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1 Introduction 

This report is a product of work conducted at AAU within the frame of activities for the DECOFF 

project. The main focus is statistical analysis of offshore installation equipment responses in order 

to estimate the Probability of Failed operation/installation. The report shall cover the following 

aspects: 

• A description of sources of uncertainty and uncertainty handling in DECOFF. 

• General notes on Limit states. 

• The methodology used to determine the Probabilities of Failure for Hywind Rotor Lift 

Operation (total operation failure and failure probabilities of individual limit states). 

• A brief analysis of deterministic and stochastic Ultimate Limit States. 

• SIMO model verification and estimation of operation limiting met-ocean parameters for 

Hywind Rotor Lift Operation. 

• Description of the selected test period, May 01 – August 01 2014. 

• Estimation of weather windows for the operation using the standard Alpha-factor method. 

• Estimation of weather windows for the operation using DECOFF method with ECMWF 

weather forecasts May 01 – August 01 2014 period. 

• Estimation of weather windows for the operation using DECOFF method with met-ocean 

condition measurements at FINO3 site for May 01 – August 01 2014 period. 

• Study of the weather forecast uncertainty in terms of its effect on the uncertainty of individual 

critical responses and on probabilities of failure of individual limit states. 

2 General notes on Uncertainty 

2.1 Sources of uncertainty 

The parameters subject to uncertainty are assumed to be modelled by stochastic variables and/or 

stochastic processes / stochastic fields. The uncertainties are divided in the following groups: 

Physical uncertainty (aleatory uncertainty) is related to the natural randomness of a quantity, for 

example the annual maximum mean wind speed or the uncertainty in the yield stress due to 

production variability. 

Measurement uncertainty (epistemic uncertainty) is related to imperfect measurements of for 

example a geometrical quantity. 

Statistical uncertainty (epistemic uncertainty) is due to limited sample sizes of observed quantities. 

Data of observations are in many cases scarce and limited. Therefore, the parameters of the 

considered random variables cannot be determined exactly. They are uncertain themselves and may 

therefore also be modelled as random variables. Are additional observations provided then the 

statistical uncertainty may be reduced.  
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Model uncertainty (epistemic uncertainty) is the uncertainty related to imperfect knowledge or 

idealizations of the mathematical models used or uncertainty related to the choice of probability 

distribution types for the stochastic variables. Some of the most important model uncertainties for 

structural reliability assessment of wind turbine components are related to site assessment and the 

aerodynamic models. 

The above types of uncertainty can be handled by structural reliability methods. Another ‘type’ of 

uncertainty which is not mentioned above and not covered by these methods is gross / human errors. 

These types of errors can be defined as deviation of an event or process from acceptable engineering 

practice and is generally handled by quality control measures. 

It is noted that some aleatory uncertainties ‘change’ to epistemic uncertainties when the system is 

realized.  

The reference period for the use of the stochastic model is also important when modelling stochastic 

variables and processes. It is often assumed that ergodic stochastic processes may be used. However, 

the influence of long-term effects (e.g. climate change) may also need to be considered. Some 

uncertainties may for short reference periods appear reasonable but when predictive models are 

extrapolated for long reference periods then uncertainties can easily propagate and increase to 

unrealistic levels.  

2.2 Sources modelling uncertainty 

The physical and model uncertainties are among others related to the wind and wave parameters such 

as long-term and extreme mean wind speeds, turbulence and long-term and extreme significant wave 

heights. The long-term uncertain parameters are e.g. related to serviceability and fatigue limit states 

whereas the extreme uncertain parameters are e.g. related to ultimate limit states implying total or 

partial collapse / failure of structural components.  

Each of the uncertain parameters modelled by stochastic variables niX i ,...,2,1,   is assumed to be 

modelled by a distribution function  iiX xF
i

α;  where iα  denotes the statistical parameters. 

Dependency between the stochastic variables can be modelled by joint distribution functions or 

correlation coefficients. A number of methods can be used to estimate the statistical parameters iα  

in distribution functions, e.g. the Maximum Likelihood method or Bayesian statistics. It is noted that 

using the Maximum Likelihood method also gives a consistent estimate of the statistical 

uncertainties if the number of data is larger than 25-30, see e.g. (Lindley, 1976): 

Model uncertainty, see (EN 1990, 2002) and (ISO, 1998) can be assessed if a mathematical model 

h  is introduced to describe / approximate a physical phenomenon (e.g. the load bearing capacity of 

a wind turbine component). The mathematical model is assumed to be a function of a number of 

physical uncertainties (e.g. strength parameters) modelled by stochastic variables X  with realizations 

denoted x . Further, the model is assumed to be a function of a number of regression parameters 

denoted mRR ,...,1 . The regression parameters are determined by statistical methods, and are therefore 
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subject to statistical uncertainty. The model is not perfect; therefore model uncertainty has in general 

also to be introduced. This is often done by a multiplicative stochastic variable . The model can 

thus be written: 

 𝑓(𝑥) ≅ ∆ ∙ ℎ(𝑿, 𝑹𝟏, … , 𝑹𝒎) (2.1) 

   

It is assumed that N  data sets are available from measurements or tests. The model uncertainty   is 

assumed to be modelled by a Log-Normal distributed stochastic variable with mean (bias) b  and 

standard deviation   and can be determined following the procedures in e.g. (EN 1990, 2002) and 

(ISO, 1998). 

2.3 Uncertainty handling in DECOFF 

The following sources of uncertainty will be considered: 

1) Wind and wave characteristics as input for SIMO: the physical and model uncertainties related to 

this input will be assumed covered by an appropriate number of ensemble time series.  

2) Other input parameters for SIMO: this could be damping and stiffness parameters used in the 

modelling of the dynamic properties of the structural models used e.g. for cranes. These uncertainties 

can be modelled as stochastic variables using information from e.g. (JCSS, 2002). 

3) The output from SIMO consists in time series of various response parameters, incl. (see (Vatne, 

2013) and (Vatne, 2015)): 

• Nacelle acceleration 

• Crane loads 

• Lift wire tension 

• Airgap between rotor and vessel 

• Airgap between blades and waves 

• Acceleration rotor 

• Sway motion 

• Surge motion 

• Relative motion between rotor and special tool 

• Relative velocity 

For each of these response parameters the following should be considered: 

• Estimation of mean and standard deviation (or alternatively fit of a distribution function to 

data for the response parameters considered). The stochastic models should be selected 

according the type of limit state associated with the response: 

o If extreme response is critical then an extreme type stochastic model for an 

appropriate reference time should be used. 
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o If the response is used in a serviceability limit state then a stochastic model for the 

long-term response should be used. 

• Stochastic model for the model uncertainty associated with the structural modelling in SIMO, 

i.e. bias and COV for model uncertainty. 

4) Limit states functions should be formulated for each of the critical limit states / events: 

 𝑔 = 𝑋𝑅 ∙ 𝑅(𝑿) − 𝑋𝑒 ∙ 𝐸(𝑿) (2.2) 

   

Where 

 XE   models the load effect (e.g. acceleration or stresses) 

EX  models the model uncertainty connected to estimation of the load effect by SIMO 

 XR  models the ‘resistance’ (e.g. maximum, critical acceleration or yield stress), which for some 

limit states can be considered as a stochastic variable 

RX   model uncertainty related to ‘resistance’ model 

5) Using the limit state in  the stochastic models for the uncertain parameters the probability that the 

critical limit state / event occurs is estimated and used as input for the risk assessment, see below.  

3 General notes on Critical limit states 

This section describes how to model different critical limit states / events. Generally the events are 

divided in two groups a) serviceability limit states and b) ultimate limit states: 

a) Serviceability limit states: model events that mainly influences the function of the system 

(vessel, cranes, wind turbine) without resulting in permanent excessive deformations and / or 

rupture. Examples are too large accelerations and velocities of components. 

b) Ultimate limit states: model events resulting in rupture or failure of  components or the whole 

system. An example is failure of a steel component where the load effect exceeds the yielding 

(or rupture) strength. 

In order to model the limit states the following aspects are to be considered: 

• Consequences of exceedance of critical limits of the response  

• Critical limits for response 

3.1 Serviceability limit states, SLS 

The limit states have to take into account: 

• The critical level of the response 

• How long time is the critical level exceeded 
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Therefore, for serviceability limit states various critical events can be formulated for each response 

parameter (e.g. acceleration) involving combinations of how much and how long time a critical level 

is exceeded.  

For each of the critical events the consequences have to be assessed (and if possible quantified in 

terms of economic loss). 

For each critical event the probability of exceedance per phase is estimated considering the 

uncertainties described in section 2. Also, the consequence in terms of costs is estimated 

3.2 Ultimate limit states, ULS 

The limit states have to take into account: 

• The critical level of the response, e.g. yield stress 

• The maximum load effect during the duration of the phase considered 

For each of the critical events the consequences have to be assessed (and if possible quantified in 

terms of economic loss). For each critical event the probability of exceedance per phase and the 

consequence in terms of costs is estimated. 

4 DECOFF system description  

This section briefly describes the DECOFF forecasting system topology. Figure 4.1 shows the 

general structure of the DECOFF system. This report will focus on the part highlighted in green 

square. 

 

Figure 4.1. DECOFF forecasting system. Graphical representation. 
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5 Failure probability estimation procedure and initial testing 

This section describes the procedure to estimate the probability of failure for Hywind Rotor Lift 

operation. The focus is mainly establishing the procedure and validating it throughout a simple short 

term analysis.  Failure probabilities are estimated using a simple Monte Carlo simulation technique. 

SIMO is used to simulate motions of involved floating vessel system. 

5.1 Input to SIMO 

The multi-parametric ECMWF weather forecasts are used as input for SIMO. In the following 

example the weather forecast for the period from 2013-08-06 00:00:00 to 2013-08-09 24:00:00 

(forecasted at 2013-08-01 for 3 days in advance) will be used. The following figures show the 51 

ensembles of forecasted weather conditions:  

 

Figure 5.1. ECMWF weather forecast for 2013-08-01 - 2013-08-03. 

Input parameters from ECMWF forecasts used as SIMO input: 

• Wind speed and direction (Ws, WsDir). 

• Significant wave height and peak period (Hs, Tp, JONSWAP 1D spectrum), wave 

direction the same as wind direction (WsDir, wind generated waves). 
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• Swell significant wave height and mean period (HsSwell, TmSwell, Pierson-Moscowitz  

spectrum) and direction (SwellDir). 

