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Wireless Channel Modeling Perspectives for
Ultra-Reliable Communications

Patrick C. F. Eggers, Member, IEEE, Marko Angjelichinoski, Student Member, IEEE,
Petar Popovski, Fellow, IEEE,

Abstract—Ultra-Reliable Communication (URC) is one of the
distinctive features of the upcoming 5G wireless communication,
characterized by packet error rates (PER) going down to 10−9.
In this paper we analyze the tail of the Cumulative Distribution
Function (CDF) of block fading channels in the regime of
extremely rare events, i.e., the ultra-reliable (UR) regime of
operation. Our main contribution consists of providing a unified
framework for statistical description of wide range of practically
important wireless channel models in the UR regime of operation.
Specifically, we show that the wireless channel behavior in this
regime can be approximated by a simple power law expression,
whose exponent and offset depend on the actual channel model.
The unification provides a channel-agnostic tool for analyzing and
performance optimization of radio systems that operate in the UR
regime. Furthermore, the unified model is particularly useful in
emerging measurement campaigns for empirical characterization
of wireless channels in the regime of low outages. Finally, the
asymptotic analysis can serve as an underlying building block
for designing more elaborate, higher-layer technologies for URC.
We showcase this by applying the power law results to analyze
the performance of receiver diversity schemes and obtain a new
simplified expression for Maximum Ratio Combining (MRC).

Index Terms—Ultra-reliable communications, Ultra-Reliable
Low Latency Communication (URLLC), 5G, wireless channel
models, fading, diversity, probability tail approximations, rare
event statistics.

I. INTRODUCTION

A. The Challenge of Ultra-Reliability

One of the features of 5G wireless communication sys-
tems is to offer service with extremely high reliability and
latency guarantees, also known as Ultra-Reliable Low Latency
Communication (URLLC) [1], [2]. The level of reliability,
sometimes going down to packet error rates (PER) of 10−9,
as well as the unprecedented end-to-end latency requirements
should be sufficiently convincing in order to remove cables
in an industrial setting, remote control of robots and drones
that need to perform a critical function, remote surgery or
self-driving cars [3]. It is important to note that in this work
we cover the aspect of ultra-reliability, but only implicitly
the aspect of low latency. However, in the common 5G
terminology, ultra-reliability is always coupled to low latency.
We believe that this tight coupling should be relaxed, as there
are scenarios in which ultra-reliability is important (e.g. health
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monitoring or disaster recovery), but the allowed latency can
be larger than the proverbial 1 ms.

Ultra-reliability can be achieved through a combination of
enabling technologies at the physical, MAC, link and the
higher layers. Regardless of the techniques, an important
building block of an ultra-reliable wireless system is a model
of the wireless channel that captures the statistics of rare
events and large fading dips. One potential application of
this model is in channel training; in a related study [4]
we have shown that training the channel under mismatched
model, i.e., model that differs even slightly from the “ground
truth” channel when the channel operates in the regime of
extremely rare outages, will severely violate the reliability
constraint. Another situation is the introduction of spatial
diversity; without adequate understanding of the behavior of
the single-antenna wireless link in regime of rare events, one
cannot hope for any operational understanding of the multi-
antenna links.

To the best of our knowledge, no experiments are yet being
considered for reliability targets lower than 10−5. Such an
endeavor requires a major effort in terms of measurement
campaigns and data analytics, purposefully designed to capture
the lower tail statistics and extrapolate the dominant factors
that determine the behavior of wireless channels in such
extreme operational regime. The amount of data necessary
to extrapolate such knowledge is rather massive, while the
required reliability of the experimental setup is on par with
space mission designs. The first step towards such experimen-
tal characterization is a statistical tool that parametrizes various
channel models in the UR-regime; this is precisely the topic
of this paper.

B. Our Contributions

The current channel models have been developed for wire-
less communication systems1 that deal with bit error rates
(BER) of 10−3 to 10−4 [10]. Moreover, the models, charac-
terized primarily in [7], [8], [20], [21], [24] have complicated
expressions for the CDFs which, in many cases of practical
interest, depend on multiple parameters. As a result, they are
often too obscure, not very insightful and, most importantly,
difficult to use in practice.

Our objective is to provide simplified and insightful char-
acterization of the asymptotic behavior of common wireless
channel models in operational regime which is relevant for

1For example, the first generation digital systems, such as GSM, that had
an emphasis on voice communication.
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ultra-reliable applications, relying on first order asymptotic
tail approximations. The outcome of the analysis, which is also
the central contribution of the paper is a unified framework for
modelling and assessment of virtually all practically significant
parametric models for wireless channels operating in the UR
regime. We note that our analysis does not propose nor suggest
any specific technique for achieving the ultra-reliability; rather,
we simply characterize the behavior of the channel in such
regime which, extracting important insights and knowledge
that can be further used in the design and/or performance
optimization of URLLC systems. Specifically, we focus on
the packet errors that occur due to outages, induced by block
fading, rather than errors caused by noise. Recent studies [9]
have shown that this is a very suitable model for transmission
of short packets, which are in turn expected to be prevalent
in the URLLC scenarios (e.g. monitoring and remote control
of processes via large sensor deployments). Such applications
often sacrifice the transmission rates for highly reliable and
timely delivery of short information packets; thus, the tradi-
tional objective of sum rate maximization is no longer the
main objective. Throughout the paper we will use the term
UR-relevant statistics to denote erroneous events that occur
during reception with probabilities ε ≤ 10−5, corresponding
to the reliability of “five nines”. Correspondingly, we use UR-
relevant regime when referring to the operation regime where
the performance of the system is dominated by such rare
events. We have selected 10−5 as the “gate” of the UR-relevant
regime since this is the target PER for URLLC selected in
3GPP for a packet of 32 bytes to be delivered within 1 ms
[35].2

Our analysis shows that, despite the complicated CDFs
F (·), the behavior of the lower tail in UR-relevant regime
can be significantly simplified and, for wide variety of models
(but not all), unified in the following power law expression:

F

(
PR
A

)
≈ α

(
PR
A

)β
, (1)

where A is the average received power over the channel, PR
is the minimal required power at the receiver to decode the
packet correctly at rate R and α, β are parameters that depend
on the actual channel model. We note that (1) is an asymptotic
approximation, becoming increasingly valid when the ratio
between the actual power and the average received power
decreases which implies low transmission rates; hence, the
analysis inherently fits narrowband URLLC applications with
focus on highly reliable and timely delivery of short packets
rather than the actual rate. We also note that the above simple
power law approximation (1) can be deduced via an approach
based on extreme value theory [4]; the Pickands-Balkema-de
Haan theorem in extreme value theory states that, for a large
class of distributions F (i.e., those whose point of attraction is
0), there exists a constant β > 0 such that limt→0

F (ty)
F (t) = yβ

for every y > 0 and, thus, justifying (1).
In addition, we have also characterized the UR-relevant

statistics when multiple antennas are considered. Specifically,

2Different mission-critical services will use different levels of ultra-
reliability, such as PERs of 10−6 in smart grids and 10−9 for factory
automation [3].

we provide a simplified analysis of M -branch receive diversity
for uncorrelated branch signals, that makes use of (1), as
well as the corresponding approximations for some special
channels that do not adhere to power law tail behavior. The
result provides a compact Maximum Ratio Combing (MRC)
solution of the form

FMRC ≈ αMRC(β1..βM )FSC, (2)

that is, a scaled version of a Selection Combining (SC)
solution, in which the scale parameter αMRC

3 depends only
on the exponents β of all M branches.

