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Abstract—This paper proposes an ac resistance optimiza-
tion method applicable for both inductor and transformer
windings with full layers and partial layers. The proposed
method treats the number of layers of the windings as
a design variable instead of as a predefined parameter,
compared to existing methods. The window height and
width of magnetic cores and the insulation requirements
are introduced as boundary conditions in the optimization
process. The optimization can be realized simply by mathe-
matical design map analyses instead of iteration programs.
Moreover, a corresponding closed form expression of ac
resistance of windings with partial layers is proposed. The
developed analytical equation is verified by both Finite
Element Method (FEM) simulations and experimental
results from two transformer prototypes. A case study
of a transformer design with partial layer windings for
a LCC resonant circuit is presented with experimental
verifications to demonstrate the optimization method.

Keywords—Magnetic components, ac resistance optimiza-
tion, partial layer windings.

I. INTRODUCTION

Medium or high frequency transformers contribute consid-
erable power losses in power electronic converters, which
become a great challenge in energy conversion efficiency.
The reduction of losses in power transformers relies on both
magnetic core and winding design [1–4]. Based on various
analytical expressions of transformer ac resistance [5–10], the
optimization of the conductor diameter for different winding
types are achieved by predefined number of winding layers
m, number of strands of Litz wires kstr, and current wave-
forms [11–13]. Those methods could be easily realized by
simple analytical formulas, however, the required information
such as m and kstr are difficult to be determined at the
beginning of the winding optimization. One method has been
proposed in [14] by introducing the restriction of core height.
However, it requires program iteration and cannot reach the
overall optimization in special conditions, such as a partial
layer winding. The partial layer is usually the last layer of a
winding and does not have the full height like other full layers,
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Figure 1. Cross section and magnetic field intensity distribution of transformer
with partial layer windings.

as is illustrated in Fig. 1. The magnetic field strength due to
the skin and proximity effects of the partial layer is different
from that of full layer. Until now, the analytical equation for
ac resistance of partial layer windings is not available.

In this paper, a winding design method for full layer
winding is firstly proposed, which is based on the restriction
of core structure and does not require to define the number
of layers m. An ac resistance calculation formula for the
partial layer winding is derived and verified by both FEM
and experimental results, making it possible to apply the
proposed optimization method to also windings with partial
layers. Theoretical analyses and experimental results of a case
study are also presented.

II. OPTIMAL WINDING DESIGN WITH FULL LAYERS

In this section, the one dimensional Dowell’s equation
along with its derivation assumptions are firstly reviewed. The
conventional optimum diameter formula is then introduced and
further developed to the proposed winding design method.

A. Dowell’s Equation for Winding Resistance with Full Layers

Dowell’s equation for ac resistance calculation is originally
derived from foil and rectangle conductors. It is based on the



following assumptions for the one dimensional flux distribu-
tion [5].
• The permeability of the magnetic core is very large, so

the magnetic field strength H in the core is close to zero.
• The current flows one dimension in x-direction, thus H

is also one dimension in zy-plane, cf. Fig. 1.
• The height of one full layer of conductors hw equals to the

height of the window hc, so the magnetic flux is parallel
to the conductor, only in z-direction.

Based on the assumptions, the one dimensional equation for
the winding ac resistance Rac is given by [5]:

Rac = RdcFr, (1)

with
Fr = 4[ν3 +

2

3
(m2 − 1)ν2] (2)

and

ν2 =
sinh4− sin4
cosh4+ cos4

, ν3 =
sinh(24) + sin(24)

cosh(24)− cos(24)
, (3)

where Rdc is the winding dc resistance, Fr is the ac resistance
factor, m is the number of layers, and υ3, υ2 are the skin
and proximity effects coefficients, separately. The ac resistance
formula is the function of m and ∆, and the latter is the
penetration ratio defined by:

∆ =
dw
δ

= dw
√
πµfσ, (4)

where dw is the thickness of conductor, δ is the skin depth, f is
the frequency, and µ, σ are the permeability and conductivity
of the conductor material, respectively. There is a positive
correlation between ∆ and frequency, meaning that the ac
resistance increases with the increase of frequency for a given
conductor thickness.

Dowell’s equation for foil can be transferred to the rectangle
and square conductor with equivalent thickness, and further
to round conductor by introducing the equivalent dw using
equivalent area principle with the square conductor:

dw =

√
π

4
d, (5)

where d is the diameter of the round conductor.

