominally identical structures.
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In an analogous way, if the strength of a structure depends on the strength of the weakest of
a number of elements - for example, a statically determinate truss - one is concerned with the
probability distribution of the minimum strength.

In general, one can estimate from test results or records the parameters of the distribution of
the instantaneous values of load or of the strength of individual components, and from this in-
formation the aim is to derive the distribution for the smallest or largest values.

3.2.1 Derivation of the cumulative distribution of the it smallest value of n identically dis-
tributed independent random variables X,

Assume the existence of a random variable X (e.g. the maximum mean-hourly wind speed in
consecutive yearly periods) having a cumulative distribution function Fx and a corresponding
probability density function fy . This is often referred to as the parent distribution. Taking a
sample size of n (e.g. n years records and n values of the maximum mean-hourly wind speed)
let the cumulative distribution function of the i*l smallest value X! in the sample be Fxn and
its corresponding density function be fxn )

Then

fx;: (x)dx = constant X probability that (i — 1) values of X fall below x
X probability that (n — i) values of X fall above x
X probability that 1 value of X lies in the range x to (x+ dx)

=cFi 1 (x)(1 — Fye(x)" "y (x)dx (3.1)
where
nn—1)! _
c= A—1)1ta ~01 the number of ways of choosing (i — 1) values less than x,
together with (n — i) values greater than x (3.2)
Thus
vy :
Fx?(y) = S xn(x)dx \Ochl (x)(1 —Fy(x)"" fx(x)dx (3.3)

This can be shown to be equal to

fx(x)
iR N Ex (%)
Q)
T w5 —==X
dx

Figure 3.1
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i i+1 3
- nn-—1)! (FX(Y)]’_ fii=— (Fx(y}}+ (ﬂ.—l
Fxn) = == [ i 1 ) ixn L2 /*
(Fy(y)i*? e\ (Fu(9))P
*()i(—+—2—)—...+ (—1)("") (g_;)—xn (3.4)

Exercise 3.1. Show that equation (3.4) can be derived from equation (3.3) by expanding
(1— Fx(x))“‘_'1 and integrating by parts.

Equation (3.4) gives the probability distribution function for the ith smallest value of n values
sampled at random from a variable X with a probability distribution Fy .

Two special cases will now be considered in the following examples.

Example 3.1. Fori = n equation (3.4) simplifies to:
Fx:(X) = (Fg (x))" (3.5)

This is the distribution function for the maximum value in a sample size n.

: Example 3.2. Fori =1 equation (3.4) simplifies to:
Fx:;(x) w1 = (1~ Fyp{x))*® (3.6)
: This is the distribution function for the minimum value in a sample size n.

It should be noted that Fx:(x) may also be interpreted as the probability of the non-occur-
rence of the event (X > x) in any of n independent trials,so that equation (3.5) follows imme-
diately from the multiplication rule for probabilities. Equation (3.6) may be interpreted in an
analogous manner. See also chapter 7.

3.2.2 Normal extremes
If a random variable is normally distributed with mean u X with standard deviation Oy the vari-
able has a distribution function Fy (see (2.46))

X t_H
Fe@=\ = gremp(—g ()t (37)

If we are interested in the distribution of the maximum value of n identically distributed normal
random variables with parameters uy and oy this has a distribution function

v X t--.u n
Fya(x) =(\ T oy g () ) (3.8)

It should be noted that Fyn is not normally distributed.
n
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Figure 3.2.

qu) is shown in figure 3.2 for various values of n
n

d
dx(

The probability density function fyn =
and with X distributed N(0, 1).

3.3 ASYMPTOTIC EXTREME-VALUE DISTRIBUTIONS

It is fortunate that for a very wide class of parent distributions, the distribution functions of the
maximum or minimum values of large random samples taken from the parent distribution tend
towards certain limiting distributions as the sample becomes large. These are called asymptotic
extreme-value distributions and are of three main types, I, II and III.

For example, if the particular variable of interest is the maximum of many similar but inde-
pendent events (e.g. the annual maximum mean-hourly wind speed at a particular site) there
are generally good theoretical grounds for expecting the variable to have a distribution function
which is very close to one of the asymptotic extreme value distributions. For detailed informa-
tion on this subject the reader should refer to a specialist text, e.g. Gumbel [3.8] or Mann,
Schafer and Singpurwalla [3.11]. Only the most frequently used extreme-value distributions
will be referred to here.

3.3.1 Type I extreme-value distributions (Gumbel distributions)
Type I asymptotic distribution of the largest extreme: If the upper tail of the parent distribution
falls off in an exponential manner, i.e.

Fy(x)=1—e 5% (3.9)

where g is an increasing function of x, then the distribution function FY of the largest value Y,
from a large sample selected at random from the parent population, will be of the form

Fy(y) =exp(—exp(—a(y—u))) , —=<y<eo , a>0 (3.10)

Formally, Fy, will asymptotically approach the distribution given by the right hand side of
equation (3.10) as n = oo,
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| Ex (%), £y (y)

Figure 3.3

The parameters u and « are respectively measures of location and dispersion. u is the mode of
the asymptotic extreme-value distribution (see figure 3.3).

The mean and standard deviation of the type I maxima distribution (3.10) are related to the
parameters u and « as follows

(3.11)
and

e
oy J6a (3.12)

where v is Euler’s constant. This distribution is positively skew as shown in figure 3.3.

A useful property of the type I maxima distribution is that the distribution function Fya for
o

the largest extreme in any sample of size n is also type I maxima distributed. Furthermore, the

standard deviation remains constant (is independent of n), i.e.

GY: =0y (3.13)
This property is of help in the analysis of load combinations when different numbers of repe-
titions of loads n, need to be considered (see chapter 10). In this connection, it is useful to be
able to calculate the parameters of the extreme variable Y] from a knowledge of the para-
meters of Y.

If Y is type I maxima distributed with distribution function Fy given by equation (3.10) and
with parameters o and u, then the extreme distribution of maxima generated in n independent
trials has a distribution function

Fyn (y) = exp(—n exp(—a(y —w)) (3.14)
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with mean given by
“Yﬁ =py + 3#@ oy 2n(n) (3.15)

Type I asymptotic distribution of the smallest extreme: This is of rather similar form to the
Type I maxima distribution, but will not be discussed here. The reader should refer to one of
the standard texts - see [3.8],[3.11] or [3.5].

3.3.2 Type II extreme-value distributions

As with the type [ extreme-value distributions, the type II distributions are of two types. Only
the type II distribution of the largest extreme will be considered here. 1ts distribution function
Fy is given by

Fy(v) =exp(— (u/y)*) , y>0,u>0,k> 0 (3.16)

where the parameters u and k are related to the mean and standard deviation by

py =ul(1—1/k) with k> 1 (3.17)
1
oy =ull(1—2/k)—I?*(1—1/k)}? with k> 2 (3.18)
where I" is the gamma function defined by
r(k) =\ e " Tdu (3.19)

Y0

It should be noted that for k < 2, the standard deviation oy is not defined. It is also of interest
that if Y is type II maxima distributed, then Z = 2nY is type I maxima distributed.

Exercise 3.2. Let Y be type II maxima distributed with distribution function Fy and
coefficient of variation oy /uy . Show that the variable representing the largest extreme with
: distribution function (Fy (y))" has the same coefficient of variation.

The type II maxima distribution is frequently used in modelling extreme hydrological and me-
terological events. It arises as the limiting distribution of the largest value of many independent
identically distributed random variables, when the parent distribution is limited to values greater
than zero and has an infinite tail to the right of the form

Fy(x) =1—p(1/x)* (3.20)

3.3.3 Type Il extzeme-value distributions
In this case only the type III asymptotic distribution of the smallest extreme will be considered.
It arises when the parent distribution is of the form:
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Fe(x)=c(x—e)¥  with x>e (3.21)

i.e. the parent distribution is limited to the left at a value x = ¢.
In many practical cases ¢ may be zero (i.e. representing a physical limitation on, say, strength).

The distribution of the minimum Y of n independent and identically distributed variables X,
asymptotically approaches the form

Fy(y) =1 —exp(—(i:i)ﬂ) with y>e,p>0,k>e> 0 (3.22)

as n -+ oo,

The mean and standard deviation of Y are:

1]

by = e+ (k=T (1+73) (3.23)

and

N

(k—e){r'( +ﬁ3)—-r=(1 wdyy

3 (3.24)

]

oy
The type III minima distribution (3.22) is often known as the 3-parameter Weibull distribu-

tion and has frequently been used for the treatment of fatigue and fracture problems.

For the special case ¢ = 0, the distribution simplifies to the so-called 2-parameter Weibull
distribution

— b
FY(y} =1—e 'k (3.25)
\Fy(y)
1—107"
1—10° / P Wi
1—10°¢ L = — e
1—10 Al Pl . ==
normal _| Nt Lt i
4 i -\//,",— - L y‘pe maxima
{3 it - type Timaxima
/’ og-normal
1—10™
/i
0.5
107!
|
107 /5
107 /A"
/ (T
10 il
w07 ]
0 VA A y
L f I 1 -~

—0.5 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0 4.5

Figure 3.4. Cumulative distributions of different distribution functions (“Y =1, o, = 0.2).
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with
uy = kI(1 +%) ) (3.26)

and

1.4

3 (3.27)

oy =K(N(1+2) = T*(1+3)
Comparisons of the type I maxima and type II maxima distributions with the normal and log-
normal distributions are shown in figure 3.4. The random variables in each case have the same
mean and standard deviation, namely 1.0 and 0.2.

3.4 MODELLING OF RESISTANCE VARIABLES - MODEL SELECTION

3.4.1 General remarks

In this section some general guidelines are given for the selection of probability distributions to
represent the physical uncertainty in variables which affect the strength of structural compo-
nents and complete structures - for example, dimensions, geometrical imperfections and ma-
terial properties. Since each material and mechanical property is different, each requires indivi-
dual attention. Nevertheless, a number of general rules apply. Attention will be restricted here
to the modelling of continuously distributed as opposed to discrete quantities.

The easiest starting point is to consider the probability density function fy of a random variable
X as the limiting case of a histogram of sample observations as the number of sample elements is
increased and the class interval reduced. However, for small sample sizes, the shape of the histo-
gram varies somewhat from sample to sample, as a result of the random nature of the variable.
Figure 3.5 shows two sets of 100 observations of the thickness T of reinforced concrete slabs
having a nominal thickness of 150 mm, which illustrates this point. These data were not, in fact,
obtained by measurements in real structures but were randomly sampled from a logarithmic
normal distribution with a mean My = 150 mm and a coefficient of variation VT =0.15 (see ap-
pendix A). The corresponding density function fy, is also shown in figure 3.5.

For comparison, figure 3.6 shows data obtained from a real construction site.

A clear distinction must be made, however, between a histogram or a relative frequency dia-
gram on the one hand and a probability density function on the other. Whereas the former is
simply a record of observations, the latter is intended for predicting the occurrence of future
events - e.g. a thickness less than 100 mm.

If the probability density function fy of a random variable X is interpreted as the limiting case
of a histogram or relative frequency diagram as the sample size tends to infinity, the probability
P given by

X2

P=P(x, < X< x,) =\. fy (x)dx (3.28)

X3
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clearly has a relative frequency interpretation; i.e. if a very large sample of variable X is obtained
at random, the proportion of values within the sample falling in the range x; < X < x, is likely to
to be very close to P. However, this interpretation may not in practice be too helpful. All that

can be said is that if a variable X does in fact have a known probability density function fx,

and if it is sampled at random an infinite number of times, the proportion in the range ] X1 Xy [
will be P.

The problem of modelling is completely different. In general the engineer is likely to have only a
relatively small sample of actual observations of X, along with some prior information obtained
from a different source. The problem then is how best to use all this information. Before this
question can be answered it is necessary to define exactly what the variable X represents. This is
best explained by means of an example.

: Example 3.3. Consider the mechanical properties of a single nominal size of continuously-
cast hot-rolled reinforcing steel. Let us restrict our attention to a single property, the dy-
namic yield stress, o d,u:iel:ermined at a controlled strain rate of 300 micro-strain per minute
and defined as the average height of the stress-strain curve between strains of 0.003 and 0.005,

l.e.
1 \1€=0.005
O T A0 o_(e)de (3.29)
4 0.002 | S — y

where g, (€) is the dynamic yield stress at strain e.

Let us assume that this property can be measured with negligible experimental error and that
all the reinforcing bars from a single cast of steel are cut into test specimens 0.5 m long and

: then tested. If o, is plotted against Z, the position in the bar, the outcome will be of the form
shown in figure 3.7. This is an example of a step-wise continuous-state/continuous-time sto-
chastic process X(t) in which the parameter t may be interpreted as the distance Z along the

: reinforcing bar. (See chapter 9 for further details of stochastic processes).

The process is interrupted approximately every 600 m because the continuously cast steel is
cut into ingots and these are re-heated and rolled separately. The fluctuations in yield stress
within each 600 m length are typically very small, i.e. in the order of 1 - 2 N/mm?. For each
600 m length 2, the spatial average yield stress Eyd is defined as

2 0

1
Gy “E_\ KL (3.30)

: The variations in oyq from one rolled length to another are typically larger than the within-
length variations and are caused mainly by differences in the temperature of the ingot at the
start of rolling and by a number of other factors. Some typical data giving values of -Eyd for
consecutive lengths of 20 mm diameter hot-rolled high-yield bars from the same cast of steel
are shown in figure 3.8 (along with values for the static yield stress). These can be con-

: sidered as a continuous-state/discrete-time stochastic process. It can be seen that there is a

: fairly strong positive correlation between gyq for adjacent lengths, as might be expected.

If ¢ is the total length of reinforcement produced from a single cast of steel then the
average yield stress for the cast can be defined as

5 =L{ .4 (3.31)
0., =— g ' i
yd QCSO yd
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Figure 3.8. Within-cast variations in the yield stress of a 20 mm diameter hot-rolled reinforcing bar.
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Provided that the variations in yield stress along each 600 m length of continuously rolled
bar can be assumed to be small in comparison with variations in Eyd , the average yield stress
for the cast may be expressed as

» 0,41 (3.32)

y

=11]
o |
M5

1

where ayd(i) is the yield stress of the ith bar and n is the number of bars rolled from the
cast.

If we are interested in the statistical distribution of the yield stress of reinforcing bars sup-
plied to a construction site, account must also be taken of the variations in §yd that occur
from cast to cast. If the steel is to be supplied by a single manufacturer and very close con-
trol is exercised over the chemical composition of each cast, variations in b‘yd will be very
small; but if the chemistry is not well controlled significant diffcrences between casts can
occur. If bars are supplied by a number of different manufacturers, systematic differences
between manufacturers will be evident even for nominally identical products (e.g. 20 mm
diameter bars) because of differences in rolling procedures.

A final effect which must be taken into account is the systematic change in mean yield
stress with bar diameter as illustrated in figure 3.9. This phenomenon is quite marked and
is rarely taken into account in structural design.

kYield stress (N;'mm"" )

550 L

500 |

450 |

400 ) . ‘ Bar diame!;er(mm)
0 10 20 30 40

% DBaker and Wickham (1979)
o Baker (1970)
@ Bannister (1968)

Figure 3.9. Mean yield stress for hot-rolled high yield bars of different diameters.
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From the preceding example it is clear that there are many sources of physical variability which
contribute to the overall uncertainty in the yield stress of a grade of reinforcing steel. Let us
now define the quantity X as the random variable representing the yield stress of a particular
grade of reinforcing steel irrespective of source and where »yield stress» is defined in a precise
way. We now wish to establish a suitable probability density function for X to use in further
calculations. It is clear that the mathematical form of f  will depend on the particular subset of
X, eg.:
Let A, be the event [bars are supplied by manufacturer i]
Bj be the event [bars are of diameter j]

C be the event [bars are from a single cast of steel]

Then in general the density functions fx. fx;Ai’ fXIBi’ fxmm By’ fXIAi AB;NC ete. will all be
different; not only their parameters but also their shapes. It is also clear that the probability
density function fy representing all bars, irrespective of size or manufacturer, will not be of a
simple or standard form (e.g. normal, lognormal, etc.). It will take the form

n
fy (X) =Py fy o, (%) + Polya, (X)F o +P By s (), ‘12‘ p, =1 (3.33)

where p; is the probability that a bar will be supplied by manufacturer i and where

fx1a, (®) =2 fx 1, a8, (®) F Qofygja, B, (BT - Ty (a, np, (%) -

q; being the probability that the bar is of diameter j.
Equation (3.33) represents what is known as a mixed distribution model.

It should be noted that because of the systematic decrease in reinforcing bar yield stress with
increasing diameter, equation (3.34) gives rise to a density function fy A, which is flatter and
has less pronounced tails (platykurtic) than any of the component distributions fy |A{N By
Furthermore, it is generally found that the density function fx:B, representing bars of a par-
ticular size considered over all manufacturers is highly positively skew. The reason for this is
discussed in example 3.4 below.

Example 3.4. The yield stress of hot-rolled steel plates of a single nominal thickness and
grade of steel, supplied by a single manufacturer, can be shown to be closely represented
by a log-normal probability distribution (see equation (2.51)), as illustrated by the cumula-
tive frequency diagrams in figure 3.10. If, however, data from a number of manufacturers
are combined, the distribution becomes highly skew. This is because manufacturers with
high product variability have to aim for higher mean properties than manufacturers whose
products can be closely controlled to achieve the same specified yield stress, for a given
probability of rejection. See figure 3.11. It should be noted that the scales chosen in figures
3.10 and 3.11 are such that a logarithmic normal distribution plots as a straight line.
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Figure 3.10. Cumulative frequency diagram for yield stress of mild steel plates.
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We now return to the question of selecting a suitable probability distribution to model the un-
certainty in the strength variable X. It should be clear from the preceding arguments that a
procedure of random sampling and testing of, say, reinforcing bars at a construction site and
attempts to fit a standard probability distribution to the data will not lead to a sensible out-
come. In particular, such a distribution will behave poorly as a predictor of the occurrence of
values of X outside the range of the sample obtained. The only sensible approach is to synthe-
sise the probability distribution of X from a knowledge of the component sources of uncer-
tainty (as in equation (3.33)). Admittedly this approach can be adopted only when such in-
formation is available. Expressing this problem in another way, it is important that the sta-
tistical analysis of data should be restricted to samples which are homogeneous (or more pre-
cisely - for which there is no evidence of non-homogeneity).

A further aspect of modelling must now be introduced. Models do not represent reality, they
only approximate it. As is well known in other branches of engineering, any one of a number
of different empirical models may often be equally satisfactory for some particular purpose,
e.g. finite-element versus finite-difference approaches. The same is true of probabilistic models.
The question that must be asked is whether the model is suitable for the particular application

where it is to be used.

For most structural reliability calculations, the analyst is concerned with obtaining a good fit
in the lower tails of the strength distributions, but this may not always be important - for
example, when the strength of a structural member is governed by the sum of the strengths
of its components. This is illustrated by the following example.

Example 3.5. Consider an axially-loaded reinforced concrete column, a cross-section of
which is shown in figure 3.12. If, for the sake of simplicity, the load-carrying capacity of
the column is assumed to be given exactly by:

1%

R=rc-4-f,_f1 R; (3.35)

1’
where r is the load-carrying capacity of the concrete (assumed known) and R, is the ran-
dom load-carrying capacity of the ith reinforcing bar at yield. Then, if the various R, are
statistically independent,

12 12
E(R] =Elr, + 3R] =r, + 3 E[R;] (3.36)
i=1 i=1
and
12 12
Var[R] = Var[r, + 3'R;] = S Var(R;] (3.37)
i=1 i=1
i.e.
|
e oleo e
L ] L ]
13
® o, 0 o

: Figure 3.12. Cross-section of reinforced concrete column.
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12
t.+ D Bp, (3.38)

i=1

KR

and

8| =

12
op =(2 0k ) (3.39)
i=1

Assuming further that the various R, are also identically distributed normal variables,
N(100, 20) with units of kN, and that r,= 500 kN, then

#g =500+ 12X 100=1700 kN and op =69.28 kN

Since R is also normally distributed in this case, the value of R which has a 99.99% chance
of being exceeded is thus

ug + ®7(0.0001)0p =1700 — 3.719 X 69.28 = 1442 kN

This total load-carrying capacity corresponds to an average load-carrying capacity of
(1442 — 500)/12 = 78.5 kN for the individual reinforcing bars, i.e. only 1.07 standard de-
viations below the mean.

For this type of structural configuration (in fact, a parallel ductile structural system in the

: reliability sense - see chapter 7) in which the structural strength is governed by the average

strength of the components, it can be anticipated from the above - although it will not be
formally proved here - that the reliability of the structure is not sensitive to the extreme
lower tails of the strength distributions of the components. Hence the lack of availability of
statistical data on extremely low strengths is not too important, for such cases.

Finally, it should be emphasised that these conclusions are based on the assumption that
the various R, are statistically independent.

Exercise 3.3. Given that the column discussed in example 3.3 is subjected to an axial load

of 1500 kN, calculate the probability that this load exceeds the load-carrying capacity. Re-
calculate the probability under the assumption that the various R, are.mutually fully corre-
lated (p = +1).

3.4.2 Choice of distributions for resistance variables

It has already been mentioned that unless experimental data are obtained from an effectively
homogeneous source, formal attempts to fit standard forms of probability distribution to the
data are hardly worthwhile. When data from two or more sources are present in a single sample,

the overall shape of the cumulative frequency distribution is likely to depend as much, if not

more, on the relative number of observations from each source than on the actual, but unknown,

probability distribution of each sub-population. Extreme caution should therefore be exercised
if the type of probability distribution is to be chosen on the basis of sample data alone.

A preferable approach is to make use of physical reasoning about the nature of each particular

random variable to guide the choice of distribution. A number of limiting cases will now be stu-

died.
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The normal (Gaussian) distribution: As discussed in chapter 2, this is one of the most important
probability distributions. It arises whenever the random variable of interest X is the sum of n
identically distributed independent random variables, Y,, irrespective of the probability distribu-
tion of Y, provided the mean and variance of Y, are finite.

Formally, if Yl' Y2 y--., ¥ are independent identically distributed random variables with finite
mean uy and finite variance 03, and if X =Y, + Y,+ ...+ Y ,thenasn >

—nu
Pla < ——=% < )~ ®(8) — &(a) (3.40)
ogvn
forall @, f(a < ), and where ® is the standard normal distribution function. This is known as
the central limit theorem.

Provided a further set of conditions hold, the central limit theorem also applies to the sum of in-
dependent variables which are not identically distributed. The rate at which the sum tends to
normality depends in practice on the presence of any dominant non-normal components.

It is therefore clear that any structural member whose strength is a linear function of a number
of independent random variables may in general be considered to be governed by the normal law.

Example 3.6. Consider again the reinforced concrete column discussed in example 3.5. Since
the strength of the concrete is assumed known and the strengths of the reinforcing bars have
been assumed to be independent, it may be concluded that the load-carrying capacity of the
column R is normally distributed. (Whether this is true in practice clearly depends on a num-
ber of other factors and whether these assumptions are valid).

It is sometimes argued that the normal distribution should not be used to model resistance varia-
bles because it gives a finite probability of negative strengths. However, this apparent criticism can
be assumed to be relatively unimportant if the strength of a component can be considered to be
the sum of a number of independent random variables, thereby invoking the central limit theorem.

The logarithmic normal distribution: The logarithmic normal (or log-normal) distribution is fre-
quently used for modelling resistance variables and has the theoretical advantage of precluding ne-
gative values. The mathematical form and parameters of the log-normal distribution were discussed
in chapter 2 (equation (2.51)). The log-normal distribution arises naturally as a limiting distribution
when the random resistance X is the product of a number of independent identically distributed
component variables, i.e.

X=2,2, ...zn=];zi (3.41)
i=1
Clearly Y given by
n
Y =¢nX =¢nZ, + ¢nZ,+...+enZ_ = J enZ (3.42)
i=1

tends to normality as n - o=, following the central limit theorem, regardless of the probability
distribution of QnZi. The probability distribution of X, therefore, tends towards the log-normal,
as n increases.
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Whether X may be regarded as a log-normal random variable in any practical situation in which
X is the product of a number of random variables depends on the circumstances. The log-normal
distribution is, however, used very widely in reliability studies.

Example 3.7. Many friction problems are governed by relationships of the form
P = ke,u.c‘t (3.43)

where k, p .and « are variables.

It is therefore to be expected that strength parameters which are affected by friction,
(e.g. the shear strength of cohesionless soils, cables, etc.) will tend to be log-normally dis-
tributed, since spatial variations in the coefficient of friction u win give rise to expres-

: sions of the form

P = ke 1% 4292 | g% (3.44)

The Weibull distribution: This distribution is used quite frequently to model the distribution
of the strength of a structural component whose strength is governed by size of its largest de-
fect. If it is assumed that certain components, such as welded joints, contain a large number
of small defects and that the severity of these defects is distributed in an appropriate manner,
the distribution of the component strength approaches the Weibull distribution. As discussed
in section 3.3.3 it is one of the so-called asymptotic extreme value distributions. Its density
function is given in equations (2.55) and (2.56).

Other distributions: A number of other common distributions exist which may on occasions be
useful for modelling the uncertainty in resistance variables - for example, the rectangular, beta,
gamma and t-distributions. For information of these distributions the reader should consult a
standard text, e.g. [3.5].

3.5 MODELLING OF LOAD VARIABLES - MODEL SELECTION

3.5.1 General remarks

The term load is generally understood to mean those forces acting on a structure which arise
from external inﬂuencés - principally the effects of gravity, and aerodynamic and hydrodyna-
mic effects, e.g. structural self-weight, superimposed loads, snow, wind and wave loads. The
term action is now often used as a more general description to include both loads and imposed
deformations. Examples of the latter are dimensional changes arising from temperature effects
and differential settlement. Both loads and imposed deformations give rise to sets of action-

effects (often loosely referred to as load-effects) within a structure, e.g. bending moments and
shear forces.

Unlike resistance variables, most of which change very little during the life of a structure, loads
and other actions are typically time-varying quantities. The main exception of course is the self-
weight of permanent structural and non-structural components. As mentioned earlier, time-
varying quantities are best modelled as stochastic processes, but discussion of this topic is post-
poned to chapters 9 and 10.
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It is often helpful to classify loads and other actions in accordance with the following three
attributes [3.9]. Each load or action can be described as

° permanent or variable

e fixed or free

®  static or dynamic

These three independent attributes relate to the nature of the action with respect to
®  its variability in magnitude with time

° its variability in position with time

®  the nature of the induced structural response

Thus the load imposed by vehicles on a lightly-damped long-span bridge could be described as
being variable, free and dynamic. In general, loads and actions cannot be sensibly classified
without a knowledge of the structure on which they are acting. For any particular action and
structure, the attributes listed above also govern the nature of the structural analysis that must
be undertaken.

To some degree nearly all loads could be considered to be variable, free and dynamic, but whether

each is classified as such depends on the response of the structure to the loading.
Example 3.8. Consider a steel bridge loaded solely by a sequence of partially-laden vehicles.
As far as the imposed loads are concerned, the probability of failure of the bridge by a sim-
ple plastic collapse mechanism depends only on the weight of the heaviest vehicle (assuming
that only one vehicle can be on the bridge at any one time). However, the probability of
failure by fatigue will also depend on (a) the weights of the other vehicles and (b) whether
the individual vehicles induce any appreciable dynamic response. Clearly, there is only one
source of loading, but the way in which it is classified and modelled is dictated by the fail-
ure mode being analysed.

It should be noted that the preceding classification applies both to the actions themselves
and to the mathematical models that are used to represent them.

A further distinction that should be made is between loading models used for the purposes

of normal (deterministic) design and those required for structural reliability analysis. To take
the simplest case, although a permanent fixed load is considered to be an action which does
not vary with time or in position, it must generally be classed as an uncertain quantity for the
purposes of reliability analysis, since in general its magnitude will not be known. It must there-
fore be modelled as a random variable. However, for deterministic design purposes it can be
represented by a single specified constant.

It will not have escaped the attention of the reader that the modelling of loads and actions re-
quires a certain degree of subjective judgement. The same is true for resistance variables. This
should not, however, be seen as a limitation, since the aim is not to produce a perfect image of
reality (an impossible task), but to develop a mathematical model of the phenomenon which
embodies its salient features and which can be used to make optimal design decisions using the
data available.
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Finally, it should be noted that some »loads» act in a resisting capacity for some failure modes -
for example, a proportion of the self-weight of the structure in most over-turning problems. In
such cases, these »loads» are strictly resistance variables from a reliability viewpoint. They are
generally easy to identify.

3.5.2 Choice of distributions for loads and other actions

We now consider the process of defining appropriate random variables and their associated pro-
bability distributions to model single loads and other actions. The modelling of combinations
of loads is discussed in chapter 10. As in the case of resistance variables, the process consists of
three distinct steps

° precise definition of the random variables used to represent the uncertainties in the loading
e  selection of a suitable type of probability distribution for each random variable, and
e  estimation of suitable distribution parameters from available data and any prior knowledge.

In many respects the first step is both the most important and the most difficult to decide upon
in practice.

Example 3.9. Consider the modelling of the asphalt surfacing on a long-span steel bridge.
Should the surfacing be treated as a permanent or a variable load? How should spatial varia-
tions in this load be taken into account? Should variations in density as well as variations
in thickness be modelled? What is the probability that an additional layer of asphalt will be
placed on the bridge without removal of the original surfacing and how should this be al-
lowed for?

These are typical of the questions that must be asked in any realistic load modelling prob-
: lem. They are also questions that can only be sensibly answered when the precise purpose
of the proposed reliability analysis is known.

The second step of selecting a suitable probability distribution for each random variable can
rarely be made on the basis of sample data alone and as in the case of resistance variables physi-
cal reasoning must be used to assist in this process. Some general guidelines are given below. The
third step of evaluating suitable distribution parameters is discussed in section 3.6.

Permanent loads: The total permanent load that has to be supported by a structure is generally
the sum of the self-weights of many individual structural elements and other parts. For this rea-
son (see page 53) such loads are well represented by normal probability distributions. Whether
the weights of individual structural elements can also be assumed to be normally distributed
depends on the nature of the processes controlling their manufacture.

When the total permanent load acting on a structure is the sum of many independent compo-
nents, it can easily be shown that the coefficient of variation of the total load is generally much
less than those of its components.

Exercise 3.4. Given that the total load on a foundation is the sum of n independent but
: identically distributed permanent loads P;, show that the coefficient of variation of the
total load is only 1/3/n times that of the individual loads.
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Variable loads: For continuous time-varying loads which can be uniguely described by a single
quantity X (e.g. a magnitude), one can define a number of different but related probability
distribution functions. The most basic is the so-called arbitrary-point-in-time or first-order dis-
tribution of X.

Let x(t') be the magnitude of a single time-varying load X(t) at time t'. For example, see figure
3.13 which shows a continuous state/continuous time stochastic process. Then Fx is the arbi-
trary-point-in-time distribution of X(t) and is defined by

Fy(x) =P(X(t") < x) (3.45)

where t' is any randomly selected time. The corresponding density function fy is also illustrated
in figure 3.13. Fx may take on a wide range of form and depends on the nature of X(t) - i.e.
whether X(t) is a deterministic or stochastic function of time, whether the load can assume both

negative and positive values, etc.

Example 3.10. If the load X(t) has a deterministic time-history given by
x(t) = xsin(wt)

i.e. x(t) is a sinusoidally-varying force of known amplitude x, then it can be shown that

0 y XE—X
fo(x)= SR S —¥<xX<k
X e —x

0 , X>X%

which is a U-shaped distribution.
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Figure 3.13. Illustration of continuous time-varying load.
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Example 3.11. Variations due to waves in the surface elevation of the sea X(t) at any
fixed point remote from the shore can be shown to have a first-order distribution F.
which approximates very closely to the normal distribution (for periods of time in which
the sea-state can be assumed to be stationary).

However, when dealing with single time-varying loads and so-called first passage problems (i.e.
when failure occurs if and only if the load exceeds some threshold value), the form of the ar-
bitrary-point-in-time distribution is not of immediate relevance. The random variable which

is of importance is the magnitude of the largest extreme load that occurs during the reference
period T for which the reliability is to be determined. The latter might be the specified design
life or any other period of time.

If the loading process X(t) can be assumed to be ergodic (see chapter 9), the distribution of
the largest extreme load can be thought of as being generated by sampling the values of x .
from successive reference periods T. If the values of x_ _ are represented by the random vari-
able Y, then Fy, is the distribution function of the largest extreme load. The corresponding
density function fy is illustrated in figure 3.13 and can be compared with the density function
of the arbitrary-point-in-time distribution fy .

Since, for a continuous loading process, the largest extreme load that occurs during any rea-
sonably long reference period T corresponds to the largest of a finite number of peak loads,

it can be seen from sections 3.2 and 3.3 that the probability distribution of the largest extreme
is likely to be very closely approximated by one of the asymptotic extreme-value distributions.
These distributions are frequently used for representing the maxima of time-varying loads. It
should be noted, however, that the precise form and parameters of the extreme-value distribu-
tion depend very strongly on the autocorrelation function of the loading process X(t). The con-
cept of autocorrelation is discussed in chapter 9.

For the present purposes it is sufficient to state that the maxima of time-varying loads can in
most cases be represented by one of the asymptotic extreme-value distributions, with para-
meters estimated by one of the techniques given in section 3.6.

3.6 ESTIMATION OF DISTRIBUTION PARAMETERS

It is assumed that the selection of the types of probability distribution for the various load and
resistance variables has been made using the approaches and methods of reasoning discussed pre-
viously. The problem now is to estimate suitable numerical values for the parameters of these
distributions using available data. For single distributions this requires just one set of data, but
for the more complex mixed distribution models such as shown in equation (3.34) various sets
of data are clearly required.

The overall process of parameter estimation consists of
®  initial inspection of the data
e  application of a suitable estimation procedure

L] final model verification.



3.6 ESTIMATION OF DISTRIBUTION PARAMETERS 59

It cannot be emphasised too strongly that the blind application of statistical procedures can
lead to very misleading results and that an initial inspection of the available data should always
be undertaken before any formal calculations are made.

Let us consider the practical problem of estimating the parameters of a single distribution func-
tion from a single sample of experimental data. The first step is to check the data for obvious
inconsistencies and errors. Manually recorded or copied data have a high probability of contain-
ing at least some transcription errors. These should be eliminated if possible. The second step

is to plot the data in the form of a histogram to check for outliers and to confirm that its shape
does not deviate markedly from the shape of the density function being fitted. If the histogram
is clearly bi-modal when a uni-modal distribution is being fitted to the data or if the sample ap-
pears to be truncated when the variable is assumed to be unbounded, checks on the data source
are clearly required. Inconsistencies are often found to arise when the set of data has been ob-
tained from experimental test programmes in more than one laboratory. Such lumping of data
is often necessary when the sample sizes would otherwise be very small, but this should be a-
voided if possible. Checks on the consistency of the means and variances of the various sub-
samples (see for example [3.5]) should generally be undertaken when practicable.

The next step is to estimate the parameters of the selected distribution using one or more of the
techniques described in section 3.6.1 below. The basic methods are

L] the method of moments
] the method of maximum likelihood
e  various graphical procedures

] use of order statistics.

The last step is to check that the sample data are well modelled by the chosen distribution and
parameters. Methods for doing this are briefly reviewed in section 3.6.2.

3.6.1 Techniques for parameter estimation
This is a large subject in itself and only a brief description is possible here. Readers unfamiliar
with the various concepts should also study a specialist text [3.11], [3.5], [3.8].

It is assumed in the following that the distribution function is known or has been postulated
and that its parameters are now to be estimated. Depending on the distribution type, one, two,
three or more parameters will be involved. The general procedure is to obtain estimates of
these unknown parameters in terms of appropriate functions of the sample values. The word
estimate is used in this context advisedly. It should be clear that because of the random nature
. of the variable no sample, however large, is completely representative of the source from which
it derives; and indeed, small samples may be markedly unrepresentative. For example, in a ran-
dom sample of 10 independent observarions drawn from a normal distribution, there is a prob-
ability of approximately 1:1000 that by chance ail observations will be greater than the mean.
Any attempt to estimate the parameters (u, ¢) of the parent distribution from this particular
sample will result in considerable error. This difficulty cannot be escaped, but the probability
of large errors occurring decreases as the sample size increases.
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In essence there are two types of estimates for distribution parameters that can be obtained

- point estimates and interval estimates. A point estimate is a single estimate of the parameter
whereas interval estimates allow certain additional confidence or probability statements to be
made. In this section only point estimates will be discussed.

The different techniqués of parameter estimation summarised below correspond to the use

of different functions of the sample data and give rise to different estimators for the parameters.
A number of desirable properties which characterize ngood» estimators are unbiasedness, efficien-
¢y and consistency. (For a precise definition of these terms, see for example, [3.11]). No esti-
mator, however, has all these properties and in practice the choice of estimator is governed by
the particular requirements of the problem, or expediency.

Method of moments: Let the variable of interest X have a probability density function fx, with
parameters 8, 8,, ..., 0, . From equation (2.35) the ith moment of X is given by

¢, = E(XI] =\' x! fy (x)dx (3.46)

Since fx is a function of the k parameters 0, 92 yoves Oy, the right hand side of equation
(3.46) is also a function of the same k parameters and i'j may be expressed as

P O . (3.47)

Using equation (3.46) to generate the first k moments gj we obtain k equations in the k un-
known distribution parameters 6. '

If we now consider a random sample of the variable X of size n with velues (x,, X5, ...,X)

the equivalent sample moments are given by
1§,
m== 3 (x) (3.48)
i=1

Finally, the moment estimators §j, j=1,..., k for the k unknown distribution parameters Bj
may be obtained by equating the moments of X, {, and the sample moments m, i.e.

i=1,....,k (3.49)

Example 3.12. Let X be a normally distributed random variable, having parameters ¢ and
o. The density function given by equation (2.45) is

- T W e
fx(x) o> exp( 2( == } (3.50)

: Assume that a random sample of n observations of X has been obtained, (xl s Xgyiensy xn).
The moment estimators for u and ¢? are now determined as follows.

Using equation (3.46) it can be shown that

¢y = E[X] =4 (3.51)
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g =Bl ] =3 +0® (3.52)

The equivalent sample moments are

- (3.53)
1 né i :
i=1
m =Ll ¥ g (3.54)
2 naw i y

Hence by equating terms, the estimators i and * for the parameters u and ¢ may be
obtained from

R ¢ v -
u= -1;‘—’ ; (3.55)
i=1
and
1 n
Gh e 38—~ (3.56)
i=1
giving
1 n
gty (Z\:)/n) (8.57)
i=1 i=1
Alternatively 3 may be expressed as
=—-Z(x —u)? (3.58)

where 1 is the sa.mple mean. However, the form given in equation (3.57) is in fact prefer-
able from a computational point of view.

: i and G* given by equations(3.56) and (3.57) are thus the moment estimators of u and o?,
respectively. It should be noted, however, that the best unbiased estimator of o? is not
3 but S? =(n/(n—1))a?.

Method of maximum likelihood: This method is generally more difficult to apply than the
method of moments, often involving iterative calculations, but maximum likelihood estimators
of distribution parameters can be shown to have a number of desirable properties [3.11].

Let the variable of interest X have a probability density function fy with unknown parameters
@ ={0;,05y:; 6, ) that are to be determined. Assume, in addition, that a particular random
sample (xl, Eiysiu sy xn) of the random variable X has been obtained. The likelihood function
of this sample is defined as

n
L6 Ix,, Xy,...,%,) = [T, (x;10) (3.59)

i=1
L expresses the relative likelihood of having observed the sample as a function of the parameters
8. Referring to equation (2.68) it can be seen that the right hand side of equation (3.59) is the
joint density function fx1 Ko ”xn(xl, Xg,...,X, | 8) of a sample with n elements x,, X,, ...
n taken at random from the variable X. In this case, however, it is the sample values Xy,
Xy, ..., X, that are known and the parameters 6 that are treated as variables.

X
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The maximum-likelihood estimators 6 of the parameters § are defined as the values of § that
maximize L, or, equivalently and more conveniently, the logarithm of L. The evaluation of 8
thus requires the solution of the set of k equations

n
Y o gty (kTN =0 , j=1,2,....k (3.60)

taking due account of any constraints (e.g. 0 < < = for the parameter o of a normal distri-
bution).

Exercise 3.5. Derive the maximum-likelihood estimators i and ¢ for the parameters u
and ¢ of a normal distribution. Show that for this distribution, ti:~se estimators are the
: same as those obtained by the method of moments.

Graphical procedures: For most simple probability distributions, it is possible to plot the cumu-
lative distribution function Fy for different values of the variable x as a straight line, simply

by pre-selecting an appropriate plotting scale or type of probability paper. See, for example,
figures 3.4 and 3.10.

Example 3.13. Let the random variable X have a 2-parameter Weibull distribution with
parameters § and k and distribution function

Fx(x)=1—-exp(—(x/k)a) , x208>1,k>0 (3.61)
Then, z = ¢n(—2n(1l — Fx(x))) is a linear function of y = £nx, since
¢n(—2n(1 — Fy(x))) = 82nx — Bnk (3.62)

The variables x and y therefore plot as a straight line on natural scales. Equivalent scales
in the original quantities Fy (x) and x can therefore be constructed.

If we now obtain a random sample of size n from a known type of distribution function Fy, but
with unknown parameters @, the cumulative frequency distribution for the sample can be ex-
pected to plot as a straight line if the appropriate plotting scale is used. It is usual to order the
elements of the sample (x,, X,, - . ., X ) to obtain the sequence x7, x'z‘, PR, 5
x] is the smallest value and x[' is the ith largest value called the ith order statistic. It will be re-

called that the probability distribution function for the random variable le‘ was derived in sec-
tion 3.2.

.., X[\, Where

One estimate of the cumulative distribution function Fx(xi) (i.e. the particular value of FX for
X =x;) is thus i/n, but preferable estimates are i/(n + 1) or (i — 1/2)/n, since for most distribu-
tion types they can be shown to be less biased. The cumulative frequency diagram is therefore
obtained by plotting the points (x;, i/(n + 1)) using scales appropriate to the type of distribu-
tion function. It should be noted, however, that some random deviations from a straight line
are to be expected, particularly for points at each end of the line.

For one and two-parameter probability distributions, estimates of the distribution parameters
can then be obtained by drawing the »best» straight line through the plotted points either by
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eye or using a formal least-squares method. In both cases, it is the sum of the horizontal squared
deviations from the line which should be minimised, not the vertical (assuming the axes are chosen
as shown in figure 3.4). Finally, the estimates of the distribution parameters are obtained from
the slope and position of the best straight line.

Use of order statistics: The graphical method discussed above is in fact a simple application of
order statistics. A detailed discussion of this subject is beyond the scope of this book. The general
approach in estimating the parameters of distributions of known type is to use sets of coefficients
or weighting factors in conjunction with the order statistics to obtain estimates of the parameters.
The coefficients are chosen to give unbiased and highly efficient estimates for samples of particular
size. The approach was first used and has subsequently been further developed by Lieblein [3.10]
for extreme-value distributions. See also [3.11]. This approach should not be neglected in any
serious application of these methods.

3.6.2 Model verification

The final stage in the process of distribution selection and parameter estimation should be model
verification. For situations in which only one set of data and no other information is avaiable, the
approach is straightforward. The simplest method is to check whether the sample data plot as a
reasonable straight line on the appropriate probability paper. If the distribution parameters have
been estimated graphically, this step will have been taken as part of the estimation procedure. The
sample data shown in figure 3.10 may be considered to be a ngood» straight-line plot. Alternatively,
a formal goodness-of-fit test, such as the x? test or the Kolmogorov-Smirnov test may be employed
to ascertain the level of probability at which it is possible to reject the null hypothesis that »the
random variable X has a particular distribution function with certain stated parameters». Such tests
are widely described, e.g. [3.5], and will not be given here.

In many structural reliability problems, however, the basic variables are best described by mixed
distribution models for which the tests described above are not applicable. In other cases, the ana-
lyst may prefer to use some prescribed distribution type to model a basic variable, e.g. a log-normal
distribution to model a resistance variable, even though over the limited range of available data
some other distribution type may in fact give a better fit. The formal use of goodness-of-fit tests

in the context of structural reliability theory is therefore often limited.