To illustrate the usefulness of our analysis, consider a simple
scenario where a transmitter transmits to a receiver over flat
fading wireless channel. Both the transmitter and the receiver
are equipped with one antenna. The CDF of the received power
is denoted with F . Assume that link outages are the dominant
source of errors; in such case, the maximum rate R at which
the transmitter can deliver information to the receiver, i.e., the
ε-outage capacity is given by:

Rε(F ) = log2(1 + F−1(ε)), (3)

where F−1(ε) denotes the ε-quantile of the channel distri-
bution. The transmitter seldom knows F perfectly and in
practice, specific channel estimation procedure is applied,
where the channel is estimated using n channel measurements,
obtained e.g. through a dedicated training phase. In conven-
tional mobile radio, the transmitter estimates F using all n
channel measurements, generating an estimate which is valid
over the complete support of F . This traditional approach
is not well fitted for URLLC systems for two reasons: 1)
estimating the channel over the whole support might produce
results that are highly inaccurate at the lower tail, sometimes
leading to over-/under-estimation of R and severe violation
of the reliability constraint, and 2) F might be dependent
on many parameters, some of which are not related to the
behavior of the CDF for very small ε and estimating all of them
leads to useless overhead in URLLC applications. On the other
hand, (1) gives a simple and elegant way of summarizing the
lower tail behavior only via two parameters. However, (1) is
only an asymptotic approximation; hence, in order to estimate
the parameters α and β, the transmitter will use only a small
fraction m� n (e.g. 1%) of channel measurements with the
smallest values. This can even further simplify and reduce the
implementation cost in memory-limited designs.

Another consequence of the main result (1), still related to
channel training is the following. When the channel operates
in UR regime, training the channel using mismatched model,
i.e., model that differs from the actual channel and later on
optimizing its performance using the mismatched channel,
will lead to severe degradation of the realized reliability [4].
Our results provide a unified way to model the channel in
UR regime without having to assume any specific channel
model in advance. In addition to this, one can also use (1) to
identify which channel model is the most appropriate in given
circumstances.

3Represents the additional diversity gain of MRC over SC, aiding in
decision making for worthwhile diversity complexity
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The paper is organized as follows. After the introduction,
in Section II we provide the system model. Section III
contains analysis of a wide range of channel models which
exhibit power law tails at UR-relevant probabilities. Section
IV contains analysis of two models that do not not result in
power law tails. Section V contains the analysis of the receive
diversity schemes in UR-relevant regime. Section VI concludes
the paper.

II. WIRELESS CHANNEL MODELING FOR UR-RELEVANT
STATISTICS

1) Preliminaries: The common approach in wireless chan-
nel modeling is to assume separability of the following
effects [12]:
• Path loss, dependent on the actual geometric setting and

operating frequency.
• Long-term fading (i.e., shadowing) that captures slowly-

varying macroscopic effects.
• Short-term fading processes, relevant on a time scale of

a packet (i.e., quasi-static fading) or even a symbol (fast
fading), assuming stationary scattering conditions.

The performance of the system in UR-relevant regime is
determined by the short-term process and its (un)predictability,
which ultimately determines the fate of the packet at the
destination. Assuming separability, the statistics of short-term
fading is described via parameters that are derived from the
long-term fading and path loss effects; these parameters are
assumed to be constant over a period of time. However,
separability becomes problematic when UR-relevant statistics
is considered, since the estimated long-term parameters require
certain level of accuracy in order to have a valid short-term
statistics of rare events. Motivated by this, we also consider
combined long and short term fading models. Furthermore, in
absence of dedicated URC channel models, we investigate the
behavior of a wide palette of existing wireless channel models
in UR-relevant regime of operation.

2) General Model: We use combination of (a) the complex
baseband model of a narrowband channel with reduced wave
grouping from [7], and (b) the incoherent multi-cluster channel
of [16], [18]. Let P denote the total received power; we have:

P = ω

µ∑
m=1

|Vm|2/γ , Vm = ξ

(
N∑
i=1

ρi,me
jφi,m

)
+

L∏
l=1

Vdif,m,l.

(4)
Vm denotes the complex received voltage from the m−th clus-
ter m = 1, . . . , µ, in which ρi,m/φi,m is the amplitude/phase
of the i−th specular component, i = 1, . . . , N and Vdif,m,l

is the l−th diffuse component for the m−th cluster with L
denoting the number of diffuse components per cluster in
a cascaded setting with L links [11]. Regarding the L, we
note that in this paper we do not threat channel models with
L > 2, i.e., we only consider cases of L = 0 (corresponding
to ray-tracing channel models, such as the two-wave model
and its three-wave generalization), L = 1 which captures all
remaining models except the Cascaded Rayleigh where L = 2.
γ in (4) caters for the modeling of a Weibull channel [15],
and for all other models it is set to γ = 1. The shadowing

effects are represented by the random variables (RVs) ξ and ω.
Here ξ is a common shadowing amplitude that affects only the
specular components [24], while ω induces a shadowing effect
on the total power [21], [12], see section III-G. We assume
that each ρi of a specular component is constant and that φi is
a uniform RV [7]. The elementary diffuse components Vdif,m,l

are treated in their simplest form, as a contribution from a large
number of waves and application of the central limit theorem
[7], [16], [18], which leads to Vdif,m,l = XR,m,l + jXI,m,l,
where XR,m,l and XI,m,l are independent Gaussian variables,
each with zero mean and variance σm,l

2. A more general
variant of the diffuse component follows from a multi-scatter
physical setup [11], [16], [18]. This leads to the cases of
Nakagami, Weibull and Cascaded Rayleigh channel, as well
as compound channels, such as Suzuki and shadowed κ − µ
[12], [20], [21], [24].

We treat narrowband channel models with block fading,
such that the power at which the packet is received remains
constant and equal to P given with (4). The noise power is
normalized to 1, such that P also denotes the Signal-to-Noise
Ratio (SNR) at which a given packet is received. For each new
packet, all RVs from (4) are independently sampled from their
probability distributions4. The average received power for the
channel model (4) is denoted by A and can be computed as:

A = E[P ]
(a)
= ω

µ∑
m=1

[
ξ2

(
N∑
i=1

ρ2
i,m

)
+ E

[
L∏
l=1

|Vdif,m,l|2
]]

,

(5)
with E[·] denoting the expectation operator. Note that (a)
is valid when we treat the reduced wave grouping model
from [7]. In the subsequent analysis we assume normalized
shadowing power, i.e. ω = E[ω] = 1 and ξ2 = E[ξ2] = 1.
The diffuse term depends on link signal correlation, while for
a single link (L = 1) the average power of the elementary
terms is E[|Vdif,m|2] = 2σ2.

3) Descriptive Metrics: The specular component vector
balancing in the reduced wave group model of [7] is given
via the peak to average ratio of the two dominant specular
powers:

∆ =
2ρ1ρ2

ρ2
1 + ρ2

2

. (6)

Furthermore, for the single link channels, i.e., L = 1, the
power ratio of the specular components and the diffuse com-
ponent per cluster, called k-factor is defined as kN =

∑N
i=1 ρ

2
i

2σ2 ,
which in case of the multiple clusters gives [18]:

κ =
1

µ

µ∑
m=1

kN,m =

∑µ
m=1

∑N
i=1 ρ

2
i,m

µ · 2σ2
. (7)

4) UR-Relevant Statistics: Let R denote the transmission
rate of the packet. We assume that packet errors occur due to
outage only, such that the PER ε is given by:

ε = Pr(R < log2(1 + P )) = Pr(P < PR), (8)

4The reader may object that this assumption is not valid when long-term
shadowing is treated, i.e. a sample for a given ρi is applicable to several
packet transmissions. See Section IV-A for discussion about this assumption.
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where PR = 2R − 1 is the minimal required power to receive
the packet sent at rate R. Denote by ε the target packet error
probability (PER), also referred to as outage probability. Then,
for each model the objective is to find PR, defined in (8)
through the CDF F (PR), obtained as:

ε = F (PR) =

∫ √PR
rmin

f(r)dr, (9)

where r =
√
P is the received envelope and rmin is the

minimal value of the envelope in the support set of f(r),
which is the Probability Density Function (PDF) of the specific
channel model. The key to the approximations presented in this
paper is the fact that, for URLLC scenarios, ε is very small.

III. CHANNELS WITH POWER LAW TAIL STATISTICS

We analyze the behavior of common wireless channel
models in UR-relevant regime and derive asymptotically tight
approximations ε̃ of their tail probabilities ε, that satisfy
limPR→0 ε̃ = ε. The common trait of all models considered
in this section is that ε̃ takes the form of a simple power law
(1), with distribution-specific values of the parameters α, β.

