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Multiple Imputation by Chained Equations in Praxis: Guidelines and 
Review 

Jesper N. Wulff1 and Linda Ejlskov2 
1Aarhus University, Department of Economics and Business Economics, Denmark 
2Aalborg University, Department of Health, Science and Technology, Denmark 
 
Abstract: Multiple imputation by chained equations (MICE) is an effective tool to handle missing data - an almost 
unavoidable problem in quantitative data analysis. However, despite the empirical and theoretical evidence supporting the 
use of MICE, researchers in the social sciences often resort to inferior approaches unnecessarily risking erroneous results. 
The complexity of the decision process when encountering missing data may be what is discouraging potential users from 
adopting the appropriate technique. In this article, we develop straightforward step-by-step graphical guidelines on how to 
handle missing data based on a comprehensive literature review. It is our hope that these guidelines can help improve 
current standards of handling missing data. The guidelines incorporate recent innovations on how to handle missing data 
such as random forests and predictive mean matching. Thus, the data analysts who already actively apply MICE may use it 
to review some of the newest developments. We demonstrate how the guidelines can be used in praxis using the statistical 
program R and data from the European Social Survey. We demonstrate central decisions such as variable selection and 
number of imputations as well as how to handle typical challenges such as skewed distributions and data transformations. 
These guidelines will enable a social science researcher to go through the process of handling missing data while adhering 
to the newest developments in the field. 
 
Keywords: Multiple imputation by chained equations, MICE, missing data, guidelines, review, R 

1. Introduction 
Valid tools to handle missing data should be in every data analyst’s toolkit. Not having these tools force data 
analysts to resort to inferior default approaches when analysing incomplete data unnecessarily risking 
erroneous results. The most often used technique to cope with incomplete data is to apply some form of 
complete case analysis as e.g. listwise deletion or mean-value imputation. In the case of the former, a 
respondent is left out if data are missing on one or more of the variables included in the analysis, while the 
latter approach fills in the missing values with the mean calculated from the observed data. To remove 
respondents that lack data on certain variables or single-impute missing observations can be harmless, but 
often it leads to biased estimates and incorrect standard errors (Sterne et al. 2009). Thus, it is not surprising 
that research methodologists only recommend to use list- / pairwise deletion or single imputation techniques 
in rare cases (Donders et al. 2006; Greenland & Finkle 1995; King et al. 2001; Newman 2014). 
 
Multiple imputation (MI) is an attractive alternative to help researchers make the best use of their data. While 
MI is a powerful technique, unleashing its full potential requires its user to make a series of important 
decisions. If the wrong choices are made, it may compromise the results. This dire potential consequence 
coupled with the complexity of the decision process may discourage potential users from adopting the 
technique. In part, it may explain why MI is rarely used in practice in  psychology (Roth 1994), political science 
(King et al. 2001) and management research (Newman 2014), which are fields that often rely on datasets 
containing missing values. This is unfortunate as very convincing evidence exists suggesting that MI provides 
more precise and reliable results than simpler methods (Graham & Schafer 1999; Little & Rubin 1987; Rubin & 
Schenker 1986; Rubin 1996).  
 
We acknowledge that for a researcher unfamiliar with MI getting started may seem like a daunting task. Thus, 
in this paper, we first offer a non-technical overview of the state of the art and develop concrete guidelines on 
how to implement MI-techniques with a focus on multiple imputation by chained equations (MICE) in section 
2. Our goal is to spread the use of MI-techniques and thereby increase the quality of the research produced. In 
addition, data analysts who already implement MI-techniques may also benefit from this paper by updating 
their knowledge with the newest developments in the field as e.g. predictive mean matching, random forest 
imputation and model selection.  
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In section 3 we demonstrate how to implement the guidelines in praxis and overcome common challenges 
facing the researcher when using MICE to handle missing data. We demonstrate how to handle missing data 
using MICE and compare the results of different imputation methods. The demonstration is based on data 
from the European Social Survey using R. R is a free software environment for statistical computing enabling 
the reader of this text to apply the presented techniques without depending on access to a specific type of 
commercial software (R Core Team 2015). Further, using R we can demonstrate some of the newest 
developments in the field not yet accessible through other standard software packages. The R-syntax is 
available in the appendix. https://www.researchgate.net/publication/316190594_Appendix_with_R_code 

2. Multiple imputation 
Before describing MI, it makes sense to briefly describe the mechanisms that makes the data missing: Missing 
completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR). MCAR is when 
the probability of the data missing depends on neither the observed nor the unobserved data. Missing data 
are MAR when the probability of missing data to some extent depends on the observed data. Finally, data are 
MNAR when the probability of missing data depends on the missing data values themselves. Missing data are 
almost never MCAR, but instead somewhere in between MAR and MNAR (Graham 2009). If the missing data 
are tending towards the MAR category, MI-techniques outperform standard techniques such as listwise 
deletion (Rubin 1996). 
 