3.7 INCLUSION OF STATISTICAL UNCERTAINTY

As mentioned previously, the analyst is often faced with the problem of having insufficient data
for one or all of the basic variables which affect the structural reliability. Let us assume, however,
that there are good a priori reasons for assuming that a particular basic random variable X is
governed by a particular type of probability distribution. The problem arises therefore of select-
ing the values of the parameters § for that distribution.

One approach is to use single point estimates for the parameters - for example, the maximum-like-
lihood estimates - and to ignore the additional statistical uncertainty that arises when there are

too few data. This approach may not be too unconservative since any non-homogeneity in the

data will tend to artificially enhance the variance. A better approach is to include the statistical
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uncertainty in the parameters within the distribution of X itself, in terms of what is known as
the predictive distribution of X.

If the probability density function of the random variable X, for known parameters § is written
as fx(x|§) then the predictive density hy for uncertain 8 is given by

hy (x) =\ £ (x|0)E2 (7 1Z)dB (3.63)

where £2 (8 12) is the posterior probability density for & given a set of data z = (245295 + « 2 Z,)

f'g’ (81Z) can be obtained from Bayes theorem (see equation (2.24)) which can be expressed as
& (01Z) =NL@ |z, 2y, ... ,2,)15(8) (3.64)

where
L(81Z) is the likelihood of 8 given the observation z, and
£ @) is the prior density of 4, before obtaining the data, and

N is a normalising constant.

For further information the reader is referred to Aitchison and Dunsmore [3.1].
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Chapter 9
INTRODUCTION TO STOCHASTIC PROCESS THEORY AND ITS USES

9.1 INTRODUCTION

In the preceding chapters, loads and strengths have mainly been modelled by random vari-
ables with associated distribution functions. However, a load S on a given structure will usual-
ly be time-varying S(t). The function S(t) is stochastic (random) in the sense that the value of S
at a given time t is an outcome of a random variable. In this way, by modelling the time history
and the randomness of a physical quantity by an (infinite) number of random variables, a so-
called stochastic process is obtained. In section 9.2 a more formal definition of this concept
will be given, but it is not possible to give a detailed treatment of the theory of stochastic pro-
cesses here. Only the most fundamental notions will be introduced and only one special type
of stochastic processes will be described in more detail.

A very important problem in relation to a stochastic process is the barrier crossing problem.
Consider, for example, the response of a structure expressed by the time-history of a given
stress. When modelling the time-history of the stress by a stochastic process it might be of
interest to evaluate the probability that the process stays within specified bounds during the
expected lifetime of the structure. This problem will also be briefly examined.

9.2 STOCHASTIC PROCESSES

As mentioned above a stochastic process is an indexed set {X(t), t € T} of random variables X(t),
where all X(t) are defined on the same sample space 2. Note that two different kinds of variables
are involved, namely the stochastic variables X(t) and the variable t, here called the index. The
index set T is typically a time-interval, but can be any kind of finite set, a countably infinite set
or a subset of R. For the sake of simplicity t will be assumed in the following to be the vari-

able time.

The probabilistic structure of a stochastic process can be described in a way similar to random
vectors. If the index set is a finite set then the stochastic process forms a random vector. The
fact that a stochastic process is a set of random variables makes it natural to describe its probabil-
istic structure in a way similar to random vectors, but in this case the index set is infinite.
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Figure 9.1
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For a fixed sample space Q the outcome of the set of stochastic variables form an ordinary
function called a realization (see figure 9.1). A realization might be thought of as the outcome
of an experiment. If the experiment is repeated, the new realisations will not be the same as in
figure 9.1, but its probabilistic contents will be the same. In figure 9.2 values of X(t,) are
shown for a number of realizations and also the associated density function f{x} (x;ty).

Given two instants of time t, and t, some correlation between x(t,) and x(t,) will usually exist,
especially when the time-difference |t; —t,| is small. This is taken into consideration through
the joint distribution function F{X}(xl » Xg 5 ty, ty) defined (see (2.58)) by

Fra1(xy %958, t9) = PU(X()) < x1) N (X(ty) < x5)) (9.1)

This joint distribution function for arbitrary (t1 s t2) € T? is called the joint distribution function
of order 2. The corresponding joint density function of order 2 is given by

O Frx (X1, Xp 58y, tp)
axlax2

f{x }(Xl, xz 3 tl’ t2) e (9.2)
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The definitions (9.1) and (9.2) can easily be generalized to probability functions of any order n,
n=3,4,...

In describing a stochastic process the following functions (of time) are of great interest. The
mean value function ux (t) is defined as the expected value of X(t)

uy (t) = E[X(t)] = \ xfry (x; t)dx (9.3)

The autocorrelation function Ryx(ty,ty)is equal to the following joint moment of the ran-
dom variables X{( ty) and X(t,)

4 2

Ryx (t;, ty) = EIX(t;)X(t,)] =5 \  xXpfx g xg sty tp)dxydx,  (9.4)

The autocovariance function Cxx(t;, ty) is the covariance of the random variables X(t; ) and
Xl(ty)

CXX(tl’ tz) = E[(X(tl) _le(tl )}(X(tz) "'Plx(tgn

= Rxx(tl » t2) —”X(tl )#x(tg} (9.5)

By setting t, =ty =t in (9.5), the variance function % (t) of the random variables X(t) is ob-
tained

o (t) = Cxx (t, t) = Ry (t, t) —uk () (9.6)

Finally the autocorrelation coefficient pxx (t1, ty) is defined in a similar manner to (2.80) by

Cxx(ty, t5)

ox (ty)ox (ty) (9.7)

pxx(tl ] tz) =
For an important group of stochastic processes all finite dimensional distributions are invariant
to a linear translation of the index set. This can also be expressed by the statement that all dis-
tributions are invariant to a translation of the time origin. Such processes are called strictly ho-
mogeneous or when the index parameter is time, strictly stationary.

When this invariant assumption only holds for distributions of order one and two the process
is called weakly homogeneous or weakly stationary. In the following, the word stationary will
be used in the last-mentioned meaning.

An important consequence of the assumption of stationarity is that {x }(x ; t) and F{x}(x ; t) be-
comes independent of t so that we can omit reference to t. Further, the second-order distribu-
tions (9.1) will only depend on the difference of the index parameter r = t;, —t,. The same

is true for all the other statistics mentioned above.
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In practical applications, the modelling of a physical quantity by a stochastic process must
often be based on a single realisation of a stationary process. If only one realisation is at hand
it is natural to estimate the mean value in the following way

u= %\ x(r)dr (9.8)

If this time average approaches uy for T = o the process is said to be ergodic in the mean
value. In the same manner a process is ergodic in correlation if
pT—r

\ x(t + 7)x(t)dt (9.9)
0

Bir} = =
approaches Ry (7) for T - e . If this property holds for all moments, the process is called
ergodic.

Note that stationarity is an assumption behind the definition of an ergodic process so that
any ergodic process is stationary but not vice versa.

9.3 GAUSSIAN PROCESSES

In this section so-called Gaussian processes are treated. It has been stated several times that a
linear transformation of a set of Gaussian (normal) random variables result in a new set of
Gaussian random variables. This important property of Gaussian random variables is the main
reason why they are used for modelling whenever it can be justified. In a similar manner, it
can be shown that linear operations on a Gaussian process results in another Gaussian process.

A process {X(t), t € T} is Gaussian if the random variables X(t, ), X(t,), . . ., X(t,) are jointly
normal for any n, tiatoy . vusty. The probability density function for the corresponding n-di-
mensional nth order distribution is then given by (see (2.89))

f{x}(xl,...,xn TN, A
1 n
1 =7, 2 O ey (H)My(xg —ux (t))
=g k=1 (9.10)
(27)% C/?

G I IR R W — Copge (6, %) (9.11)

Coulh 5] Ol ) wnomenoe W bt )
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=-1 .
and M is the i; _]th element in C . It is clear from the definition (9.10) that a Gaussian
process is completely determined by the mean value function uy (t) and the autocovariance
function Cgy (t, t5). Therefore, a stationary Gaussian process is always strictly stationary.

An important property of a Gaussian process {X(t)} is that its derivative process {X( t)} is
also a Gaussian process. Let x(t) be a realization of {X(t)} and let

x(t) = x(t) (9.12)

be meaningful. The derivative process {X(t)} is then determined by the realizations x(t) when
almost all realizations x(t) of {X(t)} are considered.

Example 9.1. Consider two independent normal random variables X, and X, with X,
by, = 0 and ax = as{ = g?, Let a stochastic process {X(t)} be given by

X(t) = X, cos(wt) + X,sin(wt) C(9.13)

where w is a constant. The random variables X(t;), t; € T are clearly jointly normal and
their statistics are determined by the mean and autocorrelation of the process {X(t)}.

By (9.13)

ug (t) = EIX(6)] = 0 (9.14)
and by the definition (9.4),

Rx, x,(t;, t5) = E[(X; coswt, + X,sinwt, )(X,coswt, + X,sinwt,)]

= E[X}]coswt, coswt, + E[X}Isinwt,sinwt, = 0?cosw(t; —t,) (9.15)
since E[X1X2] = (0. From (9.15)

0% (t) = Rgx (t, t) —ud(t) =0? (9.16)
The process {X(t)} is therefore a stationary Gaussian process with zero mean and variance

(L

Example 9.2. Consider the same process {X(t)} as in example 9.1. The autocorrelation
coefficient is

_ Byx(ty,t5)

pxx(ty, ty) = o (£ )0 () = cosw(t; —ty) (9.17)

so that the joint distribution density function is given by

2
1 lexzcowr + X5

. - 1 T T 207 (1 —cos*wr)
f{x}(xl,xz,tl,tz} 21!02\/1__‘:05!;;& 9 S (9.18)

where 7 = Ty — Ty
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An important ﬁroperty of the autocorrelation function Ryy (7) of a stationary stochastic process
{X(t)} is the following. If Ry« (7) has a second derivative R;(x('r) which is continuous at 7 = 0
then the derivative process {X(t)}, defined by its realizations by (9.12), is also a stationary
stochastic process. And it can be shown that

E[X’] =—Rgx (0) (9.19)
and

E[XX]=0 (9.20)
so that there is no correlation between {X(t)} and {X(t)}. Further E[X] = = E [X].

: Example 9.3. Let {X(t)} be a stationary Gaussian process with zero mean. It follows
: then from the remarks above that the joint density function f (x} (%} is

_ xl _ ;‘2
. “ 1 205 20}
Bk} (%) =505 5 e *

(9.21)

. where o} = E[X?] —E[X)* = E[X*] = — R§y (0).

9.4 BARRIER CROSSING PROBLEM

In this section it will be shown for a stochastic process {X(t)} how the number of crossings of a
given barrier (threshold) in a given time-interval can be estimated. The presentation here is in ac-
cordance with the book by Lin. Figure 9.3 shows a realization x(t) in the interval [t1 ; t2] of

a stochastic process {X(t)} and a constant barrier x(t) = £. The number of upcrossings of this
barrier in the time interval [t, ; t,] is four. In the following an upcrossing will be called a posi-
tive passage and a downcrossing a negative passage.

{L x(t)

™3 A/\v\/\‘“"i

Figure 9.3
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To solve the problem of estimating the expected number of positive passages of a given barrier
the so-called Heaviside step function H is a useful too. Heaviside’s step function H is defined

by (see figure 9.4)

J’ 0 for x<0
H(x) = -é— for g =0 (9.22)
[ 1 for x>0

By formal differentiation of the function H one gets the so-called Dirac delta function & (x).
6 (x) is not an ordinary function in the sense that a definite value can be assigned to every x.

For our purposes, it can be defined by

: 1 97
§(x) = lim € 9.23
(x) e*omf e ( )

What is required here, is only the property that integration of & (x) gives H(x).

For a stochastic process {X(t)} and a given barrier x(t) = £, it is then convenient to define a

new stochastic process {Y(t)} by

Y(t) = H(X(t) —¢) ) (9.24)
or
0 for =x(t)<t
y(t) = % for x(t)=¢ (9.25)
1 for x(t)>¢
5(x)
H(x)
1
1
2
T e X = X

Figure 9.4
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x(t)

AT
EEEITEA

Figure 9.5

By formal differentiation of (9.24) the derivative process {i’} can be determined by
Y(t) = X(t)8 (X(t) — £) (9.26)

where the existence of X(t) is assumed. For a realization x(t) of the process {X(t)} the corre-
sponding realizations y(t) and y(t) of the processes {Y(t)} and {¥(t)} are shown in figure 9.5.

Note that the realization y(t) consists of a number of unit impulses. A positive unit impulse cor-
responds to a positive passage of the barrier and a negative unit impulse corresponds to a nega-
tive passage of the barrier. These impulses are unit impulses because integration of y(t) over

one impulse must yield +1 or —1.

By counting the number of such unit impulses in the time interval [t1 ; t2] the total number n
of crossings of the barrier x(t) = ¢ is obtained. This can also be formulated in the following way
t2 . at
H(E,tl,t2)=§ |Y(t)|dt=5
vty

* k()1 8 (x(t) — £)dt (9.27)
51
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From (9.27), the number n(s,_ ty,ty) of crossings or passages of a given barrier can be calculated
for any realization x(t) of the stochastic process {X(t)}. Such a set of numbers can be con-
sidered the outcome of a random variable N(&, ty, Ly ). The expected number of crossings can
now be determined.

"1
EIN(E, ty, tp) =\~ ELIX(D) - 8(X(t) —£)ldt =

% t’].
‘tz LR - o
\ Iici&(x—é)fx.‘;{(x.i::t)dxcb'cdt=
R
'L2 [ T
\ \ X1 £y (£, %; t)dxdt (9.28)
wtl & — oo

where fyy = f{x}{ %) is the joint density function for {X(t)} and {X(t)}.

It is convenient to consider the rate of crossings per unit time N' instead of the number of cros-
sings N in the time interval considered. N' and N are related in the following way

|t2

. tl
Equation (9.28) can then be written in the more simple form

EIN'G, 0] =\ [Kifgg (5 & t)dk (9.30)
Now assume that the stochastic process {X(t)} is stationary so that fyy is independent of the

time t. Then

EIN'G, )] =\ Ikityg (5, 0)dk = K(®) (9.31)

so that the expected rate of crossing per unit time E[N'(£, t)] is independent of time, but of

course dependent on the barrier ¢. The expected total number of crossings in the time interval
[t:1 i ty] is therefore (see (9.29))

E[N(§, t, tg)] = K(£)(ty —ty) (9.32)

Using equations (9.31) and (9.32), the number of crossings of the barrier ¢ is determined, i.e.
upcrossings (positive crossings) as well as downcrossings (negative crossings). But for a station-
ary stochastic process it is reasonable to assume that any positive crossing is followed by a nega-
tive crossing. Therefore

EIN'(%)] = EIN_ (%)) =3 EIN'(3)] (9.33)
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where N’ (£) istthe rate of positive crossings of the barrier £ and N’ (£) is the rate of negative
crossings of the barrier .

Note that for positive crossings x > 0 so that from (9.30)

EIN, (®)] =\ %fyg (s, )k (9.34)
‘0

and similarly for negative crossings. Hence, for stationary processes, the joint density function
fxf( is an even function in the variable x. The fundamental formula (9.34) is called Rice’s for-

mula.

: Example 9.4. Let {X(t)} be a stationary Gaussian process with zero mean. The joint
: density function fy; is then given by (9.21). From Rice’s formula (9.34)

x? £’

. 2
dgg=t X, x (9.35)

= B

i R

; M 1 20% 20}
E[N =\ x —e X

¥ ®) '\0 2rog 0y 2n Oy

For £ = 0 the expected rate of positive zero crossings is
' . R
E[N’, (0)] = o7 Ox ‘ (9.36)

: Example 9.5. Consider a stationary non-Gaussian process {X(t)] with the following
: joint density function

%(1+ x) for (x,Xx)€[—1;0]x [—1;1]
g (B ={ TA-x) for (xEE0:11X [~1;1] (9.37)

0 otherwise

. Figure 9.6
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The expected rate of positive crossings of the barrier x(t) = ¢ is given by (9.34)

A [

E[N;(E)l=\ —é—(l+ £)dx = 1%{1—5) for 0<t<1 (9.38)

%‘{1+.§} for —1<:<0

0 otherwise

Example 9.6. Consider the same stochastic process {X(t)} as in example 9.5, but in

this case the joint density function (9.37) is approximated by a 2-dimensional normal dis-
tribution in such a way that the two marginal density functions h.ve the same means and
variances.

The marginal density functions for the distribution (9.37) are shown in figure 9.7. It
is then easy to see that

Hy =Hg =0
(9.39)
2 -1 T
76 - %73
The approximate normal distribution is therefore
fy ¢ (X, X) -AC e~ 3¢’ —15%* (9.40)

The expected rate of positive zero crossings for the corresponding stationary Gaussian pro-

cess is
E[N’, (0)] =2i V6 . 0.2251 (9.41)
\f)'c(’.‘) i o (x)
1
2
= X ¥ . i X
—t 1 —1 1
Figure 9.7

: Exercise 9.1. Approximate the joint density function (9.37) by a 2-dimensional normal
distribution in such a way that the rate of positive crossings of the barriers £ = 0 and & = 1/2
is equal for the corresponding stochastic processes.

(Answer £, 4 (x, %) = 0.56 e~ 277 x" —112")



156 9. INTRODUCTION TO STOCHASTIC PROCESS THEORY AND ITS USES

9.5 PEAK DISTRIBUTION

The results derived in section 9.4 can be used to investigate the statistics of the peak distribu-
tion of a stochastic process {X(t)}, because peaks or troughs (extrema in {X(t)}) occur when
the stochastic process {X(t)} has a zero crossing. The number of zero crossings of { ):{(t)} is
equal to the number of extrema m {X(t)}. The formulas derived in section 9.4 can there-
fore be used when {}'{(t)} and {X(t)} are substituted for {X(t)}and {(X(t)}.

When the process {X(t)} is a narrow-band Gaussian process the distribution of the peaks can be
determined in a very simple way. A realization of a narrow-band process is shown in figure 9.8.

It is similar to a sinusoid, but the amplitude and phase are slowly varying. The stationary response
of a lightly damped linear system will often be narrow-banded, when the input process is a
broad-banded Gaussian process, such as an earthquake excitation.

In this case the expected number of peaks above the level £(£ > 0) per unit time is, with good
approximation, equal to the expected rate of crossings of the barrier £, i.e. equal to E[N; (&)].
Similarly, the expected total number of peaks per unit time is equal to the expected rate of zero
crossings E[N '+ (0)]. Therefore, the expected relative number of peaks above ¢ per unit time is

1

§
EIN, (8]~ 2.3
BN (0)] = © S
where the formulas (9.35) and (9.36) have been used.
The distribution function F_ (%) for the peak magnitude ({ > 0) is then given by
£l
5
E(5)=1"~¢ , 0<E<e (9.43)
and the density function f_ (%) by
T 202
L®=tre X | 0<§<w (9.44)
X

This distribution is the so-called Rayleigh distribution.

——

0

Figure 9.8
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Example 9.7. Let {X(t)} be a narrow-band Gaussian process with zero mean and let
ox = 1. The density function for the peak magnitude is then given by (9.44)
.

f_(5)=¢te 2° (9.45)

£2(6)

Figure 9.9. Density function (9.45).

Example 9.8. From an experimental investigation of the variation in bending moment with
time in a given section of a beam it is concluded that the moment can be modelled by a sta-

: tionary narrow-band Gaussian process {M(t)} with
By = 12 MNm ;oo = 2 MNm
uy = OMNm/sec ; oy =4.01- 10~? MNm/sec

The rate of positive crossings of the barrier £ = 18 MNm is then

_(18—12)
s -2
EIN, (18)] = 5= 20100 o723 "2 354 10 sec”! (9.46)
T 2
The density function for the peak magnitude is given by
1
e =12
£.(5) =1 (£ —12)e 24 (9.47)
and the probability of getting peak magnitudes greater than £ = 18 MNm is
1
— e (18— 18)"
P(>18)=1—F_(18)=e 2'¢ =0.011 (9.48)

In the derivations above, only narrow-banded processes are considered, i.e. processes where the

ratio

i expected number of zero crossings (9.49)
expected number of peaks '

is approximately equal to 1 (see figure 9.8). It can be shown that the ratio a lies between zero
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and one and that in general the density function f_ (%) for the peak magnitude is given by
—— B _ £

=1 Vl—a® = 203(1—e*) af 2,73y 2%

2 (§) g * oyl erfti=(5 —2) Dle (9.50)

B

where the error function erf is defined by

X

-2\ -t
erf(x) \/Fsoe dt (9.51)

: Exercise 9.2. Show that (9.50) for @ = 1 is equal to (9.44).

When «a is very small (a = 0) corresponding to a large number of peaks in relation to the num-

ber of zero crossings the formula (9.50) can be approximated by a normal distribution
E!
1 T 203,
fL()y———e "X |, —wLiL o 9.52
z (&) VIr 3 ( )

: Example 9.8. Consider an ergodic Gaussian process {X(t)} with Mg = 5 and ox = 2. By

: analysing a realization of this process it is concluded that the ratio « of the expected num-
: ber of zero crossings to expected number of peaks can be set equal to 0.6. Further, the ex-
: pected number of crossings of the barrier ¢ = 9 is equal to 1072 .

: The probability of getting peak magnitudes greater than 9 is then
+9
PE>9)=1-\ (o (9.53)
: where -
_ g =8§
£_(£) =0.160-e~ 01956 =54 0.075(¢ — 5)[1 + erf(0.265¢)le 8 (9.54)

By numerical integration P(£ > 9) can then be calculated from (9.53). Lower and upper
: bounds for P(£ > 9) can be calculated by considering the casesa =0 and « = 1.

For a =0, one gets from (9.52)
Pt>9)=1 —4:(%) = 0.02275

and for @ = 0 from (9.44)

(
P> 9)=e 8 =0.135

: The standard deviation oy for the derivative process can be calculated by setting E[N’, (9)]
: equal to% + 107 One gets oy =0.046. The expected rate of positive crossings of any bar-
: rier can then be calculated from (9.35).

Exercise 9.3. Consider an ergodic narrow-banded Gaussian process {X(t)}. By analysing
: arealization of this process it is concluded that the expected rates of positive crossings of
: the barriers £ = 0, 5, and 10 are 107%, 107?, and 10~*, respectively. Determine the mean and
: the variance for {X(t)} and for {f{(t)}. Sketch the density function for the peak magnitude
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and calculate the probability of obtaining peak values greater than 5.
(Answer: P(£ > 5) = 0.075).
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Chapter 10
LOAD COMBINATIONS

10.1 INTRODUCTION

The modelling of load variables is treated briefly in section 3.5. It is stressed there that load
variables and other actions are typically time-varying quantities which are best modelled as
stochastic processes. In section 3.5, it is also shown that when dealing with a single time-vary-
ing load in connection with barrier crossing problems (see section 9.4) the detailed time vari-
ation is not of relevance. This is due to the fact that in such cases the distribution of the
maximum value of the loading process in a given reference periode can be derived from the
arbitrary -point -in-time distribution (see figure 3.13 on page 57). When the loading pro-
cess is continuous then the probability distribution of the maximum value (largest extreme) is
likely to be very closely approximated by one of the asymptotic extreme value distributions,
treated in section 3.3. In this way instead of modelling a single load variable as a stochastic pro-
cess {X(t)} it is modelled by a stochastic variable, say Y (see also section 9.5). Therefore, in
reliability analysis, single load variables imply no special difficulties. A number of examples in
chapters 5 and 6 of analysis and design of simple structures loaded by single loads illustrate
this fact.

When more than one time-varying load variable acts in combination on a structure then the
above simplification cannot be used because determination of the distribution of the combined
load effect requires knowledge of the detailed variation with time of the individual loading pro-
cesses. This is illustrated in figure 10.1, where realisations p, (t) and p, (t) of two loading proces-
ses {Pl(t), 0<t< T}and {P,(t), 0 < t < T} are shown together with the sum pl(t] + pylt).

It is clear from figure 10.1 that the maximum values of P, (t), Py(t) and p, (t) + p,(t) during
the reference period need not appear at the same instant of time. For the specific realisation
shown here, the instants of time t,, t, and t, for maximum of p, (t), py(t) and p, (t) + py(t)
are all different. Also note that maximum value of p, (t) + p,(t) is considerably smaller than the
sum of the maximum values of p, (t) and py(t). It is obvious from these observations that know-
ledge of the detailed time variation of the two loading variables in the reference period T is re-
quired to determine the probability distribution of the sum of the two load variables. Therefore,
knowledge of the distribution of only the maximum values of the individual loading processes
gives insufficient information to evaluate the combined effect exactly.
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o
._]__ ——

Py (t)+pylt)

Figure 10.1

The intention of chapter 10 is to give some information on problems connected with load com-
binations. However, a thorough presentation of these problems is beyond the scope of this
book. The reader is referred to the references at the end of the chapter. The main intention is
to give the necessary background for understanding the ideas behind an approximate method
for dealing with load combinations. This method is very suitable for use in connection with the
level 2 methods presented in chapters 5 and 6.

10.2 THE LOAD COMBINATION PROBLEM

One of the fundamental problems in dealing with time-varying loads modelled by stochastic
processes is connected with estimation of the probability that the stochastic process defined as
the sum of the individual processes crosses a given barrier (threshold) during the reference period
T. More specifically, let two loads (or load effects) be modelled by stationary and independent
stochastic processes {X, (t), 0 < t< T} and {X,(t), 0 <t < T}. In the following all stochastic
processes will have the same index set so that the shorter notations {X, (t)}, {X,(t)}, etc. and
{X1 } {X,}, etc. can be used. The combination problem can then be formulated in the following
way. What is the probability that the process

(X(®)} = {X, () + Xy (1)) (10.1)

has a value larger than x(t) = ¢ during the reference period 0 < t < T? This probability
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is
P(max X(t)> £, t€[0; T]) =

=P(X(0) > £) + P(one or more upcrossings of £ |X(0) < £) (10.2)

where P(X(0) > ¢) is the probability that the process {X(t)} has a value greater than ¢ att =0
and the last term in (10.2) is approximately equal to
n=ee
P(one or more upcrossings of §) = _\: P (n upcrossings of ) (10.3)
n=1
The expected number of upcrossings (positive crossings) of a level £ per unit time for a stationary
process is denoted E[N_ (§)] in section 9.4. It is convenient to use a shorter notation vy (£) here.
When vy (§) = E[N! (£)] is known, then the expected number of upcrossings in the time interval
(0; T] is equal to vy (£)* T, i.e.

n=oe

E[number of upcrossings] = v (§):T = E n*P(n upcrossings of £) (10.4)
n=1
It follows from (10.2), (10.3) and (10.4) that N .
P(max X(t) > ¢, t € [0; T]) < P(X(0) > £) + vy (§)° T (10.5)

In general P(X(0) > £) < v¢ (¢)* T and for most practical reliability problems vy ()T < 1.1In
such cases vy (£)* T is a good approximation of P(max X(t) > £, t € [0: TD,i.e.

P(max (X(t) > £,t € [0; T]) ~ vy (§)° T (10.6)

The left hand side of (10.6) is equal to 1 — Fz (£), where FE is the distribution function of the
maximum value of the stochastic process {X(t)} in the time interval [0; T]. Therefore,

Fo(§) ~ 1 —vy(®)-T (10.7)

where vy (£)*T < 1. By (10.7) the problem of calculating the distribution function F_ for the
maximum value of {X(t)} = {X,(t) + X,(t)} is reduced to that of determining the rate of up-
crossings (the expected number of positive crossings) v« (¥) = E[N’, (¥)] for {X(t)}. Unfortunately,
exact expressions for vy (£) are only known for some special kinds of processes. An obvious
way of calculating vy (£) is to use Rice’s formula (9.34)

vx®) =EIN, )] =\ &fyg(t, D)k (10.8)

where fxi is the joint density function for the process {X(t)} and its derivative process {}:Z(t)}.
The joint density function fx}'{ can be derived by the so-called convolution integral
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w0 » o0

B (%, %) = \. ok, kg (x

. xlz—un Q,x1=—w

—x,, & —%,)dk, dx,  (10.9)

where fXl X1 and fxzf(z are the joint density functions for Xl . f{l and X2 , }-§2, respectively.

Note that equation (10.9) is a generalization of the well-known convolution integral in ele-

mentary probability theory. Also note that the first step in calculating fy ¢ is to calculate

fX X and fx .- This is in general difficult, but it has been done for some special stochastic
14 249

processes.

By inserting (10.9) in Rice’s formula (10.8) one gets

Ml

g@®=\ %\ \ e (R )i g, (g &k Dk dxg di

) ¥ 00

(10.10)

(10.10) can be written in a more convenient form by the substitution x = :':1 + :?.2

.4 90 on o

®=\ O\ g o) g (6 x dy)dkyak dx
X=—e VXy=—e VXy=—X;

oa A ]

=\ g k)t g - x Rpdwds

Cxm—on ¥V,

E \ \ %oty g (% &;)iy g (5 —x, &;)dwdx (10.11)

R=—e b

where the domain w in the X, X, -plane is shown in figure 10.2.

In conclusion the procedure for evaluating the distribution function F_ for the maximum value
of the stochastic process {X(t)} = {X,(t) + X, (t)} in the time interval [0; T] is

= Xq

Figure 10.2
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(1) Calculate fx1x1 and fle'{z for the two processes {X, } and {X,}
(2) Find vy (§) = E[N] (¢)] by evaluating the integrals in (10.11)
(3) Find an approximate expression for F_ from (10.7)

Step (2) above can only be performed exactly for special density functions. Usually numerical
integration must be used. However, upper and lower bounds for vx(";‘ ) can be derived by chang-
ing the domain of integration (w) in (10.11) in an appropriate way. The upper bound is especial-
ly useful so its derivation will be shown here.

The upper bound is obtained by changing the domain of integration in the first integral on the
right hand side from w to w,; and the domain of integration in the second integral on the right
hand side from w to w,, where w, and w, are shown in figure 10.3. Clearly, an upper bound of
vy (£) is then obtained

vy (§) < \ \ \ % fg g (5 %))Ey g (8= x, %,)dk,dk, dx

xm— Yy =0 "y

B 3 ~ \ c ), !':2fxl)°{1 (x, *1”}:25{2(5 — X, X, )dX,dx, dx
x=—e VX = —= V%, =0

oo oo

=§_- vg, (O (§ —x)dx + ‘\_-“uxz(ij —x)fy (x)dx (10.12)
where vxl (x) and ”Xz (¢ — x) are rates of upcrossings for the processes {Xl} and {X,}. The inte-
grals in (10.12) are much more convenient than the integrals in (10.11) because they only involve
rates of upcrossing of the processes {X, } and {X,} and the corresponding density functions. It
has been shown in the literature (see the references at the end of chapter 10) that the upper bound
(10.12) is very close to the exact result, so that it can be used as an approximation for vy (§).

oo

vy (§) = S uxl (x)fxz(s —x)dx + \ vxz(s - x)fxl(x)dx (10.13)

.fxl

’-‘2
Wy Wo

Figure 10.3
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Only the sum of two independent processes has been treated above. However, the same proce-
dure can be used for sums of three or more processes. For example, for the sum {X} of three
independent processes {X;}, {X,} and {X3} one gets

. —,

vg(B) < [y (XMx, 4 x (E—X) + oy (y g E—X)+vg (X o x, ¢ —x)Jdx

(10.14)

where the density functions fy _, are determined as usual by the convolution integral
s

y oo

iy, x,(¥) =.\ fy, (D (x — t)dt (10.15)

(10.14) can easily be generalized to sums of more than three independent processes.

10.3 THE FERRY BORGES -CASTANHETA LOAD MODEL

In this section a simple load model suggested by Ferry Borges and Castanheta will be presented.
In this model real loading processes are greatly simplified in such a way that the mathematical
problems connected with estimating the distribution function of the maximum value of a sum
of loading processes are avoided. Further, the Ferry Borges - Castanheta load model is very
suitable in connection with the level 2 methods presented in chapters 5 and 6.

For each load process {X,} it is assumed that the load changes after equal so-called elementary
intervals of time T This is illustrated in figure 10.4, where the reference period T (e.g. 1 year) is
divided into n, intervals of equal length r, = T/n;. n, is called the repetition number. Further it
is assumed that the load is constant in each elementary interval. The loads in the elementary in-
tervals are identically distributed and mutually independent random variables with a density
function (point-in-time distribution) fxi. This density function is shown as a continuous
density function in figure 10.4 but it can also be a density function of the mixed type (see page
22). This is convenient if, for example, it is desirable to have the load value 0 with a finite prob-
ability. Let the point-in-time distribution for load process {X;} be t'x1 and the corresponding
distribution function in then the distribution of the maximum value in the reference period
Tis (Fxl)“i, i.e. (see (3.5))

A x(t) e

n = T/"ri

fxl( x-[)

o

0 T
Figure 10.4 1
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= n
FmTax Xi(xii) (Fx, (%)™ (10.16)

Therefore, for this so-called rectangular pulse process it is a simple task to calculate the dis-
tribution of the maximum value in the reference period T.

When combinations of load processes {Xl}, {Xz}, ..., {X,} are considered it is assumed in
the Ferry Borges - Castanheta load model that the loads are stochastically independent with
integer repetition numbers n;, where

n,<ny,<...<n<...<n (10.17)

1 r

and where (Z_ is the set of positive natural numbers)
n/n_y €Z forie {2,8,...,1} (10.18)

The conditions (10.17) and (10.18) are illustrated in figure 10.5 where r = 3 and n, = 2,n, =6
and ng = 12,

Although the Ferry Borges - Castanheta load model presented above is a gross simplification of
the real loading situation, experiences seem to verify that the model is capable of reflecting
the most important characteristics of load combinations.

hxq(t)

1

4 xg(t)

___Jv.—

Figure 10.5
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10.4 COMBINATION RULES

It has been empﬁasized earlier that two loading processes will usually not reach their maximum
value in a given reference period T at the same instant of time. It is therefore too conservative
to replace m%x {X,t)+ ...+ X (1)} by m_lg.x{Xl(t)}+ i m’fgx{Xz(t)}. On the other hand,

m'ra}x{x1 (t) + ...+ X,(t)} is a very complicated stochastic variable to use in practice, so some
kind of approximation must be made.

Using Turkstra's rule, m%x {Xl(t) + ...+ Xr(t)} is replaced by r stochastic variables,
namely

Z, =m%x{X1(t)} + Xy (8T )+ oo X (")

r

Zy = X, (%) + max {X, ()} + ...+ & \ (10.19)

Z, = Xl(t") + Xglt" )+ ui® mTax{Xr(t)}

where t* is an arbitrary point in time. By this rule the reliability of a structure is only checked
at those points in time where the individual load processes reach their maximum value. There-
fore, the reliability of a structure will be overestimated. However, it has been shown that this
overestimation is usually very small.

A more refined rule has been formulated in connection with the Ferry Borges - Castanheta load
model presented in section 10.3. In this model the loading processes {X, }, {X,}, ..., {X.,} are
rectangular load processes with ny, Ny, ..., N, repetitions in the reference period T, where
nlénzs...snr.

For r=2, the rule gives the following 2 combinations for the loads:

Combination | No. of repetitions of load
No. 1 2
i | n, ny /n1
2 i ngy
Table 10.1

For r =23, the rule gives the following 4 combinations:
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! Combination V‘ No. of repetitions of load
No. 1 2 3
1 | n, n,/ny n,/n,
2 1 n, n,/ngy
3 ny 1 Ng/ny
= 1 f ng
Table 10.2

In general with r actions 2"~ ! different combinations of load have to be considered.

Example 10.1. Let the number of rectangular pulse processes be r = 3 and let the num-
ber of repetitions be n; =3, ny =6 and n; = 30 in the reference period T. According to
table 10.2 the following combinations have to be checked:

Combination 1: Max(3 rept. of Xl) + Max(2 rept. of X2) + Max(5 rept. of X3)
Combination 2: (1 rept. of Xl) + Max(6 rept. of Xz) + Max(5 rept. of X3)
Combination 3: Max(3 rept. of Xl) + (1 rept. of Xz) + Max(10 rept. of X3)
Combination 4: (1 rept. of X, ) + (1 rept. of X,) + Max(30 rept. of X,)

Examples 10.2 and 10.3 show how the reliability index g can be calculated for a structure
loaded by r = 2 time-varying loads modelled by Gaussian rectangular pulse processes.

: Example 10.2. Consider the indeterminate beam shown in figure 10.6 with two time-de-

: pendent loads p, (t) and p,(t). Let p(t) = p, (t) + p,(t). Let p, (t) be a realisation of a sto-

: chastic process {P,(t)} and P, (t) of a stochastic process {Pz(t)}. Further, let {Pl(t)} be a
Gaussian pulse process with up () =3 kN and op, () = 0.3 kN and with n; =1 repetitions
in the design life (reference period) T = 1 year. Likewise, let {Py(t)} be a Gaussian pulse
process with up, ) =2 kN and op, ;) = 0.2 kN but with ny = 12 repetitions in the design
life 1 year. Realisations of the pulse processes are shown in figure 10.7.

Jp(t) = py(t) + py(t)

AANANY

zgv;;’2.5m
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x
o
3

Figure 10.6
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The maximum value P2'max of the load process {P,(t)} is then

Py max = Max [Pyl (10.20)

2, max
i1 00012

where Py; is the load level in pulse i. Due to the independence of the pulses and their identi-
cal Gaussian distributions the distribution function Fy, for Xo =Pj 1,y Is given by

X, —u
2 P
F x2) = @12(T2
2

X, ) (10.21)

: Note that X, is not Gaussian distributed. Therefore, in connection with level 2 reliability

analysis or design a transformation must be performed, for example as shown in section 6.4.
By this transformation the distribution of X, = Py max 15 replaced by a normal distribution
with mean ”3{2 and standard deviation 05(2, where (see (6.37) and (6.38))

Xq—2
. e@Ti @2 E 5
ox, = : *0.20 (10.22)

L

g11,%2 2 Xag =
12:0 (=557 ) e (=53 )

x'z' -2
0.2

nukz =X* _¢_1(‘b12(

5 ) oy, (10.23)

§ xg is the x, -coordinate for the design point.

: Example 10.3. Consider the same beam as in example 10.2 and with the same loads. Further,

let the safety margin M be given by

5
MMy =g+ me 12[P2i}) (10.24)
'l .

where the critical limit moment MF is a normally distributed random variable with KMy =
20 kNm and oy = 2 kNm. Introduce the random variable X; =Mp —2 P;. X, is normal-

. ly distributed with

ug, =20—175=12.5kNm (10.25)

=J92 (2. 03 =
ax‘l 2 +(2 0.3 2.14 kNm (10.26)

: The safety margin can then be reformulated
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M=X, -2 X, (10.27)

In the norrhalised coordinate system the failure surface is then given by

(12.5 + 2.14 1~11)—2.5(,u'xz + o'xzxz) =0 (10.28)

The reliability index 8 can now be calculated by the same iterative technique as used in
: example 6.8. With the usual notation
2.8 uk — 125
2

g = 2 (10.29)
2.14a; —250y a,
ey (10.30
@y == 2. .30)
ay =+ 250y (10.31)
: where ‘73{2 and “3{2 are given by (10.22) and (10.23) with
52 10.32
02 - P L10.58)
Iteration No.
Start
1 p) 3
8 3.00 3.87 3.11 841
oy —0.717 | —0.989 | —0.990 | —0.991
oy 0717 | 0.148 | 0.141 | 0.138
(x5 —2)
—%-2— 2.151 | 0.573 | 0.439 | 0.429
ok, 0.128 | 0.121 | 0.119 | 0.119
il 2.31 2.31 2.32 2.32
2

Table 10.3. The reliability index is § = 3.11.

: Exercise 10.2. Show that the reliability index for the structure in example 10.3 is § = 3.19
: if the number of repetitions n, is equal to 6 (and not 12) but with all other data unchanged.

: Example 10.4. Consider the same structure as in examples 10.2 and 10.3. The variation of
: the reliability index 8 with the number of repetitions n, for the load process {Pz(t)} is
: shown in figure 10.8.
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¢ Figure 10.8

Example 10.5. Consider again the structure analysed in examples 10.2 and 10.3, but now
the structure has to be designed so that it has a reliability index f = 4.00. Let the critical

: limit moment Mg be normally distributed with unknown mean value MM, and standard
+ deviation oy = 0.1-py_. All other data are unchanged.

The safety margin with X, = Mg, X, =P, and X3 =P, . is

M=X; —25X, —25X; (10.33)

: where X, is N(“MF- 0.1 HMp ), Xo is N(3, 0.3) and X3 is = N(,us(a, 03(3 ). The formulae for

the iterative process are

75+ 3a, + 2.5;.15{3 + 100'}{3:23

HMe = 1+04a, (10.34)
@y ==y, 0.1 (10.35)
ay =1 0.75 (10.36)
ay =%2.5 o, (10.37)
and the iteration scheme is:
. Iteration No.
G 1 2 3
AMg 20.5 23.0 23.1
ay —0.577 | —0.928 | —0.944 | —0.944
a, 0.577 0.340 0.307 0.307
ag 0.577 0.152 0.124 | 0.123
a}'{3 0.134 0.122 0.120 0.120
u}'{a 2.30 2.31 2.32 2.32

: Table 10.4. With HMy = 23.1 kNm the reliability index g8 = 4.00.
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In the final example 10.6 it is shown how the reliability index B can be calculated for a struc-

ture with 3 time-varying loads modelled as Gaussian pulse processes.

: Example 10.6. Consider the simply supported beam shown in figure 10.9. The beam is

: loaded by 3 uniformly distributed time-dependent loads p,(t), pa(t) and p3(t). The Ferry

: Borges - Castanheta load modelling is used for the corresponding load processes {P;(t)},

: {Py(t)} and {P5(t)}. The modelling data are shown in table 10.3. The safety margin is

M=Mp—3-25(, + max [Pyl+ max [Pyl) (10.38)

: =)o 6 i=1,...,180

: where the critical limit moment MF is assumed to be N(12.50 kNm, 1.25 kNm). Note

: that in the last term in (10.38) the number of elementary intervai. is only 180 due to the
fact that the load process {Pz(t)} is only assumed to be active for 1/2 year with n, = 6

elementary intervals,
. Equation (10.38) can be rewritten

M=x, -2

3 (10.39)

max (X, + max [Xyl]
i=1,...,6 i=1,...,30
where

25

: X, =Mp — 2P, is N(10.9375, 1.3975)

Figure 10.9

" Xy is N(—0.20, 0.40)
. Xy is N(— 2.00, 1.00)
Load process No, ot 7] kN o kN Distribution
P repetitions Pi(t) P,(t)’
{P,(t)} n, = 1/year 0.50 0.20 Gaussian
{Py(t)} |ny =6/Fyear| —0.20 0.40 Gaussian
{P4(t)} ng = 360/year —2.00 1.00 Gaussian
Table 10.5
pg(t)
Pg{t)
o WO T TTTTT T TI T IT TO IO ITAL L  Pe®
" . e=5m -
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Let X, = max [X] be approximated by a normal distribution N(u'xa . o:‘a ) and let
i=l..0330

1 Xy =X, + X,. X; will then be normally distributed N(— 0.20 + ,u'xs ,v/0.40% + (o'xa)z).

Finally, let Xg = max [Xg;] be approximated by a normal distribution N(u 'x5 , a'xs ).
i=1;:0::8

¢ All approximations are made at the design point “X + X, o . In the normalised coordinate
: system the failure surface is then given by

(10935 + 1.3975 x;) — 22 (ufg_+ 0 Xg) =0 (10.40)

: and the iteration formulas are

25 ,

o ux, —10.935
B= LAEE — 25 (10.41)
. @)~ 0% %
a, =— kl 1.3975 , Xy =ayf l
10.42
4 2_5_ ' o (10.42)
%g k, 8 VX, »  Xg=Xg =agh )
1 a ]
a2=—-—040 ; xz—azﬁ
klz L (10.43)
Ty =0k, , Xy mxg magt .

r + d — r + r
e 020 "k, * Pos0x, (10.44)
+/0.40% + (03{3 )?

The iteration scheme is as follows:

Iteration No.