For the channel models that are important in practice (see
subsections III-A-III-F), we also provide a simple tool to
analyze the convergence of ε̃ to ε. Specifically, we introduce
the non-negative approximation error function φ(PR) that
satisfies the inequality (see Appendix A):

ε̃(1− φ(PR)) ≤ ε ≤ ε̃(1 + φ(PR)). (10)

φ(PR) increases monotonically with PR and satisfies
limPR→0 φ(PR) = 0. We say that ε̃ converges asymptotically
to ε in the sense that

∣∣ ε̃
ε − 1

∣∣ ≤ η if PR ≤ φ−1
(

η
1+η

)
for

some small error tolerance η > 0. In other words, φ(PR) can
be used to compute the range of envelopes over which the
relative tail approximation error is less than η.

Table I summarizes the tail approximations that are derived
in the sequel.

A. Two-Wave Model (TW)

We start with the common Two-Wave channel model [7],
where µ = 1, N = 2 and L = 0, i.e., single cluster, two
specular and no diffuse components. The envelope PDF is
given by:

fTW(r) =
2r

πATW

√
∆2 −

(
1− r2

ATW

)2
, (11)

where ATW = ρ2
1 + ρ2

2, ∆ is given by (6) and
r ∈ [rmin, rmax] =

[√
ATW(1−∆),

√
ATW(1 + ∆)

]
. By

putting fTW(r) in (9) we obtain the CDF:

ε = FTW(PR) =
1

2
− 1

π
asin

(
1− PR

ATW

∆

)
. (12)

Bounding ε from below leads to the tail approximation:

ε̃ =
1

π

√
2

ATW

√
P ?R, (13)

-60 -50 -40 -30 -20 -10 0

PR/A dB

10-6

10-5

10-4

10-3

10-2

10-1

100

ǫ

∆TW = −3 dB

∆
T
W

=
−
0
.0
0
1
d
B

∆TW
=
0
dB

∆
T
W

=
−
0
.1
2
d
B

TW

Rayl

Fig. 1. Two-wave (12) and the classical Rayleigh (16) CDFs and their tail
approximations (13), (17) (black dotted lines). For Two-wave: ρ1 = 1, while
ρ2 is set to correspond to the ∆ (6) given at each curve.

where P ?R = 1
∆PR −

1−∆
∆ ATW. The approximation error

function is (see Appendix A):

φ(PR) =
4

3

√
ATW

2

(ATW + P ?R)P ?R√
(2ATW − P ?R)3

. (14)

The upper bound on the power for error tolerance η can be
evaluated numerically.

Fig. 1 depicts the tail ε for the TW channel. When ∆ < 1,
the tail falls abruptly to zero at PR = ATW(1−∆). However,
as it is seen from Fig. 1, the log-log slope that precedes this
abrupt transition to zero is 1

2 (half a decade per 10 dB), which
can be also see from (13). In the singular case ∆ = 1 (0 dB),
the tail approximation is given by (13) with P ?R = PR and
the slope continues until −∞ dB5. For example, if the log-
log slope of 1

2 should be present at ε = 10−6, then we need
to have ∆ > −4 · 10−6dB, i.e. ρ2 very close to ρ1, which is
unlikely in practice due to the losses of the reflected wave.
Hence, the two-wave model should be used with high caution
when evaluating URLLC scenarios.

B. Rayleigh Channel (Rayl)
This model, adopted in many wireless studies, has µ = 1,

N = 0 and L = 1 (single cluster and diffuse component and
no specular components) and the envelope PDF is [12]:

fRayl(r) =
2r

ARayl
e
− r2

ARayl , (15)

with average power ARayl = 2σ2. The CDF follows readily
as:

ε = FRayl(PR) = 1− e−
PR

ARayl , (16)

which can be upper bounded by retaining only the first term in
the Taylor expansion, resulting in the following simple power
law approximation:

ε̃ =
PR
ARayl

, (17)

5The case ∆ ≈ 1 has been referred to in the literature as hyper-Rayleigh
fading [13]
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TABLE I
CDF TAIL APPROXIMATIONS ε̃, FOR DISTRIBUTIONS IN THE FOLLOWING SUBSECTIONS. RELATIVE POWER p = PR/A, GAIN OFFSET (SCALE) α AND

LOG-LOG SLOPE (SHAPE) β =
d log(F )
d log(p)

FOLLOWING (1).

Channel Model Tail ε̃ = limp→0 F (p) Offset α Slope β

TW 1
2
− 1
π

asin
(

1−p
∆

) √
2
π

when ∆→ 1 1
2

3W PR
4π∆r

1
4π∆r

when ρ1 < ρ2 + ρ3 1
Rayl p 1 1
Rice FRayl (p(k1 + 1)) e−k1 (k1 + 1)e−k1 1
TWDP FRice (p; k2) I0 (k2∆) (k2 + 1)e−k2I0 (k2∆) 1
Wei (Γ(1 + 1/γ)p)γ Γ(1 + 1/γ)γ γ
Nak (mm/Γ(m+ 1)) pm mm/Γ(m+ 1) m

κµ FNak(p;µ)FRice(1;κ)µ
(e−κ(κ+1)µ)µ

Γ(µ+1)
µ

κµ/m FNak(p;µ)(1 + κ)µ
(

m
κµ+m

)m µµ(1+κ)µ

Γ(µ+1)

(
m

κµ+m

)m
µ

κµ/α Fκµ(p;κ, µ) · Γ(α+µ)
(α−1)µΓ(α)

ακµ · Γ(α+µ)
(α−1)µΓ(α)

µ

Suz PR10
1
10 (σ2

dB( ln 10
20 )−µdB) 10

1
10 (σ2

dB( ln 10
20 )−µdB) 1

Cas −p 1+Γ
1−Γ

ln
(
p 1+Γ

(1−Γ)2

)
- 1 + 1

ln(p)+ln
1+Γ

(1−Γ)2

LN 1
4
e
− ( 1

2
ln(PR)−aσl−µl)

2

2σ2
l - 10

ln 10

[
a
σdB
− 2

PR,dB−µdB

2σ2
dB

]

also known as the Rayleigh rule of thumb “10dB outage
margin per decade probability” due to a log-log slope of
β = 1, see Fig. 1. The approximation error function can be
derived via an upper bound on the Taylor remainder, yielding
the simple form (see Appendix A):

φ(PR) =
PR

2ARayl
. (18)

C. Rician Channel (Rice)

This is an extension of the Rayleigh channel, featuring a
specular component in addition to the diffuse one. The average
received power is ARice = ρ2

1 + 2σ2 = 2σ2(k1 + 1), where
k1 =

ρ2
1

2σ2 is the Rician k-factor and the PDF of the received
envelope is [12]:

fRice(r) = fRayl(r)e
−k1I0

( r
σ

√
2k1

)
, (19)

where I0(·) is the modified Bessel function of 1st kind and 0th

order. The tail can then be expressed in closed form in terms
of the 1st order Marcum Q-function as follows:

ε = FRice(PR) = 1−Q1

(√
2k1,

√
2
PR
ARice

(k1 + 1)

)
. (20)

Bounding ε from below via 1st polynomial expansion of Q1,
we arrive at the tail approximation:

ε̃ =
PR
ARice

(k1 + 1)e−k1 . (21)

The approximation error function obtains the form (see Ap-
pendix A):

φ(PR) = e
k1
2

(
e

PR
ARice

(k1+1) − 1

)
, (22)

The tail approximation of the Rician channel in UR-relevant
regime has Rayleigh slope β = 1. However, Fig. 2 shows that
before attaining the slope β = 1, the Rician CDF has a steeper

-50 -40 -30 -20 -10 0

PR/A dB

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

ǫ

k1 = 9 dB

k1 = 12 dB k1 = 16 dB

Fig. 2. Rician CDF (20) and its tail approximation (21) (black dotted lines):
The Rician k-factor k1 is indicated at the respective curves.

slope compared to the Rayleigh one. In the context of wire-
less communications, this can be interpreted as an increased
diversity order offered by the Ricean distribution. The lower
the k1−factor, the sooner the slope becomes identical to the
Rayleigh one; in other words, as k1 increases, PR decreases
for fixed error tolerance η which can be also see from (22).