B. Optimum Diameter Formula for Foil Conductors

It is already proved that for each particular m, there is an
optimum ∆opt which leads to the minimization of the total ac
resistance with Dowell’s equation [11–13]:

∆opt =
1

4
√

Ψ

√
τ , (6)

with
Ψ =

5m2 − 1

15
, and τ =

ωIrms

I ′rms
, (7)

where ω is the circular frequency, Irms and I ′rms are the
rms value of the current and the derivation of the current,
respectively.

C. Winding Design for Round Conductors of Full Layers

For round conductors, the minimum resistance also exists
and ∆opt can be calculated by (6). ∆opt for each m is given
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Figure 2. Ac resistance versus ∆ and m with round conductor.
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Figure 3. Transformer winding design restrictions.

in Fig. 2 with black line. Further, the optimum diameter d can
be obtained from (5) [1].

In conventional inductor or transformer design process, the
winding design is followed by the selection or dimension
optimization of its magnetic core, thus the number of turns N
is pre-determined, but not the number of layers m. For foil
conductors, m equals to N and ∆opt can be calculated by (6).
However, for round conductors, the relationship is not valid
any more and m is difficult to determine before winding
design.

The proposed winding design method for round conductors
is based on the dimension of the presupposed magnetic core,
including two basic restrictions regarding to the width and
height of the core window, as illustrated in Fig. 3:

dc ≥ mdopt + 2mdiso + (m− 1)dwwiso + 2dcwiso, (8)

hc ≥ tdopt + 2tdiso + (t− 1)hwwiso + 2hcwiso, (9)

where dc, hc is the width and height of window, t is the
number of conductors of full layer in vertical direction, dopt is
the optimum conductor diameter, diso = pdopt is the isolation
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Figure 4. Transformer winding design map with full layer.

thickness of each conductor, p is the isolation coefficient,
dwwiso, hwwiso is the isolation distance between layers in width
and height direction, dcwiso, hcwiso is the isolation distance
between core and winding in width and height direction,
respectively. In full layer scenario, t is expressed by:

t =
N

m
. (10)

By substituting (10) into (9) and putting them in the (∆, m)
two dimensional coordinate plane, the two restrictions can be
described by the yellow line in Fig. 4. Within the restrictions
all points are in feasible region, otherwise in infeasible region.
The feasible region is covered with the green color. Due to
the integer number of layers m, the edge of the region is not
smooth and have step changes in y-axis direction. The pink
line of original optimum diameter calculation is also given,
with the restrictions some parts of the line is not valid any
more. Notice that m axis begins from 1, which is also a
restriction for the winding design.

Considering the valley shape of ac resistance in Fig. 2,
the minimum ac resistance solution should be located on the
boundary of the feasible region or the minimum losses line
within restrictions, consisting line 1 , 2 and 3 . The overall
minimum point can be found by searching the points in the
new line, as is marked with red point in the map. The method
is also suitable for rectangle and square conductors by simply
modifying some variables in (8) and (9).

III. AC WINDINGS RESISTANCE OF PARTIAL LAYERS

For windings with partial layers, Dowell’s equation is not
valid any more. In this section, a new equation of partial layer
for rectangle conductors is derived and then extended to square
and round conductors. The derivation process is inspired by
Dowell’s equation, and is also based on the one-dimensional
flux distribution assumptions. The equation is verified by both
FEM simulation and experimental results.
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Figure 5. Magnetic boundary conditions for skin effect, left: full layer
scenario, right: partial layer scenario.
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Figure 6. Magnetic boundary conditions for proximity effect, left: full
layer scenario, right: partial layer scenario.

A. Equation for Winding Resistance with Partial Layers

Assuming a winding with m full layers, the partial layer is
the (m+1)th layer, the height of the full and partial layer hw
and h′w can be represented by:

hw = thw0, (11)

h′w = t0hw0, (12)

where hw0 is the height of single conductor, t and t0 are the
number of conductors of full and partial layer, respectively.