MI was proposed by Rubin (1987) as a statistical technique for handling missing data. At its core, MI uses the 
distribution of the observed data to estimate a set of likely values of the data that are missing. MI estimates 
these values M times each time incorporating a random component to reflect the uncertainty about the 
missing values. After running the procedure, we are left with M different datasets on which we perform the 
desired analysis (e.g. linear regression). Next, we take the average of the parameter estimates across the M 
datasets resulting in one unbiased parameter estimate for each parameter in our model. The standard errors 
are calculated using Rubin’s (1987) formula. An illustration of the whole MICE-process based on Rubin (Rubin 
1987) is shown in Figure 1 below. 

 

Figure 1: The MICE-process (Rubin 1987)  

The power of MI lies in its many imputations. While every single imputation is imprecise, the combination of 
several imputations takes the uncertainty of each imputation into account. For MAR or MCAR data the pooled 
parameter estimates are unbiased and standard errors are corrected appropriately (King et al. 2001). In other 
words, traditional hypothesis testing based on MI-standard errors are more accurate (Newman 2014). 

2.1 MICE  

In praxis, we often encounter missing values in multiple variables. MICE is a popular adaption of MI and is 
available for the user through the most commonly used software packages. MICE changes the imputation 
problem to a series of estimations where each variable takes its turn in being regressed on the other variables. 
MICE loops through the variables predicting each variable dependent on the others. This procedure provides 
great flexibility as each variable may be assigned a suitable distribution, e.g. poisson, linear or binomial (White 
et al. 2011). 
 
MICE runs through an iterative process: In the first iteration, the imputation model for the variable with the 
least missing values is estimated using only complete data. Next, the variable with the second least missing 
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values is imputed using the complete data and the imputed values from the last iteration. After each variable 
has been through this process, the cycle is repeated using the data from the last iteration. Typically, ten 
iterations are performed where the imputed values after the 10th and final iteration constitutes one imputed 
data set (Stuart et al. 2009). 
 
As mentioned above, MICE has an important ability to handle different variable types as each variable is 
imputed using its own imputation model (Bartlett et al. 2014). This provides flexibility and makes it possible to 
impute data sets that include hundreds of variables (He et al. 2010). For instance, continuous variables may be 
modeled through linear regression, binary variables through logistic regression etc. (Chevret et al. 2015). One 
downside of MICE is that it does not have the same theoretical justification as e.g. multivariate normal 
imputation. In praxis, this does not seem to be an issue (White et al. 2011). Another drawback is the challenge 
of choosing an appropriate imputation model. Later in this paper, we walk through an example of building an 
imputation model. 
 
Random forest imputation presents a recently developed alternative to standard MICE procedures. Random 
forests are an extension of classification and regression trees. Classification and regression trees use a binary 
splitting approach recursively subdividing the data based on the values of the predictor variables. Random 
forests build many trees each time varying the sample and the predictors. Consequently, a new bootstrapped 
sample of observations and predictors are selected for each tree (Hastie et al. 2009). 
 
Under certain circumstances, random forest imputation may offer an attractive alternative to standard MICE. 
First, in standard MICE omitting important interactions and other non-linear terms may lead to biased results 
(Seaman et al. 2012). Random forest imputation, on the other hand, is a non-parametric technique well-suited 
for handling complex non-linear relationships. This is especially beneficial when the imputation model is 
difficult to specify. Simulation with data sets including interactions have demonstrated that random forests 
MICE (Shah et al. 2014; Doove et al. 2014) and even MICE with regular regression trees (Burgette & Reiter 
2010; Doove et al. 2014) result in less biased parameter estimates than conventional standard MICE. 
 
Random forest imputation is also an attractive alternative in other cases where standard MICE is simply not 
feasible. Without prior information, standard MICE is not possible in high-dimensional settings when the 
number of predictor variables exceed the number of observations (Hardt et al. 2012; Zhao & Long 2016) and 
may not converge if highly correlated predictor variables are included in the imputation model. Because 
random forest imputation still needs to be tested on a larger range of data, standard MICE may still be 
preferred in standard cases. However, due to promising results, it is an option in situations where standard 
MICE is known to produce biased estimates (e.g. when facing severe non-linarites) or is simply unfeasible (e.g. 
when dealing with high-dimensional data). 

2.2 The amount of missing data 

Before proceeding with the example, it is relevant to briefly discuss what the partial missing data rate means 
for whether one should consider MI-techniques. Newman (2014) suggests a rule-of-thumb of using MI when 
confronting a missing-rate of 10% of higher. At this level, the difference between MI and simpler techniques is 
expected to be substantial. Multiple studies have investigated the impact of different missing rates, e.g. from 
10% - 90% (Janssen et al. 2010) and 2.5% - 30% (Knol et al. 2010), and found that MI outperforms listwise 
deletion and similar techniques under different missing mechanisms and sample sizes. For instance, it is 
possible for an odds-ratio estimate to deviate systematically from the true value even for at 5% MAR-missing 
rate (Knol et al. 2010).  
 
A natural question is whether the missing rate can be too high to use MI. Studies have shown that MI is 
unbiased to around 50%, but gets unstable for higher rates, especially if the data have skewed distributions 
(Haji-Maghsoudi et al. 2013; Lee & Carlin 2012). However, this does not imply that listwise deletion should be 
preferred as MI exhibits superior performance even for a 75% data loss despite biased estimates (Marshall et 
al. 2010). In praxis, though, high computation times caused by a very high missing data rate may make MI 
infeasible. 
 