D. Weibull Channel (Wei)

The Weibull channel is a generalization of the Rayleigh
model, where the diffuse component is given by |Vdif | =√

(X2
R +X2

I )1/γ with γ 6= 1 [15]. This model has been
used in empirical studies to offer increased freedom to fit the
modeling of the diffuse part. As in the Rayleigh case, here we
also have only a diffuse component, but the received envelope
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fκµ(r) =
2(κµ)(1−µ)/2

eκµ
√

2σ2

(
r√
2σ2

)µ
e

(
− r2

2σ2

)
Iµ−1

[
2

√
κµ

r2

2σ2

]
, µ ≥ 0. (31)

follows Weibull distribution [15]:

fWei(r) =
2γr2γ−1

2σ2
e−

r2γ

2σ2 , (23)

with AWei =
(
2σ2
)1/γ

Γ(1 + 1/γ). For γ = 1
2 we get the TW

case, while γ = 1 leads to the Rayleigh case. The tail is given
as:

ε = FWei(PR) = 1− e−
(

Γ(1+1/γ)
PR
AWei

)γ
. (24)

Using first order Taylor expansion, we obtain the following
tail approximation:

ε̃ =

(
Γ(1 + 1/γ)

PR
AWei

)γ
. (25)

Here γ denotes the log-log slope β and an example with γ = 2
is shown in Fig. 3. The approximation error function for the
Weibull channel is given by (see Appendix A):

φ(PR) =

(
Γ(1 + 1/γ) PR

AWei

)γ
1 +

(
Γ(1 + 1/γ) PR

AWei

)γ . (26)

E. Nakagami-m Channel (Nak)

The envelope of this model behaves similarly to the Weibull
model, although the diffuse component is modeled differently
as r = |Vdif | =

√∑m
i=1(X2

Ri +X2
Ii), with m integer. This

model can be interpreted as an incoherent sum of m i.i.d.
Rayleigh-type clusters, each with mean power 2σ2 and total
power ANak = m · 2σ2. The PDF of the envelope r is given
by [16]:

fNak(r) =
2

rΓ(m)

(
r2

2σ2

)m
e−

r2

2σ2 , (27)

where we interpret m ∈ R ≥ 1
2 for generality. For m = 1

2 we
get an exponential, while for m = 1 a Rayleigh distribution.
The CDF is given as:

ε = FNak(PR) =
γ
(
m;m PR

ANak

)
Γ(m)

, (28)

where γ(a, x) is the lower incomplete gamma function. The
power law tail approximation can be obtained via the upper
bound γ(a;x) ≤ xa/a [17], resulting in:

ε̃ =
mm

Γ(m+ 1)

(
PR
ANak

)m
. (29)

We see that (29) has the same flexibility and slope behavior
as the Weibull model (for m ≥ 1

2 ), but a different offset. This
can be also observed in Fig. 3 with m = 2, where the wide
shoulder sends the tail (29) to lower levels compared with
the Weibull case. By bounding the lower incomplete gamma
function in (28) from both sides, i.e., e−xxa/a ≤ γ(a;x) ≤
xa/a [17], we derive the approximation error function:

φ(PR) = 1− e−m
PR
ANak ≤ em

PR
ANak − 1. (30)

F. κ− µ Channel (κµ)
The κ − µ model was developed in [18] as a gen-

eralization to the Nakagami model, by considering inco-
herent sum of µ Rician type clusters, i.e. envelope r =√∑µ

i=1(XRi + pi)2 + (XIi + qi)2 where XRi + jXIi are
complex Gaussian diffuse components (all same mean power
2σ2) and pi+jqi the corresponding specular components with
arbitrary power ρ2

i = p2
i + q2

i . Here κ is a generalized Rician
type k-factor defined in (7). Consequently, the total mean
power is Aκµ = µ(1 + κ) · 2σ2 and the PDF of r [18] is
given by (31) (top of the page). Again, for generality, we
interpret µ ∈ R. The CDF in closed form is described via the
generalized Marcum Q-function [18]:

ε = Fκµ(PR) = 1−Qµ
(√

2κµ,
√

2(1 + κ)µPR/Aκµ

)
.

(32)
Using a first-order polynomial expansion of the generalized
Marcum Q-function, we obtain the following tail approxima-
tion:

ε̃ =
(e−κ(κ+ 1)µ)

µ

Γ(µ+ 1)

(
PR
Aκµ

)µ
, (33)

i.e. a multiplicative form of the previous Rician and Nakagami-
m tail approximation. The approximation error function ob-
tains the simple form (see Appendix A):

φ(PR) = e
κµ
2

(
e

(κ+1)µ
PR
Aκµ − 1

)
. (34)

We see that both ε̃ and φ(PR) reduce to the forms derived
earlier as special cases; specifically, for µ = 1 the κ−µ model
reduces to a Rician situation, while for κ = 0 the Nakagami-m
situation emerges.

The tail (33) in a typical Rician setting (κ = 3.9, µ = 2) is
seen in Fig. 3, where it can be seen that the tail is pushed
to lower probabilities compared to Nakagami and Weibull
models.

G. Generalizations
We analyze several generalizations of the channels pre-

sented in the previous subsection and derive their power law
tail approximations. First, we explore the transition of the be-
havior from few paths to many paths. In this sense, we expand
the previous TW model to cater for 3−vector components
or include a diffuse part that is generalized compared to the
models with diffuse part in the previous section. As it will be
shown, both cases result in a tail behavior that conforms to
a behavior dominated by diffuse components. In other words,
three specular components can be sufficient to produce the
behavior of a Rayleigh diffuse component at URLLC levels.

Another important generalization is to use combined short
and long term processes, particularly when such are insepa-
rable. We consider three combined models in following sub-
sections: 1) Log-normal shadowed Rayleigh fading, i.e. the
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Fig. 3. Nakagami-m (28) (m = 2), Weibull (24) (γ = 2) and κ − µ (32)
(κ = 3.9, µ = 2) CDFs and their tail approximations (29),(25),(33) (black
dotted lines).

Suzuki distribution typically used to model Macro-cell behav-
ior [12]; 2) κ − µ fading with Nakagami-m shadowing; and
3) κ − µ fading with inverse Gamma distributed shadowing.
While 1) is a classical case, 2) and 3) have been found useful
for modeling close range propagation [24], [20], [21].

We can think of the combined channel models to be
applicable to the following situation. When there is only short
term block fading, the outage probability can be controlled
by selecting the rate R according to the known average
power of the short term channel. Equally important is the
specular component balancing or ratio towards the diffuse
parts, captured by ∆, κ in (6), (7). However, when the sender
does not have a reliable estimate of the average power (or
impact of specular components), then this uncertainty can be
modeled by assuming that the average power or ∆, κ are RVs.
The independent sampling from the shadowing distribution
is a pessimistic case that assumes sporadic transmissions,
sufficiently separated in time.

1) Three-Wave Model (3W): We consider the Three-Wave
generalization of the TW model. Here N = 3, Vdif = 0,
received envelope r = |ρ1 + ρ2e

jφ2 + ρ3e
jφ3 | and average

power A3W =
∑3
n=1 ρ

2
n. The probability density function [7]

is given by:

f3W(r) =


√
r

π2√ρ1ρ2ρ3
K
(

∆2
r

ρ1ρ2ρ3r

)
∆2
r ≤ ρ1ρ2ρ3r

r
π2∆r

K
(
ρ1ρ2ρ3r

∆2
r

)
∆2
r > ρ1ρ2ρ3r

(35)
for r ∈ [rmin, rmax], and it is 0 otherwise, with rmin =
max(2 max(ρ1, ρ2, ρ3)−ρ1−ρ2−ρ3, 0), rmax = ρ1+ρ2+ρ3.
In (35), K(·) is an elliptic integral of the first kind6 and the
quantity ∆r is defined as:

∆2
r =

1

16
[(r+ρ1)2−(ρ2−ρ3)2][(ρ2 +ρ3)2−(r−ρ1)2]. (36)

6Convention of [7] is K(m) with argument m = k2 (instead of K(k)
with modulus k).
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Fig. 4. Three Wave CDF (numerical integration of (35)) and the tail
approximation (38) (black dotted line): Here ρ1 = 1 while ρ2 and ρ3 are set
according to k∗3 indicated at the curves. The solid dots depicts the locations
of the “breaking points” where the asymptotic slopes change (as determined
by the value of |∆ρ|2).

