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Abstract 

This thesis investigates how one can design a team of intelligent software agents that 

helps its human partner develop a formal ontology from a relational database and 

enhance it with higher-level abstractions. The resulting efficiency of ontology devel-

opment could facilitate the building of intelligent decision support systems that allow: 

high-level semantic queries on legacy relational databases; autonomous implementa-

tion within a host organization; and incremental deployment without affecting the 

underlying database or its conventional use. We introduce a set of design principles, 

formulate the prototype system requirements and architecture, elaborate agent roles 

and interactions , develop suitable design techniques, and test the approach through 

practical implementation of selected features. We endow each agent with model meta-

ontology, which enables it to reason and communicate about ontology, and planning 

meta-ontology, which captures the role-specific know-how of the ontology building 

method. We also assess the maturity of development tools for a larger-scale imple-

mentation. 
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Chapter 1 

Introduction 

Computer-based information systems have been progressively accepted and adopted 

across all disciplines of human knowledge. In applications for various business do-

mains, information systems have been extensively deployed to support the distri-

bution, processing, management, and evaluation of data. Contemporary business 

organizations increasingly rely on them for decision support, which requires efficient 

response to flexible , sophisticated queries involving application-domain expertise. The 

ability of most presently deployed decision-support systems to meet such requirements 

is limited by the fact that they derive information directly from a traditional data 

organization, such as a relational database, that lacks explicit application-domain 

semantics. To overcome that limitation, intelligent decision support systems are be-

ing developed that employ specifically designed domain-knowledge representations, 

allowing direct execution of flexible and complex semantic queries. 

An intelligent decision support system can delegate tasks to autonomous intelli-

gent entities , i.e., software agents (Wooldridge, 2009). For reasoning and communi-

1 



cation, agents require a formal representation of knowledge, i.e., an ontology, of the 

application domain. The methodology, technology, and standardization of ontology 

construction have been advancing rapidly in recent years in the context of the Seman-

tic Web development (Berners-Lee et al., 2001; W3C, 2016). This includes the tools 

for automatic generation of an ontology, expressed in a formalism such as the Web 

Ontology Language (OWL) , from an existing normalized relational database (ROB), 

in support of ontology-based data access (OBOA) (Rodnguez-Muro and Calvanese, 

2012). 

The potential for advancement of intelligent decision support through synergy of 

multiagent and Semantic Web technologies has been recognized and elaborated in the 

description of the Semantic Query Access System (SQAS) by Polajnar et al. (2012, 

2014). It envisions an architecture of a distributed system, integrated through agent-

oriented middleware, with server nodes containing reference ontologies constructed 

on top of relational databases for relevant knowledge domains, and client nodes that 

provide user-specific access to servers through a layer of locally developed custom 

ontology. A key aspect of SQAS is that reference and custom ontologies are devel-

oped gradually within the system itself, in interactions between human experts and 

software agent assistants. Expected benefits include: autonomous development of the 

system within the host organization, with its own resources; its ability to evolve the 

higher-level ontology according to the organization's needs, without affecting the un-

derlying database structure; and the possibility of incremental deployment that does 

not disturb the conventional use of the existing ROB. 

A cornerstone of intelligent decision support in SQAS is the role of agents in the 

ontology development; we refer to this paradigm as agent-assisted ontology building 

(AAOB). It should be pointed out that the AAOB concept seems applicable in prin-
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ciple to any system in which software provides intelligent assistance to its user. This 

gives rise to a variety of questions on how ontology-building agents should be designed 

and implemented, both in principle and in practice, and what type and level of sup-

port they can realistically provide to the ontology development process. The existing 

literature sources on agents with roles in ontology development, such as SQAS, Dy-

namo (Ottens et al. , 2009) , and Wiki@nt (Bao and Honavar, 2004) , provide little or 

no guidance in that regard. 

The purpose of this thesis is to advance our understanding of the principles and 

techniques for construction of AAOB systems, as well as the level of support pro-

vided by existing and emerging software components and tools in the rapidly evolving 

research landscape of MAS and Semantic Web. To this end, I propose the system 

requirements, a general architecture, and agent team structure for a concrete AAOB 

system called the Ontology-Building Multiagent System (OBMAS) , as well as t he de-

tailed design and prototype implementation of its key agent role, the Ontology Builder 

Agent (OBA). This also presents several research challenges that I have encountered 

in designing OBMAS , and describes the solutions that I have introduced. 

An essential question in designing ontology-building agents is how to endow them 

with the general knowledge about ontology and its development methods. Following 

SQAS, I used the term meta-ontology to describe the ontology of the ontological knowl-

edge domain (note that this sense of the term differs from its established meaning in 

philosophy). My design of meta-ontology for OBMAS is based on the observation that 

agents need meta-ontology for two different purposes. First, meta-ontology enables 

agents to reason and communicate about ontological concepts such as class, subclass, 

or data property, both in general and in reference to a concrete knowledge domain, 

such as e-commerce (which I used as the running example). Second, meta-ontology 
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provides to agents the procedural knowledge, i.e. , know-how, of the ontology building 

process in accordance with a specific methodology, such as Ontology Development 101 

(Noy et al. , 2001). In OBMAS, these two purposes are met by two separate knowl-

edge representations: the model meta-ontology, which is the same for all agents, and 

enables them to reason and communicate with each other about ontological concepts; 

and the planning meta-ontology, which is specific to each agent 's role, and provides 

the agent with the know-how of ontology building relevant to that role. I provide the 

designs of both meta-ontologies and an implementation for the latter. 

Another research challenge in designing OBMAS has been to identify how the 

agents can assist in the building of knowledge structures that specifically support ad-

vanced semantic queries. In the OBDA approach (using the terminology of SQAS) , 

a base ontology is automatically "bootstrapped" from the underlying RDB, and then 

enriched into reference ontology with higher-level entities such as new subclasses, 

superclasses, data properties, etc. Before such a higher-level entity can be used in 

semantic queries (which are translated to SQL queries on the underlying RDB), a 

specific mapping must be introduced that relates the entity to RDB-level concepts. 

A contribution of OBMAS is that whenever the Ontology Builder Agent (OBA) adds 

a higher-level entity to the reference ontology, it automatically constructs the appro-

priate mapping which allows immediate use of the new entity in semantic queries. In 

this thesis , I introduce a full set of mapping rules that enable the OBA to generate 

the mappings. Several of the mapping rules have been implemented in the current 

OBA prototype. 

The thesis also summarizes some of my insights from the design and partial im-

plementation of OBMAS in regard to existing software components, utilities , tools , 

and techniques that belong to the current state of the art in the field, hoping that 
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they may provide helpful pointers for further research. 

The remaining chapters present: the background and related work (Chapter 2); 

the research objectives , challenges, and design questions (Chapter 3); the OBMAS 

architecture and prototype implementation ( Chapter 4); the results on meta-ontology 

design and mapping rules for ontology-building agents, with comments on tool selec-

tion and implementation (Chapter 5); the behavioural aspects of ontology develop-

ment by agent team (Chapter 6) ; and conclusions and future work (Chapter 7). 
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Chapter 2 

Background and Related Work 

In this chapter, I describe relevant background information and summarize the previ-

ous work in the fields of the decision support systems (DSS), Semantic Web (SW), mul-

tiagent systems (MAS), and ontology development from relational database (RDB). 

2.1 Decision Support Systems (DSS) 

The organizations today have an increasing demand to find explicit or hidden knowl-

edge in their data sources for making business decisions , solving problems, and fore-

casting growth. The systems which fulfill these requirements are known as decision-

support systems. In this section, I categorize and describe the approaches for the 

decision support based on the representations of their underlying data sources. 
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2.1.1 DS Based on Conventional Representation 

The conventional decision support systems generally employ relational databases 

(RDB) for representing and querying the data. Due to the limitations of the re-

lational model of RDB in terms of expressing the table relations, there may be a 

semantic gap between a user's understanding of the knowledge domain and the actual 

representation of the concepts in an RDB. One requirement of the decision-support 

system is to overcome that semantic gap by means of structured SQL queries on the 

RDB. Moreover, from an organization's perspective, the RDBs may contain implicit 

knowledge about the performance of the organization and other patterns or trends 

that can be retrieved in order to make decisions and support them. 

Nowadays, two approaches are widely used for the decision support from RDB. In 

the first approach, a non-technical user receives technical assistance from other skilled 

users such as a report writer, database administrator, or application developer in order 

to generate reports from the RDB. The technical user first understands information 

requirements of the high-level user, formulates and executes structured queries on the 

RDB, and then generates reports in the desired format. 

In the second approach, enterprises employ data warehousing techniques to dis-

cover hidden aspects of their data. The production data, which may be stored at 

multiple locations or in different databases, is first moved and consolidated in an 

operational database. From there, it is extracted, transformed, and loaded (ETL) 

into a data warehouse in terms of facts and dimensions ( Olszak and Ziemba, 2007), 

which is then used for reporting and analysis purposes. In the end, the results are 

saved in the reports and shared with the non-technical user. It is possible to create 

multidimensional report with efficient querying with that approach. 
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Both of the aforementioned approaches employ the highly-skilled technical staff 

to bridge the semantic gap between the user 's requirements and the RDB structure. 

The technical user must have an expert understanding of the RDB structure in order 

to formulate queries and generate reports. Therefore, the process of generating re-

ports using these approaches increasingly time-consuming and tedious. An accurate 

foresight of the future information requests is also required for the data warehousing 

approach in order to design the data warehouse for the long-term usage without an 

extra technical oversight. 

2.1.2 DS Based on Knowledge Representation 

Nowadays , a new area of advanced computing known as intelligent decision support 

system has emerged to address the issues with the conventional systems. An intelli-

gent decision support system for a particular application domain relies on the formal 

representation of the domain knowledge, i.e., a domain ontology. The raw data in the 

relational database (RDB) can be semantically annotated using the domain ontology, 

which in turn enables intelligent agents to reason with the meaningful information 

within the application context. The domain ontology can be expanded and enriched 

with new concepts and relationships for evolving application domain to support in-

creasing complexity of the information requests. The systems which employ ontolo-

gies as an abstraction over the database content to query information are known as 

ontology-based data access (OBDA) systems (Rodnguez-Muro and Calvanese, 2012). 

The Optique project (Kharlamov et al., 2013) is an example of a complex OBDA 

system with wide scope; it aims to provide end-to-end scalable solution to Big Data 

Integration. The development of a domain ontology to support semantic querying 

from the RDB is a complex task that requires a specialist user like an ontology de-
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veloper. 

In recent times, an increasing practical relevance of the multiagent systems and 

Semantic Web technologies has raised the possibility of building intelligent decision 

support systems that provide intelligent assistance to build a domain ontology from 

RDB. To this end, Semantic Query Access System (SQAS) (Polajnar et al. , 2012, 

2014) proposes an innovative distributed agent-oriented architecture with intelligent 

software agents which develop a domain ontology with their know-how of ontology 

building process. In SQAS, a user can execute sophisticated semantic queries against 

an RDB using a customized ontology which is built from the user 's definitions of 

domain concepts. An important aspect of that proposal is that an enterprise decision-

support system like SQAS could be developed within the organization itself, and 

evolve with its needs, without modifying the underlying RDB (Polajnar et al. , 2014). 

Moreover, the development process does not disrupt the conventional access to the 

RDB. 

2.2 The Semantic Web 

The Semantic Web (Berners-Lee et al. , 2001) is a web of data that enables computer 

systems to understand the semantics, or meaning, of information that populates the 

World Wide Web (WWW) , i.e. , the web (Berners-Lee, 1998). The notion of Semantic 

Web was proposed to represent a new machine-readable version of the web. The web 

is also referred as a web of documents because the information is transferred and read 

mostly in terms of documents. It is largely unstructured and only humans can read 

and interpret most of the documents on the web. The Semantic Web intends to trans-

form the documents into structured data through a set of new technologies available 
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for t hat purpose such as Resource Descript ion Framework (RDF) and Web Ontology 

Language (OWL). The structured representation t hen enables computer programs to 

collect, interpret , and synthesize information from the web. The agents can answer 

questions from its user through interaction with other agents, or by reading, under-

standing, synthesizing, and analyzing structured information on t he Semant ic Web. 

The technologies of the Semantic Web that are relevant for t his research are explained 

next . 

2.2.1 The Resource Description Framework (RDF) 

The Resource Descript ion Framework (RDF) is a class of specifications used to de-

scribe design and structure of the information on the web (Manola et al. , 2014) . The 

meaning of data is expressed through a concept model which encodes the data in a 

set of t riples as subject, predicate, and object. The subject is t he concept being de-

scribed , t he predicate is an attribute of the concept, while the object holds a value of 

the attribute for the concept. The subject and predicate have specific resource URis 

(Universal Resource Ident ifier) which uniquely identify t hem over t he web. The RDF 

follows standard syntax for XML (eXtensible Markup Language) to express t he con-

cepts. It plays an essential role for the data representation in the Semantic Web. The 

Web Ontology Language (OWL) for represent ing ontologies conforms to t he grammar 

described in t he RDF specifications. 
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2.2.2 The Web Ontology Language (OWL) 

The semantics of the knowledge or information on the web can be expressed through 

an explicit specification of concepts known as ontology. An ontology contains a hier-

archical structure of concepts corresponding to a particular knowledge domain, and 

provides inference rules to reason about the knowledge domain. The Web Ontol-

ogy Language (OWL) (Hitzler et al. , 2012) is a W3C standard and recommended 

knowledge representation formalism for describing ontologies in the Semantic Web. A 

concept in the ontology can be expressed with its name, roles (properties), and role 

restrictions. A property can be associated with one or more concepts. There are two 

kinds of properties: object property links individuals to other individuals, and data 

property links an attribute value to an individual. The ontology supports advanced 

structuring features like property restrictions, property characteristics, and inference 

rules to reason about the information. 

The OWL 2 Web Ontology Language, informally OWL 2, (Motik et al., 2012) 

describes OWL profiles, i.e. , fragment or sub language, that support different subsets 

of full OWL 2 specification in order to reduce expressiveness for the efficiency of the 

reasoning. The profiles described here are useful in different application scenarios. 

The choice of the profile to use in practice depends on the structure of the ontologies 

and the reasoning task. 

0 WL 2 EL is useful in applications that employ ontologies with numerous classes. 

It captures the expressiveness required by such ontologies and provides basic reasoning 

in polynomial time respective to the size of the ontology. The EL acronym reflects 

the profile's basis in description logic with existential quantification. 

OWL 2 QL is aimed at applications that use large volumes of data, and where 
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query answering is the most important reasoning task. The expressive power of the 

profile is quite limited, although it includes most of the main features of the conceptual 

models. The QL acronym reflects the fact that query answering can be achieved 

through rewriting queries into a standard relational Query Language. 

OWL 2 RL is aimed at applications that require scalable reasoning without sacri-

ficing too much expressive power. It is designed to accommodate OWL 2 applications 

that can accept sound but incomplete reasoning with the ontologies. The RL acronym 

reflects the fact that reasoning in this profile can be implemented using a standard 

Rule Language. 

2.2.3 The SPARQL Protocol and RDF Query Language 

(SPARQL) 

The SPARQL Protocol and RDF Query Language (SPARQL) (Prud'hommeaux and 

Seaborne, 2008) describes structured semantic queries for data access from the RDF 

data store. The queries can be executed across diverse data sources, for instance, 

the data stored in RDF data store, or the data viewed as RDF but retrieved from 

the different data store through a translator. For instance, the RDB-RDF translators 

can execute SPARQL queries on the underlying RDB after translation to its SQL 

counterpart. The SPARQL queries can return results as RDF triples or graphs. 
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2.2.4 RDB-to-RDF Translation 

The RDBs are widely used data sources for supporting the large number of websites 

on the web. In order to build a structured web, the data from the RDBs should 

be translated to the Semantic Web technologies such as RDF. The RDB-to-RDF 

translation is the process which does that. Two means are important for that process: 

RDB-to-RDF mappings, and a tool which can employ the mappings for translating 

the data to RDF triples. 