Start
1 2 3 4 5

a'xa 1.000 0.503 0.513 0.701 0.783 0.811
u’x3 —2.000 | —0.005 |—0.008 |—0.233 |—0.435 | —0.521

03{5 1.077 0.358 0.541 0.698 0.37% 0.802

uks —2.200 0.557 0.442 0.302 0.121 0.045
g* 3.000 0.450 2.951 3.386 3.662 3.738
ay —0.707 | —0.781 |—0.637 |—0.539 |—0.499 |—0.487
ag 0.707 0.625 0371, 0.842 0.867 0.874
oy 0.707 0.622 0.615 0.496 0.455 0.442
a, 0.707 0.783 0.789 0.868 0.891 0.897
[ 3.00 5.17 4.45 3.88 3.77 3.76

: Table 10.6
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It is important to note that the values for HP,(t) and op () in table 10.5 are values adjusted
in such a way that the approximated normal distributions for the maximum distributions
are acceptable.
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Chapter 11
APPLICATIONS TO STRUCTURAL CODES

11.1 INTRODUCTION

Structural codes are documents which, by their very nature, are subject to periodic revision
and amendment, but the decade 1970 - 80 was a time of marked activity in code development.
This is still continuing. The main features have been

° the replacement of many simple design rules by more scientifically-based calculations de-
rived from experimental and theoretical research,

e the move towards limit state design - whereby the designer and/or code writer specifies
the relevant performance requirements (limit states) for each structure explicitly; and where
separate sets of calculations are required to check that the structure will not attain each
limit state (at a given level of probability),

° the replacement of single safety factors or load factors by sets of partial coefficients,
° the improvement of rules for the treatment of combinations of loads and other actions,

®  the use of structural reliability theory in determining rational sets of partial coefficients,
and

®  the preparation of model codes [11.7] for different types of structural materials and forms
of construction; and steps towards international code harmonisation, particularly within
the European Economic Community (EEC).

It should not be thought that all these developments have been fully co-ordinated, or that all
the changes to practical codes that have taken place are necessarily of great benefit. Indeed
many recent changes in structural codes have not been met with enthusiasm by practising en-
gineers, often for good reason. Nevertheless, each of the features mentioned above is of rele-
vance to future code development.

In comparison with the idealised models used for calculation purposes, the actual behaviour

of most structures is extremely complex and there is a tendency, as more research is undertaken
and more becomes known, for the design procedures set out in structural codes to become in-
creasingly lengthy and involved. Such changes generally increase design costs and increase the
risk of major errors being made. They cannot be classed as improvements unless the new pro-
cedures result in improved standards of safety and/or reduced costs of construction and main-
tenance.
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[t is therefore clear that the »best» codes are not necessarily those with the most scientifically
advanced design:clauses. As will be discussed later, there may often be advantages in using sim-
plified design rules. The effect of this will be to make the overall construction slightly less econ-
omic and the reliability of those structures designed to the code marginally more variable, for
any specified standard of reliability.

In previous chapters, various aspects of structural reliability theory have been discussed, to-
gether with the problems of modelling load and resistance variables. In this chapter we con-
sider how these techniques can be used in the development of conventional structural codes.

11.2 STRUCTURAL SAFETY AND LEVEL 1 CODES

As mentioned in chapter 1, level 1 design methods were described as »design methods in which
appropriate degrees of structural reliability are provided on a structural element basis (occasion-
ally on a structural basis) by the use of a number of partial safety factors (partial coefficients)
related to pre-defined characteristic or nominal values of the major structural and loading vari-
ables». A level 1 code is therefore a conventional deterministic code in which the nominal
strengths of the structural members designed to that code are governed by a number of partial
coefficients or by equivalent means.

The safety and serviceability of practical structures are achieved by the use of suitable partial
coefficients in design, together with appropriate control measures. Both are essential and it is
helpful to distinguish their individual roles.

Let us first examine the role of partial coefficients. Consider a structure subjected to a random
time-varying load Q having a specified nominal magnitude Ugp- The structure is proportioned
to carry a design load Q4 = YQ9sp> where 1Q is a partial coefficient on live load. The effects of
increasing 1Q by, say, 20% will in general be

an increase in the nominal capacity of the structure to support the load Q,

an increase in the actual capacity of the structure to support the load Q,

an increase in the sizes of the structural members and the self-weight of the structure,
an increase in the cost of the structural system,

some increase in the actual capacity of the structure to resist any other load Q', and

an increase in the safety of the structure as characterised by a reduction in the probability
that it will fail in any given reference period T.

If the design strength of a material is given by e4 = €sp/Tm» Where ey, is the specified material
strength and v, is a partial coefficient, an increase in v, will in general have the same effects
as an increase in 7Q-

There are some circumstances, however, when increases in 7qQ or in v, may not give rise to
these effects. For example, the actual load-carrying capacity of a structural member, as opposed
to its nominal capacity, may decrease or may not significantly increase if, for example, any
change in yq or v, results in the designer using larger diameter reinforcing bars which, in spite
of having the same specified yield stress as the bars they are replacing, may have a lower mean
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yield stress (see figure 3.9). Similarly, small changes in YQ Of Y, May sometimes nave no effect
on either the dimensions or the safety of some structural members. This is because of the dis-
crete nature of many structural components (e.g. rolled steel beams) and the need to round up
to the next section size above when designing. In such cases the actual strength, and hence the
reliability, is not a continuous function of the partial coefficients.

We now consider the reasons for using partial coefficients as opposed to single safety factors or
load factors. The main reason is that only by using partial coefficients can reasonably con-
sistent standards of reliability be achieved over a range of different designs within any one code.
As will be discussed in section 11.4, the most consistent standards can be achieved by associat-
ing a partial coefficient or some other safety element with each major source of uncertainty (i.e.
with each basic variable). Partial coefficients are also essential for the rational treatment of load
combinations, and in particular for situations in which the total load effect in part of a struc-
ture is the difference of two load effects of approximately similar magnitude but originating
from different load sources - e.g. the effects of gravity loads and wind loads in the up-wind col-
umns of a tall building.

We now return to the question of controi measures. The safety and serviceability of a structure
are influenced as much,if not more, by the nature of the control measures that are in operation

"as by the magnitude of the partial coefficients that are used in design. Control takes two main
forms

®  quality control of materials and fabrication, and

© controls to avoid the occurrence of major or gross errors in the design and construction
processes. g

Control of the first type is aimed at reducing variability in the mechanical properties of struc-
tural materials and maintaining appropriate mean properties. For example, the variability in the
yield stress of steel can be reduced by improved control on chemical composition and rolling
conditions. Such control will, in general, reduce the probability of structural failure and thus in-
crease safety. Both the form and the parameters of the probabilistic models for resistance vari-
ables discussed in chapter 3 are dependent on the standards of quality control and inspection
that are in operation.

Control of the second type is clearly more difficult to achieve since the sources of possible
errors are almost unlimited. This is the subject of chapter 13.

We continue here with the problem of devising a suitable procedure for evaluating partial coef-
ficients or other safety elements for a level 1 code. The term safety element is used as a generic
term for partial coefficients and additive safety elements (see section 11.3.3). A logical sequence
of steps is as follows

®  set limits on the range of structures and materials for which the code will be applicable,

° specify the deterministic functional relationships to be used as the basis for each design
clause,

®  select the general form of the probabilistic models for the various load and resistance vari-
ables and model uncertainties,
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© specify appropriate quality control measures and acceptance criteria for the manufacture
and fabrication of basic materials and components,

e  determine the parameters of the relevant models from loading data and from materials
data obtained under the specified standards of quality control and inspection,

® select a suitable safety format - the number of partial coefficients and their position in the
design equations (i.e. the variables associated with partial coefficients), etc.,

® select appropriate representative values of all basic random variables (e.g. nominal, charac-
teristic or mean values) to be used as fixed deterministic quantities in the code,

®  determine the magnitude of the partial coefficients to be used in conjunction with the
above representative values to achieve the required standards of reliability.

Procedures such as this have already been used in the application of structural reliability theory

to practical level 1 codes, e.g. [11.6], [11.10], [11.12]. Some of these steps have already been con-
sidered in some detail, e.g. the modelling of load and resistance variables, and others, e.g. quality
control procedures, are beyond the scope of this book. In the remainder of this chapter we shall
concentrate on the question of choosing suitable safety formats for structural codes and on the
calculation of partial coefficients.

11.3 RECOMMENDED SAFETY FORMATS FOR LEVEL 1 CODES

The safety format of a code is defined as the way in which the various clauses of the code regu-
late the degree of safety, or more generally the reliability, of structures designed to the code.

In particular, it concerns: the number of partial coefficients or other safety elements to be used,
their positions in the design equations, and rules for load combinations.

The following recommendations for level 1 codes are based on the work of the International
Joint Committee on Structural Safety [11.7], [11.8], and are likely to form the basis of a new
international standard to replace ISO 2394: General principles for the verification of the safety
of structures.

11.3.1 Limit state functions and checking equations
As discussed in chapters 4 and 5, the general conditions for a limit state not to be exceeded may
be expressed as

f(Xy, X9, ..., X)) = £(X)> 0 (11.1)

where
X  are the n basic random variables which influence the limit state, and
4 is the limit state function (failure function).

The variables X may be sub-divided into variable loads and actions @, permanent loads G, ma-
terial properties E, geometrical parameters D, and model uncertainties im(see equation (1.1)).
In addition, each limit state function is likely to involve one or more constants ¢. Equation
(11.1) may therefore be re-written as
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iQ,G,E.D.X,8)> 0 (11.2)

For the purposes of a level 1 code, the equivalent deterministic criterion for safety checking (i.e.
checking the sufficiency of a structure or structural member whose design properties are given)

Is

f(ad,Ed,Ed,dd,SEmd,E)>O (11.3)
where
£ is the same limit state function as above, involving n quantities x 4 ind m constants ¢, and

a4 is the deterministic design value of the random variable Q, etc.

[f the aim is to design, as opposed to check, a particular structural member, it may often be pos-
sible to invert equation (11.3) to give the minimum design value of some convenient resistance

vanable - for example, a dimension D’ or a section modulus, e.g.

dy = 1(34, 80 840 dys s ©) (11.4)

where
f' s a function related to f, involving (n — 1) quantities X; and m constants c.
Hence, the process of designing a structural member involves

®  determination of the design loads g,

e  selection of materials and determination of the design values of ‘their relevant mechanical
properties e &

e  selection of primary dimensions d g to satisfy the particular engineering and architectural
requirements, and

®  determination of the remaining unknown d; to satisfy equation (11.4).

In many cases it may not be possible or convenient to express equation (11.4) in explicit form
in which case the design process will involve a number of trial-and-error calculations to find the
minimum value of d’ that satisfies the inequality (11.3). This will be recognised as the normal
approach to design.

Let us now re-examine equation (11.2). For many structures it is possible to re-write this as
Xg r(E,Dg,¢) —Xgs(Q, G,Dg, ) > 0 (11.5)

where

r represents a resistance function and R =r(+),
] represents a load effect or action effect function and S =s(*),
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Xg isa model uncertainty associated with the particular form of the resistance function,

Xg Isa model uncertainty associated with the particular form of the load effect or action
effect function,

and where BR and BS are sets of different dimensions.

In equation (11.5) the resistance function r and the load effect function s are shown as un-
coupled; and because they share no common variables the two terms are also statistically
independent. If such uncoupling is possible, then the deterministic checking equation corre-
sponding to equation (11.3) may be expressed as

1 - = = - T s
;;der(ed, dgqsC) —YgXgy S(qQy,B4>dggrC) >0 (11.6)

where

Ygr Is a partial coefficient on the computed resistance

vg s a partial coefficient on the computed load effect

and where the subscript d denotes the design value of the variable.

The design process generally involves iterative or trial-and-error calculations to find a set of
dimensions aRd which in conjunction with the design values of the load and strength vari-
ables satisfies the checking equation.

Equation (11.6) is the most general form of the checking equation for a structure in which
R and S can be uncoupled. In this case, the safety or serviceability of a structure (the prob-
ability that the limit state defined by the particular form of the functions r and s will not

be reached) can clearly be increased or decreased by adjusting any or all of the (n — 1) inde-
pendent design values X; (e.g. g, or &,) and the two partial coefficients yp and 7yg. Substi-
tuting these values into equation (11.6) gives the required value of the remaining quantity -
generally a dimension. Because there is an infinite number of sets of (n — 1) values X d which
will give the same design, the problem facing the code writer is to select the »best» set of
values X ;. This is discussed in section 11.4.

It should be noted that in practice the quantities R and S may often be correlated beacuse

of common parameters. For example, the self-weight of a reinforced concrete beam and hence
the mid-span bending moment S will be weakly correlated with the beam’s moment-carrying
capacity R, as both are functions of beam depth.

11.3.2 Characteristic values of basic variables

The term characteristic value was introduced in the late 1950’s at the time when probabilistic
concepts were first being introduced into structural codes; and when it was recognised that
few basic variables have clearly defined upper or lower limits that can sensibly be used in de-
sign. Characteristic values of actions and material properties based on a prescribed probability
p of not being exceeded were considered to be more rational than arbitrary selected values.
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The characteristic vaiue x, of a basic random variable X is defined as the pi'n fractile of X
no

glven by
Xy =F_;;l (p) {117

where
F".{' is the inverse distribution function of X, and

p is a probability which depends on the type of variable being considered (i.e. a load or
a strength).

The selection of the probability p is to a large extent arbitrary but is influenced by the follow-
ing considerations

e characteristic values of loads and other actions are values which should rarely be exceeded,

®  characteristic values of material strength properties should normally be exceeded by actual
properties,

° the values of p should neither be so large nor so small that the values x; are not occasional-
ly encountered,

° it is often sensible to use previously adopted nominal values as specified characteristic

values, X

The distinction between characteristic value and specified characteristic value (specified value)
should be made clear. The former is a fractile of a random variable, whereas the latter is some
specified single value of the same quantity - a constant. For practical reasons it is generally
necessary for the user of a level 1 code to work with specified values cf all the design variables
rather than with actual characteristic values, some of which will not be known at the design
stage. For example, the actual characteristic value of the 28-day cube or cylinder strength of
concrete is likely to depend on the particular supplier or contractor and is not known in ad-
vance. In this case it is necessary for the quality control procedures specified by the code
writers to be such that the actual characteristic strength of the material exceeds the specified
strength by an appropriate margin or with a stated probability. Similarly, the user of a code
should normally work with specified deterministic values of loads and other actions; it is the
responsibility of the code writers to relate these values to the distributions of the actual loads
and actions, and to recommend associated partial coefficients or other safety elements.

11.3.3 Treatment of geometrical variables
Geometrical variables are of two main types - structural dimensions (e.g. the depth of a beam)
and geometrical imperfections (e.g. the out-of-straightness of a column).

Structural dimensions: The uncertainties in most structural dimensions D are generally small

and for this reason the mean value #p may be taken as the characteristic value (i.e. dk =pu D)'
Tolerance limits are specified in codes for most structural dimensions, and if these are of the

form

dsp-—EQDGdsp+e (11.8)
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s

Figure 11.1 (a) Figure 11.1 (b)

L
—t

'k 1sp

then the actual characteristic value d, and the specified nominal value dsp will generally be
very close - see figure 11.1 (a). It should be noted, however, that unless the standard of inspec-
tion is high the probability that the dimension D will exceed the specified tolerance may not
be negligible. See, for example, figure 3.6.

Geometrical imperfections: The strength of many structural members, for example most plates,
columns and shell structures, depends not only on cross-sectional and overall dimensions but
also on the magnitude of relevant geometrical imperfections I.

For such structures it is normal to specify an upper limit ¢ on the imperfection magnitude, i.e.

0<I<e (11.9)

In this case, € can be taken as the specified characteristic value of I, isp. The probability that

isp will be exceeded will generally be small and will depend on the standard of inspection. The
actual characteristic value of the imperfection i, can conveniently be chosen as the 95% fractile
of I and the acceptance criteria designed so that isp exceeds ik by an appropriate margin (or
with a stated probability) - see figure 11.1 (b).

A histogram of some typical plate-panel imperfections (plate-panel out-of-flatness) obtained
from measurements on the steel box-girder bridge at Aust in the U.K. is shown in figure 11.2.
The quantity @ is the ratio of measured imperfection to the specified maximum imperfection e.
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Figure 11.2 Plate panel imperfections - Aust Bridge.
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Design values of dimensions and imperrections: Typically, the standard deviations of geometrical
variables are independent of nominal dimensions (e.g. for given site conditions, the standard de-
viation in the thickness of a 100 mm siab is likely to be about the same as that of a 200 mm
slab: giving a reduction in the coefficient of variation for increasing nominal thickness). For this
reason the most uniform standards of reliability can be obtained over a range of different struc-
tures by using design values dy and iy of the geometrical variables related to the specified values,

as follows
dy =dSp * A, (11.10)
iq -isp + & (11.11)

where A 4 and Ai are additive safety elements,

For many structures, however, the probability of failure is insensitive to small variations in
structural dimensions. For these cases, A d and A, should be set to zero and the uncertainties
in D and I should be allowed for by modifications to the partial coefficients on the other de-
sign variables. A formal method for doing this is discussed in section 11.4.

11.3.4 Treatment of material properties

We shall restrict our attention to the strength properties of structural materials, denoted E.
For each variable, the characteristic value e, should be such that it has a reasonably high prob-
ability q (= 1 — p) of being exceeded in any single trial or test. Typically, q is taken to be be-
tween 0.95 and 0.99, corresponding to the 5% and 1% fractiles of the variable E. However, as
mentioned in section 11.3.2, the user of a level 1 code may often not know the actual charac-
teristic values for his material properties in advance, and it is generally necessary to design using
specified characteristic values, e, 5" The acceptance criteria for a material should be devised so
that e, exceeds e, D at a stated level of probability p,. It should be noted here that the uncer-
tainty associated with the event (e, > e sp) arises as a result of imperfect knowliedge of the ma-
terial supplied and the difficulties of obtaining sufficient sample data at the appropriate time.
The probability p o must be clearly distinguished from the probability p mentioned above.

The design value e, of the strength of a material is obtained from the specified or characteristic
strength as follows

es
84 = .7: (11.12)

where vy is a partial coefficient on strength.

11.3.5 Treatment of loads and other actions

The classification and modelling of loads and other actions were discussed in chapter 3. Most
loads differ from other basic variables in that they vary significantly with time and are general-
ly not amenable to effective control. There are some notable exceptions to both these generali-
sations.
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Because of the time-varying nature of most loads, the problem of assessing the combined ef-
fect of a number of different loads acting on a structure has been seen so arise. This was dis-
cussed in chapter 10 in the context of reliability analysis. As might be expected a rather simi-
lar problem arises in treating combined loads within the framework of a deterministic level

1 code.

Characteristic values: The uncertainty in most permanent loads is small and for this reason

it is customary to use the mean or nominal values of permanent loads in most design calcula-
tions. For the same reason it is appropriate that the characteristic value 8y of each permanent
load G is taken as its mean value HgG- Hg May be considered to be the average permanent load
taken over all nominally similar structures and obtained by using mean dimensions and mean
densities.

For a time-varying load Q, the characteristic vaiue g, is normally defined as that value which
has a prescribed probability p of not being exceeded within a given reference period. It is there-
fore the pth fractile of the extreme value distribution of the load corresponding to that refer-
ence period. Up to the present date (1982) few national loading committees have attempted

to rationalise their specified loads along these lines, but progress is being made in this direction.
Wind loading codes are perhaps the most advanced in this respect, e.g. [11.2]. The nominal
loads specified in most loading codes vary rather widely in terms of their probability of ex-
ceedance.

Single time-varying loads: If a structure or structural component is subjected to only perma-
nent loads G and one time-varying load Q, the load-combination prob,‘.ém does not arise. In
this case, the values g4 and q4 to be used in the design or safet; checking process (cf. equa-
tion (11.6)) are obtained from

84 = Yt Bk (11.13)

A = 7eQ% (11.14)
where v, and Teq are partial coefficients and g, and q, are characteristic values of the ran-
dom variables G and Q, respectively.

For failure modes in which part of the permenent load acts in a stabilising or resisting. sense
and part in a de-stabilising or loading sense, different values of Y¢G should be used for the two
components; v,q < 1 when the load is stabilising the structure and Y¢g = 1 when it is not.

Combinations of time-varying loads: When a structure has to resist a number of stochastically
independent time-varving loads, it is clear that the probability of two or more loads exceeding
their characteristic values simultaneously is small. If the total load effect in a member were to
be determined from

S=c(¥¢q18k1 "+ T¢GmBkm> 7¢Q1 %1’ *  * » T¢Qulkn) (11.15)
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where

Y661 and 8i1 are the values of YiG and Qy for the first of m permanent loads.

qy; s the characteristic value of the first of n time-varying loads Q;,
YrQ1 is the partial coefficient associated with the load Q1 when this load is acting alone, and

) is the load effect function, implying a linear or, where appropriate, a non-linear analy-
sis of the structure under the action of the factored loads,

the resulting load effect S would be extremely conservative. For this reason it is necessary to
introduce a set of reduction factors Yoi (¥9; < 1) to be applied to the time-varying loads Qi to
take account of the reduced probability of the design values of the loads being exceeded simul-
taneously. The total design load effect is therefore given by (cf. Turkstra’s rule, p. 168),

S4 = ¢(7¢G18k10 - -+ YGmBkm Y1Q1¥01%1" * - » Y¢Qn Yon%kn) (11.16)

In principle, if there are n time-varying loads, it is necessary to undertake n design checks (e-
quation (11.6)) on the structure, using a separate set of "bo factors for each check and with
U = 1 for the jth check.

For the j th design check equation (11.16) may then be re-written as

Sq =C(841s -+ Bqj» +*+ » Sgm> Qa1 -+ » Agj» -+ + Agj> -+ » Agn)

=5 (§, 0y, dgq: © (11.17)
where

8di = Y:GiBki

q4i = 7£qi¥0ji%
94j = 7tQj¥0ij%; = YrQj%;  and
By =(Byyr- - - » By )» otL

The need for a number of design checks using different sets of y ; factors arises from the fact
that throughout a structure the contribution of each separate load Q; to the maximum load-
effect in any member, varies considerably from member to member. For example, although
snow loading may dominate the load effect in the roof beams of a multi-storey building, the
same loads have only a small influence on the total load effects in the ground floor columns.

In practice, with detailed knowledge of the structure being designed or checked, it is often pos-
sible to reduce the number of safety checks significantly.

Equations (11.6) and (11.16) are the most general form of checking equations that are envis-
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aged for use in level 1 codes. Some rather less general forms of checking equations have also
been suggested {11.7]. In practical codes the design requirements may be made considerably

simpler.

11.4 METHODS FOR THE EVALUATION OF PARTIAL COEFFICIENTS

Any reader who is unfamiliar with the theory of level 1 codes may be somewhat concerned
by the apparent complexity of the safety checking rules set out in section 11.3 and by the
apparent arbitrariness of some of the steps. Because of the inherently probabilistic nature

of most structural safety problems, it is clear that safety checking proc2dures which are
couched in deterministic terms will have some degree of arbitrariness. This cannot be avoided.

The design clauses given in level 1 codes should be interprated as a set of decision rules, the
outcome of which can be modified by changes to a set of control parameters - the partial coef-
ficients. The process of selecting the set of partial coefficients to be used in a particular code
should be seen as a process of optimization such that the outcome of all designs undertaken

to the code is in some sense optimal. This should not be confused with the concept of opti-
mizing individual structures. Whether or not a formal optimization is undertaken in practice,
it is useful to think of the partial coefficient selection process in this way. It is then clear that
the possibility exists for using any simplified set of design clauses together with a modified set
of partial coefficients which on average will achieve the same degree of safety as the more com-
plex set. The penalty to be paid for using the simplified design rules is some increase in ma-
terials usage.

In the remainder of this section various formal procedures for the determination of partial
coefficients are discussed.

11.4.1 Relationship of parfial coefficients to level 2 design point

It was shown in chapter 5 that for the reliability analysis of a particular structure, the level 2
method involves the mapping of the set of n basic random variables X to a set of independent
standard normal variables Z. This results in the mapping of the limit state failure surface given
by

g(xy,%9,...,%.)=0 (11.18)
to a failure surface in standard normal space
f(zy,29,-...,2,)=0 (11.19)

The reliability index g is defined in Z space as the shortest distance from the origin to the
failure surface and is given by (see (5.34))
no1
B= min (J'z})?
zZEIw i=1

(11.20)
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The point on the failure surface which is ciosest to the origin is referred to as the design point

(see figure 5.5)‘and has co-ordinates (fa,, Sas, . . ., fa ), where (sz2e (5.35))
1 . 3
== 3 2 gl 2L ga , i=L2....n ULL2L)
e Zk 0Z.
k=1 t
with
82}, 25, ...,2%) =0 (11.22)
and z* = Ba.

By using the inverse mapping
xi" =F;{' (tb{z;)) R B O . (11.23)
=k

we obtain the set of values X* for the original basic variables X corresponding to the design
point Z*. If the variables X are all normaily distributed, then the set of values X* are the val-
ues of the variables at which failure is most likely to occur (if this event were to happen), i.e.

max fx’(xi) = fxl(x;’) y VLB ...pn (11.24)

Xxe we
where w, is the failure region.
If X are non-normal then equation (11.24) is only approximate.

It can now be seen that if the values X" were to be used as the design values X in a deterministic
level 1 design calculation, the resulting structure would have a reliability index § and a relia-
bility ® = 1 — & (—f). Thus, if R is an acceptable reliability for the structure, a satisfactory

set of partial coefficients is given by

X b4
SPy _ Py _ xsp‘

i Xy X ‘F;l(cb(z;))

(11.25)

1

where x . is the specified value of the resistance variable X,, and by

X3 xr  Fg(eE)
v = : A IO
5Py 5Py 5Py

p

(11.26)

where x_ ; is the specified value of the loading variable )g

p
: Example 11.1. If X, is a normally distributed loading variable, then
: B .

- Fx’(cri(zj ))=,ux’ + a:jﬁcrxj

]
xspl xsp]

(11.27)
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Assuming that the parameters My and oy of the variabie Xj are known or can be esti-
% - j
mated, that Xin is given and that the reliability index g is specified. the evaluation of the
!

partial coefficient ¥ requires only a knowledge of the sensitivity factor a;.

Example 11.2. If X is a log-normally distributed resistance variable, then

X X
Spy _ SPy

TR (@)

_l-
“y, exp(—% fén(Vi2 +1) + c::i,G(Sln{Vi2 +1))%)

X
Spy

ux, exp(efV;)

e

(11.28)

where
: uxi is the mean of Xi' and

V, is the coefficient of variation of Xi'

Again, if the parameters uy and V; are known, and x_, and § are given, then ¥; can be

Py
evaluated from a knowledge of the sensitivity factor Q..

Equations (11.27) and (11.28) and similar relationships for other types of probability distribu-
tion are only of direct use, when the values a are known. In general, the value of «; depends not
only on the parameters of the random variable X;, but on the values of the parameters of the
other random variables, on the value of 8 and on the nature of the limit state function.

For a particular structure and failure mode, the sensitivity factors @ may be evaluated from
equation (11.21). However, the use of this equation implies a reliability analysis of the structure
and if this is to be undertaken there is little point in following it with a level 1 safety check.
Furthermore, this approach leads to a partial coefficient on every basic variable, which is too
many for practical use in design.

A procedure is therefore required for the determination of a limited number of partial coeffi-

cients or additive safety elements (<€ n, where n is the number of basic variables) which will be
applicable over a range of different failure modes and for a range of different structural types

covered by a code of practice. Such a procedure is discussed in section 11.4.3. Before this, we
shall consider an approximate direct method for the evaluation of partial coefficients.

11.4.2 Approximate direct method for the evaluation of partial coefficients

The difficulty with the approach suggested above was seen to lie in the evaluation of suitable
sensitivity factors a. Experience shows that over fairly large ranges of design parameters the
individual factors a; often do not change dramatically. Furthermore, because

n
Zai’=1

it is always possible to choose a conservative set of sensitivity factors for use with equation
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(11.26). ¢y =% a, =...=za ==t 1issuchaset, when the sign of the factor is taken as posi-
tive for loading:variables and negative for resisting variables: although in most practical cases
this would be too conservative.

Assuming that the limit state function may be split into a resistance term R and a load effect
term S, as in equation (11.6), it has been proposed [11.5] that the sensitivity factors should be

expressed as

ap ;= Gpdp (11.29)
ag; = Egdg (11.30)
where

ap is the sensitivity factor for the ith resistance variable,
ag ; is the sensitivity factor for the ith loading variable,

E"R and BES are estimates of the sensitivity factor for the composite variables R and
S in the limit state function R —S =0,

ag ; is a factor which depends on the relative importance of the ith resistance vari-

able, and
&g ; is a factor which depends on the relative importance of the ith loading variable.

Assuming that the true values « are known (i.e. from a level 2 analysis) and the variables X are
ranked (taking due account of sign) so that

agy <ag,<...<ap , -—1<aRi<0 (11.31)

InR

agy > age>...> xS ng , 0< ag; <1 (11.32)

where np + ng = n, the total number of basic variables, the quantities R, and S, may be
termed the leading resisting and loading variables, respectively.

For a wide range of structural members, the following empirically-based values can be shown
to be satisfactory

ap =08 ag =0.7 (11.33)
5R‘i=\/i--\/i—1 . i=1,:?.,...,nR (11.34)
B ST —=I=T |, 01, 2,000 (11.35)

Hence, for the loading variables R, and S,,ap ; =dg, = 1givingap ; =—0.8 and ag, =0.7.

This approach is viable only if the designer has prior knowledge of the relative importance (sen-
sitivity ranking) of the various variables. This information can be gained by experience and by
the occasional level 2 analysis,
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Having estimated the sensitivity factors a from equations (11.29) to (11.35), the partial coef-
ficients v; and ¥j» or the design values of the variables x;" and xj', may be obtained directly
from equations-( 11.25) and (11.26). This process is illustrated in the following simple example.

Example 11.3. The encastré steel beam shown in figure 11.3 is to be designed against
plastic collapse to resist a uniformly distributed superimposed load @ and a permanent
load G. Q, G, the yield stress of the steel Ey, and the model uncertainty X affecting
the plastic moment of resistance of the section are assumed to be normally distributed

: random variables, with the parameters given in table 11.1. The yield stresses at the plastic
hinge positions A, B and C are assumed to be the same and the geometrical variables are
assumed to have no uncertainty. It is desired to evaluate the partial coefficients TQ: Yg
E, and Xy for a reliability index § = 4, and to determine the required plastic modulus Z

By consideration of the mean values and coefficients of variation of the variables and the
nature of the limit state function it may be assumed that

aq > ay > ag, > ag
Thus,
@g =dgdg, =0.7X 1.0=0.7
ag =dpdp, =—08X1.0=—08
ay =qpdp,=—08X (V2 —1)=—0.331

ag =dghg o = 0.7X (V2 —1) =0.290

Variable My ax Vx Xsp
Q@ kN/m 40.1 6.015 15% 50.0
G kN/m 30.0 1.5 5% 30.0
Ey N/mm? 293.6 | 23.49 8% 255.0
X 1.0 0.06 6% 1.0
Table 11.1
G' Q
A C
s gl

B

. R

Figure 11.3
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and the design values x* are given by

q” =uq *aghog = 56.94 kN/m

ey -'—',uEY - aEYﬁGEY =218.4 N/mm?*

*

ol =uxm - ozxmﬁax =0.921

m

g" =pg * aghog =31.74 kN/m

These values and the partial coefficients found from equations (11.25) and (11.26) are
listed in table 11.2.

Variable Xep x* ¥

Q kN/m 50.0 56.9 1.13

G kN/m 30.0 31.7 1.06

E, N/mm?* | 255.0 218.4 1.17

X 1.0 0.92 | 1.09
Table 11.2

By application of virtual work, the required plastic modulus z, may now be determined
from

g2 % 10
(TgBep + TQlyp) = 4( =22z ) (11.36)
p Q%sp’ 4 P
TE, 'Txm
Substituting the appropriate values from table 11.2 gives " 6.89 X 10° mm’.

Finally, it is of interest to use the level 2 method to determine the reliability of this struc-
ture when the plastic modulus has the value found by the above method. The failure func-
: tion can be written as

M=162,E X —¢(G+ Q)X 10° =0 (11.37)

Using the methods of chapter 5 and the parameters from table 11.1 gives a reliability in-
: dex § = 4.45. This is larger than the originally selected value of 4.0 showing that the ap-
: proximate method of determining partial coefficients is safe, at least for the structure and
: set of variables examined.

It must be stressed that great care must be taken when using the spproximate method for the
evaluation of partial coefficients if the relative magnitudes of the sensitivity factors a are not
known. Care must also be taken when there is appreciable statistical uncertainty in the para-
meters of the probability distributions of the basic variables because of lack of data. Methods
of including statistical uncertainty were introduced in section 7 of chapter 3. See also [11.11].
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11.4.3 General method for the evaluation of partial coetficients

Practical codes should have the smallest number of partial coefficients that is consistent with
reasonably uniform standards of reliability; moreover, the same partial coefficients should be
applicable to a wide range of structural components. This means that they must be applicable
over a range of sensitivity factors without being unsafe or unduly conservative. A suitable gen-
eral method for the evaluation of such a set of partial coefficients is now presented.

The first stage of this process is to decide upon an appropriate standard of reliability or target
failure probability for the structures (or more generally, structural components, e.g. beams,
columns, slabs) that will be designed using the new code. This is also a pre-requisite for the pro-
cedure described in section 11.4.2. The choice is generally made by a process of probabilistic
calibration to an existing code. e.g. see [11.6].

Studies of the reliability of structural compf:nents designed to traditional codes typically show
very wide ranges of reliability. An appropriate choice for the target failure probability P;, for a
new code is the weighted average of the failure probabilities exhibited by components designed
to existing codes, provided that the least reliable component exhibited satisfactory performance
in actual service. The latter is not always easy to verify because existing codes may not have been
in use for a sufficiently long period of time and structures may have been subjected to only a
fraction of their design loads. The weighting factors w, should be selected to represent the pre-
vious frequency of usage of each structural component included in the calibration and should
be such that Y w, = 1.0. |

]
Use of the weighted average failure probability rather than, say, the weighted average reliability
index means that the target failure probability P;, tends to be governed by the less reliable com-
ponents in existing codes. This assumes a measure of economy in the new code, but care has to
be taken that these reliabilities are not too low.

A more direct approach to the choice of target failure probabilities has been recommended by
the Nordic Committee on Building Regulations (NKB) [11.10]. In this, the target failure probab-
ility depends on the consequences of failure and on the nature of the failure mode, as shown in
table 11.3.

Failure Failure type

consequences I II I

Not serious 10> 3.09 o ¥ 3.71 e 4.26
Serious 10 3.71 o 4.26 gl 4.75
Very serious 107 4.26 Iﬁ-‘?:- 475 0 5.20

Table 11.3. Target failure probabilities and corresponding reliability indices (11.10].

v, S
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The target failure probabilities given in table 11.3 are for a reference period of 1 year, but
should be treated as operational or notional probabilities and not as relative frequencies. The
failure types are defined as

I ductile failure with reserve strength capacity resulting from strain hardening
IT  ductile failure with no reserve capacity

[IT brittle failure and instability

Having chosen a target failure probability, the problem of selecting a set of partial coefficients
7y for a code, or part of a code, may now be reduced to the application of the following simple
principle. Choose the set of partial coefficients ¥, so as to minimise the quantity S given by

S F

S= 3" wAR,(F), By (11.38)

]
[

Subject to the constraint

m m
D w P(¥) =P, with Sw =10 (11.39)
i=1 i=l
and where

A(Py(7), Pyy) is an agreed function of the quantities Py, (Y) and Py,

P (¥) is the failure probability of the ith structural component designed using the
set of partial coefficients ¥,

Pey 1s the target failure probability,

is a set of weighting factors indicating the relative importance of each of

w = (w . ¢‘w
1 :

-

In general terms, the aim 6f this approach is to minimise the deviations of the probabilities Pfi
from the target probability of failure P, whilst maintaining the average probability of failure
at the target level. Experience has shown that the values of the partial coefficients are general-
ly very insensitive to the form of the objective function used (equation (11.38)). Suitable func-

tions are:
< 2
S, = Z w;(log Py (¥) — log Py,) (11.40)
i=1
and
m m
8y = X w(— @ (By(7)) + @7 (By))* = Y wi(B;(7) —8,)? (11.41)
i=1 i=1

where g is the reliability index.



196 11. APPLICATIONS TO STRUCTURAL CODES

Clearly, many other possibilities exist. Obtaining the solution to equations (11.38) and (11.39)
is a problem of. constrained minimisation for which a number of standard techniques and com-
puter programs are available. Nevertheless, the total amount of computational effect is consider-
able because all the probabilities P, need to be re-evaluated for each adjustment to the partial
coefficients ¥.

The code writer is free to choose as many partial coefficients or additive safety elements as is
considered appropriate for a given code. A practical number is generally considerably less than
the number of basic random variables. A reduction in the number of partial coefficients can be
achieved by constraining the unwanted coefficients to be unity. Provided equation (11.39) is
satisfied, the effect of these additional constraints is to increase the deviations from the target
failure probability P;, and to increase the average amount of material used when designing to
the code. The penalty to be paid for increased simplicity in the code safety format is therefore
some increase in the initial cost of construction.

When applying this procedure over a number of codes for different construction materials, e.g.
steel and concrete, a further constraint that should be considered is to make the partial coef-
ficients on loads and other actions the same in each code, irrespective of construction material.
Such an approach has many practical advantages.

Finally, a note of caution. In chapter 5 it was mentioned that the reliability index as defined by
equation (5.9) is not invariant with regard to the choice of failure function. A similar problem

of lack of invariance arises when the partial coefficients used in a code are not directly associated
with their corresponding sources of uncertainty. This occurs when the number of partial coeffi-
cients is constrained to some small number. In such cases, the partial coefficients should be used
only with the precise form of the design equations (failure functions) for which they were derived.

11.5 AN EXAMPLE OF PROBABILISTIC CODE CALIBRATION

The general method for the evaluation of partial coefficients which was described in the previous
section involves a considerable amount of effort and computation and is not easily illustrated

by a simple example. For this reason, some results that were obtained during the probabilistic
calibration [11.6] of the U.K. Steel Bridge Code BS 5400: Part 3 [11.3] are included here as an
illustration of the method.

11.5.1 Aims of calibration

BS 5400: Part 3 is a level 1 code in which the degree of structural reliability is contolled by a
number of partial coefficients (partial factors). The code replaces an earlier British Standard,
BS 153 [11.1] and was developed mainly for the purposes of incorporating technical improve-
ments in many of the design clauses; but at the same time the opportunity was taken to ration-
alise the safety provisions and to change from a permissible stress to a limit state approach.

In evaluating the partial coefficients, the agreed policy was to achieve the same average relia-
bility for components designed to the new code as the average inherent in designs to the pre-
vious code BS 153, but at the same time to reduce the scatter in the reliability of the various
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components. An obvious limitation of this work is that it was restricted to a study of structural

components rather than structural systems.

A flow-chart showing the various steps in the calculation procedure is given in figure 11.4.

Obtain data on Define set of structural components and weighting

load and strength factors w, based on frequency of usage, such that

parameters E w; =1.0

S |
Design components to limits of BS 153

Devise suitable I

probabilistic ; ’ o

sodals for foads = Determine failure probabilities Pf(153 )

and strengths

Determine P;, = Z“i Br(153),
1
Choose approximate values of partial coefficients ¥

r-r-———F——---"-r"-""""""-"-"——~y —_—_—_——— - _I
I
| Modify partial et T\t Design components to BS 5400: Part 3 |
| coefficients y I
! ! l
| _ I
I I — s Determine failure probabilities Pﬁ(v) I
I NO I
| ) I
I _ -
| Does P = P, Calculate P = Zui P.(7) |
I and is : I
| S a minimum? :
| Determine S = Z w; AP, (), Pyy) |
I I YES : [
I [
... A NS |

Figure 11.4. Probabilistic calibration of BS 5400: Part 3 to BS 153.
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11.5.2 Resuits of calibration

Figure 11.5 shaws the scatter in the computed failure probabilities for the major structural com-
ponents designed to the limits of BS 153 which were included in the calibration calculations.
The failure probabilities exhibit very wide scatter varying over many orders of magnitude. In
addition, there are significant differences in the average reliability of different types of compo-
nent. Neither of these facts is surprising since the code was Jriginally based on deterministic
concepts with no regard for the relative magnitude of the various uncertainties. It should be
noted that the modelling did not allow for the possibility of gross errors in design or construc-
tion and for this reason the probabilities should be interpreted as a measure of relative safety
and not as failure frequencies.

The target failure probability P;, for the new code BS 5400: Part 3 was determined as the
weighted average of the failure probabilities for components designed to BS 153 and was

0.63 X 107%. In calculating this value, stiffened compression flanges and unwelded plate panels
were excluded, the former because they had not been shown to behave satisfactorily in service
and the latter because the data on model uncertainty were considered inadequate.

The partial coefficients for the new code were determined for use with checking equations of
the form

170 function[fy/'yml ;

other parameters] —effects of [v;g; Gy 7;GoGa» 71 Q1 > 0
(11.42)

where

f is the yield stress of the steel,

<

G, is structural self weight,
Gy is superimposed permanent load,
Q s traffic loading,

Tm1 1S @ partial coefficient on yield stress which applies throughout the code,
Ym2 is a partial coefficient on the computed resistance which varies with type of component,and

YeG1 Yige and Y¢q are partial coefficients on loads.

Values of the partial coefficients obtained by minimisir;é the quantity S defined by equation
(11.38), subject to the constraint given by equation (11.39), are listed in column 1 of table 11.4.
The other columns in this table show the values of partial coefficients v, , when other constraints
are introduced. For example, column 3 shows the effect of setting Yoy, ™ 1.0, Yeq = 1.5 and Yea

= 1.13 (given here as a weighted average of TtG1 and YiG2 ), and thus effectively eliminating v,
from the code.

The quantity S is given in the penultimate row of table 11.4 for each of the sets of partial coef-

ficients calculated and can be seen to increase as additional constraints are introduced. The

quantity 2’ w;0; given in the last row of the table is the ratio of the amount of steel used when
i
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——P; = 063x 107
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Figure 11.5. Failure probabilities for components designed to BS 153 and early flange rules (from [11.6]).
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Figure 11.6. Failure probabilities for components designed to BS 5400 and the effect on steel usage (from
[11.8]).
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-
\F | 1 2 3 4 5 6 T
r
Fully op-

| timised N
‘! coeffs. Increasing constrain.s
Yeg 116 |113 | 118 (113 | 138 | 118 | 1a3
YeQ 1.47 1.50 1.50 1.50 1.50 1.50 1.50
1 Ym1 1.08 1.08 1.0 1.0 1.0 1.0 1.0
——————— | SRS RSEIUM (ISP — _—_J_——____—__——T
Tm2 for

Struts 0.98 0.98 1.03 1.05 1.0

Beam flanges 1.09 1.08 117 1.15 1.2

Stiffened com-

pression flanges 1.27 1.28 1.37 1.35 1.4 - aas
Webs 1.25 1.25 1.34 1.35 1.3

Plate panels 1.08 1.08 1.14 1.15 1.1

Ties 1.09 1.09 1.18 1.20 1.2

Swpy(x10%] | 632 | 632 | .632 | 658 | 1.146 | 1.072 | 0.288
i
S 073 .086 142 225 .282 5.95 8.80
Emiﬂ i 936 938 939 .942 .933 1.00 1.04
i
Calculated Rounded or arbitrary
coefficients coefficients -

Table 11.4. Partial coefficients for various degress of constraint (from [11.6]).
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designing with the new code (with the partial coefficients given) to the amount used when de-
signing with original code BS 153. Use of any of the sets of partial coefficients in columns 1-4
would therefore give a saving of approximately 6% in steel consumption compared with BS 153.
Further constraints on the number of partial coefficients used reduces this saving. In practice,
the balance between the simplicity of the safety format and the savings in material must be de-
cided by the code-writing committee.

