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Abstract: The offshore wind industry is building and planning new wind farms further offshore
due to increasing demand on sustainable energy production and already occupied prime resource
locations closer to shore. Costs of operation and maintenance, transport and installation of offshore
wind turbines already contribute significantly to the cost of produced electricity and will continue
to increase, due to moving further offshore, if the current techniques of predicting offshore wind
farm accessibility are to stay the same. The majority of offshore operations are carried out by
specialized ships that must be hired for the duration of the operation. Therefore, offshore wind
farm accessibility and costs of offshore activities are primarily driven by the expected number of
operational hours offshore and waiting times for weather windows, suitable for offshore operations.
Having more reliable weather window estimates would result in better wind farm accessibility
predictions and, as a consequence, potentially reduce the cost of offshore wind energy. This paper
presents an updated methodology of weather window prediction that uses physical offshore vessel
and equipment responses to establish the expected probabilities of operation failure, which, in turn,
can be compared to maximum allowable probability of failure to obtain weather windows suitable for
operation. Two case studies were performed to evaluate the feasibility of the improved methodology,
and the results indicated that it produced consistent and improved results. In fact, the updated
methodology predicts 57% and 47% more operational hours during the test period when compared
to standard alpha-factor and the original methodologies.

Keywords: offshore; wind turbine; marine operations; transportation; installation; risk; probability;
weather window; FORM; decision support

1. Introduction

The wind energy industry sector has been growing steadily in the past few decades with
substantial increase in the growth rate of wind turbine installations during the last decade. This growth
is highly linked to determination of the European Union to decrease their CO2 emissions by increasing
energy production from renewable sources. Since the European Commission set the 20% goal for
renewable energy share in total energy pool for 2020 (the 20-20-20 goal) in 2008, the installed wind
turbine capacity more than doubled (from 65 GW in 2008 to 142 GW in 2015) [1]. Furthermore,
according to the European Commission [2], in 2012, the renewable energy share in the energy pool was
13% and is expected to rise to 21% by 2020, thus successfully achieving the imposed goal. Naturally,
offshore and onshore wind turbines are contributing significantly to achieving the aforementioned
goal—the expected contribution of off- and onshore wind power is expected to cover 15% of total
European electricity demand by 2020 [3]. In the same period from 2008 to 2015, the installed capacity
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of offshore wind turbines increased more than seven times (from 1.5 GW in 2008 to 11 GW in 2015) [4].
All these facts imply that wind energy and, especially offshore wind energy, sectors will continue to
grow at an increasing rate in the near future.

It is evident from Figure 1a that onshore wind turbine installations are flattening out to about
9–11 GW/year in recent years, most likely due to constraints imposed by growing scarcity of prime
resource locations, spatial planning and social limitations. In order to maintain the growth of installed
wind energy capacity, required to achieve the 20-20-20 goal (by the year 2020, energy goals are to
have a 20% reduction in CO2 emissions compared to 1990 levels, 20% of the energy, on the basis
of consumption, coming from renewables and a 20% increase in energy efficiency), offshore wind
installations will have to compensate for the leveling out of onshore ones. This will require even more
substantial growth of the offshore wind industry.
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As more wind turbines are being installed offshore, new farm developments are pushed further
from shore (see Figure 1b). More distant offshore locations offer higher power generation perspectives
due to more stable conditions and, on average, higher wind speeds (see the increase of average wind
speed further offshore in the North Sea, Figure 2a, and increase of expected energy density in the
Southern Baltic region, Figure 2b). In addition, more details regarding spatial wind speed (and wind
energy resource) can be found in, e.g., [5–7].
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However, among other drawbacks coming from harsher ocean conditions, it also implies longer
travel times to and from the wind farm for installation and maintenance activities. There are significant
costs related to these activities—installation of offshore wind turbines and with their foundations
contribute to 10–20% of total capital expense (CAPEX) of a wind farm, according to Brown et al. [8],
Fàbrega and Bellmunt [9] and Moné et al. [10], whereas operation and maintenance (O & M) costs
typically contribute to 25–30% of the total Levelized Cost of Energy (LCoE) as per Nielsen and
Sørensen [11] and Santos et al. [12]. A major contributor, among others, to these costs are related heavy
lift and transportation vessel charter expenditures. Dalgic et al. [13] suggests that costs associated with
transportation systems can amount to 73% of total O & M costs for an offshore wind farm. Furthermore,
it can be estimated from Fingersh et al. [14] that transportation system costs can add up to 50% of the
total installation expenditures. With wind farms moving further offshore, these costs can be expected
to rise due to increased travel times and harsher met-ocean conditions limiting accessibility. It is crucial
to estimate these costs accurately and reduce them as much as possible.

By decomposing the total installation and O & M costs into typical components—vessel charter,
technician labor, wind turbine component and spare part costs—it is possible to evaluate them
individually. Usually, wind turbine component and spare part costs, together with daily/monthly
technician labor and vessel charter costs, can be assessed with reasonable accuracy. Since the majority of
offshore activities are carried out by specialized ships and equipment that must be hired for the duration
of the operation, it is imperative to know how long the operation is expected to last. Total duration of
offshore operations includes travel time to the offshore site, duration of installation or O & M activities
and waiting time for suitable weather conditions (weather windows). Travel time and operation
duration generally is known for typical offshore operations (wind turbine foundation, substructure or
component installation, inspection and maintenance of turbine components, etc.), and can be estimated
from prior projects or based on field expert judgement. However, predicting waiting times for suitable
weather conditions and the duration of the weather windows themselves is notably more difficult due
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to constantly changing met-ocean conditions offshore. More accurate predictions of weather windows
and waiting times would improve the cost estimates of transportation, installation and O & M activities
and, in turn, would potentially reduce the LCoE of offshore wind energy.

This paper presents a mathematical formulation of critical events during offshore operations
by still taking advantage of the general ideas from the original methodology of weather window
prediction (see also [15,16]). The novel methodology is based on statistical analysis of installation
and O & M equipment and vessel response under given met-ocean conditions. Weather windows are
determined based on equipment response exceedance probabilities (probabilities of certain equipment
responses exceeding their maximum allowable magnitude). Furthermore, the paper proposes a
different method of weather forecast uncertainty treatment when predicting weather windows—multi
ensemble weather forecasts are assumed to cover full forecasting uncertainty range and are used as
input to the prediction model.

The paper is structured in the following way. Firstly, a literature review, focusing on the state
of the art of offshore wind farm accessibility, is presented. The emphasis here is directed towards
describing the current practices of weather window prediction for offshore operations. Secondly,
a section is dedicated to proposing possible improvements to the current practices of weather window
predictions. This is followed by a description of the proposed methodology with the main focus aimed
at presenting the improvements introduced to the original methodology. Furthermore, two test cases,
used to evaluate the proposed methodology, are described in detail. The results of the evaluation study
are presented and discussed in the subsequent section. Finally, the conclusions of this work are given.

2. State of the Art of Offshore Wind Farm Accessibility for O & M and Installation Purposes

Numerous studies have been conducted where accessibility of offshore wind farms plays
an important role. The studies mainly focus on investigations of O & M activities of offshore
wind farms and the impact these activities have on the performance or LCoE of offshore wind
farms. A comprehensive overview of O & M models for offshore wind farms can be found in [17].
Additionally, several studies also examine operability of offshore wind turbine installation vessels
and/or allowable met-ocean conditions of particular installation processes. A more detailed overview
of the aforementioned studies is given below.