The RDB-RDF translators can generate a basic ontological structure from the 

RDB schema through bootstrapping. The process also generates RDB-to-RDF map-

pings which express the relations of classes with underlying tables using a mapping 

language such as R2RML (Das et al., 2012). The automated process employs a basic 

or direct mapping rule for conversion from the RDB schema to an ontology in that 

each table corresponds to a class and its columns to the data properties of the class. 

The mappings can also be used to access data from the RDB using a SPARQL 

query. It is first translated to a SQL query through SPARQL-to-SQL translation 

process supported by some RDB-to-RDF translators. The SQL query is then executed 

on the underlying RDB, and results are converted to the RDF triples using the same 

mappings. 

RDB to RDF Mapping Language (R2RML) expresses customized mappings 

from relational databases to RDF datasets. Each R2RML mapping can be tailored 

to a specific RD B and target vocabulary. R2RML mappings are expressed as RD F 

graphs and written in Turtle syntax. An R2RML mapping refers to logical tables to 

retrieve data from the input database. A logical table can be one of the following: a 

physical RDB table; an RDB view, or, a valid SQL query. 
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V irtuoso data server supports R2RML by means of its proprietary mapping 

language called Linked Data Views (Software, 2014). It can be used to generate 

default R2RML mappings from the database schema using the basic mapping rule. It 

also hosts a SPARQL endpoint which enables a user to execute SPARQL queries. 

Ontop is an open-source ontology-based data access (OBDA) system which 

employs domain ontology as an abstraction over an RDB to query information 

(Rodriguez-Muro et al., 2013). It supports query rewriting from SPARQL-to-SQL 

like other translators. It uses custom mapping language to represent RDB-to-RDF 

mappings, which can also be translated to and from R2RML mappings. It employs 

several structural and semantic optimizations while rewriting queries and supports all 

major relational databases. Quest (Rodriguez-Muro and Calvanese, 2012) is a core 

query rewriting engine and reasoner for Ontop which supports OWL 2 QL entailment 

regime for reasoning with ontologies. It is under active development. 

2.3 Multiagent Systems 

A multiagent system (MAS) (Wooldridge, 2009) consists of a number of intelligent 

agents who can interact with each other while situated in a common dynamic environ-

ment. The agent is a computer system capable of independent autonomous action on 

behalf of its user or owner to accomplish its delegated objectives. The agent perceives 

the environment in real-time manner to capture the sporadic changes. It reacts in 

a timely fashion to those changes through actions in order to achieve its delegated 

design objectives. Some agents also possess a goal-directed behaviour (pro-activeness) 

by taking initiatives to fulfill their design objectives. The agents are believed to play 

an important role in the Semantic Web as well. They can seek, collect, synthesize, 
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understand, and interpret the structured information. The users can save t ime of 

information retrieval and management from the varied web sources, and make quick 

decisions from the combined information (Berners-Lee et al., 2001). 

2.3.1 Practical Reasoning 1n Multiagent Systems (MAS) 

The concept of belief - desire - intention (BDI) model was first formulated by Shoham 

(1993) while proposing the agent-oriented programming (AOP) techniques. The idea 

underlying the model is to program computer systems, especially intelligent agents, 

with these notions in order to support agent reasoning. The notions are defined as 

follows: beliefs represent the agent 's understanding of the state of the world; desires 

represent all state of the affairs the agent would like to fulfill which can influence 

the agent's actions; and intentions (i.e., goals) are the state of affairs the agent has 

determined to achieve. The AOP techniques are envisioned to design the agents with a 

non-technical declarative style of programming in order to reduce emphasis on control 

aspects of the agent reasoning. The four main properties of the intentions are: they 

lead to actions, they persist until achieved or renders unachievable, they constrain 

agent deliberation to avoid inconsistency, and they are related to the agent's future 

beliefs. 

The model of decision-making to determine actions from the belief, desires, and 

intentions of the agent is called practical reasoning. It is an action-directed reasoning. 

Two main activities within the practical reasoning are the deliberation and means-

ends reasoning. The process of deliberation determines the intentions of the agent, 

while the means-ends reasoning decides how to achieve an end (i.e., an intention) 

with available means (i.e. , actions) . A planning system employs the agent 's beliefs , 
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intentions, and actions repertoire to generate a plan to achieve the desired state of 

the affairs. 

An elaborate reasoning cycle for intelligent agents is implemented in the Jason 

interpreter (Bordini et al. , 2007) for AgentSpeak (Rao, 1996). The agent follows a set 

of steps within a reasoning cycle to decide a set of actions that it can execute in order 

to change the state of the environment, i.e., world. The steps are as follows: perceive 

the environment to identify changes; update the belief base with the changes and 

create new events for them; read messages from the message queue; select acceptable 

messages and generate corresponding events; select an event from the pending list of 

events; select relevant plans for the selected event; determine applicable plans, i.e., 

desires based on the present state of the world from the relevant plans; select one 

applicable plan to include in the set of intentions; select an intention for execution 

from the set of intentions; and, execute one step of an intention. 

2.3.2 Platforms for MAS Development 

Three known platforms for the research and development of the multiagent systems 

are as follows: 

• Jason is an interpreter and platform for a programming language called 'AgentS-

peak' which is useful in building computer programs as agents (Bordini et al., 

2007). It comes with a rich environment that enables agents to communicate 

and coordinate with one another in a high-level manner. Each agent follows 

an elaborate reasoning cycle which can be customized as per the design of the 

multiagent system. 
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• Madkit is an implementation of Aalaadin which is a meta-model of artificial 

organization (Ferber and Gutknecht, 1998). Madkit allows for the several mul-

tiagent systems to work concurrently. 

• The Agent Factory (af2 , 2014) framework is an open source collection of tools, 

platforms, and languages that support the development and deployment of the 

multiagent system. The Common Language Framework (CLF) is a part of the 

Agent Factory and it supports the development of agent interpreters for different 

Agent Oriented Programming (AOP) languages. 

2.3.3 U sing Ontologies in MAS 

Two or more agents should agree on the terminology that they use to describe the 

domain (Wooldridge, 2009) in order to communicate effectively. The ontology can 

provide common basis of understanding for the agents in order to remove ambiguity in 

communication messages. Moreira et al. (2006) propose an approach of agent-oriented 

programming with underlying ontological reasoning. The four main advantages of that 

approach are as follows: (i) the expressive queries can be formulated which can take 

advantage of explicit as well as inferred knowledge from the ontology; (ii) it enables 

checking consistency of the knowledge, i.e., the ontology for new or updated beliefs; 

(iii) an agent can follow common plans using subsumption relation between classes 

through plan trigger generalization; (iv) and the agents can share knowledge about 

the domain terms with the other agents using OWL ontologies. 

JASDL (Jason-AgentSpeak Description Logic) is an extension of Jason agent plat-

form which supports the aforementioned features through Jason customization tech-

niques and the usage of OWL APL It is the first full implementation of an agent-
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oriented programming language (AOP) using ontological reasoning within a declar-

ative setting (Klapiscak and Bordini, 2009). It annotates the agent beliefs with a 

specific ontology instance annotation. In addition, the Jason plan library is extended 

to support enhanced plan lookup using the plan trigger generalization. 

Ont ology for Agent Plans: The agents in a MAS can possibly benefit from using 

ontologies as a plan library to influence the agent's behaviour in order to suite different 

deployment scenarios. To this end, an approach proposed by Freitas et al. (2014) 

presents a semantic model for planning domains which can be translated to actual 

agent plans. The semantic model is an OWL planning ontology. In addition, they 

propose and implement an algorithm to facilitate the conversion from classes in the 

planning ontology to the agent plans in AgentSpeak language. The planning ontology 

contains the following major concepts. Operator describes how a primitive task can be 

performed. It contains name, parameters, preconditions, a delete list and an add list 

of predicates. Method indicates how to decompose a compound task into a partially 

ordered set of subtasks which can be either compound or primitive. It contains three 

parts: the task, preconditions, and subtasks. Method Flow describes how it can be 

decomposed based on the current state of the world. Parameter is a variable symbol 

used by operators, methods, and predicates. 

2 .4 Developing Domain Ontology 

The ontology development process for any knowledge domain involves a number of 

iterations for its classification and expansion. It is a fairly complex process by its 

nature. Generally, an ontology developer or a knowledge engineer who possesses a 
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specialist knowledge of ontology language syntax and development process is actively 

involved in that process along with domain experts . An ontology development envi-

ronment such as Protege (Horridge et al. , 2004) or TopBraid Composer (Inc, 2011) 

can be employed to build an ontology. In addition, the ontology developer accesses 

and browses other resources such as dictionary, thesaurus, WordNet, or external on-

tologies to gather, analyze, identify, and reuse existing knowledge of the domain in 

terms of classes, properties, and t heir relationships. 

2.4.1 Ontology Development Methodology 

An ontology development methodology describes a set of principles , methods, and 

activities to design, construct, build, and share ontologies (Gasevic et al. , 2006). Noy 

et al. (2001) states that there is no standard ontology development methodology which 

can be common to many application domains to build an ontology. However, there are 

a few guiding steps which can be useful in developing a domain ontology. A method-

ology describing these steps is termed as Ontology Development 101 methodology and 

the steps are as follows: 

Step 1: Determine domain and scope of the ontology 

The process starts with defining domain and scope of the ontology. Some com-

mon questions which can be asked are related to the knowledge domain, purpose 

of ontology, types of questions that the ontology is expected to answer, and 

prospective users of the ontology. 

Step 2: Consider reusing existing ontologies 

During this step , an existing ontology for the knowledge domain can be identified 

and reused after some refinements instead of building an ontology from scratch. 
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Step 3: Enumerate important terms in the ontology 

Create a comprehensive list of domain terms with the help of the questions such 

as (a) what are the terms a user would like to talk about? (b) what properties 

these terms have? (c) what is an additional information about a term? 

Step 4: Define classes and class hierarchies 

During this step, new classes can be introduced in three ways: top-down ap-

proach involves creating specialized concepts from the general concepts; bottom-

up approach follows a reverse direction to group common properties in special-

ized classes to a general class; and combination approach which starts with the 

most notable concepts and then continues to expand through the generalization 

and specialization to the remaining concepts. 

Step 5: Defin e the properties of the class - slots 

The properties provide additional information about a class by describing its 

internal structure. From the list of important terms, several terms are defined 

as classes in the previous step, while remaining terms are most likely to be the 

properties of those classes. 

Step 6: Define the facets of the slots 

A slot can have facets, i.e. , property restrictions such as allowed values and 

cardinality. 

Step 7: Create instances 

In the final step, individual instances are created for the classes in the ontology. 

The steps can be reiterated a number of times until an acceptable version of the 

ontology is developed. 
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2.4.2 Ontology Metamodel 

The OWL 2 Metamodel based on the MetaObject Facility (MOF) (Brockmans et al. , 

2008) enables the applications to represent ontological notions such as class, data prop-

erty, object property, property restriction, and subclass relation using a metamodel 

OWL ontology. It describes a machine-readable specification of OWL 2; however, it 

is not updated to reflect the latest refinements in the OWL 2 specification. Fig. 2.1 

highlights a section in the graphical representation of the large OWL 2 Metamodel in 

an OWL ontology. 

2.4.3 Building Domain Ontology from RDB 

There has been numerous approaches to creating a domain ontology from the RDB. 

Most of them propose frameworks with a set of rules and mapping related to the 

target knowledge domain to create an ontology from the RDB (Trinh et al. , 2006; 

Choi and Kim, 2012; Ramathilagam and Valarmathi, 2013). The approach requires 

an ontology developer who is adept at the language syntax, semantics, and the devel-

opment methodology. The advantage of having rules and mappings to create a basic 

ontology from the RDB is t hat it provides a significant head start in the ontology de-

velopment. Hence, allowing for efforts of the ontology developer and domain experts 

to focus on refining and expanding the basic ontology through new abstractions. The 

ontology development is an iterative process and there is no correct ontology-design 

methodology. A best solution for building the ontology depends on the expected usage 

and extensions of the resultant ontology. The Ontology Development 101 (Noy et al. , 

2001) methodology can be used to build a domain ontology from the basic ontology. 
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2.4 .4 U sing MAS for Ontology D evelopment 

The semantic capability of Web Ontology Language (OWL) is high due to an avail-

ability of various ontology constructs for the formal concept modelling. The complex-

ities of the ontology development methodology make the ontology-building process 

slow, tedious, costly, and time consuming. As a fully-automated ontology develop-

ment process is impossible to achieve, the software agents can assist humans in the 

collaborative ontology development (Bao and Honavar, 2004) . The agent-oriented 

ontology-building systems can be categorized and evaluated as per the following cri-

teria: underlying database technology, number of agents, independent agent roles and 

capabilities , agent communication mechanism, agent's knowledge of ontology devel-

opment methodology, and roles of the domain expert in the ontology-building task. 

Dynamo Framework is a MAS-based semi-automated approach to learn ontology 

by analyzing the domain-specific set of texts ( Ottens et al. , 2009). The approach is 

focused on the ontology learning using a distributed hierarchical clustering algorithm. 

It is semi-autonomous because an ontology developer is required to design the ontology 

with adaptive agents. The framework generates concepts based on several criteria 

which are derived from the statistical computations on the texts. The agents represent 

the concepts in the system and a re linked by la belled relations. In the process, the 

agents repeatedly execute the distributed algorithm until the equilibrium state ( a 

binary tree) is achieved. The framework does not define any explicit communication 

mechanism but it is possible to create a simple communication layer for messaging 

between agents. The ontology developer can modify the first hierarchy generated by 

the system or in between the clustering process. The system adapts to the changes 

depending on the modification request from the user. 
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Wiki@nt (Bao and Honavar , 2004) supports collaborative ontology development 

for integration and reconciliation of multiple heterogeneous and inconsistent ontol-

ogy modules. The ontology modules correspond to semantically heterogeneous and 

distributed data sources. The environment provides agent-oriented framework which 

supports collaborative ontology building as a design principle where multiple indi-

viduals can communicate and cooperate in editing a shared ontology. The human 

partner needs to understand the syntax of the ontology language to use the environ-

ment. The environment can be set up to enable an ontology developer to build the 

ontology collaboratively with the software agents. The approach is semi-autonomous 

owing to the need of human partner in the ontology development. The agents can 

assist in finding concepts and their relations from original data sources, small pieces 

of ontologies, and consistent concepts. 

Both of the aforementioned approaches employ intelligent agents to build ontolo-

gies, but they build ontologies that can not be used for intelligent decision support. 

The Dynamo framework limits itself to defining taxonomy of terms instead of a do-

main ontology. On the other hand, Wiki@nt lacks explicit definitions of the ontology-

building agents. In addition, both of the approaches use different data sources than 

an RDB which can provide basic structure for the domain ontology. 

SQAS (Polajnar et al., 2012, 2014) is a qualified intelligent decision support system 

which develop domain ontology with intelligent agents to support semantic queries 

over the RDB. It employs D2RQ Mapping Language (Cyganiak et al., 2012) to fa-

cilitate the conversion from the RDB data to RDF triples. The generate-mapping 

tool of D2RQ server creates a default mapping from the RDB. The default mapping 

is referred as a base ontology. The autonomous agent endowed with a knowledge of 

ontology-building techniques assists the database administrator in building the refer-

24 



ence ontology. The mapping file generated by D2RQ is considered the base ontology 

in SQAS. 