Define Î0 as the peak current in each turn. The peak current
in the full layer Î is the sum of total Î0 in the layer:

Î = t · Î0, (13)

it decreases linearly to Î ′ in the partial layer:

Î ′ =
t0
t
· Î . (14)

The partial coefficient is defined as k:

k =
t0
t

=
h′w
hw

. (15)

The magnetic boundary condition for skin effect is illus-
trated in Fig. 5. The magnetomotive force (MMF) of partial
layer is proportional to the current and decreases with the
height of the partial layer. However, the magnetic flux length
hc does not decrease due to the one dimensional flux dis-



tribution assumption in section (II-A). As a consequence, the
internal magnetic strength decreases with the partial coefficient
k:

H ′int1 = −H ′int2 =
Î ′

2hc
=

Î

2hc

h′w
hw

=
kÎ

2hc
. (16)

Likewise, the boundary condition for the proximity effect is
illustrated in Fig. 6. The averaged external magnetic strength
boundary is:

H ′ext1 = H ′ext2 =
mÎ
hc

+ mÎ+kÎ
hc

2
=

2mÎ + kÎ

2hc
. (17)

By substituting these two boundary conditions of magnetic
strength into the derivation process, the proposed ac resistance
of round conductor transformer with m full layers and one
partial layer is:

Rac = RdcFr, (18)

with

Fr = ∆ν3 +
4m3 − 4m− 3k + 3k(2m+ k)2

6(m+ k)
∆ν2. (19)

The detailed derivation process is given in Appendix A. If
k = 0, the partial layer is disappeared and (18) turns to the
Dowel’s equation for m layers Rm. If k = 1, the partial layer
becomes the additional full layer and (18) turns to the Dowell’s
equation for m+1 layers Rm+1. The value of (18) is between
Rm and Rm+1. The Dowell’s porosity factor η is defined by:

η =
hw
hc
. (20)

It is used to modify the ac resistance through the penetration
ratio:

∆ =
√
η
dw
δ

(21)

to acquire a more precise analytical calculation result [5]. It
also suits for the partial layer situation here.

For comparison, the ac resistance of windings with 1.56 mm
diameter round conductors of full or partial layers are calcu-
lated and compared in Fig. 7. PQ 50/50 core is chosen and the
length of each turn lw is 94.25 mm, the operation frequency
is 20 kHz. The number of layers m is 5 and the number of
conductors in the full layer t is set as 10, the number of partial
layer conductors t0 increases one by one. When t0 = 10, the
partial layer becomes a full layer and m adds 1. In this case,
the additional losses are almost 50% higher than original value
when t0 is large. It implies that compared to the proposed
equation, it could have considerable errors to apply Dowell’s
equation to model the ac resistance of a partial layer winding.
The ac resistance increment with t0 is also not lineal according
to k due to the high frequency character of skin and proximity
effects.

B. Finite Element Modeling and Experimental Verification

For the verification of the derived equation, two trans-
formers are built, named Prototype 1 (P1) and Prototype 2
(P2), with the same primary winding and different secondary
windings. The winding specification is given in table I.

Prototype 1 is with a full secondary winding and Prototype
2 is with a partial secondary winding. All of the prototypes
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Figure 7. Comparison of ac resistance for full and partial layer winding
scenarios.

Table I
WINDING SPECIFICATION OF PROTOTYPE 1 AND 2

Primary Secondary
P1 P2

Number of full layers m 2 2 2
Turns of full layer t 16 16 16
Number of partial layers 0 0 1
Turns of partial layer t0 0 0 10
Winding diameter 1.56 mm 1.56 mm 1.56 mm

Partial layer of secondary 

winding

Secondary winding

Primary winding

Core

Window

Partial 

layer

Figure 8. Photo of Prototype 2 and its FEM simulation model.

are with the EPCOS PQ50/50 core and same isolation. The ac
resistances are measured by Aglient E5061B network analyzer.
Prototype 2 and its Finite Element Method (FEM) simulation
model are shown in Fig. 8.

The results shown in Fig. 9 reveal a well agreement among
the analytical, simulation, and experimental results. The large
diameter of the conductor leads to the large penetration



Prototype 2
partial layer

Prototype 1 full layer

Figure 9. The analytical, simulation, and experimental results of the ac
resistance of Prototype 1 and 2 under different frequency (i.e., different
penetration ratio).

ratio ∆. It results in the large skin and proximity effects
coefficients υ3 and υ2 in (18). So the difference between
Prototype 1 and Prototype 2 is quite high and increases with
the frequency. The difference almost equals to the ac resistance
of Prototype 1 in 200 kHz. It indicates that in high-power and
high frequency range, the introduction of ac resistance formula
for the partial layer is necessary.