2.1. Weather Constraints of O & M and Installation Vessels

Most of the studies rely on estimating offshore wind farm accessibility by using constraints on
maximum allowable met-ocean conditions, such as significant wave height, wave peak period or wind
speed (throughout the paper 10-min average wind speed at 10 m reference height is referred to as
“wind speed”). These three parameters are typically used as constraints because they correlate with
met-ocean parameters usually provided by weather forecasts. Dinwoodie et al. [18] suggests a reference
case for offshore wind turbine maintenance models, where individual limits for significant wave height
and wind speed are used. Florian and Sørensen [19], Besnard et al. [20], and Nielsen [21] also use
individual weather constraints to assess offshore wind farm accessibility. Typically, the accessibility of
offshore wind farm depends on choice of access/installation vessels and their respective weather limits.
Dalgic et al. suggests different weather limits for crew transfer (CTV) and jack-up vessels—1.5 m
and 25 m/s for the former and 2.8 m significant wave height and 36 m/s wind speed limits for the
latter [13]. O′Conor et al. [22] presents a more detailed overview of state-of-the art access vessels and
their wave height limits—significant wave height limits range from 1.5 to 3 m depending on the type
of vessel used. Bussel and Bierbooms [23] suggest a significant wave height limit range from 0.75
to 3 m and shows the effect of this range on the accessibility of the wind farm. O’Conor et al. [24]
gives 3 m and 16 m/s weather limits for jack-up vessels and investigates the effect of wave period
on wave height limits for a simple workboat. McMillan and Ault [25] present a different point of
view, suggesting that wind speed constraints for offshore wind turbine maintenance depend on the
activities performed—i.e., blade removal prohibited for wind speeds above 7 m/s, working on the
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nacelle prohibited for wind speeds above 15 m/s, etc. Generally, significant wave height limit is
used for crew transfer vessels (CTV boats) during transportation from port to offshore wind farm and
wind speed limit is linked to safe working environment for technicians at wind turbine hub height.
Furthermore, wave height limitations are also important for docking operations between service
vessels and offshore wind turbines, as it is demonstrated by Wu in [26] that smaller vessels have
lower acceptable operational wave height limits compared to bigger ones, and thus lower operability
throughout the year. The latter study uses numerical simulation and analysis of vessel motions to
estimate weather restrictions and operability.

When it comes to installation of wind turbines, weather restrictions are determined on case-by-case
basis and depend on the type of installation process. Acero et al. [27] suggest a methodology that could
be used to determine the operational limits of any arbitrary installation procedure by identifying critical
events and their respective response parameters through numerical simulation. It should be mentioned
that the determined operation limits for installation operations are still simple met-ocean parameters
(wind speed, significant wave height and, in some cases, peak wave period) even though critical
events and response parameters are identified through numerical simulations. Acero et al. [27] and
Li et al. [28] present contour surfaces of significant wave height and peak wave period for installation
of offshore wind turbine monopiles and transition pieces. Ahn et al. [29] indicates that, depending
on the type of jack-up vessel, the limiting significant wave height can vary from 1 to 2.5 m and wind
speed should be below 10–16 m/s for operational conditions.

2.2. Weather Window Estimation

In general, it should be noticed that the majority of O & M and installation studies use simple
met-ocean parameters (significant wave height, wind speed and, in some cases, wave peak period)
to determine weather windows. Operations are assumed safe to execute when all relevant met-ocean
parameters are below prescribed limits and not safe when either one of those limits is exceeded
(see Figure 3, NO AF case). However, this approach does not consider that the weather forecasts are not
perfect—uncertainties related to weather forecasting have an impact on weather window predictions
and must be taken into consideration. The alpha-factor method, described in [30], is currently used to
address these uncertainties. The essence of this methodology is using an alpha-factor to reduce the
weather restrictions of the operation, thus making them more conservative (see Figure 3, AF case).
The DNV (Det Norske Veritas) standard [30] gives tabulated alpha-factors that depend on the duration
of the operation, type of weather limit and the quality of weather forecasts.
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In practice, Equation (1) is used to define operational weather restrictions for a given operation
and weather forecast:

OPLIM,WF = αOPLim ·OPLIM (1)

where OPLIM is operational environmental limiting criteria (e.g., wave height or wind speed), OPLIM,WF
is forecasted operation limiting criteria, and αOP,Lim is factor accounting for uncertainties in weather
forecasting (αOP,Lim < 1).

Alpha-factors for wave height and wind speed are explicitly given in the standard; however,
alpha-factors for wave periods are not provided. Nonetheless, DNV-OS-H101 [30] clearly states in
note B 703 that “if the operation is particularly sensitive to some wave periods, uncertainty in the forecasted
wave periods shall be considered”. Knowing that alpha-factor is a measure of uncertainty related to
weather forecasting, measurement and weather forecast data, if properly analyzed, can be used to
define specific alpha-factors for any given location and any forecast parameter (wave height, wind
speed, wave period, etc.). The methodology used to define tabulated alpha-factors in [30] can be found
in [31] or [32] and used as basis to define site specific alpha-factors.

3. Possible Improvements to the State-of-the Art Offshore Wind Farm Accessibility Predictions

Despite the obvious convenience of simple met-ocean condition based constraints on offshore
vessel operability, it is clear that this is a relatively crude approximation because, fundamentally,
the constraints are inherently physical—related to equipment responses, i.e., maximum lifting capacity
of crane cables, maximum allowable motions of lifted objects, etc. According to Wu [26], the simplistic
approach “does not serve to exploit the full potential of novel vessel and equipment designs” and “makes it hard
to evaluate performance of different maintenance or installation concepts”. Since, in most cases, the weather
constraints are already derived from numerical simulation of maintenance or installation equipment,
it would be beneficial to use the results of these simulations directly to estimate accessibility of offshore
wind farms. Furthermore, having only individual met-ocean constraints hinders the possibility to
consider met-ocean phenomena such as multi-directional sea states, combined with wind and/or
ocean current coming from arbitrary directions. Use of computer software to simulate motions and
other responses of access/installation equipment would allow inclusion of aforementioned met-ocean
conditions, because the number and complexity of input met-ocean parameters would only be limited
by the choice and capabilities of simulation software. Such approach would also deal with the lack
of clear guidance on how wave period (and wave period forecasting uncertainty) should be treated
within the alpha-factor methodology—primarily because wave period is an integral part of met-ocean
state definition in any modern hydrodynamic numerical simulation software.

As it was mentioned in previous section, alpha-factor methodology is necessary because there are
inherent uncertainties related to weather forecasting. The alpha-factor method aims to account for
these uncertainties by making the met-ocean condition constraints more conservative. However, it is
mentioned in [30] B701 that ensemble weather forecasts can be used instead, but the procedure is not
explicitly defined. According to Foley et al. [33] “an interesting feature of ensemble forecasting lies into the
fact that it also provides an estimation of the reliability of the forecast. The idea is that when the different ensemble
members differ widely—a large uncertainty effects the forecast; when there is a closer agreement between the
ensemble member forecasts, the uncertainty in the prediction is lower”. If the assumption—ensemble forecasts
cover the full uncertainty space of weather forecasting—holds, it is possible to predict offshore wind farm
accessibility (weather windows) with a desired level of confidence by calculating the desired quantile
of probability of operation failure (95% or 99%). In situations where the assumption does not hold,
additional uncertainties must be added to the accessibility prediction model.

This paper aims to demonstrate further improvements on a novel methodology, presented
in [15,16], that uses numerical simulation results to estimate extreme equipment response distributions
by statistical analysis. Furthermore, the response distributions are used to estimate the probabilities
of certain equipment responses exceeding pre-defined acceptance criteria (maximum allowable
magnitudes). Acceptance criteria exceedance probabilities are then combined to represent the total
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probability of operation failure, which, in turn, can be compared to maximum allowable probability of
operation failure to determine weather windows, suitable for safe and successful operation. The main
improvement presented in this paper is a different formulation of acceptance criteria exceedance events,
based on failure function definition, and the reader is referred to [34–36] chapters on FORM (First
Order Reliability Methods) for more detail. This definition allows additional uncertainties to be added
as stochastic variables, which, in turn, eliminates the need to simulate all expected realizations of those
additional uncertainties.

4. Proposed Methodology

This section presents the updated methodology of weather window estimation for
offshore operations.