5.2 SIMO model and simulation 

Phases 3-6 are simulated using model files according to (Vatne & Helian, 2014) and (Vatne, 2013), 

see Table 5.1. During these phases wind turbine rotor is lifted up from the barge and fitted to the 

nacelle on top of floating Wind Turbine tower (Figure 5.2).  The Phase 3-6 sequence has to be 

simulated in sequence and has to be analysed as a continuous operation because it is not possible to 

stop and restart the sequence (non-reversible operation). 

Table 5.1. Rotor lift phases. 

Phase 

no 
Phase 

Total 

hours 

Hours after start-up 

8 9 10 11 12 13 

1 Transit to field 8 8  

       

  

2 Preparation for lift 3 

 

3 

    

  

3 Lift up rotor from vessel 0.2 

    

0.2 

   

  

4 Rotate rotor 0.2 

     

0.2 

  

  

5 Lift rotor to close to nacelle 0.4 

      

0.4 

 

  

6 Connect the rotor to special tool 0.2 

       

0.2   

7 Connect the rotor flanges 0.1                 0.1 

 

Figure 5.2. Phases 3-6 of rotor lift operation. Lift up (Phase 3) and fitting to the nacelle 

(Phase 6). 

Every simulation is performed with additional 120s in the beginning to eliminate any initialization 

effects present in SIMO software. Later when the response is analysed the first 120s will be removed 
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from every simulation in order to conform to the required operation phase lengths, given in (Vatne 

& Helian, 2014). Convergence of the final results is achieved by performing a minimum number of 

16 simulations (with different seeds) for each weather forecast ensemble, the requirement is based 

on (IEC, 2014) Annex G. 

5.3 Aggregation of response time series 

Response time series of multiple operation phases and simulation seeds are aggregated based on 

active limit states in the following manner: 

• Selecting one limit state from Table 5.2 and combining relevant SIMO output time series 

according to excel spreadsheet (Vatne, 2015). 

• Joining the response time series end to end for each phase, where the limit state is active. The 

weather input should be kept the same. Example: Crane Load limit (green in Table 5.2) is 

active in Phases 3-5, therefore the crane load response time series should be combined 

together (see Figure 5.3). Total duration of the time series should constitute the duration of 

the 3 involved phases (720+720+1440=2880s). 

Since every forecasted weather ensemble has to be simulated using at least 16 different seeds, the 

resulting time series also have to be aggregated and analyzed together. The resulting time series 

should be similar to Figure 5.4. Total duration of resulting time series – 2880*(number of seeds). 

 

Figure 5.3. Aggregating response from different phases. 
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Figure 5.4. Multiple simulations aggregated. Same weather conditions, different SIMO input 

seed. 

Table 5.2. Limits for rotor lift operation. 

Phase nr Phase Critical response parameters  Acceptance limit 

1 Transit to field Airgap between blade 1 and waves > 3 m 

Airgap between blade 2 and waves > 3m 

2 Preparation for lift Airgap between blade 1 and waves > 3 m 

Airgap between blade 2 and waves > 3 m 

3 Lift up rotor from vessel Crane loads < 4250kN 

Lift wire tension > 0 

Tug wire tension > 0 

Airgap between blade 1 and waves > 3 m 

Airgap between blade 2 and waves > 3 m 

Acceleration rotor < 4 m/s^2 

Rotational acceleration rotor < 5 rad/s^2 

Rotor sway motion < 1 m 

Rotor surge motion < 1 m 

4 Rotate rotor Crane loads < 4250kN 

Lift wire tension > 0 

Tug wire tension > 0 

Acceleration rotor < 4 m/s^2 

Rotational acceleration rotor < 5 rad/s^2 

Rotor sway motion < 1 m 

Rotor surge motion < 1 m 
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Lift rotor up to close to nacelle 

Crane loads < 4250kN 

lift wire tension >0 

tug wire tension >0 
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Airgap blade 3 and tower  >0 m 

Acceleration rotor < 4 m/s^2 

Rotational acceleration rotor < 5 rad/s^2 

Yaw and tilt angle < 5 degrees 

Rotor sway motion < 1 m 

Rotor surge motion < 1 m 

6 Connect the rotor to the special 

tool/crib 

Relative yaw angle between rotor and 

special tool 

 < 5 degrees 

Relative tilt angle between rotor and 

special tool 

 < 5 degrees 

Relative radial velocity <0.4 m/s 

Relative axial velocity <0.1 m/s 

Airgap blade 3 and tower >0 m 

 

 

5.4 Response analysis 

The required responses according to Table 5.2 extracted from SIMO output file and then post-

processed in the following way (example figures are for “Crane Load” limit state, 16 seeds were 

used): 

1. The maximum responses are extracted from the aggregated time series of 16 seeds per 

weather forecast ensemble using a Peak Over Threshold method.  

 

Figure 5.5. Example time series of crane load time series and extracted peaks. 

In order to ensure statistical independence of the extracted peaks, a time separation of 3 

response cycles is used, based on (IEC, 2014) Annex G. Adaptive threshold is used to extract 



15 

 

peaks, each simulated seed should have a threshold calculated using the following equation 

(the threshold jump indicates different seeds in Figure 5.5): 

 𝑇ℎ = 𝑚𝑒𝑎𝑛(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) + 1.4 ∙ √𝑣𝑎𝑟(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

 

(5.1) 

2. A Weibull distribution is fitted to the extracted peaks using Maximum Likelihood method to 

estimate distribution parameters. Since 16 seeds of the same weather situation are simulated, 

the fitted distribution function has to be adjusted using the following equation (example in 

 Figure 5.6): 

 𝐹𝑛𝑜𝑛−𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑐𝑒(𝑟 < 𝑅𝑚𝑎𝑥) = 𝐹𝑙𝑜𝑐𝑎𝑙(𝑟 < 𝑅𝑚𝑎𝑥)𝐸(𝑛𝑝) 

 

(5.2) 

 𝐸(𝑛𝑝) =
𝑛𝑝𝑒𝑎𝑘𝑠

𝑁𝑠𝑒𝑒𝑑𝑠
 

 

(5.3) 

where: 

𝐹𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚(𝑟 < 𝑅𝑚𝑎𝑥) – Adjusted distribution function of maximum response; 

𝐹𝑙𝑜𝑐𝑎𝑙(𝑟 < 𝑅𝑚𝑎𝑥) – Local distribution function of maximum response, defined by all peaks 

from 16 simulations. 

𝑛𝑝𝑒𝑎𝑘𝑠 – Total number of peaks, extracted from aggregated time series of 16seeds*2880s. 

𝑁𝑠𝑒𝑒𝑑𝑠 – Number of simulated seeds per weather situation (16 in this case). 

 

 Figure 5.6. Fitted Weibull distribution.  

Weibull distribution is fitted for every weather forecast ensemble individually resulting in 51 

distributions per forecasted weather situation. Exceedance function for every ensemble is 
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calculated as follows (example in Figure 5.7), and later used in calculation of probability of 

operation failure: 

 𝑃𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑟 > 𝑅𝑚𝑎𝑥) = 1 − 𝐹𝑛𝑜𝑛−𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑟 < 𝑅𝑚𝑎𝑥) 

 

(5.4) 

 

 

Figure 5.7. Exceedance functions for all 51 ensembles of one weather forecast, deterministic 

(right figure) and stochastic (left figure) failure limits. 

 

 

Depending on the acceptance limit, the calculation of probability of operation failure can be 

different as follows: 

 

a. When the acceptance limit is considered non-deterministic and a distribution function 

is used, example - Crane load limit . In this case, a log-normally distributed crane 

hook/lifting cable strength with the following parameters is used: 

Table 5.3. Parameters of acceptance limit distributions. 

Limit state SWL, 

[kN] 

Assumed 

safety 

factor, [-] 

5% 

Characteristic 

value, [kN] 

Expected value 

of LogNormal 

Distribution, 

[kN] 

COV, 

% 

Dist 

Crane 

Load 

4250 1.5 6375 6930 5 LN 

Rotor Acc 4 1.2 4.8 5.225 5 LN 

Rotor Acc 

Ang 

5 1.2 6 6.25 5 LN 
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Then the probability of failed operation (for the phases considered) can be calculated 

as an integral, or numerically by discretizing (Figure 5.7 to the left): 

 
𝑃𝐹,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∫ 𝑃𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅) ∙ 𝑓(𝑅|𝜇𝑙𝑛, 𝜎𝑙𝑛) 𝑑𝑅

= ∑ 𝑃𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅) ∙ 𝑓(𝑅|𝜇𝑙𝑛, 𝜎𝑙𝑛) ∆𝑅 

 

(5.5) 

where:  

𝑃𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅) – Exceedance function evaluated at crane load R; 

𝑓(𝑅|𝜇𝑙𝑛, 𝜎𝑙𝑛) – Probability density function of crane lifting cable strength, evaluated at crane 

load R;  

∆𝑅 – bin (discretization) width of crane load R. 

b. When the acceptance limit (Rmax) is considered deterministic, a single value is used 

as a failure limit. In this case, probability of a failed operation is calculated simply, as 

the exceedance function evaluated at the acceptance limit (Figure 5.7 to the right): 

 𝑃𝐹,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝑃𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅𝑚𝑎𝑥) 

 

(5.6) 

c. When the acceptance limit is defined as “response cannot be negative”, example – no 

slack in Lift wires – Lift wire tension > 0 (Table 5.2. blue) it implies that non-

exceedance probability is to be considered as failure probability, therefore the 

probability of failure is calculated as Cumulative Distribution Function (CDF) 

evaluated at the acceptance limit  (Rmax): 

 𝑃𝐹,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝐹𝑛𝑜𝑛−𝑒𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅𝑚𝑎𝑥) 

 

(5.7) 

Furthermore, since Weibull distribution is not defined for negative or 0 values, a 

normal distribution is fitted to the extracted minima. The same procedure is used as 

described in (1-2) but a low threshold is applied and minima are extracted, see Figure 

5.8 and Figure 5.9. 
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Figure 5.8. Lower threshold and extracted minimal Lift Wire load limit state. 

  

Figure 5.9. Fitted Normal distribution and CDFs for all 51 ensembles of one weather forecast. 