IV. OPTIMAL WINDING DESIGN WITH PARTIAL LAYERS

For winding arrangement with m full layers and one partial
layer, the previously discussed core window width and height
boundary are still valid and can be modified to:

dc ≥ (m+ 1)dopt + 2(m+ 1)diso +mdwwiso + 2dcwiso, (22)

hc ≥ tdopt + 2tdiso + (t− 1)hwwiso + 2hcwiso. (23)

In partial layer scenario, t is calculated by:

t =
N − t0
m

. (24)

When N is an even number, there are N /2 kinds of t0 (i.e.,
0, 1, 2, ..., N/2-1). When N is an odd number, there are (N +
1)/2 kinds of t0. Each kind of t0 is corresponding to a height
boundary restricted by (23).

Additionally, there is a layer boundary ensuring that t0 does
not exceed t: t0<t. By substituting (24) into the boundary, the
restriction is the function of m:

m<
N

t0
− 1. (25)

A design map for N= 16 and t0= 1 is given in Fig. 10
for illustration, which is almost the same shape like Fig. 4. In
this sub-situation, the number of turns left for full layer is 15.
Therefore, there are three kinds of combination for the (m,
t) pair: (1, 15), (3, 5), and (5, 3). Each pair is related to a
subcase line in Fig. 10, which is in blue and parallel to the
x-axis. The y coordinate value of the subcase line indicates
the related number of layers, which is 1, 3, and 5, respectively.

Width restriction

Height 

restriction

Minimum line 

Intersection  1

Feasible region

Intersection  2:

Minimum point

Intersection  3

Subcase Line

Figure 10. Transformer winding design map with partial layer.

The parts of the subcase line in the feasible region are all of the
viable scenarios in the sub-situation. The minimum resistance
point of each layer is its intersection of the yellow boundary
line or the pink minimum line, depending on the position of
the boundary and the minimum line. The points are marked
with intersection 1 to 3. By comparing the minimum points of
each layer, the overall minimum point in the design map can be
obtained. In this situation, intersection 2 is the minimum point
marked with red point. The global minimization resistance
point is obtained by comparing the minimum points in all
of the design maps.

The winding design method above is for core window
with one winding, which is for inductor application. It is
also applicable to transformer with primary and secondary
windings. As the balance of delivered power, the same window
area is preferred for the primary and secondary winding, which
means the half width for each winding. The porosity factor
modification in (21) can also be integrated into the proposed
design method to get a more precise design result.

A transformer for the 20 kHz LCC resonant circuit is
designed with this method, the partial layer is preferred to
accurately meet the requirements of number of total turns N ,
the core is PQ50/50, both the core and isolation restriction is
given in table II and all of the variables can be found in (8)
and (9). m is considered as a design variable.

The resultant winding design is given in table III. The
measured results of the designed transformer is illustrated in
Fig. 11. For comparison, a full layer transformer with 2 layers
0.25 mm diameter round conductors as the secondary side
is also studied. Other parameters are kept the same, and the
winding dimension is also within the design restrictions. It
can be noted that the optimized winding has a 24.85 % ac
resistance reduction compared to this alternative designed one
at 20 kHz. In fact, any other design solutions within the design
restriction map in Fig. 4 will have a higher ac resistance
compared to the optimum design point. The measured ac



Table II
WINDING DESIGN INPUTS OF ISOLATION AND CORE SIZE

p dwwiso dcwiso hwwiso hcwiso hc dc

Primary side 0.33 1.2 mm 1.2 mm 0.2 mm 2.0 mm 36.1 mm 5.5 mm
Secondary side 0.33 1.2 mm 1.2 mm 0.2 mm 2.0 mm 36.1 mm 5.5 mm

Table III
WINDING DESIGN OUTPUTS

Primary Secondary

Number of total turns N 14 34
Number of full layers m 1 1
Turns of full layer t 14 22
Number of partial layers 0 1
Turns of partial layer t0 0 12
Winding diameter output 0.9966 mm 0.5703 mm
Winding diameter chosen 1.0400 mm 0.6200 mm
Ac resistance at 20 kHz 0.0280 Ω 0.2094 Ω
Total ac resistance 0.0635 Ωreflected to primary

Design point

Designed 
transformer

Alternative winding design 
for comparison 

Figure 11. Experimental result of the designed transformer with optimum
winding losses.

resistance reflected to the primary side is 0.0665 Ω at 20 kHz,
with a difference of 4.55% only, compared to the analytical
results. The results verify both the proposed partial layer ac
resistance model and the optimal design of the winding with
partial layer in terms of ac resistance.

