Aalborg Universitet

Prediction of Particle Agglomeration and Deposition by Reduced Particle Stiffness **Discrete Element Simulations**

Hærvig, Jakob; Sørensen, Kim; Condra, Thomas Joseph

Publication date: 2017

Link to publication from Aalborg University

Citation for published version (APA): Hærvig, J., Sørensen, K., & Condra, T. J. (2017). Prediction of Particle Agglomeration and Deposition by Reduced Particle Stiffness Discrete Element Simulations. Poster præsenteret ved PhD Research Day 2017, Aalborg, Danmark.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITY DENMARK

Prediction of Particle Agglomeration and Deposition by Reduced Particle Stiffness Discrete Element Simulations

Jakob Hærvig*, Kim Sørensen, Thomas J. Condra Dept. of Energy Technology, Aalborg University, Denmark *e-mail: jah@et.aau.dk, tel.: +45 22508131

Introduction

- The collisions of small particles (d_p < 10 µm) in dry air are typically dominated by van der Waals attractive forces.
- Discrete element method (DEM) simulations combined with the analytical JKR adhesive model [1] is a promising mechanisticbased approach to accurately predict agglomeration and deposition of micronsized particles [2].
- The general applicability and relevance in scientific fields ranging from particle fouling prediction [3] to early stages of planet formation in outer space [4] make the JKR model increasingly popular [5].
 However, resolving collisions of micron-sizes particles typically requires time step sizes in the order of nano seconds (10⁻⁹ s).

Agglomerate formed by van der Waals attractive forces

Purpose of study

- To provide a criterion on how to introduce softer particles with the same adhesive behaviour in DEM.
- Using softer particles (lower Young's modulus) allows for an increased time step size and thereby lower computational cost.

Main conclusions

Simulation time can be reduced several orders of magnitude by reducing Young's modulus from E to E_{mod} while modifying the

Outlook

Particulate fouling in heat exchanger pipes is a major problem with high associated costs. The particulate fouling process can be decomposed up into the following sub-processes:

surface energy density γ as:

$$\gamma_{\rm mod} = \gamma \left(\frac{E_{\rm mod}}{E}\right)^{2/2}$$

(1)

Simulations that would take years can now be done in hours or days.

Overview of modified model

Figure gives an overview of the force-overlap relation of the JKR model and modified model based on eq. (1):

(e1) (e2) (e3)

Coupling to turbulent flow

- Coupling DEM to large eddy simulations (LES) is a promising approach to investigate particle agglomeration and deposition mechanisms in details.
- Information is passed between fluid and particle phase by momentum exchange terms. Fluid drag takes local particle volume fraction into account.

Example of pipe flow at $\text{Re}_b = 10,000$ in a periodic domain with length L/D = 4.

Full-scale simulation using OpenFOAM and LIGGGHTS shows early stages of particulate fouling. Larger agglomerates are being formed in the centre of the pipe:

► Where $F_c = 3\pi\gamma R$ is the critical pull-off force to separate particles and $\delta_{n,0} = (3\pi^2\gamma^2 R/E^2)^{1/3}$ is the equilibrium normal overlap. Graphical overview of DEM forces:

Collaborating partners

References

- K.L. Johnson, K. Kendall and A.D. Roberts, *Surface energy and the contact of elastic solids*, Proc. R. Soc. Lond. A., 324:301-313, 1971
 doi: 10.1098/rspa.1971.0141
- [2] E.J.R. Parteli, J. Schmidt, C. Blümel, K. Wirth, W. Peukert, T. Pöschel, *Attractive particle interaction forces and packing density of fine glass powders*, Nature Scientific Reports, 4:6227, 2014 doi: 10.1038/srep06227
- [3] C. Henry, J.-P. Minier and G. Lefèvre, *Towards a description of particulate fouling: From single particle deposition to clog-ging*, Advances in Colloid and Interface Science, 185-186:34-76, 2012 doi: 10.1016/j.cis.2012.10.001
- [4] A. Chokshi, A.G.G.M Tielens and D. Hollenbach, *Dust Coagulation*, The Astrophysical Journal, 407:806-819, 1993 doi: 10.1086/172562
- [5] E. Barthel, Adhesive elastic contacts JKR and more, Journal of Physics D: Applied Physics, 41:163001, 2008 doi: 10.1088/0022-3727/41/16/163001