The reference ontology is developed based on the base ontology, domain knowl-

edge of the user, and related existing ontologies retrieved from the Semantic Web. 

The agent reads the mapping file, and defines primary classes and properties in the 

reference ontology. It then assists the user in writing generalized concepts, properties 

with meaningful names, and relations between classes. The users can customize the 

reference ontology according to their understanding of the domain in order to create 

a custom ontology. Later, the user submits a request for report in Simplified Natural 

Language (SNL) which is verified with the help of the custom ontology to create a 

SPARQL query. The SPARQL query is translated to its SQL counterpart which is 

then executed on the RDB. The results are translated to the RDB triples, and then 

formatted and presented to the high-level user in the form of a report. 

SQAS consists of two subsystems namely User Subsystem (US) and DataBase Sub-

system (DBS). In both subsystems, the agents along with core environmental software 

components constitute a layer of intelligent middleware that can offer support to other 

external agent-oriented applications. The US runs on the client machine, and hosts 

the User Interface Agent (UIA) and User Interface Environment (UIE). The DBS 

interacts with Database Administrator (DBA) and Data Entry Operator (DEO). It 

hosts Database Interface Agent (DBIA) and Database Interface Environment (DBIE). 

The agent provides the practical reasoning capabilities to the parent subsystem, en-

abling it to autonomously resolve arising problems without intervention of the human 

partner. The agent's knowledge about building ontology is stored as an ontology of 

the ontology-building knowledge domain which is referred as a meta-ontology. 

In essence, SQAS introduces a novel approach of employing intelligent software 
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agents to assist their human partner in building domain ontology from basic ontolog-

ical structure generated from the RDB. That approach is completely original to my 

knowledge in which the emphasis is on endowing software agents with the know-how 

of the ontology development in a meta-ontology. 
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Chapter 3 

Research Objectives 

In this chapter , we outline the main objectives of the present research. With the 

background, context, and related work presented in the previous chapter, we now 

revisit the thesis objectives stated in the Introduction. Essentially, we address the 

agent-assisted ontology building (AAOB) , as introduced in SQAS (Polajnar et al. , 

2012, 2014) , from complete multiagent system design perspective, with prototype im-

plementation of key AAOB functions. The overall design of the multiagent system, 

including the agent team structure and various supporting modules and utilities , is 

embodied in the architecture of the Ontology Building Multiagent System (OBMAS) . 

The system retains the ontology-based data access (OBDA) , with ontology generation 

from RDB as in SQAS, as its AAOB application domain. For practical development, 

testing, and presentation, I use a fragment of the publicly available e-commerce RDB, 

Opencart (Opencart, 2014). The OBMAS architecture is methodically developed, 

starting with the formulation of system requirements, and includes all supporting 

components needed for a complete system. The central AAOB functionality of OB-
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MAS is represented in the Ontology Builder Agent (OBA), which is implemented at 

the prototype level. 

Given the novelty of the AAOB system design, the objectives include the investiga-

tion of AAOB research challenges, design issues at the OBMAS level, and prototyping 

issues at the OBA level. We address them in three separate sections below. 

3 .1 Research Challenges in AAOB 

In this thesis , I have identified three research challenges to the agent-assisted ontology 

development from RDB. First, how to design m eta-ontology (proposed in SQAS) which 

imparts the knowledge of an ontology development process and ontological notions 

to the agents, such that they can offer active assistance in interaction with the user 

and other agents by reasoning with the meta-ontology. Second, how an agent can 

help create advanced support for translating semantic queries for data access. Third, 

how to select tools and languages from rapidly evolving landscape of tools that are 

appropriate for practical development of an agent prototype. 

Using meta-ontology, we assure that the ontological know-how is not part of the 

agent design but retrieved from an external knowledge source which can be easily 

upgraded. The existing approaches to using agents for ontology development such as 

SQAS, Dynamo (Ottens et al. , 2009) and Wiki@nt (Bao and Honavar , 2004) do not 

support or provide designs for meta-ontologies. In order to design them, we may need 

to solve problems such as extracting metamodel for ontology formalism, translating 

concepts from ontology formalism to agent design language, and identify that how 

the agent team structure will influence the meta-ontology design. 
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In order to translate semantic queries to RDB-oriented SQL queries , we need map-

pings which link SQL queries to the concepts in the ontology. Presently, tools such 

as Ontop (Rodriguez-Muro et al. , 2013) support mappings for the query translation, 

which are manually developed by a user for higher-level concepts in the domain ontol-

ogy. We intend to delegate that responsibility from the user to the ontology builder 

agent. 

There exists several tools and technologies which are built for the different pur-

poses of the OBDA system development. We intend to identify and employ them 

as appropriate for the design , implementation, and further research on the proposed 

system through an analysis based on various usability aspects. 

3.2 Design Questions in OBMAS 

In order to demonstrate the AAOB approach, a multiagent system should be designed 

and implemented with a small-scale prototype. Some main questions for its design 

and our approach to solve them are described next. Those questions are not yet 

addressed in any research projects from the perspective of the agent-assisted ontology 

development. 

What are the system requirements for the proposed system? In order to answer that 

question, we will manually build the domain ontology, i.e. , reference ontology in terms 

of SQAS, by following a method of ontology development in order to gain experience 

and identify specific system requirements in the context of OBDA. The process will 

also give us clear ideas about possible agent tasks . The system requirements will 

enable us to present complete scope of the proposed system. 
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What are the individual agent roles and skill profiles? The agent roles will be 

identified from the various sources such as the system requirements, known tasks for 

the ontology development , OBDA projects such as Optique (Kharlamov et al., 2013) , 

and approaches to knowledge discovery (Spanos et al. , 2012) from external sources 

such as ontology repositories (Ding et al., 2004; d'Aquin et al., 2007). They will help 

us to decide the composition of the agent team and skill profiles of the agents. 

We intend to design a low-level architecture for the proposed system because the 

distributed-system model of SQAS cannot be employed here due to its larger footprint 

for ontology development in an enterprise. 

3.3 Prototyping the Ontology Builder Agent 

The prototype with an ontology builder agent would demonstrate some key tasks or 

problems for the ontology development from RDB as well as some of the research 

challenges. To this end, we will identify specific features or issues while formulat-

ing system requirements , some of which will be addressed in the implementation. We 

expect to demonstrate features which require the agent's assistance such as bootstrap-

ping the basic structures (i .e., base ontology) from RDB, building mappings , following 

an ontology development methodology, and creating higher-level abstractions in the 

reference ontology. 

The prototype would provide the first implementation of the novel approach of 

ontology development using intelligent agents. The design of a working agent and 

its associated components would lay out the groundwork for building other agents 

and utilities for a larger-scale implementation. It would be used to identify challenges 
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and research problems associated with the development of intelligent decision support 

systems including SQAS. 
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Chapter 4 

The OBMAS Architecture Model 

In this chapter, I identify the system requirements , and present the Ontology Build-

ing Multiagent System (OBMAS) architecture with the descriptions of its structural 

and behavioural aspects. Polajnar et al. (2012, 2014) have identified and analyzed 

the general requirements for the intelligent agent-oriented middleware in the SQAS 

architecture. This chapter takes that research further , to identify the composition 

of the ontology-building agent team, specify individual agent roles, and describe the 

necessary utilities and interfaces. This results in a new architecture that is used to 

design and partially implement a functioning OBMAS prototype using existing state-

of-the-art technologies and tools , and to lay the groundwork for a more complete 

implementation in the future. In the following sections , I describe the system require-

ments (4.1), the system structure (4.2) , the system behaviour (4.3) , and the current 

prototype implementation ( 4.4). 
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4.1 System Requirements 

In this section I describe the initial steps leading to the discovery of system require-

ments (Subsection 4.1.1) , and classify those requirements into three categories: func-

tional requirements (4.1.2), non-functional requirements (4.1.3), and domain-specific 

requirements (4.1.4) (Sommerville, 2015). 

4 .1.1 The R equirements Discovery Process 

The first step in the requirements discovery process was to gain immediate experi-

ence of ontology development in the context of ontology-based data access (OBDA) 

(Rodnguez-Muro and Calvanese, 2012) . Following the Ontology Development 101 

methodology (Noy et al., 2001), I manually built the reference ontology for the e-

commerce domain from publicly accessible Opencart RDB (Opencart, 2014) using 

the Protege ontology editor. In order to generate the RDB-to-RDF mappings, I used 

the Ontop Protege plug-in (Rodriguez-Muro et al. , 2013). Finally, I used the generated 

mappings to execute SPARQL queries on the Opencart RDB. 

The activity diagram in Fig. 4.1 illustrates the main actions in this development 

process . The manual construction of the reference ontology enabled me to identify a 

complete set of system requirements. I also gained insights into technical aspects of 

ontology development from RDB, and learned the state of existing standards and tools. 

Based on this experience, I adopted the Ontology Development 101 methodology, 

which provides the generic steps for ontology development independent of any specific 

process and knowledge domain. 
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4.1.2 Functional Requirements 

The high-level functions of OBMAS are shown in Fig. 4.2. The use case diagram 

illustrates the actors and use cases that are explained in the rest of this subsection. 

The actors are: the Database Administrator (DBA), who develops a primary reference 

ontology using the knowledge of table relations in the RDB schema; and Domain 

Expert (DE), who enriches the reference ontology using the knowledge of application 

domain. Fig. 4.3 shows the decomposition of all high-level use cases. The detailed 

descriptions of all use cases can be found in the OBMAS project report (Mumbaiwala, 

2016). 

In each of the use case descriptions that follow, it is assumed that the routine 

functions and lower-level decisions are delegated to the OBMAS agents, or performed 

by specialized system utilities. The actor initiates the activity, receives information 

and suggestions from the system, and retains responsibility for higher-level decisions. 

In the Setup Base Ontology use case, the Database Administrator (DBA) first 

identifies the RDB and provides it connection details; the system connects to the 

RDB and bootstraps the RDB schema into the base ontology. Next, the DBA names 

the knowledge domain of the RDB, enabling the agents to look for existing external 

ontologies in the same domain. The DBA also selects the OWL sublanguage for the 

representation of reference ontology. 

When the DBA invokes the Create Primary Reference Ontology use case, OB-

MAS creates the initial reference ontology from the base ontology and helps the DBA 

identify new subclasses , class names, subclass relations, and object property relations 

(as defined in OWL) between existing classes from the RDB schema. The system 

then refines the initial reference ontology with these relations to create the primary 
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The Enrich Reference Ontology use case captures some of the central activities of 

OBMAS. It is invoked by the Domain Expert (DE), who asks OBMAS to identify 

new subclasses and superclasses for the primary classes (in the primary reference on-

tology). The DE then selects and approves the new subclasses and superclasses, and 

also introduces the desired data properties, object properties, property restrictions, 

property characteristics, and annotations. This enrichment process can proceed re-

cursively until the DE considers the reference ontology to be complete. The system 

also generates new reference ontology versions in response to changes in the RDB 

schema. 

When the DE invokes the Align External Ontology use case, OBMAS identifies the 

alignments, i.e., the equivalencies between the classes and properties in the reference 

ontology and an external ontology. The DE then selects the appropriate alignments 

and requests to introduce them in an alignment ontology. 

The Validate Reference Ontology use case is periodically invoked after a time 

interval or upon the actor's request. It validates the reference ontology in order to 

identify any logical conflicts or modelling errors. The DE then attempts to resolve 

the conflicts and errors through reclassification or other modifications in the reference 

ontology. 

In the Learn Ontology from RDB use case, the actor selects the main primary 

classes and properties for the domain, and the system analyzes both the RD B schema 

and the RDB data in order to identify new candidate subclasses, superclasses, and 

relationships among them. Next, the actor selects the appropriate classes and rela-

tionships to include them in the reference ontology. 

When the DE invokes the Reuse External Ontology use case, OBMAS explores 

37 



Setup Base Ontology 
Actors: OBA, OBA 

/ 
/ 

<<i~~>> 

~ nckHSes->-> 

··::~';;a.~ .. » 

c-t• Prim"ry R.f......,c• Ontology 
Actors: OBA, OBA 

Enrich Raf...,.,. Ontology 
Actors: DE, OBA 

System 

(a) 

legend 
OBA- Onrology Build er Agent 

OBA.- Database Administrator 
DE - Domain Expert 

Figure 4.3: Decomposit ion of the high-level use cases 

38 



Validat& R&f1!11!ne& on-.logy 
Actors: OE, CNA 

I 

/ 
<<indud'es>> 

/ 
<<iF1

1dud~s 
(.,···· 
··· udes>> \ ' ···, .. 

<<in~des>> 
'\, 

\ 

R&Use External Ontology 
Actors: OE, SWCA 

System 

Align External Ontology 
Actors: OE, OAHA 

/© 
<<(!nd~,;~>> 

<<ii~u;!e~ /., .... ,,. 
-~"'*'-~".:>.> 

·· .. 
<<jn~des>> 

...... ,\ 

Learn Ontology from ROB 
Actors: OBA, OE, OLA 

/ 
<<jri°du!I••" 
l..',-~·"' 

Visualize Ontology 
Actors: OBA, OE 

(a) 

Legend 

OVA- Ontology Validator Agent 

OAHA- OntologyAf,gnment Helper "9ent 

OLA-Ontology Leamer Agent 

SWCA- Semantic Web Crawler ,',gent 

DJ:1.\- Database Administrator 

DE - Domain Expert 

Figure 4.3: (Cont .) Decomposition of the high-level use cases 

the Semantic Web in order to find external ontologies, and analyzes them to gather 

knowledge about new class hierarchies and relationships. The system presents that 

information to the DE who decides to include the appropriate classes and relationships 

in the reference ontology. 

In the Query with Reference Ontology use case, the actor builds semantic queries 

using the domain terms from the reference ontology. Next, the system validates, 

translates, and executes the semantic queries on the RDB. Later , the results are 

formatted and displayed to the actor. 
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When the actor invokes the Visualize Ontology use case, OBMAS presents the base 

ontology and reference ontology in a graph and enables the actor to browse specific 

entit ies and explore the class hierarchies. 

4.1.3 Non-functional Requirements 

The non-functional requirements specify t he constraints on the structure, features, 

and services of OBMAS. The first of the two main requirements is the system's in-

dependence of the specific RDB-to-RDF translator that it employs. Considering the 

ongoing research in that area, it is essential to keep OBMAS open to incorporation of 

more advanced RDB-to-RDF translators as the tools evolve. The second main require-

ment is to keep the OBMAS architecture compatible with the distributed client-server 

model of SQAS. 

4.1.4 Domain-specific Requirements 

The domain-specific requirements for OBMAS specify the details of multiagent sys-

tems (MAS) structure, as well as the technologies and constraints in ontology devel-

opment. The first requirement is that the agents should communicate using a shared 

ontology model represented in OWL 2 (Hitzler et al. , 2012). Second, to keep the 

choice of methodology flexible, the desired methodology of ontology building should 

be incorporated into a planning meta-ontology which is a plan library for the agents. 

Third, to enable the agents to reason and communicate about ontology, one must en-

dow them with identical understanding of abstract ontology concepts, such as class or 

subclass within their belief bases. Fourth, in order to allow semantic queries to refer 
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to the reference ontology concepts, OBMAS should provide a mechanism of semantic 

query translation into the equivalent SQL queries. 