The intention is to briefly present the unaltered parts of original methodology with more
elaboration to parts where improvements were introduced or where it is necessary for purposes
of this paper. For fully detailed description of the original methodology, the reader is referred to [15,16],
where an evaluation study is presented. Figure 4 shows the general workflow chart of the updated
methodology. The procedure can be used for any offshore operation and can be summarized in the
following few steps:

1. Developing a simulation model for the offshore operation using hydrodynamic simulation
software of choice (Abaqus/Aqua, SIMO, etc.).

2. Retrieving multi-ensemble weather forecasts for the period and location in question.
3. Simulating the installation equipment response using forecasted met-ocean conditions as input

and retrieving the time series of relevant responses.
4. Extracting extremes of relevant responses from simulated time series and estimating parameters

of extreme response distributions.
5. Estimating the probabilities of individual responses exceeding their respective acceptance criteria

by solving limit state functions in the form of Equation (4) by FORM (First Order Reliability
Method).

6. Estimating the total probability of operation failure by combining the probabilities of individual
acceptance criterion exceedance events.

7. Obtaining weather windows, suitable for successful operation, by comparing the total probability
of operation failure with the maximum allowable probability of operation failure recommended
by DNV—10−4 [30].
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4.1. Types and Meaning of Equipment Acceptance Criteria

Throughout this paper, a term “acceptance criterion” is used to refer to physical limitations of
equipment and vessels used for offshore operations. Acceptance criteria are typically associated to
physical properties of offshore equipment, such as maximum allowable tension in lifting or tugging
cables, maximum allowable crane load, etc. Motions of vessels or lifted objects can serve as acceptance
criteria when excessive translations/rotations can lead to risk of losing control of installation equipment
or lifted objects and potentially cause operation failure. Loss of control can also be caused by slack tug
or lifting wires, therefore additional acceptance criteria of “non-negative wire tension” can be established.
Furthermore, when certain distance between waves or any stationary objects and lifted objects must be
maintained, this clearance can also serve as an acceptance criterion. If contact between lifted objects and
their final resting position is expected, velocities can serve as acceptance criteria to reduce the impact
energy. In general acceptance criteria can be classified into two major groups:

• Non-exceedance acceptance criteria, when the response should be kept below a certain level to
avoid a “failure state”. This type includes cable strength, motion or acceleration acceptance criteria.

• Exceedance acceptance criteria when the response should be above a certain level to avoid “failure
state”. This type includes acceptance criteria such as control wire slacking, clearance between lifted
objects and wave crests or other fixed objects, etc.

Some acceptance criteria, like lift wire strength, can be interpreted as deterministic or stochastic.
In a stochastic case, instead of using a single value for the acceptance criterion, a distribution should be
used (i.e., a LogNormal distribution for lift wire strength).

Another term used in this paper is “acceptance criteria exceedance event”, which refers to critical
events when certain equipment responses exceed predefined maximum allowable values, i.e., yielding
of lifting or tugging cables when load in the cables exceeds their yield strength.

4.2. Numerical Simulation of Equipment Response

The duration of numerical simulations should reflect the actual duration of the offshore operation.
This is necessary because the ultimate goal is to estimate the probability of operation failure within the
timeframe of the actual operation, i.e., if the operation is expected to take 1 h to complete, the estimated
probability of operation failure would be linked to one-hour extreme responses exceeding their
respective acceptance criteria. When the numerical weather prediction (NWP) model has a lower
temporal resolution than the duration of the operation, multiple weather forecast time steps should
be combined to reach the desired operation duration (e.g., if the NWP model has 30-min temporal
resolution, two consecutive met-ocean condition predictions should be used to simulate 1 h duration
of the operation). In the case when the temporal resolution is higher than the operation time, care must
be taken when estimating the extreme responses during the operation—the return period of extreme
responses should reflect the duration of the operation.

4.3. Equipment Response Analysis and Extreme Response Distributions

Individual critical equipment responses are analyzed by the POT (Peak Over Threshold) method
to extract extreme values. Extreme response distribution parameters are estimated using Maximum
Likelihood parameter estimation method (MLE). Based on the type of acceptance criteria, the extracted
extremes and the fitted distributions are as follows:

• For non-exceedance acceptance criteria, upper extremes (peaks) are extracted. Threshold is
associated with statistical parameters of the response time series and based on recommendation
from Moriarty et al. [37] (see Equation (2)). A two parameter Weibull distribution is fitted to the
extracted peaks due to its good performance when predicting extreme events.

• For exceedance acceptance criteria, lower extremes (valleys) are extracted. Threshold is set to mean
value of the time series (see Equation (3)). Since exceedance acceptance criteria are defined as
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requirements for the response to be non-zero or non-negative (i.e., non-negative and non-zero tug
wire or crane lift wire load, non-zero distance between lifted and stationary objects for collision
avoidance), it is imperative that the fitted distribution is defined for negative values and zero.
However, Weibull distribution is not defined for such values; therefore, a normal distribution is
fitted to extreme responses related to exceedance acceptance criteria:

THnon−exc = E(R) + 1.4
√

VAR(R) (2)

THexc = E(R) (3)

Here, THnon-exc and THexc are thresholds for non-exceedance and exceedance acceptance criteria
respectively, E[R] and VAR(R) are the expected value (mean value) and the variance of the response
time series.

When conducting extreme value analysis with the POT method, it is important to make sure that
extracted extremes are physically and statistically independent—in the case of offshore operations,
it should be ensured the extremes are induced by discrete waves or wind gusts. Use of sufficient
temporal separation between extracted peaks takes care of the independence requirement. The IEC
(International Electrotechnical Commission) 61400-1 annex G [38] recommends “minimum time separation
between individual response extremes of three response cycles (defined by three mean crossings over a block size)”.

4.4. Estimation of Probabilities of Acceptance Criteria Exceedance Events Using FORM

A significant drawback of the methodology presented in [15] is the difficulty to include additional
uncertainties in the process of probability of operation failure estimation. Since the methodology is
inherently simulation based, it implies that any additional variability of model input parameters can
only be added as a full set of expected realizations, i.e., if variability is expected in the element stiffness
in the hydrodynamic model of an offshore vessel, then the full range of the stiffness realizations must
be added to the model and simulated individually. This would increase the number of simulations
substantially and thus is not feasible. Furthermore, a set of realizations cannot quantify some
uncertainties, i.e., the majority of hydrodynamic simulation software calculates vessel responses
with a certain degree of accuracy, but the exact cause of variation is not identified or is too complex to
quantify. In such situations, the original methodology form [15] would not produce reliable results
purely because it would be assumed that numerical simulations are an exact representation of reality.
Additionally, there can be uncertainties related to definition of acceptance criteria, i.e., maximum
allowable crane load is defined based on the rupture (or yielding) strength of the lifting cables,
which, in turn, relies on an imperfect mathematical model of steel cable strength. The mathematical
model is inherently imperfect due to “random effects that are neglected in the models and simplifications
in the mathematical relations”, according to JCSS (Joint Committee on Structural Safety) [39]. It can
also be speculated that some other acceptance criteria can be subjectively defined and thus uncertain.
An example of such case can be the definition of “loss of control of lifted objects” acceptance criteria—it
is obvious that different crane operators would consider “loss of control” at different levels of excessive
motion of lifted objects. All the uncertainties mentioned above can be classified as epistemic and should
be taken into consideration whenever possible.

It is possible to overcome the shortcomings of the original methodology and take epistemic and
other additional uncertainties into consideration by using a more elaborate definition of acceptance
criteria exceedance events. Limit state function formulation, in the form of Equation (4), is used further
in this paper to define all operation stopping critical events. When defined this way, the acceptance
criteria exceedance event (failure) is represented by the failure function value being lower than or equal
to zero − g(x) ≤ 0. For more detail descriptions of such formulation, the reader is referred to can be
found in [34–36]:

g(x) = XR·R(X) − XE·E(X) (4)
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Here, XR is uncertainty related to acceptance criteria definition and modelling, R(X) is the acceptance
criteria for particular equipment response (e.g., maximum allowed crane load, maximum allowed
velocity/acceleration of lifted objects, etc.), XE is the uncertainty related to equipment response
modelling (e.g., hydrodynamic modelling uncertainties, weather forecast model uncertainty, etc.)
and E(X) models the relevant equipment response (crane load, acceleration and motion of lifted
objects, etc.).