MI-scholars have investigated and debated whether listwise deletion is ever appropriate. The short answer 
seems to be only in rare cases (Heitjan & Rubin 1990; King et al. 2001). As pointed out by Newman (2014), the 
10% rule-of-thumb illustrates an important point despite the arbitrary threshold: When the amount of missing 
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data is small it will most likely make a very little difference to use MI (Marshall et al. 2010). In summary, 
research indicates that MI is the superior choice when facing missing rates above 10% and in some cases 
already around 5%. To sum up the suggestions in the literature, we have developed the following guidelines 
illustrated in the decision tree in Figure 2. In some cases it might be worth considering MI even though the 
partial missing rates are below 10%. For example, in cases when including a number of variables in a 
regression model with low partial missing rates. In such a case this might result in a total missing rate in the full 
regression model that is substantially higher than in a simple bivariate regression model. Thus, we suggest 
always to check for both total missing rates as well as partial missing rates. 

 
Figure 2: MICE decision tree 
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3. Multiple imputation: An example 
In the following, we walk through an example of using multiple imputation on a real data set following the 
guidelines we have presented in Figure 2. In our example, we are not going to explicitly choose between the 
methods but instead compare them in terms of runtime and end results. However, for each method we do 
detail its appropriateness in relation to the real-life example. As we explain below, the first phase in the 
specification part in step 2 demands more from the analyst when using standard MICE than when using 
random forest MICE. The analysis procedure of the imputed data, however, does not differ depending on the 
chosen method of imputation.  

3.1 Data 

The real life data used in the example stem from The European Social Survey (ESS). The ESS monitors and 
charts a long range of individual attitudes, beliefs and behaviour patterns in Europe and is a cross-national 
repeated cross-sectional survey with the first round occurring in 2002 and has since then been repeated every 
second year (ESS Round 6: European Social Survey Round 6 Data 2012). In this paper, we have used the 6th 
round of ESS, which in addition to the core modules has a special emphasis on personal and social wellbeing. 
The target population for the survey consists of persons aged 15 and over that are resident within private 
households and in total 54,673 participants from 29 surveyed countries answered the interview-administered 
questionnaire. For this example, we are interested in investigating how different attitudes towards 
immigration are associated with happiness among the elderly population in Europe controlled for a range of 
covariates. After excluding people below the age of 71, 7,582 participants were included in the shown 
example.  

3.2 Step 1: Data evaluation 

The sample is summarized in Table I. As it can be seen in Table I, the partial response rate is above 10% for one 
of the variables and above 5% for five variables. This means that using a MICE framework to handle missing 
data is appropriate. The next phase is choosing the appropriate imputation method. This choice is discussed 
throughout the remainder of section three. 

Table I: Summary of subsample 

Names Description 
Number 
missing 

Proportion 
missing 

Range Mean(sd) 

Analysis model variables 
happy Level of happiness 102 1.35 1-11 7.85(2.32) 

flapppl 
Feel appreciated by people you 
are close to 

140 1.85 1-11 8.86(1.91) 

agea Age 133 1.75 71-103 77.54(5.29) 

gndr Gender 3 0.04 1-2 1.58(0.49) 

health Self-rated health 17 0.22 1-5 2.9(0.95) 

hinctnta Household's total net income 1372 18.1 1-10 3.54(2.26) 

grdfincc 
Government seeks to reduce 
income differences 

550 7.25 1-11 5(2.89) 

eduyrs Education in years 127 1.68 0-42 9.97(4.51) 

imueclt 
Cultural life undermined or 
enriched by immigrants 

701 9.25 1-11 6.03(2.54) 

imwbcnt 
Immigrants make country worse 
or better place to live 

689 9.09 1-11 5.52(2.39) 

imbgeco 
Immigration bad or good for 
country's economy 

658 8.68 1-11 5.52(2.52) 

cntry Country of residence 

 
Auxilliary variables 
fltlnl Loneliness 77 1.02 1-4 1.69(0.9) 

rehlppl 
Receive help and support from 
people you are close to 

112 1.48 1-7 5.99(1.33) 

prhlppl 
Provide help and support to 
people you are close to 

149 1.97 1-7 5.96(1.39) 

inprdsc 
How many people with whom 
you can discuss intimate and 
personal matters 

185 2.44 1-7 3.41(1.54) 
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Names Description 
Number 
missing 

Proportion 
missing 

Range Mean(sd) 

sclact 
Take part in social activities 
compared to others of same age 

349 4.6 1-5 2.54(1.09) 

hincfel Feelings about income 75 0.99 1-4 2.27(0.95) 

dweight Design weights 0 0 0.03-4 0.87(0.38) 

pweight Population weights 0 0 0.03-5.5 1.06(1.3) 

3.3 Step 2: Model specification 

Below, we discuss selected considerations and choices that are central in the specification of the imputation 
model when using MICE. As it will become evident, this step is often the most cumbersome. We provide 
examples under each point using the data described above and the R-package mice (van Buuren & Groothuis-
Oudshoorn 2011).  