No code calibration study should be considered to be complete until the effects of the change in
safety format on the design of all components within the scope of the code have been examined.
It is important to know the range of failure probabilities for each type of component when using
the proposed set of partial coefficients. It is also of interest to know th2 changes in the quanti-
ties of materials that will be used compared with earlier codes. The latter is perhaps the most
tangible measure of change in safety levels. This is illustrated in figure 11.6.
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Additive safety elements, 179, 185
Actions, choice of distributions, 56
Airy waves, 215

Assurance, quality, 247

Asymptotic extreme-value distributions, 40

Autocorrelation coefficient, 147
Autocorrelation function, 147
Autocovariance function, 147 -
Average correlation coefficient, 134
8¢ ,or
Barrier crossing:
definition, 160 .
Rice’s formula, 154
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definition, 81
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non-normal, 103
normal, 83
~ specified characteristic value, 183
Bayesian reliability, 9
Bayes' theorem, 17
Bivariate normal density function, 34
Box and Muller method, 253
British Standard, BS 153, 196, 198
Brittle elements, 114

Central moments, 24, 33
Characteristic values, 183, 186
Codes:

actions, 185

calibration, 196

geometrical variables, 183

level 1,178

loads, 185

material properties, 185

safety formats, 180
Coefficient of variation, 24
Conditional distributions:

definition, 31 .

density function, 31 ‘
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Correlated basic variables, 101
Correlation coefficient:

average, 135

definition, 33
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De Morgan'’s laws, 15
Density function:
conditional, 31
definition, 21
marginal, 29
Design, limit state, 10
Design point, 88
Design value, 182, 185
Dirac’s delta function, 151
Distributions:
asymptotic extreme-value, 40
conditional, 31
estimation of parameters, 58
functions, 21, 31
Gaussian, 25
Gumbel, 40
logarithmic normal, 26, 53
maximum value, 39
minimum value, 39
multivariate, 34
normal, 25, 53
parent, 38
Rayleigh, 27, 156
type I, 40
type II, 42
type III, 42
univariate, 25
Weibull, 27, 43
Ditlevsen bounds, 133
Ductile elements, 144 *© 1707234 s
Elements: o
brittle, 114
ductile, 115
Ensemble average, 23
Equation of motion, 255
Equivalent correlation coefficient, 137
Equivalent reliability index, 140
Ergodic stochastic process, 147
Evaluation of partial coefficients, 188
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Events:
complementary, 14
definition, 14
independent, 14

Expected life, 68

Expected value, 22

Extremes:
asymptotic, 40
definition, 37
maximum value, 39
minimum value, 39
normal, 39
typel, 40
type II, 42
type III, 42

Failure:

function, 82

indicator, 78

modes, 121

probability of, 9, 71

rate, 69

region, 82

structural, 241

surface, 82 . F2

types of, 241, 242
Ferry Borges-Castanheta load model, 166
First moment of raridomn variable, 28
Force on multiple piles, 2817 i< < -
Force on single pile, 259
Fourier transform pair 7208 - e
Frequentist relativity, 9
Fundamental case, 71, 83, 84
Fundamental system, 115

Gausgian distribution, 25
Gaussian stochastic process, 148
Geometrical imperfections, 184
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Gross errors:
classification, 241
control of, 243
definition, 240

Gumbel distribution, 40

Heaviside’s step function, 151

Intersection of events, 14
Interval estimates, 60

Joint probability density function, 29
Joint probability distribution function, 29
Jacket structures:

level 2 analysis, 206, 227

loading variables, 223

sources of uncertainty, 206

types of, 204, 232

wave loading, 207, 215

wind loading, 223

Keulegan-Carpenter number, 225

Level 1:
codes, 178 .
methods, 10

Level 2:
computational procedures, 89, 229
methods, 10, 81 AR

Level 3 methods, 10

Limit state surface, 82 ., ., el

Load model, Ferry Borges-Castanheh, 166

Loads:
choice of distributions, 56
combinations of, 161, 186
combination rules, 168
permanent, 58
time-varying, 161, 186
variable, 57

Load variables, modelling of, 54

Logarithmic normal distribution, 26, 53
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Marginal density functions, 29
Mass functions, 20

Mean crossing period, 209

Mean point, 86

Mean value, 23

Mean value function, 147
Method of maximum likelihood, 61
Method of moments, 60

Mixed central momen‘s, 33
Modal analysis, 257

Model selection, 44, 54

Model uncertainty, 7

Moments of random variables, 23
Monte-Carlo methods, 79
Morison’s coefficients, 225
Morison’s equation, 218
Multiplicative rule, 17 -7
Multivariate distributions, 34

Multivariate normal density function, 34, 35

Narrow-band spectrum, 214
Negative passage concept, 150

Nordic Committes,og Byiiding Regylations

(NKB), 194
Normal density funchion: _ ... gae. -
bivariate, 34
multivariate, 35
univariate, 26

Normal dntributbm,}mb"“

Normal extremes, 39

i

Offshore structures:
jacket, 204, 232
level 2 methods, 227
loading modelling, 217
reliability analysis, 226

Parallel systems:
definition, 118
equally correlated elements, 124
unequally correlated elements, 38
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Partial coefficients:
definition, 178
effect from gross errors, 244
evaluation of, 188, 190, 194
Peak distribution, 157
Peak response, evaluation of, 220
Physical uncertainty, 6
Pierson-Moskowitz spectrum, 211, 212
Piles, forces on, 259, 261
Point estimates, 60
Positive passage concept, 150
Probabilistic code calibration, 196
Probability density function, 21
Probability distribution function, 20, 21
Probability mass function, 20
Probability of failure concept, 9, 71
Probability theory, 13
Processes (see also stochastic processes), 145
Pulse process, rectangular, 167

Quality assurance, 240, 247

Rackwitz and Fiessler transformation, 108
Random number generators:
multiplicative congruence method, 250
normal deviates, 252
uniform deviates, 249
Random variables:
central moménts; 24
correlation, 96
definition, 19
expected value, 23
functions of, 23, 32
independent, 31
linear functions of, 98
mean, 23
mixed, 22
moments, 23
uncorrelated, 33
variance, 24
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Random vectors, 28
Rate of crossings, 153
Rayleigh distribution, 27, 156
Realisation of stochastic processes, 146
Rectangular pulse process, 167
Reference period, 9
Reliability:

Bayesian, 9

definition, 72

function, 68, 69

frequentist, 9

systems, 113
Reliability index 8:

calculation, 89, 229

definition, 74, 83

Hasofer and Lind, 88, 103
Reliability of structural systems, 113
Reliability theory, classical, 67
Resistance variables:

choice of distributions, 52

modelling, 44
Reynolds’ number, 225
Risk levels, 2

Safe region, 82
Safety checking, methods, 10
Safety formats, 180
Safety margin:
definition, 78, 83
non-linear, 85
Sample point, 13
Sample space, 13
Sea state:
modelling, 207
practical measures, 209
spectral representation, 208
Series systems:
definition, 115
equally correlated elements, 122
unequally correlated elements, 136
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Significant wave height, 209 fundamental, 115
Skewness moment, 25 parallel, 118
Spectra: series, 115
definition, 208 simple bounds, 130
JONSWAP, 211. 213 unequally correlated elements, 134, 136

moments, 214, 221
narrow-band, 214

Pierson-Moskowitz, 211, 212 Target failure probability, 194
Spectral analysis, 220, 255 Total probability theorem, 31
Spectral density, 208 Turkstra’s rule, 168
Standard deviation, 24 Type I distribution, 40

Type Il distribution, 42
Type Il distribution, 42

Standard normal density function, 25
Standard normal distribution function, 25
Stationary stochastic process, 147

Statistical theory of extremes, 37 U.K. Steel Bridge Code BS 5400, 196, 198

Statistical uncertainty, 6, 63 Uncertainty:

Stochastic processes: modelling, 7
definition, 145 physical, 6
ergodic, 147 statistical, 6, 63
Gaussian, 148 types of, 6
narrow-band, 156 Union of events, 14 g~
stationary, 147 Univariate distributions, 25 =
strictly homogeneous, 147
strictly stationary, 147
weakly homogeneous, 147 Variables, random (see also random variables)
weakly stationary, 147 19

Structural codes (see also codes), 3, 177 Variance, 24

Structural failures, 241 Variance function, 147

Structural reliability in general, 8 Variation, coefficient of, 24

Structural response, evaluation of, 219 Vectors, random, 28

Structural system, reliability, 113

Structures* Wave height, 209
natural frequency model, 219 Wave height, significant, 209
spectral anaiysis, 220 Wave period, 209

Systems: Weakest-link system, 115
bounds, 129 Weakly homogeneous stochastic process, 144
Ditlevsen bounds, 133 Weibull distribution, 27, 43

equally correlated elements, 122 Weighting factors, 194
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4. FIRST ORDER RELIABILITY METHODS

4.1 Introduction

In this section the problem of estimating the reliability or equivalently the probability
of failure is considered. Generally, methods to measure the reliability of a structure
can be divited into four groups, see Madsen et al. [1], p.30:

- Level I methods: The uncertain parameters are modelled by one characteristic
value, as for example in codes based on the partial coefficients concept.

- Level II methods: The uncertain parameters are modelled by the mean values and
the standard deviations, and by the correlation coeflicients between the stochastic
variables. The stochastic variables are implicitly assumed to be normally distri-
buted. The reliability index method is an example of a level II method.

- Level III methods: The uncertain quantities are modelled by their joint distri-
bution functions. The probability of failure is estimated as a measure of the

reliability.

- Level IV methods: In these methods the consequences (cost) of failure are also
taken into account and the risk (consequence multiplied by the probability of
failure) is used as a measure of the reliability. In this way different designs can be
compared on an economic basis taking into account uncertainty, costs and benefits.

If the reliability methods are used in design they have to be calibrated so that
consistent reliability levels are obtained. This is further discussed in a later note.

Level I methods can e.g. be calibrated using level II methods, level II methods can
be calibrated using level III methods, etc.

In this note level II and III reliability methods are considered. Several techniques
can be used to estimate the reliability for level II and III methods, e.g.

- simulation techniques: Samples of the stochastic variables are generated and the
relative number of samples corresponding to failure is used to estimate the prob-
ability of failure. The simulation techniques are different in the way the samples
are generated. Simulation techniques are described in note 6.

- FORM techniques: In First Order Reliability Methods the limit state function
(failure function, see below) is linearized and the reliability is estimated using
level IT or III methods. FORM techniques for level II methods are described in
this note. FORM techniques for level III methods are described in note 5.

- SORM techniques: In Second Order Reliability Methods a quadratic approxima-
tion to the failure function is determined and the probability of failure for the



quadratic failure surface is estimated. SORM techniques are discussed in note €

In section 4.2 basic variables and failure functions are defined. Next, a linear failure
function is considered in section 4.3 and the reliability index f is defined. In section
4.4 non-linear failure functions are considered. The so-called invariance problem
is discussed, and the Hasofer & Lind reliability index 3 is defined. A numerical
algorithm for determination of the reliability index is shown. Finally it is shown
how a sensitivity analysis of the reliability index with respect to a deterministic
parameter can be performed.

4.2 Basic Variables and Limit State Functions

It is assumed in this section and in section 5 and 6 (note 5 and 6) that only one
failure mode is considered and that a reliability measure related to this failure mode
is to be estimated. Further it is assumed that it is possible to give a mathematical
formulation of this failure mode. An important step in a reliability analysis is to
decide which quantities should be modelled by stochastic variables and which should
be modelled by deterministic parameters. The stochastic variables are denoted X =
(X1,...,Xn). The n stochastic variables could model physical uncertainty, model
uncertainty or statistical uncertainty. The physical stochastic variables can be load
variables (e.g. traffic load), resistance variables (e.g. yield strength) or geometrical
variables (e.g. length or cross-sectional area of a beam). The variables in X are
also denoted basic variables. Realizations of the basic variables are denoted 7 =
(z1,... ,Zn), 1.e. T is a point in the n-dimensional basic variable space.

The joint density function for the stochastic variables X is denoted fx(Z). The
elements in the vector of expected values and the covariance vector are

fo= BAG] 5 A= L. 40 (4.1)
C,'J'ZCOV[X,',XJ'] s BIEL . cogB (4.2)

The standard deviation of X; is denoted ¢;. The variance of X; is a? = Cy. The
coefficient of correlation between X; and X is defined by
i5 = ’ 3 — 1’ ses gy 4'3
pi= L i n (43)

It is easy to see that —1 < p;; < 1.

Application of FORM, SORM and simulation methods requires as noted above that
it is possible for given realizations T of the basic variables to state whether the
structure (or component/failure mode) is in a safe state or in a failure state. The
basic variable space is thus divided into two sets, the safe set ws and the failure set
wp. The two sets are separated by the failure surface (limit state surface). It is
assumed that the failure surface can be described by the equation

9(5)=9(I1,... ,zn):()



ere g(z) is denoted the failure function.

sually the failure function is defined such that positive values of g correspond to
afe states and negative values correspond to failure states, see figure 4.1.

>0 , TEws
T 4.4
0@ {2, o (4.4)
*z|
g(x)>0 g(x)<0
safe failure
! X1
g(x)=0

Figure 4.1. Failure function ¢(T).

It is important to note that the failure surface does not define a unique failure
function, i.e. the failure surface can be described by a number of equivalent failure
functions. However, whenever possible differentiable failure functions should be used.
In structural reliability the failure function usually results from a mechanical analysis
of the structure.

If, in the failure function T is replaced by the stochastic variables X the so-called
safety margin M is obtained

M = ¢(X) (4.5)
M is a stochastic variable. The probability of failure P¢ of the component is

Pr=P(M<0)=P(g(X)<0)= [ fx()dz (4.6)

Example 4.1
In the fundamental case only two basic variables are used, namely the load variable
P and the strength variable S. A failure function can then be formulated as

g(p,s) =s—p (4.7)



The failure surface g(p,s) = 0 is shown in figure 4.2. The safety margin correspc
ding to (4.7) is

M=S-P (4.8

Instead of the failure function (4.7) the following equivalent failure function can be
used

9(p,s) =s* - p° (4.9)

g(p}s):'s_p:{]

failure

safe

Figure 4.2.

4.3 Reliability Analysis for Linear Safety Margins

A safety margin which is linear in basic variables can be written

M = qay +a1 X1+ +a X, (410)

where ag, ay, ..., a, are constants. The expected value ujs and the standard deviation
oM are

KM =ap + aifiz, + -+ Qnftz, = a0 + ET.U")'(' (4.11)
ox = V& Ca Sy Ml Py Lo (4.12)

If the basic variables are independent (4.12) simplifies to

oM = a%ag{l + e+ aﬁag{n (4.13)



a measure of the reliability of a component with the linear safety margin (4.10)
: reliability index 8 can be used

B M (4.14)
oM

This definition of the reliability index was used by Cornell [2].

If the basic variables are normally distributed and the safety margin is linear then
M becomes normally distributed. The probability of failure is, see figure 4.3,

Py = P(M <0)= P(uy +Uopy <0) = P(U < —ﬁ—::) = &(—p) (4.15)

where @ is the standard normal distribution function and U is a standard normally
distributed variable with expected value zero and unit standard deviation (puy =

0, o =1)

Aqﬂ(u)

D/\_

-8

Figure 4.3. Illustration of reliability index and probability of failure. ¢ is the stan-
dard normal density function.

Example 4.2
Consider the fundamental case with the linear failure function (4.7). If the stochastic
variables P and S are independent then the reliability index becomes

oM \Joi+ 0%

Assume that P and S are normally distributed with expected values up = 2, pus =
3.5 and standard deviations op = 0,3, o5 = 0, 25.

KM Hs — HP
p=t1 =

The reliability index becomes

3.5-2

= 3.84
v0.25% + 0.32




Example 4.3 - Geometrical Interpretation of Reliability Index

Consider a simple problem with two basic independent variables X; and X, and
linear failure function

9(T) = ap + a1z1 + az2, (4.16)

If normalized stochastic variables U; and U, with zero expected value and unit
standard deviation are introduced by

X sifes, -
e L BX 4 g9 (4.17)
oXx;

then the failure function can be written

9(7) = ag + a1(px, + ox,u1) +az(ux, + ox,uz)

=ap +ai1px, +apx, + a10x,u1 + a20x,u2

or equivalently if the reliability index 2 is introduced

9(T) = B — a1us — agus

where

g 5 +aipx, +a2px,
Lo 22
\/algm +a20x2

—a;0z;

o = =12
Vo2, + a2,
Xz Uz
g(x)=0
&
W X 1 L

Figure 4.4. Linear failure function in the Z-space and in the normalized T-space.



dgure 4.4 the failure function in the T-space and in the u-space is shown. It is seen
at [ is the shortest distance from origo to the failure surface in the normalized
sace and that the coefficients a; and a3 are elements in a unit vector normal to the

.ailure surface.

4.4 Reliability Analysis with Non-Linear Failure Functions

In general the failure function is non-linear and the safety margin M = g(X) is thus
not normally distributed.

A first approximation to obtain an estimate of the reliability index in this case could
be to linearize the safety margin with the point corresponding to the expected values
as expansion point

. -, 9
M =~ g(px) + E :a_;_h:gx.(X:' — px;) (4.18)
=1 ¥ !

The reliability index can then be estimated from (4.11) - (4.14). However, as noted
above the failure surface ¢(Z) = 0 can be defined by many different but equivalent
failure functions.

This implies that the reliability index based on the linearized safety margin becomes
dependent on the mathematical formulation of the safety margin. This problem is
also known as the invariance problem.

In 1974 Hasofer & Lind [3] proposed a definition of the reliability index which is
invariant with respect to the mathematical formulation of the safety margin.

In this section it is assumed that the stochastic variables X;,: = 1,... ,n are indepen-
dent. Further, it is implicitly assumed that the variables are normally distributed.
The first step in calculation of the Hasofer & Lind reliability index By is to define
a transformation from X to stochastic variables U which are normalized. The nor-
malized variables U;,7 = 1,... ,n with expected values 0 and standard deviation 1

are defined by

Xi — px;
oX;

U; = i=1,2,...,n (4.19)

By this transformation the failure surface in the new u-space is given by, see figure
4.5

g(iu'Xl +0'X1'U.1,... sHX, +0'X“Un)=gu(ﬁ)=“—0 (4.20)

i 4
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—
failure set failure set
=0
safe set g(x) safe | set
xl 1

Figure 4.5. Failure functions in the z-space and the u-space.

It should be noted that the u-space is rotationally symmetric with respect to the
standard deviations.

The Hasofer & Lind reliability index f is defined as the smallest distance from the
origin O in the u-space to the failure surface g, (%) = 0. This is illustrated in figure
4.6. The point A on the failure surface closest to the origin is denoted the #-point
or the design point. The Hasofer & Lind reliability index defined in the u-space
is invariant to different equivalent formulations of the failure function because the
definition of the reliability index is related to the failure surface and not directly
to the failure function. The reliability index is thus defined by the optimization
problem

(4.21)

The solution point for % is denoted u*, see figure 4.6.

8
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g,(1)=0

/ approximating tangent
hyperplane B-aTa =0

u,

Figure 4.6. Geometrical illustration of the reliability index .

If the failure surface is linear it is easy to see that the Hasofer & Lind reliability
index is the same as the reliability index defined by (4.14). The Hasofer & Lind
reliability index can thus be considered as a generalization of the Cornell reliability
index.

The numerical calculation of the reliability index S defined by (4.21) can be per-
formed in a number of ways. (4.21) is an optimization problem with a quadratic
objective function and one non-linear constraint. A number of algorithms exists for
solution of this type of problem, e.g. the NLPQL algorithm by Schittkowski [4].
Here a simple iterative algorithm will be described. For simplicity the index u will
be omitted on the failure function ¢(%) in the following.

At the f-point @* it is seen that the following relation must be fulfilled
u* = AVg(u") (4.22)

where A is a proportionality factor. In order to formulate an iteration scheme it is
assumed that a point @° close to @* is known, i.e.

T =u’+ Au (4.23)

A first order approximation of g(%) in @’ then gives

9(@) = g(2°) + Vo(@)" (@ - T) = 9(@') + Vg(a°)" AT (424)
Application of (4.22) and (4.23) gives

g(@) = g(u°) + Vg (@) (@ - 7°) = ¢(@°) + Vg(@°)T (A\Vg(a’) - °)  (4.25)

9



from which A can be determined using that g(uw*) =0

_ Vg(@) T’ — g(@°)

X == 4.2
Vg(@*)TVg(@’) v
The following iteration scheme can then be formulated:
1. guess (7°)
set 1 =0
2. calculate g(u@')
3. calculate Vg(u*)
4. calculate an improved guess of the f-point using (4.22) and (4.26)
—iNT=i _ (i

Vg(u')TVg(a')

5. calculate the corresponding reliability index

gt = W (4.28)

6. If convergence in f§ (e.g. if |+ — 7| < 1072 then stop, else i = i + 1 and goto
2.

If a unit normal vector @ to the failure surface at the S-point ©* is defined by

— Vg(u*
¥ @) L

then the f-point @ can be written, see (4.22)

Ut = fa | (4.30)

It is noted that @ is directed towards the failure set. The safety margin corresponding
to the tangent hyperplane obtained by linearizing the failure function at the S-point
can then be written

M=p8-allU (4.31)

Further using that @@ = 1 it is seen from (4.30) that the reliability index § can be
written

10



fixed « it is seen that

d
‘£|E=u* = a; (4.33)

du;

i.e. the components in the a-vector can be considered as measures of the relative im-
portance of the uncertainty in the corresponding stochastic variable on the reliablity
index. However, it should be noted that for dependent (correlated) basic variables
the components in the a-vector cannot be linked to a specific basic variable, see the

next section.

An important sensitivity measure relted to «; is the so-called omission sensitivity
factor (; suggested by Madsen [5]. This factor gives the relative importance on
the reliability index by assuming that stochastic variable no. 1 is fixed, i.e. it is
considered as a deterministic quantity. If variable no. : is fixed on the value u? then
the safety margin in the normalized space is written

M;=p- aud — ZO{]‘UJ' (4.34)
=1

iE

with the reliability index

— ysy9
B = QLHZ (4.35)

1l = o

The omission sensitivity factor (; is defined by

Bi _1—aiul/B

o SN L ¥ 5 4.36
15 1—a? s

1

G =

If especially u? = 0 is chosen then

G = - | (4.37)

it is seen that if |a;| < 0.14 then (; — 1 < 0.01, i.e. the error in the reliability index
is less than 1% if a variable with |a| < 0.14 is fixed. The omission sensitivity factor
can be generalized to non-normal and dependent stochastic variables, see Madsen

[5].

In this section it is assumed that the stochastic variables are normally distributed.
The normalized variables U defined by the linear transformatin (4.19) are thus also
normally distributed. If the failure function in the u-space is not too non-linear then
the probability of failure Py can be estimated from

Py =P(M <0)~ P(8-a"T < 0) = %(~p) (4.38)

11



where ® is the standard normal distribution function. The accuracy of (4.38
further discussed in section 6.

Example 4.4

lP
CTEY

R

Figure 4.7.

Consider the structure in figure 4.7. The maximum deflection is

1 p?
48 e1

Umax =

where e is the modulus of elasticity and ¢ the moment of inertia. p, [, e and ¢ are
assumed to be outcomes of stochastic variables P, L, E and I with expected values
and standard deviations o.

ul] of]
P 2 kN 0.6 kN
L 6 m ~0m
E 2.107 kN/m? 3.10° kN/m?
I 210 m* 2.107% m*

The failure crifierion is assumed to be
T2 1

The failure function can then be formulated as follows with [ = 6 m:
9(p,l,e,i) = 48ei — 100pl* = 48ei — 3600p

The three stochastic variables X; = P, X, = E and X3 = I are normalized by

P-2
U1=—6-.—6--—>P=0.6U1+2

E‘_2'107 T
U = W - F= (0.3U2+2)10

I-2-10"° 5

12



failure function in the u-space becomes
gx(@) = 48(0.3uz + 2)(0.2uz + 2)100 — 3600(0.6u; + 2)

“he derivatives with respect to u;,u2 and uz are
_ 99u

a; = = —2160
aul
Ogu
az = = 1440 02&3 + 2
Bug ( )
0gu
az = = 960(0.3ug + 2
T ( )
Using (4.26) - (4.28) the following iteration scheme can be used:
iteration 1 2 3 4 5
uy 1 1.29 1.90 1.91 1.90
ug 1 -1.89 - 2.20 -2.23 -2.25
ug 1 - 1.32 - 1.21 - 1.13 -1.12
B 1.73 2.64 3.15 3.15 3.15
ay - 2160 - 2160 - 2160 - 2160
as 3168 2500 2532 2555
as 2208 1376 1286 1278
> a? 19.58 108 12.81 10° 12.73 10° 12.83 10°
> aiu; 3216 - 9328 - 11230 - 11267
gu (%) 14928 1955 3.5 8.1
A - 0.598 10~3 - 0.881 1073 -0.882 1073 - 0.879 1073

The reliability index is thus § = 3.15 and the corresponding a-vector is @ = %E =
(0.60, - 0.71, - 0.36).

The B-point in basic variable space is

(v, ¢, i*) = (0.6-1.90+2, (=03 2.25+2)107, (~0.2- 112+ 2)10™°)
= (3.14, 1.33 107, 1.78 10*5)

The omission sensitivity factor (3 corresponding to a fixed variable uz = 0 is, see
(4.37)
1

“= A (cosor

1.07
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i.e. the error in 8 is approximately 7% by assuming U; deterministic.

* * *

Another very important sensitivity measure is the reliability elasticity coefficient

defined by

(4.39)

where p is a parameter in a distribution function (e.g. the expected value or the
standard deviation) or p is a constant in the failure function. From (4.39) it is seen
that if the parameter p is changed 1 % then the reliability index is changed e, %.
df/dp is determined as follows:

The failure function is written

9(u,p) =0 (4.40)

If the parameter p is given a small increment then S and the 3-point change, but
(4.40) still has to be satisfied, i.e.

", 8¢ Ou; dg
i O T (i 4.41
Z Ou; Op * dp ? (a.41)

(4.42)
) Ou;
“ELY
~ Using (4.29) - (4.30) and(4.41) dB/dp becomes
ag _ li —B 99 Ou;
dp ~ B4~ |Vg| Bu; 8
p B IVg| Oui p (4.43)
~_1 9
Vgl op

i.e. dfB/dp can be estimated on the basis of a partial differentiation of the failure
function with respect to the parameter p. |Vg| is already determined in connection
with calculation of .

14



umple 4.4 (continued)
1at is the reliability elasticity coefficient ¢; for the length [? Using (4.43) dj3/dl is

g _ 1 9
dl — |Vg| al
1
= ————(—200p*{
Vor A
= —1.05
and thus

epi= —-1.05"2- = —2.00

i.e. if the length is increased by 1% then the reliability index decreases approximately
by 2 %.
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OPGAVE 4.1
For 3 ukorrelerede stokastiske variabler X, X; og X3 geelder

E[XI] =1 gx; = 01E[X1]
E[X,] = 1.0 ox, = 0.1
E[X3] =13 ox, = 0.4

Idet de stokastiske variable regnes normalfordelte og svigtbetingelsen er:
X1 —-X2—-X3<0
gnskes [X;] bestemt, saledes at sikkerhedsindekset 3 er lig 4.0.

* * *

OPGAVE 4.2
Betragt bjeclken

P /
Ly J,J/LLJ,‘LJ,J/;
& 7/
o 2 v

Lasten p er ensfordelt og det maximale moment er mp.x = Tg—sl’l' Svigt indtreeder,
hvis mpax > mp.

p,l og mp er udfald af ukorrelerede stokastiske variable P, L og Mp med

E[P]=2.0 kN/m op=0.4 kN/m
E[L]=4.0 m or=04m -
E[MFp] =5 kNm omz=0.4 kNm

Spgrgsmal 1:

Bestem sikkerhedsindekset 3

Spergsmal 2:

Bestem a-vzerdier og udeladelsesfglsomhedsfaktorer for P, L og Mp.
Spergsmal 3:

Bestem palidelighedselasticiteter for pp,op,ur,0L, tMmp 0g opmy. Vurder resulta-
terne. Hvad vil en 10 % endring af de enkelte veerdier betyde for 37

16



+AVE 4.3
agt en bjalke pavirket med en enkeltkraft p:

q_.
R

Spgrgsmal 1:

Sikkerhedsindekset 3 gnskes bestemt for henholdsvis en moment svigtbetingelse:
3

|mmax| = mFp og en udbgjningsbetingelse: Umax > 7550, hvor umax = 4-%1’8—1;, idet

fglgende ukorrelerede stokastiske variabler haves:

E[P]=4.0 kN op=1.0 kN
E[L]"—"—-SO m o] ~ 0m

E[MFp] =20 kNm ome=2 kNm
E[I]=10"* m* or=0:2 10~% m*
E[E] =2 10" kN/m? og=0.5 107 kN/m?

Spgrgsmal 2:
Lav en fglsomhedsanalyse, hvor indflydelsen af P belyses.
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5. FIRST ORDER RELIABILITY ANALYSIS WITH CORRELATED
AND NON-NORMAL STOCHASTIC VARIABLES

5.1 Introduction

In note 4 it was described how a first order reliability analysis can be performed for
uncorrelated and normally distributed stochastic variables. The reliability method
which is also named the ”First Order Reliability Method” (FORM) results in a relia-
bility index 3. In this note it is described how a reliability index f can be determined
when the stochastic variables are correlated and non-normally distributed.

5.2 Reliability Index for Correlated, Normally Distributed Variables

Let the stochastic variables X;,z = 1,... ,n be normally distributed with expected
values px,,... ,Mx,, standard deviations ox,,... ,0x, and with correlation coeffi-
cients p;; ,1,7 = 1,... ,n. Further, let a failure function ¢(T) be given. In order to
determine a reliability index for this failure mode a transformation from correlated
to uncorrelated stochastic variables is added to the procedure described in section
4.4. This transformation can be performed in several ways, e.g. by determining
eigenvalues and eigenvectors, see Thoft-Christensen & Baker [5.1]. Here Choleski
triangulation is used. The procedure described in the following requires that the
correlation coefficient matrix p is positive definite.

The first step is to determine normalized variables Y;,z = 1,... ,n with expected
value 0 and standard deviation 1

Xi— px; :
Y,-::——E—' i =1 e 0 (5.1)

oX;

It is easy to see that Y will have a covariance matrix (and correlation coefficient
matrix) equal to p.

The next step is to define a transformation from Y to uncorrelated and normalized
variables U with expected values 0 and standard deviations 1. The transformation
is written

U (5.2)

el

Y =

where T is a lower triangular matrix (i.e. Tj; = 0 for j > 7). It is seen that the

covariance matrix CT" for Y can be written

T = o oY £ - ==
|=TEUU |T =TT =5 (5.3)

NIl

TU”

Nl

Co=E[Y Y | =E|

ot



The elements in 7' are then determined from T T = D as

T11=1

Tiz=p12 T2=4/1-T} (5.4,
Ti3 = p13 T3 = (pzs i T13T12)/T22 Ty = \ B T123 - T223

etc.

Example 5.1 -
Let the three normalized stochastic variables Y = (Y7,Y3,Y3) have the correlation
coefficient matrix

1 05 02
=105 1 04
02 04 1

The transformation matrix 7T is then calculated using (5.4)

_[1 o o
T={05 087 0
0.2 034 0.92

The stochastic variables ¥ can thus be written
Yy = Uy
Y, = 0.5U, + 0.87U,
Y; = 0.2U; + 0.34U; + 0.92U;
where (U, Uz, Us) are uncorrelated and normalized variables.
* * %

The transformation form X to U can now be written

X =px+

ST
Nl

7 (5.5)

where D is a diagonal matrix with standard deviations in the diagonal. Using (5.5)

the failure function can be written ¢(z) = g(gx + DT %) = 0 and a reliability index
[ can be determined as shown in section 4.4.

Example 5.2

A failure mode is modelled by a failure function with 3 normally distributed variables
Xl ’ X2s X3:

g9(2) == — zzzc§



where px, = 25.0, ox, = 0.25, pux, = 4.0, ox, = 0.2, ux, = 2.0 and ox, = 0.1.
The variables are correlated as the variables in example 5.1. The standardized
normalized and uncorrelated u-variables are obtained from example 5.1 and (5.5)
as

Xy =pux, +ox,Us
X, = 5 + T X (0.5U1 + 087U2)
X3 = px, +0x,(0.2U; + 0.34U; + 0.92U3)

The failure function in the u-space can then be written

g(u) = 25.040.25u; —(4.040.2(0.5u; +0.87uz))(2.040.1(0.2u; +0.34u,+0.92u3))?

The failure function can be used to find 3 as explained in section 4.4 by the iteration
scheme used in example 4.4.

The solution is 8 = 3.86 (P; = 5.67-107%), @&* = {1.051, 2.426, 2.812} and
@ = {0.27, 0.63, 0.73}.

5.3 Reliability Index for Independent, Non-Normally Distributed Variab-
les

Generally the stochastic variables are not normally distributed. In order to deter-
mine a measure of the reliability of a component (failure mode) with non-normally
distributed variables it is natural, as for normally distributed variables, to establish a
transformation to standardized (uncorrelated and normalized) normally distributed
variables and to determine a Hasofer & Lind reliability index £.

A simple transformation from X; to U; can be defined by the identity

(Vi) = Fx,(X:) ; (5.6)

where F; is the distribution function for X;. Given a realisation @ of U a realization
T of X can be determined by

T = Fx, (®(u1))
(5.7)

Tn = Fx,(2(un))
and the failure surface can be written
9214000 y80) = g(Fx ) (Blug))y- o s Figp (B(uin))) = 0 (5.8)

3



In the algorithm for determination of 3 (see section 4.4) the gradient of the failure
function with respect to u; is needed. From (5.8):

09 _ 8g 9zi _ 89 o(®7'(Fx.(2:)))
Ou; Oz; Ou; O fxi(zi)

(5.9)

where fx,(z:i) = dFx,(z;)/dz; is the density function for X;.

Example 5.3 Lognormal Variable
For a lognormal distributed variable X with expected value p and standard deviation
o the distribution function is

Fx(z) = ® (1—‘”’—“‘1&> (5.10)

gL

where

o? 1
oL = ln(“—2+1) and #L=1nﬂ—§UL

The transformation (5.7) becomes

z =exp(opu+ ur) (5.11)

Example 5.4 Gumbel Variable

For a Gumbel distributed variable X with expected value y and standard deviation
o the distribution function is

Fx(z) = exp(— exp(—a(z — b))) ' (5.12)
where
a7 and by 05T

V6o a

The transformation (5.7) becomes

T=05b— éln(—ln ®(u)) (5.13)



The inverse transformation to (5.7) is

up = &7 (Fx, (z1))
(5.14)

Uiy, = @“I(Fxn(:cn))

When the transformation defined above is applied in connection with the 3-algorithm
in section 4.4 it is also known under the name of principle of normal tail approzima-
tion. In the normal tail approximation a normal distribution with parameters u; and
o; is determined for each non-normal stochastic variable such that the distribution
function values and the density function values are the same at a point z!:

@(M) = Fx,(c}) (5.15)

!

!

ST = (el (5.16)

]
g;

where fy, is the density function for Xj;.
The solution for (5.15) - (5.16) is

oi = £E (e BT
i = ot — 0187} (Fx,(a}) (5.18)

Normalized variables are defined by

— ! |
U; = _ﬂ:, fﬂ-, (519)
7;

and the failure function is written

9(@1y- - 1@n) = g + s, e sl + Ohun) = 0 (5.20)

The gradient of the failure function with respect to u; is

dg  0g¢(7) Ox;

6u,- N a;t:,' 6u,-
= 29E]_,
i ™ o; (5.21)
_ 09(%) (2~ (Fxi(27)))
Oz; fx:(z})



At the B-point @* and the corresponding point " in the z-space the gradient estima-
ted by (5.9) is equal to the gradient estimated by (5.21) if z; =z}, : =1,2,... ,n.
This indicates that if the current guess of the A-point in the algorithm @' is used as
@ in (5.17) - (5.21) and if the points @', u?,... converge to T* then the transforma-
tion defined by (5.7) is equivalent to the transformation defined by the normal tail
approximation, see Ditlevsen [5.1] for further details.

Example 5.5

Consider the safety margin:

where

X : is log-normally distributed with expected value y; = 10 and standard deviation
o1 = 3 (or LN(10.0, 3.0)). From (5.10) (p1,0L) = (2.26, 0.294) is obtained.

X5: is Gumbel distributed with expected value pg; = 1 and standard deviation
o1 = 0.1 (or EX1(1.0, 0.1)). From (5.12) (a,b) = (12.8, 0.955) is obtained.

The transformation from the physical z-space to the standard normal u-space is
found from (5.11) and (5.13):

9(T) = exp(opuy + pur) — 2(b - éln(—ln <I>(ug)))2

By application of the f-iteration scheme explained in section 4.4 f can be found as
B = 4.040 and w* = {—2.587, 3.103}, & = {—0.640, 0.768}.
* ok *

5.4 Reliability Index for Dependent, Non-Normally Distributed Variables

In this section two techniques are described which can be used to determine a reliabi-
lity index when the stochastic variables are dependent and non-normally distributed,
namely methods based on the Rosenblatt transformation, see [5.2] and the Nataf
transformation, see [5.3]. It should be noted that if all the stochastic variables are
normally and log-normally distributed then the technique described in section 5.2
can be used because the log-normal variables can easily be transformed to normal
variables, see example 5.6.

Example 5.6

Consider 3 stochastic variables X;, : = 1,2,3 with expected values pu[-], standard
deviations o[-] and coefficients of variation V[-] as shown in this table:

6



78 o] V[

X1 KX, 7X, JX!/”XI
Xo BXs TX, oxX:/BX,
X3 HXa OXa st/#xa

and correlation matrix p
1
sym.
= | PX2X, 1

ol

PR.Xy  PaXy 1

X, is assumed to be normally distributed, but X, and X3 are log-normally distribu-
ted. Two new variables are defined by ¥; = In X;, ¢ = 2,3. They become normally
distributed. The expected values and standard deviations of the normally distribu-
ted variables X;, Y, and Y3 become, see example 5.3,

pl] of]

X1 BX, X,

Y, by, = ln,(.l,x2 - %J%’z ay, = 1/1n(V}%2 + 1)

¥ py, =Inpx, — 50% oy, = /In(Vg, +1)

The new correlation matrix 5" of correlation coefficients between X, Y, and Y3 can
be obtained from the definition of the covariance between two stochastic variables:

]
SyII.
= | pxpxy Vi, 1
PX3X, VXa 1“(1+PX2X3VX, VXa) 1
vy Oy, 0v,

Example 5.7
Consider a normal distributed variable X; and two log-normal distributed variables

7



X7 and X3 with the statistic parameters:

K] o[} 48
X 10.0 2.0 0.20
X, 5.0 2.5 0.50
X3 7.0 0.35 0.05

(sym.)
02 1

=l
Il

0.5 0.3 1

From example 5.6 the following parameters are obtained for X;, ¥> = In X, and
Y3 =In X3

] o]
X, 10.0 2.0
Y5 1.50 0.472
Y3 1.94 0.05
and
if
3 (sym.)
P = | 021 1
0.50 0.37 1

It is seen that the absolute value of the correlation coefficients become higher (which
will always be the case). Furthermore, it is seen from the example and the expressions
in the 7 -matrix that the difference between pi; and p;; vanishes for small coefficients
of variations V, which is also the reason why the difference between p}; and p;; is
sometimes neglected.

From this example it is concluded that a failure function of normally and log-normally
distributed stochastic variables can be transformed to a failure function of normally

8



distributed variables. The failure function in the u-space can then be obtained from
5’ and the transformation explained in section 5.2. Next the reliability index § can

be obtained as usual.
* K K

For dependent stochastic variables X;, : = 1,... ,n the Rosenblatt transformation,
see [5.2], can be used to define a transformation to the u-space of uncorrelated and
normalized normally distributed variables U;, ¢ = 1,... ,n. The transformation is
defined as, see also (5.7)

21 = Fx!(2(u1))
22 = Fx,1x, (B(u2)| X1 = 21)

(5.22)
By, = F)?:|X1---x,._1(¢’(“n)lxl =21y, Xp-1 = ﬂin-])
where Fx;x,...x;_,(zi|X1 = z1,... ,Xi—1 = z;—1) is the distribution function of X;
given Xa = @i, vve s gt =17
Fxix1-Xie1 (zi]l X1 = 21,... , Xic1 = Ti1) =
_r;o Ftieodti s @ig o s Bimtyt)dl (5.23)
fxyxeo (1500 4Tic1)
fxy-x:(z1,... ,x:) is the joint density function of Xi,... ,X;. The transformation
starts for given u;,... ,u, by determination of z;. Next z; is calculated using the
value of z; determined in the first step. z3,...,z, are then calculated in the same
stepwise manner.
The inverse transformation from z;,... ,2, to u,... ,u, is defined by
up = @71 (Fx, (1))
uz = @71 (Fx,|x, (22| X1 = 21))
(5.24)

U = ‘I’_I(FX,,|X1---X,,_1($nIX1 =i en st == Pnad ))

The Rosenblatt transformation is very useful when the stochastic model for a failure
mode is given in terms of conditional distributions. For example, this is often the
case when statistical uncertainty is included. Examples 5.8 and 5.9 show how the
Rosenblatt transformation can be used.

Example 5.8. Evaluation of Maximum Wave Height

The wave surface elevation n(t) can for short periods (8 hours) be assumed to be
modelled by a stationary Gaussian stochastic process with zero mean. The wave
surface is then fully described, if the spectral density S,,(w) of the elevation process
is known. w is the frequency. A commonly used spectral density is the JONSWAP
spectrum, see [5.4]



_ 4kjk, Hir® 1( 2nky \*\ .
S"’I'I(w) . w5(kaz)4 exp _-7'_1: WkaZ i (a')

where v = 3, ks = 1.4085, k, = 0.327exp(—0.315y) 4+ 1.17 and ky = 1 —0.2851n(~y).
Hs is the significant wave height and Tz is the zero crossing period. The exponent

ais
k, Tz —1)2
a=exp(—( p1Z 2, ))

2
202

where

0.07 for w< g
009 for w22

The distribution function of the maximum wave elevation H,, within a given time
period [0, T'] can be estimated from, see Davenport [5.9]

Fio () = exp (—wT exp (- 527 ) (b)

where

Vg = [ — (c)

o =\/mo (d)

and m;,7 = 0,2 is the ith spectral moment

mi= s | wiSm(w)ds (e)

Hgs and Tz are usually modelled as stochastic variables. Here Hg is modelled by a
Rayleigh distribution with the parameter s

Fug(h) =1 -exp (—3(27) | h20 (0

and Tz by a conditional distribution given Hg

Pry s (t1Hs = h) = 1 —exp (—(ﬁ)ﬂ“) ®

10



where

k(h) = 6.05exp(0.07h) (h)

v(h) = 2.35exp(0.21h) (1)
The probability that H,, is larger than A is

P{Hy > k)= Plh— Bu(Hs,Tz) < 8) (i)
The distribution function for H,, given Hs and Tz is given by (b). The distribution

function for Tz given Hg is given by (g), and the distribution function for Hs is
given by (f). (j) can then be estimated by FORM using the failure function

g=h—-H,(Hs,Tz) (k)

and the three stochastic variables H,,, Hs and Tz. The transformation to standar-
dized variables Uy, U; and U; can be established by the Rosenblatt transformation

®(U1) = Fus(Hs)
®(U2) = Fry\us(Tz|Hs) 1)
®(Us) = Fy, (Hm|Hs,Tz)

The reliability index £ for (k) is determined by the algorithm in section 4.4 and
P(Hm > h) = &(~p) (m)

For the parameters s = 4.0m, T = 8 hours, § as a function of h,, is shown in figure
5.1.

Figure 5.1.