Without losing generality, we can take ρ1 ≥ ρ2 ≥ ρ3 and
define the difference ∆ρ = ρ1 − (ρ2 + ρ3), such that rmin =
max(∆ρ, 0). Three cases can be considered: (1) rmin = 0
when ∆ρ < 0; (2) rmin = 0 and ∆ρ = 0; and (3) rmin > 0
otherwise. Here we treat the case ∆ρ < 0, which sets the
basis for the reader to treat the other two cases. The integral
(9) is evaluated for values r ∈ [0,

√
PR] that are very small

and limr→0 ∆2
r = [ρ2

1 − (ρ2 − ρ3)2][(ρ2 + ρ3)2 − ρ2
1] > 0,

which implies that ∆2
r > ρ1ρ2ρ3r holds in (35). With r → 0:

f3W(r)
r→0→ r

π2∆r
K

(
ρ1ρ2ρ3r

∆2
r

)
≈ r

π2∆r

π

2
, (37)

where we have used limx→0K(x) = π
2 . Approximating ∆2

r

as a constant for small values of r, we get the following tail
approximation:

ε̃ =
r2

4π∆r
=

PR
4π∆r

, (38)

such that the log-log linear slope is β ≈ 1. In the singular
case rmin = 0 and ∆ρ = 0 it can be shown that β = 3

4 , while
the case rmin > 0 has a slope of 1

2 ,
3
4 or 1, before an abrupt

fall to zero when PR = r2
min.

The 3W CDF is shown in Fig. 4 for ρ1 = 1 and dif-
ferent variations of ρ2 and ρ3. The curves are labeled by
k∗3 =

ρ2
1

(ρ2
2+ρ2

3)
7. We select to represent two cases with identical

10 log
|∆ρ|2
A3W

= −50dB that are seen to diverge significantly
when PR

A3W
< −40dB. The difference between these two cases

emerges due to the different sign of ∆ρ, which in one case
results in rmin > 0 (ρ2=0.7850, ρ3=0.2109) and in the other
case rmin = 0 (ρ2=0.7914, ρ3=0.2126). The latter case has a
log-log slope of β = 1, identical to the Rayleigh distribution.
Hence, if the sum of the two smallest components can cancel
and overshoot the strongest component, the behavior of the 3W

7Note that this metric differs from the k-factor which involves diffuse parts.
k∗3 is the ratio between specular component powers only
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Fig. 5. Two-Wave Diffuse Power CDF and its tail approximation (black dotted
line): ρ1 = 1, while ρ2 is set to correspond to the ∆ (6) given at each curve.
The corresponding k2 (7) is also given.

model is practically identical to that of a Rayleigh channel in
terms of a slope in UR-relevant regime.

2) Two-Wave Diffuse Power (TWDP) Channel: In this
model N = 2 and Vdif , with envelope r = |ρ1 + ρ2 + Vdif |
and average received power ATWDP = ρ2

1 +ρ2
2 +2σ2 [7]. The

PDF is obtained by averaging of the Rician PDF [8]:

fTWDP(r) =
1

2π

∫ 2π

0

fRice (r; k2 [1 + ∆ cos (ψ)]) dψ, (39)

with ∆ defined in (6) and k2 in (7). The integration over
ψ involves only I0(·) and the exponential terms in (19).
Using I0 ≥ 1 for PR

ATWDP
� 1

4k2(k2+1) , this integration is

∼ 1
2π

∫ 2π

0
ek2∆ cosψ ·1 dψ = I0 (k2∆), i.e. it leads to a constant

with respect to r. Hence, the tail can be lower-bounded through
a scaled Rician tail:

ε = FTWDP(PR) ≥ FRice (PR; k2) I0 (k2∆) , (40)

and the analysis from the Rician case can be directly applied,
scaled by I0 (k2∆). From Fig. 5 it can be seen that TWDP8

starts to differ from a Rician model (with k1 = k2) when ∆ is
sufficiently high, such that ρ2 can be distinguished from Vdif .
The second specular component ρ2 lifts-off the lower tail as
∆→ 0 dB, while preserving the Rayleigh tail slope. Note that,
in order to reach the extreme slope of the singular TW model
at the URLLC levels, one needs ∆ = 0dB and k2 in range 50
to 60dB, which is very unlikely to happen in practice.

3) Suzuki Channel (Suz): This is a compound channel
consisting of a diffuse component only, which is a mixture
between a Rayleigh envelope and a log-normal varying mean
[12]. The compound envelope is r = |XR + jXI |, where
XR and XI are zero-mean Gaussian variables with variance
σLN = eN that has a log-normal distribution.

8No tractable closed form of PDF or CDF exists. In [7] the PDF is
approximated, while we use a complete expansion as in [14]. However, due to
the numerical sensitivity at URLLC levels, it requires the use of high-precision
numerical tools.
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Fig. 6. Shadowed CDFs from (47) and numerical integration of (42),(49)
and their tail approximations (45),(48),(51) (black dotted lines) and heuristic
CDF expansion (52) (dash-dot curve): Suzuki (σdB = 6dB), κ − µ/m and
κ− µ/α (κ = 3.9, µ = 2,m = 0.25, α = 1.5).

The PDF and CDF of the Suzuki channel can be found
as follows. Let us denote by A the average power used to
generate Rayleigh-faded power level A. The power A is log-
normal distributed, such that we can obtain its PDF from the
PDF of the log-normal envelope (53) by substituting A = r2.
This leads to the following joint distribution of P and A:

fSuz(P,A) =
1

A
e−

P
A · 1

2Aσl
√

2π
e
− ( 1

2
lnA−µl)

2

2σ2
l . (41)

For given PR, the tail can be calculated as follows:

ε = FSuz(PR) =

∫ PR

0

dP

∫ ∞
0

fSuz(P,A)dA. (42)

The upper bound for (42) is obtained by noting that P
A ≥ 0

and it can be removed from (41), after which we get:

ε ≤
∫ PR

0

dP

∫ ∞
0

1

2A2σl
√

2π
e
− ( 1

2
lnA−µl)

2

2σ2
l dA

= e2σ2
l−2µlPR =

PR
ASuz

· e4σ2
l , (43)

where it can be found that ASuz = e2σ2
l +2µl = ALN. The

lower bound can be found by using the inequality e−x ≥ 1−x,
resulting in

ε ≥ PR
ASuz

e4σ2
l −

(
PR
ASuz

)2

· e12σ2
l (44)

≈ PR
ASuz

e4σ2
dB

ln(10)2

202 = ε̃. (45)

For UR-relevant levels it is PR � ASuz, such that the upper
bound can be treated as tight. The tail has a Rayleigh-like
slope of β = 1, but pushed to lower levels as seen in Fig. 6.

