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SUMMARY 
 

The construction sector is a major source of greenhouse gases. Under the increasing 

concern in climate change and growing construction activities, the whole sector is chal-

lenged to shift focus toward sustainable solutions. The traditional procurement often 

prioritizes the technical and economic viability, while their environmental performance 

is overlooked. Today’s designers are urged to seek new design options to reduce the 

environmental burdens. Sweden owns more than 24574 bridges and most of them are 

short spans. Among them, the slab frame bridge (CFB) is a common solution. Soil steel 

composite bridge (SSCB), alternatively, is a functional equivalent solution to CFB and 

shows advantages in low cost and easy construction. This paper compares the environ-

mental performance between these two bridge types based on life cycle assessment 

(LCA). The analysis and result shows that, the SSCB is preferable over CFB in most of 

the examined environmental indicators. 

 

 

Key words: concrete slab frame bridge; soil steel composite bridge; soil steel 
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1. INTRODUCTION 
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Bridges are vital infrastructure in a country’s economic development, and re-

sponsible for considerable environmental burdens due to their large consumption 

in raw materials and energy. According to Swedish Transport Administration 

[1], there are more than 24574 bridges in Sweden and most of them are short 

spans [2]. Among these, the concrete slab frame bridge (CFB) is a common solu-

tion. However, due to the challenge of climate change, designers are concerned 

to seek new design solutions to mitigate the environmental impact. Soil steel 

composite bridge (SSCB), alternatively, is a technical solution functionally 

equivalent to the CFB. Earlier studies [3, 4] showed SSCB is favourable due to 

its ease constructability, low maintenance as well as competitive cost. However, 

their environmental performance had never been examined.  

 

Life Cycle Assessment (LCA) is a standardized and internationally recognized 

approach for quantifying the resource consumption, environmental impacts, 

emissions as well as the health impacts linked to a product or service [5-8]. LCA 

only started to be applied in the construction sector in recent years. Comparing 

to the building sector, its implementation on bridges is very rare [9, 10]. Accord-

ing to the literature review in [11], the pilot study of LCA on bridges was first 

performed in 1998 by [12] and [13]. Since then, a broader LCA implementation 

is more focused on buildings other than bridges. This paper intends to presents a 

generalized LCA framework for bridges, aiming to demonstrate bridge LCA 

approach in practice for the decision-maker. Furthermore, a comparative LCA 

study is conducted on two selected short span bridge cases in Sweden: one CFB 

and one SSCB. The life cycle impact assessment method (LCIA) of ReCiPe (H) 

[14] is implemented on case studies, with the life cycle inventory (LCI) data 

collected from industrial sectors. ReCiPe (H) is a combined method of Eco-

indicator 99’ and CML 2002 with up-to-date impact categories. This study co-

vers a comprehensive set of indicators including 12 mid-point categories, name-

ly Global warming potential (GWP), Ozone depletion potential (ODP), Human 

toxicity potential (HTP), Photochemical oxidant formation potential (POFP), 

Particulate matter formation potential (PMFP), Ionizing radiation potential 

(IRP), Terrestrial acidification potential (TAP),  Freshwater eutrophication po-

tential (FEP), Marine eutrophication potential (MEP), Terrestrial ecotoxicity 

potential (TETP), Freshwater ecotoxicity potential (FETP), Marine ecotoxicity 

potential (METP). Besides, the cumulative energy demand (CED) and four se-

lected impacts of GWP, ODP, POFP and PMF are further detailed. The result 

assists the decision makers in selecting the short-span bridge types due to their 

environmental performance at the early stage. 

 

 

2. LCA METHODOLOGY 
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This paper applies the LCA framework presented in [11, 15]. The framework 

enables a detailed quantification of the CED and a list of potential environmental 

impacts through a bridge whole life cycle span, from raw material acquisition, 

though construction, maintenance and operation until the end of life (EOL). The 

dominant structural components and critical activities that contribute to the most 

environmental burdens are spotted and tracked. The analysis is performed with 

the aid of the calculation tool GreenBridge developed by [16]. 

 

The reliability of LCA is primarily determined by the quality of the LCI data-

base and the accuracy of input. The same material may have different LCI pro-

file due to the variation of regional production technology. This paper has adopt-

ed the European data from Ecoinvent v2.2 database to represent the Swedish 

condition. Thousands of materials and production processes from the construc-

tion sector are provided by Ecoinvent. Fifteen types of process and material da-

tasets are retrieved to quantify the energy consumption and the emission of the 

bridge related scenarios. Each type of the data includes over thousands of air, 

liquid and solid substances.  