Such failure functions can be solved using FORM (First Order Reliability Method). More detailed
description on FORM can be found in [34–36]. In this paper, all results are obtained using the FERUM 4.1
software package (SIGMA Clermont, 63175 AUBIERE Cedex, France) for MATLAB (version R2016b,
Marthworks, Natick, MA, USA) (see [40,41] for a detailed description of it).

4.5. Estimation of Total Probability of Operation Failure and Weather Window Estimation

Having ensemble probabilities of failure calculated for all the relevant acceptance criteria exceedance
events, it becomes possible to estimate the total probability of operation failure. First, assuming that
operation failure occurs if just one of the acceptance criteria are exceeded and further assuming statistical
independence between acceptance criteria exceedance events, the ensemble probability of operation failure
is calculated using Equation (5). It should be noted that acceptance criteria exceedance events can be
somewhat correlated; however, correlation analysis is beyond the scope of this paper:

PF,ens(j) = 1 −
Nac

∏
i=1

(1 − PF,ac(i),ens(j)) (5)

Here, Pf,ens(j) is total probability of operation failure considering the (j-th) ensemble member of
weather forecast, and Nac is the number of acceptance criteria.

The total probability of operation failure with desired confidence is estimated by applying a
quantile function to the total ensemble probabilities of operation failure:

PF,OP = PF,Q(p) = [PF : P(PF,ens(j) ≤ PF) = p] (6)

where PF,Q(p) is the probability of operation failure given a certain desired quantile p.
Weather windows are then estimated by comparing the total probability of operation failure

with the maximum allowable probability of operation failure—10−4—recommended by DNV [30].
Situations when the total probability of operation failure is below 10−4 are considered safe for operation.
It is obviously possible to estimate the weather windows with desired degree of confidence (desired
quantile) by using the appropriate quantile of total probability of operation failure.

5. Descriptions and Setup of Test Cases

This section presents the case studies that were used to present the performance and capabilities
of the improved methodology. A description of the test case location, met-ocean condition forecasts
and operation model are given. Two case studies were performed:

• A short-term study, using a three-day (72 h) ensemble weather forecast that serves as “proof of
concept” of the proposed methodology. Having this study allows direct comparison between the
original, presented in [15], and the updated methodology since the same input weather forecasts
and operation model are used.

• A long-term study, using three months of weather forecasts over the summer of 2014, that serves
as a benchmarking case and allows comparisons among the standard alpha-factor, and both
novel—original and the updated—methodologies. Here, again, the same input parameters were
used as in the study presented in [16] for the sake of consistency and ease of comparison.

It should be noted that, due to very limited availability of real data concerning accessibility
and weather window predictions of operating wind farms, direct benchmarking of the proposed
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methodology against a real-life case is not possible. However, assuming that industry practitioners are
using standardized state-of-the-art methods, such as the alpha-factor method, to assess offshore wind
farm accessibility, it is safe to presume that meaningful knowledge can be gained by benchmarking the
proposed methodology against the state-of-the-art techniques.

5.1. Operation Model Description

Offshore lift of the Hywind demo wind turbine rotor (Rogaland, Norway) was chosen as the test
case to be analyzed. The concept model originally was developed for Hywind demonstration wind
turbine installation in 2009 and was further improved for use as an offshore installation test case in
the DECOFF (Decision Support for Offshore Wind Turbine Installation) project [42]. The model was
developed by MARINTEK in SIMO (Simulation of complex Marine Operations) software (MARINTEK,
Throndheim, Norway) (full model description is available in [43]). The model consists of a floating
barge with heavy-lift crane positioned on it, wind turbine rotor positioned on the barge and a floating
(spar type) wind turbine foundation. During the operation, a barge transports the assembled rotor
to the intended installation location where the floating foundation is already positioned. After lift
preparations, the rotor is lifted off the barge, rotated to a vertical position in the air in front of the
nacelle and secured to it (see Figure 5). From the moment the barge is securely positioned at the
installation location, the whole lifting operation takes 1 h to complete.
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It should be noted here that this lift operation is considerably more complex and weather sensitive
than conventional offshore wind turbine installation operations performed by jack-up vessels installed
onto fixed turbine foundations. However, keeping in mind that offshore wind farms are being built
further offshore, it can be speculated that this type of installation operation can be regarded as a
reasonable representation of the complexity of operations that wind farm installers will be performing
in the near future.

Since the proposed methodology relies on physical responses of vessels and installation
equipment, Table 1 summarizes the physical constraints of the Hywind rotor lift operation, based
on [44]. In addition, log-normal distribution parameters are given for stochastic acceptance criteria.

Since the intention is also to compare the proposed methodology with the standard alpha-factor
method, Table 2 shows the weather restrictions of the Hywind rotor lift operation together with
the site-specific alpha-factors, estimated according to Wilcken [32] and DNV [31]. A more detailed
description of site specific alpha-factor estimation is given in [16].
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Table 1. Physical limitations of the Hywind rotor lift operation.

Critical Response Acceptance
Criteria

Parameters Type
Mean COV

Crane loads <6375 kN 6930 kN 5% Stochastic non-exc.
Lift wire tension >0 - - Deterministic exc.

Acceleration of rotor <4.8 m/s2 5.225 m/s2 5% Stochastic non-exc.
Rotational acceleration of rotor <6 rad/s2 6.525 m/s2 5% Stochastic non-exc.

Rotor sway and surge motions of lifted rotor <2 m - - Deterministic non-exc.
Airgap between blade 3 and tower >0 m - - Deterministic exc.

Yaw and tilt angle of lifted rotor <5 degrees - - Deterministic non-exc.
Relative angle between rotor and special tool <5 degrees - - Deterministic non-exc.

Relative radial velocity <0.4 m/s - - Deterministic non-exc.
Relative axial velocity <0.1 m/s - - Deterministic non-exc.

COV = coefficient of variation.

Table 2. Weather limits and alpha factors for Hywind rotor lift operation.

Parameter Wave Height Hs (m) Wave Peak Period TP (s) Wind Speed Ws (m/s)

Weather limit 1.5 5 7
Alpha-factor 0.78 0.78 0.8

Adjusted weather limit 1.17 3.9 5.6

At this point, it should be mentioned that the weather restrictions in Table 2 were derived from
the physical restrictions presented in Table 1. This derivation was necessary because the objective of
comparison between proposed methodology and standard alpha-factor is to provide insight on the
performance of the new methodology. To do that, it is imperative that the operation constrains remain
as consistent as possible between the two methods. Consistency between the two types of constraints
was maintained as follows:

1. Numerical simulations of the operation were performed using an array of possible weather
conditions as input and the output response time series were analyzed.

2. The resulting response time series were compared with their respective acceptance criteria from
Table 1 and critical met-ocean states were identified, i.e., if the Crane Load response under given
met-ocean conditions is below the limit of 6375 kN, then said met-ocean conditions are suitable
for operation. However, if the response exceeds the limits, met-ocean conditions are deemed
unsuitable and indicate that weather constraint has been exceeded.

3. Met-ocean conditions under which all relevant responses are below their acceptance criteria were
considered safe.

It should also be kept in mind that when multiple met-ocean constraints are present, a contour
surface plot should be used to describe all possible combinations of weather constraints. However,
due to a multitude of physical acceptance criteria and complex interactions among them, only the
marginal case where all acceptance criteria from Table 1 are satisfied is shown in Table 2 and used for
further analysis.

