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Abstract 

General Bayesian estimation theory is reviewed in this study. The 

Bayesian estimation provides a general approach to handle nonlinear, 

non-Gaussian, as well as linear, Gaussian state estimation problems. 

The Sequential Monte Carlo (SMC) methods are presented to solve 

the nonlinear, non-Gaussian estimation problems. We compare the 

SMC methods with the Ensemble Kalman Filter (EnKF) method by 

performing data assimilation in the nonlinear, non-Gaussian dynam­

ics. The Lorenz 1963 and 1996 models serve as test beds for examining 

the properties of these two estimation methods. 

Although EnKF computes only mean and variance based on the as­

sumption of Gaussian dynamics, the SMC methods do not outperform 

EnKF in practical applications of the nonlinear non-Gaussian cases as 

we expect in theoretical insights. The reasons behind the experimen­

tal results that the SMC methods perform as well as EnKF in data 

assimilation and the future applications for high dimensional realistic 

atmospheric and oceanic models are discussed. 
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Chapter 1 

Introduction 

1.1 Data Assimilation: A Brief Review 

What is data assimilation? In atmospheric and oceanic research, data assimi­

lation is defined by Talagrand (199?) as the process to estimate the state of a 

dynamic system such as atmospheric and oceanic flow as accurately as possible 

by combining the observational and model forecast data. 

From this perspective, a data assimilation system consists of three compo­

nents: a time-evolving dynamic model, a measurement model for observations, 

and a data assimilation method. Dynamic models are not perfect due to sub 

grid physics parameterizations, physical process approximations, continuum fluid 

discretization into numerical scheme, etc. Similarly, instrument errors and rep­

resentative errors cannot be avoided in a measurement model. Errors from both 

the dynamic model and measurement model add up to the essential concept that 

error plays a central and critical role in data assimilation; or rather error must 

be accurately estimated and modeled. 

1.2 State-Space Form 

In atmospheric and oceanic data assimilation, geophysical flow is usually de­

scribed by a system of stochastic partial differential equations (sPDE). Within 

this framework, not only could the dynamic system be stochastically forced, but 
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1.3 Existing Methods 

observations are also considered as stochastic processes rather than single numer­

ical values. The most commonly used sPDE model is the nonlinear state-space 

model, which consists of a system of first order nonlinear differential equations. 

The dynamic model describes the evolution of the state variables over time, 

whereas the measurement model explains how the measurements relate to the 

state variables, 

Xt+i = f(xt,wt,8,t) (dynamic model) (1.1) 

yt = h(xt,et,9,t) (measurement model) (1.2) 

where x denotes the state variable, 6 denotes the time-invariant parameter, t 

denotes time, wt and et denote stochastic forcings, commonly referred to as the 

dynamic process noise and the measurement noise. The functions / and h describe 

the evolution of the state variable and the measurements over time. 

1.3 Existing Methods 

Up to date, data assimilation in atmospheric sciences and oceanography can be 

divided into two categories: variational methods and sequential methods. Vari­

ational methods such as three-dimensional variational (3D-VAR) data assimi­

lation and. four-dimensional variational (4D-VAR) data assimilation (Diinet & 

Talagrand, 1986; Courtier et ai, 1998) relate to control theory framework, while 

sequential methods such as Kalman filter proposed by Kalrnan (i960) belong 

to estimation theory framework. They both have had great success. The Eu­

ropean Centre for Medium-Range Weather Forecasts (ECMWF) introduced the 

first 4D-VAR methods into the operational global analysis system in the world 

in November 1997 (Rabier et ai, 2000; Mahfouf k Rahier, 2000; Kiinker et ai, 

2000). Ensemble Kalman Filter (EnKF) was first introduced into the operational 

ensemble prediction system in January 2005 by Canadian Meteorological Centre 

(CMC) (HoHtekamer et al, 2005). 

Among sequential data assimilation methods, the most special case occurs 

when all equations are linear and the noise terms are Gaussian. The solution is 
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1.4 General Case: Nonlinear, Non-Gaussian 

in this case provided by the Kalman filter introduced by Kalman (1.960). Fur­

thermore, in the nonlinear case, approximate techniques have to be employed. A 

common idea is to linearise the nonlinear model, which results in the Extended 

Kalman Filter (EKF) (Smith el al, 1962; Schmidt, 1966). 

Another popular variety of Kalman filter is the Ensemble Kalman Filter 

(EnKF), initially introduced by Evenseri (1994). It has a simple conceptual 

formulation and is easy to implement compared to other sophisticated assimi­

lation methods such as 4D-VAR (Courtier et al, 1998). Moreover, EnKF avoids 

many of the problems associated with the traditional EKF, for example, there 

is no closure problem as is introduced in the EKF by neglecting contributions 

from higher-order statistical moments in the error covariance evolution equa­

tion. There are numerous applications for EnKF (Evensen & van Leeuwen, .1996; 

Houtekamer k Mitchell, 1998; Burgers et al, 1998; Tippett et al, 2008; Evensen, 

2003; Lorenc, 2003). 

1.4 General Case: Nonlinear, Non-Gaussian 

Although Kalman Filter type methods gained great success in applications of 

atmospheric and oceanic sciences, they are derived and validated for the linear 

dynamic system and Gaussian noise. Even in the well-known EnKF, there is 

an inherent assumption that the error statistics are Gaussian because only mean 

and covariance of data are employed to characterize the error. That may not be 

true for some nonlinear dynamics. In nonlinear dynamic systems, even though 

the initial error distribution is Gaussian, in general, it does not remain Gaussian 

with the forward evolution of the model. 