4) Nakagami-m shadowed κ − µ Channel (κµ/m): Shad-
owing the total signal has been investigated in [20],[21], but
provides complicated PDF and no known closed-form solution
for the CDF. A model that considers shadowing of only the
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fκµ/m(PR) =
µµ

Γ(µ)Aκµ/m
pµ−1e−(1+κ)µ·p

(
m

κµ+m

)m
1F1

(
m;µ;

κ(1 + κ)µ2

κµ+m
p

)
. (46)

ε = Fκµ/m(PR) =
µµ

Γ(µ+ 1)

(
PR

Aκµ/m

)µ
︸ ︷︷ ︸

≈FNak(p;µ)

(κ+ 1)µ
(

m

κµ+m

)m
︸ ︷︷ ︸
→e−κµ|m→∞

Φ2(b1, b2; c, x, y). (47)

fκµ/αβ(PR) =
(e−k/κµ)µ

B(α, µ) (c · p+ 1)
α−1 ·

κµ · c/Aκµ/αβ
(c · p+ 1)

2 xµ−1
1F1 (α+ µ;µ;x) . (49)

ε = Fκµ/αβ(PR) ≤ e−κµ

µB(α, µ)

(
c · p

c · p+ 1

)µ
· 1F1

(
α+ µ;µ+ 1;κµ

c · p
c · p+ 1

)
. (50)

ε = Fκµ/α(PR) &
e−κµ

µB(α, µ)(c · p+ 1)α−1

(
c · p

c · p+ 1

)µ
· 1F1

(
α+ µ;µ+ 1;κµ

c · p
c · p+ 1

)
. (52)

dominant signal parts has been developed by [24]. The instant
power is p =

∑µ
i=1(XRi + ξpi)

2 + (XIi + ξqi)
2, where ξ

is a power normalized Nakagami-m distributed shadowing
amplitude acting on specular components pi + jqi = ρie

jφi .
The closed form PDF of PR [24] (with p = PR/Aκµ/m)
is given by (46) (top of the page) with 1F1(·) denoting
Kummer’s function of the first kind [34]. Essentially, the first
part is a Nakagami-m PDF of order µ, while the latter part
holds a µ−order modified Rician impact. The tail is given by
(47) (also at the top of the page) where Φ2(·) is Humberts
function [25] with arguments (b1 = µ − m, b2 = m, c =
µ + 1, x = −µ(1 + κ) PR

Aκµ/m
, y = x m

κµ+m ). The power law
tail approximation is

ε̃ =
µµ(κ+ 1)µ

Γ(µ+ 1)

(
PR

Aκµ/m

)µ(
m

κµ+m

)m
, (48)

following from [24, eq. (13)]. Since ξ → 1 when m → ∞,
expression (47) should reduce to the regular κ−µ in (33); this
is indeed so, as

(
x+m
m

)m → ex and (47) is in accordance with
(33). Fig. 6 shows a strongly shadowed example (m = 0.25).
It can be noticed that the shoulder is significantly broadened
to a degree that the elevation of the shoulder visible in the
regular κ−µ case, has vanished. This is expected as only the
LOS part has been shadowed, thereby effectively averaging
the κ−µ distributions shape (κ-factor). Consequently, the tail
is being pushed to significantly lower outages.

5) Inverse Γ−shadowed κ−µ Channel (κµ/α): Shadowing
the total κ−µ (31) fading envelope rκµ = |Vκµ| by an inverse
Gamma (Γ−1) distributed varying mean power ω = Aκµ,
leads to a closed form PDF but no tractable closed-form
CDF solution [21]9. The combined signal (r = rκµ

√
ω) PDF

is obtained [21, (6)] by averaging the conditional envelope

9Very recently [22, (3.14)] has provided a closed-form CDF. However, this
is provided through a complex Kampé de Fériet function, for which no readily
available numerical evaluation exists in tools such as MatlabTM. Furthermore,
no simple analytical approximation seems available to be used in an URC
setting. The underlying inverse Gamma PDF in [22, (3.14)] seems normalized
in a skewed manner with ω = α

α−1
. Thus we make our approximation

analysis based on the PDF in [21].

PDF fκµ|Aκµ (31) over the mean power statistics fΓ−1(ω) =
βα

Γ(α)
1

ωα+1 · exp
(
− β
ω

)
, with shape α > 0 and scale β > 0

parameters. The combined signal power PDF of [21, (10)]
can be written as in (49) (top of the page) with B(·, ·)
denoting the beta function and argument scaling c = µ(1+κ)

β in
x = κµ c·p

c·p+1 . The relative power is p = r2

E[r2] = PR
Aκµ/αβ

and
Aκµ/αβ is the mean power of the combined signal. For lower
tail levels p� 1

c or α→ 1+, (c·p+1)α−1 → 1 and constrain-
ing this approximation to the leading term only, we essentially
have a function of form f(x) = xb−1

1F1(a, b, x). To obtain
the CDF we make use of

∫
f(x)dx = xb Γ(b)

Γ(b+1) 1F1(a, b+1, x)
[23]. Thus, via variable transform and reordering of terms, we
arrive at the upper bound (50) (top of the page) for the CDF;
the upper bound is tight in the limit α→ 1+. Furthermore, we
can simplify (50) as 1F1(a, b, x)→ 1 for x→ 0 and realizing
that the scale β in [21] is set arbitrarily, such that fΓ−1 is
not normalized. As ω = E[ω] = β

α−1 valid for α > 1 [21],
normalizing shadowing by setting ω = 1, we get β = α − 1.
Thus, we can represent the impact of the shadowing through
a single parameter:

Fκµ/α(PR) &
(µ(1 + κ)e−k)µ

Γ(1 + µ)
pµ︸ ︷︷ ︸

≈Fκµ(p;κ;µ)

Γ(α+ µ)

(α− 1)µΓ(α)
, (51)

i.e. in form of a scaled κ−µ tail, representing a lower bound;
for α . 1 other normalization methods must be used.

We can heuristically reintroduce the denominator term (c ·
p+ 1)α−1 into the leading term of (50) for larger arguments,
leading to the lower bound (52) (top of the page) where we can
redefine c = µ(1+κ)

α−1 via the above normalization. This result
provides a significantly better fit than (50) or (51), especially
in a strongly shadowed Rician regime (κ/α & 1), as it can be
seen in Fig. 6. It is also seen that the elevated shoulder from
the underlying κ − µ signal is better preserved than in the
case of the previous κµ/m model, while also having strong
shadowing (α = 1.5) that indicates that the complete signal
has been shadowed.
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IV. OTHER CHANNELS

In this section we analyze two special models that do not
exhibit power-law tail behavior and derive their corresponding
tail approximations. First, we consider the log-normal distri-
bution [12], as a classical reference distribution for shadowing.
Next, we treat cascaded type of channel models that arise in
NLOS propagation, backscatter communication and in ’pin
hole’ channels [12]. The two models also represent two
extremes, the macro scale (log-normal shadowing) and short
range (e.g. device-to-device). Furthermore, these models can
be used to illustrate cases that do not follow the power law in
the diversity analysis presented in the next section.

A. Log-Normal Channel (LN)

In this model there is a single specular component N =
1 and no diffuse component. The specular component is not
constant, but subject to a log-normal shadowing, such that log-
envelope ln(r) has the following PDF [12]:

fLN(r) =
1

r
Nln(r) (µl, σl) =

1

rσl
√

2π
e
− (ln(r)−µl)

2

2σ2
l , (53)

with logarithmic mean µl = E[ln(r)] = µdB
ln(10)

20 and
standard deviation σl =

√
E[ln(r)2]− µ2

l = σdB
ln(10)

20 . The
average power is ALN = e2σ2

l +2µl [12] and the CDF is

ε = FLN(r) = 1
2 + 1

2 erf(x(r)), (54)

with x = (ln(r) − µl)/(σl
√

2) and erf denoting the error
function. Using Bürmann-type asymptotic approximation [28]
leads to FLN(x) ≈ 1

2

(
1 + sgn(x)

√
1− e−x2

)
≈ 1

4e
−x2

,
when omitting higher order terms and approximating the
square root for |x| � 0. A tighter approximation can be
obtained if we use FLN(x) ≈ 1

4e
−f(x) with a polynomial

fitting function f(x) [29]. Comparing 1
4e
−x2

with (54), it
appears to be shifted proportionally to σl, such that

ε = FLN (PR) ≈ 1
4e
− ( 1

2
ln(PR)−aσl−µl)

2

2σ2
l = ε̃. (55)

With a = 0.223, the relative error is η . 10−1 for 10−12 ≤
ε ≤ 10−2 and 3 ≤ σdB ≤ 24dB. The deviation on the margin
matters most for outage analysis and here is below 1

3 dB. This
accuracy is still very useful, considering the simplicity of the
expression for analytical studies. Solving (55) for PR and fixed
ε̃, we get

PR ≈ e2[(aσl+µl)+
√

2σl
√
− ln(ε̃)+ln(1/4)]. (56)

For a given PR, we can find the log-log slope as β =
d log(ε̃)
d log(PR) ≈

10
ln 10

[
a
σdB
− 2

PR,dB−µdB

2σ2
dB

]
. From Fig. 7 it is

observed that, for large σdB, a log-normal channel can exhibit
extreme slopes when the level PRA is in the region −10 to −30
dB, which makes it hard to distinguish from a TW or TWDP
channel. However, when going towards UR-relevant levels, the
deviation from a linear slope is noticeable.
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ǫ̃

Fig. 7. Cascaded Rayleigh (58) with equal power links (σ1 = σ2 = σ) - and
Log-Normal (54) distributions, for different values of the parameters. Dotted
curves: tail approx. (59), (55).