5.2. Test Case Location and Weather Forecasts

Test case location had to satisfy some criteria—it had to be covered by ECMWF (European Centre
for Medium-Range Weather Forecasts) weather forecasts, measurements of met-ocean conditions had
to be available and reasonably close proximity to operational or planned offshore wind farms was
required. FINO3 meteorological mast location in the North Sea (55◦11.7′ N—007◦09.5′ E) satisfied
all the requirements—there is an ECMWF grid-point very close to the met mast (this eliminates the
need to interpolate the forecasted weather conditions between grid-points), met-ocean condition
measurements are available from the mast itself and the neighboring area is very promising in terms
of future offshore wind farm development (see Figure 6) and therefore was chosen as the test site.
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It should be mentioned that having measurements and forecasts of met-ocean conditions at
the same location gives an opportunity to examine the effects that forecasting uncertainties have on
weather window predictions. Namely, measurements can be treated as a “perfect weather forecast”
containing no uncertainty, and, therefore, weather window predictions based on these measurements
can also be treated as having no uncertainty. By comparing these “perfect” weather windows with
the ones obtained using ECMWF weather forecasts, it would be possible to evaluate the influence of
met-ocean condition forecasting uncertainties on the performance of proposed methodology.

The short-term study uses ECMWF weather forecast that covers a three-day period from 6 August
2013 00:00:00 GMT to 8 August 2013 24:00:00 GMT (see Figure 7a). For the long-term study, ECMWF
weather forecasts cover the summer months of 2014, from 1 May to 1 August (see Figure 7b).
The forecasts are updated once a day (at 00:00) as it would be done for a typical offshore operation.
In both cases, data from ENS (Ensemble—Atmospheric model) numerical weather prediction model is
used with ~18 km grid resolution, interpolated at every 0.2◦ and 3 h temporal resolution.
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Figure 7. Weather forecasts for the two test cases—short-term “proof of concept” study (a),
and long-term evaluation study (b).
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For both test cases, met-ocean conditions at the installation site are described by multiple
parameters—wind speed and direction, swell and wind generated significant wave heights with
their corresponding directions and periods (directions are not shown in Figure 7). It is further assumed
that wind generated waves come from the general wind direction and the vessel aligns itself along
this direction; therefore, only the misalignment angle between wind generated and swell waves must
be considered.

5.3. Stochastic Model and Parameters of Sensitivity Analyses

This section is dedicated to presenting the stochastic model used for both short- and long-term
studies. The stochastic model is formulated using Equation (4) as the basis and the following
Table 3 shows its parameters. Furthermore, as it was mentioned in Section 4.4, limit state function
formulation of acceptance criteria exceedance events allows simple inclusion of epistemic or other
additional uncertainties into analysis. Therefore, the ranges of epistemic uncertainty variation, used
for sensitivity analyses, are also shown in Table 3.

Table 3. Parameters of the stochastic model, used for short and long-term studies.

Variable Distribution
Parameters Description and Usage

Mean COV

XR Lognormal 1 [0 . . . 0.20] Models the uncertainty related to acceptance
criteria (resistance) modelling

R(X)
Lognormal Depends of acceptance criterion

Used for stochastic acceptance criteria, distribution
parameters are taken from Table 1

Deterministic Used for deterministic acceptance criteria, single
value from Table 1 used to define it

XE Lognormal 1 [0 . . . 0.20] Models the uncertainty related to equipment and
vessel response modelling

E(X)
Weibull Estimated from response time

series as detailed in Section 4.3.
Used for non-exceedance acceptance criteria

Normal Used for exceedance acceptance criteria

Here XR is uncertainty related to acceptance criteria definition and modelling, R(X) is the acceptance criteria for
particular equipment response, XE is the uncertainty related to equipment response modelling (e.g., hydrodynamic
modelling uncertainties, weather forecast model uncertainty, etc.) and E(X) models the relevant equipment response,
COV is coefficient of variation.

6. Results and Discussion

This section presents the evaluation results of the improved methodology of weather window
prediction for both test cases described in the previous section. Firstly, results of the short-term study
are presented and compared to results obtained using the original methodology, presented in [15].
Secondly, results of the long-term study are presented and compared to results obtained using the
original methodology, presented in [16]. Furthermore, sensitivity analyses are performed where the
influence of additional epistemic uncertainties is evaluated.

6.1. Results of Short-Term Study

The following Figure 8 shows results obtained by applying the methodology, presented in
Section 4, to a three-day weather forecast. It should be mentioned here, that, for both cases, the simple
formulation and the limit state formulation, total probability of operation failure was estimated by
Equations (5) and (6) using 95% quantile (p = 0.95) in Equation (6).

It is clear that estimating the probability of operation failure by solving the failure function with
FORM is possible. It is also evident that the resulting total probability of operation failure follows
the general trends of the input weather forecast—with increasing significant wave height (and other
input parameters), the probability of operation failure increases. It is also visible that, with increasing
uncertainty of weather forecast (increasing spread of ensemble member predictions), the realizations
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of ensemble probability of operation failure also have higher uncertainty (larger spread of the blue
scatter in Figure 8). This indicates clearly that uncertainty of weather forecasting is being transformed
into uncertainty of operation failure estimates, and thus could be used to quantify the uncertainty of
weather window predictions.
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Figure 8. Weather input and expected probability of operation failure of Hyhwid Rotor lift operation
for a three-day weather forecast.

The alpha-factors in Figure 9 are taken from Table 2. However, it should be mentioned that
for the first alpha-factor case (first line in Figure 9), wave peak period is not taken into account.
This case only serves as a demonstration that including wave period constraints into weather window
analysis might, and in most cases will, reduce the number of operational hours. Keeping this in
mind, from this point forward, all comparisons will be made against the 2nd alpha-factor case, where
wave period is taken into consideration. Results in Figure 9 indicate that, by using the updated
methodology, the length of operational weather windows is reduced by 6 h for this particular period,
when compared to previous simpler formulation, but the model still predicts more operational hours
than alpha-factor methodology—12 compared to 9 h (comparison between 2nd and 4th lines in
figure above). Furthermore, relative temporal consistency in weather window predictions can be
observed—all the methods predict weather windows in relatively close positions on the time axis.
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Figure 9. Comparison between standard alpha-factor and the proposed novel methodologies. Weather
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Knowing that the updated formulation of acceptance criteria exceedance events using failure function
formulation allows relatively easy inclusion of epistemic uncertainties into analysis, the following
Figure 10 shows the resulting change of total probability of operation failure when uncertainties to
response and acceptance criteria modelling are introduced.
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Figure 10. Sensitivity analysis with respect to increasing variation of epistemic uncertainties related to
response—COVX(E)—and acceptance criteria—COVX(R)—modelling. Increase of COV for individual
variables representing modelling uncertainties (XE or XR) separately (right) and for both variables
(XE and XR) simultaneously (left).

It was determined that increasing COVX(R) and COVX(E) individually affects the total probability
of operation failure identically—no matter for which uncertainty parameter, the variability is increased,
the resulting probability of failure increases the same amount, hence the figure above on the right
represents the increase of uncertainty for either case. The figure on the left shows how the total
probability of failure is influenced when both COVX(R) and COVX(E) are increased simultaneously. It is
visible that, with this increase, the total probability is increasing more rapidly than in the case where
only individual uncertainty components are increased. Due to a limited forecast duration of only
three days, it is not possible to quantify the effect of epistemic uncertainties upon weather window
prediction—a slight increase of uncertainty results in no weather windows for this particular weather
forecast. Nonetheless, this analysis provides valuable insight on the effects of epistemic uncertainties
upon predicted probabilities of operation failure. However, it also suggests that a more thorough
investigation should be performed to evaluate said effects upon weather window predictions, utilizing
a longer test period.

6.2. Results of the Long-Term Study

The following Figure 11 shows the results of evaluation of updated methodology of weather
window prediction. The results include a comparison against the standard alpha-factor methodology
as well as against the original methodology from [15]. It should be noted that the results are shown in
terms of total length of predicted weather windows for the three-month test period and are normalized
with respect to the total length of weather windows predicted by alpha-factor methodology (orange
bar and line in the plots. The alpha-factors used for the baseline case are taken from Table 2. The green
bars represent cases where measurements at FINO3 location are used as input to the model, the blue
bars are a representation of the original methodology from [15] and the red bars are results using the
updated methodology, presented in this paper.