3.3.1 Choosing variables 

MICE needs an imputation model and an analysis model. While the imputation model is used for filling in the 
missing values, the purpose of the analysis model is to analyse the imputed data afterwards. These models 
need to be compatible. This means that every relationship included in the analysis model needs to be included 
in the imputation model regardless of whether they contain missing values or not (von Hippel 2009). Note that 
this includes all the variables in the analysis model including the dependent variable (Graham 2009). If the 
intent is to use more than one analysis model, the imputation model needs to include all the variables included 
in all of the analysis models (White et al. 2011). Variables that are mutually exclusive should be included as one 
combined categorical variable to avoid that a respondent may belong to several categories simultaneously. If 
the analyst is conducting survival analyses, the censoring variable and a variable containing the Nelson-Aalen 
estimate of cumulative hazard function should be included as well (White & Royston 2009). If the variable 
selection makes the imputation infeasible due to too many variables relative to the observations or unstable 
due to highly correlated predictors, random forest imputation may be considered (Shah et al. 2014). 
  
Our analysis models in the current example include the following variables (also see Table I): Level of 
happiness (outcome variable), feeling appreciated by the people close to you, age, gender, self-rated health, 
income, government actions to reduce income differences, years of education, three questions about opinions 
on immigration and country of residence.  

3.3.2 Interactions and other transformations 

If the analysis model contains interactions and the imputation is performed through standard MICE, the 
analyst must specify these in the imputation model as well to avoid bias in the analysis (Seaman et al. 2012). 
This principle holds for other nonlinear terms, e.g. log-transforms or polynomials, and may be summed up as 
transform-then-combine (Enders et al. 2014; von Hippel 2009). All other methods involving correcting values 
after the imputation are not advised (von Hippel 2009). For instance, it might be tempting to adjust the 
imputed values for a squared variable so they correspond exactly to the actual squared values of the imputed 
variable. Even passively generating interaction terms as it is possible in some statistical packages may lead to 
biased estimates (von Hippel 2009). If the data analyst suspects conceptually or empirically that important 
nonlinear terms are left out, random forest imputation may offer an alternative where the researcher does not 
specify the interactions in the imputation model (Stekhoven & Bühlmann 2012).   
 
To illustrate the principle of incorporating non-linear terms, we include the interaction between the two 
income-related variables (government seeks to reduce income differences (grdfincc) and the household's total 
net income (hinctnta)) into the standard MICE model. To reduce collinearity, we mean-center the variables 
before the generating the interaction term (von Hippel 2009).   

3.3.3 Composite scales 

When composite scales generated from other variables are in the analysis model, the researcher may choose 
to form the scale before or after the imputation. Graham (2009) suggests to generate the scale before the 
imputation when at least half of the items are observed, the items exhibit high coefficient alphas and have 
high item-total correlations. In other cases, the recommendation is to first impute and then construct the 
scales. Even though both approaches results in unbiased estimates, the most efficient results is generally 
achieved by imputing first and then combining the items (Gottschall et al. 2011). 
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After our imputation, we generate a scale that will reflect the attitude towards immigration. We will do this by 
summing three immigration-related variables: The degree you believe cultural life is enriched by immigrants; 
immigrants make your country a better place to live; immigration is good for the economy. A higher score on 
the index reflects a more positive attitude towards immigration. 

3.3.4 Auxiliary variables  

Auxiliary variables are not used in the analysis model but are included in the imputation model as they are 
suspected to contain information about the missing values. Including auxiliary variables that are correlated 
with the analysis variables or are good predictors of the missing values reduces bias and make the MAR-
assumption more reliable (Schafer 2003). Studies have shown that a more loose strategy where extra variables 
are added on a looser basis is preferred over a more restrictive strategy as the marginal costs of adding 
variables is often low (Collins et al. 2001). Still, the ratio of variables to cases with complete data should not fall 
below 1:3 to avoid downward bias in regression coefficients and precision decrease (Hardt et al. 2012). 
Variables that are highly correlated with an incomplete variable should be included in the imputation model 
(Little 1995; Graham 2009). Finally, if the data contain survey weights these should be included as a covariate 
in the imputation model (Kim et al. 2006). 
 
The included auxiliary variables can be seen in Table I. We follow a relatively loose strategy but only include 
one variable in the imputation of another if it has a correlation of at least 0.2 to shorten the computation time. 
The ESS provide survey weights why these are also included in the imputation model1.  

3.3.5 Handling skewed and non-normal variables 

As mentioned above, the rule for choosing an imputation model for a given variable in MICE is to choose the 
regression model that would also have been appropriate for ordinary analyses. For instance, linear regression 
for continuous variables, logistic (logit) for binary, poisson for cardinal variables etc. Before the imputation, it 
is advantageous to run a model with each variable as a dependent variable and check the model’s 
assumptions. If the distribution of a variable is non-normal and the imputation model assumes normality, the 
distribution of the imputed values may not match the distribution of the observed values well (Morris et al. 
2014). However, simulations have shown that a normal imputation model with non-normal data works 
surprisingly well (Graham & Schafer 1999). Besides turning to random forest imputation, predictive mean 
matching offers an alternative imputation modeling approach through MICE. This approach is described below. 