11



Example 5.9

Consider a failure function with two stochastic variables X; and X,: (Madsen et al.
[5.5], p. 77)

9(%) = 18 — 3z1 — 224 (a)
X, and X, are dependent with a joint two-dimensional exponential distribution

function:

Fx,x,(z1,22) = 1—exp(—z; )—exp(—z2 )+exp[—(z1+z2+z122)] 21 > 0, 22 > 0(b)

and the corresponding probability density function:

fx.x.(z1,22) = (21 + 22 + z122) exp[—(z1 + 22 + T122)] 1 >0, z2>0 (c)

Realisations u; and ug of standard normal variables U; and U, are obtained from
the Rosenblatt transformation as:

Uy = (I)—l(Fxl (xl))

(d
up = 7 (Fx,y x, (z2]71)) )

where

Fx,(x1) = /:1 /Omfxlxz(wlawz)dﬁdwz =1-—exp(-z1) , z1>0 (e)
Similarly,

Fx,(z2) =1—exp(—z3) , z2 >0 (f)
and

fx,(z2) = exp(—z2) , z2>0 | (g)

Then it is possible to obtain Fix,|x, (z2|X1 = 21) as

f;fX1X2($1,$2)d$2
fx(z1) (h)
=1— (14 z2)exp[—(z2 +z122)] , 21 >0, 22 >0

Fx,1x,(z221) =

For the transformation from the z-space to the u-space the formulas become
21 = Fg}(8(u)) = —In(~®(ur) + 1)
22 = Fi,1x, (2(u2)| X1 = z1)

12



from which z2 can be found as the solution to

1= (1 + z2)exp[—(z2 + z122)] = ®(us)

The obtained failure function in the u-space is seen in figure 5.2.

A Uy

Figure 5.2. Failure surface in standard normal space.

The B-optimization problem includes a local and a global minimum. The S-point
(which is also the global minimum) is @} = {2.78, 0.1.} with 8; = 2.78 and Py ~
2.68 - 10~2. Further the local minimum point @5 = {—1.30, 3.25} is identified with
P2 = 3.50.

* & *

An alternative way to define the transformation from the U-space to the z-space
is to use the Nataf transformation, see [5.3] and [5.6]. This transformation is in
general only an approximate transformation. The basic idea is to establish the
marginal transformations defined in section 5.3 (as if the stochastic variables were
independent) and to use a correlation coefficient matrix 7 in the y-space, which is
obtained from the correlation coefficient matrix p in the z-space by multiplying each
correlation coefficient by a factor F° which depends on distribution types and the
statistical parameters. To describe the Nataf transformation it is thus sufficient to
consider two stochastic variables X; and Xj;.

Marginal transformations of X; and X; to normally distributed variables Y; and Y;
with expected value 0 and standard deviation 1 is, see (5.7)

Xi = Fx; (2(Y))

(5.25)
X; = Fx,(2(Y;))

The stochastic variables Y; and Y; have an (equivalent) correlation coefficient pf;
which in the Nataf transformation is determined such that dependence between X;
and X; is approximated as well as possible.

13



p; is determined as follows. Normalized variables Z; and Z; are introduced by

beg. g (5.26)

The correlation coefficient p;; between X; and X is p;; = E[Z;Z;]. From (5.25) and
(5.26) it is seen that

_ Fx (2(yx)) — px.
Zp =

k=37 5.27
== J (5.27)

Further, from (5.2) it is seen that uncorrelated variables U; and U; can be introduced

by

Yi = Uy
(5.28)
yi = piui +4/1 = (p§;)? u;

pi; can then be related to the (unknown) equivalent correlation coefficient p§; by

e o] o0
pij = f f zizjp2(yi ¥, P5;)dyidy;
—oo J —oo

- / = /"" Fx (@) — px: Fx](2(y))) - px,

©2(Yi, Y5, Pij)dyidy;

I P (5.29)
_ _/OO ,/oo FM(®(wi)) — px; Fx; (B(pfui+ (/1= (p5)%w5)) — wx;
B ) oX; IX;

p(ui)p(uj)duidu;
where ¢2( ) is the two-dimensional normal density function. From (5.29) pf; can be
deterined by iteration. '

Based on pf; the following approximate joint density function f%. X; (zi,z;) is obta-
ined:

fxi(zi)fx;(z;)
e(yi)e(y;)

Fxix; (ziy z5) = ©2(Yi, Yjs P55) (5.30)
where y; = 71 (Fx,(z:)).

(5.29) has been solved for p§; by der Kiureghian & Liu [5.6] for a number of distri-
bution functions and approximations for the factor
_ P

Pij

F (5.31)
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has been obtained. With p = p;; and V; = ox,/ux,; examples of approximations for
F are shown in table 5.1.

For n =

2 it should be checked that |p$,| < 1. For n > 2 the corresponding

requirement is that p° is positive definite. In der Kiureghian & Liu [5.6] or Ditlevsen
& Madsen [5.7] approximations for F' are also shown for Gamma, Frechet, Uniform,
Rayleigh and Gumbel distributions.

Xi X; F
normal log-normal VJ/\/ln(ITVJ?)
log-normal log-normal In(1 + pV,-V,-)/(p\/Hl + V2)In(1 + VJ’-’))
exponential log-normal 1.098 + 0.003p + 0.025p% + 0.019V; + 0.303Vj2 —0.437pV;
Weibull log-normal 1.031 + 0.052p +0.002p> + 0.011Vj +0.220V? —
0.210V; + 0.350V? + 0.005pV; — 0.174pV; + 0.009V; V;
exponential normal 1.107
Weibull normal 1.031 — 0,195V; + (1.328V‘.2
exponential exponential 1.229 — 0.367p + 0.153p?
Weibull exponential 1.147 4+ 0.145p + 0.010p% — 0.271V; + 0.459V‘-2 — 0.467Vip
Weibull Weibull 1.063 — 0.004p — 0.001p2 — 0.2V; + 0.337V? — 0.2V}
+0.337V2 +0.007(pV; + pV; — V;V;)
Table 5.1.

Example 5.10

Consider the same problem as in example 5.9 but use the Nataf transformation
instead of the Rosenblatt transformation. The correlation coefficient between X;

and X3 is

(= o] oo
p =/ / 122 fx, x,(T1, 72 )dz1d2s
o Jo

o0 (s o]
=/ / z122(z1 + 22 + T122) exp(—(z1 + z2 + z122))dz1dT2
o Jo

= —0.40366

The factor F for two exponentially distributed variables is

F =1.229 — 0.367p + 0.153p° = 1.402

15



The equivalent coefficient thus is

pf = Fp =—0.566

The transformation form (u1,uz) to (z1,z2) is given by (5.25) and (5.2) (or (5.28)
for two stochastic variables)

1y = —In(1 — ®(u;))

T2 = —In(1 — ®(p°us + /1 — (p°)%u2))

Using the failure function in example 5.9 the two S-points are determined as

By = 2.797 7} = (2.80, 0.07) @ = (0.99, 0.02)
B = 3.658 @ = (—2.02, 3.05) @ = (—0.55, 0.83)
* % %

5.5 Sensitivity Measures

As described in note 4 three important sensitivity measures can be used to char-
acterize the sensitivity of the reliability index with respect to parameters and the
stochastic variables, namely:

«-vector
The elements in the a-vector characterize the im_portance of the stochastic variables.
From the linearized safety margin M = # — @ U it is seen that the variance of M

oy =at4+ai+-+ai=1 (5.32)

For independent stochastic variables a? thus gives the percentage of the total uncert-
ainty associated with U; (and X;). If for example X5, X3 and X4 are dependent then
o + o + o2 gives the percentage of the total uncertainty which can be associated
with X,, X3 and X4 altogether.

Reliability elasticity coefficient e,
ep is defined by (4.39). For a parameter p in the failure function g(%,p) = 0, e, is
obtained from (4.43)

1 9g p
- 4 5.33
= Vgl 3p B (533)

For parameters p in the distribution function for X, which is related to standardized
variables U by U = T(X, p), e, is obtained as

. l TaT(.‘:E*ap) B

=

16



where ©* and T* are the 3-points in the u-space and the z-space.

Omission sensitivity factors £
As described in section 4.4 the factor

&= - ’ (5.35)

gives a measure of the change in the reliability index if stochastic variable no. i is
fixed. This stochastic variable is assumed to be independent of the other stochas-
tic variables. As dexcribed in Madsen [5.8] the omission sensitivity factor can be
generalized to dependent stochastic variables.
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OPGAVE 5.1

Der betragtes et konstruktionselement, hvor udmattelsessvigtbetingelsen kan skrives
dir < cs" (*)

hvor dy, er et kritisk skadesmal og s er en konstant proportional med spzendings-
amplitudernes stgrrelse. ¢ og n antages at veere udfald af stokastiske variable C og

N.

N antages normalfordelt med forventningsveerdi [N]= 2.5 og variationskoefficient
V[N]=0.1. C antages logaritmisk normalfordelt med [C]=2.0 10~1® og V[C]= 0.25.
C og N antages korrelerede, idet p(N,C)=-0.2.

Spegrgsmal 1:

Opskriv en sikkerjedsmargen for svigtbetingelsen (), hvori kun indgar ukorrelerede
stokastiske variabler.

Spgrgsmal 2:

Bestem sikkerhedsindekset § med hensyn til svigtbetingelsen (*), idet dy,=1.0 og
$=8000.

OPGAVE 5.2

En svigtfunktion er givet ved
g(f) =T — T2 —T3 — T4

hvor z;,z2,z3 og =4 er udfald af stokastiske variabler:

Xl 3 W(,Ull,O'I) (Weibul-fordelt), K1 = 100,0’1 =9
Xz : N(pz2,02) (Normal-fordelt), pa = 10502 = 1
X3 : LN(ps,03) (Lognormal-fordelt), us = 10,03 = 5
X4 : EXP(p4) (Exponential-fordelt), us = 5

Korrelationsmatricen af korrelationer mellem X-variablerne er

1
= 102 1 (sym.)
FP=1e4 @7 1
0.05 04 -0.2 1

Spergsmal 1:

Opskriv svigtfunktionen i det standardiserede u-rum.
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6. SORM AND SIMULATION TECHNIQUES

First Order Reliability Methods can be expected to give reasonable results when the
failure functions are not too non-linear. FORM techniques are described in notes
4 and 5. If the failue functions in the standardized u-space are rather non-linear
then Second Order Reliability Methods (SORM) techniques, where a second order
approximation of the failue function is established, can be used. These techniques
are described in section 6.1.

Other techniques which can be used for such types of problems are simulation te-
chniques. Simulation methods which are described in sections 6.2 - 6.7, can also be
powerful when the failure functions in the u-space have more than one 3-point, i.e.
there are several local, probable failure regions.

In simulation methods realisations (outcomes) Z of the stochastic variables X are
generated for each sample. When simulation methods are used to estimate Py the
failure function is calculated for each realisation T and if the realisation is in the
failure region then a contribution to the probability of failure is obtained. In section
6.2 different techniques to generate realisations of stochastic variables are described.
In the literature a large number of simulation methods are described. Section 6.3 to
6.7 contain a description of some of the most important methods, namely:

o Crude Monte Carlo simulation

o Importance sampling

° Importance sampling based on the 3-point

0 Monte Carlo sampling by excluding part of safe area
o Directional simulation

o Latin hypercube simulation

° Adaptive simulation

Finally in section 6.8 it is described how importance measures can be obtained by
simulation.

6.1 Second Order Reliability Method (SORM)

Compared with a FORM estimate of the reliability of a component (or failure mode)
an improved estimate can be obtained by using a second order approximation of the
failure surface at the -point @* in the u-space

o(@) = Vg(@*)"(a ~7*) + 5(w ~ )" D@ - 7*) = 0 (6.1)

1



where D is the Hessian matrix of second order partial derivatives of the failure surface
at the f-point

% .
=g g—l=w , Hi=12....n (6.2)
t J

D,'J'

In the following it is described how a second order reliability index can be determined.
The B-point and the gradient vector can be written, see (4.29) and (4.30)

T =pz V@)= -|Ve(@)a (6.3)

An orthogonal transformation from % to ¥ is defined by

y=Ru (6.4)
where the nth row in R is equal to @
Ry = o B £ (6.5)

The remaining rows in R can be found by standard Gram-Schmidt orthogonalization.

(6.1) can then be written

+ . g7
2|Vg(a*)|

il

= =T
B~ yn DR g=0 (6.6)

where ﬂ = (ylyyza"' yYn—1,Yn — ﬁ)T

The solution of (6.6) with respect to y, using up to second order termsin y;,y2,... ,Yn—1
gives the hyperparabolic surface
T —
yn=B~-9 AT (6.7)
where ¥ = (y1,... ,¥yn—1)7 and the elements in A are
A= (BDR Vi  4,5=1,2 1 (6.8)
T i 157 = LiBiwe 2= .
EZC] :

A second orthogonal transformation from 7' to ¥ is defined by

|

¥y =

7 (6.9)

where the columns in H are the eigenvectors of A (6.7) can then be written

n—1
yn=B— Y Aiv? (6.10)
=1



where A;, 1 =1,2,... ,n—1 are the eigenvectors in 4. The eigenvectors and -values
can e.g. be found by Jacobi-iteration or subspace-iteration for large problems, where
only the largest eigenvalues are important, see e.g. [6.11].

The probability of failure Py estimated using the second-order approximation of the
failure surface is

P7° :/ / @(v1) - @(vn-1) @(yn) dyn dvy---dva_y (6.11)
5 e B+Zr\.‘v?

The approximation is illustrated in figure 6.1 which also shows the first-order ap-
proximation (see (4.38))

PFO = 3(—p) (6.12)

Uz g(ﬁ) =0
A

S0
B P:

FO ™,
p! -

Figure 6.1. Illustration of first and second order approximations of the failure surface.

to the exact probability of failure Py = P(g(U) < 0). It should be noted that due to
the rotational symmetry of the normal density function the points in the area close
to the #-point (which is the point closest to origo) has the largest probability density.
Therefore, the largest contributions to the probability of failure come from this area.
Further it is noted that the n-dimensional normal density function for uncorrelated
variables ¢n( ) oc exp(—r?/2) decreases fast with the distance r from origo. If the
failure surface is rather non-linear then a second order approximation of the failure
surface can be expected to give a much better estimate of the probability of failure
than the first-order approximation. Finally it should be noted that for # — oo the
first (and second) order estimates of the probability converge to the exact result:
P!F L Pg,



Based on (6.11) Breitung [6.1] has derived an approximation to PfSO:

PFO ~ &(=F)I7Z} (14 26);) 7'/ (6.13)

Improvements to (6.13) have been suggested by for example Tvedt [6.2] and [6.3].
A second order reliability index $°Y can be defined by

B0 = —&~1(P79) (6.14)

The approximation in (6.13) - (6.14) assumes that the matrix T + 2B4 is positive
definite.

6.2 Simulation of Stochastic Variables

A necessary tool in simulation techniques for estimation of the probability of failure is
to simulate outcomes of stochastic variables with an arbitrary distribution. For this a
method to generate uniformly distributed numbers is first described. Next it is shown
how the invers method can be used to generate outcomes of stochastic variables with
a general distribution. Finally methods to generate outcomes of normally distributed
variables are described.

Simulation of uniformly distributed numbers

The numbers generated by algorithms implemented on computers are usually not real
random but only pseudo-random numbers. The reason is that they are generated
by a rule (equation) such that the sequence of numbers is repeated after a number
of outcomes. Further the same sequence of numbers is obtained if the generator is
started again with the same starting conditions.

In this subsection a stochastic variable V' which is uniformly distributed between 0
and 1 is considered. The distribution function is : )

v if 0<v<l1
Fv(v)z{ - =

0 else pd8)

The most widely used techniques to simulate (generate) pseudo-random numbers of
V is the multiplicative congruential generators, see Hammersley & Handscomb [6.2]
and the XOR generator, see Ditlevsen & Madsen [6.5]. In multiplicative congruential
generators the pseudo-random numbers are determined sequentially by

v; = avj—1 + ¢(modulo m) (6.16)

where m is a large integer (usually a large power of 2) and a, ¢ and v;_; are integers
between 0 and m — 1. The starting seed number is vo. The numbers v;/m are

P



then used as pseudo-random numbers uniformly distributed between 0 and 1. The
sequence of numbers repeat after at most m steps. The full period m is obtained if

1) ¢ and m have no common divisor
2) a = (modulo p) for every prime factor p of m
3) a = (modulo 4)if m is a multiple of 4.

On many computers the following generator is used

v; = 89069v;_; + 1(modulo 23?) (6.17)

The numbers generated by (6.16) are not completely independent. It can be shown
that the correlation between successive numbers lies in the interval, see Hammersley
& Handscomb [6.2]

e T . E_E(IHLH%]

? (6-18)

a am m’ m’ a am m
Numerical investigations have shown that if the multiplicative congruential generator
is used to generate outcomes of stochastic vectors then the generated vectors are
not uniformly distributed in the n-dimensional space. An algorithm which generates
numbers much more random in the n-dimensional space is the so-called XOR random
number generator, see Ditlevsen & Madsen [6.3].

Simulation of random numbers by the inverse method

va(V) “FX (X)

V4 — ———

Figure 6.2. Illustration of the inverse method.
For a general stochastic variable X the distribution function is Fix(z). In the invers
method two steps are needed to generate an outcome £ of X :

1) generate an outcome v of V (e.g. using a multiplicative congruence generator)

2) determine the outcome of ¢ by

&= Fx'(Fv()) = Fx'(9) (6.19)



The method is illustrated in figure 6.2. It is seen that the distribution function for
X with outcomes generated by this procedure is

Fg(z) = P(X < z) = P(Fx'(V) < z) = P(V < Fx(z)) = Fx(z) (6.20)

Example 6.1
Let X be exponential distributed with distribution function

Fx(z) =1— exp(—Az)

Outcomes of X can be generated by
1
= —Xln(l - 'l:‘)

where the number ¢ are generated by (6.16).
* *x x

The Box-Muller mefhod to simulation of normal distributed numbers

Outcomes 4; and 1, of 2 independent normally distributed stochastic variables U,
and U; both with expected value ¢ = 0 and standard deviation ¢ = 1 can be
generated using

{ Uy = v=2InV; cos(27Vs)
Up = v/—2InV; sin(27V3)

where V; and V;, are independent stochastic variables uniformly distributed between
0 and 1.

(6.21)

Outcomes are determined by the following two steps :
1) generate outcomes 9; and 9, of V] and V,
2) calculate the outcomes %, and 1y using (6.21)

It is easy to show that U; and U, defined by (6.21) are independent and normally
distributed.

Simulation of normally distributed numbers using the central limit theo-
rem

From the central limit theorem 1t follows that

Va=W14+Vo+..+V,—a — U for n— oo (6.22)

where V1, V3, ... are independent equidistributed random variables uniformly distribu-
ted between 0 and 1 (expected value py = 1 and variance 0% = [} (z— 1)%dz = ).
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U is asymptotically normal distributed with expected value py = n% —a and variance

2 _npl
oy =Ni3-

A reasonable choice is @ = n/2 and n = 12. Then U becomes approximately normal
with expected value 0 and standard deviation 1.

Simulation of correlated normally distributed numbers

A vector X = (X1, ...,,_X’n) which is normally distributed with expected value 7Zy

and covariance matrix C'x can be written, see (5.5)

X =iy + U (6.23)

|
Nl

where the elements in U are uncorrelated with zero mean and unit standard de-
viation. Using the techniques described above to generate outcomes of normally
distributed variables and (6.23) realisations of X can be generated.

In the following sections different simulation methods to estimate the probability of
failure are described:

Ps = P(g(U) <0) (6.24)
where the failure function ¢ is assumed to be modelled in the u-space.

6.3 Crude Monte Carlo simulation

In crude Monte Carlo simulation Py is estimated by

Py

Il

i .
15 ot (625)

where N is the number of simulations and %; is sample no. j of a standard normally
distributed stochastic vector U. The indicator function I[¢g(u)] is defined by

0 ifg(w)>0 (safe)

Tlg(@)] = { 1 ifg(@) <0 (failure)

The standard error of Pf is estimated by

_ . [Ba=Bp)
s= —fN—’i— (6.26)

Confidence intervals for the estimate of the probability of failure can be determined
using that Py becomes normal distributed for N — co.

T



6.4 Importance sampling

The idea in importance sampling is to concentrate the sampling in the area of the
total sample space which has the largest contribution to the probability of failure.
In this way the standard error of the estimate of Py can be reduced significantly. Py

is written
Pr= [ [ le@fp@aus - du

= [+ [19@ )]f"(y Bl +«+ g 6.27)
@)

where f5(%) is the sampling density function and fF7(¥) = @(y1) - - - ¢(yn) is the
standard normal density function for U.

In theory, if the sampling density fz is chosen to be proportional to f;; in the failure
region then the standard error on Py would be zero. Unfortunately, this choice is
not possible because Py is not known beforehand. In the following it is shown how
fz can be chosen reasonable.

Using importance sampling Py is estimated by

N

Py = ;,2_: I (3 )]JE(@’; (6.28)

where f=(¥) is the sampling density function from which the sample vectors ﬁj are
generated.

The standard error of the estimate Py is

N
s=dm{z([(,n;§’])) ———[Z T 7 J;]*’} (6:29)

Example 6.2 Estimation of the probability of failure

Let X be the load on an element and X, the strength of an element. Failure occurs
if X; > X,. If a failure function g is defined by

9(z1,72) = T2 — 7
then the probability of failure is
Pf=P(Xy— X1 <0)=P(g(X) <0) = / f I[g(Z)] fx(T)dz1dz,
o Jo

8



where f%(Z) is the joint density function of the stochastic variables modelling the
load and the strength.

In importance sampling the simulations are concentrated in the area which contri-
butes most to the probability of failuire. Py is estimated by (6.28):

fxy_;
NZIH I

where f(7) is the sampling density function from which the sample vector ﬁj is
generated. Figure 6.3 shows the general difference between crude Monte Carlo si-
mulation and importance sampling.



Xz | ¥z |

fi () %, T

fX,(Xt)- fxg(xz)

¥y ioad x,—strength

Xy,X

Figure 6.3. Crude Monte Carlo simulation and importance sampling.

Example 6.3

Consider the example from Madsen et al. [6.6], where the cross-section of a reinforced
concrete beam is analysed. n = 7 stochastic variables are used. The failure function

is written

TsTiTs

g (T) = 222374 — — 2

TeT7
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variable dist. 7 o
T bending moment N 0.01 MNm 0.3
Ty eff. depth of reinforcement N 0.3 m 0.05
T3 yield stress of reinforcement N 360 MPa 0.1
T4 area of reinforcement N 298 107° m* 0.05
Ts factor N 0.5 0.1
Tg width of beam N 0.12 m 0.05
T7 compressive strength of concrete N 40 MPa 0.15

Table 6.1. Statistical data. p is the expected value and o is the standard deviation.
N indicates normal (Gauss) distribution.

The statistical data are shown in table 6.1. The stochastic variables are assumed to
be independent. A transformation to normalized stochastic variables (with expected
value 0 and standard deviation 1) U,z = 1,2, ..., 7 is established by

Xi'—-o'iUi'{"#i ,i=1,2,3,4,5,6,7

The failure function is now written

g(w) = (oauz + p2)(ozus + ps)(ogus + pa)
B (osus + ps)(o3usz + p3)*(oaus + pg)?
(osus + pe)(orur + pr)

— (o1ur + 1)

Crude Monte Carlo simulation and importance sampling are used.

In importance sampling Py is estimated by (6.28) with ¥ = @ + @* and fg(ﬁ) =
fU('fj —u*), i.e. the samples are concentrated around the point @*. u is a sample
generated from the standard normal vector U. In this example %* is chosen to (see
next section)

w* = (25,-1,-2,-1,0,0,0)

The standard error is estimated by (6.29).

N crude M C imp. samp.
1000 0 0.000344
(0) (0.000016)

10000 0.000300 0.000333
(0.000173) (0.000005)

100000 0.000350 0.000337
(0.000059) (0.000002)

Table 6.2.

The numerical results are shown in table 6.2 with standard errors in (). It is seen
that the standard error in importance sampling decreases much faster than in crude

Monte Carlo simulation.

* Kk ok
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6.5 Importance sampling based on the 3-point

1

u

Figure 6.4. Importance sampling around the S-point.

If the B-point has been determined before simulation techniques are used importance
sampling can be very effective with the #-point as the point around which the sam-
plings are concentrated, see figure 6.4. Such a technique is described in this section.
The sampling density function fg in (6.28) is the normal density of uncorrelated
variables with expected values u} ,z = 1,2,...,n and common standard deviations o.

Py is estimated by

(6.30)

where fg7(w) is the standardized normal density function and i} is a sample generated
from standardized normal variables.

The standard error is estimated by (6.29). The efficiency of the importance sampling
can be expected to be dependent on the choice of standard deviation of the sampling
density, see figure 6.5.

12



Figure 6.5. Different standard deviations of the sampling density, o1 < o2 < 3.

It should be noted that if a failure mode has multiple #-points importance sampling
based on only one f-point is not efficient. In this case more general methods have
to be used, see section 6.7.

6.6 Monte Carlo sampling by excluding part of safe area
u -
I’

i W S SR
Figure 6.6. Monte Carlo sampling by excluding part of safe area.

In this technique the space is separated into two disjoint regions D and D5, see figure
6.6. It is assumed that D, is selected such that no failure occurs in this region. Here
D, is chosen as the region inside a sphere with radius §. The probability of being
in Dy is

pr =P U <) = x*(n, %) (6.31)

i=1
where x?(n, %) is the x? distribution function with n degrees of freedom.

13



The probability of failure is estimated from

3 l1—p l &
Pp=—5 > Ig(i;)) (6.32)

=1

where ﬁj is sample no. j from D, (simulated from a standard normal distributed
stochastic vector U = (Uy, ..., Up) but only those samples outside D; are used).

The standard error is

o= (1 -poyf 222 (6.33)

The standard error is thus reduced by a factor (1 — p;) when compared with crude
Monte Carlo simulation. Usually this is a significant reduction. However, it should be
taken into account that it is more difficult to generate the samples to be used. If the
samples are generated by taking the samples from simulation of normal distributed
variables with [u| > B then in average ﬁ samples should be generated before one
sample is outside the #-sphere. So only in cases where the failure function require
much more computational work than the generation of the samples @ it can be

expected that this technique is efficient.

Example 6.4

Consider an example where the failure surface in standardized coordinates can be
written

g(ﬁ) = 2uquz + 20us + 8uz —3u; + 71 =0
The reliability index is determined to f = 3.305 and the design point is ©* =
(0.540, —3.548, —0.188). The estimate of the failure probability using (4.38) is
Py = ®(—3.305) = 0.000228

The failure probability is estimated by simulation using the following techniques :
- Crude Monte Carlo (C.M.C.) simulation.

- Importance sampling (Imp.samp.) using the design point. The standard
deviation o of the sampling density is chosen to 1/2, 1 and 2.

- Crude Monte Carlo simulation by excluding the #-sphere (C.M.C. - §).

The simulation results are shown in table 6.3 with standard errors in (). It is seen
that importance sampling and Crude Monte Carlo simulation by excluding the f-
sphere are much better than crude Monte Carlo simulation. Further it is seen that
in this example ¢ = 1 is the best choice for importance sampling.

14



N 100 1000 10 000
C.M.C. 0 0 0.000200
(0) (0) (0.000141)
Imp.samp. 0.000306 0.000196 0.000195
g=1/2 (0.000193) (0.000021) (0.000010)
Imp.samp. 0.000146 0.000215 0.000232
o= ] (0.000034) (0.000014) (0.000005)
Imp.samp. 0.000153 0.000163 0.000234
=7 (0.000070) (0.000024) (0.000011)
CM.C.- g 0.000129 0.000219
(0.000073) (0.000003)

Table 6.3.

6.7 Other Simulation Techniques

In this section some other simulation methods are described, namely directional
sampling, latin hypercube simulation and adaptive simulation techniques.

Directional simulation

Instead of formulating the reliability problem in rectangular coordinates it is possible
to formulate it in polar coordinates. Directional simulation methods is based on such
a formulation and was first suggested by Deak [6.7] in connection with evaluation of
the multi-normal distribution function.

The n-dimensional standardized normal vector U is written

U= BA (6.34)

where the radial distance R > 0 is a stochastic variable and A is a unit vector of
independent stochastic variables, indicating the direction in the u-space.

In uniform directional simulation A is uniformly distributed on the n-dimensional
unit (hyper-) sphere. It then follows that the radial distance R has a distribution
such that R? is chi-square distributed with n degrees of freedom. If R is independent
of A then the probability of failure can be written

Pr=Pe@<0)=[  PRH<OA=Dfz@da (639

unit sphere

where f=(@) is the constant density of A on the unit sphere.

It is now assumed that the origin ¥ = 0 is in the safe area (g(0) > 0) and that the
failure region defined by {u : g(#) < 0} is star shaped with respect to the & =0, i.e.
every half-line starting form @ = 0 only crosses the failure surface once.

15



u,

|

‘% failure set

Figure 6.7. Uniform directional simulation

The probability P(¢(RA) < 0|A = @) in (6.35) can then be calculated by
POURD < 0A=0)= [ faGclA=a)ds =1-x40@")  (639)
r(a)

where x2%() is the x2 distribution with n degrees of freedom. r(a@) is the distance
from the origin @ = 0 to the failure surface, i.e. g(r(@)a) = 0 in the @ direction.

An unbiased estimator of Py is
) ) 1 N 1 N
Py~ B[Py =5 6= 5 > (1 - xa(r(@)") (6.37)

where N is the number of simulations and @; is a simulated sample of A. Several
generalisations are possible, e.g. to include importance sampling, see Melchers [6.8]
and Ditlevsen & Madsen [6.5].

Latin hypercube simulation method

The description of the Latin hypercube simulation method is based on McKay et al.
(6.9].

16
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Figure 6.8. Latin hypercube simulation method.

The basic idea in this method is to assure that the entire range of each variable is
sampled, in order to obtain an efficient estimate of the probability of failure. The
range of each variable is divided into m intervals. The probability of an outcome in
each interval should be equal.

In the simulation procedure the samples are generated in such a way that an interval
of each variable will be matched just one time with an interval from each of the
rest of the variables. In figure 6.8 the latin hypercube method is illustrated by an
example with n = 2 stochastic variables and m = 7 intervals.

The simulation procedure for the latin hypercube method is :

1 For each variable generate one point from each of the intervals. 4;; ,j =
1,2,...,m thus represents the the m points for variable 2.

I . . "

2 The first point %; in the latin hypercube sample is generated by sampling one
value ﬁ}j from each axis u;. The second point is generated in the same way,
except that the values ﬁ}j are deleted from the sample. In this way m points
are generated.

3 The probability of failure from this sample is estimated from
= 1 = aj
Py=— I
P ; [g()]

17



4 This procedure is repeated N times and the final estimate of Py is

1 L kj
4 R
Fr=% » > Ifg(u)]
m :
_ k=1 j=1
where %" is realisation no j in the kth latin hypercube sample.

There is no simple form for the standard error of this simulation method but in
general the standard error is of the magnitude ﬁ times the standard error of crude
Monte Carlo simulation.

Adaptive simulation methods

The description of the adaptive simulation methods is based on Melchers [6.8] and
Karamchandani [6.10]. In order to develop a good importance sampling density
it is necessary to know the region of the failure domain in which the probability
density is relatively large. Usually our knowledge of this nature is poor. However,
if the sample points are spread out (i.e. not clustered together), the value of the
probability density of the points will vary. The regions that have higher probability
densities can then be identified and the sampling density can be modified to generate
sample points in these regions. However, it is still desirable to generate sample points
that are spread out in order to explore the extent of the failure region in which the
probability density is relatively large.

The initial sampling density is suggested to be standard normal with standard de-

viation 1 but with the expected value point moved to a point #® in or close to the
failure region. This can be difficult, but based on the initial knowledge of which
variables represents load variables and which variables represents strength variables
such a point can be selected (for strength variables (%) should be negative and for
load variables @(®) should be positive). The initial density is used until a sample
point is generated in the failure domain.

When multiple points in the failure region are generated the sampling density is
modified such that the regions around the points with the largest probability density
are emphasized. The simplest approach is to locate the expected value point at the
point in the failure region with the largest probability density.

Another approach is to use a so-called multimodal sampling density which generates
samples around a number of points in the failure region, but emphasizes the region
around a point in proportion to the probability density at the point. This allows
us to emphasize more than one point and is closer to the ideal sampling density
(which is proportional to the probability density at each point in the failure domain).

o 3 ~(k . g . . .
Let {u(l},u(z), ...,u( )} be the set of points in the failure region which are used to
construct the multimodal sampling density. The corresponding multimodal density
is

k
(@) =Y wif2 (@) (6.38)
=1
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where fé}f)(ﬂ) is the density function of a normally distributed stochastic vector with

. — . ~(J)
uncorrelated variables, standard deviations 1 and expected value point equal to u 7

The weights are determined by

=(7)
fe(@w™)
wj = — v NG (6.39)
Zi:l fﬁ u )
The multimodal sampling density is illustrated in figure 6.9.

uj Sample outcome in the failure domain

/—Samph'ng density wjfé (@) (proportional to

O“ ={i)
e

the original probability density at u

and centered at ﬁ(j))

Original
) probability
d ~\ density

1o

Figure 6.9. Multimodal sampling density (from [6.10]).

An estimate of the probability of failure can now be obtained on the basis of N
simulations where the importance sampling technique is used :

N ~(7) )
by = 3 BT ) gty (6.40)

i = AT
N =1 hJU(H(J))

6.8 Importance Measures

In many cases it is very interesting to know how sensitive an estimated probability
of failure is with respect to a change of a parameter p. p is here assumed to be the
expected value or the standard deviation of a stochastic variable. The transformation
from the basic stochastic variables X to standardized normal variables is written

X =T(U,p) (6.41)
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and the probability of failure is defined by
Py = P(g(X) < 0)
- [ 1e@)fx(@)i

= ] 1g(T(@, p))) iy (w)dm (6.42)

In crude Monte Carlo simulation Py is estimated by

N .
b=+ Y Ho(T@ , p)) (6.43)
1=1

By direct differentiation the gradient %f—:} of Py with respect to p can be estimated
by introducing a small change Ap in p and calculating

op; APy _ ]

1
mEla e LS 1T+ B9

N
o  Bp 2 ;I oT(@,p)])  (6.44)

The two terms in (6.44) are estimated separately. This estimate of APf can be
expected to be both inaccurate because it is the difference between two "uncertain”
estimates and time consuming because two sets of samples has to be generated.

Alternative %%’- can be written

= 2 [ 1T i@

33 I1[9(2) () (7)E

- / I[g('f)]—ffa(;’(m) iz

%@ 1 _
- [ @122 o) R @) (6.45)

where fz (%) is the density function of X with the parameter p. Corresponding to
(6.43) and (6.45) the following estimates can be obtained by simulation

2 1 i
Pr=x > Ig(@ ) (6.46)
]:
0P, 1N L 0@ 1
5= Nzng(f’)] ;- P (6.47)
= r
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The samples # are generated from the density function fy(p)(f) using for example
the inverse simulation method. The advantage of this formulation is that the same

samples can be used to estimate both P ¢+ and %"—. This increases the accuracy and
reduces the computational effort compared with direct differentiation.

Similar formulations can be derived for other simulation types.
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OPGAVE 6.1

De fglgende 10 tal er uafheengige udfald af en stokastisk variabel ensformigt fordelt
mellem 0 og 1: V 0.014 0.456 0.892 0.935 0.189 0.344 0.307 0.732 0.203 0.065

Spgrgsmal 1 :

Bestem 10 normalfordelte tal (med forventningsvaerdi 0 og standardafvigelse 1) v.h.a.
Box Muller metoden.

Spgrgsmal 2 :

Bestem 10 normalfordelte tal (med forventningsveerdi 0 og standardafvigelse 1) v.h.a.
invers metoden. Benyt evt. fglgende approximation til den inverse normalfordeling

—B(F) if 0<F<05
B1—-F) if 05<F<1

ag+a1t 1
Fyst— —————— t=1/ln—
#F) l+bht+hez ' V'F

ap = 2.30753 al = 0.27061 b = 0.99229 by = 0.04481

d~YF) = {

where

and

Spgrgsmal 3 :

Betragt 2 korrelerede normalfordelte variabler V; og V; med forventningsvaerdi 0 og
kovariansmatrix

1 :
COU[Vls%]: (05 015>

Bestem 5 udfald af Vj og V5.

OPGAVE 6.2

Vis at U; and Uj 1 Box-Muller transformationen (6.22) er uafhaengige og normalfor-
delte med forventlingsveerdi 0 og spredning 1.

OPGAVE 6.3

Betragt et element modelleret ved 2 stokastiske variabler X; og X
.X] : last
X, ¢ styrke

Svigtfunktionen skrives
g(“:f) =T — I
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X antages normalfordelt med forventningsveerdi 10 og spredning 1 : N(10,1)
X, antages normalfordelt med forventningsveerdi 12 og spredning 1 : N(12,1)

Benyt fglgende 20 udfald af en standardiseret normalfordeling (N(0,1))

0.440 -0.190
-1.015~ x1.517
-0.175 -1.526
1.639 «0.708
-0.108 '1.411
-0.819~ +-0.696
1.5107 0.250
-1.4247 »-0.685
-0.521~ »1.458
2.310- -0.307

til at estimere sandsynligheden for svigt ved
1) crude Monte Carlo simulering

2) importance sampling med 7* = (1.5, —1.5)
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7. RELIABILITY EVALUATION OF SERIES SYSTEMS

7.1 Introduction

So far, in the previous notes, only reliabilities of individual failure modes or limit
states have been considered. In this note it is described how the individual limit
states interact on each other and how the overall systems reliability can be estimated
when the individual failure modes are combined in a series system of failure elements.

In section 7.2 a series system is defined, followed by section 7.3 where it is explained
how the FORM-approximation of the reliability of a series system is obtained and
how the correlation between failure elements are interpreted. In section 7.4 it is de-
scribed how the multi-dimensional normal distribution function needed for the series
system reliability estimation can be evaluated using bounds and approximations.
Finally, section 7.5 introduces sensitivity analysis of series systems.

7.2 Modelling of Series Systems

A failure element or component, see figure 7.1, can be interpreted as a model of a
specific failure mode at a specific location in the structure.

e M

Figure 7.1. Failure element.

The combination of failure elements in a series system can be understood from the
statically determinate (non-redundant) truss-structure in figure 7.2 with n structural
elements (trusses). Each of the n structural elements is assigned 2 failure elements.
One with a failure function modelling material yielding failure and one with a failure
function modelling buckling failure.

Figure 7.2. Statically determinate truss structure.



For such a statically determinate structure it is clear that the whole structural system
fails as soon as any structural element fails, i.e. the structure has no load-carrying
capacity after failure of one of the structural elements. This is called a weakest link
system and is modelled as a series system. The series system which then becomes
the systems reliability model consists of 2n failure elements shown in figure 7.3.

1 2 i m=2n
-~ -

Figure 7.3. Weakest link system modelled in a series system of failure elements.

It is in this connection important to notice the difference between structural com-
ponents and failure elements and the difference between a structural system and a
systems reliability model.

If failure of one failure element is defined as systems failure the reliability of the series
system can be interpreted as the reliability of failure. That also includes the case
of statically indeterminate structures where failure of more than one failure element
cannot be accepted.

7.3 FORM Approximation of the Reliability of a Series System

Consider a structural system where the system reliability model is a series system of
m failure elements. Each of the failure elements is modelled with a safety margin

M;=g;(f), t=1,2.5% om (7.1)

The transformation between the standard normal stochastic U-variables and the
stochastic variables X can be obtained as explained in note 5 and is symbolically
written as X = T(U). Furthermore, it is known from notes 4 and 5 that the FORM

probability of failure for failure element ¢ can be written

Py, = P(M; < 0) = P(gi(X) < 0) = P(g:(T(U)) < 0) (1.2)
~ P(8: — &7T < 0) = 8(~4) |

The series system fails if just one of the elements fails, i.e. the probability of failure
of the series system is

PP = P(U{M: < 0}) = P(J{e:X) < o)) = P(ULe:T@) < 0)  (73)

Thus, if all the failure functions as in (7.2) are linearized at their respective 3-points
the FORM approximation of P}g of a series system can be written

Pf = P(J{-alT < -4}) (%)

=1



which by use of De Morgan's laws can be written

Pf ~1-P(([{-alT > -p}) =1-P(([{alU < Ai}) = 1 = 2u(B; ) (7.5)

=1 =1

where @,, is the m-dimensional normal distribution function (see the following sec-
tion 7.4). It has been used that the correlation coefficient p;; between two linearized

safety margins M; = ; —@: U and M; = f3; — E?-ﬁ 18
pij = af a; (7.6)

From (7.5) a formal or so-called generalized series systems reliability index $° can
be introduced from

P} =1-%,(8,p) = ®(-8°) (7.7)

B = -1 (P7)=-27 (1 - @n(B; D)) (7.8)

Example 7.1 Illustration of the FORM approximation

Consider the two-dimensional case with 3 failure functions ¢;(T(@)) = 0,7 = 1,2,3
shown in figure 7.4.

In figure 7.4 the exact failure domain which is the union of the individual element
failure domains is hatched. Furthermore, the reliability indices §;,7 = 1,2, 3 and the
safety margins linearized at their corresponding §-points u},7 = 1,2,3 are shown.
It is seen that (7.7) or (7.8) is an approximation when the failure functions are
non-linear in the u-space.



B,—ali=0
a3
g2(1)=0
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Ay B.—alu=0
g,(a)=0
0 \g, —ala=0 =

Figure 7.4. Illustration of the FORM-approximation.
* * *
Example 7.2 The Meaning of p;;
Consider the two linearized safety margins M; = §; — b??ffn and M; = fB; — _;IU

shown in figure 7.5

e

; 2
Lircz iz,

Figure 7.5. Illustration of p;;.

From figure 7.5 it is seen that

—T—
cosb;; = @; a; = pij;

where 0;; is the angle between the a-vectors @; and «a; or simply between the linea-
rized safety margins. Le., the correlation coefficients p;; can be comprehended as a
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neasure of the angle between the linearized safety margins and hereby as a measure
f the extent of the failure domain.

* * *

Example 7.3 The Importance of p;; In a Series System

Again the safety margins M; and M; from the previous example are considered. In
figure 7.6 four cases are shown with §; = 3.0, #; = 3.0 and p;; equal -1.0, 0.0, /0.5
and 1.0, respectively.
Uy

| 2 I
: plj—"l—->6=180 pszo =>9=90.

a:

Figure 7.6. Illustration of p;;.

The generalized systems reliability index #° of the four cases in figure 7.6 can be
found from (7.8) as 2.782, 2.783, 2.812 and 3.000, respectively.

In figure 7.7 5 = —®7}(1 — 8,(3.0,3.0; p)) is shown as a function of p.

From figure 7.6 and 7.7 it is seen that 2.782 = ®~1(2(1 - ®(-3))) < B < &7 Y((1 -
®(—-3))) = 3.000 corresponding to the correlation p = —1.0 and and the fully cor-
related case p = 1.0, respectively, i.e. it is always unsafe to assume that the failure
elements are fully correlated if this is not the case.
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Figure 7.7. 5 = —®~1(1 — $,(3.0,3.0; p)) as function of p.

* * *

7.4 Evaluation of Series Systems Reliabilities

From the previous section it is obtained that if 3; and p;j, 1,5 = 1,2,--- ,m are
known the problem is to evaluate the m-dimensional normal distribution function
@, (B;7) in (7.8) for the FORM approximation of 5.

®,.(B;7) is defined as:

— Br B2 Bm .
enBip)= [ [ [ on@Pinider .. do (1.9)
—00 v —0o0 — 00
where ¢, is the m-dimensional normal density function
e 1 1_,’1":--1_
‘P,n(x,{)) = (277)'“/2 |§|1/2 e:cp(—zm P CU) (710)

The multi-dimensional integral in (7.9) can only in special cases be solved analytically
and will for even small dimensions, say five, be too costly to evaluate by numerical
integration. Instead so-called bounds methods are used for hand calculations and
so-called asymptotic approximative methods are used for computational calculations.

7.4.1 Reliability Bounds for Series Systems

In the following, so-called simple bounds and Ditlevsen bounds will be introduced
as bounds for the reliability of series systems.

Simple Bounds

Simple bounds can be introduced as

r?:a,lx P(M; <0)< Pf < ;(P(M,- <0)) (7.11)

where the lower bound corresponds to the exact value of Pfs if all the elements in
the series system are fully correlated.



1 the terms of reliability indices (7.11) can be written

—571()" B(-40) < B° < min (7.12)

=1

When the failure of one failure element is not dominating in relation to the other
failure elements the simple bounds are generally too wide and therefore often of
minor interest for practical use.