When discussing the results of the evaluation study, it should be kept in mind that the proposed
methodology is based on analysis of uncertain equipment response (which is a result of input weather
forecasts being uncertain) and thus the resulting weather window predictions are also uncertain.
Higher quantile predictions offer a higher degree of confidence. However, the total length of weather
windows is reduced. Even though 5%, 50% and 95% quantile weather window predictions are shown
for cases where ECMWF forecasts are used, special attention should be directed towards 95% quantile
results, mainly because it is necessary to ensure a high degree of confidence for weather sensitive
offshore operations. Therefore, further discussion will focus on the 95% quantile results.
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First, it is clear from Figure 11 that the updated methodology performs better that the original
methodology and the standard alpha-factor method, predicting 57% and 47% more operational hours
than the alpha-factor and the original methodologies respectively, when ECMWF weather forecasts
are used as input to the model. The same trend also holds for the case where measurements at FINO3
site are used as input—the updated methodology predicts ~50% more operational hours. Furthermore,
as it was mentioned before in Section 5.2, measurements from FINO3 location can be interpreted as a
perfect weather forecast with trivial uncertainty, and can be used to establish the upper limit of expected
performance of the updated methodology. In this case, the upper performance limit would result in
almost triple total length of predicted weather windows (dark green bar), when compared to standard
alpha-factor methodology. Obviously, it is impossible to have perfect weather forecasts and thus
reach the theoretical upper limit of predicted weather windows, but it is clear that improved weather
forecasts would result in more and longer weather windows.

As was mentioned before, a sensitivity study was performed with respect to increasing
uncertainties related to equipment response and acceptance criteria (resistance) modelling. The following
Figure 12 summarizes the results of that sensitivity analysis. The red bars indicated by double COVXx
notation represent cases where both uncertainties are considered simultaneously (i.e., COVXE = 5% and
COVXR = 5%), whereas bars indicated by single notation represent cases where only one uncertainty
is considered while the other is set to zero (i.e., COVXE = 5% means that 5% equipment response
modelling uncertainty was considered, while acceptance criteria modelling uncertainty was set to zero).

As a general conclusion, it should be noted that epistemic uncertainties have a significant effect
on weather window predictions. This is clear from the decreasing total length of predicted weather
windows when any uncertainty is increased. It is also clear, as it was for the short-term study case, that
there is no significant difference in predicted weather windows when equipment response or acceptance
criteria modelling uncertainties are increased individually—the total length of weather windows is
almost identical when either of those uncertainties are increased to the same level. In addition to that,
it is evident that individual increase of any of the two considered uncertainties to ~11–12% results in
almost identical total length of predicted weather windows as the for standard alpha-factor method.
When both considered uncertainties are increased simultaneously, results identical to alpha-factor
methodology are achieved at ~8–9%. It could be speculated that the drop in performance of the
proposed methodology is compensated by the expanded capability that allows taking additional
uncertainties into consideration. Furthermore, this also implies that having the capability to predict
weather windows using a more comprehensive description of model variables would result in better
decisions when planning offshore operations.
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Figure 12. Results of the long-term case study sensitivity analysis. The effects of increasing
uncertainty of equipment response—XE—and acceptance criteria (resistance)—XR—modelling on weather
window predictions.

Another important feature of the updated limit state formulation of acceptance criteria exceedance
events is that it allows evaluation of which components of the stochastic model are the most important.
This is possible because the components of the unit α-vector can be considered as measures of the
relative importance of the uncertainty of the corresponding stochastic variable on the reliability index,
and, in consequence, to estimated probability of failure. The following Figure 13 shows the intensity of
the α-vector components for all considered acceptance criteria.

It is clear from Figure 13 that no general conclusion can be drawn about the most important model
parameter for all acceptance criteria. This can be explained by physical differences among the acceptance
criteria—some of the criteria are related to motions of the floating vessel, while others are linked to
motions and velocities of lifted rotor or even defined by relative distance between the lifted rotor and
the floating vessel. Furthermore, there is diversity in acceptance criteria definitions—some limits are
stochastic, others are deterministic (see Table 1 for more detail). Still, despite the apparent complexity,
it is possible to draw some conclusions about similar acceptance criteria.
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It is evident that for all deterministic non-exceedance acceptance criteria (sway and surge motions,
yaw and tilt angles, relative yaw and tilt angles, relative axial and radial velocities), the most influential
parameter is the acceptance criterion itself (indicated by the highest intensity of the αR component of the
α-vector), followed by the epistemic uncertainty of the equipment response modelling (indicated by
the second highest intensity of the αXE) and the equipment response itself being the least important
one. This implies that it is very important to have reliable definitions of deterministic acceptance
criteria. Furthermore, it is important to ensure that the numerical models predict the equipment
response as accurately as possible by reducing the modelling uncertainties. As for deterministic
non-exceedance acceptance criteria (lift wire tension and tower air gap), equipment response is the most
important parameter.

When it comes to stochastic acceptance criteria—for both rotor acceleration limits, the most important
parameters are the equipment response and the uncertainty related to modelling that response, with
the definition of acceptance criterion itself being less significant. This again indicates that it is important
to model the equipment response as accurately as possible. Lower relative importance of the acceptance
criteria definition can be simply explained by it being characterized by a log-normal distribution and
is thus already well defined. The same trends can be observed for the Crane Load acceptance criteria;
however, here equipment response is the least important parameter, suggesting that more attention
should be directed to defining the maximum allowable equipment loads and reducing the equipment
modelling uncertainty.

7. Conclusions

In this paper, a methodology of weather window prediction for weather sensitive offshore
operations was presented. The methodology uses physical offshore vessel and equipment responses
to establish the expected probabilities of operation failure by evaluating the probability of relevant
equipment responses exceeding their respective maximum allowable magnitudes (such exceedance
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event is called acceptance criteria exceedance event). Probabilities of these critical events are then combined
to represent total probability of operation failure, which, in turn, can be compared to maximum
allowable probability of mission failure (10−4, as suggested by [30]) to obtain weather windows,
suitable for operation.

The primary focus of this paper was to evaluate whether an acceptance criteria exceedance event
formulation using limit state functions is possible in offshore operation context and how such change of
the methodology would impact the resulting weather window predictions. Furthermore, the possibility
to solve limit state functions using First Order Reliability Method (FORM) was investigated and
deemed possible.

Two case studies were performed to evaluate the feasibility and performance of the updated
formulation. Both studies were based on a numerical model of Hywind Rotor Lift operation assumed
to be executed at FINO3 (Forschungsplattformen in Nord- und Ostsee Nr. 3) met-mast location in the
North Sea. A “short-term” (using 3-days’ worth of forecasted met-ocean conditions at FINO3) study
was performed and the results indicated that the updated methodology produces consistent results
when compared to the standard alpha-factor method and the original methodology. A “long-term”
study involved 3-months’ worth of forecasted met-ocean conditions during the summer of 2014. Based
on the results of the long-term study, it can be stated that limit state function formulation of acceptance
criteria exceedance events is possible in an offshore operation context, given that maximum allowable
equipment responses can be established with reasonable confidence. In fact, this formulation used 57%
and 47% more operational hours during the test period when compared to standard alpha-factor and
the original methodologies.

Furthermore, since limit state formulation allows simple inclusion of additional epistemic
uncertainties into the analysis, a sensitivity analysis was performed with respect to increase of
uncertainties related to equipment response modelling and acceptance criteria definition. This analysis
indicated that additional epistemic uncertainties reduce the number of operational hours offshore.
Using a simultaneous ~8–9% uncertainty on both equipment response modelling and acceptance criteria
definition would reduce the number of operational hours to what alpha-factor method predicts for the
same forecasted period. Nonetheless, it should be kept in mind that having the capability to use a more
comprehensive description of the offshore environment and model variables, used for weather window
prediction, would result in better and more informed decisions when planning offshore operations.