3.3.6 Predictive mean matching 

Predictive mean matching (PMM) is an increasingly popular tool in the MICE-toolbox. PMM produces imputed 
values that resemble the observed values better than methods based on the normal distribution (White et al. 
2011). If the original variable is right-skewed, PMM will produce imputed values that follow the same 
distributional pattern. The reason for this is that PMM uses the predicted value for a given observation to 
identify similar observations. Using the identified observations, a matching set is created containing k matches. 
Next, PMM draws from this set at random. Consequently, PMM uses the real values from individuals with real 
data. This prevents unwanted extrapolation beyond the range of the data (Little 1988). 
 
The analyst can specify the size of the matching set, i.e. how many similar cases a set should contain. The 
default k=1 in Stata and SPSS has been shown to lead to estimated standard errors that are too low resulting in 
t-statistics that are too large (Morris et al. 2014). Some research has found a small advantage of k=3 over k=10 
(Schenker & Taylor 1996) while the literature contains recommendations of k=10 (Morris et al. 2014). A large k 
is likely to be more effective in larger samples and may have poor performance in small samples as the most 
similar observations may become too different.  
 
In praxis, PMM has shown performance close to correctly specified parametric models and better than poorly 
specified parametric models characterized by non-normality (Morris et al. 2014; Schenker & Taylor 1996) and 
moderate skewness (Marshall et al. 2010) despite that the method lacks a formal mathematical justification 

                                                                 
1 Survey sampling weighting adds another layer of complexity to multiple imputation (Azur et al. 2011). Our sample code 
contains an example of how one might combine multiple imputation and survey weights. However, the reader should be 
aware that this is an area of on-going research where few reliable guidelines exists. For more details on the matter, we 
refer to Kim et al. (2006) and Schenker et al. (2006). 
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(Kenward & Carpenter 2007). Especially the speed of PMM seems to provide it with an advantage for large 
datasets, but may run into problems for small samples due to the matching set issue.  

3.3.7 Random forests 

If the decision falls on random forest imputation, there is little to specify for the analyst besides the number of 
trees. The recommended number is 10 (Shah et al. 2014), which is also the default in the mice package. Similar 
to standard MICE, it is preferable to include auxiliary variables in the imputation. As mentioned above, the 
researcher does not compute interaction and higher-order terms beforehand. It remains to be investigated 
whether other transformations such as log-transformations follow the transform-then-combine rule-of-thumb 
in the case of random forest. Situations when random forest imputation may be preferred are discussed above 
and an overview of the decision process is available in Figure 2. Below, we compare results from MICE (using 
software defaults), MICE with some variables imputed through PMM, MICE using full PMM and MICE using 
random forests.   

3.3.8 Comparing methods  

In Table II below, we show four different imputation approaches. For MICE Default, we let the software choose 
the imputation method for each variable. For numeric variables like agea, it chooses PMM, while factor 
variables with more than two levels are imputed using multinomial logistic regression (polyreg) and two-level 
factors are imputed using logistic regression (logreg). For MICE Mixed, we have coded factor variables with 
more than 10 levels as numeric, thus letting them be imputed by PMM. For MICE Full PMM, we impute every 
variable using PMM, while MICE RF imputed every variable using random forest imputation.  
 
In Figure 3, we graphically compare the distributions of the observed (blue) and imputed (red) composite 
immigration variable (immi) and one of the immigration-related variables (imueclt) across imputation models. 
The distributions are very similar even though MICE Default uses multinomial logit while MICE mixed and Full 
PMM use PMM (Table II). Random forest seems to deviate a little more from the observed data. The close 
similarities are also apparent when observing one of the variables used to generate the composite variable.  

 

Figure 3: Distributions of observed and imputed values 
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3.4 Running the imputation model 

Before the analysis of the imputed data, we briefly discuss some practicalities considering running the 
imputation model. The subjects include the number of imputations, model convergence and computation 
time. 

3.4.1 Number of imputations 

The data analyst specifies the number of imputations. Earlier work on MI has focused on efficiency and 
recommends that 3 or 5 imputations are sufficient (Schafer 1997) and that 10 are more than enough (Fichman 
& Cummings 2003; Schafer 1999). Recent research has turned its focus from efficiency to statistical power 
instead recommending that the number of imputations should be at least equal to the percent of missing data, 
i.e. 20% missing data requires 20 imputations (Graham et al. 2007; Bodner 2008; White et al. 2011). This rule-
of-thumb minimizes the loss in statistical power in most situations (White et al. 2011). 