 

3. Probabilities of failed operations are calculated for each ensemble using the appropriate 

distributions and acceptance limit and further, the expected probability of failure can be 

estimated for each limit state as follows: 

 
𝑃𝐹,𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒 =

∑ 𝑃𝐹,𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒
𝑁
𝑖=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑠 𝑁
 

 

(5.8) 

The following figure shows a couple of examples out of the 13 limit states that are relevant 

to the Rotor lift operation. 
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Figure 5.10. Expected values of some Limit States for Rotor Lift operation. 

It is clearly visible, that some limit states exceed the acceptance limit of 1/10000 (10-4) 

suggested by (DNV, 2011). 

 

4. Final failure rate of a given operation is calculated as a series system of Limit State 

probabilities of failure, therefore product of success probabilities is used: 

 𝑃𝐹,𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 − ∏ (1 − 𝑃𝐹,Lim 𝑆𝑡𝑎𝑡𝑒,  𝑖
𝑁𝐿𝑖𝑚 𝑆𝑡𝑎𝑡𝑒𝑠
𝑖=1 ) 

 

(5.9) 

Alternatively, if the Limit States could be considered as a parallel system, total probability of 

operation failure would be a product of individual Limit State Probabilities of failure: 

 

𝑃𝐹,𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = ∏ 𝑃𝐹,Lim 𝑆𝑡𝑎𝑡𝑒,  𝑖

𝑁𝐿𝑖𝑚 𝑆𝑡𝑎𝑡𝑒𝑠

𝑖=1

 

 

(5.10) 

The following Figure 5.11 summarizes the analysis, giving the overall Failure Rate of the 

Rotor Lift Operation (Limit States are considered as series system), involving 13 different 

limit states. Based on the results it can be concluded, that if the DNV limit for Operation 

Failure is used, a weather windows suitable for installation can be found between 16 and 30 

hours lead time.  
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Figure 5.11. Total Expected Failure Rate of Rotor Lift Operation. 

5.5 Alternative decision criteria for decision making 

For decision making a number of alternatives should be considered, including different routes, 

different vessel types, etc. For each alternative, the total expected costs can be determined by the 

following equation: 

 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑤𝑎𝑖𝑡𝑖𝑛𝑔 + 𝐶𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + ∑ ( ∑ 𝑃𝐿𝑆,𝑖,𝑗𝐶𝐿𝑆,𝑖,𝑗

𝑁𝐿𝑖𝑚𝑆𝑡𝑎𝑡𝑒𝑠

𝑗=1

)

𝑁𝑃ℎ𝑎𝑠𝑒𝑠

𝑖=1

 

(5.11) 

where 

phasesN  number of phases 

ULSN  number of ULS events 

jiULSP ,,
 probability that ULS critical event no j in phase i occurs 

jiULSC ,,
 cost if ULS critical event no j in phase i occurs 

waitingC  cost of waiting time (due to bad weather conditions), incl. the cost of ‘doing nothing’ due to 

lost production benefits  

equipmentC  cost of equipment, incl. vessel type, … 
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The optimal decision is generally the decision with the lowest expected costs, totalC . This type of 

analysis in only applicable when it is possible to define monetary consequences to each type of 

failure. Note: restrictions and costs due to risk of safety for people ‘operations’ are not included in 

the present cost model for decision making.  

6 Effect of stochastic critical response limits 

An investigation was performed in order to give some insight on the effects of safety factors and 

non-deterministic acceptance limits on the Probabilities of Failed Operations. A more detailed 

analysis was conducted for Crane Load limit state (also as a direct result, a non-deterministic limit 

for “Crane Strength” was used in previous estimation of total Failure Rate of the Rotor Lift 

Operation). 

A sensitivity analysis was performed on the Crane Load limit state using the following parameters 

defining the distribution of “Crane Strength” in Table 6.1. Figure 6.1 shows a graphical 

representation of safety factors and characteristic values of strength.  The values in the table below 

are considered to be reflective of actual uncertainty related to strength of wire ropes. It has to be 

noted, that the partial safety factor found in the table below only accounts for the variation of strength 

of lifting equipment (wire rope) and does not include any other uncertainties that might be related to 

lifting operations (skew loads, wear, sling terminations and other unexpected events or 

manufacturing tolerances etc.).  
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Table 6.1. Parameters for Crane Load sensitivity analysis. 

Safety 

factor, 

[-] 

Coefficient of 

Varation 

COV, [%] 

Expected 

value of 

Strength, 

[kN] 

Standard 

deviation of 

strength, 

[kN] 

LogNormal 

Parameters 
Characteristic 

strength, 5% 

quantile, [kN] 
µLN σLN 

1.2 5 5544 277,2 8.619 0.05 5100 

1.2 7 5736 401.5 8.653 0.07 5100 

1.5 5 6930 346.5 8.842 0.05 6375 

1.5 7 7170 501,9 8.875 0.07 6375 

 

 

Figure 6.1. Strength distribution and relevant parameters. 

The following figure shows the resulting distributions of non-deterministic strength from Table 6.1 

that will be used in the sensitivity analysis. 

 

Figure 6.2. Distributions of Strength associated with Table 6.1. 
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Figure 6.3. Results of sensitivity analysis. 

It is clearly visible, that by using only baseline deterministic acceptance limit of SWL=4250kN the 

Probability of Failure of only Crane Load limit state indicates failure of the whole operation, 

therefore it is advisable to use a stochastic acceptance limit. It should be noted that with increasing 

uncertainty of the Strength variable (increasing COV) the Probability of Operation Failure increases 

significantly. There is also a clearly visible increase of PF when safety factors are reduced.  

Based on this analysis, the calculations of PF for the whole Rotor Lift Operation were performed 

with a stochastic Crane Load limit, also stochastic limits were applied to Rotor Linear and Angular 

accelerations. 
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7 SIMO model verification 

This section describes how well the SIMO model of the Hywind Rotor Lift operation is performing 

and what weather conditions could be suitable for the installation to be commenced. This analysis is 

based purely on whether the SIMO model can simulate a given weather situation without 

encountering numerical errors and crashing. The information from this section serves as a first insight 

on what weather situations should be analyzed in more detail using statistical analysis. 

7.1 Initial analysis. SIMO model performance 

It is assumed that if the SIMO model of the operation cannot compute the responses of the installation 

equipment, the operation should not be attempted under certain weather conditions. Typically a failed 

SIMO simulation would look similar to the one in Figure 7.1. A percentage of the time series that is 

not computed is used as an indicator of the model performance.  

 

Figure 7.1. Example of (partially) failed simulation, Phases 3-6. 

When SIMO fails it outputs ‘0’ for every time step after the numerical computation failure in every 

response variable. Determining whether SIMO failed to compute the simulation fully is done by 

selecting a typically non-zero response (e.g. crane load) as an indicator of simulation failure. ‘0’ 

values are found in the time series and the percentage of non-simulated time series is calculated. The 

following figures show the SIMO model performance under different weather conditions. 

 

Figure 7.2. Phases 3-6 SIMO model performance, Wind Speed 1 and 8 m/s. 
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Figure 7.3. Phases 3-6 SIMO model performance, Wind Speed 10 and 16 m/s. 

It is assumed that if >10% of the total time series is not computed the results are not reliable and the 

operation should not be attempted in those weather conditions. It is clearly visible that there is a safe 

region up to ~2.5m (Hs) significant wave height and ~5s (Tp) peak period when the wind speed is 

below ~8m/s. The safe region reduces to (Hs) ~1.25-1.5m significant wave height at peak periods 

from 1-15s when wind speed is increased to 10-16 m/s. 

Based on this simple analysis, it could be concluded that in order to obtain reliable results from 

SIMO, weather situations for simulation should be limited to maximum 2.5m (Hs) significant wave 

height, 5s peak period (Tp) when the wind speeds (Ws) are below 8m/s. Up to 16 m/s Ws the 

maximum significant wave height (Hs) should not be more than 1.25-1.5m, the peak period (Tp) 

has less of an influence in these cases.  

7.2 Further analysis. Weather limits for Alpha-Factor method 

Further analysis focuses on selected few operation critical response parameters in order to determine 

when the operation can be completed. The results of this analysis will be later used as basis to set 

weather limits for Alpha-Factor method (standard method to determine weather windows for weather 

critical operations). 

Figures from section 7.1 are overlaid on top of the figures with critical response parameter values in 

order to see if the SIMO model can be trusted. The greyed area in all the following plots indicates 

that simulations under those conditions were completed with numerical errors and the results are not 

reliable (>10% of time series is zero-padded).  

Crane Load. The limit for maximum crane load is set to 6375kN (assuming the 4250kN limit from 

(Vatne, 2015) is defined with a safety factor of 1.5 therefore 4250kN x 1.5=6375kN). The following 

Figure 7.4 shows the crane load under different weather conditions. The areas coloured in “white” 
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are where the response exceeds the assumed limit (Response ≥ 6375kN), the combination of weather 

conditions in “white” are not acceptable and operation should not be attempted. 

 

Figure 7.4. Crane Load critical response under different weather conditions. 

It seems reasonable to conclude that below 5s (Tp) the operation could be completed under any 

(Hs≤4m) significant wave height and (Ws≤16m/s) wind speed. It has to be kept in mind that SIMO 

results are not reliable under certain weather conditions, therefore the limit for operation should be 

set at: 

𝐻𝑠,𝑙𝑖𝑚 =  {
 1.75𝑚, 𝑇𝑝 ≤ 6𝑠, 𝑊𝑠 ≤ 10𝑚/𝑠

1.5𝑚, 𝑇𝑝 ≥ 6𝑠, 𝑊𝑠 ≤ 10 𝑚/𝑠
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

There is also a clear indication that the natural frequency of the system is somewhere in the range of 

Tp=[5:8] because the response increases significantly when Tp≥5s. Although it is not possible to 

estimate the natural frequency accurately due to the fact that numerical simulation errors start to arise 

when input Tp≥5-8s and SIMO tends to crash and produce unreliable results. Therefore weather 

conditions where Tp> 5-8s should be analysed with care and, if possible, avoided alltogether. 
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Rotor Acceleration. The limit for maximum rotor acceleration is set to 4m/s2. The following Figure 

7.5 show the rotor acceleration under different weather conditions. The areas coloured in “white” 

are where the response exceeds the assumed limit, the combination of weather conditions in “white” 

are not acceptable and operation should not be attempted. 

 

 

Figure 7.5. Rotor Acceleration critical response under different weather conditions. 