 

 

 
Figure 1. A concrete slab frame bridge [18] 

 

 

3. CFB AND SSCB 

 
In Sweden, both of the CFB and SSCB are commonly used for short-span bridg-

es, serving the same technical function, often for a designed life span of 80 

years. By 2006, the Swedish Transport Administration owns approximately 2270 

corrugated steel culverts [17]. CFB, as presented in Figure 1, mainly consists of 

a reinforced concrete frame as the load bearing structure. The superstructure and 

substructure are continuously connected. In comparison, SSCB is a very simple 
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structure type and is functionally equivalent to CFB. It consists of the corrugated 

pipe surrounded with the compacted frictional soil, see Figure 2 as an example. 

This structure type is typically on a concrete foundation, which is not included in 

the analysis. 

 

 
Figure 2.  A steel soil composite bridge [19] 

 

Building a small CFB normally requires 2 to 3 months, without counting the 

foundation preparation or the backfilling. The involved machinery usage covers 

the earthwork excavators for formwork foundation preparation, soil compactor, 

dumpers and cranes. Forming, reinforcement installation and concreting are the 

main activities in CFB construction. These three activities need to be repeated 

several times in separate processes, because the full structure cannot be built at 

the same time. The foundation slabs are built first, followed by the front walls, 

wing walls and the bridge deck.  

 

In comparison, SSCB is simple to build, with a rapid construction process and 

minimum temporary equipment needed. The curved corrugated steel plates can 

be easily bolted together on-site. Bolting the curved corrugated steel plates is 

carried out close to the final location of the bridge. This would even reduce more 

construction time, transportation and the steel plate can be installed immediately 

after the preparation work of ground. Once being bolted, the conduit can be 

backfilled using frictional soil which is carefully compacted. The decreased con-

struction time for SSCB can substantially reduce the traffic disturbances, thus 

further mitigate the associated environmental impact. 

 

4. CASE STUDY 

 
The selected case study intends to compare the life-cycle environmental perfor-

mance between two short span bridge types in Sweden. For this reason, 2 recent-

ly built bridges representing CFB and SSCB are chosen for the analysis. Table 1 
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details the dimensions and bridge specifications which was provided by contrac-

tors. The selected CFB is from the Katrineholm project, a new bypass Road 

55/56 serving as a dual carriageway between Strångsjö and Uppsala-Södertälje. 

The SSCB bridge belongs to the newly built E4 Sundsvall project. Both bridges 

are registered in the Swedish Bridge Management System with the series num-

ber, as shown in Table 1. For a fair comparison, the functional unit is defined as: 

one square meter of bridge effective area in one year through the life span of 80 

years. The effective area of a bridge is defined geometrically as the free width × 

the length. The study scope covers the whole bridge through the entire life cycle 

from cradle to grave. 

 

Table 1 General data for the selected bridges 

Bridge Registration 

no.  

- 4-824-1 22-1625-1 

Notation in this paper - CFB1 SSCB1 

Item Unit - - 

Bridge free width (m) 16,0 18,5 

Bridge length (m) 8,3 6,9 

Bridge effective area (m
2
) 133 128 

Intended life span (years) 80 80 

 

4.1 BRIDGE LIFE CYCLE 

 

4.1.1 THE MATERIAL MANUFACTURE PHASE 

 
The material manufacture phase encompasses all the upstream processes of each 

material used to construct the bridge, from the extraction of raw materials from 

ground until products are ready for use at the factory gate. A life cycle inventory 

(LCI) database with unit environmental profiles for each relevant material is 

used. This provides data on the associated release of thousands of substances 

that are then aggregated into mid-point impact categories. With the adjustment 

of considered structural components, the summarized bills of material quantities 

are presented in Table 2. The items listed are the amount of concrete, reinforce-

ment, bitumen sealing for the bridge deck waterproofing and the steel railings.  

 

4.1.2 THE CONSTRUCTION PHASE 

 

The environmental impact of the construction phase is dominated by the usage 

of construction machines, site-preparation, materials and workers transportation 
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to and at the site. This study has thoroughly collected information on material 

transportation, which is further presented in Table 3. 

 

Table 2 Permanent materials quantity 

Item Unit CFB1 SSCB1 

Concrete (m
3
) 391 0 

Reinforcement (ton) 27 0 

Structural steel
a)
 (ton) - 46 

Structural steel plate thickness (mm) - 6 

Corrugation wave length (mm) 0 200×55 

Painted area (m
2
) 0 111 

Bitumen sealing 

 

(kg) 750 - 

Steel railings (ton) 7,7 7,8 

a): Hot dip galvanized 

 

4.1.3 THE MAINTENANCE AND OPERATION PHASE 

 

This phase predicts the future maintenance and operation scenarios, which is 

regarded as the longest stage for bridges under the expected design life [10]. A 

well planned maintenance schedule can extend the bridge service life and mini-

mize the environmental burden from the whole life cycle perspective. Based on 

the historical data and personal communication with experts on site, a list of 

general scheduled maintenance and repair plans are presented in Table 4. As 

stated above, this study covers the periodic maintenance schedules related to the 

concrete and reinforcement repair, bitumen sealing for waterproofing and steel 

for railing replacement. All of the upstream processes involved in manufacturing 

these materials were obtained from Ecoinvent database, covering from the raw 

material extraction until the ready-made products at the factory gate. 