4.2 System Structure 

The high-level structure of OBMAS is shown in Fig. 4.4. OBMAS has four main 

components: System Core, Data-Source Mapper, OBMAS RDB, and Graphical User 

Interface (GUI). System Core includes the agent team and its supporting components. 

It also provides the access to external services such as WordNet (Miller, 1995). Data-

Source Mapper provides automatic extraction of the base ontology from the existing 

RDB that is commonly known as bootstrapping. OBMAS RDB stores the state of the 

system and other resources which are persistent across user sessions. GUI provides a 

friendly interface for user interactions with OBMAS. 

The rest of the section explains the major functional components of OBMAS in 

more detail. 

4.2.1 System Core 

System Core (Fig. 4.5) is the central component of OBMAS. It contains the agent 

team and several other subcomponents, discussed next. 

System Ontologies is the set of all ontologies in the system, namely the base 

ontology, reference ontology, and meta-ontology, for each agent. It gives thread-safe 

access to the latest in-memory copies of the ontologies using the OWL API (Horridge 
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Figure 4.4: The high-level structure of OBMAS and its external relations 

and Bechhofer , 2011). 

Agent Team is the group of agents which can interact with users and among t hem-

selves during different steps of t he ontology development process. Ontology develop-

ment involves mult iple distinct and complex tasks such as: building t he reference on-

tology, ontology lea rning from t he underlying RDB , ontology lookup on t he Sem ant ic 

Web, alignment with external ontology, and validation of t he reference ontology to 

ident ify conflicts and errors. These compound tasks require significant agent reason-

ing and deliberation along with user interact ion. Therefore, it will be reasonable to 

conceive t hem as belonging to t he agents with individual skill profiles , described next. 

In t he following paragraphs, I provide short descriptions of roles or objectives of 

each agent. 
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Ontology Builder Agent (OBA) is the chief agent in the OBMAS agent team. 

Its task is to build the reference ontology in interaction with the Database Adminis-

trator (DBA) and Domain Expert. It requests help from the other agents as necessary 

to fulfill its task. Its roles include: assisting the user in formulating competency ques-

tions (Noy et al. , 2001) for the reference ontology; handling technical ontology-oriented 

tasks such as adding or removing classes, properties, and property restrictions; and 

semantics-oriented tasks such as introducing new classes through generalization or 

specialization of existing classes. The OBA follows an ontology development method-

ology, such as Ontology Development 101 , in order to assist the user in developing 

the reference ontology. It communicates with the Semantic Web Crawler Agent, On-
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tology Alignment Helper Agent, and Ontology Learner Agent to gain the knowledge of 

the domain in terms of hierarchies of classes, their properties, and relations between 

them. The acquired knowledge is used to assist the user in the ontology development 

process. 

Semantic Web Crawler Agent (SWCA) explores the Semantic Web reposito-

ries such as Swoogle (Ding et al. , 2004), Watson (d'Aquin et al., 2007), and Open 

ontology repository (Baclawski and Schneider, 2009) for existing known ontologies in 

the knowledge domain by occasional interaction with the DE. The external ontologies 

may contain varied degrees of relevant knowledge for the domain. The SWCA assists 

its human partner in identifying and extracting relevant classes, class hierarchies, 

properties, and relations from the external ontologies. To this end, the agent em-

ploys services from Semantic Web Discovery utilities for the ontology lookup as well 

as Thesaurus & Dictionary Utilities to identify semantic similarities between domain 

concepts for knowledge extraction. The acquired knowledge is then shared with the 

OBA which interacts with the DE to introduce classes or properties in the reference 

ontology. 

Ontology Alignment Helper Agent ( OAHA) enables semantic interoperabil-

ity between the reference ontology and an external ontology by creating alignments 

between classes and properties using equivalency, and identifies candidate classes for 

the knowledge domain through an analysis of external ontologies. It interacts with 

the Domain Expert (DE) to align the classes , properties, and class hierarchies from an 

external ontology to the classes in the reference ontology. It also analyzes the latest 

version of the reference ontology to identify new candidate alignments or classes. It 

shares the learned class hierarchies with the Ontology Builder Agent. 
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Ontology Learner Agent (OLA) analyzes the data in the legacy RDB, as well 

as the RDB schema, in order to identify candidate classes for specialization. For 

an extended analysis, it also applies reverse engineering or other ontology learning 

techniques (Spanos et al., 2012) to extract the underlying ER (Entity Relationship) 

model (Calvanese et al., 1999) for the RDB, in order to identify implicit domain 

knowledge from the conceptual schema of the model. The agent shares the acquired 

knowledge about the model with the Ontology Builder Agent which interacts with 

the DE to introduce classes or properties in the reference ontology. 

Ontology Validator Agent (OVA) keeps track of updates in the current ver-

sion of the base and reference ontologies, and initiates the ontology validation process 

periodically or whenever desired (for example, before creating a new version of t he ref-

erence ontology). It alerts the Ontology Builder Agent to contradictions or modelling 

errors in the reference ontology. It can also load plans from the planning meta-ontology 

and determine a plan for handling inconsistencies in the ontology. Alternatively, it 

can assist the DE to resolve the problems in the ontology. 

Agent Structure is illustrated in Fig. 4.6. Each agent encapsulates five compo-

nents: belief loader, which reads system ontologies, translates their properties into 

the agent beliefs , and loads them into the agent's belief base; event generator, which 

creates events for the reasoner based on incoming messages or changes in the belief 

base; reasoner, which determines what needs to be done in response to an event, 

including possible commitments to goals that activate the plan selector; plan loader, 

which loads all available plans for the agent in the plans data structure; and plan 

selector, that chooses a plan from the list of applicable plans or removes an achieved 

goal from list of goals. In addition, the agent contains three data structures: belief 
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Figure 4.6: The internal structure of an agent 

base, which contains the beliefs of the agent about the state of the environment (i.e. , 

ontology) ; plans, which stores the agent plans retrieved from the plan library; and 

message queue, which holds the messages received from other agents or the users. 

Agent Interaction & E xecution Ser vices component provides a set of three 

services which are shared between the agents: communication module, which forwards 

asynchronous messages from sender agents to message queues of receiving agents; 

actions library, which provides a range of actions to be selected and executed by the 

agents such as sending an agent request or response to the interface API, sending or 
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broadcasting a message to agents, or invoking ontology service utilities to modify the 

ontology; agent utilities, which provides a set of general utility functions to read and 

format action parameters before execution of an agent action. 

Interface API facilitates bidirectional interactions between GUI and components 

of System Core. It employs the publish-subscribe mechanism for services. It offers 

UI services, which deliver UI requests and responses from publishers to subscribers, 

and agent services, which deliver agent requests and responses from publishers to sub-

scribers. GUI publishes to the UI services and subscribes to the agent services while 

the agents do the reverse. The interface API also offers unidirectional system services 

without subscription which any consumers can use for common system functions. 

Utilities five types of services: Thesaurus B Dictionary Utilities provide connect 

and fetch services to find related words from WordNet and other external dictionaries 

and thesauri; Ontology Service Utilities provide technical ontology development and 

maintenance services; Semantic Web Discovery Utilities help find relevant existing 

domain ontologies from local or external repositories; Ontology Alignment Utilities 

provide technical services for the ontology alignment between classes or properties 

of an external ontology and the reference ontology; and R epository for External On-

tologies, maintains a list of external domain ontologies along with their locations and 

provenance information. 

Managers and Monitors provide the following services: Ontology fj Mappings 

Manager maintains versions of the reference ontology, base ontology, and their cor-

responding RDB-to-RDF mappings files for the other system components; Meta-

ontology Manager manages planning meta-ontologies for the agents and provides 
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services to translate them to agent plans in AgentSpeak; Schema Monitor period-

ically monitors the RDB schema to detect changes , identifies the differences between 

schema versions, and notifies the Ontology Builder Agent (OBA); Query Manager 

verifies SPARQL queries against the reference ontology and connects to data-source 

adapter to execute SPARQL queries on t he RDB; Database Manager provides a ser-

vice to check valid connection to RDB and maintains a list of standard queries for 

handling data in OBMAS RDB; and Data-source Adapters provide access to services 

of Data-Source Mapper for bootstrapping base ontology, executing semantic query, 

materializing the reference ontology, and accessing the RDB schema. 

4.2.2 Data-Source Mapper 

This component presently provides RDB-related services; in principle, it is envisioned 

to also connect with various file-based or streaming data sources . In the current archi-

tecture, it serves as a bridge between OBMAS and an external RDB-RDF translator 

such as Ontop (Rodriguez-Muro et al., 2013) . It provides four interfaces: Bootstrap-

per interfaces to an RDB-RDF translator to automatically generate base ontology and 

associated mappings from the RDB schema; SPARQL Query Responder interfaces to 

SPARQL query execution service of an RDB-RDF translator; Materializer interfaces 

to an RDB-RDF translator to load instances of classes, i.e. , the data from the RDB 

into the reference ontology; and Schema Loader reads the RDB schema through di-

rect read-only access, monitors the schema modification events through binary log 

processing, informs the schema adapter which in turn notifies the schema monitor. 
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4.2.3 Graphical User Interface (GUI) 

GUI enables a user to invoke any of the use cases described in the functional require-

ments section. Fig. 4.7 illustrates its internal structure. 
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The Database Administrator (DBA) can access all components of GUI; and the 

Domain Expert (DE) can access all components except the system configuration man-

ager. GUI provides an agent interface that lists all active agents in the system, and 

allows the user to open an agent interaction window for each selected agent. The 

window contains handlers for agent requests and responses. For system configuration, 

GUI enables the DBA to set up connections to the RDB and OBMAS RDB, and 

manage the users through the system configuration manager. With the query inter-

face, the DBA or DE can build and execute SPARQL queries for information retrieval 

from the RDB using classes and properties in the reference ontology. The dictionary 
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interface provides access to WordNet and other dictionaries and thesauri. Users can 

save their profile information and system preferences using the user profile & prefer-

ences manager. The ontology visualizer renders a selected version of an ontology as 

a graph. The ontology graph can also be filtered to display a limited set of classes. 

4.2.4 OBMAS RDB 

OBMAS RDB is used to preserve the state of OBMAS in a database for future user 

sessions. It also stores resources that persistent across multiple user sessions. It is 

designed to store the meta-information related to objects such as the base ontology, 

RDB, external ontology, layout preferences, logs , mappings, meta-ontology, reference 

ontology, system parameters, user profile, and user roles. 

4 .3 System Behaviour 

In this section, I explain user-agent interaction and communication between agents. 

An agent interacts with the user within the context of a dialogue, illustrated in 

Fig. 4.8. A component such as GUI or agent executes actions in the direction of 

control flow in the activity diagram; while the event flow transfers control from the 

source to destination. A new dialogue is initiated when the user sends a request or 

the agent decides to perform the next step prescribed by the ontology development 

methodology. The agent then deliberates, commits to a goal, and executes a plan 

associated with the goal. A dialogue involves four kinds of messages: User Request, 

Agent Request, User Response, and Agent Response. In each round of reasoning in 
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Figure 4.8: The user-agent interaction 

the dialogue, the agent commits to new subgoals, or determines and executes a set 

of intermediate actions based on t he user  response; in the absence of failure, this 

continues until either the goal is achieved, or it becomes unnecessary, or it turns 

unachievable within current conditions. The subgoals are pursued in the same dialogue 

for simpler goal tracking. At the end of each round, the agent waits for a user response 

to start a new round. 
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Fig. 4.9 illustrates a communication cycle between two agents; here, the requester 

agent initiates communication, and the helper agent executes actions or provides in-

formation upon request. The helper generates events for the changes in its belief base 

which may be caused by the content of an incoming message. Each event is stored 

in the list of pending events, and selected for further processing in order to identify 

and commit to a goal during subsequent reasoning cycles. If additional information 
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is required in order to achieve the goal, the helper initiates a dialogue with the user 

(as shown in Fig. 4.8) ; otherwise, it determines and executes a plan including ini-

t iation of communication with other agents as necessary. In the absence of failure, 

the process repeats until either the goal is achieved, or it becomes unnecessary, or it 

turns unachievable. The communication cycle ends with the helper sending a response 

message to the requester. 

A request type corresponds to one of the following KQML performatives (Finin 

et al. , 1994): achieve, unachieve, tell, untell, tellHow, untellHo w, askHow, askOne, 

and askAll. The agents use standard ontological notions when communicating about 

entities in the ontology. For example, the requester can ask the helper about semantic 

equivalence of two classes: 

(askOne 

) 

: content equivalentClass(class(product),class(merchandise)) 
:receiver helper 
: language AgentSpeak 
:ontology reference-ontology 

4.4 The Prototype Implementation 

The primary objective of the prototype has been to demonstrate how the intelli-

gent agents can interact with the user and other agents in order to build the refer-

ence ontology using the Ontology Development 101 methodology. To this end, the 

following components of OBMAS have been designed and implemented: Ontology 

Builder Agent, Graphical User Interface , OBMAS RDB, Interface AP!, Thesaurus 

& Dictionary Utilities, Ontology Service Utilities , Ontology & Mappings Manager, 
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Meta-ontology Manager, Data-source Mapper, Database Manager, and Query Man-

ager. Fig. 4.10 illustrates a standard GUI for the OBA. 

Some components of OBMAS are not present in the prototype. They include: 

Semantic Web Crawler Agent, Semantic Web Discovery Utilities, Repository for Ex-

ternal Ontologies, Ontology Alignment Helper Agent, Ontology Alignment Utilities , 

Ontology Validator Agent, Ontology Learner Agent, and Schema Monitor; their func-

tionalities were not essential for t he current prototype. The ontology editor such as 

Protege can be used for t he features currently not present in the prototype such as 

creating complex class hierarchies and reclassifying them. 

The prototype support for each step of Ontology Development 101 is described 

next. 

• Determine domain and scope of the ontology. The information about the domain 

and scope of the ontology is presently provided by the user through GUI and 

that knowledge is recorded in OBMAS RDB. When the agents such as SWCA, 

OAHA, and OLA are implemented , the awareness about t he domain will help 

them in searching and acquiring knowledge from external resources. 

• Consider reusing existing ontologies. Presently, the user identifies domain 

knowledge from external ontologies and provides t he information to the OBA 

in order to incorporate classes and properties in the reference ontology. When 

the SWCA is built, it will perform this function in interaction with the user. 

Further research and development is required in order to equip the agents with 

an ability to reuse knowledge from external ontologies, based on concepts such 

as semantic similarity service (Han et al. , 2013). 

• Enumerate important terms in the ontology. A set of domain classes, retrieved 
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from the RDB schema, already exists in the base ontology. The DBA or DE can 

determine terms for subclasses, superclasses , and properties , that are dependent 

on and reducible to the primary classes. 

• Define classes and class hierarchies. The features such as identifying class name, 

introducing subclasses, adding superclasses, and generating RDB-to-RDF map-

pings with mapping rules are implemented and demonstrated using the proto-

type. 

• Define the properties of the class. During the reference ontology development , 

the user introduces new data properties, that are replicated from the existing 

data properties of other classes through a join of underlying tables in order to 

support querying. The prototype then creates the data property, and generates 

corresponding RDB-to-RDF mappings using mapping rules. The feature to 

introduce object properties and associated mappings can be similarly developed . 

• Define the facets of the slots. In terms of OWL, slots correspond to proper-

ties for classes, and facets are restrictions on the slots. The user introduces 

property restriction, and the prototype creates it in the reference ontology in-

cluding the associated RDB-to-RDF mapping. The prototype supports different 

restrictions such as allValuesFrom, has Value, minExclusive, minlnclusive, max-

Exclusive, and minlnclusive. 