From the figures above it can be concluded that wind speeds Ws≥12m/s are generally not acceptable 

under rotor acceleration limit state. The limits should be set at 1.5m Hs @[Tp≤5s;Ws≤12m/s], and 

0.5m Hs @[Tp≥5s;Ws≤12m/s]. 

𝐻𝑠,𝑙𝑖𝑚 =  {
 1.5𝑚, 𝑇𝑝 ≤ 5𝑠, 𝑊𝑠 ≤ 12𝑚/𝑠

0.5𝑚, 𝑇𝑝 ≥ 5𝑠, 𝑊𝑠 ≤ 12 𝑚/𝑠
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The same logic can be used for all the limit states mentioned in (Vatne, 2015) (see figures in 

Appendix A and limits for all the limit states in Table 5.2. Limits for rotor lift operation.) and then a 
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combination of weather limits for different critical response parameters can be reduced to general 

requirements for limiting met-ocean conditions for the whole operation.  

As a general trend throughout all the limit states, there is a value for Tp,low (wave peak period) after 

which the critical response increases significantly. This implies that in each limit state (critical 

response parameter) the weather limits for Hs can be split in limit for sea states with Tp< Tp,low and 

Tp> Tp,low. The limit on wind speed (Ws) is set to represent the situation where the critical response 

is exceeding the limit without taking Tp into account. The results are presented in the table below. 

Table 7.1. Weather limits for selected limit states. 

Limit State (critical response 

parameter) 

Hs, [m] Tp, [s] Ws, [m/s] 

  < Tp,low > Tp,low Tp,low 

Crane Load 1,75 1,5 6 16 

Rotor Acceleration 1,5 0,5 5 12 

Rotor Angular Acceleration 2,5 0 4 7 

Rotor Sway Motion 1,5 1,5 5 12 

Rotor Yaw angle 1,5 1,25 5 11 

Rotor Tilt angle 2,5 0 4 8 

Relative Yaw angle  2,5 1 6 8 

Relative Tilt Angle 1,5 0,5 5 13 

Radial Velocity 2,5 0,5 4 9 

Axial Velocity 2 0,5 5 10 

Minimums 1,5 0 ~5 7 

Adjusted for Maximum Values 2,7 (Hmax) 0 ~3.9 (Tz) ~10 (Ws,max) 

 

To summarize the table above, it should be noted that different limit states have different weather 

limitations. Furthermore, some of the limit states are violated or very close to critical limits if the 

wave peak period (Tp) is above 4-6s regardless of what wave height and wind speed is used (e.g. 

Rotor Angular Acceleration or Rotor Velocities). Therefore for Alpha-Factor method analysis, met-

ocean conditions with Tp > 6s should regarded as unfeasible for the operation. On the other hand, 

since the statistical DECOFF method uses the actual critical response time series as indication of 

operation failure, any met-ocean situation can be analysed by the DECOFF method provided that 

SIMO can simulate given situation with minimal numerical errors. 
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Since all limit states are active in parallel and all critical responses have to be below certain values, 

the limit for maximum allowable met-ocean parameters are set to the minimum values form the table. 

Namely, in order to successfully complete the Rotor Lift Operation (Phases 3-6) the met-ocean 

conditions should not exceed 1.5 meters significant wave height (Hs) at maximum peak period (Tp) 

of 5-6 seconds and maximum wind speed (Ws) of 7m/s.  

Furthermore, since the parameters above are by definition parameters of a met-ocean state (statistical 

parameters of x-hour sea state), the actual limits for maximum wave height (Hmax), wave period 

(Tz) and maximum wind speed (Ws,max) can be estimated. This is only done for the sake of 

completeness and these values are not directly used in the further analysis, but are useful as an 

indication of what extreme met–ocean conditions the model can withstand. In theory, there are 

equations relating the statistical parameters of a certain met-ocean state and values for maximum 

wave height, wind speed and wave period. One can use the following equations: 

 𝐻𝑚𝑎𝑥 = 𝑆𝐹 ∙ 𝐻𝑠 

 

(7.1) 

 𝑇𝑧

𝑇𝑝
≈ 0,78 for JONSWAP spectrum with γ = 3.3; 

(7.2) 

where: 

𝐻𝑚𝑎𝑥 – Maximum wave height; 

𝑆𝐹 – Storm Factor, 1.8-2 for operations of 30min-3h operations, (DNV, 2004); 

𝐻𝑠 – Significant wave height; 

𝑇𝑧 ,𝑇𝑝– wave mean zero up-crossing  and peak periods. 

 

Although it is possible to estimate the maximum values using the equations, it is necessary to know 

the actual values that caused responses that exceeded the operational thresholds. These maximum 

values can be estimated directly from simulations by finding the exact point in time where the 

response becomes higher that the operational limit. Also a general analysis of the simulation output 

wave and wind time series can be performed in order to see how the sea state parameters are relate 

to the maximum values of interest. The following figures show the relation between the wave 

parameters: 
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Figure 7.6. Sea state parameter relations (Phase3 – up, Phase5 – down). 

It is visible from the figures above, that the theoretical values match closely to what is obtained 

through simulation (Storm Factor for maximum wave height – 1.6-1.8 and ratio between wave 

periods of ~0.75-0.85).  Therefore, the factors for maximum wave height and wave period will be 

taken as follows: 1.8 for maximum wave and 0.78 for mean wave up-crossing period. 

The same logic is applied to wind speed, since input to SIMO is 10 min average wind speed. The 

following figure shows the relation between 10 min mean wind speed and the expected (simulated) 

maximum. 
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Figure 7.7. Maximum and mean Wind speed relation. 

According to Figure 7.7, the maximum wind speed at which the equipment response exceeds the 

operational limits (at 7m/s 10 min mean) is 1.42 times higher than the input 10min mean wind speed. 

The factors found from the figures are used to determine the maximum values for operation limits in 

Table 5.2. Limits for rotor lift operation.  

Here it has to be noted that the extreme values are not directly used in further analysis and is only an 

indication of what extreme met-ocean conditions the model can withstand. The alpha-factor method 

focuses on significant wave height rather than maximum wave height rather than maximum values. 

Furthermore, the forecasted met-ocean conditions are also described by significant wave height, peak 

wave period and 10min average wind speed at reference height (10m). 

8 Test period May-July 2014 

In this section a brief description of weather conditions and the location for the virtual installation 

case assessment is given. The virtual test case is set to be a Hywind Rotor installation at FINO3 

measurement mast location. This location is chosen because measurements of met-ocean conditions 

are available from the FINO3 met-mast.  

The weather forecasts are ECMWF supplied every 24 hours, a total of 92 files for the whole  

May 01 – Aug 01 period. The weather forecasts are aggregated in such a way that the forecast 

provided at 00:00 hours is used until a new forecast is supplied the next day at 00:00 hours. This 

reduces the uncertainty in the forecast and also represents a close-to-reality situation, when the least 

uncertain weather forecasts would be used as soon as they are available. The ECMWF weather 

forecasts have a 3 hour temporal resolution and thus all the forecasted parameters are regarded as 3-

hour sea state parameters. 
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Figure 8.1. Weather conditions during the test period. 

9 Weather window estimation using Alpha-Factor method 

This section describes how a standard Alpha-Factor method can be applied to estimate the weather 

windows for Hywind rotor lift operation. The test period considered is late spring-summer of 2014 

(May 01 to August 01).The analysis is based on (DNV, 2011) section 4. The procedure for weather 

window estimation is clearly defined for weather forecasts that do not include multiple ensemble 

members. According to the guidance note in (DNV, 2011) sec. 4 B 701, ensemble forecasts can be 

used as an alternative to the standard Alpha-Factor method.  

There are multiple ways to use the alpha-factor methodology described in (DNV, 2011), the simplest 

and most straight-forward one is to use predefined tabulated alpha-factors which are valid for the 

whole North Sea. This will be presented in the following section. Also it is possible to derive the 

alpha-factors based on measurement data at the installation site, this will also be investigated in 

section 9.2. 

9.1 Tabulated Alpha-Factors based on (DNV, 2011) standard 

State of the art in determining weather windows today is using the tabulated alpha-factors defined 

by (DNV, 2011) . The standard provides alpha-factors for significant wave height for different 
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weather forecast qualities and operation durations (for reference see Tables 4-1 to 4-5 in (DNV, 

2011)).  

Based on the findings in section 7.2 and Table 7.1 the limiting wave height for Hywind Rotor Lift 

Operation is Hs=1.5m, this value is used to determine the alpha-factors from the Tables 4-1 to 4-5 

in (DNV, 2011). Based on Table 4-6 in (DNV, 2011) alpha-factor for wind speed Ws=7m/s is 

selected to be equal to αWs =0.8.  

Since the Hywind Rotor system seems to be highly sensitive to the incoming wave period when being 

installed, based on the fact that the SIMO model becomes unstable or critical responses exceed the 

limits when Tp≥5~6s, alpha-factor has to be defined for wave period. There is no clear standardized 

way to define the alpha-factor for wave period, therefore for the initial analysis the alpha-factor  is 

taken either αTp=1 or αTp=∞, which represents either no reduction (=1) in the limiting wave peak 

period or disregarding (=∞) the limitations on wave period entirely. The middle value αTp=0.78 is 

estimated based on FINO3 measurement data (see section 9.2).The following table summarizes 

selection of tabulated alpha factors for different weather forecast levels.  

Table 9.1. Tabulated alpha-factors. 

 αHs  for  

Hs = 1.5m 

αTp for  

Tp = 5s 

αWs for  

Ws = 7m/s 

Quantile 

T 4-1. WFQ = C 0.705 inf 0.78 1 0.8 mean 

T 4-2. WFQ = B 0.740 inf 0.78 1 0.8 maximum 

T 4-3. WFQ = A+M 0.780 inf 0.78 1 0.8 maximum 

T 4-4. WFQ = A+C 0.925 inf 0.78 1 0.8 maximum 

T 4-5. WFQ = A+M+C 0.925 inf 0.78 1 0.8 maximum 

FINO3 measurements 0.810 inf 0.78 1 0.8 maximum 

 

T x-y – table indicator for reference in (DNV, 2011); 

WFQ – weather forecast quality class A, B or C.  

+M – meteorologist on site, +C – calibrated based on measurement data. 

 

The following figures show an example of estimated weather windows based on T 4-3. WFQ=A+M 

case with αTp=0.79. Individual met-ocean condition limits (Figure 9.2) are summarized into 

combined weather windows taking all the limits into account (Figure 9.1). 
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Figure 9.1. Weather windows for Combined Weather Limits, alpha-factor method using 

ECMWF forecasts as input. 
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Figure 9.2. Weather windows for individual Weather Limits. 