Ditlevsen Bounds

Much better bounds are obtained from the second-order bounds called Ditlevsen
bounds [7.4]. The derivation of the Ditlevsen bounds can be seen in [7.1], [7.4], [7.6],
[7.7) or [7.8]. The bounds are

m 1—1
P§ > P(M; <0)+ Y maz{P(M; <0)— > P(M; <0(|M; <0),0} (7.13a)

i=2 =1

Pfsgi P(M; <0) Z na: ax{P(M; < 0| M; < 0)} (7.13b)

and in terms of the FORM approximation in reliability indices:

o(-p%) > &(—py) + Zmax{‘f’(“ﬁi) = i ®2(—Bi, —Bj; pij), 0} (7.14a)

=2

(- ﬂS)<Z<I>( ﬁ-)—zmwc{@z —Bi, —Bj; pij)} (7.14b)

=2

The numbering of the failure elements influences the bounds. However, experience
suggests that it is a good choice to arrange the failure elements according to decre-
asing probability of failure, i.e. P(M; <0) > P(M; £0)>--- > P(M,, <0). The
Ditlevsen bounds are usually much more precise than the simple bounds in (7.16) -
(7.18) but require the estimation of ®5(—f;, —B;; pij) in (7.14).

From (7.9) it follows that

9%®,(Bi, By pij) _ 0%2(Bs, By pij)
dB;0p; B dpij e




Therefore,
e 8@2(ﬁ17 ﬁ]a t) |
G TR || O

®,(Bi, Bj; pij) = ®2(Bi, Bj;0) +f
(7.16)

Pij
=q>(ﬂ,-)¢:(ﬁ,-)+/0 w2(Bi, Bj; z)dz

Hereby only a one-dimensional integral has to be solved for the evaluation of ®,(8;, 3;; pi;,
It is also possible to estimate ®2(—pBi, —f8;; pi;) = P(M; <0 M; < 0) from simple
bounds which are derived from figure 7.8.

Ug |
C
B; — &‘?‘ﬁ =0
- Sy
A
B; &
7i 51'
.‘ul
7j
B —alu=0

Figure 7.8. Figure for simple bounds of ®2(—fi, —f;j; pij)-

From figure 7.8 it is seen that P(M; < 0] M; < 0) equals the probability contents in
the hatched angle BAE. Therefore, P is greater than the probability content in the
angle BAD and in the angle CAE. However, P is less than the sum of the probability

contents in the angles BAD and CAE. This observation makes it possible to derive
simple bounds for P;; = ®2(—fi, —Fj; pij)-

The probability contents p; and p; in the angles CAE and BAD, respectively, are
pi = ®(=pi)®(—v;)  and  p;=3(—B;)2(—%) (7.17)

where v; and v; can be found from figure 7.8 as

yi = Bi — P:Jﬁ) v = ﬂj == Pijfi
\/l_pii V31—

8

(7.18)



herefore, for p;; > 0, the following bounds exist

max(pi,pj) < ®2(—PBi, —Bj; pij) < pi +pj (7.19)

wnd similarly for p;; <0
0 < ®3(—Bi, —Bj; pij) < min(p;,p;) (7.20)

These bounds are easy to use and P;; can be approximated as the average of the
lower and the upper bounds. If the gap between the lower and the upper bounds is
too wide, a more accurate method, such as numerical integration of (7.16) should be
used.

Example 7.4 Simple Illustration of Ditlevsen Bounds

Consider a simple example with 3 failure elements in a series system. Each of the
elements 7 = 1,2, 3 has a finite failure domain D; with uniform and equal probability
density as shown in figure 7.9

Figure 7.9. Illustration of Ditlevsen bounds.

The lower Ditlevsen bound on Pfs = P(D, D, |JD3) is
P{ > P(D1) + P(D;) — P(Dy (| D1) + P(Ds) — P(Ds( | D1) — P(Ds( | D2)

from which it is seen that the hatched domain in figure 7.9 is the difference between
the lower Ditlevsen bound and the exact Pf A

The upper Ditlevsen bound on Pfs = P(D1|J D, D3) is

Pf < P(Dy) + P(Dy) + P(Ds) = P(D3 (| D1) = P(Ds (| D1)

From which it is seen that the dotted domain in figure 7.9 is the difference between
the upper Ditlevsen bound and the exact Pfs !

* * *
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Example 7.5 FORM Evaluation of 3° of a Series System
After the transformation of the

Consider a series system of 4 failure elements.
stochastic (physical) variables X; and X; into the standard normal space of variables

U, and U, the four failure elements are described by the following failure functions

g1(¥) = expu; —uz +3
gz(ﬁ) =u; —uz +9
93(@) = exp(uy +4) — uz

g4(ﬁ) = Oluf — ug + 4

The failure functions g;(%) = 0,7 = 1,2,3,4 are shown in figure 7.10.
The reliability indices B; with the corresponding Py, a-vectors and f-points are

shown in table 7.1
8 . o
, " 8,=0 g, —0!,. 2,=0
\‘\ ." .]
6 \\ :: 7
N ': /
s S / e
4 ‘f\, _// " 8,=0
/ A
3 /i-—' ==
2 "Il
| mlt
-1
-2
-4 -2 0 2 4

Figure 7.10. Four failure functions for a series system.
10



i Bi ®(—pi) Qi o) Uy Uy
1 3.51 2.276-10~1 -0.283 0.959 -0.99 3.36
2 3.54 2.035-10* -0.707 0.707 -2.50 2.50
3 3.86 5.738:107° -0.875 0.483 -3.38 1.86
4 4.00 3.174-10°3 0.00 1.000 0.00 4.00

Table 7.1 Information of failure elements.

From table 7.1 the correlation matrix p can be obtained from (7.6)

( 1.00

0.878

ol
Il

Simple Bounds

sym.
1.00

0.712 0.961 1.00

10.962 0.714 0.492

1.00 4

From (7.18) the simple bounds of 3° can be obtained as:

B> —271(2.276 - 107* +2.035- 10™* + 5.738 - 10™° 4 3.174 - 10~°) = 3.28

Bs < min{3.51; 3.54; 3.86; 4.00} = 3.51

Ditlevsen Bounds

For Ditlevsen bounds it is necessary to evaluate ®(—p;, —B;; pi;),i,J = 1,2,3,4 for
J < @ which can be done approximately by (7.17) - (7.20). In the following matrix
7: and 7; from (7.18) are shown. (vy; from (7.18) is shown in the lower triangle and

7; is shown in the upper triangle)

roo— 0.839
0.956 —

1.938 1.659

L 2:297 4107

From (7.17) -(7.20) it is then possible to obtain the following table with bounds of

&(-Bi, —Bj; pij)

1.082 —1.2531

-0.617 0.971
— 2.170

2.415 ]

11




i, 2,1 3,1 4,1 3,2 4,2 4,3

Iy 409 | 0.801 2.84 4.18 0.526 | 0.0476
p; 3.86 | 0.599 | 0.246 | 0.535 | 0.220 | 0.0451
a = max{pi,p;} | 4.09 | 0.801 2.84 4.18 0.526 | 0.0476
b= pi + p; 7.95 1.40 3.09 4.71 0.776 | 0.0927
0.5(a + b) 6.02 1.10 2.96 4.45 0.636 | 0.0702

Table 7.2 List of probabilities (p - 107°).
It is now from table 7.1 and 7.2 possible to obtain the Ditlevsen bounds:
Ditlevsen Lower Bound
In the lower Ditlevsen bound the upper bounds of ®,(—f;, —f;; pij) are used, i.e.
&(—p°) > 2.276 - 10™* + max{2.035- 10~* — 7.95- 107°,0}
+ max{5.738 - 107% — (1.40 + 4.71) - 1075, 0}
+ max{3.174 - 10~° — (3.09 + 0.776 + 0.0927) - 107>, 0}
=3.52-10*

Ditlevsen Upper Bound
In the upper Ditlevsen bound the lower bounds of ®3(—f;, —f;; pij) are used, i.e
®(—B°) <2.276-107* +2.035-107* + 5.738 - 107> 4+ 3.174 - 1073
—4.09-107° — max{0.801 - 107°,4.18 - 10™°}
— max{2.84-107%,0.526 - 107°,0.0476 - 10~}
=4.09-107*

corresponding to

3.36 < B° £ 3.39

If instead the average approximations of ®3(—p;, —f;;pi;) in the bottom row of
table 7.2 are used only approximations of the bounds are obtained (i.e, there is no
guarantee that 85 is within the bounds)

3.36 < 8° < 3.37

If ®(—fi, —pB;; pij) is calculated exactly from (7.16) the following exact bounds are
obtained:

3.381 < 8° < 3.383

12



It is seen that the Ditlevsen bounds in this case are narrow. This will often be the

case.

* * *

Example 7.6 Failure Element with Two 3-Points

Consider again example 5.8 where the failure function in the u-space was found as
shown in figure 7.11.

Instead of estimating the probability of failure as Py = ®(—f;) = ®(—2.78) = 2.68 -
1072 the probability of failure is estimated as Py = P(M; < 0|J M; < 0) where M,
and M, are safety margins from linearization at the 3-points u] and u3, respectively
(see figure 7.11). The safety margins are written M; = 3, —ETU_ and M, = 3, —E;U.
With 8, = 2.784, 8, = 3.501 (Py, = 2.31:10™*) and the a-vectors a@; = (0.999, 0.036)
and @, = (—0.370,0.929). The correlation coefficient is p12 = a}“a"g = —0.337. The
probability of failure is then obtained as Py = 1 — ®,(f1, f2; p12) which is

Py = ®(—p1) + (-PB2) - @2(—31a —P2; p12)

®y(—p1, —P2; p12) is estimated from (7.17) -(7.20). From (7.18) it can be obtained
that 73 = 4.2101 and v, = 4.715 which by use of (7.17) results in p; = 3.25 -
107° and p, = 2.960 - 107°. An average estimate from (7.10) is then obtained
as ®2(—p1,—P2;p12) = 1.48-107°. Pj then is Py = 2.68-1073 +2.32- 107 —
1.48 - 107° = 2.91 - 10~® which corresponds to 3° = 2.758. Compared to the exact
result 3% = 2.755 obtained by numerical integration with formula (c) in example 5.8
inserted into (4.6) this is a satisfactory estimate.

Bz

Figure 7.11. Failure functions from example 5.8.

* * *

7.4.2 Numerical Methods for Evaluation of ®,,

13



Approximation based on the average correlation coefficient

If as a special case all the correlations between the elements are the same, i.e. p; ; =
p, i,7 =1,2,--- ,m,1 # j then it can be shown that, see [7.7] or [7.10]

- = — _ Bi—\/pt
®..(8:p =/ t O(——==)dt T2k
(B; ) _m"°“£ll(m) (7.21)
For series systems the probability of failure then is

Pi=1- /_ o(t) H @( \/1T (7.22)

when the correlation coefficients are not all equal an approximation of the probability
of failure can be obtained by using an average correlation coefficient p as p in (7.22).
p is determined from

m 1—1

pm et Y s (129

i=1 j=1

The approximation based on the average correlation coefficient can be considered as
the first term in a Taylor expansion of Pfs at the average correlation coefficient point
with respect to the correlation coefficients

Using (7.22) with p = p an approximation of Py is obtained. The approximation
will in many cases be conservative.

Example 7.7

Consider the series system of example 7.5 again. The average correlation coefficient
become

ot

= —(0.878 4+ 0.712 4 0.961 + 0.962 + 0.714 + 0.492) = 0.786

D

with 8 = (3.51,3.54,3.85,4.00) in (7.22) the average correlation coefficient approxi-
mation becomes Pfs = 4.28 - 10™* corresponding to 3° = 3.33 which from example
7.5 is seen to give a conservative estimate of the series system reliability.

* * *
Advanced Asymptotic Methods

It has already been mentioned that the bounds methods in section 7.4.1. can be used
in hand calculations. However, in professional reliability programs other more precise
and more refined methods are used. Two of these methods are the Hohenbichler
approximation, see [7.5], and the approximation by Gollwitzer and Rackwitz [7.3].

14



These methods are in general very precise and make it possible to calculate ®,,
within reasonable computer time.

7.5 Sensitivity Analysis of Series Systems Reliabilities

From (7.8) it can be shown that the sensitivity of #° with respect to a model para-
meter p can be found as

s ” = 3-3) do::
dg 1 Z{a@m(ﬁ, p) dp; s 0%.(5;p) dpzj} (7.24)
f=el s=1

dp - ‘P(/BS) 0p; d_P Bp;-,- dp

However, to get an estimate of the sensitivity of a systems reliability index B° it is
often sufficient to use:

m

aps 1 8%.(5; ) dB:
& " e 2 o5 dp L2

=1

where df;/dp can be obtained as already described in note 4 and 0®,,(5,7)/90:
can be determined either numerically by finite differences or by the semi-analytical
methods described in [7.9] where also details of sensitivity analysis can be found.
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8. RELIABILITY OF SYSTEMS OF PARALLEL SYSTEMS

8.1 Introduction

In this note it is described how the reliability of a system can be evaluated when
more than one failure element have to fail before the whole system is defined to
be in a state of failure. This is performed by introduction of parallel systems in
section 8.2, followed by sections 8.3 and 8.4 where the FORM approximation of the
reliability of a parallel system and reliability evaluation techniques are introduced,
respectively. In section 8.5 it is described how the parallel systems are combined
into a systems reliability model of a series system of parallel systems and how the
reliability evaluations can then be performed.

8.2 Modelling of Parallel Systems

The introduction and the necessity of parallel systems for the reliability modelling of
some structural systems can be illustrated by considering the statically indeterminate
(redundant) truss-structure in figure 8.1 with N structural elements (trusses). Each
of the N structural elements is assigned 2 failure elements. One with a failure
function modelling material yielding failure and one with a failure function modelling

buckling failure.

Figure 8.1 Statically indeterminate truss structure.

For such a statically indeterminate (redundant) structure it is clear that the whole
structural system will not always fail as soon as one of structural element fails, be-
cause the structure has a load-carrying capacity after failure of some of the structural
elements. This load carrying capacity is obtained after a redistribution of the load
effects in the structure after the element failure. Failure of the entire redundant
structure will then often require failure of more than one structural element. (It is
in this connection very important to define exactly what is understood by failure of
the structural system). Clearly the number of systems failure modes in a redundant
structure is generally high. Each of these system failure modes can be modelled by
a parallel system consisting of generally n elements, where n is the number of failure



elements which have to fail in the specific systems failure mode before the entire
structure is defined to be in a state of failure. The parallel system with n elements
is shown in figure 8.2.

Figure 8.2. Failure mode of a redundant structure modelled as a parallel system.

Since a redistribution of the load effects has to take place in a redundant structu-
ral system after failure of one or more of the structural elements it becomes very
important in parallel systems to describe the behaviour of the failed structural ele-
ments after failure has taken place. If the structural element has no strength after
failure the element is said to be perfectly brittle. If the element after failure has a
load-bearing capacity equal to the load at failure, the element is said to be perfectly
ductile.

In figure 8.3 a perfectly brittle and a perfectly ductile element are shown with an
example of the behaviours and the symbols used for perfectly brittle and perfectly
ductile elements, respectively.

load

failare. {7}

"deflection

feilure 7}~

{Eefj!ection

load

Figure 8.3. Perfectly brittle and perfectly ductile elements with symbols.

Clearly all kinds of structural components and material behaviours cannot be de-
scribed as perfectly brittle or perfectly ductile. All kinds of combinations in between
exist, i.e. some, but not all, of the failure strength capacity is retained. One of these
modellings are the elastic-residual model shown in figure 8.4.



load

failure

—c—n‘_eﬂection

Figure 8.4. Elastic-residual element behaviour.

Before the reliability modelling in a parallel system of failure elements can be perfor-
med the structural behaviour of the considered failure mode must be clarified. More
specificly the failure of the structural elements and consequenses with determina-
tion of residual load-carrying capacity and load redistribution in each step in the
structural element failure sequence must be described. Then the failure functions
of the failure elements in the parallel system can be formulated. Failure function
no. 1 models failure in parallel system element no. 1 without failure in any other
elements. Failure function no. 2 models failure in parallel system element no. 2
with failure in the structural element corresponding to failure element no. 1 (i.e.
after redistribution of loads). Failure function no. 3 then models failure of parallel
system element no. 3 with failure in the structural elements corresponding to failure
element nos. 2 and 1, etc. etc.

The obtained failure functions can then be used in the reliability evaluations of the
parallel system without further consideration of the structural system and structural
behaviour.

Example 8.1 Structural Parallel Systems

As a special case of parallel systems so-called structural parallel systems as fibre
bundles are considered in this example.

Consider a fibre bundle with n perfectly ductile fibres modelled by a parallel system.
The strength R;,7 = 1,2,--- ,n of the individual fibres is identically normal distri-
buted N(u,0) with a common correlation coefficient p. The fibre bundle is loaded
by a deterministic load S = nS,, where S, is the constant load on each fibre. The
reliability indices of the fibre are the same for all fibres and equal to

The strength R of the ductile fibre bundle is obtained as the sum of the individual
fibre strengths, i.e. R is normally distributed with:

LR = Ny and 0% = no? + n(n — 1)po?

The reliability index of the parallel system (fibre bundle) then is

3
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where it is used that S = nS. = n(p — Bo).

It is also possible to obtain B of a ductile fibre bundle when the fibres are not
correlated by a common correlation coefficient p. This can e.g. be done by use of
the average correlation coefficient defined in (7.23) and used in the above expression,
see [8.4].

Another case of a fibre bundle is the Daniels system [8.7] of n perfectly brittle fibres.
The strengths of the n fibres are ry,79,++ ,rn, where ry < rp < -+ < rn. The
strength of the fibre bundle then is

rs = max{nry,(n — rg, -+ ,2rn_1,7n}

Now, let r;,z = 1,2,--- ,n be realizations of independent random variables R; with
identical distribution functions. r, is similarly the realization of R,. Daniels showed
that R, is normally distributed N(ur,,or,) for n — oo, where

ur, = nro(1 — Fg(re)) and a%{‘ = nrgFR(rg)(l — Fr(ro))
where rq is the maximum point of the function r(1 — Fgr(r)). The result is valid
under the condition that rg is unique and r(1 — Fg(r)) = 0 for r — oo.
For a closer description also for small values of n, see [8.8 p. 249].

* * *

8.3 FORM Approximation of the Reliability of a Parallel System

After the failure functions of the failure elements in a parallel system have been
formulated it is possible to estimate the reliability by FORM from the following
description.

Consider a parallel system of n failure elements each modelled with a failure function
and a safety margin:

Mg:g;(f), i=1,2,---,n (81)

The transformation between the standard normal U-variables and the stochastic

variables X can be obtained as explained in note 5 and is symbolically written as
X = T(U):



The parallel system fails if all of the elements fail, i.e. the probability of failure of
the parallel system is defined as the intersection of the individual failure events:

PF = P((){Mi < 0)) = P(({s:(X) <0} = P({e:TON <0} (82)

Then a so-called joint 8-point is introduced as the point in the failure domain (defined
from (8.2)) closest to the origin, see figure 8.5. The n 4 out of the n failure functions
which equal zero at ©* are then linearized at u*:

Mi‘_"ﬁg_a;r.ﬁai:l:?"”ynfi (83)
where
a; = _vugig(j ) and g} =alfw (8.4)
IVugi(T(a"))|

=T, £ =
thus, 8~ is an n4-vector of indices at element level 3 ¥ s (B{, B, , 8] . ) calculated
from (8.4) by use of the joint #-point and not the individual B-points as in calculation
of an element reliability index £.

Uz |

g,(T(1d))=0

Y

gg('f(ﬁ)) =0

o pi=afur

Figure 8.5 Illustration of the FORM-approximation of a parallel system.
The FORM-approximation of P}-D of a parallel system can then be written

Pf ~ (V{8 - T <0)) = P((|(-BTT < -B7)) = 0., (-F'57)  (85)

i=1
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where ®,,, 1s the n4-dimensional normal distribution function and th_e correlation
coefficient p;; between two linearized safety margins M; = 8/ — @fU and M; =
B] —alUis

pij = E?Ej (86)

From (8.5) a formal generalized parallel systems reliability index 8F can be intro-
duced by

Pf = &n,(~B57) = #(~") (8.7)

as

BP = —@"Y(PF) = =8~ (@n,(-B ;7)) (8.8)

The joint [-point is from its definition determined as the solution of the following
optimization problem:

(8.9)

The solution of the joint [-point problem can be obtained by a general non-linear
optimization algorithm as NLPQL [8.1] or the problem specific algorithm JOINT3
described in [8.2].

Example 8.2 Illustration of the FORM-approximation

Consider the two-dimensional case with 3 failure functions ¢;(7(%)) = 0,i = 1,2,3
shown in figure 8.6.



Failure

Figure 8.6 Illustration of the FORM-approximation.

In figure 8.6 the exact failure domain as the intersection of the individual element
failure domains is hatched. Furthermore, the n4 = 2 active safety margins linearized

at the joint B-point @* are shown.

It is seen that (8.7) or (8.8) is an approximation when the failure functions are
non-linear in the u-space or if so-called secondary joint (-points exist (a secondary
B-point is shown in figure 8.6 as Uz ). For high reliability levels the approximation in
(8.8) including the n, active constraints of (8.9) is often sufficiently accurate.

* * *

The formulation in (8.9) requires that at least one of the failure functions is greater
than zero in the origin. If this is not the case the problem can be converted to a
series system problem by writing the safe domain as a union. For further explanation
and inclusion of the secondary joint -points for a more precise estimation, see [8.3].

In some references a cruder and older formulation of the FORM parallel system
reliability is utilized. The failure domain is estimated as the intersection of the
linearized failure funtions at the individual 8- points, i.e. only the individual §-

point optimization problems are solved and not the joint 8-point problem in (8.9).
Example 8.3 The Importance of p;; in a Parallel System

For illustration of the importance of p;; consider the margins M; = ﬁij - E;-TU and
M; = ﬁ;’ - E?U. In figure 8.7 four cases are shown with 8; = 3.0, §; = 3.0 and p;;

equal -1.0, 0.0, v/0.5 and 1.0, respectively.
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Figure 8.7 Illustration of p;;.

The generalized parallel systems reliability index 8F of the four cases in figure 8.7
can be found from (8.8) as oo, 4.63, 4.48 and 3.00, respectively.

In figure 8.8 ¥ = —®~1(®,(—3.0,—3.0; p)) is shown as a function of p.



Figure 8.8. ¥ = —®~1(®,(—3.0,—-3.0;p)) as a function of p.

From figure 8.8 it is seen that 3.00 < AP < = corresponding to the fully positive
correlated and the fully negative correlated cases, respectively.

* * *

8.4 Evaluation of Parallel Systems Reliabilities

The result from the previous section is that if 87 and Pigy 45y = 1,240 ;my are
known the problem is to evaluate the n4-dimensional normal distribution function

@nA(—BJ;f) in (8.8) for the FORM approximation of 3F. As described in note
7, this can generally not be performed by numerical integration within a resonable
computing time for higher dimensions. Instead bounds or approximate methods are
used.

In the following, simple bounds and a second order bound will be introduced as
bounds for the reliability of parallel systems.

Simple Bounds

If only the active constraints of (8.9) are assumed to influence the reliability of the
parallel system the simple bounds can be introduced as

0< PP < rg_i“{l(P(MiJ <0)) (8.10)

where M,i =1,--- ny are the linearized safety margins at the joint S-point. The
upper bound corresponds to the exact value of PJ‘.D if all the n4 elements are fully
correlated with p;; = 1.

In the terms of reliability indices 87 (8.11) can be written

9



méx ] < B¥ < o (8.11)

If all correlation coefficients p;; between the n4 elements are higher than zero the
following simple bounds are obtained:

[] P <0)< P} < r,x';_i}lP(M;’ <0) (8.12)

i=1

where the lower bound correspond to uncorrelated elements. i.e p; ; = 0,2 # 5. In
terms of A7 (8.12) becomes

Rx b7 < 67 <~ ([] &(~4) (813)

i=1

The simple bounds will in most cases be so wide that they are of little practical use.
Second Order Upper Bound

A second order upper bound of P}J can be derived as

Pf < n'}inl P(M! <0(\M] <0) (8.14)

The corresponding lower bound of ¥ is

AP > —& Y (mix ®2(=B;, 8], pi;)) (8.15)

i,5=1

In (8.15) it is seen that the probability of failure of a parallel system of two elements
(57, - ﬂf , pij) is necessary. These probabilities are the same as the probabilities
used in the Ditlevsen bounds for series systems, see note 7. In note 7 both a method
by numerical integration (7.16) and a bounds method (7.17) - (7.20) are described.

Hereby the tools for evaluation of the bounds are described.

More refined and complicated bounds can also be developed, see [8.4], but will not
be shown here.

10



Example 8.4 FORM Evaluation of 37 of a Parallel System

Consider a parallel system of 4 failure elements. After the transformation of the
stochastic (physical) variables X; and X into the standard normal space of variables
U, and U, the four failure elements are described by the following failure functions:

91(u) = expu; —uz +1
gg(ﬁ) =u; —uz +1
45(T) = exp(u1 +2) — ¥

94(@) = 0.1uf —up +2
The failure functions ¢;(¥) = 0,7 = 1,2, 3,4 are shown in figure 8.9.

&,(t)=0 g(a)=0

&,(1)=0

iy g,(a)=0

6 4 2 0 2 4
Figure 8.9. Four failure functions for a parallel system.
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It is seen directly from figure 8.9 that n4 = 2 and the joint F-point is the intersection
between g3 and g4. The joint 3 point can be found to be &* = (—1.23;2.16). The
a-vectors are found from (8.4) as @; = (—0.908;0.420) and @, = (0.233;0.971), i.e

the correlation coefficient from (8.6) is p12 = 0.18. From (8.3) -ﬂ_J = (2.02:1.81),
The simple bounds are obtained from (8.13):

max{1.81,2.02} < ¥ < -7 1($(~1.81)®(-2.02))

or

2.02 < gP < 3.17

The second order lower bound will in this two-dimensional case be exact if ®3(—8{, —55; p12)
is evaluated exact. The result is

BF =292

If instead the bounds technique from note 7 ((7.17)-(7.20)) is used the bounds are
obtained as 2.84 < AP < 3.04 or by taking the average of the bounds in (7.19)
BF = 2.92.

* * *
Advanced Asymptotic Methods

The bounds methods can be used in hand calculations. However, as described in
note 7 (section 7.4.2) for series systems, other more precise and more refined methods
are used in professional reliability programs.

8.5 General Systems Reliability

It is clear that a real redundant structural system generally has many failure modes,
i.e. different sequences of element failure. Each sequence can then be modelled by
a parallel system. If one of these parallel systems fails then the whole system fails,
i.e. the overall systems reliability model is a series system of the failure modes or
parallel systems. This is schematically shown in figure 8.10.

12



—
—_

—{

Figure 8.10. Systems reliability model as a series system of parallel systems.

It is also possible to formulate the systems reliability model as a parallel system of
series systems, see [8.5].

Example 8.5 Systems Reliability Model of a Truss Structure

Consider the truss structure with two applied concentrated loads shown in figure
&.11.

Figure 8.11. Statically indeterminate truss structure.

It is seen in figure 8.11 that the truss structure becomes statically determinate if
any of the elements 1,2,3,4,5 or 6 is removed (fails). It is furthermore seen that the
structure fails if any pair of the elements 1,2,3,4,5 and 6 fails. The structure also
fails if one of the elements 7,8,9 or 10 fails. The systems reliability model is then a
series system with 19 elements where 15 of the elements are parallel systems each
with two failure elements. The elements in the series system are: {1,2}, {1,3}, {1,4},
{1:5}1 {1:6}, {2’3}5 {2)4}1 {235}? {2a6}’ {334}& {3a5}a {3a6}1 {415}a {4$6}: {538}3 {7}3
{8}, {9} and {10}.

8.6 Reliability of Series Systems of Parallel Systems

The probability of failure of series systems of np parallel systems each with m;,7 =
1,2,--. ,np failure elements can be written as a union of intersections

nep m;

P{ = P(|J ({g:5(X) < 0}) (8.16)

i=1 j=1
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where g;; is the failure function of element j in parallel system :.

The FORM estimate of the generalized systems reliability index 8° is written as in
note 7, see (7.1) - (7.8)

P —pP

B =—-2"Y1-2,.(8 ;7)) (8.17)

where EP is an n p-vector of generalized reliability indices for the individual parallel

i =P ., ; : ;
systems calculated as in (8.8) and p~ is a matrix of the corresponding approximate
correlation coefficients between the parallel systems.

For approximation of the coefficients in the correlation matrix EP each of the parallel
systems is approximated by a failure element with a linear safety margin, see [8.6]

Mp,=pP -&F'0 , i=12--,n (8.18)

where the vectors @’,i = 1,2,--- ,n are determined such that the sensitivity of %
with respect to changes in the joint 3-point: V,«AF are equivalent when obtained
from (8.18) (formulated as 87 = af : u*) and when obtained from (8.8). Further-
more, a normalization is performed for calculation of correlations:

a?’:_ai
el

i=1,2--.n (8.19)

where, the elements of @ are obtained as

s y —J'- —1
1 i da'T . 0P, (—ﬁ P )
P 1 k e A' )
aj; = ——5= Oy +——1 ) : 8.20
( ki duj dp; ( )

4 e(-BF)

In (8.20) the influence on A% in (8.18) of the correlations f‘ are neglected. ny; is the
number of active constraints in the i-th parallel system. daj/duj is obtained from
differentiation of (8.4):

dahc —? + vugkvung avugk

= 8.21
du;f IV w9kl |Vugil? ) au;f ( )

The elements in the matrix of correlation coefficients between the parallel systems
are then calculated from

14



b, =al &k (8.22)

Now 3% can be estimated from (8.17). For further explanations and details of relia-
bility estimation of series systems of parallel systems, see [8.6].

Comments on General Systems Reliability Models

The reliability modelling of a general system as a series system of parallel systems
is healthy seen from a reliability theoretical point of view but from a structural
engineering point of view in many cases unrealistical. This is due to the fact that
the parallel systems reliabilities are dependent on the history of the load effects in
the individual elements or in other words on 1) the residual load carrying capacity of
a failed element or elements and 2) how the overall load effects in the entire structure
are redistributed at each step in a sequence of element failures. This leads to the
conclusion that failure of more than one structural element of major importance
often cannot be treated in a realistical manner. More generally 1t can be said that
the systems reliability model is totally dependent of the structural response model
and thus it should not be refined more than the structural response model justifies.

8.7 Sensitivity Analysis of General Systems

The sensitivities for evaluation of the obtained systems reliability indices in (8.17)
or (8.9) can in principle be obtained as explained in section 7.5. The sensitivity
evaluation of a generalized reliability index of series system of parallel systems or of
a parallel system, however, requires much more numerical effort and several pertur-
bation analyses of optimality conditions of the included optimization problems, see

[8.6].
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1. Introduction

During the last two decades calibration of partial safety factors in level 1 codes
for structural systems and civil engineering structures has been performed on a
probabilistic basis in a number of codes of practice, see e.g. OHBDC (Ontario
Highway Bridge Design Code) [1], NBCC (National Building Code of Canada) [2],
Ravindra &Galambos (3], Ellingwood et al. [4] and Rosenblueth & Esteva [5]. The
calibration is generally performed for a given class of structures, materials and/or
loads in such a way that the reliability measured by the first order reliability index 8
estimated on the basis of structures designed using the new calibrated partial safety
factors are as close as possible to the reliability indices estimated using existing design
methods. Procedures to perform this type of calibration of partial safety factors are

described in for example Ravindra & Lind [6], Thoft-Christensen & Baker [7].

A code calibration procedure usually includes the following basic steps, see e.g.
Nowak [8]:

- definition of scope of the code,

- definition of the code objective,

- selection of code format,

- selection of target reliability index levels,

- calculation of calibrated partial safety factors and
- verification of the system of partial safety factors.

A first guess of the partial safety factors is obtained by solving an optimization
problem where the objective is to minimize the difference between the reliability for
the different structures in the class considered and a target reliability level. In order
to ensure that all the structures in the class considered have a satisfactory reliability,
constraints are imposed on the reliability for the whole range of structures. In this
note it is shown how this optimization problem can be formulated and solved. Next,
the partial safety factors determined in this way are adjusted taking into account
current engineering judgement and tradition.

In section 2 it is shown how partial safety factors can be determined for a single
failure mode using the results from a first order relaibility method, see lecture note
P08 and P09. In section 3 a general procedure for estimating partial safety factors is
described. This procedure can be used to calibrate partial safety factors for a class



of structures.

2. Estimation of partial safety factors for one failure mode

In code calibration based on first order reliability methods (FORM) it is assumed
that the limit state function can be written

9(x,p,z) =0 (1)

where x = (z1,...,2n) is a realization of X = (Xj,...,X,) modelling n stochastic
variables describing the uncertain quantities. External loads (e.g. wave), strength
parameters and model uncertainty variables are examples of uncertain quantities.
p = (p1,...,pm) are M deterministic parameters, for example well defined geome-
trical quantities. z = (21,...,2n) are N design variables which are used to design
the actual structure. Realizations x of X where g(x, p,z) < 0 corresponds to failure
states, while g(x, p,z) > 0 corresponds to safe states.

Using FORM (First Order Reliability Methods) the reliability index § is determined.
The corresponding estimate of the probability of failure is

Py = @(-p) (2)
where @ is the standard normal distribution function.

If the partial safety factors and if the number of design variables is N = 1 then the
- design (modelled by z) can be determined from the design equation

G(x%,p,2,7) 20 (3)

x¢ = (z§,...,2%) are characteristic values corresponding to the stochastic variables
X. = (711,...,7Ym) are m partial safety factors. The partial safety factors - are
usually defined such that v; > 1,2 = 1, ...,m. In the most simple case m = n.

The design equation is closely connected to the limit state function (1). In most
cases the only difference is that the state variables x are exchanged by design values
x? obtained from the characteristic values x° and the partial safety factors +.

The characteristic values are for load variables usually the 90 %, 95 % or 98 %
fractiles of the distribution function of the stochastic variables, e.g.

z{ = Fx,(0.98)

where FY; is the distribution function for X;. The design values for load variables

are then obtained from
d

zi = (Vi (4)
The characteristic values are for strength variables usually the 10 %, 5 % or 2 %
fractiles of the distribution function of the stochastic variables. The design values
for strength variables are then obtained from

of =2 )



For geometrical variables usually the median (50 % fractile) is used and the design

values are
of = aty ©)

If n =m =2, z; is a load variable and z; is a strength variable :
IC
G((I1,$2),p,z, (71:72)) = g((mf, xg)vp&z) == 9’((33;’71, ;’3‘): p,Z) (7)

A reliability analysis by FORM with the limit state function (1) gives the reliability
index B and the S-point x*. Partial safety factors can then be obtained from

¢
Vi = %i- for strength variables
i
T} .
W= e for load variables
1

If more than one variable load type are important then e.g. the Turkstra rule can
be used to model the combined effect, see e.g. Thoft-Christensen & Baker [7]. Let
Xi,...,X, model v different variable load variables. The variables modelling per-
manent loads are denoted Xy41,..., Xv4p and the remaining stochastic variables are
denoted Xy4p+1,..., Xn. The design equation is written

G(x°,p,z,7)

If,_{_ J:c

p+1

=g($§’71‘l’1,---,$$7v‘1’v,$5+17v+1a---,-'L'f,.;.p“ru+p, yneey _n.,p, Z) (8)
Tv+p+1 Tn

where ¥; < 1. v combinations are investigated. In combination j ¥; =1and ¥; < 1
for i ¢ 3.

3. General procedure for estimating partial safety factors

Code calibration can be performed by judgement, fitting, optimization or a combina-
tion of these, see Madsen et al. [11]. Calibration by judgement has been the main
method until 10-20 years ago. Fitting of codes is used when a new code format
is introduced and the parameters in this code are determined such that the same
level of safety is obtained as in the old code. The level of safety can be measured
by the reliability index . In code optimization the following steps are generally
performed, see [11] and [8] :

1) Definition of the scope of the code, i.e. the class of structures to be considered
is defined.

2) Definition of the code objective. The code objective may be defined at any
higher level than the level of the reliability method used in the code. In a level
1 reliability method (which uses a single characteristic value of each uncertain
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quantity and partial safety factors) the objective may be to obtain on average
the same reliability (measured by the target reliability index () as obtained by
a reliability method on a higher level.

3) Definition of code format. The code format includes:
- how many partial safety factors to be used
- where to use the partial safety factors in the design equations
- rules for load combinations

4) Determination of the frequency at which each type of safety check is performed.

5) Definition of a measure of closeness between code realizations and the code ob-
Jjective.

6) Determination of the.”best” code format, i.e. calculation of the ’optimal’ partial
safety factors which gives the closest fit to the objective measured by the closeness
criteria.

7) verification of the system of partial safety factors.
Structural failure modes (limit states) are generally divided in:

Ultimate limit states

Ultimate limit states correspond to the maximum load carrying capacity which can
be related to e.g. formation of a mechanism in the structure, excessive plasticity,
rupture due to fatigue and instability.

Conditional lzmit states

Conditional limit states correspond to the load-carrying capacity if a local part of
the structure has failed. A local failure can be caused by an accidential action or by
fire. The conditional limit states can be related to e.g. formation of a mechanism in
the structure, exceedance of the material strength or instability.

Serviceability limit states
Serviceability limit states are related to normal use of the structure, e.g. excessive
deflections, local damage and excessive vibrations.

In general, the target reliability index can be determined by calibration to the relia-
bility level of existing similar structures. Alternatively or supplementary the target
reliability indices can be selected on the basis of e.g. the recommneded minimum
reliability indices specified in NKB [10]. The maximum probability of failure (or equ-
ivalently the minimum reliability) are related to the consequences of failure specified
by safety classes and failure types:

The following safety classes are considered :

Less serious: 1- and 2-storey buildings which only occassionally hold persons, for
instance stock buildings, sheds, and some agricultural buildings,
small pylons, roofs and internal walls.

Serious: Buildings of more than two storeys and hall structures which only
occassionally hold people, small 1- and 2-storey buildings often
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Very serious:

used for people, for example houses, offices or productions buil-
dings, tall pylons, scaffolds and moulds, external walls, staircases
and rails.

Buildings of more than two storeys, hall structures, and stages
which will often hold many persons and e.g. be used for offices,
sports or production.

1- and 2-storey buildings with large spans often used by many
persons, stands, pedestrain bridges, road bridges, railroad bridges.

The following failure types are considered (see NKB [10]) :

Failure type I:

Failure type II:
Failure type III:

Ductile failures where it is required that there is an extra carrying
capacity beyond the defined resistance, i.e. in the form of strain
hardening.

Ductile failures without an extra carrying capacity.

Failures such as britle failure and instability failure.

For ultimate limit states NKB recommend the following maximum probabilities of
failure based on a reference period of 1 year:

Safety class Failure type I Failure type II Failure type II
Less serious 103 10~4 10~
Serious 104 10— 106
Very serious ) 10-¢ 1077

Table 1. Maximum probabilities of failure.

The minimum reliability indices corresponding to the maximum probabilities in table

1 are
Safety class Failure type I | Failure type II | Failure type II
Less serious 3.1 3.7 4.3
Serious 3.7 4.3 4.7
Very serious 4.3 4.7 5.2

Table 2. Target (minimum) reliability indices.

As explained above calibration of partial safety factors is generally performed for a
given class of structures, materials or loads in such a way that the reliability measured
by the first order reliability index # estimated on the basis of structures designed
using the new calibrated partial safety factors is as close as possible to the target
reliability index or to the reliability indices estimated using existing design methods,
see Thoft-Christensen & Baker [7], Ditlevsen & Madsen [12], Ostlund [13], Shinozuka
et al. [14], Vrouwenvelder [15] and Hauge et al. [16]. Procedures to perform this
type of calibration of partial safety factors are described in e.g. Thoft-Christensen

& Baker [7].



In the following this procedure is described and extended in some directions. For
each failure mode the limit state function is written, see (1)

g(xap:z) =0 (9)

Using FORM (First Order Reliability Methods) reliability index 3 can be determi-

ned.

If the number of design variables is N = 1 then the design can be determined from
the design equation, see (3)

G(x°,p,z,7) >0 (10)

If the number of design variables is N > 1 then a design optimization problem can
be formulated:

min C(z) (11)
st gEl=0 4=1an, (12)
ci(z) 20 ,i=my+1,..,m (13)
2 <z <2 ,i=1,.,N (14)

C is the objective function and ¢; ,z = 1,2, ...,m are the constraints. The objective
function C is often chosen as the weight of the structure. The m. equality con-
straints in (12) can be used to model design requirements (e.g. constraints on the
geometrical quantities) and to relate the load on the structure to the response (e.g.
finite element equations). Often equality constraints can be avoided because the
structural analysis is incorporated directly in the formulation of the inequality con-
straints. The inequality constraints in (13) ensure that response characteristics such
as displacements and stresses do not exceed codified critical values as expressed by
the design equations (10). The inequality constraints may also include general design
requirements for the design variables. The constraints in (14) are so-called simple
bounds. z! and z} are lower and upper bounds to z;. Generally the optimization
problem (11) - (14) is non-linear and non-convex.

The application area for the code is described by the set I of L different vectors
Pi,t = 1,...,L. The set I may e.g. contain different geometrical forms of the
structure, different parameters for the stochastic variables and different statistical
models for the stochastic variables.

The partial safety factors 4 are calibrated such that the reliability indices correspon-
ding to the L vectors p are as close as possible to a target probability of failure P}
or equivalently a target reliability index f; = —®~*(Pf). This is formulated by the
following optimization problem

L
min  W(v) =3 wi(Bi(v) - Ar)’ (15)

j=1
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where w;,j = 1,...,L are weighting factors (E;;l w; = 1) indicating the relative
frequency of appearance of the different design situations. Instead of using the
reliability indices in (15) to measure the deviation from the target for example the
probabilities of failure can be used. Also, a nonlinear objective function giving
relatively more weight to reliability indices smaller than the target compared to those
larger than the target can be used. §;(+) is the reliability index for combination j
obtained as described below. In (15) the deviation from the target reliability index
is measured by the squared distance.

The reliability index §;(%) for combination j is obtained as follows. First, for given
~ the optimal design is determined by solving the design equation (10) if N =1 or
by solving the design optimization problem (11)-(14) if N > 1. Next, the reliability
index f3;(7) is estimated by FORM on the basis of (9).

It should be noted that, following the procedure described above for estimating the
partial safety factors two (or more) partial safety factors are not always uniquely
determined. They can be functionally dependent, in the simplest case as a product,
which has to be equal to a constant.

In the above procedure there is no lower limit on the reliability. An improved pro-
cedure which has a constraint on the reliability and which takes the non-unigeness
problem into account can be formulated by the optimization problem

L m
min W) =) w;[(Bi() = Be)* +6 3 (% — 73] (16)
j=1 i=1
st. Bi(y)=p™r i=1,...,L (17)
7557557;'“ yi=1,...,m (18)
where wj,j = 1,..., L are weighting factors (Zf’zl w; = 1). § is a factor specifying

the relative importance of the two terms. B;(«) is the reliability index for combi-
nation j obtained as described above. v}; is an estimate of the partial safety factor
obtained by considering combination j in isolation. The second term in the objective
function (16) is added due to the non-uniqueness-problem and has the effect that the
partial safety factors are forced in the direction of the ”simple” definition of partial

safety factors. For load variables : v = —’;—:— If only one combination is conside-

red then 7}; = E;G-L where z7; is the design point. Experience with this formulation

has shown that the factor & should be chosen to be of magnitude one and that the
calibrated partial safety factors are not very sensitive to the exact value of é.

The constraints (17) have the effect that no combination has a reliability index
smaller than G and the constraints in (18) are simple bounds on the partial safety
factors.

This type of code calibration has been used in Burcharth [17] for code calibration of
rubble mound breakwater designs. These structures are known to have reliabilities
which vary considerably. The reason is that the structures are used under widely
different conditions.



As discussed above a first guess of the partial safety factors is obtained by solving
these optimization problems. Next, the final partial safety factors are determined
taking into account current engineering judgement and tradition.