Another positive aspect of the proposed methodology, in contrast to the standard alpha-factor
method, is that it allows direct and transparent inclusion of weather forecasting uncertainties into
the analysis. Under the assumption that ensemble weather forecasts cover the full range of expected
weather forecasting uncertainty, they can be used as input to the weather window prediction model.
In this way, weather forecasting uncertainty is directly transferred into the uncertainty of probability
of operation failure (and subsequently into uncertainty of predicted weather windows). It should
be noted here that this assumption is relatively broad and mostly applies to short term (up to 3-day
lead time) weather forecasts because, with longer lead times, the uncertainties, related to weather
forecasting, would increase significantly and lead to relatively more uncertain weather window
predictions. However, it should be kept in mind that with more accurate weather prediction models
becoming available for industry use, the methodology could be applied for even longer weather
forecast lead times, given proper validation of the methodology is performed.

It is important to mention that even though the test cases used to evaluate the proposed
methodology were both based on the same offshore rotor lift operation, the procedure of weather
window estimation is inherently very general and can be applied to any offshore operation. In fact,
there are no limitations to use the methodology for operations onshore or any other specific location.
The applicability is only limited by limitations of numerical simulation tools for vessels and equipment
used and by the possibility to define reasonable equipment acceptance criteria.

It should be noted that, despite the fact that it is relatively easy to define some acceptance criteria,
such as equipment strength and clearance between lifted components and other fixed objects, etc.,
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other criteria, such as maximum allowable linear and angular motions of lifted objects and vessels,
can be notably more difficult to define. This applies especially to rather subjective acceptance criteria
such as motions of vessels and lifted objects, which would typically be defined by lifting equipment
experts, rather than by actual physical properties of the equipment. This poses additional challenges
when using the proposed methodology, mainly because of a lack of guidance on how to objectively
define acceptance criteria for the equipment used during operations. Further work should be directed
towards outlining the procedure that could be used to properly define reasonable acceptance criteria
for offshore operations. Furthermore, weather window predictions depend on a clear definition
of maximum allowable probability of operation failure, which is currently defined by DNV [30] as
“< . . . > a probability for structural failure less than 1/10000 per operation < . . . >. When including operational
errors, the level of probability of total loss per operation cannot be accurately defined < . . . > recommendations
are introduced to obtain a probability of total loss as low as reasonable practicable (ALARP principle)”. This
implies that additional challenges exist when defining maximum allowable probability of operation
failure, and future research should also be directed towards more accurate definition of said probability
using ALARP techniques.

Despite all the positive properties of the proposed methodology, it should be kept in mind that
using it requires considerably more computational effort than the standard alpha-factor method—the
responses for all involved vessels and other equipment must be simulated using numerical tools,
which typically require non-trivial amounts of computation power and time. Furthermore, when
using ensemble weather forecasts to account for statistical forecasting uncertainties, the computation
requirements increase even more. However, the proposed methodology can be used as part of decision
tools for planning and preparatory phases of offshore wind farms. For this approach to be feasible for
real- or close to real-time applications (i.e., to support decisions on board of installation vessels or to
decide whether to commence the operation in the coming couple of hours), the methodology should be
capable of utilizing pre-simulated response databases in combination with additional stochastic
variables, representing epistemic and aleatory uncertainties of weather forecasting and response
modelling. In fact, as it was shown in this paper, the methodology has the capability to introduce
these uncertainties relatively easily, and, thus, with proper implementation of pre-simulated response
databases, could be used as part of real-time decision support tools related to offshore operations.

Acknowledgments: The research was funded by The Research Council of Norway, project No.
225231/070—Decision support for offshore wind turbine installation (DECOFF). The financial support is greatly
appreciated. The authors also acknowledge Christian Michelsen Research, Meteorologisk Institut (Norway),
MARINTEK, Uni Research, University of Bergen (UiB) and STATOIL for their valuable inputs and support.
Furthermore, met-ocean condition measurements for FINO3 location used in this study were provided by the
BMWi (Bundesministerium fuer Wirtschaft und Energie, Federal Ministry for Economic Affairs and Energy) and
the PTJ (Projekttraeger Juelich, project executing organization), for which the authors are very grateful.

Author Contributions: John Dalsgaard Sørensen and Tomas Gintautas conceived the initial idea of the proposed
methodology. Tomas Gintautas developed the methodology to its current, as presented in the paper, state under
close supervision of John Dalsgaard Sørensen. Tomas Gintautas developed computer programs for statistical
analysis of equipment responses and weather window estimation, performed simulations of offshore equipment
and analyzed the output results. The paper was written by Tomas Gintautas under supervision and editing by
John Dalsgaard Sørensen.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. European Wind Energy Association. Wind in Power. 2015 European Statistics; EWEA: Brussels, Belgium, 2016.
2. European Commission. A Policy Framework for Climate and Energy in the Period from 2020 to 2030; Commission,

European: Brussels, Belgium, 2014.
3. European Wind Energy Association. Wind Energy Scenarios for 2020; EWEA: Brussels, Belgium, 2014.
4. European Wind Energy Associacion. The European Offshore Wind Industry—Key Trends and Statistics 2015;

EWEA: Brussels, Belgium, 2016.



J. Mar. Sci. Eng. 2017, 5, 20 22 of 23

5. Mietus, M. The Climate of the Baltic Sea Basin, Marine Meteorology and Related Oceanographic Activities;
Rep. No. 41; World Meteorological Organization: Geneva, Switzerland, 1998.

6. Diaz, A.H.A.N.P.; Hasager, C.B.; Bingöl, F.; Karagali, I.; Badger, J.; Clausen, N.-E. South Baltic Wind Atlas: South
Baltic Offshore Wind Energy Regions Project; Forskningscenter Risoe. Risoe-R; No. 1775(EN). Copenhagen;
Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi: Roskilde, Denmark, 2011.

7. Coelingh, J.; van Wijk, A.; Holtslag, A. Analysis of wind speed observations over the North Sea. J. Wind Eng.
Ind. Aerodyn. 1996, 61, 51–69. [CrossRef]

8. Brown, C.; Poudineh, R.; Foley, B. Achieving a Cost-Competitive Offshore Wind Power Industry: What Is the Most
Effective Policy Framework; Oxford Institute for Energy Studies: Oxford, UK, 2015.

9. Fàbrega, A.E.; Bellmunt, O.G. Technical and Economic Feasibility of Turbines and Foundations of an Offshore Wind
Park at the Catalan Coastline; BarcelonaTech: Barcelona, Spain, 2014.

10. Moné, C.; Stehly, T.; Maples, B.; Settle, E. 2014 Cost of Wind Energy Review; NREL: Denver, CO, USA, 2015.
11. Nielsen, J.; Sørensen, J. On risk-based operation and maintenance of offshore wind turbine components.

Reliab. Eng. Syst. Saf. 2011, 96, 218–229. [CrossRef]
12. Santos, F.; Teixeira, A.P.; Soares, C.G. Modelling and simulation of the operation and maintenance of offshore

wind turbines. Proc. Inst. Mech. Eng. O J. Risk Reliab. 2015, 229, 385–393. [CrossRef]
13. Dalgic, Y.; Lazakis, I.; Dinwoodie, I.; McMillan, D.; Revie, M. Advanced logistics planning for offshore wind

farm operation and maintenance activities. Ocean Eng. 2015, 101, 211–226. [CrossRef]
14. Fingersh, L.; Hand, M.; Laxson, A. Wind Turbine Design Cost and Scaling Model; NREL: Denver, CO, USA, 2006.
15. Gintautas, T.; Sørensen, J.D.; Vatne, S.R. Towards a risk-based decision support for offshore wind turbine

installation and operation & maintenance. In Proceedings of the 13th Deep Sea Offshore Wind R & D
Conference, EERA DeepWind’2016, Trondheim, Norway, 20–22 January 2016.

16. Gintautas, T.; Sørensen, J. Evaluating a novel approach to Reliability based decision support for offshore
wind turbine installation. In Proceedings of the 2nd International Conference on Renewable Energies
Offshore, Lisbon, Portugal, 24–26 October 2016.