It is clearly evident from the figures above that for this particular installation process (floating crane 

installing on floating wind turbine tower) weather conditions are not very favourable even during the 

summer months of 2014 with only 12 available weather windows. The same analysis was performed 

using different weather forecast qualities and the following Figure 9.3 summarizes the results. The 
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measure on Y axis is selected to be a multiplication of number and length of estimated weather 

windows due to the fact that both of these criteria are equally important.  

 

Figure 9.3. Summary of weather windows estimation. 

It has to be noted that some benefits of increased weather forecasts quality (having meteorologists or 

calibration equipment on board) can be observed, although the differences are not very big. 

Furthermore, it is clear that alpha-factor applied to wave peak period reduces the number and 

duration of weather windows significantly and thus needs a more detailed analysis (see section 9.2). 

Also, it is visible that when alpha-factor is applied to wave peak period (green and yellow bars) the 

amount and duration of weather windows stays relatively stable even if alpha-factor for wave height 

is increased with increasing weather forecast quality. It indicates that for the selected Hywind Rotor 

Lift test case, the most influential met-ocean parameter in determining the weather windows is wave 

period. This can be easily explained by the natural frequency of the whole installation system being 

in the range of dominant North Sea wave periods (4-8s during summer 2014 based on measurements 

at FINO3 site).  

  

 
8 
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9.2 Alpha-factors based on FINO3 measurements 

This section describes the methodology of determining the alpha-factors when measurement data is 

available. The analysis is based on (Wilcken, 2012), which in turn was based on theoretical 

background presented in (DNV JIP, 2007) later on to be used to update the alpha-factors (DNV, 

2011).  

The typical procedure of using tabulated alpha-factors can be substituted by statistical analysis of 

weather forecasts and measurements at the location of interest (installation). In general alpha-factor 

is a measure of uncertainty related to weather forecasts, therefore, if properly analysed, measurement 

and weather forecast data can be used to define specific alpha-factors for a given location. The 

following equation is used to define alpha-factors: 

 
𝛼 =  

𝐻𝑚𝑎𝑥

𝐻𝑚𝑎𝑥,𝑊𝑓
                                              

 

(9.1) 

Where: 

Hmax – maximum wave height with a probability of exceedance of 10-4 during a certain period; 

Hmax,Wf - maximum wave height with a probability of exceedance of 10-4 during a certain period 

taking into account the bias and variance of the weather forecast. 

 

Bias and variance of the forecast are calculated in terms of mean and standard deviation of the error 

term: 

 𝐻𝑒𝑟𝑟𝑜𝑟 = 𝐻𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 − 𝐻𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

 

(9.2) 

 
𝐸[𝐻𝑒𝑟𝑟𝑜𝑟] =

1

𝑛
 ∑ 𝐻𝑒𝑟𝑟𝑜𝑟,𝑖

𝑛

𝑖=1

 

 

(9.3) 

 

𝜎𝑒𝑟𝑟𝑜𝑟 = √
∑(𝐻𝑒𝑟𝑟𝑜𝑟 − 𝐸[𝐻𝑒𝑟𝑟𝑜𝑟])2

𝑛 − 1
 

 

(9.4) 

The measured and forecasted weave heights are grouped into bins of 1m in order to conform to the 

format used in (DNV, 2011) for tabulated alpha-factors. The following figure shows the measured 

and forecasted significant wave height at FINO3 site. Figure 9.4 shows the maximum spread of a 

ECMWF weather forecast, but only up to +72 hours forecast time (green scatter in the figure) will 

be used in this analysis. Although it is not necessary to define the alpha factors beyond the expected 

1-2 hours of operation duration, a more detailed analysis of up to +72 hours forecast time will provide 

insight on whether the calculations are correct (by comparison to tabulated alpha factors in (DNV, 

2011)). 
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Figure 9.4. Measurements and forecasts of Hs at FINO3. 

The following two figures show the bias and the variance of the weather forecasts. It has to be noted 

that the figures conform to what was initially obtained in (DNV JIP, 2007), therefore the results are 

considered to be correct. 

 

Figure 9.5. Forecast bias and standard deviation for Hs, FINO3 site. 

The bias and standard deviation of the forecast will be later on used in order to properly define the 

weather forecast uncertainty. The maximum wave height for a 3 hour forecast period can be obtained 

using the following equation (Rayleigh CDF for for wave height conditioned of Hs): 

 

𝑃(𝐻𝑚𝑎𝑥 ≤  𝐻)  =  [1 − 𝑒
(−2

𝐻2

𝐻𝑠
2)

]

𝑛=
𝑡𝑓

𝑇𝑝

 
 

 (9.5) 
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Where: 

𝐻𝑚𝑎𝑥  - maximum wave height; 

n – expected number of waves during a certain period; 

𝑡𝑓 – forecast duration, 3 hours=3600s; 

𝑇𝑝 – forecasted wave peak period; 

𝐻𝑠  - forecasted significant wave height; 

 

The forecasted values are adjusted for bias based on Figure 9.5 and the maximum wave height is 

calculated from the Rayleigh CDF at 10-4 probability of exceedance: 

 1 − 𝑃( 𝐻𝑚𝑎𝑥 ≤ 𝐻) = 10−4 

 
(9.6) 

 1 − 𝑃( 𝐻𝑚𝑎𝑥,𝑊𝐹 ≤ 𝐻) = 10−4 

 
(9.7) 

Also Hmax,Wf is calculated at the same probability exceedance, but due to the fact that full weather 

forecast uncertainty has to be taken into account, the joint probability density of H and Hs is used: 

 𝑝(𝐻, 𝐻𝑠) = 𝑝(𝐻|𝐻𝑠)𝑝(𝐻𝑠) 

 
(9.8) 

Where: 

𝑝(𝐻, 𝐻𝑠) – joint probability density function of wave height H and significant wave height Hs; 

𝑝(𝐻|𝐻𝑠) – conditional probability density function of wave height H, Rayleigh distribution; 

𝑝(𝐻𝑠) – probability density function of significant wave height Hs, assumed to be normal 

distributed with mean value of Hs adjusted for bias and standard deviation taken as the standard 

deviation of the error terms: 𝑁(𝜇𝐻𝑠,𝑓 + 𝑏𝑖𝑎𝑠, 𝜎𝑒𝑟𝑟𝑜𝑟). 

 

The cumulative density function used to determine  𝐻𝑚𝑎𝑥,𝑊𝐹 then becomes: 

 
𝑃( 𝐻𝑚𝑎𝑥,𝑊𝐹 ≤ 𝐻) = ∫ ∫ 𝑝(𝐻|𝐻𝑠)𝑝(𝐻𝑠) 𝑑𝐻𝑠 𝑑𝐻

∞

0

𝐻𝑚𝑎𝑥

0

 

 

(9.9) 

 𝑃( 𝐻𝑚𝑎𝑥,𝑊𝐹 ≤ 𝐻)

= ∫ ∫

43200 ∙ 𝐻 ∙ 𝑒
(−2

𝐻2

𝐻𝑠
2)

∙ (1 − 𝑒
(−2

𝐻2

𝐻𝑠
2)

)

10800
𝑇𝑝

−1

𝑇𝑝 ∙ 𝐻𝑠
2

𝑁(𝜇𝐻𝑠,𝑓 + 𝑏, 𝜎𝑒𝑟𝑟𝑜𝑟)𝑑𝐻𝑠 𝑑𝐻
∞

0

𝐻𝑚𝑎𝑥

0

 

 

(9.10) 

 

By integrating, 𝐻𝑚𝑎𝑥 is determined as the upper limit of the integral that gives the exceedance 

probability of 10−4. The following figure shows the calculated alpha factors for up to +72 hours 

forecast time and up to 4 meters wave height. 



40 

 

 

Figure 9.6. Alpha-factor for Hs, at FINO3. 

When compared to the values of alpha-factors in (DNV, 2011), the results from Figure 9.6 seem to 

be following the same trends and close to the actual tabulated values. The alpha-factor of interest for 

the Hywind Rotor Lift operation is for < 3 hours of operation period and at 1.5m significant wave 

height. By linear interpolation, alpha factor is αHs=0.81.  

As previously mentioned in section 7.2, there is no standard way to define alpha-factors for wave 

periods, therefore the same methodology as for wave heights will be used to determine site specific 

alpha-factor for wave peak period. The following figures show the dataset used to define the alpha-

factor and the forecast uncertainty in terms of bias and standard deviation of error term. The same 

procedure is used as for significant wave height. 

 

Figure 9.7. Measurements and forecasts of Tp at FINO3. 
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Figure 9.8. Forecast bias and standard deviation for Tp, FINO3 site. 

In order to properly define the alpha-factor  for wave peak period, a distribution of wave periods is 

necessary. For this analysis Bretschneider distribution wave periods will be used (based on (Wist, 

2003) and (Clauss, et al., 1994)): 

 

𝑃(𝑇𝑚𝑎𝑥 ≤  𝜏)  =  [1 − 𝑒
(−0.675

𝜏4

𝑇𝑚01
4 )

]

𝑛=
𝑡𝑓

𝑇𝑝

 

 

(9.11) 

Where: 

𝑇𝑚𝑎𝑥 - maximum wave period; 

n – expected number of waves during a certain period; 

𝑡𝑓 – forecast duration, 3 hours=3600s; 

𝑇𝑝 – forecasted wave peak period; 

𝑇𝑚01  - mean wave period, related to wave peak period 𝑇𝑚01 = 𝑇𝑝/1.2 ; 

 

Again, forecasted values are adjusted for bias based on Figure 9.8 and the maximum wave period is 

calculated from the Rayleight CDF at 10-4 probability of exceedance: 

 1 − 𝑃( 𝑇𝑚𝑎𝑥 ≤ 𝑇) = 10−4 

 
(9.12) 

 1 − 𝑃( 𝑇𝑚𝑎𝑥,𝑊𝐹 ≤ 𝑇) = 10−4 

 
(9.13) 

The joint density for wave periods is obtained the same way as it was for the wave heights, but by 

using the Bretschneider distribution as basis. The cumulative density function used to determine 

 𝑇𝑚𝑎𝑥,𝑊𝐹 then becomes: 

 

 
𝑃( 𝑇𝑚𝑎𝑥,𝑊𝐹 ≤ 𝑇) = ∫ ∫ 𝑝(𝑇|𝑇𝑚01)𝑝(𝑇𝑚01) 𝑑𝑇𝑚01 𝑑𝑇

∞

0

𝐻𝑚𝑎𝑥

0

 

 

(9.14) 
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 𝑃( 𝑇𝑚𝑎𝑥,𝑊𝐹 ≤ 𝑇) =

= ∫ ∫
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(9.15) 

 

By integrating, 𝑇𝑚𝑎𝑥 is determined as the upper limit of the integral that gives the exceedance 

probability of 10−4. The following figure shows the calculated alpha factors for up to +72 hours 

forecast time and up to 15s wave period. 