 

4.1.4 THE END OF LIFE 

 
Recycling in this stage is environmentally beneficial due to the contribution to 

the reduction of original material usage and associated emissions. The steel used 

in SSCB is fully recyclable. The simple “cut-off” method detailed in [20, 21], 

which recommends that each product should only be assigned from the envi-

ronmental impacts directly caused by that product, is applied for the allocation 

issues in this study, thus to avoid including the indirect impacts related to other 

concerned products. Therefore, the saved energy and raw material due to steel 

recycling are already counted in the initial material manufacture phase through 
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using the ready-made LCI data by Ecoinvent v2.2, which represents the average 

manufacture situation in Europe by a mixture of 63% primary steel and 37% of 

secondary steel from the electric furnace. After demolition, the waste concrete is 

assumed to be crushed into aggregate for further usage in the road construction. 

Under the Swedish condition, it is assumed to consume 16.99 MJ diesel and 

21.19 MJ electricity when producing a ton of aggregate from crushing waste 

concrete [22]. 

 

Table 3 Summary of transportation 

Item Unit CFB1 SSCB1 

Transportation by 

truck 

- - - 

Scaffolding (ton×km) 266 - 

Reinforcement (ton×km) 4 266 - 

Concrete (ton×km) 9 372 - 

Structural steel (ton×km) - 9 694 

Transportation by 

ship 

- - - 

Reinforcement (ton×km) 18 550 - 

 

Table 4 Maintenance activities 

Item Unit CFB1 SSCB1 

Edge beam re-

pair/replacement 

(m
3
) 12,45 0 

Waterproofing replacement (kg) 750 0 

Steel railings (ton) 7,7 7,8 

 

4.2 RESULTS 

 
This study covers a comprehensive set of indicators including 12 mid-point cat-

egories, namely Global warming potential (GWP), Ozone depletion potential 

(ODP), Human toxicity potential (HTP), Photochemical oxidant formation po-

tential (POFP), Particulate matter formation potential (PMFP), Ionizing radiation 

potential (IRP), Terrestrial acidification potential (TAP),  Freshwater eutrophica-

tion potential (FEP), Marine eutrophication potential (MEP), Terrestrial ecotoxi-

city potential (TETP), Freshwater ecotoxicity potential (FETP), Marine ecotoxi-

city potential (METP), as presented in Table 5. Furthermore, the cumulative 

energy demand (CED) and 4 types of impact categories, in terms of tracking 

each structural components and life cycle scenario activities are displayed in 
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Figure 3 to Figure 7. It has been noted that, for a fair comparison, the results are 

normalized by the bridge area and the bridge life span of 80 years. More specifi-

cally, each result is normalized into per square meter per year.  

 

Table 5 Characterized mid-point indicators 

Impact 

category Unit CFB1 SSCB1 

GWP kg CO2 eq. 18,1 9,3 

ODP kg CFC-11 eq. 8,6E-07 4,9E-07 

HTTP kg 1,4-DB eq. 3,7E+00 5,0E+00 

POFP kg NMVOC 5,8E-02 3,7E-02 

PMFP kg PM10 eq. 2,6E-02 3,3E-02 

IRP kg U235 eq. 1,1E+00 5,8E-01 

TAP kg SO2 eq. 4,6E-02 3,8E-02 

FEP kg P eq. 3,2E-04 6,8E-04 

MEP kg N eq. 2,0E-03 1,2E-03 

TETP kg 1,4-DB eq. 1,4E-03 1,5E-03 

FETP kg 1,4-DB eq. 4,0E-03 3,9E-03 

METP kg 1,4-DB eq. 1,1E-02 2,0E-02 

 
Figure 3 Global warming potential (kg CO2 eq. per m

2
 per year) 
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Figure 4 Photochemical oxidant formation (kg NMVOC per m

2
 per year) 

 

 
Figure 5 Ozone depletion potential (kg CFC-11 eq. per m

2
 per year) 
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Figure 6 Particulate matter formation (kg PM10 per m

2
 per year) 

 
Figure 7 Cumulative Energy demand (MJ per m

2
 per year) 

 

5 CONCLUSIONS 
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This paper compared two types of commonly used short span bridges in Swe-

den: SSCB and CFB. A detailed procedure of LCA implementation on bridges 

was presented to the practitioners. The environmental burden of bridges was 

comprehensively evaluated from cradle to grave, including 12 sets of mid-point 

indicators and CED. The results showed that, the case of SSCB is preferable 

over CFB in most of the examined environmental indicators through the whole 

life cycle, mainly due to the ease construction and maintenance of SSCB. The 

initial material stage was found to be dominant in the total environmental im-

pact.  
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