Example 1

In this example partial safety factors are determined for one failure mode in one
application (L = 1). Consider example 4.4 from note 4 with three normal distributed
and independent stochastic variables P, L, E and I. Expected values and standard

deviations are:

ul'] of]
P 2 kN 0.6 kN
L 6 m ~0m
E 2107 kN/m? 3-10°% kN/m?
' § 5. 10% m* 2. 10°% m*

The result of the reliability index is
B =3.156
and the corresponding f-point in basic variable space is

(0", €, i*) = ((3.14, 1.33 107, 1.78 10—5)

Characteristic values are chosen according to

P: 98 % fractile p°= pp +2.050p = 3.2
E: 5% fractile €= pup — 1.650p = 1.52 107
I: 50 % fractile i°=p;=210""°

Partial safety factors are then

*

3.14

= -p—- = =—— (~
= =gy =098~1
e 1.52
=—_="""=114
Te= == 133
¢¢ 2
* * *
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5. Design value format in Eurocodes

In the Eurocodes [18] the so-called design value format is proposed to estimate partial
safety factors. According to that format the design value z¢ of an uncertain variable
X is estimated from

FX(:r:d) = ®(—apf)

where Fx is the distribution fornction for X and f is the target reliability index,
e.g. B =3.8.

o the the a-coefficient associated with the type of stochastic variable considered.
The following values are recommended:

For strength variables : a= 0.8

For dominating loads : a= -0.7

For non-dominating loads : a=-0.4 x 0.7 = -0.28

When the design value have been estimated the partial safety factor is estimated by

2]

¥ = 0% for strength variables
24
v = 9;—; for load variables

where 6 is an uncertainty factor, typically = 1.05. z° is the characteristic value, see
section 2.

The following distribution typs are recommended :
For permanent loads : a Normal distribution
For variable loads : a Gumbel distribution

For strength : a Lognormal distribution
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OPGAVE 1 _
Lad den simultane teethedsfunktion fy ¢ forde stokastiske processer {X(t)} og {X(t)} vaere
givet ved

%(1—32)(1—&:0 tor (x, §) € [—1,11 X [—1,1]
fex(x,x)=
0 ellers

Processen antages smalbandet.

Spergsmdl 1
Bestem antal positive passager pr. tidsenhed E(N'+ (£)] af niveauet £, hvor0 < ¢ < 1.

Spergsmdl 2
Bestem tsethedsfunktionen fE for toppenes hojde og skitser :

Spergsmdl 3
Bestem sandsynligheden for toppe i intervallet [0,6 ; 0,7].

OPGAVE 2" _ _
Den simultane tethedsfunktion fy y for de stokastiske processer {X(t)} og {X(t)}
antages at veere

Fxx(z, &) = { ;(2 —|z|)(4 — 2%) for (z,z) €[-2,2] x [~2,2]

ellers

hvor ¢ er en konstant.

- Sporgsmal 1:
Bestem konstanten ¢ og skitser densimultane tzethedsfunktion.

Spergsmal 2
Bestem sandsynligheden for toppe i intervallet [1, 2], nar den ikke-Gaussiske proces ap-
proksimeres med en Gaussisk proces med samme middelveerdier (4 x og 4 x) og varianser

(0% og %)






TIME-VARIANT RELIABILITY

Aalborg University, Dept. of Building Technology and Structural Engineering
Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark

1 Introduction

In the preceeding lectures all variables have been considered to be either time-invariant
stochastic variables or deterministic parameters. However, loads such as wave-loads and
wind-loads are usually modelled as time-varying stochastic processes. In this case we are
usually interested in determining the probability that the load within a given period of
time exceeds a given threshold, the socalled barrier crossing problem. Further, it is of
interest to determine the distribution of the maximum and minimum values of the process.

2 Barrier Crossing

In many engineering applications it is necessary to determine the reliability of structural
components subject to stochastic process loading. Then the probability that the structural
component enters, during some given time interval, a critical state (failure) must be
~ determined. Let failure occur when the process X (t) exceeds some threshold £. The
probability of failure in the interval [0; T'] then is

P(T)=1-P(X(t) <& Vit e [0;T)) (1)

In the following a number of different methods by which solutions to eq. 1 can be obtained
are presented.

2.1 Simulation

Monte Carlo simulation of stochastic processes has attracted much attention in the recent
years. Partly because the development of more efficient computers has made the method
more attractive and partly because it often is the only available method to determine the
reliability of complicated nonlinear structural systems. The most commonly used method
for simulating Gaussian processes is the socalled spectral representation method proposed
by Borgman [2].

Xn(t;) = Af V2S5x (wi) Aw cos (wit; + Of) (2)

k=0

where Sx (w) is the one-sided spectrum of the stochastic process and wy = kAw. The
phases, Oy, are stochastic variables, independent and uniformly distributed in the interval
- [0;27]. The process Xy (t) is asymptotically Gaussian as N becomes large due to the
central limit theorem. Further, it it important to notice that the process Xy (t) is periodic
with the period 2=. It is evident that for longer time histories and finer spectral resolution



the computation time becomes excessive. Fortunately, this problem can be overcome
by performing the summation in eq. (2) by Fast Fourier Transformation. The failure
probability now can be determined by simulating a large number of realizations of X (1)
and determining the relative number of times X (t) exceeds the threshold value, .

By = (3)

where N, denotes the number of realizations which exceeds the threshold value and N
denotes the number of realizations of X ().

The simulation method is not restricted to Gaussian processes. It is, however, more
complicated to simulate Non-Gaussian processes. The major disadvantage of the method
is the fact that it takes a very large number of simulations in order to determine an
outcrossing probability if the outcrossings events are rare. In that case the method is very
inefficient even if the Fast Fourier Transformation is applied to perform the summation.

2.2 Rice’s In- and Exclusion Series

Let py denote the probability of exactly k outcrossings in the interval [0; T']. It is then evi-

dent that the probability of no outcrossings or the complementary first passage probability
1s

P = 1—21’&

- g (4)
- 5 5 (z-)m

= 145 S -1 ki D

=1 i! k=1

= 1+Z-(—1)m. (4)

=1

where m; denotes the ith factorial moment of the number of outcrossings, i.e.

mg = 1
mi = Y k(k—=1)..(k—i+1)p fori>1 (5)
k=1

and where it has been used that

(?):0 fori >k (6)

Eq. (4) is the socalled Rice’s ” in- and exclusion ” series (see Rice [4]) which in fact provides
an exact solution to the barrier crossing problem. Of course, the m; (i = 1,2...) must exist
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and the series in eq. (4) must converge in order to make eq. (4) a valid representation.
The series provides lower and upper bounds for the survival probability upon truncation
after an odd or even term, respectively. The computational effort involved in evaluating
P (T') according to this method, however, is extensive. Further an increasing number of
terms has to be taken into account as m; increases. Normally the series is truncated after
the first term which provides an upper limit for the failure probability

Fy£m (7)

where m; is nothing but the mean number of outcrossings. It is evident that Py can only
be approximated by m; if the outcrossing probability is very small, i.e. Py < 1.

2.3 The Poisson Assumption

Let the process Nt (¢,£) be a process that increases by one each time the process X (t)
exceeds the threshold £ and let N*(0,£) = 0. Obviously N* (¢,£) is a counting process
which counts the number of exits of X (t) across £.

If it is now assumed that the probability of having two or more outcrossings in J¢,¢ + At]
is negligible compared to the probability of having exactly one outcrossing, if At is suf-
ficiently small, and further that the outcrossings in |¢,¢ + At] are independent of the
previous outcrossings in ]0,t], then N7 () is a Poisson process. The probability that the
number of outcrossings N7 (t,£) is equal to n now can be determined as

P(N*(t,6)=n) = = (\(,6)" exp (=A(1) ®)
where A (t,£) is the mean value of N* (%,€) in the interval ]0, ¢],

A(t,€) = E [N* (t,6)] =m )

The probability of failure now is

Py(T)=1-P (N*(T,6) =0) =1 — exp(—my) (10)

For broad-banded processes the correlation length is of the magnitude equal to the zero
up-crossing period. In this case the maxima between succeeding zero-upcrossings are
virtually uncorrelated. Hence, the outcrossings from the safe domain related to these
maxima will also be independent and eq. (10) is valid.

For narrow-banded processes, the outcrossings in case of low to medium barrier levels
tend to occur in clumps, see fig. 1. In this case the crossing events are highly correlated,
and eq. (10) is no longer appropriate. However, at higher barrier levels only the highest
peak in a clump is likely to imply an outcrossing. This suggest that the outcrossings tend
to become independent as £ — oco. Actually, this hypothesis can be formally proved for
Gaussian processes, see Cramer and Leadbetter [3].

2.4 Initial Conditions

By egs. (4) and (10) one determines the probability that X (¢) at some time crosses the
threshold, £. It has not been taken into account that the process might start in the failure



Figure 1: Outcrossings of a narrow-band process.

region, i.e. X (0) > £. By taking the initial condition into account the failure probability
can be defined as

P(T)=1-(1—-P(0)) P(X(t) <& Vt € [0,T]]X(0) <¢) (11)
where Py (0) = P (X (0) < £) is a simple time-invariant reliability problem.
By differentiation of eq. (11) one obtains

B - rmPx©) <) (12)

where f; (t) is the probability densﬂ.y function of the time to the first barrier crossing
conditional on X (0) < £. No exact solutions for f; () are available even for very simple
problems. Hence, it is necessary to determine some approximation by which the failure
probability can be determined.

3 Mean Number of Outcrossings

In order to determine the mean number of exits of X (t) across the level§ it is convenient
to consider the stochastic process Y (t) given by

Y(t)=H(X()-¢§) (13)

where H (.) is Heavisides step function. By differentation of Y () the derivative process
Y can be determined by

Y (t) =X (8)6(X () —¢) (14)

where 6 (.) denotes the dirac delta function. In eq. (14) it has been assumed that X () is
a differentaible process. For a realization of X () the corresponding realizations of Y (t)
and Y () are shown in figure 2.
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Figure 2: Realizations.

In figure 2 it is seen that ¥ (£) consists of a series of unit pulses which occurs each time an
outcrossing of X () occurs. The number of outcrossings, N (T, £), within the timeinterval
10, T] now can be determined by integrating the absolute value of Y (%)

N@o = [ 1¥()ldr= [ 1X()16(X ()~ &) dr (15)

The mean number of outcrossings now is

E[N(T,0)]

T }
jo E[X()6(X (r)- &) dr
T jpoo 00
= .L /_m[m |26 (z — &) fxx (z,%,7)dzdidr
T w - - -
= fo f_  lélfxx (6,7) dadr (16)
where fy 5 is the joint density function of X and X. It should be noted that by deriving
eq. (16) both the upcrossings and downcrossings have been taken into account. However,

for a stationary process it is reasonable to assume that any positive crossing is followed
by a negative crossing.

E[N*(1,6)] = B[N~ (T,6)] = SEIN (T, )] (17)

where N~ (T, £) counts the number of downcrossings of X (t) of the level £. This implies
that

BINC@0] = [ [ 16k (6,5, 7) didr = m, (19)

5



It is often convenient to consider the rate of outcrossings pr unit time, v+ (¢,£) which is

defined by

vt (6,6) = [ lolfxx (6 :t) di (19)

which is the socalled Rice’s formula , see [4]. For stationary processes the outcrossing
intensity does not depend on t i.e. vt (¢,£) = vt (§).

Higher order factorial moments and factorial moments of the number of outcrossing of
a given safe domain by a vector process can be determined on the basis on the socalled
Belyaev’s formula, see [1]. This formula, however, can only be solved analytically in a few
special cases and a numerical solution is generally a non-trivial task.

3.1 Initial Conditions

We have now determined the mean number of outcrossings of X (t) without taking into
account the initial conditions. The mean number of N* (t) given X (0) < £ is often
approximated by the unconditional mean value, m;. By using eq. (11) one then obtains

P(T)=1-(1— Py (0))exp (—E [N*(T,¢)]) (20)

It has, however, been shown that a better approximation for the mean number of out-
crossings given X (0) < £ is given by

E[N* (101X (0) < ] w ZE 0 (21)
whereby
Py(T) =1 (1~ Py (0))exp (-EIITT?(’;;”) (22)

This expression has been shown to yield very accurate results even for relatively low
threshold levels, where the outcrossings are not independent.
3.2 (Gaussian Processes

Let X (t) be a stationary Gaussian process with mean value ux and standard deviation
ox. Since X (t) is a stationary process the mean value of X is px = 0. The standard
deviation of X is denoted 0. The joint density function of X and X is

fxx @8) = e (-3 ((3522) "+ (2) ) (29

For a given threshold ¢ the outcrossing intensity now can be determined on the basis of
Rice’s formula, eq.(19)

(O = [ ifxx (6 )di



e 1 L((¢=px\" | (2 .
n /c; m27raxo*x SXE (—2 (( ox ) e (J_,,) )) &
B 1 1(E—px\") r=. 12\ ,.
= St exp (—2( e ) )_/0 T exp (—§ (a) )dac

o 1(6—px\’
_ X e
ol = exp( 2( e )) (24)

For £ = px one finds the zero-crossing intensity

v (x) = === (25)

4 Distribution of Local Extremes

The problem will, without loss of generability, be confined to normalized processes, that is
processes with zero mean and unity standard deviation. First consider the simple case of
a stationary narrowband Gaussian process, X (t). A realization of a narrowband process
is shown in figure 3. For an ideally narrowband process the rate of zero-crossings is equal
to the rate of occurrence of maxima. Further the rate of crossings of the level z,, is equal
to the rate of occurrence of maxima above z,,. Therefore, the ratio v* (z,,) /v* (0) may
be interpreted as the complementary distribution function of the local maxima, X,

’ _ v(Em) _ Th
ulom) = i) —en(-32) <
o
Fra(an) = 1-exp(-32) (26)
Differentiation of eq. (26) yields the density function of the local maxima
i
Fra (om) = 2mex (~22) @)

which is the density function of the Rayleigh distribution.

For non-narrowband Gaussian processes an expression for the distribution of local maxima
can be derived on the basis of Rice’s formula, eq. (19). Using the fact that the occurrence
of a maxima of X (t) implies a downcrossing of X (t) of the level £ = 0, and by introducing
the socalled irregularity factor

__expected number of zero crossings of X (t) N (28)
&= T expected number of peaks of X (t) =

Wy

Rice [4] have derived the following expression for the density function of the local maxima
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Figure 3: Realization of a narrowband process.

where @ (.) denotes the standard normal distribution and ¢ (.) denotes the standard nor-
mal density function. The irregularity factor o takes on values in the interval between
zero and one. It can be shown that when a = 1 (an ideally narrowband process) eq. (29)
gives the Rayleigh distribution, eq. (27). When « is approximately equal to zero, the
density function of the local extremes, eq. (29), tends to the Gaussian density function
with zero mean and standard deviation ox. This shows that maxima occur randomly and
with equal probability of being above and below zero.

=M,
5 Global Extremes &

It is often on interest to have information about the largest of the maxirga in an interval
[0,T]. In this interval the expected number of local maxima is N, 2 aN, where N
denotes the expected number of zero-crossings. Again consider a Gaussian process with
zero mean and unity standard deviation. The distribution of the extreme, Fr(z,,) can
be found as follows

Fr (2m) = Fxp, (m)"" = (1 = (1= Fx, (zm)))™" (30)
Integration of eq. (29) gives

1— Fx, (zm)=1-0 (-—\/1:—'_"_0?) +aexp-(“;'2") 3 (\/%) (31)

Assuming that z,, is large leads to the asymptotic result

2
1 — Fx,, (zm) = aexp (—%") (32)
where it has been used that for large z
B()ml-p(2) (2 -2 +...) (33)

where ¢ (.) denotes the standard normal density function. Now introduce the variable y
given by



Y= N (1 = P (5m) = Bop (-2 (34)

and using the fact that the largest of N,, observed maxima is located around the 1/N,,
fractile, which implies that the variable y is of order unity for increasing N,,, we obtain

— exp (—Ne}cp (—%)) (35)

The mean value and the standard deviation of the maximum value in the interval [0, 7]
now can be determined on the basis of eq. (35). It is found that

0.577
P = \/210gN+—2‘\/—1ﬁ (36)
2
2 T 1

Tmaz = 6 2 log N (37)

In the Danish codes of practice for wind engineering design is based on eqgs. (36) and (37).
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Annex E
(informative)

Principles of reliability-based design

E.1 Introduction

The objectives of this annex are:

— to give some background information about this International Standard;

— to complete clause 8 with more detailed descriptions about principles and methods;

— o give recommendations concerning the application of probabilistic methods.

Probabilistic methods can, in principle, be used for all verification problems which can be described with the aid of
mathematical reiations when the set of random events can be identified. Their use can be divided into two main
groups: calibration of safety elements (e.g. partial factors), and direct application for design purposes. Thr
application for design purposes generally concerns advanced problems of such a character that makes the commo
verification methods less suitable. Design assisted by testing and the assessment of existing structure are two kinds
of problems which are often amenable to probabilistic treatment.

This annex is mainly for the use of:

— those who have the task of producing national and international codes or recommendations;

— designers wishing to be informed about reliability based design;

— researchers in the field of probability based design.

The annex contains some general aspects of design based on probabilistic methods. It may be regarded as a state-
of-the-art report. Clauses E.4 to E.7 apply mainly to ultimate limit states, but in many cases they are also applicable

to irreversible serviceability limit states. They are generally not applicable to problems involving reversible
serviceability limit states.

E.2 Uncertainty modelling
This clause treats the uncertainties of basic variables, i.e. actions, material properties and geometrical data. It is

assumed that the basic variables also include random variables 6 which are assumed to represent the model
uncertainties (see 7.3) associated with analysis models.

E.2.1 Sources of uncertainties

Accerding to 6.1, three types of uncertainties may be identified:

— Iinherent random variability or uncertainty;

— uncertainty due to inadequate knowledge;

— statistical uncertainty.

These types can be further subdivided as follows:

a) Inherent random variabilities and uncertainties can be divided into those uncertainties which can, and

cannot, be affected by human activities. Many kinds of action parameters (e.g. snow load on ground, wind speed
and earthquake ground motion intensity) belong to the second category. So do strength values (e.g. soi
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parameters). The first category concerns, for example, the uncertainties of strength values of steel or concrete or of
the dimensions of steel beams. These uncertainties can be decreased by the use of more advanced production and
quality control methods which, on the other hand, may cause costs to increase. Thus, within certain limits, the level
of uncertainty can be chosen with regard to economic consequences. Therefore, the distinction between the two
categories may be important if economic optimization is considered.

b) Uncertainties due to inadequate knowledge can also be subdivided into two categories. One category
includes, for example, the model uncertainties of action effect models or resistance models for which knowledge
can be increased (and thus uncertainty can be decreased) by research or other similar activities. Also measurement
errors belong to this category of uncertainties. In the other category belong, for example, uncertainties which
depend on future development. One example is the future development of the traffic loads on road bridges and
imposed loads on floors. The possibility of decreasing these uncerainties by research or similar activities i1s very
limited.

c) Statistical uncertainties are associated with the statistical evaluation of results of tests or observations. They
may result from:

— lack of identification and separation of different statistical populations;

— a limited number of test results which cause uncenrainties in the estimation of statistical parameters (e.g. mean
and standard deviation);

— neglecting systematic variations of the observed variables (e.g. of climatic variables);
— excessive extrapolations of statistical information;
— neglecting possible correlations;

— using statistical distributions for describing uncertainties which are partly or not at all of a statistical character
(compare E.2.2).

The statistical uncertainties can normally be decreased by increasing test and observational efforts.

E.2.2 Different ways to obtain basic data

The numerical values of the parameters which characterize the model and its uncertainties can be obtained in many
different ways, such as:

a) observation or measurements

b) analysis

c) decision

d) judgement

Often, the basic data are obtained through a combination of these ways.
Some simple examples may be given as follows.

— The concrete tensile strength is often determined from measurement (of the compressive strength) and
analysis (using some conversion function).

— The maximum load which should be lifted by a crane is determined by decision. Additional dynamic forces are
determined in other ways.

— Traffic loads on bridges are often determined by observation combined with a judgement about future
development. Decision making may also be important.
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The basic variables which describe the uncertainties should be characterized by parameters such as the mear
value, the standard deviation, correlations with other variables and also by their probability distributions. If the
numerical values of these parameters are determined according to-a) and b) above, the procedure normally
includes analysis of statistical data and the results can be presented in statistical terms. If the values of the basic
variables are determined mainly by decision making and/or judgement, the results can generally not be presented
directly in statistical terms. However, if it is assumed (see 8.1) that it should be possible to treat all basic variables
with probabilistic procedures, statistical parameters (mean value, standard deviation, etc.) have to be assigned also
to those basic variables for which the determination of the values does not give statistical data. This must be
achieved in a fairly subjective way which may also include the selection of deterministic values. Thus, for example,
a possible overload above the allowed load on a floor in a store house could be considered by taking the allowed
load as a mean and some expected overload as a standard deviation.

Those uncertainties which are due to gross measurement errors, scale effects, etc., should be eliminated as much
as possible by quality assurance measures (see annex A). If this is done, two main kinds of uncertainties remain:

model uncertainties and statistical uncertainties. If possible, these two kinds of uncertainties should be separated by
statistical methods (see annex D).

E.2.3 The choice of probability distribution functions

Only in a few cases is the amount of available data such that a probability distribution function can be determined

unambiguously. In most cases one has to select (among well-known analytic distributions) a distribution which has

reasonable properties with regard to the particular basic variable under consideration. The following
recommendations apply to most applications.

— For permanent action values and for arbitrary point-in-time values of variable actions, a Gaussian distribution
may be convenient if the non-zero probability of negative values is not disturbing. A log normal distribution, a
Weibull distribution, a gamma distribution or an extreme value distribution may alse be convenient especially if
the distribution is intended to represent a maximum value within a chosen reference time.

— For material properties and dimensions, a Gaussian distribution or a log-normal distribution may be convenient.
The log-normal distribution is preferred if the non-zero probability of negative values associated with the choice
of a Gaussian distribution is disturbing.

The choice of probability distribution functions should be made with caution. Possible bias should be considered. If

the actual distribution has a multimodal character, a choice of one single distribution (among the well-known
analytical distributions) may cause considerable errors.

E.3 Failure criteria

E.3.1 Ultimate limit states

It is assumed that the failure criteria for a structure are governed by a function g(X) of the basic variables X so that:
g(X) > 0 for the desirable state (safe set)
g(X) = 0 for the limit state
g(X) < 0 for the undesirable state (unsafe set).

This is illustrated in figure E.1 for a case with two basic variables Xy and X;; i.e. X = (X, X2)
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X3

Undesirable state
glX,, X;) <0

Limit state
glx, X;)=0

Desirable state
glX, X;)>0

X4

Figure E.1 — lllustration of the function g(X)

The basic variables X may be time dependent. For instance, extreme environment loads may vary with time.
Structural material may deteriorate with time due to corrosion or other phenomena. The resistance may also
decrease with time due to fatigue. In the general case, some of the variables X must be represented by stochastic
processes. In particular, the time variability of X implies that maxima or minima of the components of X do not occur
at the same time. The time dependency implies that the probability of failure is associated with a chosen reference
time fp.

The reliability (probability of survival or of no failure) of a structure is defined as

Ps=1-P -+« (E)
If the reliability of one element, or one cross-section of an element, is studied with regard to a particular failure
mechanism and a particular load combination, the function g(X) can often be described by one single expression
derived from the mechanical behaviour. Then the analysis can be described as an element analysis.
If more than one failure mechanism for an element or if more than one element is studied simultaneously, then the
function g(X) can be considered to be composed of several functions g1(X), g2(X) ... . This is illustrated in figure E.2
by an example with two functions g;(X;, X2) and go(X;, X2) of two basic variables X; and X. Figure E.2 shows two
extreme cases.
For the case in figure E.2a), the failure domain (undesirable state) is determined by

g1(X1, XZ) <0 or gz(X1. X2} <0 s (EZ)

For the case in Figure 2b), the failure domain is determined by

G1(Xy. X2) <0 and go(Xq, Xo) <0 ... (E.3)
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g2=0/

g1=0

a)

b)

Figure E.2 - Failure domains (shaded) in two extreme cases

An analysis which takes account of several conditions gi(X) < 0 simultaneously is described as a system analysis.
The definition of the system function g(X) is strongly dependent on the characteristics of the system; i.e. if it is ¢
"weakest-link system" [figure E.2a)] or a “redundant system" [figure E.2b)] or some combination of these two cases.

E.3.2 Serviceability limit states

For some serviceability limit states, the passage of a particular limit state from the desirable state to the undesirable
state can be considered to occur under fairly distinct conditions. This means that the limit state, with reasonable
approximation, can be considered as a mechanical reality. However, for many serviceability limit states the
transition from the desirable state to the undesirable state occurs under more diffuse conditions. The transition
implies a more or less slowly decreasing degree of serviceability. Thus, in principle, a degree of serviceability,
u (0 < u < 1) can be defined and can by introduced as a function of some serviceability parameter, A (e.g. deflection
of a beam or vibration intensity of a floor). This is illustrated in figure E.3, where it is assumed that there are two limit
values of A: A, for which the structure is fully serviceable, and A, for which the structure is completely
unserviceable. In some cases it may be possible to express the degree of serviceability in economic terms.
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E.4 Specified reliability levels
E.4.1 Safety of people

Structural reliability is important first and foremost if people may be killed or injured as a result of collapse. An
acceptable maximum value for the failure probability in those cases might be found from a comparison with risks
resulting from other activities. Taking the overall individual lethal accident rate of 10— per year as a reference, a
value of 10-6 seems reasonable to use. The maximum allowable probability of failure of the structure then depends
on the conditional probability of a person being killed, given the failure of the structure:

P(f | year) P(d| {10-6 year-1 ...(E.4)

The probability P(dlf) is the probability that a person present in the building at the time of collapse is killed. If a
building is seldom visited by human beings, a further reduction factor may be introduced in equation (E.4).

Requirement (E.4.1) is presented as a requirement per year. This should be considered as an average over some
reference period. In general, it is allowable to have a large failure rate in some part of the reference period and a
smaller value in another part. The reference period need not necessarily be the lifetime of the structure, 10 to 20

years may often be reasonable. In general, one may accept deviations from the yearly average only for a much
shorter period of time.

Equation (E.4) gives a minimum requirement for human safety from the individual point of view. In many cases
authorities explicitly want to avoid accidents where large numbers of people may be killed. In that case, the
additional requirement is of the type:

Aflyear)(A N-a ...(E5)
where N is the expected number of fatalities. The numbers A and a are constants, for instance A = 0,01 or 0,1 and

a = 2. Modifications of the numerical values are possible in special cases (e.g. if there is an emergency evacuation
plan).

E.4.2 Economic optimization
From an economic point of view, the target level of reliability should depend on a balance between the

consequences of failure and the costs of safety measures. In a formal way, the objective may be to minimize the
total lifetime cost, given by:

Got=Co+Cm+LPIG ...(E.8)
where

Cp is the building cost;

Cm is the expected cost of maintenance and demolition;

G is the cost of failure;

Py is the lifetime probability of failure.
The summation is over all (independent) failure modes and load combinations. This formula is highly simplified and
may nggd further refinement before it can be used in practical applications. In addition to economic considerations,
authorities may want to specify some minimum reliability level if the safety of human lives is involved. This may lead
to a constrained optimization problem with equation (E.6) as object function and equation (E.4) and/or (E.5) as

constraints.

Note that, alternatively, ¥ PyC; may be considered to be covered by insurance.
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E.4.3 Examples of calibration

In general it is very difficult to apply the above principles directly in practice. The main point is that there is a
substantial difference between the notational probability of failure in the design procedure and the actual failure
frequency (which to a considerable extent is due to human errors). For this reason, target levels for reliability are
often based on calibration. Using calibrated reliability values, one should keep in mind that they are related to a
specific set of structural and probabilistic models. Using the calibrated values in connection with other models could
lead to unintentionally high or low levels of reliability.

The numerical values of the reliability are often described on the basis of the reliability index § defined by
B = @-1(Fy). The relationship between f and F; is given in table E.1.

Table E.1 — Relationship between S and P,

10-6
4.7

10-3
3.1

104
3.7

10-5
4.2

10-7
5.2

10-2
23

[ 10~
B 1.8

Table E.2 gives an example of calibration life time target S-values, depending on the consequences of failure and
the relative cost of safe design.

Table E.2 — Target f-values (life-time, examples)

Relative costs of Consequences of failure
safety measures
small some moderate great
High 0 A 1.5 23 B 31
Moderate 1.3 23 31 C 3.8
Low 2.3 3.1 3.8 43

Some suggestions are:

A: for serviceability limit states, use 8 = 0 for reversible and = 1,5 for irreversible limit states.

B: for fatigue limit states, use = 2,3 to = 3,1, depending on the possibility of inspection.

C: for ultimate limit states design, use the safety classes = 3,1, 3,8 and 4,3.

These numbers have been derived with the assumption of lognormal or Weibull models for resistance, Gaussian:
models for permanent loads and Gumbel extreme value models for time-varying loads and with the design value
method according to E.6.2. It is important that the same assumptions (or assumptions close to them) are used if the
values given in table E.2 are applied for probabilistic calculations.

Finally, it should be stressed that a f-value and the corresponding failure probability are formal or notional numbers,

intended pnmarily as a tool for developing consistent design rules, rather that giving a description of the structural
failure frequency.

E.5 Calculation of failure probabilities
E.5.1 Time-invariant problems

A comparatively simple case is obtained if all the basic variables X can be considered as time-invariant. The
probability of failure, P, can then be calculated from

"]

Failure domain

fola)dx . (ET)
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where f,(x) is the joint probability density function of the basic random variables X (and not random processes).
The failure domains are in general given by intersections and unions of domains given by gi{X) < 0. Here j is the
member number and i is the failure mode number.

Failure probabilities may be computed by

— exact analytical methods

— numerical integration methods

— approximate analytical methods (FORM/SORM?3) methods of moments)

— simulation methods

or a combination of these methods.

In some cases, equation (E.7) can be integrated analytically. When the number, n of random variables is small, say
n < 5, various types of numerical integration may be conveniently applied.

The main steps in the approximative FORM method are:

— transform the variables X into a space of standard normal variables, U, and a corresponding transformation of
the failure surface g{X) = 0 into gu(U) = 0;

— in the FORM method the failure function g(l)) is approximated by a tangent hyperplane at the design point,
which is the point on g(L)) closest to the origin;

— the failure probability P, according to FORM is then given by P, = @&(-f), where f is the distance from the origin
to the design point.

The analytical method may be refined by approximating the failure surface g{l)) = 0 by a quadratic surface in the
design point (SORM).

Simulation methods can be divided into

— zero-one indicator based methods, which are non-analytical, and operate in the original space of variables X;
— conditional expectation methods which are semi-analytical methods.

Zero-one indicator methods comprise

— direct Monte-Carlo simulation with the sampling density taken as the original probability density;

— importance sampling where the Monte-Carlo technique is applied with a density (fictitious) function close to the
design point;

— adaptive sampling in which importance sampling is applied with successive updating of the density function.
Conditional expectation methods consists of the following techniques:
— directional simulation (suitable for unions of events);

— axis orthogonal simulation (suitable for intersection of events).

3) FORM is an abbreviation for First Order Reliability Method. Sometimes FOSM, First Order Second Moment Method is used.
SORM means Second Order Reliability Method.
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E.5.2 Transformation of time-variant into time-invariant problems

Two classes of time-dependent problems are discussed, namely those associated with
— overload (first-passage) failure;

— fatigue or other cumulative failures.

The time dependence is due to variability over time of actions and/or strength (degradation). Time-dependent
quantities in general need to be represented by stochastic processes.

In the case of a first-passage failure, a single action process may be replaced by a probability distribution
representing the uncertainty over the given period for which the failure probability is to be calculated. The mean
value may be taken to be the expected maximum value in the chosen reference period: and with a random
uncertainty corresponding to that of the expected maximum.

In the case of fatigue failure, the failure function may be formulated in terms of SN-data and the Miner-Palmgren
rule. The failure function will then be time-independent when it is referred to a given time period.

E.5.3 General problem
In general, calculation of the failure probability is concerned with determining

Py = P{ung;i(X. ) <0 forsome te [0, T]} ...(E.B)
where g; are the failure functions (“limit functions®) in the space of the basic variables. In equation (E.8),
gn £ 0, gp £0, etc. In general, specify a failure sequence of a structure in a given tailure mode (/). For instance, a
stiffened panel subjected to lateral and axial forces may fail in two basic modes: 1) buckling, 2) bending. The time

dependence may be related to loads; or resistance (e.g. due to strength degradation). Some of the variables X may
be functions of time and spatial coordinates, and may involve differential or integral expressions.

E.6 Design value methods

E.6.1 General
It is assumed that the limit state considered can be specified by a calculation model in terms of one (or several)
function(s) g(...) of a set of variables Xy, Xz, ... X,, comprising actions, material properties, etc., so that a condition
for the structure not to fail of the form

glXy, Xz, . X 20 ..-(E.9)
can be associated with the limit state. The design requirement may then be written as:

(X1g. X2g. .. Xng) 20 .« «{E.10)

where Xqq, X24. ... Xnq are design values, defined in E.6.2.

E.6.2 Design values according to FORM
The design value x4 of variable X; depends on:
— the parameters of the variable X,

— the assumed type of distribution

— the target safety index S for the limit state and design situation of concern (see E.4.3)
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— a factor a; describing the sensitivity to variations in X; with regard to attaining the limit state, according to the
definition given in a FORM calculation (see E.5.1).

For an arbitrary distribution F{x;) the design values is given by:

Fixg) = ¥(-aif) ' - s EEA)
If X;is assumed to be normally distributed, then

Xig = pi(1-aBV)) .+« (E:12)
A lognormal distribution gives:

Xg = i exp(-aifv)) <+ (E13)

where

5, =—alli
;i1+ Vf

v, = hn(nv,z).

For small values of V;(e.g. V;<0,25), §i=y;and v, =V,

E.6.3 Sensitivity factors according to FORM
If the random variables are independent, the factors ¢; in a FORM analysis have the following properties:
-1<as1 ...(E.14)
Saiz=1 | = 1)
The values of a; should in principle be found from a number of representative FORM calculations (see E.5). In
principle this would require many iterative calculations which, of course, is very inconvenient. However, based on
experience, a set of standardized a; values has been developed, which is presented in table E.3. Note that the sum
of squares may be greater than 1,0 as a result of conservatism. To limit the error in using table E.3, it is usually
required that 0,16 < os/or < 6,6, where S is the dominating load and R is the dominating resistance parameter.

Table E.3 — Standardized a-values

X, a,
Dominating resistance parameter 0.8
Other resistance parameters 04x08=032
Dominating load parameter =0.7
Other load paramelers -04x0,7=-0,28
NOTE — The principle of standardized o-values was already present in ISO 2394:1986, annex B, where the same o
values as in table E.3 were proposed.

In applying table E.3, one does not know in advance which variable should be regarded as “dominating”. The only
way to find this out, is by making all variables "dominating®, one at the time, and see which one governs the design.
Sometimes this can be done at the level of the code writer, sometimes it is the task of the designer (for instance by
checking various load cases).

EXAMPLE

Consider the elementary case of one resistance parameter A and one load parameter S, both normally distributed.
Assume that the target reliability index 8 = 3.8. Then from equation (E.12):
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Ry=pur-3040r and Sy=pug+2.660s

Now one should check equation (E.10), which in this case reduces to-Rg > Sg.

E.7 Reliability verification in codes
E.7.1 Partial Factor Method based on design values
In design codes, design values x4 are not introduced directly. Random variables are first introduced by means of

representative values x. In addition, there is a set of partial safety factors and load combination factors (see clause
9). In most cases the basic requirement can be formulated as:

gixg) = Rg- 5420 ... (E.16)
with:

Sq = S(Eq. &4. 65 --) ... (E7)

Rq = Ay, 29, 80 ) ... (Eag

Here Sis the load effect, and R is the corresponding resistance, with:
Fq=ywF« or Fg=vwofi = design value of a load parameter
fg = f/ym = design value of a material property
8y = 8norm * Aa = design value of geometrical propery
84 is the design value of a model factor

The index k denotes characteristic value.

The design value 8 normally enters the equations by means of partial factors ygq and yrg for the total model, such
that:

Sa = YsoS(Fi. woFk. @nom £ A2 ...) ... (E.19)
Rd=—1- -fk—.amtm... ... (E.20)
YRd \¥Ym

=

Partial safety factors may be derived by first finding the design values according to E.6.1 to E.6.3 and by the

application of the equations:
Y= Fa/Fx. Ym = kit ... (E.21)

The procedure described above is cumbersome from a practical point of view. Therefore, the following
simplifications are often made:

on the loading side: Sq = SlyrFk. @nom) ...(E.22)
on the resistance side:

Ry = R[—f"—. am} or
™

1 | < |
Ry ='_"R(fk- anom) ( )
YR

In this case yr and yw (or Yr) should be calibrated in such a way that they result in the same values as the original
equations.
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E.7.2 Partial factors based on calibration

Calibration of partial factors is described in literature in several books and papers?).

In the procedure outlined in £.7.1, the Partial Factor method is introduced as an elaboration of the Design Value
method. An alternative method is to start with some arbitrary partial factor format and to require that the partial
factors are chosen in such a way that the reliability of the resulting structures is as close as possible to some
selected target value.

Assume the partial factor format can be written as:

i A
g(—'i,—kz—, "'YHFk‘l! ‘}’szkz .JZO W @ (E24)
Ymt Ym2

where
f; is the characteristic strength of material /
Ym; is the partial factor for material /
Fy; is the representative value for load j
w; is the partial factor for load j

Now, define a representative set of n test elements, which should be chosen to cover adequately the scope of
application of the code in terms of:

— types of actions

— types of structural dimensions

— types of matenals

— types of limit states

For a given set of partial factors (Ym1. Ym2 --- ¥, Y2 --.) the set of representative structural elements can be

designed. Each element will then possess a level of reliability which will deviate more or less from the target value.
Using the reliability index f3, the aggregate deviation D can be expressed as:

n
2
D=2[3k(?’m.h )’1;')"‘»3:] - (E25)
k=1
By is the target value of B
By = Bfor element k as a result of a design using (Ym1, Yma: ¥1. Ti2)

Clearly, the set of partial factors which minimizes this aggregated deviation D can be considered as the best set of
factors. If not all elements are considered of equal importance, weight factors may be introduced.

Instead of 3, one may also use the probability of failure itself. It may be realistic to penalize values smaller than the
target probability to a lesser degree than values exceeding the target. One may also try to optimize the economic
criteria, equation (E.6) for a wide set of representative structural elements.

4) See, tor example: Thofi-Christensen and Baker: Structural Reliability Theory and lts Applications, 1982
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Annex F
(informative)

Combination of actions and estimation of action values

F.1 Introduction

The problem of estimation, in a general way, of action values to be used in different types of combinations of actions
is very complicated. The properties of various individual actions are generally very different concerning both main
characteristics and details. Therefore, if many kinds of actions are fitted into a common system (e.g. this
International Standard), the description of the action parameters and the estimation of their values have to be either
very schematic or very complicated. In this International Standard, in particular in this annex, a fairly simple and
schematic description has been chosen.

With reference to the partial factors format and the definitions in 9.2, this annex treats the following:

— estimation of statistical properties and characteristic values of variable actions;

— estimation of combination values intended for combination of action in the ultimate limit states; )

— estimation of frequent and quasi-permanent values intended mainly for combination of actions in the
serviceability limit states and in accidental combinations.

~ The frequent and the quasi-permanent values are defined in such a way that makes them suitable as dominating
action values in many combinations in the serviceability limit states. However, in order not to have too many kinds of
action values, they may also be used as non-dominating action values in other kinds of combinations. Thus, for
example, in annex G quasi-permanent values are used as non-dominating action values in frequent combinations.

Normally the magnitude of the action values follows the sequence (with decreasing values) characteristic -
combination - frequent — quasi-permanent.

The treatment of combination values in F.3.2 also gives procedures for combination of actions which can be used in
the framework of probabilistic design methods.

No information will be given about physical interaction effects (e.g. for wind and snow, earthquake and fire, wind
and road traffic, etc.).

F.2 Estimation of statistical properties and characteristic values for variable actions \)
F.2.1 General conditions

The method described here can be used for the estimation of characteristic values on the basis of observations. In
other cases the estimation of the values has to be based on subjective judgement. The method is evaluated for the
simple case when the action (or the event causing the action) can be described by a one-dimensional ergodic
stochastic process. For stochastic processes in more than one dimension, the same basic principles can often be
used.

With reference to 2.3.12, definition of the characteristic value of a variable action is given as follows. The
characteristic value is chosen so that it can be considered to have a specified probability of being exceeded towards
unfavourable values during a chosen reference period.

Thus, two parameters have to be chosen to define the characteristic value:

— the reference period,

— the specified probability (1-p), i.e. the probability of not being exceeded is p.
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NOTE — A process in time is stationary if for all values of { and for all values of rthe stochastic variable X(f; + 1) has the
same probability distribution as X{t). It is assumed that t and (f; + 7) are within the reference period. A process is ergodic
if averaging over the variable X at a given time and averaging over fime t give the same result.

F.2.2 Method

The action observations are assumed to cover a total observation period which can be divided into a number, r, of
equal time intervals, 1, called unit observation periods. The maximum value Q of the action for each unit observation

period is determined. See figure F.1.

From the r observations the probability distribution function Fo(Q) can be determined (e.g. using order statistics).
Other methods (e.g. determination directly from the stochastic process) are available and are in some cases

preferable.

@
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c ] a

X-] Q

£ /M :
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Time FqlQ)

T T T T T
Total observation time
Figure F.1 — Action process Figure F.2 — Probability

density function fo(Q)

In many cases it is useful to fit some well-known analytic probability distribution function to the observed values of
Fol(Q) (see figure F.2). If this is done, it is important to recognize that this distribution function should be regarded
as an approximation which, strictly speaking, is valid only within the limits of the observation values.

The characteristic value, Qy, can be obtained from the equation

Fo(Q) = p - (F1)

F.2.3 Return period

In some cases a convenient way to characterize Q is to use its return period T, defined as the mean duration
between consecutive occurrences of Gy being exceeded. T can be calculated from the expression

_ T _tly
- 1"'FQ(Q()- 1- Pr/r, fr . v (Fi2)

If Fo(Qx) is close to unity, the expression for T is almost independent of t and can be approximated by

1
:W!l ‘e (F.B)

The return period is in many cases the most illustrative parameter to define the characteristic value. Return periods
of 50 to 100 years are reasonable for characteristic values of actions used in the design of ordinary permanent
buildings.
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F.2.4 Uncertainties

in most cases the charactenstic value is chosen in such a way that events during which the observed values
exceed the characteristic value are fairly rare. Therefore the statistical uncertainties in the estimation of the
characteristic value may be considerable.

If the reference period, t,, is increased or the acceptable probability of the value being exceeded, 1-p, is decreased.
the uncertainty in the characteristic value will increase if the other conditions are not changed.

If  and p are given by the definition of the charactenstic value, the main way to decrease the statistical
uncertainties is to increase the number, r, of observations. This can be done either by increasing the total
observation period or by decreasing the unit observation period (compare figure F.1). However in many cases data
from observations already made have to be used and it is not possible to increase the total observation period. The
unit observation period, 7, cannot be decreased in an arbitrary way. It has to be sufficiently long so that the
maximum values in two successive unit observation periods can be approximately considered as statistically
independent. If this is not the case, then additional uncertainties will arise.

For actions of natural origin (such as wind, snow, temperature, etc.) the total observation period for a single
observation place is normally not longer than about 50 years. Thus in such cases when the unit observation period
is chosen equal to one year, the number of values obtained is fairly small, r ~ 50. If the reference period is chosen
as 50 years or more, the available data may not permit anything more than an estimation of the mean value of th
probability distribution function for the maximum value within 50 years. The type of distribution and the standarc
deviation have to be determined using good judgement. This may include a comparison with similar observations
made at different places. Of course if the reference period chosen is considerably shorter (e.g. one year) the results
will normally be more accurate. However, for a building with a design working life of about 50 years, this does not
enhance the accuracy of the predictions.