 

Figure 9.9. Alpha-factor for Tp, at FINO3. 

Alpha-factor for 5s wave peak period is obtained αTp=0.78.  

Looking back at the figure Figure 9.3 it is now clear that the most reasonable results are the ones 

represented in yellow, since the alpha-factor there is determined from actual FINO3 data. Although 

unlimited wave period would give a lot more and longer weather windows during the test period of 

summer 2014 it is clearly an unrealistic scenario, therefore it will be disregarded in further analysis. 

Furthermore, even the situation where αTp=1 is very unrealistic, because it would represent a 

situation where the weave periods are forecasted with 100% accuracy which is impossible. αTp=1 

scenario will be kept only for comparison. 
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10 Weather window estimation using DECOFF method 

In this section, statistical DECOFF method is used to determine weather windows for Hywind Rotor 

Lift Operation. The procedure proposed in section 4 is used throughout this section. The test period 

is May 01 – August 01 2014.  Main focus will be directed to the part of the Hywind Rotor Lift 

Operation when the barge is already positioned at the installation location and the rotor is lifted up 

and bolted to the nacelle (the same part of operation that was analyzed in section 4).  

It has to be noted that (partially) failed SIMO simulations are considered unusable if >10% of output 

time series is corrupted (usually 0-padded). Whenever a failed simulation is detected the probability 

of failure for that particular combination of met-ocean conditions is considered to be 1 (complete 

failure). Two cases are analyzed – using either ECMWF forecasts or measurements at FINO3 site as 

input to SIMO and DECOFF statistical method.  

10.1 Weather windows using DECOFF method with ECMWF forecasts 

This section describes the results of DECOFF method for weather window estimation when multi-

ensemble weather forecasts. The simulations are performed for every day within the test period with 

temporal resolution of 3 hours using all 51 ensembles contained in ECMWF forecast. Although it 

has to be noted that due to limited amount of time and computation power, only one seed is used to 

simulate the responses in contrast to 16 seeds that were used in section 4. This implies a higher 

uncertainty in the results, but significantly reduces the amount of time necessary to perform all the 

simulations.  

The limit states under consideration remain the same as in section 4 (see Table 5.2). Only phases 3-

6 are simulated and analyzed because they are the most important and also the most sensitive to 

changing met-ocean conditions. Furthermore, phases 3-6 have to be analyzes together because the 

operation is non-reversible after phase 3 has started. 

Input parameters from ECMWF forecasts used as SIMO input: 

• Wind speed and direction (Ws, WsDir). Wind direction is taken as zero under the 

assumption that the vessel aligns itself with the dominant direction of the wind/wind waves 

in order to avoid waves coming from the sides of the vessel. ISO 19901-1 NPD wind spectrum 

used, defined by: 

1. reference height (10m); 

2. mean wind velocity at reference height; 

3. wind profile exponent (0.11). 

 

• Significant wave height and peak period (Hs, Tp, JONSWAP 3 parameter spectrum) and 

wave direction the same as wind direction (WsDir, wind generated waves, equal to zero, see 

previous bullet). Spectrum is defined by: 
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1. significant wave height Hs; 

2. peak period Tp; 

3. peakedness parameter γ, calculated using the following equations: 

 

 𝛾 = 5 𝑓𝑜𝑟 𝑇𝑝 𝐻𝑠 ≤ 3.6⁄   

 𝛾 = exp(5.75 − 1.15 𝑇𝑝 𝐻𝑠⁄ )  𝑓𝑜𝑟  3.6 ≤ 𝑇𝑝 𝐻𝑠 < 5⁄  (10.1) 

 𝛾 = 1 𝑓𝑜𝑟 5 ≤ 𝑇𝑝 𝐻𝑠⁄  

 
 

• Swell significant wave height and mean period (HsSwell, TmSwell, JONSWAP 3 

parameter spectrum) and direction (SwellDir). The actual swell direction is calculated as the 

misalignment between wind waves and swell waves, also since the coordinate systems of 

SIMO and ECMWF do not match, the direction has to be taken negative and thus becomes: 

 𝑆𝑤𝑒𝑙𝑙𝐷𝑖𝑟 = 0 − (𝑆𝑤𝑒𝑙𝑙𝐷𝑖𝑟 − 𝑊𝑠𝐷𝑖𝑟) 

 

(10.2) 

Since there is only one seed simulated per ensemble member, aggregation of the time series is done 

in two steps, skipping the last one from section 5.3. The response is analysed as described in section 

5.4. The limit state probabilities (𝑃𝐹,𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒) are calculated as an average over the number of 

ensembles and weather windows are estimated for each limit state separately. Later, the limit state 

probabilities of failure are combined together in a simplified way, rather than using rules for parallel 

or series systems. This is done in order to avoid over estimating the probability of total operation 

failure when taking all the limit states as a series system (𝑃𝐹,𝑂𝑝 = 1 − ∏(1 − 𝑃𝐹,𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒)) or 

underestimating the probability of failure when taking all the limit states as a parallel system  

(𝑃𝐹,𝑂𝑝 = ∏(𝑃𝐹,𝐿𝑖𝑚𝑖𝑡 𝑆𝑡𝑎𝑡𝑒)). Clearly the real system is somewhere in between the two extremes, 

because in general it behaves as a series system with some unknown correlation. The correlation 

between limit states is beyond the scope of this report, therefore a simplified approach is used. The 

following figures show a few examples of weather windows for individual limit states (more in 

Appendix B). 
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Figure 10.1. Weather windows for CraneLoad limit state. 

 

Figure 10.2. Weather windows for RotorTiltAngle limit state. 
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The weather windows for all limit states can be combined by extracting a Go-NoGo vector of “ones” 

and “zeros” (1- operation possible, response is below critical limit of 10-4 exceedance probability, 

0 – operation not possible, response is above critical limit of 10-4 exceedance probability) for each 

limit state and then multiplying the vectors together to produce one vector that shows the resulting 

weather window for all limit sates being above or below their respective critical limits with 10-4 

exceedance probability. The resulting weather windows for the whole operation (considered phases 

3-6) are shown in Figure 10.3.  

 

Figure 10.3. Weather windows for the whole operation (considered phases 3-6), DECOFF 

method using ECMWF multi-ensemble forecasts as input. 

It is clearly visible, that although some of the limit sates allow the operation for long periods of time, 

others can limit the installation possibilities significantly. When compared to the number of weather 

windows, obtained by alpha-factor method, the DECOFF method performs better in terms of number 

of weather windows suitable for installation (12 to 18). A full comparison will be presented in section 

11 where alpha-factor based analysis will be compared to DECOFF analysis with forecasts and 

measurements at FINO3 site. 
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10.2 Weather windows using DECOFF method with measurements at FINO3 

This section will describe the weather windows obtained by DECOFF method by using 

measurements at FINO3 site instead of ECMWF forecasts. This will give insight on the impact that 

weather forecast uncertainty has on the number and length of weather windows.  

The simulations are performed for the same period of May 01- August 01 2014. Measurements from 

FINO3 site are used as input, ocean parameters are based on Buoy measurements and meteorological 

parameters are based on met-mast measurements (anemometers). Some limitations of available 

measurements at FINO3 has to be mentioned, namely that the buoy measures the water surface 

elevation and no explicit distinction between wind generated and swell waves is possible. Therefore 

in this case, a general sea state (defined by Torstenhagen spectrum, as suggested by MARINTEK) is 

used as input to SIMO in contrast to ECMWF case, where separate inputs for wind generated and 

swell waves was used (JONSWAP 3 parameter spectrum for each). The following Figure 10.4 shows 

the measurements and forecasts together.  

 

Figure 10.4. Weather Forecasts (scatter) and measurements (green line). 

The forecasts are scattered around the measurements but predicts the actual met-ocean conditions 

reasonably well. 

The following Figure 10.5-Figure 10.6 show two examples of weather windows for selected limit 

states (more in appendix C). For comparison purposes the limit states are identical to those in Figure 

10.1 Figure 10.2.  
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Figure 10.5.Weather Windows for Crane Load limit state. 

 

Figure 10.6.Weather Windows for Rotor Tilt Angle limit state. 
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By visual comparison it can be concluded that in both cases (forecasts and measurements) the 

predicted weather windows are relatively at the same locations in time, although when forecasts are 

used weather windows are shorter and fewer in number. This is a proof of DECOFF statistical model 

robustness – with increasing uncertainty of the input the locations of weather windows stay the same, 

only their duration changes. 

The following Figure 10.7 shows the weather windows when all the limit states are combined 

together. The combination is done the same way as it was in section 10.1. 

 

Figure 10.7. Weather windows for the whole operation (considered phases 3-6), DECOFF 

method using measurements at FINO3 as input. 

As it was for the individual limit states, when using measurements as input to DECOFF model there 

are more weather windows predicted than for the case with DECOFF model run with ECMWF 

forecasts (31 windows for Measurements, 18 windows for Forecasts). More detailed analysis is 

presented in the next section. 

  



50 

 

11 Summary of different methods for weather window estimation 

This section focuses on overall comparison of different methods of predicting operational weather 

windows for Hywind Rotor Lift Operation. The comparison is made among all the investigated cases 

of tabulated alpha-factors, custom site specific alpha factors for FINO3 and DECOFF method with 

either FINO3 measurements or ECMWF forecasts. The unrealistic cases of unlimited wave peak 

period in alpha-factor cases are removed from analysis as was discussed in 9.2. The following Figure 

11.2 shows the difference in total number of predicted weather windows. 

 

Figure 11.1. Comparison of number of weather windows. 