Table II: Overview of imputation methods for different variables 

Variable MICE Default MICE Mixed MICE Full PMM MICE RF 

Analysis model variables 
happy polyreg pmm pmm rf 

flapppl polyreg pmm pmm rf 

agea pmm pmm pmm rf 

gndr logreg logreg pmm rf 

health polyreg polyreg pmm rf 

hinctnta pmm pmm pmm rf 

grdfincc pmm pmm pmm rf 

eduyrs pmm pmm pmm rf 

imueclt polyreg pmm pmm rf 

imwbcnt polyreg pmm pmm rf 

imbgeco polyreg pmm pmm rf 

cntry     

income_int pmm pmm pmm  

 
Auxilliary variables 
fltlnl polyreg polyreg pmm rf 

rehlppl polyreg polyreg pmm rf 

prhlppl polyreg polyreg pmm rf 

inprdsc polyreg polyreg pmm rf 

sclact polyreg polyreg pmm rf 

hincfel polyreg polyreg pmm rf 

dweight     

pweight     

     

Imputation time 
Minutes 256.6 71.9 6.7 64.9 

Notes: The blank cells indicate that the variable was not imputed either due to non-missingness (cntr, dweight, pweight) or 
because the variable was not included in the imputation model (income_int for MICE RF). Computation time is based on an 
average of three runs on an Intel® Core™ i7-5600U CPU 2.60 GHz with 16 GM RAM running 64-bit Windows 7 Enterprise 
and R version 3.2.4 (2016-03-10).  
 
In our data example, the highest single-item missing rate is 18.1%. In addition, we have relatively high missing 
rates on the immigration variables (see Table I). Following the rule-of-thumb above, we run 20 imputations.  

3.4.2 Model convergence 

As explained earlier, MI usually runs 10 iterations with the 10th iteration constituting one imputed dataset. The 
first 9 iterations are called the burn-in period and are usually sufficient for the process to stabilize (Stuart et al. 
2009). Model convergence can be examined by plotting the mean and standard deviation (sd) as a function of 
the iterations for each variable. In Figure 4 below, we assess model convergence for three variables by plotting 
the mean and variance of the imputations against the iteration number, respectively. That is, each colored line 
represents an imputation and for each imputation we plot the mean (left side of figure 4) and sd (right side of 
figure 4) for each of the 10 imputation iterations. Convergence should be assessed for each variable in the 
imputation. If a clear trend emerges, the researcher should increase the burn-in period. Below, we show 
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iteration plots for the mean and standard deviation of our interaction term variable and two of the 
immigration variables (MICE Default).  
 
From Figure 4, we learn that in our case the means and standard deviations stabilize rather quickly. The 
interaction term (income_int) shows the most exemplary convergence while the two immigration items take 
around five iterations to stabilize. Because we know that the two items are highly correlated, this is to be 
expected. The user can always increase the burn-in period to observe if the chains indeed stabilize. With little 
reason to increase the burn-in period in our case, we move on to the analysis of the results after a brief note 
on computation time. 

 

Figure 4: Convergence plots 
 

3.4.3 Computation time 

Even though the distributions presented in Figure 3 are very similar, the difference in time it took to impute 
the data is not: While the MICE Default took 256.6 minutes to run, it took only a about fifth as long for MICE 
Mixed and just a total of 6.7 minutes for the full PMM (Table II). This illustrates an important point about the 
enormous speed advantage PMM can have over competing methods: As imputation models grow increasingly 
complex or in cases of large amounts of missing data, PMM becomes ever more attractive. If the imputation 
process becomes unreasonably long, factor variables with several levels become obvious candidates for 
reducing imputation time through PMM. In our case, random forest completes almost as fast as MICE mixed, 
but still not nearly as fast as full PMM. This illustrates that random forest imputation may be viable alternative 
in cases where lowering the computation becomes valuable, but a full PMM solution for some reason is 
undesirable.  

3.5 Step 3: Analysis of imputed data 

After the imputation, we have m complete datasets. We estimate the model (e.g. linear regression) on each of 
the m datasets and combine the estimates to one combined result. Several steps of analysing these datasets is 
often very similar to running a regression on a single dataset as the process is automated in modern statistical 
software. This combination step is the same regardless of the imputation procedure selected above. As we 
discuss below, some issues as e.g. variable selection become quite complicated when using MI.  
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Below in Table III, we display the estimated coefficients for the analysis model while comparing our four 
procedures used to impute the missing data as we described above. In addition, we compare the results to a 
complete case analysis where the missing data are removed using listwise deletion. The complete case results 
deviate notably from the imputed results. The effect size of household income (hinctnta) is approximately 11% 
larger when not considering the missing data. It is also noteworthy that the interaction term is smaller when 
running the regression on the imputed data compared to the complete data. When conducting traditional 
hypothesis testing, the coefficient on the complete data would be significant at an alpha of 1% (t = -2.78, p = 
0.005), while it would only be significant at an alpha of 5% on the imputed data (t = -2.09, p = 0.037). Thus, 
results may appear more convincing than they really should be when not considering the uncertainty of the 
missing data. 
 
The results from the default method and the full PMM are very similar. Recall from Table II, however, that the 
default method took almost 40 times longer to run because of the much more computationally heavy 
multinomial logit. This repeats the point about the PMM being an attractive alternative when the imputation 
process becomes unreasonably long.  
 