B. Cascaded Rayleigh Channel (Cas)

This model also contains only a diffuse component, which
is a product of the envelopes of two Rayleigh links r1 and
r2. The compound received envelope is r = r1r2 = |XR1

+
jXI1 | · |XR2

+ jXI2 | with PDF equal to [26], [27]

fCas(r) =
rΓ

σ1σ2
I0

(
rΓ

√
Γ
)
K0 (rΓ) , (57)

where rΓ = r
σ1σ2(1−Γ) . Using (57) we get ACas = E[r2] =

4σ2
1σ

2
2(1 + Γ) = P̄1P̄2(1 + Γ) with correlation coefficient Γ

between powers P1 = r2
1 and P2 = r2

2 . In and Kn are the
Modified Bessel functions of 1st and 2nd kind, of order n. The
CDF follows as:

ε = FCas(r)

= 1− rΓ

[√
ΓI1

(
rΓ

√
Γ
)
K0 (rΓ) + I0

(
rΓ

√
Γ
)
K1 (rΓ)

]
.

(58)

Approximating the Bessel functions for rΓ � 1, the general
case (Γ < 1) simplifies as

ε = FCas(PR) ≈ − PR
ACas

1 + Γ

1− Γ
ln

(
PR
ACas

1 + Γ

(1− Γ)2

)
= ε̃,

(59)
where γ is Euler’s constant. The slope is found as β ≈
d log(ε̃)

d log
PR
ACas

, leading to β ≈ 1 + 1

ln
(

PR
ACas

)
+ln 1+Γ

(1−Γ)2

and it

gradually approaches a Rayleigh slope for PR
ACas

→ 0. For
Γ = 0 the model collapses to the double-Rayleigh model [11].

For the singular case of Γ = 1 (r1 = r2), simple deduction
yields rCas = r1r2 = F−1

Cas(ε) = F−1
Rayl(ε)

2 = r2
Rayl. Thus,

FCas(PR) = FRayl(
√
PR) ∼

√
PR
ARayl

and the slope β ≈ 1
2

is identical to the singular case of a TW model. It can be
concluded from Fig. 7 that a the log-log behavior of cascaded
Rayleigh fading can be represented by two different slopes
with a breakpoint.
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V. SIMPLIFIED ANALYSIS OF DIVERSITY SCHEMES

In practice, attaining very high reliability levels with rea-
sonable power can only happen by having high levels of
diversity at the receiver. Our analysis has shown that the tail
approximation at the URC levels mostly has the form given
in (1), which can be used for simplified diversity analysis in
cases in which the full PDF and/or CDF are not tractable.
For small terminals, the main impairment towards exploiting
multi-antenna, i.e., multi-branch diversity is the branch power
ratio (BPR), which for the pair of the m−th and n−th
antenna is defined as BPRmn = Am

An
[30], [31]. In the

following we assume that the receiver has M antennas that
are not correlated, i.e., the received signals across antennas
are independent non-identically distributed (i.n.i.d.) RVs.

In Selection Combining (SC), only the strongest signal
among the M antennas is selected:

PR,SC = max(P1, .., PM ). (60)

For independent branches, the CDF can be expressed as a
simple product of the individual CDFs across branches:

ε = FSC (PR) =

M∏
m=1

Fm (PR) . (61)

When Maximum Ratio Combining (MRC) is used, the re-
ceived power is:

PR,MRC =

M∑
m=1

Pm. (62)

We derive an approximation of the CDF for general M-branch
MRC (see Appendix B):

ε = FMRC(PR) ≈
∏M
m=1 Γ(1 + βm)

Γ(1 +
∑M
m=1 βm)︸ ︷︷ ︸

αMRC

M∏
m=1

αm

(
PR
Am

)βm
︸ ︷︷ ︸
∼FSC=

∏
Fm

= ε̃.

(63)
Note that this solution also splits into an MRC weighting
term αMRC, which depends solely on the branch slopes β and
correctly collapsing to 1 for M = 1, and a term similar to SC
FSC =

∏
Fm, which involves the offsets αm. The distribution

specific parameters αm, βm for this simple expression, are
given in Table I. Inserting ακµ/m and βκµ/m from Table I,
does indeed produce the distribution specific MRC solution for
shadowed κ − µ fading given in [24, (18)]. When all branch
slopes are equal βm = β, we get:

ε = FMRC(PR) ≈ Γ(1 + β)M

Γ(1 + βM)︸ ︷︷ ︸
αMRC

(
PR
A1

)βM M∏
m=1

αm

BPRβ
m︸ ︷︷ ︸

∼FSC=
∏
Fm

= ε̃

(64)
with BPRm = Am/A1. A heuristic simplification is αMRC ∼

1
M !β

, with outage error . 1dB for M = 4 and . 1.5dB for
M = 8, both at 10−6 probability and for 1

2 . β . 2.
Using (63), we can bound the tail approximation error using

the approximation error functions derived previously, yielding:

φMRC(PR) = (1 + φmax(PR))M − 1, (65)

Fig. 8. MRC with M = 4 for i.i.d. TWDP, Log-Normal and Double-Rayleigh
(Cascaded Rayleigh with Γ = 0). Also MRC with M = 3 for one branch
of each of the distributions. Bolder curves are obtained by simulation, thin
dotted lines are the tail approximations. (40), (59), (55) and MRC (66), (63).
Bold dots represent 1dB deviation of tail vs. simulation.

with φmax(PR) = max(φ1(PR), . . . , φM (PR)). Using
Bernoulli approximation, we arrive at the intuitive expression
φMRC(PR) ≈ Mφmax(PR), which can be used for quick
evaluation of the upper bound on the power PR for given
error tolerance η.

Finally, based on (63) it is easy to make a heuristic generic
expansion by considering local log-log linear approximation
of any CDF tail. This is e.g. the case for Log-Normal and
Cascaded Rayleigh models10, where the branch slopes depend
on the power levels β(PR/A):

ε = FMRC(PR) ≈ αMRC(β1(PR)..βM (PR))FSC (PR) = ε̃,
(66)

with αMRC given in (63) or simplified in (64) when all
branches have the same slope. With this structure and avail-
ability of slopes β(PR), one can use the full CDFs in FSC .

Fig. 8 shows Monte Carlo simulation with 108 sam-
ples of TWDP, Log-Normal and Double-Rayleigh (Cascaded
Rayleigh with Γ = 0) distributions with different mean pow-
ers. Each distribution is further circularly shifted to provide
uncorrelated copies for i.i.d. M = 4. It is observed how
the single branch tail approximations (thin lines) follow the
simulations up to the onset of the shoulders. The 4−branch
MRC tail approximation shows very good fit at URLLC
probabilities - bold dots indicate point of 1dB deviation to
the simulation. Furthermore, from the log-normal and 3-
branch cross-distribution MRC, it is observed that the heuristic
expansion in (66) indeed provides very useful results.

10or some of the more elaborate tails, like for κ− µ type models.