17. Hofmann, M. A Review of Decision Support Models for Offshore Wind Farms with an Emphasis on
Operation and Maintenance Strategies. Wind Eng. 2011, 35, 1–16. [CrossRef]

18. Dinwoodie, I.; Endrerud, O.-E.V.; Hofmann, M.; Martin, R.; Sperstad, I.B. Reference Cases for Verification
of Operation and Maintenance Simulation Models for Offshore Wind Farms. Wind Eng. 2016, 39, 1–14.
[CrossRef]

19. Florian, M.; Sørensen, J.D. Risk-based planning of O & M for wind turbines using physics of failure models.
In Proceedings of the Third European Conference of the Prognostics and Health Management Society, Bilbao,
Spain, 5–8 July 2016.

20. Besnard, F.; Fischer, K.; Tjernberg, L.B. A Model for the Optimization of the Maintenance Support
Organization for Offshore Wind Farms. IEEE Trans. Sustain. Energy 2013, 4, 433–450. [CrossRef]

21. Nielsen, J.J.; Sørensen, J.D. Risk-based operation and maintenance planning for offshore wind turbines.
In Proceedings of the Reliability and Optimization of Structural Systems, München, Germany, 7–10 April 2010.

22. O′Conor, M.; Lewis, T.; Dalton, G. Weather window analysis of Irish west cost wave data with relevance to
operations & maintenance of marine renewables. Renew. Energy 2013, 52, 57–66.

23. Van, G.B.; Bierbooms, W.A.A.M. Analysis of different means of transport in the operation and maintenance
strategy for the reference DOWEC offshore wind farm. In Proceedings of the OW EMES, Naples, Italy,
April 2003.

24. O′Conor, M.; Bourke, D.; Curtin, T.; Lewis, T.; Dalton, G. Weather windows analysis incorporating wave
height, wave period, wind speed and tidal current with relevance to deployment and maintenance of
marine renewables. In Proceedings of the 4th International Conference on Ocean Energy, Dublin, Ireland,
17–19 October 2012.

25. McMillan, D.; Ault, W.G. Quantification of Condition Monitoring Benefit for Offshore Wind Turbines.
Wind Eng. 2007, 31, 267–285. [CrossRef]

26. Wu, M. Numerical Analysis of docking operation between service vessles and offshore wind turbines.
Ocean Eng. 2014, 91, 379–388. [CrossRef]

27. Acero, W.G.; Li, L.; Gao, Z.; Moan, T. Methodology for assessment of the operational limits and operability
of marine operations. Ocean Eng. 2016, 125, 308–327. [CrossRef]

http://dx.doi.org/10.1016/0167-6105(96)00043-8
http://dx.doi.org/10.1016/j.ress.2010.07.007
http://dx.doi.org/10.1177/1748006X15589209
http://dx.doi.org/10.1016/j.oceaneng.2015.04.040
http://dx.doi.org/10.1260/0309-524X.35.1.1
http://dx.doi.org/10.1260/0309-524X.39.1.1
http://dx.doi.org/10.1109/TSTE.2012.2225454
http://dx.doi.org/10.1260/030952407783123060
http://dx.doi.org/10.1016/j.oceaneng.2014.09.027
http://dx.doi.org/10.1016/j.oceaneng.2016.08.015


J. Mar. Sci. Eng. 2017, 5, 20 23 of 23

28. Li, L.; Acero, W.G.; Gao, Z.; Moan, T. Assessment of Allowable Sea States Furing Installation of Offshore
Wind turbine Monopile With Shallow Penetration in the seabed. J. Offshore Mech. Arct. Eng. 2016, 138, 041902.
[CrossRef]

29. Ahn, D.; Shin, S.-C.; Kim, S.-Y.; Kharoufi, H.; Kim, H.C. Comparative evaluation of different offshore wind
turbine installation vessels for Korean west-south wind farm. Int. J. Nav. Archit. Ocean Eng. 2016, 9, 45–54.
[CrossRef]

30. Det Norske Veritas. DNV-OS-H101. Marine Operations, General; DNV: Oslo, Norway, 2011.
31. Det Norske Veritas Joint Industry Project. Marine Operation Rules, Revised Alpha Factor—Joint Industry Project;

Technical Report; DNV: Oslo, Norway, 2007.
32. Wilcken, S. Alpha Factors for the Calculation of Forecasted Operational Limits for Marine Operations in the

Barents sea. Master’s Thesis, University of Stavanger, Stavanger, Norway, 2012.
33. Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind

power generation. Renew. Energy 2012, 37, 1–8. [CrossRef]
34. Sørensen, J. Notes in Structural Reliability Theory; Department of Civil Engineering, Aalborg University:

Aalborg, Denmark, 2011.
35. Ditlevsen, O.; Madsen, H. Structural Reliability Methods; Wiley: Chinchester, UK, 1996.
36. Madsen, H.; Krenk, S.; Lind, N. Methods of Structural Safety; Wiley: Englewood Cliffs, NJ, USA, 1986.
37. Moriarty, P.; Holley, W.; Butterfield, S. Extrapolation of Extreme and Fatigue Loads Using Probabilistic Methods;

NREL/TP-500-34421; NREL: Denver, CO, USA, 2004.
38. International Electrotechnical Commission. Wind Turbines—Part 1: Design Requirements; IEC 61400-1; IEC:

Geneva, Switzerland, 2014.
39. Joint Commitee for Structural Safety. Probabilistic Model Code Part 3: Resistance Models; Joint Commitee for

Structural Safety: Copenhagen, Denmark, 2011.
40. Bourinet, J.-M.; Mattrand, C.; Dubourg, V. A review of recent features and improvements added to FERUM

software. In Proceedings of the 10th International Conference on Structural Safety and Reliability, Osaka,
Japan, 13–17 September 2009.

41. Bourinet, J.-M. FERUM 4.1 User’s Guide; Institut Français de Mécanique Avancée: Clermont-Ferrand,
France, 2010.

42. Heggelund, Y. Decision Support for Installation of Offshore Wind Turbines (DECOFF). Christian Michelsen
Research, 2013. Available online: http://cmr.no/projects/10419/decision-support-for-installation-of-
offshore-wind-turbines-decoff/ (accessed on 1 December 2016).

43. Vatne, S.R.; Helian, Ø. DECOFF Rotor Lift Test Case. Project Memo; Marintek: Trondheim, Norway, 2014.
44. Vatne, S.R. Operating Phases of Test Case Operations; Marintek: Trondheim, Norway, 2013.
45. 4C Offshore, Ltd. Global Offshore Wind Farm Database. 4C Offshore, Ltd., 2016. Available online: http:

//www.4coffshore.com/offshorewind/ (accessed on 20 May 2016).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1115/1.4033562
http://dx.doi.org/10.1016/j.ijnaoe.2016.07.004
http://dx.doi.org/10.1016/j.renene.2011.05.033
http://cmr.no/projects/10419/decision-support-for-installation-of-offshore-wind-turbines-decoff/
http://cmr.no/projects/10419/decision-support-for-installation-of-offshore-wind-turbines-decoff/
http://www.4coffshore.com/offshorewind/
http://www.4coffshore.com/offshorewind/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	State of the Art of Offshore Wind Farm Accessibility for O & M and Installation Purposes 
	Weather Constraints of O & M and Installation Vessels 
	Weather Window Estimation 

	Possible Improvements to the State-of-the Art Offshore Wind Farm Accessibility Predictions 
	Proposed Methodology 
	Types and Meaning of Equipment Acceptance Criteria 
	Numerical Simulation of Equipment Response 
	Equipment Response Analysis and Extreme Response Distributions 
	Estimation of Probabilities of Acceptance Criteria Exceedance Events Using FORM 
	Estimation of Total Probability of Operation Failure and Weather Window Estimation 

	Descriptions and Setup of Test Cases 
	Operation Model Description 
	Test Case Location and Weather Forecasts 
	Stochastic Model and Parameters of Sensitivity Analyses 

	Results and Discussion 
	Results of Short-Term Study 
	Results of the Long-Term Study 

	Conclusions 