• Create instances. OBMAS does not need populated instances in the reference 

ontology because they are generated at runtime using on-demand SQL queries 

from the RDB. 
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Chapter 5 

Designing Ontology-building 

Agents 

In this chapter, I describe three research challenges identified during the course of this 

thesis, and provide explanations of how I have resolved them. The first two challenges 

deal with fundamental questions: how to design meta-ontologies that enable the agents 

to understand ontological notions and follow an ontology-building methodology; and 

how to translate semantic queries, formulated in terms of reference ontology concepts 

that may not have direct equivalents within the given RDB schema, into SQL queries 

for the RDB. The third research problem is practical and concerns the selection of 

tools that appear the most appropriate for the prototype implementation. To the 

best of my knowledge , complete solutions to the first two research challenges do not 

exist in the current literature. Relying in part on existing results and techniques , 

I introduce my own solutions in sections 5.1 and 5.2. The choices for tools, which 

impact the current prototype design, are discussed in section 5.3. The final section 
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(5.4) briefly summarizes the current implementation status. 

5.1 Designing Meta-ontologies 

The OBMAS design includes two types of knowledge representation for the ontology 

design domain. The model meta-ontology represents the ontological notions, such 

as classes and properties, that support the agent's reasoning about ontology, and 

also allow the agent to communicate with other agents using standard ontological 

terms. The planning meta-ontology represents a particular ontology development 

methodology in terms of agent plans; it allows the agent to deliberate on selection 

and execution of plans (from the supplied library) that best fit its tasks and its design 

objectives. These two meta-ontologies are described in subsections 5.1.1 and 5.1.2 

respectively. 

5.1.1 The Model M eta-ontology 

The purpose of model meta-ontology is to enable the agents that are engaged in the 

building of reference ontology for a specific knowledge domain ( we use e-commerce as 

the running example throughout this thesis) to reason and communicate about onto-

logical concepts. The agents need two kinds of knowledge. First , they need to know 

the abstract ontological concepts, such as 'class ' and 'property', and their mutual 

relationships, e.g. , the fact that a class definition can include properties. The term 

metamodelling as defined by Motik (2007) for the Semantic Web concepts describes 

the design of the abstract ontological knowledge model - the metamodel. Second, 

the agents must be able to apply the abstract concepts to the concrete knowledge 
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domain for which they are building the reference ontology; for instance, in the case of 

e-commerce domain, they need to know that 'product ' is a class name. Thus the meta-

model concepts need to be connected to the reference ontology concepts to produce 

the concrete metamodel for the knowledge domain. The concrete metamodel contains 

the ontological knowledge that the agents need for reasoning and communication in 

the ontology-building process. One should note that the concrete metamodel requires 

dynamic updating as new concepts are added to the reference ontology. 

To enable the agents to reason and communicate about ontology, one must also 

decide how to impart to them the knowledge of the concrete metamodel. One possi-

bility is to design specialized ontology-building agents with hard-coded ability to deal 

with abstract ontological concepts. We adopt a more flexible approach, in which the 

agents are enabled for practical reasoning of BDI type, and the knowledge of concrete 

metamodel becomes a part of their belief base. This approach requires a translation 

of the original concrete metamodel representation into the representation of agent 

beliefs in the particular BDI platform. The agents can then use their knowledge of 

the ontology-building domain in the same way as any other domain knowledge. 

The process of creating and maintaining a model meta-ontology for a concrete 

knowledge domain is shown in Fig. 5.1. It starts with two components: a metamodel 

representing the abstract ontological concepts; and initial version of the reference 

ontology, representing the domain-specific concepts. These components must share 

the same ontology representation language, which in our case is OWL 2. Conse-

quently, we use the OWL 2 Metamodel (Brockmans et al. , 2008) , which I upgraded 

to full compliance with the OWL 2 Specification (Hitzler et al. , 2012) , and build the 

reference ontology using the OWL 2 API, which is consistent with the metamodel. 

The two components are then integrated, through a process called concretization, 
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Figure 5.1: The process of developing a  model meta-ontology 

into a  concrete metamodel for t he domain, which  is subsequent ly converted to agent 

beliefs in a  suitable BDI formalism, in this case AgentSpeak  (Rao, 1996) on  Jason 

platform (B ordini et al.,  2007) . The  init ial  reference ontology in our case is created 

by  bootstrapping from  an existing RDB. It is gradually  enhanced  wit h higher-level 

domain-specific concepts, wit h  t he concretization  and conversion steps repeated each 

time as necessary. 

The important upgrades to t he OWL 2 Metamodel included  t he following refine-

ments: adding cardinality restrictions  on  data properties,  replacing  URI (Universal 

Resource Identifier)  wit h IRI (Internationalized  Resource Identifier), setting  prop-
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erty restrictions on DataSomeValues and DataAllValuesFrom classes , and a change in 

SubObjectPropertyOf axiom. 

The concretization process involves metamodelling (Motik, 2007) of entities such as 

classes and properties in the concrete reference ontology. During the metamodelling, 

the classes in the OWL 2 Metamodel are instantiated with corresponding entities 

as individuals in a combined ontology, called the concrete metamodel, which is also 

our model meta-ontology. The updates in the reference ontology during its evolution 

are also applied to the concrete metamodel in order to reflect the latest state of the 

reference ontology and subsequently converted to agent beliefs. 

The proposed converter is an upgraded version of the JASDL (Jason AgentS-

peakDescriptionLogic) translator (Klapiscak and Bordini, 2009); it forms a part of 

the belief loader component of the agent. In OBMAS , the agents employ the resultant 

beliefs from the conversion process in order to deliberate using the meta-ontological 

knowledge and communicate with other agents using standard ontological terms. 

5.1.2 The Planning Meta-ontology 

A planning meta-ontology has been designed and implemented as a hierarchical model 

of ontologies which represent the agent plans at different levels of abstraction. Here , 

the agent plans correspond to various tasks that depend on the agent's role and skill 

profile. In this subsection, I out line my design approach, present the hierarchical 

model structure, and illustrate it with an example. 

In general, practical reasoning in agents built according to the BDI model consists 

of two phases: deliberation, in which an agent forms an intention, and planning, in 
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which the agent determines its action plan to achieve the intention. In most BDI-

based systems, agents do not construct plans at runtime but select them from a library 

of predefined plans ( described in subsection 2.3.1). Our current approach also follows 

that established practice. The planning meta-ontology is a library of plans for the 

agents. 

In our model, an intention corresponds to a composite goal, which can be recur-

sively resolved into subgoals, leading eventually to primitive goals. Composite goals 

are resolved by activating plans from the library whose preconditions are satisfied by 

the agent's beliefs, while the primitive goals are executed directly by the agent, as 

determined by the agent 's design. One should note that the agent's beliefs reflect the 

perceived state of the environment , which in this case is the reference ontology being 

built, and also contain ontological knowledge, imported as a part of model meta-

ontology. Our definitions of aforementioned terms are consistent with the properties 

(proposed by Erol et al. (1994) and represented by Freitas et al. (2014)) of the Hier-

archical Task Network (HTN) planning systems. Here, composite goals correspond to 

goal tasks and compound tasks while primitive goals correspond to the primitive tasks 

of HTN. Similarly, the preconditions correspond to constraints to control ordering of 

tasks and the postconditions 1 correspond to other compound or primitive tasks. The 

temporal ordering of postconditions can be specified by numerical annotation proper-

ties. This solution does not support fully general partial ordering but is satisfactory 

for prototyping purposes. 

In the current design of OBMAS, the agent's role, such as OBA or OLA, deter-

mines its skill profile, in terms of both primitive goals that it knows how to execute, 
1The term postcondition is somewhat misleading because it refers to a partially-ordered set of 

primitive or composite goals, but is retained here for compatibility with the work of Freitas et al. 
(2014) 
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and high-level composite goals that it tends to formulate as initial intentions in its 

deliberation process. The latter aspect makes the agent 'eager' to perform activities 

in its role's purview. For instance, the OBA may pick up pending ontology-building 

tasks whenever it has some idle time, while the SWCA might proactively look for new 

resources on the Semantic Web. The planning meta-ontology reflects the methodology 

which the agents follow in pursuing their composite goals. 

The selection of a particular plan from the planning meta-ontology is also influ-

enced by the type of event that leads to invocation of the plan. In the terminology 

of AgentSpeak, the events are classified as test goals ( questions from user or other 

agents), achievement goals (to which the agent commits), and triggering events (such 

as adding a new belief to agent 's belief base). 

The hierarchical model of planning meta-ontology 

The starting point in our model is the idea of planning ontology in the form of a plan 

library, introduced by Freitas et al. (2014) (discussed in subsection 2.3.3); their library 

is developed in OWL 2 and automatically translated into agent plans in AgentSpeak. 

We introduce a hierarchical model (shown in Fig. 5.2) with four levels of abstrac-

tion and three event types, as discussed above. Our model also relies on the model 

meta-ontology in order to identify the state of the ontology for selecting applicable 

plans. For each level, the model extends the planning meta-ontology by instantiating 

classes with different individuals corresponding to the level scope. For each agent, 

this four-level planning meta-ontology represents its procedural know-how of building 

an ontology using the desired methodology. 

The four levels of planning meta-ontologies and their significance are summarized 
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as follows. 
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Figure 5.2: The hierarchical model of planning meta-ontology 

The top level in the hierarchy is the Schema, which represents the common classes 

and properties for the planning meta-ontology without any instances, i.e. , individu-

als; it has been refined with a new data property called event-type reflecting different 

triggering events. The System level inherits (or 'imports ' , in OWL terminology) the 

schema-level ontology and extends it with instances of primitive goals, composite 

goals, beliefs, and variables that are common to all agents. The Agent-specific-Design 

level imports the system-level planning ontology and extends it with agent-specific 

instances of the primitive goals, composite goals, beliefs, and variables, that are in-

dependent of development methodology. The Agent-specific-Method level imports 

the agent-specific-design-level ontology and extends it with agent-specific instances of 

the composite goals and plans that are specific to the desired ontology development 

methodology. 

Our model description employs the terminology of Freitas et al. (2014) which 

corresponds to the AgentSpeak terminologies as follows: Operator corresponds to a 
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primitive goal; Method corresponds to a composite goal which is decomposed further 

into other composite or primitive goals; Method Flow corresponds to a plan to achieve 

a goal (method) ; Predicate corresponds to agent belief; and Parameter corresponds 

to a variable for a goal or belief. 
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Figure 5.3: Available plans for t he Choose Goal Method (point of entry) 

Fig. 5.3 illustrates a fragment of the planning meta-ontology for the Ontology-

Builder Agent (OBA) representing the initial steps of the Ontology Development 101 

(Noy et al. , 2001) methodology. The Choose Goal is a composite goal which serves 

as an entry point for the agent to identify next goal and associated plan. Depending 

upon the stat e of the world identified using the preconditions, t he agent commits to 

one of the subgoals from the following: Base Ontology, which represents bootstrapped 

ontology from the legacy RDB ; Initial Reference Ontology, which represents the init ial 

state of reference ontology with common properties and references to standard ontolo-
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Figure 5.4: A fragment of the planning meta-ontology 

gies; and Primary Reference Ontology, which represents the reference ontology with 

correct relations between the primary classes of the base ontology. The preconditions 

and postconditions for each plan have been shown in Fig. 5.3. 

Fig. 5.4 illustrates a fragment of the planning meta-ontology based on which the 

OBA pursues the Naming Pattern goal in order to identify and apply a naming pat-

tern after building the Initial Reference Ontology. This planning meta-ontology has 

been successfully used to support determine domain and scope of the ontology step of 

the Ontology Development 101 methodology (Noy et al., 2001). It can be similarly ex-

tended to support other steps in the methodology. Other agents get involved into the 

ontology development as and when determined from their planning meta-ontologies 

from the same methodology. For example, the Semantic Web Crawler Agent (SWCA) 
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initiates the process to explore the Semantic Web after the knowledge domain of the 

legacy RDB is determined. 

5.2 Automated RDB-RDF Mapping Generation 

We now address the problem of translating semantic queries over an ontology that was 

created by bootstrapping from an RDB and enhanced with additional abstractions 

into an SQL query in the underlying RDB. In order to translate semantic queries, 

an RDB-RDF translator such as Ontop (Rodriguez-Muro et al., 2013) relies on a 

set of RDB-to-RDF2 mappings. Each mapping establishes a correspondence between 

an element of the ontology and an SQL query in the underlying RDB. During the 

bootstrapping process, the mappings corresponding to the base ontology elements are 

created automatically by the translator. In the present OBDA systems, the mappings 

for higher-level abstractions are constructed manually in an ontology editor such as 

Protege. 

In our approach, the OBA automatically generates those mappings while creating 

entities in the reference ontology. The agent relies on a set of mapping rules that 

correspond to specific operations in the construction of higher-level abstractions in the 

reference ontology. The agent invokes one or more rules when constructing a mapping 

for a particular higher-level abstraction such as subclass or superclass. Whenever a 

new abstraction is added to the reference ontology, it can immediately be used in 

formulating and executing semantic queries. 

The process of semantic query translation involves the analysis of the semantic 
2The term RDB-to-RDF is used here due to its traditional usage in the literature, but in the OBDA 

context one actually translates RDF-oriented semantic queries into ROB-oriented SQL queries. 
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query, the matching of ontology-level to RDB-level concepts, and the generation of 

SQL query. For instance, the primary classes translate directly to the corresponding 

RDB tables, from which they were originally constructed. The non-primary classes 

(i.e, subclasses and superclasses that were built by the OBA) have no directly match-

ing RDB tables; their correspondence to RDB-level concepts is captured in the map-

pings that the OBA generated while building them. Apart form class mappings , the 

translation process also requires mappings for the data properties and object proper-

ties in the reference ontology that were not inherited from the base ontology. 

We discuss the mapping rules in the subsections below. To simply the represen-

tation of the ontology fragments in this section, we use Manchester syntax (Horridge 

and Patel-Schneider, 2012). 

5.2.1 New Subclass 

This rule, in association with the mapping rule for property restriction ( explained 

next) , generates the mapping for a new subclass. In the first step, the new subclass 

rule creates a new mapping which inherits the IRI for instances as well as the SQL 

query from the mapping of the parent class. In the second step , the new property re-

striction rule extends the SQL query in the mapping with data filters for the property 

restrictions that characterize the subclass. 

The mapping rule for new subclass is shown in Fig. 5.5. It is expressed in pseudo-

code based on AgentSpeak (Rao, 1996) , as implemented in the Jason platform (Bordini 

et al. , 2007). 

The mapping rule creates a new mapping for a SubClassType from an existing 
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+!newSubClassMapping (ParentClassType, SubClassType) <-

mapping(ParentMapID, targetRDF(ParentIRI, "a", ParentClassType), ParentSQL); 

SubClassMapID = actionsLib . generateNewMappingid(SubClassType) ; 

+mapping(SubClassMapID, targetRDF(ParentIRI , "a", SubClassType), ParentSQL) . 

Figure 5.5: The mapping rule for New Subclass 

mapping for its parent ParentClassType. The line 

+!newSubClassMapping(ParentClassType, SubClassType) <-

introduces (wit h ! ) t he goal to create t he mapping. The activation of t his goal 

(indicated by +) results in execut ion of t he plan t hat follows after<- . The line 

mapping(ParentMapID, targetRDF(ParentIRI, "a" , ParentClassType) , ParentSQL); 

retrieves the mapping that matches the ParentClassType . Within it, ParentMapID 

uniquely ident ifies the mapping; ParentIRI represents the IRI template for instances 

of the parent class ; "a" is a shorthand for RDF type predicate; ParentClassType 

ident ifies t he parent class; and ParentSQL is the SQL query for t he parent class. The 

next line invokes a library rout ine to create the new SubClassMapID: 

SubClassMapID = actionsLib.generateNewMappingid(SubClassType) ; 

Finally, the new mapping is generated and added (with+) to the agent 's belief base: 

+mapping(SubClassMapID , targetRDF(ParentIRI , 11 a", SubClassType) , ParentSQL) . 