As the interpretation of the coefficients and standard errors are exactly as in regular regression, we will not 
dwell further on these. Instead, we move on to areas where some subtle differences to analysing non-imputed 
data exist. 

Table III: Comparing linear regression results from MICE and complete case 

Variable 
Complete 
case 

MICE Default MICE Mixed 
MICE Full 
PMM 

MICE RF 

Intercept  3.869 (0.487)  3.692 (0.393)  3.700 (0.389)  3.662 (0.389)  3.654 (0.389) 

flapppl  0.309 (0.014)  0.293 (0.012)  0.296 (0.012)  0.297 (0.012)  0.287 (0.012) 

agea  0.013 (0.005)  0.012 (0.004)  0.011 (0.004)  0.012 (0.004)  0.012 (0.004) 

gndr -0.044 (0.053) -0.012 (0.045) -0.011 (0.045) -0.015 (0.045) -0.020 (0.045) 

health2 -0.379 (0.107) -0.348 (0.092) -0.341 (0.092) -0.343 (0.092) -0.347 (0.092) 

health3 -0.777 (0.106) -0.819 (0.091) -0.815 (0.091) -0.816 (0.091) -0.828 (0.091) 

health4 -1.492 (0.122) -1.573 (0.102) -1.571 (0.102) -1.571 (0.102) -1.572 (0.102) 

health5 -2.284 (0.168) -2.271 (0.138) -2.258 (0.135) -2.269 (0.135) -2.271 (0.135) 

eduyrs -0.010 (0.007) -0.005 (0.006) -0.005 (0.006) -0.006 (0.006) -0.003 (0.006) 

hinctnta  0.098 (0.013)  0.088 (0.011)  0.087 (0.011)  0.087 (0.011)  0.084 (0.011) 

grdfincc  0.071 (0.01)  0.076 (0.009)  0.076 (0.009)  0.078 (0.009)  0.068 (0.009) 

income_int -0.011 (0.004) -0.008 (0.004) -0.008 (0.004) -0.008 (0.004) -0.009 (0.004) 

immi  0.030 (0.004)  0.033 (0.004)  0.032 (0.004)  0.033 (0.004)  0.034 (0.004) 

Notes: Standard errors in parentheses. Country fixed effects are included in all models. 

3.5.1 Fit statistics 

Statistics that are not estimators cannot be combined using Rubin’s (1987) rules. White et al. (2011) provide an 
overview of the most common statistics and whether they may be combined, transformed or should not be 
combined. For linear models, the mean of adjusted R2 across imputed datasets may be supplemented by 
information about the percentiles. Fischer’s r to z transformation has been suggested in the literature (Harel 
2009), but if it is not substantially different, the simple mean may be preferred. For likelihood-based models, 
as e.g. logistic regression, the likelihood ratio is popular when analysing regular non-imputed data. A method 
for calculating the likelihood ratio has been suggested (Meng & Rubin 1992), but is has been shown to be less 
accurate than the easily obtained Wald test statistic (Wood et al. 2008).  
 
Here, we focus on the results from the default MICE method. When using Fischer’s r to z transformation, the 
adjusted R2 for our model is 0.382 (low 95: 0.364; high 95: 0.399). In our case, there is not much variability in 
the adjusted R2 across the 20 imputed datasets. If we compute the adjusted R2 for a model excluding the 
interaction term, this simpler model would even fit a little better (Adj. R2: 0.385; low 95: 0.368; high 95: 0.403). 
We can compute a Wald test statistic and compare the model with to the model without the interaction term. 
This results in a test statistic of 4.386 with an associated p-value of 0.037. Using an alpha of 5%, traditional 
statistical inference suggests that the H0 of no difference between the models should be rejected. However, 
these model comparisons consider neither model uncertainty nor do they penalize model complexity 
adequately. To do this, we move on to a brief discussion of model selection and averaging in the context of 
imputed data.  
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3.5.2 Model selection and model averaging 

Model selection considers choosing the single best model among a set of candidate models. This preferred 
model would often be the one that minimizes the generalization error commonly approximated through cross-
validation or information-based criteria as e.g. Akaike’s Information Criterion (AIC). Model averaging deals with 
the uncertainty about the model selection process and acknowledges that there may be many good models 
that describe the data. 
 
Schomaker and Heumann (2014) suggested and tested different ways of integrating model selection and 
averaging approaches into the MI process. The different algorithms are made available through the MAMI-
package (Schomaker 2015). The package allows for several combinations of selection criteria for both model 
selection and averaging. Below, we show results from their stepwise variable selection based on AIC (Posada & 
Buckley 2004). This procedure performs stepwise variable selection on each imputed data set. If a given 
variable is selected its estimate is different from zero while it is zero if the variable is not selected. Thus, 
coefficients of variables selected in only a few imputed data sets are shrunk towards zero when combined. We 
continue with the imputed data from the MICE Default below. 
 
Table IV presents the results from the stepwise model selection procedure after multiple imputation. When 
performing AIC-based model selection on each imputed dataset, the procedure never selects gender (gndr) 
which is why its coefficient is shrunk completely to zero. This contrasts with a small non-zero coefficient in the 
standard imputation-analysis and an even larger coefficient in the complete case analysis (Table III). Education 
(eduyrs) is also of little importance when predicting our outcome variable and is shrunk very close to zero. 
Notably, the coefficient of the interaction term is no longer significant at an alpha of 5% as the 95% confidence 
interval includes zero.  