V. CONCLUSIONS

An ac resistance optimization method is proposed and ex-
perimentally verified in this paper for inductor and transformer
winding design. With a derived analytical equation for ac
resistance of windings with partial layers, the proposed method
is applicable for the winding optimization with partial layers

as well. Two transformer prototypes have been built and the
analytical, FEM simulation, and experimental results show a
well agreement with each other. A transformer winding design
case for a LCC converter is discussed. It results in a 24.85 %
ac resistance reduction at the frequency of interest with the
proposed optimization method, compared to an alternative
design.

APPENDIX A
DERIVATION OF THE PARTIAL LAYER WINDING LOSSES

With the one dimensional flux assumption in section (II-A)
and the Maxwell equations, the magnetic field intensity Hz is
described by a second-order ordinary differential equation:

d2Hz

d y2
= jσωµHz = α2Hz, (26)

with:
α =

1 + j

δ
. (27)

The boundary condition of the internal magnetic field
strengths is explained in (16) and rewritten here:

H ′int1 = −H ′int2 =
kÎ

2hc
. (28)

According to (26), the solution of magnetic field strength for
skin effect in z direction H ′sz decreases with the ratio k:

H ′sz =
kÎ sinhαy

2hc sinh αdw
2

. (29)

And so as the skin effect current density in x direction J ′sx:

J ′sx =
dH ′sz

d y
=
αkÎ coshαy

2hc sinh αdw
2

. (30)

The skin effect losses for the (m+ 1)th partial layer winding
is:

P ′s = t0
lw
h′

w

t0

2σ

∫ dw

0

|J ′sx|
2

d y =
kÎ2

4hcσδ
ν1, (31)

where
ν1 =

sinh4+ sin4
cosh4− cos4

, (32)

lw is the one turn length of conductor.
The outside external magnetic field strength of the partial

layer increases kÎ
hc

instead of Î
hc

, which leads to the averaged
external magnetic field strength boundary condition become:

H ′ext1 = H ′ext2 =
mÎ
hc

+ mÎ+kÎ
hc

2
=

2mÎ + kÎ

2hc
. (33)



The external magnetic field strength for proximity effect in z
direction H ′pz can be solved by substituting H ′ext1 = H ′ext2:

H ′pz =
coshαy

cosh αdw
2

H ′ext1. (34)

The induced current density of the (m+ 1)th layer is:

J ′px =
dH ′pz

d y
=
α sinhαy

cosh αdw
2

H ′ext1. (35)

The proximity effect losses for the (m + 1)th partial layer
winding is determined by:

P ′P = t0
lw
h′

w

t0

2σ

∫ dw

0

|J ′px|
2

d y

=
klwÎ

2(2m+ k)2

4hcσδ
ν2,

(36)

where
ν2 =

sinh4− sin4
cosh4+ cos4

. (37)

By adding the losses of m full layers Pm and the skin and
proximity losses of the partial layer, the total losses are:
P = Pm + P ′s + P ′p

=
lwÎ

2

hcσδ
(
m

4
ν1 +

4m3 −m
12

ν2 +
k

4
ν1 +

k(2m+ k)2

4
ν2).

(38)
With the following mathematical identities:

ν1 + ν2
2

=
sinh(24) + sin(24)

cosh(24)− cos(24)
= ν3, (39)

(38) can be expressed with more common form:

P =
lwÎ

2

hcσδ

(m+ k)

2
ν3

+
lwÎ

2

hcσδ

4m3 − 4m− 3k + 3k(2m+ k)2

12
ν2.

(40)

The ac resistance of the total winding is determined by:

Rac =
m+ k

hw0σδ
lwtν3

+
4m3 − 4m− 3k + 3k(2m+ k)2

6hw0σδ
lwtν2.

(41)

The dc resistance of m+ 1 layers rectangle winding is:

Rdc =
(mt+ t′)lw
hw0σdw

=
t(m+ k)lw
hw0σdw

. (42)

Thus the ac resistance factor for rectangle conductor can be
expressed by:

Fr = ∆ν3 +
4m3 − 4m− 3k + 3k(2m+ k)2

6(m+ k)
∆ν2. (43)

For square conductors, the derivation process is almost the
same except that the height of the conductor is equal to the
width:

hw0 = dw, (44)

and the related ac resistance factor is also the same.
For round conductors, (43) is also valid by transferring the

diameter d to equivalent dw with (5).
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land: Eidgenössische Technische Hochschule Zürich,
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