For example, the new subclass rule can be invoked as follows to create the mapping 

for t he subclass Product of Canada of parent class Product: 

!newSubClassMapping ("http : //www .unbc .ca/ . .. /ref/product", 
"http://www .unbc . ca/ . . . /ref/product\_of\_canada") 

The generation of t his subclass mapping will be completed with the new property 

restriction rule discussed next . 
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5.2.2 New Property Restrict ion 

This rule extends t he mapping of a class for a new property restriction on t he class. 

A property restriction is a constraint that specifies allowed values for a data property 

of the class. A data property of a class in t he reference ontology is always reducible to 

a column in the underlying RDB, even if t he class is non-primary. The mapping rule 

ident ifies t he underlying RDB column for the data property, and updates t he existing 

SQL query in t he mapping for t he class wit h a filter condit ion on the column. 

The mapping rule is shown in Fig. 5.6. The property restriction AllValuesFrom 

prescribes a set of allowed values for the property, while HasValue prescribes a spe-

cific value (Hitzler et al. , 201 2) . The remaining cardinality (i.e., number of values) 

restrictions supported by t he reference ontology are ignored, because in the OBDA 

context every class instance can only have one value of a data property. 

+!newPropertyRestrictionMapping(ClassType, PropertyType, RestrType, Values)<-

Column= actionsLib . findColumnName(PropertyType ) ; 

mapping (ClassMapID, targetRDF(ClassIRI, "a" , ClassType ) , ClassSQL) 

if(RestrType == "AllValuesFrom") { 
.concat(ClassSQL, " WHERE " Column , " in " Values, ClassSQLNew) 

} 
if (RestrType == "HasValue") { 

. concat (ClassSQL, " WHERE " Column, " " Values [OJ, ClassSQLNew) 
} 

-mapping(ClassMapID , targetRDF (ClassIRI, "a", ClassType), ClassSQL); 
+mapping (ClassMapID , targetRDF(ClassIRI , "a", ClassType), ClassSQLNew). 

Figure 5.6: The mapping rule for New Property Restriction 

Continuing the example in which we created the Product of Canada subclass of 

t he class Product, we can now complete the generation of the mapping by adding t he 
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relevant property restriction of t he subclass, namely that the data property Location 

has all values from the set {Canada, CA}. 

The creation of the new subclass in the reference ontology now involves the fol-

lowing steps: 

1. Enrichment of Ontology (Manchester Syntax): 

Class: product_of_canada 
SubClassOf: <http : // ... /ref/product> 
EquivalentTo: 

<http:// ... /ref/product#location> 
only {"Canada", "CA"} 

2. Mapping Rule Invocations (AgentSpeak Syntax): 

!newSubClassMapping( 
"http://www.unbc . ca/ ... /ref/product", 
"http://www.unbc . ca/ ... /ref/product_of_canada") 

!newPropertyRestrictionMapping( 
"http:// ... /ref/product_of_canada", 
"http : // ... /ref/product#location", 
"AllValuesFrom", 
["Canada", "CA"]). 

3. Addition of New Mapping (Turtle Syntax to SQL): 

target 

source 

<http : // ... /ref/product/{product_id}> 
a :product_of_canada 

SELECT* FROM oc_product 
WHERE location in ("Canada", "CA") 
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5.2.3 New Object Property 

This rule generates a mapping for a new object property of a class. An object property 

represents a relation which associates an instance of a class (i.e. , domain) to t he 

instances of t he same class or another class (i.e., range). The mapping of an object 

property contains a target RDF triple with the domain-class instance IRI as subject, 

property type as predicate, and range-class instance IRI as object. 

The mapping rule is shown Fig. 5.7. It reads the mappings of t he domain and range 

classes. The unnecessary variables such as mapping-id for the mapping are ignored 

(with _) . The rule t hen extracts RDB column names from the IRI templates for t he 

instances of domain and range classes, and prepares an SQL query that retrieves the 

RDB column values through a join of the following: t ables for primary domain and 

range classes, or SQL queries for non-primary domain and range classes. The join 

condit ion in the SQL query helps in relating an instance of the domain class to t he 

instances of t he range class. 

+!newObjectPropertyMapping(DomainClassType, ObjPropertyType, RangeClassType) <-

mapping(_, targetRDF (DomainClassIRI, 11 a 11 
, DomainClassType) , DomainClassSQL) ; 

mapping(_, targetRDF (RangeClassIRI, 11 a 11
, RangeClassType), RangeClassSQL); 

SelectColumns = actionsLib . extractColumnNames 
([DomainClassIRI, RangeClassIRI]); 

ObjPropertySQL actionsLib .getSQLJoinQuery([DomainClassSQL , RangeClassSQL], 
SelectColumns); 

ObjPropertyMapID = actionsLib .generateNewMappingld(ObjPropertyType) ; 

+mapping(ObjPropertyMapID, 
targetRDF(DomainClassIRI, ObjPropertyType, RangeClassIRI), 
ObjPropertySQL) . 

Figure 5.7: The mapping rule for New Object Property 
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For instance, the new object property rule can be invoked as follows to create the 

mapping (presented next) for the object property hasDescription with the Product 

class as domain and the Product description class as its range. 

!newObjectPropertyMapping("http:// ... /ref/product", 
"http:// ... /ref/product#hasDescription", 
"http : // ... /ref/product_description") 

The Resulting Mapping: 

target 

source 

<http : // ... /product/{product_id}> 
:product#hasDescription 

<http : // . . . /product_description/{product_id}; 
language_id={language_id}> 

SELECT oc_product.product_id, 
oc_product_description . language_id 
FROM oc_product, oc_product_description 
WHERE oc_product .product_id 

= oc_product_description .product_id 

5.2.4 New Data Property 

This rule generates a mapping for a new data property of a class. A data property for 

a class (i.e. , domain) represents an attribute of the class, for instance, the price of a 

product. All existing columns of RDB tables are associated with the data properties 

of primary classes while bootstrapping the base ontology, which are then inherited 

by the reference ontology. In some cases, a new data property can be introduced 

for a primary class or non-primary class in the reference ontology by referring to a 

data property from other related primary class (i.e. , referred class) , using an identical 

property name. For instance, name data property for product which is actually part of 

the product description class. The mapping of a data property contains a target RDF 
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t riple with the domain-class instance IRI as subject, data property type as predicate, 

and an RDB column reference as object. 

The mapping rule is shown in Fig. 5.8. The rule reads the mappings for the 

domain and referred classes, extracts RDB column names from the IRI template for 

t he domain-class instances, and ident ifies the RDB column name for t he data property. 

It t hen prepares an SQL query that retrieves t he RDB column values using a join of 

t he following: the underlying RDB table for t he referred class, and t he RDB table 

when the domain class is a primary class or SQL query when the domain class is a 

non-primary class. In the target RDF t riple, the column is referred using a column 

reference in curly braces. 

+!newDataPropertyMapping(DomainClassType, DataPropertyType, RefClassType) <-

mapping(_, targetRDF (DomainClassIRI, "a", DomainClassType), DomainClassSQL) ; 
mapping(_ , targetRDF(RefClassIRI, "a", RefClassType) , RefClassSQL) ; 

SelectColumns = actionsLib . extractColumnNames([DomainClassIRI]); 

DataPropertyColumn = actionsLib . findColumnName (DataPropertyType); 

DataPropertySQL = actionsLib .getSQLJoinQuery([DomainClassSQL, RefClassSQL], 
[SelectColumns, 

DataPropertyColumn] ); 

. concat("{", DataPropertyColumn, "}", ColumnRef ) 

DataPropertyMapID = actionsLib .generateNewMappingid (DataPropertyType); 

+mapping(DataPropertyMapID , 
targetRDF(DomainClassIRI, DataPropertyType, ColumnRef ) , 
DataPropertySQL). 

Figure 5.8: The mapping rule for New Data Property 

For instance, the new data property rule can be invoked as follows to create the 

mapping (presented next) for the data property name for the Product domain class, 

t hat is derived from the reference class Product description. 
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!newDataPropertyMapping("http:// ... /ref/product", 
"http:// ... /ref/product#name", 
"http:// ... /ref/product_description") 

The Resulting Mapping: 

target 

source 

<http:// ... /product/{product_id}> 
:product#name 

{name}. 

SELECT prod.product_id, prod_desc .name 
FROM oc_product prod, oc_product_description prod_desc 
WHERE prod.id= prod_desc.product_id 

5.2.5 New Enumerated Data Property 

This rule generates a mapping for a new data property which is enumerated from 

the values of a different data property (i.e., referred property) for its domain class. 

The enumerated data property uses the same structure of mapping for a new data 

property. Therefore, their mapping rules have general similarity with exceptions of 

the following: this rule refers to a different data property from the same class, and 

the SQL query in the mapping contains cases which translate an enumeration index 

to its corresponding text value. 

Fig. 5.9 illustrates the mapping rule. It retrieves the mapping for the domain class, 

extracts the RDB column names from IRI templates , and finds RDB column names 

for the reference property and enumerated data property. It then prepares an SQL 

query by extending the SQL query for the domain class that retrieves values for the 

enumerated data property by introducing cases on the RDB column for the referred 

property from a list of value pairs. 
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+!newEnumDataPropertyMapping(DomainClassType, RefDataPropertyType, 
EnumDataPropertyType, EnumValuePairs) <-

mapping(_, targetRDF(DomainClassIRI , "a", DomainClassType), DomainClassSQL); 

SelectColumns = actionsLib.extractColumnNames([DomainClasslRI]) ; 

RefDataPropColumn = actionsLib . findColumnName(RefDataPropertyType); 
EnumDataPropColumn = actionsLib . extractColumnName(EnumDataPropertyType) ; 

EnumDataPropertySQL 
actionsLib .getEnumSQLQuery([DomainClassSQL], [SelectColumns], 

RefDataPropColumn , EnumDataPropColumn, EnumValuePairs) ; 

. concat ( "{ ", EnumDataPropColumn, "}", ColumnRef) 

EnumDataPropertyMapID 
= actionsLib .generateNewMappingld(EnumDataPropertyType) ; 

+mapping(EnumDataPropertyMapID, 
targetRDF(DomainClassIRI, EnumDataPropertyType, ColumnRef), 
EnumDataPropertySQL) . 

Figure 5.9: The mapping rule for New Enumerated Data Property 

For instance, the new enumerated data property rule can be invoked as follows 

to create t he mapping (presented next) for the enumerated data property Product 

status based on Status property for t he Product domain class. The Product status 

data property presents Active and Inactive as textual representations of status values 

1 and O respectively. 

!newEnumDataPropertyMapping("http:// . .. /ref/product", 
"http : // . . . /ref/product#status", 
"http : I I . .. /ref/product#product_status", 
[ [1, "Active"], [O, "Inactive"]]). 

The Resulting Mapping: 

target 

source 

<http:// ... /product/{product_id}> 
:product#product_status 

{product_status} . 

SELECT product_id, 
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CASE WHEN status= 1 THEN "Active" 
WHEN status= 0 THEN "Inactive" 

END AS product_status 
FROM oc_product 

5.2.6 New Superclass 

Superclasses do not require their own mappings because an OWL reasoner can infer 

their instances from the instances of their concrete subclasses. 

5.2. 7 Equivalent Class or Property 

If one of the equivalent classes or properties can be instantiated with existing mapping, 

the others do not require individual mappings. The reasoner can refer to the class 

or property with existing mapping in order to fetch the RDF triples. If none of the 

classes or properties has existing mappings, the new mapping should be created based 

on the mapping rules for subclass, superclass, data property, or object property. 

5.3 Selection of Tools 

In order to study the feasibility of designing OBMAS, I studied, analyzed, and identi-

fied a set of state-of-the-art tools and technologies which are used to fulfill the design 

principles and system requirements. The following usability aspects formed the core 

of my study: generating a basic structure of ontology from the RDB schema; read-

ing, browsing, and modifying an ontology; reasoning with an ontology; translating 
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and executing semantic queries containing domain terms on the RDB; and building 

a team of agents which can deliberate with ontology-based knowledge for planning 

and communication. In t he following paragraphs , I list and describe a set of tools, 

languages, and technologies which played important roles in the OBMAS design and 

implementation. 

Ontop RDB-RDF translator: Ontop (Rodriguez-Muro et al. , 2013) preference 

was selected over Virtuoso Universal Server (Erling and Mikhailov, 2007) and D2RQ 

server (Cyganiak et al. , 2012) for the following reasons: (i) Ontop is developed with 

an objective to support OBDA (Rodnguez-Muro and Calvanese, 2012) systems such 

as SQAS while the other two tools publish Linked data (Bizer et al. , 2009) over the 

Semantic Web that does not require extensive transformation in terms of domain 

concepts; (ii) Ontop supports an OWL 2 QL reasoner called Quest (Rodrfguez-Muro 

and Calvanese, 2012) which allows querying on generalized abstract classes without 

extra RDB-to-RDF mappings; (iii) it supports R2RML mapping language (Das et al. , 

2012) which is a W3C recommended specification for greater interoperability with 

external systems; (iv) it has a performance advantage over other tools as demonstrated 

by benchmark tests (Rodriguez-Muro et al., 2013). 

Jason Platform with AgentSpeak: It is a platform for building multiagent sys-

tems (Bordini et al. , 2007). It supports an extension of the AgentSpeak agent-oriented 

programming language and contains an interpreter for the language. The main rea-

sons for its selection are (as explained in the domain-specific requirements 4.1.4) the 

good support of BDI model for the agent reasoning and declarative-style of program-

ming. Additional reasons include: (i) it supports a well-designed reasoning cycle 

for agents; (ii) it facilitates reconsideration of agent plans for quickly responding to 
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changes in the environment, i.e., the ontology; (iii) the recent work by Freitas et al. 

(2014) on semantic representations of agent plans using ontologies, which provides a 

basis for our planning meta-ontology, also presents an algorithm for the translation 

of the ontology to AgentSpeak. 

OWL API for Ontology Access: OWL API (Horridge and Bechhofer , 2011) is 

a widely used Application Programming Interface (API) to create and manipulate 

OWL ontologies. These are the reasons for its inclusion in OBMAS: (i) it supports 

the several desired features for reading, searching, and modifying ontologies, as well 

as reasoning with them; (ii) several interfaces have been integrated in OWL API to 

work with reasoners such as FaCT++, HermiT, Pellet and Racer; (iii) its extensions, 

which are also employed by Protege, support thread-safe operation on the ontology, 

which is quite useful for OBMAS. 

OWL Sublanguage: I have used the OWL 2 QL sublanguage as the default 

language to build ontologies due to the following reasons. (i) The Quest rea-

soner (Rodriguez-Muro and Calvanese, 2012) for the reasoning with abstractions can 

only understand ontologies based on OWL 2 QL or simpler ontology sublanguages. 

(ii) OWL 2 QL is designed to support sound and complete reasoning in LOGSPACE 

while still allowing several essential features for representing reasonably complex on-

tologies. 