Table IV: Combining stepwise selection and multiple imputation 

Variable Estimate Std.Error Lower CI Upper CI 
Intercept  3.62484 0.38672  2.86673  4.38296 

flapppl  0.29250 0.01182  0.26932  0.31567 

agea  0.01202 0.00419  0.00381  0.02023 

gndr  0.00000 0.00000  0.00000  0.00000 

health2 -0.34627 0.09233 -0.52723 -0.16530 

health3 -0.81544 0.09090 -0.99360 -0.63728 

health4 -1.56644 0.10127 -1.76493 -1.36795 

health5 -2.26402 0.13737 -2.53335 -1.99469 

eduyrs -0.00042 0.00229 -0.00505  0.00422 

hinctnta  0.08577 0.01064  0.06489  0.10664 

grdfincc  0.07598 0.00858  0.05916  0.09281 

income_int -0.00742 0.00392 -0.01516  0.00032 

immi  0.03221 0.00359  0.02516  0.03925 

Notes: Country fixed effects are included. Calculated confidence intervals are 95% intervals. 

 
Model selection and averaging on imputed data is an area of on-going research. It is not advised to perform 
model selection on the complete cases, but rather use the desired selection method based on Rubin’s (1987) 
rules (Chen & Wang 2013). In our example, performing stepwise selection on the complete data does indeed 
exclude gender, but estimates education to have a coefficient around 23 times larger (β = -0.01, p = 0.14) than 
on the imputed data (β = -0.0004, p = 0.85). As especially model averaging may be impractical for complicated 
models, e.g. with numerous possible interactions, stacking the imputed data sets into a single data set using 
weights at the model-building state may be a pragmatic alternative (Wood et al. 2008). Simply averaging 
model selection criteria such as AIC across imputed data set is temptingly simple, but not supported in the MI 
literature (Schomaker & Heumann 2014; White et al. 2011).   

3.5.3 Reporting results 

Reporting the regression results based on imputed data is not different from regression results based on 
regular data. However, when using multiple imputation to account for missing data, the data analyst must 
supply additional information either in the main paper / report or in the supplement materials. Because many 
of the decisions we make when imputing data may affect the end-result, it is reasonable to state these 
decisions. In praxis, there seems to be deficiencies in the documentation of missing data and the details about 
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the imputation (Hayati Rezvan et al. 2015). Sterne et al. (Sterne et al. 2009) provide a set of guidelines about 
which information to report. Below we condense those that should be made as a minimum and refer to the 
paper for further details. 
 
(1) The software used including the key settings described in this paper as e.g. number of imputed datasets. (2) 
A list of the variables used in the imputation model incl. auxiliary variables (e.g. Table I). (3) Handling of non-
normally distributed variables and non-linear terms. (4) Comparison of observed and imputed values for 
variables with a high level of missing rates (e.g. Figure 3). (5) Discussion of notable differences between 
analyses of complete cases and imputed data. Finally, (6) a summary of the number and fraction of missing 
values and additional relevant information of the way the data are missing. 

4. Concluding remarks 
MI is among the most prominent methods to handle missing data and its superiority has been documented in 
a long range of studies. One of the hurdles of getting started with MI is that it may be difficult navigating 
around the pitfalls. With this overview, we aim to help more researchers to get started with implementing MI-
techniques such as MICE instead of inferior approaches. We hope the data analysts who already actively apply 
MICE may use it to review some of the newest developments.  
 
We chose a practical focus on fewer techniques in one selected software environment to keep the guidelines 
simple. We focused on MICE but fully recognize maximum likelihood routines as e.g. full maximum likelihood. 
MICE and full maximum likelihood produce identical results making the choice between them a matter of 
personal preference (Enders et al. 2014; Schafer 2003; Collins et al. 2001). We also focused on the R statistical 
environment in the provided example. For an overview of alternative software packages, we recommend 
consulting Horton and Kleinman (2007). Finally, we also focused on a subset of commonly used models in the 
analysis example. After having been introduced to our suggested guidelines, we hope that readers are 
motivated to dig into some of the details with regard to more complicated analyses of e.g. hierarchical (Zhao & 
Yucel 2009; van Buuren 2011; Enders et al. 2016; Grund et al. 2016) or longitudinal data structures (Ibrahim & 
Molenberghs 2009; Jansen et al. 2006). 
 
We hope that our synthesis of the literature into guidelines may help improve current standards of handling 
missing data. We end with the caveat that our practical guidelines are no more than the name suggests. We 
have tried to condense the statistical correct praxis into discrete rules-of-thumb to make it accessible to a 
larger audience. While nuances and details are often lost in a summary, we believe that accessible guidelines 
are preferable to the praxis that is currently dominating. More detailed and complex decision-rules for praxis 
are certainly possible but in our opinion, their contribution will be marginal if the basics are ignored.    
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