It has to be noted that when looking at standard method from (DNV, 2011) (cases T.X-X) the yellow 

bars are representative and the blue bars are only to show that DECOFF method in some cases 

outperforms even standard alpha-factor method with less limitations. That being said, it is visible 

that in terms of number of windows DECOFF method is outperforming the alpha- factor method 

even when the highest weather forecast quality or measurement data from installation locations is 

used (T.4-4(5) and FINO3 data cases). The DECOFF ECMWF bar represents the DECOFF model 

run with ECMWF forecasts and as expected the number of predicted weather windows is lower than 

that of the case when measurements at FINO3 is used as input to DECOFF method. This is mainly 

because increased input uncertainty has a significant effect on the output Probabilities of Failure and 

thus the weather windows (for more details on weather forecast uncertainty effects see section 12). 

8 
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Figure 11.2. Comparison of number total length. 

When the results are analysed in terms of total length of weather windows, it is again visible that 

DECOFF method with FINO3 measurement data outperforms all cases of standard method. 

DECOFF method with ECMWF forecasts as input here is performing slightly worse than the 

standard cases but it should be noted that the total length of weather windows ~17% lower. This 

difference could easily be reduced by having more accurate weather forecasts. For this analysis 

weather forecasts were provided daily (at 00:00) every day, in real case it would be possible to get 

weather forecasts every 12 or even 6 hours. This would reduce the input uncertainty and thus increase 

the number/duration of predicted weather windows. 

Total duration and number of weather windows are both equally important parameters therefore a 

new measure of model performance is introduced to see the overall performance of the standard and 

DECOFF methods. The new measure is a multiplication of predicted number of weather windows 

and the total length of weather windows. The next Figure 11.3 shows the comparison. 

8 
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Figure 11.3. Comparison of weather windows. 

It is clearly visible that DECOFF model with ECMWF forecasts as input outperforms most of the 

standard cases, with the exception of T.4-1. It has to be noted that case T.4-1 would rarely be used 

in real case for a complex installation as Hywind Rotor Lift because it is usually used for simple 

barge towing operations in sheltered waters and on-shore/near shore lifting. This being said it is safe 

to conclude that DECOFF method outperforms all standard cases. It should also be noted that when 

measurements are used as input to DECOFF method (this would represent a hypothetical case of a 

perfect weather forecast) DECOFF method out-performs even the standard cases where no alpha-

factor for peak period is used. This shows good promise of increasing DECOFF model performance 

with decreasing input (weather forecast) uncertainty. 

 

  

8 
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12 Effects of Weather forecast uncertainty 

This section focusses on the effect that weather forecasts uncertainty has on the final output of the 

analysis – the probability of failure with a given limit state. Also, the effect of weather forecast 

uncertainty on critical response parameters are studied. 

The input for SIMO is multi-parametric (wind speed and direction, swell and wind wave height and 

direction, swell and sea wave periods) therefore it is necessary to define one measure of uncertainty 

that would represent the combined uncertainty of a multi-parametric met ocean condition forecast. 

A multivariate Coefficient of Varation (COVm) is chosen as such measure. The definition of COVm 

is based on the following equation (Albert & Zhang, 2010): 

 

𝐶𝑂𝑉𝑚 = [
(𝒙

𝑻
𝑺𝒙)

(𝒙
𝑻

𝒙)
2 ]

1/2

 

 

(12.1) 

Where: 

𝒙 – vector of sample means of multiple input parameters; 

𝑺 – dispersion matrix (covariance matrix). 

The following Figure 12.1 shows the combined Coefficient Of Variation (COV) of the input. 

 

Figure 12.1. COV of input variables. 
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Figure 12.2. Input significant wave height. 

 

It is obviously correct to assume that as the met-ocean conditions become more unstable (during or 

after a storm) the uncertainty (COV) in the forecast should increase. This can be seen when looking 

at Figure 12.1-Figure 12.2. Although it has to be noted that this is not true for every case, eg. Mid 

July storm with a high peak in Hs but no significant peak in COV. 

Because of the fact that COV of the met-ocean forecasts depends not only on the forecast lead time 

(the further in time forecast predicts – the higher the uncertainty (COV)) but also on the stability of 

the weather itself, the analysis of the effects of uncertainty becomes more difficult. This implies that 

a simple look at the output data just based on weather forecast lead time is not enough to clearly see 

the effects of forecast uncertainty on the output probabilities of failure. Therefore the further analysis 

is based on the magnitude of COV rather than forecast lead time. This approach will allow to clearly 

see the effect of increasing variance in weather forecast.  

 

Figure 12.3. Distribution of input COV. 
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Also, weather forecast uncertainty can be described by miss-prediction. Miss-prediction can be 

analysed in terms of prediction error (Forecast - Measurement) or in terms of Bias. Effects of both – 

forecast bias and forecast error will be also investigated. Since it is difficult to define a combined 

bias and error for the multivariate input, significant wave height is chosen as representative variable 

and thus bias and error in significant wave height forecast will be used as basis. And again, since 

bias and error of the forecast depends on more than just forecast lead time, the analysis will be 

performed using the magnitude of forecast bias and/or error. The following figures show the time 

series and distributions of forecast bias and error. 

 

Figure 12.4. Bias and Error of the forecasted Hs. 

 

Figure 12.5.Distributins of Bias and Error of the forecasted Hs. 
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All analyzed outputs (critical responses and Probabilities of Failure) are arranged in bins based on 

the distribution of the COV of the input (Figure 12.3) or distributions of weather forecast Error or 

Bias. Also, Probabilities of Failure are also analyzed in connection with input weather forecast bias 

and error and therefore also arranged in bins based on forecasted Hs bias and error. 

12.1 Weather forecast uncertainty and its effects on Probabilities of Failure 

This section focuses on the effects that weather forecast uncertainty has on Probabilities of Failure. 

The output Probabilities of Failure (PFs) are analyzed in terms of COV also. This is done because 

the range of predicted PFs is in a range of 10-15 to 1 and it is a lot easier to interpret the results when 

normalized. The COVPF is obtained using the following equation: 

 
𝐶𝑂𝑉𝑃𝐹|𝐶𝑂𝑉𝑖𝑛𝑝𝑢𝑡

=
𝜇𝑃𝐹|𝐶𝑂𝑉𝑖𝑛𝑝𝑢𝑡

𝜎𝑃𝐹|𝐶𝑂𝑉𝑖𝑛𝑝𝑢𝑡

 

 

(12.2) 

Where: 

𝜇𝜇𝑃𝐹|𝐶𝑂𝑉𝑖𝑛𝑝𝑢𝑡
 – mean value of Probability of Failure, evaluated at a given level of 𝐶𝑂𝑉𝑖𝑛𝑝𝑢𝑡; 

𝜎𝑃𝐹|𝐶𝑂𝑉𝑖𝑛𝑝𝑢𝑡
 -  Standard deviation of Probability of Failure, evaluated at a given level of 𝐶𝑂𝑉𝑖𝑛𝑝𝑢𝑡. 

PFs for all limit states are not combined together in any way to give a representative total operational 

PF for particular point in time. Individual limit state PFs are treated as separate outcomes of 

simulation. The following figure shows the effect that input uncertainty (COV) has on the COVPF 

after the response of the Hywind Rotor Lift Operation is simulated with SIMO and the vessel 

responses are analyzed using the DECOFF statistical method.  

 

Figure 12.6. Weather input COV and output Probability of Failure COV. 
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The red line in the plot represents the mean value of COVPF, the blue bars are the 25th -75th percentiles 

of the data. The black lines represent 5 and 95 % quantiles. The first bar at 0.01 COV represents a 

deterministic forecast (+0 hour lead-time forecast from ECMWF forecast file) when all 51 ensemble 

members are equal. The fact that it has 0 output COVPF means that there is no additional uncertainty 

added while simulating in SIMO or post-processing the responses after simulation. This result is also 

a good indication of robustness of the method merely because it produces consistent results. 

A clear trend of increasing COVPF is visible when the input COV is increased. This is expected as 

the spread in forecasted met-ocean conditions should imply a spread in Probabilities of Failure. It 

has to be noted that even a small increase of input COV of eg. 5% can lead to 75% increase in mean 

COVPF. The increase is induced only by increasing the weather forecast uncertainty without 

increasing the severity of the input met-ocean conditions (no explicit increase in wave heights or 

wind speed). For the sake of completeness, the input COV bin of (15, ∞] is added to the plot, but is 

not deemed representative, because there is not enough data to get reliable estimates of COVPF 

mainly due to SIMO numerical instabilities above 15% of output uncertainty. 

The 5-95% of output COVPF quantiles vary from 0 to 700%. This can be explained by the fact that 

the analysis is performed taking the full ranges of wave heights and other met-ocean parameters. 

Therefore one bar at eg. 5% COVinput represents the effect of 5% weather forecast COV taking into 

consideration all the met-ocean conditions shown in Figure 8.1. Also it is possible that combination 

of 7 met-ocean parameters can result in a very high Probability of Failure even when the met-ocean 

conditions are not very severe. 

  

Figure 12.7. Uncertainty of Probabilities of Failure and forecast Hs Error (left) and Bias 

(right). 

Figure 12.7 above show the effect of significant wave height prediction error (left). It is visible that 

when the model is underpredicting the significant wave height (negative values on x axis, left plot), 

the output probabilities of failure are quite stable. When it comes to forecasts over-predicting the 

significant wave height (positive values on x axis, left plot), the change in COVPF becomes 
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significant – there is an increase in mean COVPF together with wider confidence bounds. When 

COVPF is analysed in terms of bias of forecasted significant wave height a clear bathtub curve is 

visible ( right plot, Figure 12.7). And it is easy to see that when the forecast has a bias there is an 

increase in output COVPF both in terms of mean and confidence bounds. Also, when the bias is low 

(1-1.2) the output uncertainty COVPF is lower and more stable. 

It is clearly evident from this analysis that there is a need to reduce the weather forecast uncertainty 

as much as possible in order to achieve lower and more stable predictions of Probabilities of Failure. 

This can be achieved by using calibrated weather forecasts, ECMWF weather forecast downscaling, 

including bathymetric effects etc. On the operational scale, using multiple weather forecast suppliers 

or more reliable forecasters could be also beneficial. 

12.2 Weather forecast uncertainty and its effects on Critical Responses 

This section focuses on the effects of weather forecast uncertainty on individual Critical Responses. 