A user can still select a different sublanguage such as OWL Lite, OWL DL, or 

OWL 2 RL in order to represent more-or-less expressive ontologies. 
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SPARQL for Semantic Queries: SPARQL (Prud'hommeaux and Seaborne, 

2008) is an RDF-oriented language, but it is sufficient to represent the intended test 

queries for the prototype. It is a W3C recommendation facilitating interoperabil-

ity with external tools. Nevertheless , it will be interesting to explore any ontology-

oriented query language to write expressive semantic queries in the future. 

5 .4 Current Implement ation 

In this section, I present the current state of implementation for the proposed solu-

tions of the research challenges addressed in this chapter, designs of meta-ontologies; 

mapping rules for semantic query translation; and selection of state-of-the-art tools. 

In the current implementation of OBMAS, the model meta-ontology and its con-

verter for the agents do not have implemented versions. They are conceptually pro-

posed and designed as a part of this thesis. For the planning meta-ontology, the 

hierarchical model has been designed, implemented, and instantiated with the On-

tology Development 101 methodology (Noy et al., 2001). In addition, a converter of 

planning ontology to plan library in AgentSpeak, developed by Freitas et al. (2014), 

has been extended, tested, and used for translation of planning meta-ontology as a 

part of the research. 

The ontology service utilities component has been designed to generate mappings 

with the proposed mapping rules. The current implementation has the following rules 

which are functional at present: new subclass, new property restriction, and new data 

property. The mapping rules are implemented in Java. 
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The Ontop RDB-RDF translator has been integrated with OBMAS to provide the 

bootstrapping and semantic query translation services. The reference ontology is de-

veloped using the OWL 2 QL sublanguage and the semantic queries were written with 

SPARQL. The Jason platform has been used to develop the agents with AgentSpeak 

language, and the Jason's centralized environment is employed during execution. The 

latest version of the OWL API has been used to read, load, build, and modify the 

ontologies. 

5.4.1 Considerations for Larger-Scale Implementation 

In this section, I describe the considerations for a larger-scale implementation of OB-

MAS such as the performance improvement techniques and known issues with the 

state-of-the-art tools. 

The number of RDB-to-RDF mappings increases as the reference ontology evolves, 

and they become difficult to maintain. An alternative option, as proposed in SQAS, is 

to design and build a SPARQL-to-SPARQL query rewriting engine which can reduce 

reference classes to equivalent primary classes by incorporating intermediate property 

restrictions in the resultant SPARQL query. 

The semantic queries perform slow in the prototype compared to the SQL queries 

in ETL-based approach of other decision support systems, due to the runtime 

SPARQL-to-SQL translation process. For performance improvement in a produc-

t ion deployment, the prototype can cache data for frequent queries, or the reference 

ontology can be materialized through selective pre-loading of important classes. 

Ontop (Rodriguez-Muro et al., 2013) is not a complete solution and carries several 
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known issues (Xiao et al., 2015) including: no support for HAVING for aggregates; 

errors for complex nested FILTER.s; missing string and literal equality in FILTER; 

and no support for inverseExpression in R2RML. The latest version of Ontop provides 

limited support of aggregate or complex queries which is essential for any decision 

support system. Nevertheless , it is under active development and future releases may 

resolve those issues and limitations in order to support a larger-scale implementation. 
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Chapter 6 

Ontology Building Assisted by 

Agent Team 

In this chapter , I describe the behaviour of the OBMAS agents through building 

the reference ontology from a basic knowledge structure implicit in the RDB schema 

(6.1) and evolving the reference ontology in order to incorporate its changes (6.2). I 

demonstrate the execution of semantic queries based on the terms from the reference 

ontology (6 .3) . The major behavioural aspects implemented in the prototype include 

the OBA assisting DE in the processes of generalization and specialization of existing 

classes, and the execution of semantic queries that rely on a set of mapping rules which 

automatically generate the required RDB-to-RDF mappings. The behavioural aspects 

of the other agents which are presented in this chapter have not been implemented in 

this version of the prototype. 
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6.1 Building Reference Ontology 

In this section, I describe and illustrate the method of ontology development from an 

existing RDB. For illustration, I use a fragment of the public e-commerce RDB called 

Opencart (Opencart, 2014) (described in 6.1.1). During the ontology development 

process for this running example, I have assumed the roles of the Database Adminis-

trator (DBA) and Domain Expert (DE). The method involves the following generic 

steps: extracting the base ontology from the RDB schema, by an automatic process 

commonly referred to as bootstrapping; generating the initial reference ontology from 

the base ontology with annotation properties that capture additional information on 

RDB structure, such as primary keys (6.1.2); creating the primary reference ontology 

based on insights from the RDB schema by introducing object property and sub-

class relations between classes (6.1.3); and enriching the reference ontology with new 

abstractions through generalization and specialization of existing classes (6.1.4, 6.1.5) . 

6.1.1 The Starting Point: A Relational Database 

At the start of the process , the Ontology Builder Agent (OBA) interacts with the DBA 

to establish a valid connection to the RDB. The RDB schema is assumed to be in 

third normal form (Kent, 1983) . The RDB schema that is used as a running example 

in this chapter is a fragment of the Opencart schema shown in Fig. 6.1. While the 

fragment is not entirely independent in that the tables have columns related to other 

parts of the Opencart schema, we shall refer to this fragment as the RDB schema in 

presenting the examples. 
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Figure 6.1: The fragment of the Opencart schema used in examples 
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6.1.2 Generating the Initial Reference Ontology 

As a first step in generating the initial reference ontology, the OBA initiates the 

bootstrapping of the base ontology from the RDB schema using an external RDB-

RDF translator called Ontop (Rodriguez-Muro et al., 2013). The translator converts 

the RDB concepts to ontological concepts in OWL 2 representation (Hitzler et al. , 

2012). This is achieved by mapping tables to classes, which are referred as primary 

classes, and columns to data properties, as described in the Subsection 2.2.4. Fig. 6.2 

illustrates the base ontology generated from the Opencart RDB schema. 

e oc_product_option I 
• oo_ product 

Figure 6.2: The base ontology generated from the RDB schema 

After bootstrapping the base ontology, an initial reference ontology is created 

that inherits the primary classes from the base ontology and includes annotation 

properties that can help the agents during the later steps of ontology development. In 

the current example, it includes the properties for naming, such as prefLabel, which 
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distinguishes the primary name from its aliases, and altLabel for alternate names. In 

addition, an annotation property isTempLabel is introduced to denote classes which 

have temporary primary names that can be later used to identify pending tasks for 

the OBA. 

6.1.3 Creating the Primary Reference Ontology 

The primary reference ontology is built by the OBA from the initial reference ontology 

in consultation with the Ontology Learner Agent (OLA), which analyzes the RDB 

schema to find relations, and the DBA, who selects which relations to include in the 

primary reference ontology. The development process involves the following three 

stages. First, the RDB schema is analyzed to identify, select, and create subclass 

relations between primary classes which are implicitly present in the schema. Second, 

the RDB schema is analyzed to find , select, and create object property relations for 

each primary class with other primary classes. Third, the names inherited from the 

RDB schema, such as table names and column names, are revised to improve human 

readability and filter out irrelevant detail. 

Identifying Subclass Relations between Primary Classes 

In this stage, the OBA initiates the interaction process by requesting assistance from 

the OLA to identify candidate subclass relations. If two or more tables in the RDB 

schema share a column name which is either a primary key or a part of the composite 

primary key, then the OLA marks them as candidate classes for subclass relations. 

The OLA tries to identify common superclass among them with up to four different 
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methods specified and employed in the following order. First, if only one table from 

the list contains a regular primary key while the others have composite primary keys 

that involve the regular primary key, the OLA marks that table as candidate super-

class. Second, the OLA requests the Semantic Web Crawler Agent (SWCA) to find a 

known superclass for the listed classes by referring to the class hierarchies from similar 

external ontologies. Third, the OLA connects with the WordNet or other thesauri to 

find a common hypernym from class names. Fourth, the OLA looks for structural 

correspondence among the class names containing multiple words to find the most 

common class name which may be a candidate superclass. 