F.3 Estimation of combination values

F.3.1 General

The basic principle for combinations of actions applied in 9.5 implies that:

— one action is chosen as the dominating action and is introduced by means of its characteristic value Qqy;

— a second action is introduced with a reduced combination value wgQok: Wo2 < 1. The combination factor ygz
depends on the characteristics of both the dominating and the non-dominating action;

— a third action is introduced with a further reduced combination value wo3Qak: Wo3 < woo- The value of vo
depends on the characteristics of all three actions. This process is repeated if necessary.

Thus a sequence of yg values is introduced: yg1 = 1, Wo1 2 o2 = Wo31-.-. :

This principle ‘may be justified from a theoretical point of view but it makes the combination of actions fairly
complicated. it may result in several different combination values for a particular action. Furthermore the number of
possible combinations increases very rapidly with the number of different action values.

Combinations according to 9.5, with representative action values according to 9.2, imply that for a particular action

there is only one combination value, woQk which is used in all cases when the action is non-dominating. This single
combination value, ypQk, should be chosen in such a way that result is conservative.

F.3.2 Combination of actions according to the Ferry Borges-Castanheta model

F.3.2.1 General

Consider the case that two actions @(f) and Qu(f) are to be combined. Assume that these actions can be described
by square-wave processes according to figure F.3. The following assumptions are made about the processes:

i



©1S0 ISO/FDIS 2394:1998(E)

— @4(fH and Qo(f) are stationary ergodic processes;

— all intervals 74 are equal;

— allintervals 1> are equal;

- T

— ry and r/ry are integers, where ri=t/71 and ro=t/12;

— @ and @ are constant during each interval 7y and 1 respectively,

— the values of Q, for the different intervals are mutually independent; the same holds for Qy;

— (4 and Qs are independent.

cd Qe
] 1= =
| i .
v 1, . " Time
- ||
o O max.

J

I

I ! o=
l M e Time

Figure F.3 — Square-wave processes for Q;(f) and Qx(f)

For each of the actions, three kinds of variables are defined.
1) The arbitrary-point-in-time variable @ with the probability distribution function Fo(Q)
2) The maximum value Qmay during the reference time, with the probability distribution function:
Famax(Q) = [Fo.(Q)) s AP

3) The maximum value Q; (the index ¢ indicates combination) during the interval 1;. For Qs this value Qs is equal
to the maximum value occurring during the interval 74 with the probability distribution function:

Faze(Q) = [Fo.(Q))2r + v« (F.5)
For Qy the combination value is equal to the point-in-time value, i.e.
Qe = Oy ...(F.8)

NOTE — If Fo.(Q) and Fomax( Q) are estimated directly. r has to be chosen so that equation (F.4) is approximately satisfied.
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The three different probability distribution functions for Qs are shown in figure F.4.

1 Fo-(@)

e\

Fla)

of

Figure F.4 — Probability distribution functions for Q-

Assume a linear relationship between the action etfect S and the actions:

S=2a10y+ a3 R
The maximum action effect Syax from Q, and Qs during the reference period f, can then be written as:

Smax = S{Q1e. Qac} .« (F.8)
The maximum should be taken over all intervals 14 within the reference period.

As an approximation, the resulting action effects could be calculated as the maximum of the following two
combinations (Turkstra's rule):

S{OQymax. Qz¢) if Q4 is considered as the dominating action
S{Qomax. Qi) if Q; is considered as the dominating action

Written as a formula:

Smax = {S(Qimax. Qzc) i S(Qyc, Qomax)} : o {F.9)

If the structure is designed according to a probabilistic method, then the action values in equation (F.8) or (F.9) -

should be treated as random variables with probability distribution functions, as given by figure F.4.

If the structure is designed according to a partial factors format, then the general format for the design value of Spax
can be written as:

Smaxd = {S(Qimaxd. Q2cd) : S(Q1cd. Comax o)} o < (F.10)
with:

Qimax g = Ya1Q1k

Qicg = Y01 Y0101k
and similarly for Q,.

The values of the combination values ¥o,Qqx can be derived in various ways, as will be explained in the next
subclauses.
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F.3.2.2 Combination values according to Turksta's Rule
A classical approach for deriving the combination factors ¥y in & partial factors format is based on Turkstra's rule,

equation (F.9). This means that Q. (index 1 or 2 is omitted for convenience) is selected as a fractile of the Q.
distribution (see figure F.4). With reference to E.6.3, the fractile is chosen as @(-0.4 asf):

Foc(Qed) = ¥(-0.4 agf) . (F11)

where ag = -0,7 is a sensitivity factor for the action Q.

This leads to the following formal expression for ¥y: s} niserw Lisner + thts
"
) ‘ - ,-J,J [
| -1 r A d
b O _Fal[0(04x076) Fan, |#(04x07p) | 1o
o = -_— s -— = P .
Omaxd  Fony, [PO7B)]  Fop,,[®(07F))
For the Gumbel distribution, this equation becomes:
1-078v{0577 + In-In{®(-04as )| +In }
¥y = { f{ f’{ ] ...(F.13)

1- o.7sv[o.577 +Inf-In(@(-asB ))]}

where Vis the coefficient of vanation of the probability distribution function Fomax(Q)-

NOTE — A numerical example is given after F.3.2.4,

F.3.2.3 Combination values according to the Design Value Method

According to the Design Value Method (see annex E), the design load effect Sqaxg Should have probability of
exceeding the limit value for the reference period t, equal to:

P{Smax > Smaxa} = agh) ...(F.14)
with ag = -0,7.

Given the characteristics of the loads Q; and Q> one may require, equivalently, that the probability of exceeding the
limit value of the design load effect during an interval penod 74 should be equal to:

PISc > Sca) = PasPiry ... (F.15)
The corresponding “reliability index” equals:
nBC = -¢-‘{¢(asﬁ)/r1} v e (F.16)

Within each interval the loads are constant, and the results of annex E can be applied. This means that the design
values Qmax g = YoGk and Qg = Yo '¥oCQ« may be derived from:

Fac {(vaQx} = #(B;) ...(F17)
Fac (Yo% k) = ©(0.45;) ...(F.18)
So, ¥, follows from: .
_ Fal{#4B.)) (F.19)
Fa {@(Be ) o

It is also possible to express ¥ on the basis of the distribution function of Chriaoe:
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| Fan,{#045:) )

1 r o (on,
Foma: {¢'(ﬁc) }
Iin some applications r may be vary large, so it is useful to develop equ'ation (F.20) further:
F5' lexp[-ro(-048
- Qmax{ [ ( c)]} = (F.21)

Fiimas | 2(07B)]
where f3. is given by equation (F.18).

F.3.2.4 Combination values for intermittent loads

It is not necessary for the load to be non-zero during the total reference period. The models described in F.3.2.2 and
F.3.2.3 are capable of accounting for loads which have a finite probability of being zero dunng the interval r
(intermittent loads). In that case, however, this probability of having zero load should be included in the distribution
function. One should be careful not to take the conditional distribution function for the load, given that the load is not
zero.

EXAMPLE

As an example, consider the case where = 3,8, ag = 0,7 and V = 0,20. For a Gumbel distribution, the ¥, values
given in table F.1 are found.

Table F.1
r Design value method Turkstra rule
equation (F.20) equation (F.12) or (F.13)
1 ¥, = 0,66 ¥, = 0,66
10 ¥ = 0,50 ¥o =045
100 ¥y =034 ¥y = 0.24

It appears that, in this example, Turkstra’s rule, as proposed here, is a slightly unconservative approximation of the
Design Value Method.

F.4 Estimation of frequent values
F.4.1 Duration of time action an action value is exceeded

The first definition of frequent values given in 9.2 is associated with the failure condition specified according to case
b) of 5.1.3. It implies that it is possible to estimate the frequent value in the following way. The point-in-time values
of an action are described as a function of time by a process [e.g. according to figure F.5a)]. A given level, @, of
the action values is exceeded during a number of periods of time with lengths ty, t, f3 ..., i.e. during a total period of
time 2t within the chosen reference time .. The frequent value Q, = ¥;Qy is thus exceeded during a specified
relative duration:

_Z_" ... (F.22)
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Figure F.5 — Exceeding the frequent value Q;

The probability distribution function Fo(Q) of the point-in-time action values, Q", referred to those periods when Q is
not equal to zero, is shown in figure F.5b). The probability, p”,of exceeding the action value Qy is equal to:

p* = 1-Fa- () .« AF.23)
For an ergodic process the value of  can be obtained from:
2
=—=p" o o kFL24)

Iy
where g is the probability of a non-zero value of Q.

Thus, if the value of n is specified, the frequent action value Qy can be obtained from:

0= F53[1-E) ... (F.25)
q
and the action reduction factor is equal to:
p, =2 ...(F.28)
(2.9

where the characteristic action value G can be determined according to F.2.

When observed data are available, the method described above can be used directly for the estimation of the action
values. In other cases, the estimation of the values has to be based on subjective judgement.

If two or several actions in a combination contribute to an action effect, S°, the value of p” in equation (F.24) should
in principle be derived from the probability distribution function, Fg+(s) for the point-in-time values of the combined
load effect. However, in practical applications there is normally only one action with a frequent value in a frequent
combination. The other actions are introduced with their quasi-permanent values. This has been considered as a
reasonable compromise to account for the effect of several variable actions.

The specified values of n are usually fairly small, most often less than 0,1.

F.4.2 Frequency of exceeding an action value

If the second definition of a frequent value given in 9.2 is used then, the value should be determined in such a way
that the number of upcrossings (see figure F.6) per unit time, i.e. the upcrossing rate, does not exceed a specified
value, ws.

The upcrossing rates may be determined from direct observation or using other properties of the process (e.g. the
spectral density function).
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Figure F.6 — Upcrossings of the frequent value Q, and of the mean value ug

If the upcrossing rate wm, of the mean value uq. for the point-in-time values (see figure F.6) is known, and if the
action process is a Gaussian stationary ergodic process, then the frequent action value Q; corresponding to a
specified upcrossing rate ws can be obtained from

2
Oy=pg-+ co-\fln(wm lwg) ...(F.27)
where og- is the standard deviation for the point-in-time values Q".

Thus the action reduction factor is

[
W, == ...(F.28
Ly ( )

where the characteristic action value Q can be determined according to F.2.

If two or more actions Q, each one causing an action efiect S; contribute to the total action effect S so that
S = 15", then the upcrossing rate wy, of the mean value ug- can be obtained from

, _ 2ubog,

wd =SSt ... (F.29)
YA

where
w; Is theaupcrossing rate of the mean value ug-;
og-; is the standard deviation for S°;

Similarly to the previous case, the definition of frequent value is associated with the failure condition specified by
casec)in 5.1.3.

F.5 Estimation of quasi-permanent values

The definition of quasi-permanent values (see 9.2) is almost the same as the definition of frequent values for the
case treated in F.4.1 (i.e. with regard to duration of exceeding the frequent value). The only difference lies in the
numerical values. The numerical values of n for frequent action values lie in the interval 0 to 0,1 while the values are
equal to about 0,5 for quasi-permanent action values. Thus, the same procedure that was described in F.4.1 and
equations (F.22) to (F.24) can be applied for the estimation of quasi-permanent values.
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Annex G
(informative)

Example of a method of combination of actions

G.1 General

This annex contains an example of a method (among many other possibilities) or combination of actions based on
the principles given in 8.5.

The basic principle of the method is the following:
— one action is considered as dominating and is introduced into the combination with an extreme design value:
— all other actions are introduced with more likely values.

The likely values of permanent actions are obtained by multiplying the partial factors by a factor . The value of £
is different for unfavourable and favourable permanent actions.

The likely values of variable actions are obtained by multiplying the characteristic values by a factor V.
The likely values of accidental actions are zero.

Often it is not a prion given which action should be considered as dominating to obtain the most unfavourable case
and it is necessary to study several cases.

G.2 Applications

In table G.1 design values for ultimate limit states are given for three types of combination with dominating
permanent action, variable action and accidental action, respectively. The combinations should be read horizontally.

Table G.1 — Design values for load combination — Ultimate limit states

Design Design values
situation Permanent actions Variable actions Accidental
Dominating Not dominating Dominating Not dominating actions

Persistent Ya G -~ Yo ¥o Gk =

and transient — EYa G Yo Yo ok =
Accidental - $¥eGn = Yo ¥ Gk Aq

Y is a partial factor for permanent actions;

Yo s a partial factor variabie actions.

in table G.2 design values for serviceability limit states are given for three types of combination: characteristic,
frequent and quasi-permanent combinations, respectively.

Table G.2 — Design values for load combination — Serviceability limit states

Type of Design values
combination Permanent Variable
Dominating Not dominating
Characteristic Y6 Gk Yo &k —_
Frequent Y6 Gk 110k ¥ara Ok
Quasi-permanent Y6 Gk ¥oYa O
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The characteristic combinations are used mainly in the case when exceeding a limit state causes serious -
permanent damage. £

The frequent combinations are used mainly in those cases when exceeding a limit state causes local damage, large
deformations or vibrations which are temporary.

The guasi-permanent combinations are used in those cases when long-term effects are determinative.

In special cases other combinations may be defined.

72



\‘-I

April .c, 1995

John Dalsgaard Sgrensen

Department of Building Technology and Structural Engineering
Aalborg University

Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark

RELIABILITY MODELLING OF FATIGUE FAILURE

1 Introduction

This note gives an introduction to the main steps in a probabilistic fatigue analysis
in welded joints. As an example tubular joints in fixed offshore platforms of the steel
jacket type is considered, but the probabilistic modelling is general and can be used
for other types of structures. Both a deterministic (code based) and a probabilistic
approach are described. Initially the fatigue loading is described, here as an example
wave loading. Next stress analysis is considered. Based on a spectral analysis the
stress spectra for critical points (hot spots) in the joint can then be determined
using an influence matrix approach. From the stress spectra stress ranges can be
determined and the number of stress cycles can be estimated, e.g. by the Rain Flow
counting method.

Two models for the fatigue strength are described, namely the classical SN approach
and a fracture mechanics approach where the size of the crack is compared with a
critical crack length, e.g. the thickness of the tubular member.

The classical deterministic fatigue analysis using the SN approach is described and
illustrated by an example. Probabilistic analyses based on the SN approach and on
the fracture mechanics approach are described. Limit state functions are formulated
and it is shown how the reliability can be estimated by first order reliability methods.

2. Fatigue loading

With respect to fatigue failure of welded offshore structures wave loading is the most
important load case. Current is insignificant because the time variation is very slow
compared with wave loading. The fatigue load due to wind excitation can contribute
by 10-15 % of the total fatigue load but usually it is of minor importance. In this
section we therefore concentrate on wave loading.

The statistical properties of sea waves are most often modelled using so-called short-
term sea states. The duration of a sea state is normally taken as 3 hours. Within
each sea state the wave elevation is assumed to be modelled by a stationary stochastic
process {n(t)}. The wave elevation 7(t) is assumed to be normal distributed with
expected value p, = 0 and standard deviation ¢,. The auto-spectrum of {n(t)} can
be modelled by a number of different spectra, e.g.

e Pierson-Moskowitz
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¢ JONSWAP
The Pierson-Moskowitz spectrum has the following form

4riH? 3¢ L o
Sanlw) = mexp(—lﬁﬂ (Tz_w) ) (2.1)

where w is the cyclical frewuency, Hgs is the significant wave height and Tz is the
zero upcrossing period. The parameters Hg and T are constant within each sea
state. In figure 2.1 a typical wave spectrum is shown.

Long-term observations of the sea is usually performed by observing the sea surface
for 20 minutes every third hour. For each observation Hs and Tz are estimated.
The relative number of pairs of Hg and Tz can be represented in so-called scatter
diagrams, see figure 2.2. Based on the observations it is also possible to fit the
long-term distribution functions for Hg, e.g. by a Weibull distribution

hy = Hy o
Hc _HO) ) 1 ha 2 Hﬂ (22)

FH_,(h,) =1- exP(_[

Where v, H, and H. are parameters.

From figure 2.2 it is seen that Hg and Tz are dependent. Based on the observations
a long-term distribution function for Tz given Hg can also be fitted, for example by
a two-parameter Weibull distribution

Py st | B) o= 1.~ exp(~(ﬁ)*=“'->) (23)

Where k;(h,) and ko(h,) are functions of k,. In [2] the following models are obtained
based on data from the Northern North Sea (h, in meters).

kx(h,) = 6.05exp(0.07h,) (2.4)
ka(h,) = 2.35exp(0.21h,) (2.5)

20

Siwiim?s)

=1

Figure 2.1. Pierson-Moskowitz spectrum.

2



April .z, 1995

PROBABILITY IN PARTS PER
~ THOUSAND
0*:0.0 <PROB <0.0005

12

L1 I

o
o
10 U
E 4
i". | ¥ ]
5 0
£ o o
o 1
|- 7] ¥
-
Ea
z
v EB 1
3 1r|s
- 3]22]3 4
3 1|30 |35)25
g 2 ifsifeafis
= - 15|70 [30]15
7158 [20]10
1 23 [91 ]38 3
32160 6] 3
B 1] 2] 1

e 1 2 3 4 & 6 7 8 8 10 11 12
AVERAGE ZERO UPCROSSING PERIOD, T, (s

Figure 2.2. Representative scatter diagram for central North Sea, from [4].

Generally the distribution functions for Hs and Tz are dependent on the wave
direction ©. I eight directions (N, NE, E, SE, S, SW, W, NW) with probabilities
of occurrence Pg,,i = 1,2,...,8 are used then the distribution function for Hg is
written according to (2.2)

h,—H .
Fry(hs, i) =1-exp(~(— 7~ é’; Y¥)  h,>Hp, i=1,.,8 (2.6)
Ci i

The parameters in (2.3)-(2.5) can be considered independent of the direction. Toget-
her with the parameters in (2.6) for the 8 directions the probabilities Pg,,i = 1,...,8
for waves in the eight directions constitute the data for the long-term stochastic
model.

Measurements of the directional characteristics of the wave elevation shows a vari-
ation of both the mean direction and a spread with frequency. The spreading of
the waves can result in a significant reduction in the wave loading. The directional
spectra are assumed to be modelled by

Snn(w, ©) = Spn(w)¥(©) (2.7)

where the spreading function ¥(©) e.g. can be modelled by

1 I(s+1)

¥O) =3 /A e+ D)

feos(5(© ~ @) (28)
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I' is the Gamma-function, s is a constant and © is the mean direction. Usually s = 1
is used in practice.

3. Stress Analysis

Above it is described how the wave load can be described by the spectral density Sy,
and the distribution functions Fy, and Fr,|g,. The next step is then to perform a
stochastic response analysis to find the the cross-spectral density functions Ss, 5 (w)
for the cross-sectional forces in a given structural element. Details of such an analysis
can be found in e.g. Langen & Sigbjgrnson [3].

In the following it is described how to estimate the autospectral density function for
the local hot-spot stresses in a given hot spot.

Figure 3.1 Calculation of influence coefficients (from [1]).

In order to illustrate the procedure consider the K-joint in figure 3.1. The cross-
sectional forces on the joint can be determined using a beam model of the structure.
These forces will be in equilibrium. A local stress analysis of the joint can therefore
be performed by fixing one of the cross-sections (see figure 3.1) and applying the
cross-sectional forces from the beam model as external loads on the joint. The cross-
sections where the forces are determined should be located in some distance from
the joint in order to be able to apply the cross-sectional loads as distributed line
loads on a shell element model of the joint, i.e. the stress distribution is unaffected
by the joint.
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BRACE WALL

Figure 3.2 Stress variation through thickness (from [1]).

The local fatigue inducing hot spot stress o in a critical point, namely the principal
stress perpendicular to the crack, see figure 3.2 is estimated by

N
o= Zaa Sk (3.1)
k=1

where N is the number of cross-sectional forces applied as loads to the joint (=18 in
figure 3.2 where each cross-section has 6 degrees of freedom). ay is the coefficient of
influence giving the stress in the critical point for a unit load S.

Based on the cross spectral densities for the cross-sectional forces the auto spectral
density of the fatigue hot spot stress ¢ can be determined from

N N
Seo(w) =YY arar Ss,5,(w) (3.2)

k=1 =1

For computational reasons it is more convenient to calculate the cross spectral den-
sities Sg, 5, of the load effects first. Next when the auto-spectral density of a stress
is required this can be calculated using (3.2). If the result of the spectral analysis
had been the autospectral density of the fatigue stress, a new spectral analysis would
be required whenever the fatigue stress in a new location is needed. This would be
rather unfortunate as a full spectral analysis is very time consuming.

The location of the most critical hot spots is usually not known in advance. Therefore
8 (or 12) points located as shown in figure 3.1 are investigated. The autospectral
density functions are determined for each location and a fatigue analysis is performed

5
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ag described in the following sections. This is done for the 8 points in the brace and
for the corresponding 8 points on the intersection in the chord.

4. Fatigue strength
4.1 SN approach

Assuming that the fatigue damage is accumulated linearly in an interraction free
manner the damage accumulation law attributed to Palmgren (6] and Miner [7] can
be applied. Failure occurs when the accumulated damage exceeds 1, i.e. the failure
criteria is

Z N(Aa,) Z (1)

where n; is the number of stress cycles at a particular stress range level Ag and
N(Auo;) is the number of constant amplitude stress cycles at that stress range level
which leads to failure. The summation in (4.1) is over the number of different stress
range levels. Even though (4.1) appears to be simple there is no evidence indicating
that other damage laws are more suitable. The relation

N = N(Ag) (4.2)
has a random character because repeated experiments where the fatigue lifetime is

measured for constant amplitude stress range loading show a significant scatter.

Most often a relationsship of the type
N=KAc™™ ,Ac>0 (4.3)

is assumed and the material parameters m and K are fitted to experimentally obta-
ined data.

But also modifications to (4.3) are used, e.g.

K Ac™™ Ac > 5
N= !
{ e o] AO’SS{] {4 4)
or
K Ac™™ Ao > Sy
N =
{ Ky Ac—™  Ag<S, (45)
with

K S;™ =K, S;™
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In (4.4) Sp is a so-called stress range threshold below which no fatigue damage takes
place.

It is seen from (4.1) and (4.3) that a failure criteria can be written as

1
s v s ol 5
1 X E’_ niAo™ <0 (4.6)

or

1
1—?{-2:11\0:"50 (4.7)

if the summation is over all individual stress range cycles.

4.2 Fracture mechanics approach

The most simple and generally applicable crack growth equation is due to Paris &

Erdogan [8]:
da
—_—= i AK >0 .
v C(AK) ) > (4.8)

where a is the crack size (depth), N is the number of stress cycles, AK is the stress
intensity factor range in a stress cycle. C and m are material constants.

According to (4.8) a plot of log $& versus log(AK) should be linear but a typical
plot obtained experimentally would be more like the one shown in figure 4.1.

log o7 Kic
1
Region I = | Region fIf
| |
: | “an = caxrm
| |
|
| -
| |
| |
I |
o 4 ; | .
log(aK,) t og(AK)

Figure 4.1 Crack growth rate as function of alterning stress intensity.
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The agreement between (4.8) and experiments is seen to be reasonable in region
II (almost linear) whereas (4.8) overestimates the crack growth rate in region I
and understimates the crack growth rate in region III. AKj,, is a thresshold stress
intensity range below which the crack will not grow. K¢ is the value of the stress
intensity factor at which the crack becomes unstable and brittle fracture takes place.
The stress intensity factor (SIF) can be shown to have the form:

AK =YAc \/ra (4.9)

Where

¥ is a geometry function

a is the crack depth/length

Ao s the hot spot fatigue stress range.

AK is a factor accounting for a redistribution of the hot spot fatigue stresses. The
reason for this redistribution is the influence of the crack itself and other local geo-
metry boundary conditions.

By inserting (4.9) into (4.8) we obtain
B ¢ Y(a, 0 Do (TR (4.10)
T a,c o™ (/7a é
Where a, c is the crack depth/length.

By integrating (4.10) we obtain (assuming ¥'(a) = 1 : infinite plate solution)

@-m)/2 | 2-mopm/zpgm ) E ™
a(N):{ (“n + SBRCx™ 4 Ao N) for m#2 (&11)

ag exp(CtAc?N) for m=2

where ap the initial crack depth/length.

For offshore joints it is generally not sufficient to model cracks as beeing one di-
mensional. This is because both the crack depth and the crack length influences
the geometry function ¥ = Y(a, ¢). In some approaches 1.5 dimensional cracks are
considered, i.e. (4.10) is applied to estimate the crack depth but the crack length is
estimated by an approximation of the type

c=ag+a; a+ axa® + aza’ (4.12)

Such a function is called a forcing function. The coefficients «; are determined such
that the stress intensity range is an upper value. Therefore this approach is not
suitable in probabilistic fracture mechanies. Instead we consider the generalization
of (4.10) to two dimensional semi-eliptical cracks.

8
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Figure 4.2 Semi-elliptical surface crack in plate.

For reason of simplicity, we first consider a flat plate with a semi-elliptical surface
crack under tension or bending fatigue loads, see figue 4.2. The depth of the crack is
a and its length is 2¢, while the thickness of the plate is t. Shang-Xian [5] assumed
that the growth rates at the deepest point A and the end point C of the crack follow
independently the Paris/Erdogan equations.

da

an = Ca(AK)" with a(0) = ap (413)
de - : g
2% = C{AK.) with ¢(0) = ¢ (4.14)

The variation in the three-dimensional stress field is accounted for by the constants
C. and C,, while AK, and AK, denote respectively the ranges of the stress intensity
factor at the deepest point A and the summit C, see figure 4.2.

From the two coupled equations, the differential equation of the shape change is
derived as

de C.[AK ™ .
& [A_E.] withe{ag) = & (4.15)
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together with

dN 1

% = EEE with N(ap) =0 (4.16)

4.3 Fatigue cycle counting

The statistics of the amplitude or stress-ranges and the corresponding number of
stress-ranges in a given time internal must be obtained in order to assess the fatigue
damage.

If the fracture mechanics approach (see section 4.2) is used crack growth is governed
by Paris’ law. In order to illustrate how fatigue cracks can be counted a one dimen-
sional crack model is used in the following. Integration of (4.10) gives for constant
stress-range amplitudes Ao

(—17(—‘1)&—;;_)-;—,., =C-Ac™ N (4.17)

where ag and a. are the initial and the final (critical) crack size, respectively. ¥(a)
is the geometry function, Ac is the constant amplitude stress-range and N is the
number of stress cycles. A generalisation to variable stress-range amplitudes can be
obtained by using instead of Ag™ the equivalent stress range to power m, E[Ac™]

1 N
EAc™] = & > Ao (4.18)

i=1

neglecting any sequence effects. Ac™ is treated as a stochastic variable and Ex| ]
denotes the expectation operation with respect to the stochastic variable X.

If SN curves (see section 4.1) are used to model the fatigue strength it is seen from
(4.7) that also in this case the damage accumulation is governed by (4.18).

For offshore structures the expectation (4.18) must be performed for a given sea
state because the state term statistics of the stresses are conditional on the sea
states. Therefore an expectation over the sea states must also be performed

1 Nugrze
Enor,0 [E[A0™)] = Exgrye Nnrs > (Aoimsre)™ (4.19)
§1Z

=1

where Ny, 7,6 is the expected number of stress cycles given Hg,Tz and 6. This
expectation operation can in general be performed as a simple summation over the
non-zero cells in the scatter diagram. In figure 4.5 three different sample curves of
stress histories are shown.

10
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Figure 4.3. Three examples of stress-variations around the mean stress level.

The first case corresponds to constant amplitude loading, where the stress-ranges
are the same for all stress cycles. The second case corresponds to a stationary ideal
narrow band Gaussian process. Again the stress cycle is easily defined in terms of
the stress process between two constitutive upcrossings of the mean value. The third
case, which is the more general case with broad banded stress variation, is not quite
as obvious. In this case one has to use counting methods.

In the following section 4.3.1 narrow band stress spectra are considered. Next broad
band spectra are considered. In section 4.3.2 and 4.3.3 it is shown how the range
counting and the rainflow counting methods can be used to estimate E[Ac™] and
the expected number of stress cycles N.

4.3.1 Narrow band spectra

For a narrow-banded Gaussian process, the stress-ranges are Rayleigh distributed.
The mean value in (4.18) is then

E[Ac™) = (2V2)™oT(1 + m/2) (4.20)

where o, is the standard deviation of the stress process
Og = /My (421)

my ia the zero’th spectral moment of the stress spectrum S,,(w). Generally the ith
moment is defined by

mi =2 / W Se(w)dw ,i=0,1,2,... (4.22)
0

The number of stress cycles N in the time interval [0, T] is estimated from

i ma
N =uT =, /-’—n-;T (4.23)
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where vp is the mean zero crossing rate and m; is given by (4.22).

4.3.2 Broad band spectra - range counting

In the range counting method a half stress cycle is defined af the difference between
successive local extrenes, see figure 4.4. The range counting method uses only local
information. Therefore information on larger stress cycles can be lost if small stress
reversals are superimposed on the larger stress cycles. The method gives a lower
bound on the fatigue damage.

Jad\ e
\w

Figure 4.4. Range counting method.

The mean number of stress cycles in a time interval [0,T] is equal to the mean
number of local maxima in the time interval

T J S (T
N=wvnT =5 [ 4T (4.24)

where m, is given by (4.22).
Using an double envelope process to model the stress process it can be shown that,
see [11]

E[Ac™) = a™(2v2)" ¢™T(1 + m/2) (4.25)

where the regularity factor « is defined by

. .. (4.26)
Moy Vm

(4.25) deviates from (4.20) by the factor a™. In the limit where the process is narrow
banded (a = 1) (4.25) and (4.20) are identical.

4.3.3 Broad band spectra - Rainflow counting

Rainflow counting is considered to give the most accurate predictions of the fatigue
life when compared to actual fatigue life results. Rainflow counting is widely used.
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Material hysterises loops are sometimes used to justify its use. Rainflow counting is
illustrated in figure 4.4 where the largest cycles are extracted first and the smaller
cycles are considered to be superimposed on the larger cycles, see [9] and [10].

P
\J?\_L

The rainflow counting method counts the number of stress cycles by converting a
realisation of the stress process {¢(t)} to a point process of peaks and troughs as
shown in figure 4.6. The peaks are identified by even numbers and the troughs by
odd numbers. The following rules are imposed on "rain dropping on the roofs”, so
that cycles and half cycles are defined, see Wirshing & Sheheta [12].

Figure 4.5. Rainflow counting.

1) A rainflow is started at each peak and trough.

2) When a rain-flow part started at a trough comes to a tip of the roof, the flow
stops if the opposite trough is more negative than that at the start of the path
under consideration (e.g. in figure 4.6, path [1-8], path [9-10], etc.]). For a path
started at a peak, it is stopped by a peak which is more positive than that at
the start of the rain path under consideration (e.g. in figure 4.6, path [2-3], path
[4-5] and path [6-7]).

3) If the rain flowing down a roof intercepts a flow from the previous path, the
present path is stopped, (e.g. in figure 4.6, path [3-3a], path [5-5a), etc.)

4) A new path is not started until the path under consideration is stopped.

Half-cycles of trough-originated range magnitudes k; are projected distances on the
X axis (e.g. in figure 4.6, [1-8], [3-3a], [5-5a] etc.). If the realisation of o(t) is
sufficiently long, any trough-originated half-cycle will be followed by another peak
originated half-cycle of the same range.
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= o(t)

"Hﬁu

Te

Figure 4.6. Ilustration of rainflow cycle counting applied to sample of o(t) (from
[12]).

Due to the complexity of the rainflow algorithm it is very difficult to derive a density
function fa, for the stress ranges and to estimate the number of stress cycles.

However, based on extensive computer simulations, Dirlik [13] has derived empirical
expressions for fa,:

where
D, =2(8 - ?)/(1 +a?) (4.28)
R=(a-pg-D}/(1-a-D,+D}) (4.29)
Dy=(1-a-D;+D?)/(1-R) (4.30)
Dy=1-D;—Dy (4.31)
Q =1.25(a — D3 — D;R)/D, (4.32)
= :_: ‘/z:: (4.33)
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Using (4.27) E[Ac™] can be estimated numerically.
The expected number of stess cycles N is estimated by

N =u,T (4.34)

5. Deterministic fatigue analysis - SN approach

The stress analysis described in section 3 and the counting methods in section 4.3
give the density function of the stress ranges and the expected number of stress
cycles per time unit. This analysis is performed for each sea state and for each wave
direction.

In this section it is described how an SN based fatigue analysis can be performed
using the results from the stress analysis and assuming that all parameters except the
stress variation are deterministic. The standard deviation of the stochastic process
{(t)} modelling the stress in a given point is denoted o,.

For simplicity it is assumed that the stress process is Gaussian with a narrow banded
spectrum. If the stress spectrum is not narrow banded then the formulas in section
4.3.2 and 4.3.3 must be used instead of those shown below. The stress ranges Ac
are then Rayleigh distributed with standard deviation oa, = 20,

A Ad®
fas(Bo) = G‘; exp (-87) JAo >0 (5.1)

Miner’s rule is used to determine the damage for variable amplitude loading. The
damage in one stress cycle with range Ag; is calculated by, see (4.1).

(5.2)

Failure is assumed to occur when the accumulated damage D exeeds 1. D is obtained
by a summation over all wave directions and sea states (i.e. over all cells in a scatter
diagram for the long term statistical model) and integration over all stress ranges,
see also section 4.3 ‘

Two,i
D= EZPQ,, NE’; ’) fao(Ad)dAo

_‘ZZP‘QU‘/’TVQtAG 4 exp( sAa"g_z.)dA" (5.3)

i3]

= 3 X Py i (avaymeT, I(1 + m/2)
i g
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where

P; is the probability of waves from direction ¢

Qi; is the probability of sea state j when the wave direction is 1

T is the length of the time period considered (e.g. 30 years)

Vg,i; is the mean number of cycles per time unit for direction ¢ and sea state j
O4,ij is the standard deviation of stresses for direction i and sea state j

i is the gamma function

From (5.3) the deterministic fatigue life T' can be determined corresponding to D = 1.
The bilinear SN-curves defined in (4.4) and (4.5) can be written

KAog™™ Ao > Sp
s { KAo™™ Ag< S, LS
In this case (5.3) becomes
S 2
D= EZPQIJTVMJ(Z‘/_)m Ta.ij [ (1+ (2\/_0' ) )+
8,1
(5.5)

So m+s (5 Y
(2\/’2.0.,.',') ? (1+ 2 (2\/55. .,) )]

Where I'(g;6) = [[°t* 'e~*dt is the incomplete gamma function and 7y(a,b) =
I'(a) — I'(a; b).

Example

An example from (1] is briefly shown below. In table 5.1 and 5.2 the probabilities
for occurrence of waves in the 8 main directions and the scatter diagram are shown.
The Pierson-Moskowitz spectrum is used for the water surface elevation and s = 1in

the spreading function ¥(#) is used, see (2.8). A stress analysis is performed using
the influence coefficient approach, see section 3.
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Wave approach from  Probability of occurrence

N 0.0956
NE 0.0689
E 0.0857
SE 0.1179
S 0.1118
SW 0.1698
w 0.1748
NwW 0.1756

Tabel 5.1. Directional distribution of wave occurrences (from [1]).

Ty (zero up-crossing period) (s)
-2 23 34 45 5-6 67 7-8 89 9-10 10-11 SUM

0-0.5 0 9 T4 19 1 0 0 0 0 0 113
0.5-1.0 0 0 62 163 31 3 0 0 0 0 259
1.0-1.5 0 0 0 112 93 16 3 0 0 0 224
1.56-2.0 0 0 0 13 89 31 T a4 0 0 141
2.0-25 0 0 0 0 49 45 6 1 0 0 101
Hy 253.0 0 0 0 12 61 9 2 0 0 0 82
(m) 3.0-35 0 0 0 0 0 20 11 1 0 0 41
3.5-4.0 0 0 0 0 0 g 11 1 4] 0 20
4.0-4.6 0 0 0 0 0 2 B 2 0 0 12
4.56-5.0 0 0 0 0 0 0 5 1 0 0 6
5.0-6.5 0 0 0 0 1] 0 2 2 0 0 4
5.5-6.0 0. 0 0 0 0 0 2 1 1 0 4
SUM 0 9 136 307 275 195 64 12 1 0 1000
Tabel 5.2. Sea scatter diagram (from [1]).
The fatigue strength is modelled by the T curve from [14]
logN = 12.16 — 3 log(Ac) ,Aa > 53N/mm? (5.6)
logN = 15.51 — 5 log(Ao) ,Ac < 53N/mm? (5.7)

i.e. m = 3 in the upper part and m = 5 in the lower part of the SN curve. Al-
ternatively the following modified T-curve can be used where the change in slope is
neglected, i.e.

log N = 12.16 — 3log(Aa) Ag 2 ON/mm?* (5.8)
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The SN curves are shown in figure 5.1

Using (5.3) and (5.5) deterministic fatigue life times are calculated for two hot spots,
see tabel 5.3.

T-curve Modified T-curve
hot spot 1 488 111
hot spot 2 107 40

Table 5.3. Deterministic fatigue life times (in years).

Strass romge (N/mn?)
8

Figure 5.1. SN curves

6. Probabilistic fatigue analysis
6.1 SN approach
In a probabilistic SN fatigue analysis some of the parameters in the model descri-

bed in section 4.1 are modelled by stochastic variables in order to take into acco-

unt randomness and uncertainty. The following parameters could be modelled by
stochastic variables

18
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e Hg and Tz: the uncertainty in the wave climate can be modelled by a scatter
diagram and corresponding probabilities or by distribution functions for Hg and
Tz, eg. (2.2) and (2.3).

e T(O): amodel uncertaity factor could be multiplied to the wave energy spreading
function.

o parameters in wave spectrum, €.g. the bandwidth parameter.

e a model uncertainty factor could be multiplied to the transfer functions giving
the stresses in the joints. Also parameters such as the marine growth, Cp and
Cu in Morison’s equation could be modelled by stochastic variables.

e a factor could be multiplied to aj to model the uncertainty in the stress concen-
tration factors.

e The parameters K and m defining the SN curve could be random. Usually m is
assumed to be deterministic.

e The Miner sum at failure, i.e. 1 in (4.6) is replaced by a stochastic variable A
with expected value 1 and some standard deviation modelling the uncertainty in
the Miner damage accumulation model.

The stochastic variables are denoted X. A limit state function (failure function)
corresponding to fatigue falure at time T' can then be written

o(X,T) = A - D(T) (6.1)

where D is given by (5.3). It is noted that v ;; and ¢,;; are implicit functions
of Hs, Tz, ¥(©), parameters in wave spectrum, model uncertainty factors on the
transfer functions, marine growth, Cp, Cp and SCF.

Using first order reliability methods (FORM), see [2] or [11], the reliability index
B can be calculated for different times T. The corresponding probability of failure
estimated as

P((T) = P(g(X,T) < 0) = B(~A(T)) (6.2)

where @ is the standard normal distribution function.
Example

In the example from section 5.1 (and [1]) 5 stochastic variables are introduced,
namely variables modelling uncertainty in

o the environmental description
e the load model
o the stress analysis (covariance = 20 % on load coefficients)

the fatigue strength (covariance = 64 % on N in SN curve)

the damage criterion (covariance = 20 % on A)
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The result of a reliability analysis is shown in figure 6.1 for hot spot 1 and 2 using
the T-curve and the modified T-curve. It is seen that the deterministic fatigue lives
from table 5.3 all corresponds to a reliability level about § = 1.4 (~ Py = 0.08). If
the requirement to the Miner sum is more strict, e.g. D < 0.1 instead of D < 1 then
a reliability level about § = 4.7 (~ Py = 1.3 107°) is obtained.

In table 6.1 the importance of the different types of uncertainty is shown. It is seen
that the uncertainty in the fatigue strength model is very important.

4
= Qo013
E <
z2 5]
: :
-l
= F]
2ol :
E g
[} L
= -7__ 4
- I e
-2F 6 :1 Hot spat 2 (Without) Tasgs
T sl g
o 00 200 300 200 500

YEARS IN SERVICE

Figure 6.1 Reliability index for hot spot 1 and 2 (from [1]).

Source of uncertainty Importance
Environmental description 1%
Load model 19%
Stress analysis 13 %
Fatigue strength 60 %
Damage criterion 1%

Table 6.1 Sources of uncertainty and their importance (from [1]).

6.2 Fracture mechanics approach

In a probabilistic fracture mechanics fatigue analysis some of the parameters in the
model described in section 4.2 are modelled by stochastic variables in order to take
into account randomness and uncertainty. As in section 6.1 the following parameters
could be modelled by stochastic variables

o Hg and Tz: the uncertainty in the wave climate can be modelled by a scatter
diagram and corresponding probabilities or by distribution functions for Hg and

20
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Tz, e.g. (2.2) and (2.3).

e $(0): a model uncertaity factor could be multiplied to the wave energy spreading
function.

e parameters in wave spectrum, e.g. the bandwidth parameter.

¢ 2 model uncertainty factor could be multiplied to the transfer functions giving
the stresses in the joints. Also parameters such as the marine growth, Cp and
Cps in Morison’s equation could be modelled by stochastic variables.

e a factor could be multiplied to ax to model the uncertainty in the stress concen-
tration factors.

e The parameters C and m in Paris’s law. Usually m is assumed to be deterministic.

e The initial crack lengths and the parameters defining the geometry function in
the stress intensity factors.

The stochastic variables are denoted X. If for simplicity a one-dimensional crack
growth model is used (see (4.10)) and failure is defined as the event that the crack
at time T exceeds the critical crack length a. then the limit state function (failure
function) can then be written

di

W - C-E[Ao™(Hs, Tz)IN(Hs,Tz) < 0 (6.3)

9(X,7)=

where E[Ac™] and N are defined in section 4.3. Using first order reliability methods
(FORM), see [2] or [11], the reliability index 8 can be calculated for different times
g i

Example

The same example as in section 6.1.1 is considered. 5 stochastic variables are intro-
duced, namely variables modelling uncertainty in

o the environmental description

e the load model

o the stress analysis (covariance = 20 % on load coefficients)

o the stress intensity factor. The uncertainty is modelled by multiplying a factor
which is lognormal distributed with mean 1 and standard deviation 0.1.

o the crack growth parameter C in Paris's law. InC is assumed to be normal
dstributed with expected value -29.75 and covariance = 50 % (units: N and mm)

The result of a reliability analysis is shown in figure 6.2 for hot spot 1 and 2. It is
seen that the reliability indices are almost identical to those estimated by the SN
approach. However, for other stochastic models and paramaters different results for
the two approaches can generally be expected.

7
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In table 6.2 the importance of the different types of uncertainty is shown. It is seen
that the uncertainty in the crack growth parameter C is very important.
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Figure 6.2 Reliability index for hot spot 1 and 2 (from [1]).

Source of uncertainty Importance
Environmental description 1%
Load model 19%
Stress analysis 20 %
Stress intensity factor 10 %
Crack growth parameters 60 %

Table 6.2 Sources of uncertainty and their importance (from [1]).

6.3 Simple example

From (4.11) and (6.3) it is seen that if Y (¢) = 1 and N = vT then failure can be
modelled by the limit state function

= L 2-
g=a R _ Bt Tmcﬂ—mfzyTAgm

It is assumed that the parameters can be modelled by :
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dist. el a[]
X{ ag E 0.1
x: a. N 40 10
Xa InC N -33 0.47
Xy Ao w 60 10
v D 10° cycles/year
m D 3

Table 6.3. N: Normal, E: exponential, W: Weibull, D: deterministic. Dimensions in

mm and N.

The results are:

__T [yea.rs] ﬂ g [<7] a3 oy
25 5.50 0.49 -0.03 0.77 0.41
5.0 4.38 0.52 -0.02 0.74 0.43
7.5 3.78 0.53 -0.02 0.72 0.45
10.0 3.32 0.54 -0.02 0.70 0.46
12.5 2.99 0.55 -0.02 0.69 0.46
15.0 2.72 0.56 -0.02 0.68 0.47
17.5 2.50 0.57 -0.02 0.67 0.48
20.0 2.31 0.58 -0.02 0.66 0.48
225 2.15 0.58 -0.01 0.66 0.48
25.0 2.00 0.59 -0.01 0.65 0.49

It is seen that the reliability index f decreases from 5.50 to 2.00 when T goes from
2.5 year to 25 years. Further, that ap, In C and Ao are the most important stochastic
variables in this example.
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