12

VI. DISCUSSION AND CONCLUSIONS

We have investigated the properties of wireless channel
models in the URC regime and developed approximations
of the tail distributions. Our analysis has shown that, for
a wide range of practical models, the outage probability at
URC levels depends on the minimal required decoding power
through an exponent β which, for the case of Rayleigh fading
is β ≈ 1. More importantly, it has also been shown that
the outage probability also depends on a tail offset α, which
is strongly dependent on specific specular and diffuse part
combinations. The previous URC studies [32] have resorted to
Rayleigh models, without an argumentation for the usefulness
at UR-relevant levels. Our analysis reveals that the main factor
affecting the tail probability is the tail offset α, rather than the
exponent β of the derived power law outage model. Further-
more, the power law tail descriptions provides an ’umbrella’
model structure, circumventing the need for any prior decision
on a specific model. This feature is particularly useful when
no empirical studies are available to suggest which model to
use. Hence, when conducting empirical studies that work with
these models, one should account for the large uncertainty
that occurs when assessing the models at the URC levels
and collect proportionally large number of samples. Finally,
we have provided a simplified analysis of MRC diversity for
power-law tails, as well as a heuristic expansion. This paves
the way for more elaborate diversity analysis, which is vital for
achieving ultra-reliable operation with reasonable data rates.

APPENDIX A
DERIVATION OF THE APPROXIMATION ERROR FUNCTION

Two-Wave Model: We derive the tail for the general case
when ∆ ≤ 1 (which includes ∆ = 1 as a special case). By
definition the tail is the solution to the following integral:

ε =

∫ √PR
√
ATW(1−∆)

2r

πATW

√
∆2 −

(
1− r2

ATW

)2
dr. (67)

We introduce the following variable x ≡ x(r) =√
1
∆r

2 − 1−∆
∆ ATW: Using change of variables, the integral

(67) can be written as follows:

ε =

∫ √P?R
0

2x

πATW

√
1−

(
1− x2

ATW

)2
dx, (68)

where P ?R = x2(PR). Even though the CDF has a closed form
expression, bounding the sum of the higher order terms of its
series expansion is difficult. We use an alternative approach
instead. Specifically, we expand the integrand into Taylor
series in the interval [0, x), x ≥ 0, x → 0 using Lagrange
form for the remainder (i.e., the sum of the remaining higher
order terms):

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(δ)

2!
x2, (69)

for δ ∈ (0, x). Then, we bound the remainder from above, re-
lying on the fact that integrating will not change the inequality;
we obtain the following:

ε =

∫ √P?R
0

(
1

π

√
2

ATW
+

4(ATW − δ2)

π
√

(2ATW − δ2)3
x2

)
dx (70)

≤
∫ √P?R

0

(
1

π

√
2

ATW
+

4(ATW − P ?R)

π
√

(2ATW − P ?R)3
x2

)
dx (71)

=
1

π

√
2

ATW

√
P ?R

(
1 +

4

3

√
ATW

2

(ATW − P ?R)P ?R
π
√

(2ATW − P ?R)3

)
,

(72)

Recognizing that (72) can be written as ε ≤ ε̃(1 + φ(PR)),
we extract φ(PR) as the second term in the brackets in
(72), completing the derivation. Note that in (71) we used
the fact that the multiplicative term in front of x2 increases
monotonically with δ ∈ (0, x); hence we bound it from above
with x =

√
P ?R.

Rayleigh Model: Deriving the approximation error function
follows similar steps as in the TW case, except that we directly
bound the Lagrange remainder of the Taylor series expansion
of the tail in the interval [0, PR), PR → 0. Hence, we obtain:

ε ≥ PR
ARayl

− P 2
R

2A2
Rayl

=
PR
ARayl

(
1− PR

2ARayl

)
, (73)

which completes the derivation.
Weibull Model: We use the inversion:

PR =
AWei

Γ(1 + 1/γ)
(− ln(1− ε))

1
γ , (74)

and the following bounds:

ε+
ε2

(1− ε)
≥ − ln(1− ε) ≥ ε. (75)

The upper bound in (75) has been derived by bounding from
above the remainder of the Taylor expansion of the function
− ln(1− ε) in the interval [0, ε), i.e.:

ε2

2(1− ε)2
≤ ε2

(1− ε)
, (76)

for ε ≥ 0. Replacing (75) into (74) and inverting for ε, we get:

ε̃ ≥ ε ≥ ε̃ 1

1 +
(

Γ(1 + 1/γ) PRAWei

)γ (77)

= ε̃

1−

(
Γ(1 + 1/γ) PRAWei

)γ
1 +

(
Γ(1 + 1/γ) PRAWei

)γ
 , (78)

completing the drivation.
Rician, Nakagami-m and κ − µ Model: We derive the

approximation error function only for the general κ − µ
model; the corresponding error functions for the Rician and
Nakagami-m models can be obtained as special cases.11 We
use polynomial series expansion for the generalized Marcum

11Note that they can be derived separately using similar reasoning.
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Q-function via generalized Laguerre polynomials and write the
CDF as follows [19]:

ε = e−κµ
∞∑
n=0

(−1)n
L

(µ−1)
n (κµ)

Γ(µ+ n+ 1)

(
(κ+ 1)µ

PR
Aκµ

)n+µ

,

(79)
where L

(α)
n (·) is the generalized Laguerre polynomial of

degree n and order α. Recognizing that the first term in the
above sum gives the power law approximation ε̃, we obtain
the following:

|ε− ε̃| =

∣∣∣∣∣e−κµ
∞∑
n=1

(−1)n
L

(µ−1)
n (κµ)

Γ(µ+ n+ 1)

(
(κ+ 1)µ

PR
Aκµ

)n+µ
∣∣∣∣∣

(80)

≤ e−κµ
∞∑
n=1

|L(µ−1)
n (κµ)|

Γ(µ+ n+ 1)

(
(κ+ 1)µ

PR
Aκµ

)n+µ

(81)

≤ e−
κµ
2

Γ(µ)

∞∑
n=1

Γ(µ+ n)

n!Γ(µ+ n+ 1)

(
(κ+ 1)µ

PR
Aκµ

)n+µ

(82)

≤ e−
κµ
2

Γ(µ)µ

(
(κ+ 1)µ

PR
Aκµ

)µ ∞∑
n=1

1

n!

(
(κ+ 1)µ

PR
Aκµ

)n
(83)

= ε̃e
κµ
2

(
e

(κ+1)µ
PR
Aκµ − 1

)
, (84)

which completes the derivation. In (82) we used the following
upper bound [19]:

|L(α)
n (x)| ≤ Γ(α+ n+ 1)

n!Γ(α+ 1)
e
x
2 , (85)

and in (83) we used:

Γ(µ+ n)

Γ(µ+ n+ 1)
=

(µ+ n− 1)!

(µ+ n)!
=

1

µ+ n
≤ 1

µ
, (86)

for n ≥ 1.

APPENDIX B
MRC FOR RANDOM VARIABLES WITH POWER-LAW TAILS

A general M-branch MRC PDF solution for independent RV
can be obtained through a convolution of the branch PDFs f1∗
f2..∗fM , e.g. through the multiplication of moment generating
functions and inverse Laplace transform L−1. Approximating
the full CDF this way, can result in too complex solutions
to readily extract a simple tail approximation. However, it is
sufficient to deal with branch tail PDFs only [33]. The lower
tail PDF corresponding to (1) can be obtained as:

f(PR) ≈
PR→0

dα
(
PR
A

)β
dPR

= α

(
1

A

)β
βP β−1

R . (87)

Using Laplace transform relation [34, ET I 137(1), Table
17.13] F (s) = L(f(t)) = 1/sν ↔ f(t) = tν−1/Γ(ν), the
branch F (s) ≈ α

(
1
A

)β
β Γ(β)

sβ
. The i.n.i.d M-branch MRC

CDF (for any BPR or β combination), is established as
FMRC(PR) = L−1

(
1
s

∏M
m=1 Fm(s)

)
, where 1

s is used to

produce the CDF from the inverse transform. Using the same
Laplace relation as before, we arrive at

ε = FMRC(PR) (88)

≈ L−1

(
1

s
∏M
m=1 s

βm

)
·
M∏
m=1

αmβm
Γ(βm)

Aβmm
= ε̃, (89)

which after reordering of terms appears in the form given in
(63), completing the derivation.
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