The basis for this analysis is the same as it was in the previous section. Although, in this section 

individual Critical Responses are analyzed separately in order to investigate which responses are 

most affected by increasing weather forecast uncertainty. The Critical Responses are analyzed in 

terms of maximum values, since that was the focus of most (11/13) limit states. Therefore the figures 

in this section will show the COV of the maximum value of any given Critical Response. 

The following Figure 12.8-Figure 12.9 show a few selected Critical Responses (see more in 

Appendix D). The selected responses are picked in such a way, that it represents 4 different types of 

response (load, acceleration, motion and velocity). These 4 types cover all the Critical Responses 

that were investigated. 

   

Figure 12.8. Weather input COV and output COV for few selected Critical Responses. 

As it was for the case of Probability of Failure, a 0.01 COVInput bar is used to determine whether 

there is additional uncertainty appearing during the simulation and post-processing phases. The 

figures are presented on the same Y axis scale for ease of comparison.  
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Figure 12.9. Weather input COV and output COV for few selected Critical Responses. 

It is safe to say that the simulation/post-processing methodologies are robust and produce consistent 

results. It is clearly visible that all the Critical Responses are affected by increased weather forecast 

uncertainty, although the extent of the effect varies from response to response. 

There are some inconsistencies in the figures and most of them can be explained by the fact that all 

the simulations from the test period of summer 2014 were used in this analysis and every bar in the 

plots represents a full dataset of multi-parameter met-ocean condition forecasts. This implies that 

some of those combinations are very severe and can result in a big increase of magnitude of the 

Critical Responses. In order to avoid these types of problems, a dedicated analysis for individual 

weather forecast parameters should be done. Although it is possible to isolate each met-ocean 

parameter and run simulations with increasing uncertainty this type of analysis would be very time 

consuming and beyond the scope of this report.  

Crane Load seems to be relative stable and unaffected by increased weather forecast uncertainty, as 

is the Lift Wire tension (see Appendix D), change in COVCraneLoad and COVLiftWire is < 10%. Rotor 

acceleration (both linear and angular) are highly affected by increased weather forecast uncertainty. 

The uncertainty in Rotor Surge and Sway motions are also affected by COVinput, although the effect 

is limited to 15-40% increase in COVSurge and COVSway depending on the motion. Uncertainty in 

rotor Tilt angle motions are affected more than that of Yaw angle motions. This is easily explained 

by the nature of the motion – Yaw motion being rotation on horizontal plane mostly due to 

misalignment of wind and waves whereas Tilt motion is rotation in a vertical plane primarily induced 

by water elevation changes. The uncertainties in Relative Radial and Axial velocities of the lifted 

rotor are also highly affected by the increase of COVinput. 

In general it can be concluded that weather forecast uncertainty, represented here as COVinput, is a 

very important parameter and efforts should be made in order to reduce it. 
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13 Summary, conclusions and discussion 

The main focus of the report was to document the methodology developed under the DECOFF 

project and demonstrate if the new methodology performs better than the standard method for 

estimating weather windows for offshore operations from (DNV, 2011).  

A general introduction is given in sections 1-3 covering the uncertainties involved and how the 

uncertainties should be handled within DECOFF. Also, a description of possible limit states and 

ways of including them into the analysis is presented.  

Main focus of section 5 was to describe the new methodology used to determine the weather windows 

for offshore operations and test it on a short term weather forecast. The procedure for obtaining the 

probabilities of failure of offshore operations was successfully tested on a 3 day weather forecast. A 

weather window was obtained and in general the total Failure Probability of the Operation (PFOP) 

was following the evolution of the met-ocean conditions (increasing PFOP when met-ocean condition 

became more severe). At this point it was regarded as sufficient “proof of concept” to move forward 

to a more detailed study of DECOFF model performance and benchmarking it against the standard 

methods. 

Section 7 focused on “reverse-engineering” the met-ocean condition limits for the Hywind Rotor Lift 

Operation. This was necessary because the initial limitations of the operation were only given in 

terms of installation equipment loads/accelerations/motions etc., but standard method proposed in 

(DNV, 2011) uses met-ocean conditions as operation limiting parameters. The analysis revealed that 

the operation is highly sensitive to wave period (Tp≤5s). Also, due to the fact that the operation itself 

is highly complex - a floating crane installing a wind turbine rotor on a floating foundation – the 

maximum allowable met-ocean conditions obtained from the analysis were relatively low (Hs≤1.5m 

and Ws≤7m/s). This implied that a limited number of weather windows during late spring-summer 

of 2014 would be available for installation. 

In section 9 the standard methodology for determining weather windows for offshore operations is 

applied to Hywind Rotor Lift Operation using the reverse-engineered met-ocean limits. Standard 

tabulated alpha-factors were used in order to take into account the uncertainty inherent in the weather 

forecasts. There are multiple alpha-factors presented in (DNV, 2011) and all the relevant ones were 

investigated. Also (DNV, 2011) allows to compute site-specific alpha factors for significant wave 

heights using historical measurement and forecast data from the installation location. FINO3 site was 

chosen as the installation site therefore it was possible to use the measurements from met mast 

together with the ECMWF weather forecasts to obtain the site-specific alpha-factors. Since the 

operation was determined to be highly sensitive to wave periods, it was important to take into 

consideration the uncertainty of wave period forecasts. (DNV, 2011) does not provide a way to 

determine alpha-factors for wave periods therefore the methodology used to obtain site specific 

alpha-factors for Hs was extended and used for forecasted wave peak period. The results from the 

analysis using the standard method was used as a baseline case later in benchmarking the DECOFF 

methodology. 



61 

 

Section 10 focused on determining weather windows during the test period of late spring-summer 

2014 for Hywind Rotor Lift Operation using the DECOFF methodology. ECMWF weather forecasts 

were used together with measurements at FINO3 location. Measurement information was used in 

order to determine whether there is an influence of the uncertainty of the weather forecast and, if 

possible, try to quantify it. Weather windows were obtained using the DECOFF methodology for 

both cases and compared with the standard method in section 11.  

As a general conclusion after comparing DECOFF methodology with the standard methods for 

weather windows estimation can be stated that the DECOFF method is performing better or at 

the least as good as the method described in (DNV, 2011). Also it can be stated that weather 

forecast uncertainty plays a central role in the number and duration of estimated weather windows. 

This claim is based on the fact that when a “deterministic” case of measurements at FINO3 site is 

used as input to DECOFF for the same period of late spring-summer 2014 significantly more and 

longer weather windows are obtained in comparison to ECMWF forecasts. It can be also stated that 

there is potential for even better DECOFF model performance if weather forecast quality is improved 

(reduced uncertainty).  

Since a significant effect of weather forecast uncertainty was observed while benchmarking the 

DECOFF methodology against the one of (DNV, 2011) a more detailed analysis of the effects of 

weather forecast uncertainty was done and presented in section 12. The uncertainty in output 

Probabilities of Failure was investigated in terms of input (weather forecast) uncertainty, represented 

as Coefficient of Variation, bias and forecast error. In all cases there was an increase in the 

uncertainty of output Probabilities of Failure when the uncertainty of the input was increased (both 

on average and in extremes of output uncertainty). This analysis serves as good basis for further 

development of techniques that reduce the weather forecasting uncertainty (calibrated weather 

forecasts, downscaling etc.).  

Also, individual physical responses of installation vessel/equipment were analyzed in terms of 

weather forecast uncertainty. The results suggest that uncertainties in weather forecast are translated 

into uncertainty in most of the responses that were relevant as operation limiting parameters. 

Therefore it is safe to state that uncertainty in input weather forecast is translated into uncertainty of 

output Probabilities of Failure through the uncertainty of simulated critical responses. This 

information could be later on used to update the DECOFF model with structural reliability techniques 

for obtaining Probabilities of Failed Operations and reducing the number of simulations necessary 

to achieve reliable results. 
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14 Future work  

Possible future work would include but should not be limited to: 

• Updating the model with Structural Reliability techniques in order to reduce the demand on 

a lot of simulations necessary to obtained reliable results; 

• Splitting the limit states in Serviceability and Ultimate; 

• Including Costs of Failure to produce a “Risk-Based” aspect allowing to evaluate different 

weather windows in terms of expected Risk rather than just Probability of Failure. 

• Improving the accuracy of weather forecasts; 

• Extending the methodology to more general Offshore Operations (Oil and Gas, Wind turbine 

installation on monopoles/jackets etc.); 

• …. 
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Appendix A. Response plots for Alpha-Factor weather limit estimation 

 

Rotational Rotor Acceleration limit state 
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Rotor Sway Motion limit state 
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Rotor Yaw Angle limit state 

 

 

  



67 

 

Rotor Tilt angle limit state 
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Relative Yaw Angle limit state 
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Relative Tilt Angle limit state 
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Rotor Radial Velocity limit state 
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Rotor Axial Velocity limit state 
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Appendix B. Weather Windows obtained by DECOFF method with ECMWF 

forecasts 

AirGap Tower Limit state 

 

Axial Velocity limit state 
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Crane load limit state 

 

Lift Wire limit state 
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Radial Velocity limit state 

Relative tilt angle limit state 
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Relative Yaw angle limit state 

 

Rotor Acceleration limit state 
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Angular rotor acceleration limit state 

 

Sway motion limit state 
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Surge motion limit state 

 

Tilt angle limit state 
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Yaw angle limit state 
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Appendix C. Weather Windows Obtained by DECOFF method with 

measurements at FINO3. 

Airgap Tower Limit state 

 

Axial Velocity Limit state 
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Crane Load Limit state 

 

Lift Wire Limit state 
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Radial Velocity Limit state 

Relative Tilt Angle Limit state 
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Relative Yaw Angle Limit state 

 

Rotor Acceleration Limit state 
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Angular Rotor Acceleration Limit state 

 

Sure Motion Limit state 

 



84 

 

Sway Motion Limit State 

 

Tilt Motion Limit state 
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Yaw Motion Limit state 
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Appendix D. Effects of weather uncertainty on Critical Limit State Responses 

Crane Load Limit State 

 

LiftWire Limit State 
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Rotor Acceleration Limit State  

 

Rotor Angular Acceleration Limit State  
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Surge Motion Limit State 

 

 

Sway Motion Limit State 
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Tilt Angle Limit state 

 

Yaw Angle Limit State 
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Relative Tilt Angle Limit State 

 

Relative Yaw Angle Limit State 
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Relative Radial Velocity Limit State 

 

Relative Axial Velocity Limit State 
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Airgap Tower Limit State 

 

 

 