j ·-·-----~ 
[ • owl:Thing 

~/hasSub~ass 

~~~~~~~~~ ~~~~~~~~ 

• oc_attribute j e oc_option 
hasSUbclass hasS bclass 

? 1 
• oc_product_attribute J [ e oc_product_option 

-·r---. oc_product 
hasSubclass 
v 
..... i .. ,,. 

e oc _product.:_ to_ category 

Figure 6.3: The primary reference ontology with subclass relations 

For example, the OLA finds a set of primary classes related by the prod-

ucLid column name: oc_product, oc_producLto_category, oc_producLdescription, and 

oc_producLattribute. In addition, it identifies oc_product as candidate superclass be-

cause it contains a regular primary key while other tables have composite primary keys 

(which introduce additional dependencies). From the suggestions, the DBA instructs 

the OBA to create subclass relations between oc_product and oc_producLto_category. 

In a similar manner, the DBA selects appropriate relations from the other sets of 

primary class relations. Fig. 6.3 illustrates the state of the primary reference ontology 

at the completion of this stage. 
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Identifying Object Properties for Primary Classes 

In this stage, the OBA initiates an interaction with the OLA by requesting that 

it identify candidate object property relations between primary classes. The OLA 

analyzes the RDB schema in order to find foreign key relations between the RDB 

tables, and sends a set of candidate object property relations between corresponding 

primary classes to the OBA. The DBA, in consultation with the OBA, selects t he 

desired object property relations and provides new property names. The OBA then 

creates the object properties in the primary reference ontology . 

• Thing 

• oc_product_attr;~ute . I 

hasSubcl s 
/ .I, 

/Y 
I"'> I ' /' I e oc_product j "" 

/ hasAttrlbute hasDescription / (,:; . 
/ ,/· 

e oc _product_ description 

Figure 6.4: The primary reference ontology with object properties 

For example, the OLA identifies candidate object property relations be-

tween primary classes such as oc_product with oc_product_description, oc_product 

with oc_producLoption, oc_product with oc_manufacturer, oc_product with 

oc_product_to_category, and oc_product with oc_product_attribute. In response, 

the DBA selects two important relations hasAttribute and hasDescription, as 

illustrated in Fig. 6.4. 
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Revision of Names for Primary Classes 

In t his st age, t he OBA identifies and applies a renaming patt ern t hat filters out t he 

irrelevant detail from t he names inherited from the RDB , such as the oc_ prefix exam-

ple, shown in Fig. 6.5. The OBA also interacts with the DBA to replace the inherited 

names with appropriate primary names that reflect the terminology of t he knowledge 

domain. The correspondence of primary names to t he original base ontology names 

is preserved, to be used later during query translations and RDB schema revisions. 

The primary names can be furt her revised by t he DE, if necessary. 

oc_user e User 

(a) (b) 

Figure 6.5: oc_user primary class before and after t he revision 

Fig. 6.6 presents the primary reference ontology after t he first t hree stages. 

6.1.4 Looking for New Abstractions 

The next stage in ontology development is its enrichment with new abstractions, 

namely new subclasses and superclasses, which we discuss in subsection 6.1.5. How-

ever , t his is a creative process for which t he init ial ideas come from the human partner 

or from existing knowledge sources, such as external ontologies, with the agents as-

sisting the DE in the elaboration of t he idea. 
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As an illustration, we provide a simple example of looking for suitable abstraction 

names in a thesaurus. The OBA responds to a request from the DE to find candidate 

subclass names for the given class name Product. From WordNet (Miller, 1995) , the 

OBA reports the hyponyms of the word Product: Cargo, Stock, Refill , and Yard goods. 

The DE requests more options. For that , the OBA needs a list of terms similar in 

meaning to Product, in order to consider their hyponyms. A starting point for such a 

list are the "sister terms" (sharing the same hypernym) of Product, such as Consumer 

goods, Fancy goods, and Shopping. Some of the sister terms may have divergent 

meanings or not suit the knowledge domain, so the choice of relevant terms is left to 

the DE. When instructed to use Consumer goods, the OBA returns a set of hyponyms 

which include words like Clothing, Consumer durables, Fashion, and Grocery. From 

these suggestions, the DE instructs the OBA to introduce Clothing, Fashion product, 

and Grocery as subclasses for Product. 
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While the example illustrates only the use of linguistic external expertise in look-

ing for new abstractions, ideas can also come from external sources related to the 

knowledge domain of the reference ontology. The advancement of the Semantic Web 

is expected to significantly expand such possibilities, and the cooperation of the DE 

and the SWCA can lead to their effective use. The use of external ontologies is an 

explicit recommendation of the Ontology Development 101 methodology (Noy et al. , 

2001). 

6.1.5 Adding Subclasses and Superclasses 

In order to enrich the reference ontology through generalization or specialization, the 

OBA communicates with the other agents and the DE. The process can be initiated 

by a request from the DE or by the OBA as a step in the ontology development 

methodology. The objective may be either to create a reference subclass, which is a 

class more specific than the primary classes; or to create a reference superclass, which 

is a class more general than the primary classes. Once the reference superclasses 

and subclasses are added to the reference ontology that can serve as basis for further 

generalizations and specializations. 

Creating a Reference Subclass: The OBA interacts with the DE and the other 

agents to introduce a new subclass in the reference ontology. The process involves 

at most the following three steps: identifying a class name for the class, adding the 

subclass and its relation with the parent, and enriching the subclass through new 

properties or property restrictions. 

Identifying Class Name for Reference Subclass. The OBA interacts with the DE 
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and communicates with the other agents to identify the most appropriate name for 

the class, as discussed in the Subsection 6.1.4. It verifies that the new name does not 

conflict with existing names in the class hierarchy. 

Adding the Relation between a Class and Subclass. The OBA adds the subclass 

to the reference ontology and creates its subclass relation with the parent class. It 

also generates an RDB-to-RDF mapping using the mapping rule for new subclass, 

described in Subsection 5.2.1; this mapping is used during translation of semantic 

queries that refer to the new subclass. If some of the existing subclasses of the parent 

are candidates for becoming subclasses of the newly introduced subclass, the OBA 

and DE may consider reclassification; in our example, this happens with the subclass 

Consumer goods discussed below. 

Enriching the Reference Subclass. The OBA interacts with the DE in order to 

enrich the new subclass with one or more of the following options: new data property, 

object property, or property restriction. For the selected option, the OBA requests 

additional information from the DE, and then creates the entity in the reference 

ontology. If the DE decides to skip the process, the OBA denotes the task as pending 

in order to revisit it later during its idle time. 

In the example for the Clothing subclass, the DE instructs the OBA to enrich 

the subclass by adding a property restriction on category_name property with values 

Clothing or Clothings. The OBA also modifies the RDB-to-RDF mapping for the 

Clothing class in order to include value restriction in the SQL query. Fig. 6. 7 illus-

trates a fragment of the reference ontology with the Clothing subclass, the property 

restriction, and the RDB-to-RDF mapping. 

Fig. 6.8 illustrates the development of a class hierarchy with new subclasses and 
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(a) Clothing Subclass 

mapping!d MAP©Clothing 

target 

<http://'W\IW .unbc . ca/ .. . /ref/ 

Product/product_id={product_id}> 

a ref :Clothing 

source 

SELECT* 

FROM oc_product 

WHERE category_name 

IN ('Clothing', 'Clothings') 

(b) Mapping for Clothing 

Figure 6.7: Adding the Clothing subclass to the reference ontology 

. • Product 

(a) Initial State 

(c) Step 2 (specialization) 

• Thing 

(b) Step 1 (specialization) 

T iii. Pro<iJct 

• 'Co11S1Jmer 
goods' 

( d) Step 3 (reclassification) 

Figure 6.8: Adding a new subclass: specialization and reclassification 
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reclassification. In the first step, Appliance and Clothing are created as subclasses 

for the Product class. In the second step, Consumer goods is introduced as the third 

subclass of Product, and in the third step it becomes the parent of the other two sub-

classes of Product through reclassification. During the third step, the OBA modifies 

the RDB-to-RDF mappings associated with the Appliance and Clothing classes in 

order to reflect the new class hierarchy. 

Creating a Reference Superclass: The OBA interacts with the DE and the other 

agents to introduce new superclass in the reference ontology. The reference superclass 

can be introduced by the DE directly, or in response to suggestions from the agents 

based on analyzing knowledge sources such as RDB schema or external ontologies. 

The process to add reference superclass involves at most the following three steps: 

identifying a class name for the superclass, adding the superclass and its relation with 

the subclasses, and creating common properties for the superclass. 

Identifying Class Name for Ref erence Superclass. The process to identify the 

primary class name for reference superclass is similar to the process of identifying 

class name for the reference subclass. A main difference in how the agents query 

external knowledge sources. For example, the agent now looks for hypernyms instead 

of hyponyms of a class name while querying thesauri. 

Adding the Relation between a Class and the Superclass. The OBA adds the 

superclass to the reference ontology and creates a subclass relation for each of its 

subclasses. The hierarchy is reviewed for possible reclassification. 

Creating Properties for the Reference Superclass. In this step, the OBA identifies 

and suggests common properties of the subclasses which can be moved to the super-
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class. The DE verifies the suggestions and interacts with the OBA to identify, and 

possibly modify, primary names for the common properties. The OBA creates com-

mon properties in the reference ontology and removes them from the subclasses. The 

properties of the primary classes are not removed during the process because they 

are directly mapped to the ROB tables. In that case, the OBA creates sub-property 

relations between the common properties of the superclass and the primary class. 

Thing 
; y 
----

• 'Meta 
information' 

ff 
_______________________ / ' _____________ _ 

e 'Category 
description' 

We 'Product 
description' 

Figure 6.9: A part of the reference ontology after creating reference superclass 

An example is shown in Fig. 6.9 . The OLA identifies that the classes Product 

description and Category description share properties such as name, description, meta 

description, and meta keyword. The DE suggests that the two classes can have a 

superclass called Meta Information, and the OBA creates it as their parent. The DE 

reviews the common properties, and requests that they be moved to Meta Information. 

The OBA creates the properties in the reference ontology, and introduces sub-property 

relations because both of the subclasses are primary classes. 

The complete reference ontology developed in this section is shown in Fig. 6.10. 
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Figure 6.10: The complete reference ontology 
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6.2 Handling RDB Schema Changes 

When the legacy RDB schema is modified, OBMAS captures the change event and 

automatically compares it with the previous version of the ROB schema in order to 

analyze and identify the following types of changes: addition or removal of tables , 

views , columns, or foreign key relations; and changes in table name, view name, 

column name, or column datatype. The DBA supervises the process in order to 

correctly review and categorize the identified changes. 

The OBA assesses the impact of the schema changes on the reference ontology 

by identifying the class hierarchies which can be affected, and shares the results with 

the DBA who interacts with the OBA in order to incorporate the changes through 

reclassification or other modifications. During the interaction, the OBA carries out 

the following tasks : bootstrapping a new version of the base ontology; copying the 

previous version of the reference ontology in a new version; and interacting with the 

D BA to reclassify the affected class hierarchies as well as rectifying the associated 

RDB-to-RDF mappings. This is an area which requires further research. 

6.3 Semantic Querying of Legacy RDB 

The user of OBMAS submits a semantic query (written in SPARQL) using terms of 

the knowledge domain (e-commerce) in order to access data from the RDB. OBMAS 

uses Ontop to perform RDB-RDF translation which involves translating SPARQL 

queries to SQL queries and SQL results to RDF triples using the mappings generated 

by the mapping rules (proposed in Section 5.2). In this section, I explain the process 

of semantic query translation with an example query and present a set of semantic 
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queries which were used as test queries for the semantic data access . For each semant ic 

query, I list t he corresponding mapping rules and mappings. 

Fig. 6.11 illustrates t he semantic query translation for the reference subclass. It 

shows: a SPARQL query, its equivalent SQL query, and the results as RDF t riples. 

The RDB-to-RDF mappings used during t he translation are shown in Fig. 6.12. The 

first mapping helps create the base query for Clothing class wit h a fi lter condit ion 

on t he category_name from oc_product table. The second mapping is then invoked 

to add Name data property to t he result set through a join of tables oc_product and 

oc_producLdescription. 

(i) Semantic Query in SPARQL syntax (prepared by human partner) 

SELECT ?name ?price 
WHERE { 

} 

?query a ref :Clothing. 
?query ref :Product#Name ?name . 
?query ref :Product#Price ?price . 

(ii) SQL Query (converted by RDB-RDF translator) 

SELECT QVIEW2 . ' name', QVIEWl . ' price' 
FROM '' oc_product '' QVIEWl, '' oc_product_description'' QVIEW2 
WHERE (( 'Clothing'= QVIEWl .' category_name ' ) 

OR ('Clothings'= QVIEWl .' category_name')) 
AND (QVIEWl. ' product_id' = QVIEW2 . 'product_id') 

(iii) Query R esults in RDF format (presented by Query Interface) 

"Slim Fit Shirt In Stretch Cotton Poplin"©en, "100 . 0000 "--xsd :decimal, 
"510 Skinny Jeans "©en, "199 . 9900"--xsd:decimal, 

Figure 6. 11: Executing semant ic query for a reference subclass 

The set of test semant ic queries, and the mappings required for t heir execution 

are as follows. The first semant ic query finds a list of instances for a primary class 

called Product with data properties Name and Price; here, a mapping generated by 

t he basic mapping rule ( described in Section 2.2.4) is used by the translator to create 
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(i) Mapping from New Subclass rule (created by OBA) 

mappingid MAP©Clothing 

target 

source 

<http://www .unbc . ca/ . .. /ref/Product/product_id={product_id}> 
rdf :type <http://www . unbc.ca/ . .. /ref/Clothing> . 

SELECT* 
FROM oc_product 
WHERE category_name IN ('Clothing', 'Clothings ' ) 

(ii) Mapping from New Data Property rule (created by OBA) 

mappingid MAP©Product#Name 

target 

source 

<http : //www .unbc.ca/ . .. /ref/Product/product_id={product_id}> 
<http : //www .unbc.ca/ .. . /ref/Product#Name> 
{name}©en . 

SELECT oc_product .product_id , oc_product_description.name 
FROM oc_product, oc_product_description 
WHERE oc_product .product_id 

= oc_product_description .product_id 

Figure 6.12: Mappings for semantic querying of a reference subclass 

an SQL query in order to load the data from t he underlying RDB table. 

The second query finds a list of instances for a reference subclass called Clothing 

wit h data propert ies Name, Price, and Description. Here, t he following mapping 

rules are used : New Subclass (5.2. 1) for Clothing subclass to Product, and New Data 

P roperty (5.2.4) for Name data proper ty. For execution , t he translator generates an 

SQL query containing a condit ion to filter records wit h category name as Clothing or 

Clothings. 

The third query finds a list of instances for a reference superclass called Meta 

Information wit h data propert ies Meta description and Meta keyword. Here, t he 

translator queries the RDB to load instances for t he primary classes which are sub-

classes of Meta information, and t hen t he ontology reasoner infers the instances of 
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Meta information from its subclass instances. 

The fourth query finds an aggregated value of the Product reward data property for 

orders grouped by each store. Here, the mappings corresponding to the referred classes 

are loaded in addition to the mapping for Product reward data property generated 

by the New data property mapping rule 5.2.4. Then the translator generates an SQL 

query, which loads Product reward from Order product through a join with Order and 

sums up the values for each store. 
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Chapter 7 

Conclusions and Future Work 

This thesis demonstrates the feasibility of a software system in which intelligent soft-

ware agents assist the human user in developing an ontology. The initial version of the 

ontology is extracted from a relational database (RDB) using the Ontop RDB-RDF 

translator, and then enriched with higher-level entities such as new subclasses, super-

classes, and data properties to support semantic queries as a part of ontology-based 

data access (OBDA) to the underlying RDB. We propose the architectural design 

of Ontology-Building Multiagent System (OBMAS) in which an agent team assists 

a human partner in ontology-building tasks. We implement a prototype of the key 

agent role, the Ontology Builder Agent (OBA), and demonstrate its functions through 

concrete ontology development scenarios. The agent is implemented in AgentSpeak 

on the Jason platform and assists in building an ontology in OWL 2. The role of the 

human partner in OBMAS is to provide domain expertise, evaluate ontology design 

options, and make decisions. The agents gather and present information, explore and 

propose solutions, and manipulate knowledge representation structures. 
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The agents can construct an ontology because they are endowed with meta-

ontology, i.e., an ontology that represents the knowledge of ontology-building domain. 

In OBMAS, the agents can communicate and reason with their model meta-ontology, 

and develop the ontology by using and enforcing a methodology represented in their 

planning meta-ontology as agent plans. The model meta-ontology, i.e. , the concrete 

metamodel, is instantiated using the proposed method of concretization from the ref-

erence ontology and the OWL 2 Metamodel; the conversion method then translates 

it into agent beliefs that represent an agent 's ontological knowledge for reasoning and 

communication in the ontology-building process. The design of model meta-ontology 

is complete, and it needs to be supported by implementation in the prototype. The 

planning meta-ontology is designed and implemented as a hierarchical model of on-

tologies for representing agent plans at different levels of abstraction. It relies in part 

on concepts and techniques developed in Hierarchical Task Network (HTN) planning 

systems. 

The planning meta-ontology of OBMAS guides the agents through the steps of 

a popular methodology known as Ontology Development 101; it is instantiated for 

specific agents according to the skill profiles associated with their roles. The current 

OBA prototype focuses on enrichment of ontology by adding new entities. It needs to 

be extended to include the remaining aspects of the methodology in support for larger-

scale systems. Our meta-ontology designs contribute to the conceptual foundation of 

the AAOB approach as well as to practical development of AAOB systems. We 

expect that they will facilitate further research in the domain of automated ontology 

development. 

The OBMAS agents directly provide advanced support for semantic query transla-

tion using a set of mapping rules that correspond to specific operations in the construe-

103 



tion of higher-level entities in the reference ontology (the term for domain ontology 

in SQAS). In the prototype, the OBA automatically constructs mappings using the 

mapping rules while adding new entities such as subclasses, property restrictions, and 

data properties in the reference ontology. The generated mappings allow immediate 

use of the new entities in semantic queries, as we have shown through the examples of 

queries executed using the prototype. The rules enable a user to delegate the technical 

work of mapping creation to the agents. The remaining rules will be included in a 

larger-scale implementation. 

In order to build the agent prototype, the tools and languages were selected using 

the following criteria: a set of usability aspects such as the support for working 

and reasoning with an ontology, semantic query translation, and building an agent 

team for ontology development; and the factors such as the OBDA domain standards, 

compatibility with other tools, and active development for new features. The matching 

options based on the criteria were analyzed and examined with a test setup before 

selecting the final group which include Ontop, Jason with AgentSpeak, OWL 2 API, 

OWL 2 QL, and SPARQL. Since we had satisfactory results with the tool selections 

during the prototype implementation, they will also be used in a larger-scale system 

development. 

The feasibility study was successful, leading to the OBMAS design and then the 

prototype implementation. The OBA facilitates the reference ontology development 

from an RDB by supporting technical ontology-oriented tasks such as bootstrapping a 

base ontology (in the terminology of SQAS) from the RDB, automatically generating 

mappings for new entities, and creating those entities in the reference ontology. It also 

assists the user by executing semantics-oriented tasks such as finding an appropriate 

class name from WordNet , and recommending to enrich a new subclass and helping in 
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the enrichment process. Those OBA features reduce the technical work for a user to 

develop ontology as compared to ontology editors such as Protege; instead, the user 

can focus on making decisions. The resulting enriched reference ontology demonstrates 

the agent 's ability to assist the user in developing a correct ontology. 

OBMAS contains five types of agents with the following individual skill profiles: 

building the reference ontology, ontology learning from the underlying RDB , ontology 

lookup on the Semantic Web, alignment with external ontology, and ontology valida-

tion. The agent roles were identified through an analysis of the OBMAS requirements 

and other OBDA projects. In a larger-scale system, the OBA may be able to help in 

building a complete reference ontology using the knowledge discovery services of the 

other agents. 

With respect to possible future research, the following directions can be considered: 

• The Semantic Web Crawler Agent (SWCA) , Ontology Learning Agent (OLA) , 

Ontology Alignment Helper Agent (OAHA) , and Ontology Validator Agent 

(OVA) were not included in the scope of the present prototype. They can 

assist the OBA in looking for new abstractions as well as complement its skill 

profile. These agents should be designed and implemented in order to support 

their use cases for building a better domain ontology. The OBMAS use cases 

for the agents are not complete; advanced features can be identified and devel-

oped to better equip the agents in looking for higher-level abstractions for the 

reference ontology. 

• The planning meta-ontologies can be instantiated to include the remaining as-

pects of the generic ontology development methodology. That will help us vali-

date the planning meta-ontology design for full support of such methods. 
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• A SPARQL-to-SPARQL query rewriting engine can be designed and built, which 

can translate a semantic SPARQL query to a base SPARQL query through 

a reduction from the higher-level abstractions to the primary classes in the 

reference ontology. It may provide a better and scalable solution compared to 

the mapping rules. 

• In order to demonstrate the agent reasoning and communication using onto-

logical concepts in the model meta-ontology, converters should be developed to 

create a concrete metamodel, and then translate it to the agent beliefs. 

• The schema monitor component can be designed and implemented in order to 

show the agent assistance in evolving the reference ontology with changes in the 

underlying RDB schema. 
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Glossary 

Agent-Assisted Ontology Building An approach which proposes the application 

of intelligent software agents in assisting human experts in order to build domain 

ontology. 

Ontology Alignment Helper Agent An agent in t he system which assists a user 

to create alignments for interoperability between t he reference ontology and an 

external ontology. 

Ontology Builder Agent The chief agent in t he system interacting wit h a user to 

build and evolve t he reference ontology. 

Ontology Learner Agent An agent in t he system which proactively learns the 

classes and relations from data and RDB schema. 

Ontology Validator Agent An agent in t he system which ident ifies logical conflicts 

and modelling errors in the prototype system, and interacts wit h a use to resolve 

t hem. 

Relational Database A database which employs a relational model to represent the 

dat a structure. 

114 



Resource Description Framework A class of specifications used to describe de-

sign and structure of the information on the web. 

Semantic Query Access System An innovative distributed agent-oriented archi-

tecture enabling semantic querying over legacy RDB with the help of the intel-

ligent software agents. 

Semantic Web Crawler Agent An agent in the system which explore the Seman-

tic Web to find external ontologies for the knowledge domain and gathers exist-

ing reusable knowledge from them. 

SPARQL Protocol and RDF Query Language A language to describe struc-

tured queries for data access from the RDF data store. 

Web Ontology Language An common knowledge representation language to de-

scribe ontologies. 
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Abbreviations 

AAOB Agent-Assisted Ontology Building. 

OAHA Ontology Alignment Helper Agent. 

OBA Ontology Builder Agent. 

OLA Ontology Learner Agent. 

OVA Ontology Validator Agent. 

OWL Web Ontology Language. 

RDB Relational Database. 

RDF Resource Description Framework. 

SPARQL SPARQL Protocol and RDF Query Language. 

SQAS Semantic Query Access System. 

SWCA Semantic Web Crawler Agent. 
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