In the Kalman filter framework, nonlinearity and non-Gaussianity problems 

cannot be solved theoretically. Therefore, to tackle this problem of nonlinear, 

non-Gaussian system estimation, the probability density function (PDF) asso­

ciated with the dynamic system is used as a powerful tool to characterize the 

dynamic system uncertainty instead of only mean and covariance of the system 

data (jazwiriski, 1970). Statistics such as mean and variance can be calculated di­

rectly from the PDF. This class of methods keeps the original nonlinear dynamic 

3 



1.5 Research Objective 

model and tries to approximate the optimal solution, that is, the probability den­

sity function associated with the dynamics. In statistics, this class of methods is 

defined as Sequential Monte Carlo (SMC) methods, also known as particle filter, 

which is conceptually promising when the model is nonlinear. The first successful 

practical application of SMC methods is done by Gordon et al. (1993). 

1.5 Research Objective 

Although the Ensemble Kalman Filter (EnKF) method has been widely used in 

the data assimilation field and achieved great success, data assimilation problems 

in nonlinear, non-Gaussian dynamics still need to be solved. Sequential Monte 

Carlo (SMC) methods as a promising method show a great potential in solving 

nonlinear, non-Gaussian problems. In this thesis, we will investigate the perfor­

mance and capability of SMC methods for data assimilation in highly nonlinear 

dynamics, and we will compare all the results from SMC methods with those 

from EnKF method in the same scenarios, finally we will discuss some drawbacks 

of SMC methods in realistic applications. 

The atmospheric and oceanic flow has strongly nonlinear and chaotic nature. 

The dynamic models used in this thesis are the Lorenz 1963 and 1996 models. 

The Lorenz models are simplified atmospheric and oceanic models with the na­

ture of realistic atmosphere and ocean. They can be used as test beds for data 

assimilation in atmospheric and oceanic fields. Although they are highly non­

linear dynamic models with stochastic characteristics, still they are relatively 

low dimensional models so that it is easier to perform the new data assimilation 

methods with them before they can be applied to high dimensional realistic at­

mospheric and oceanic models. Therefore, experiments with Lorenz models are 

computationally economical and realistically sufficient. 

1.6 Outline of Thesis 

The Sequential Monte Carlo (SMC) methods will be used within the probabilis­

tic framework to tackle nonlinear and non-Gaussian estimation problems. SMC 

methods avoid deriving a,n inverse or an adjoint model and make them easier 
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1.6 Outline of Thesis 

to adapt to all models. This thesis is concerned with the problem of estimating 

the state of variables in nonlinear dynamic systems. In the meantime, Ensemble 

Kalman Filter (EnKF) will also be used in the same scenarios for the sake of 

comparison. 

Chapterl introduces the idea of data assimilation, and the most widely used 

data assimilation methods, 3D-VAR, 4D-VAR and EnKF. To solve the nonlinear, 

non-Gaussian data assimilation problem, Sequential Monte Carlo (SMC) methods 

are developed. 

Chapter2 gives a brief review of Kalman filter type data assimilation methods, 

Extended Kalman Filter (EKF) and Ensemble Kalman Filter (EnKF). Sequential 

Monte Carlo (SMC) methods are introduced, especially the implementation of 

SMC methods. 

Chapter3 demonstrates the applications of the SMC methods and the EnKF 

method in the Lorenz 1963 model with different configurations of experiments. 

Chpater4 further shows the applications of the SMC methods and the EnKF 

method in the Lorenz 1996 model with different chaotic degrees. 

Chapters presents discussions and conclusions, and highlights the possible fu­

ture research for Sequential Monte Carlo methods in data assimilation field for 

realistic dynamic models. 

Appendix A and Appendix B give the detailed Fortran code to implement 

Ensemble Kalman Filter (EnKF) and Sequential Monte Carlo (SMC) methods. 
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Chapter 2 

Sequential Data Assimilation 

Methods 

2.1 Nonlinear State Estimation 

Recursive nonlinear state estimation is addressed mainly within a probabilis­

tic framework, that is, the Bayesian estimation theory (Colin, 1997). In this 

framework, data assimilation, or rather state estimation, is simple enough to un­

derstand conceptually. We estimate the probability density function (PDF) for 

the current model state as accurately as possible given all the present and past 

observations. This implies that the complete solution to the estimation problem 

is provided by the conditional probability density function p(xt\Yt). xt denotes 

the state variable at time t, Yt denotes all the observations up to time t and 

including time t. This conditional probability density function p(xt\Yt) contains 

all the available information about the state variable. 

Bayesian Recursive State Estimation If the dynamic model is given by 

(1.1) and the measurement model is given by (1.2), the target conditional prob­

ability density function to be estimated p{xt\Yt), the one step ahead forecast 

probability density function p(xt\Yt-i) is given by 

p^tm=m^ip^A (2>1) 
p(yt\Yt i) 

6 



2.1 N o n l i n e a r S t a t e E s t i m a t i o n 

p(xt\Yt-i) = / p(x t |a;t_i)p(a; t_i|r t_i)dx t_i (2.2) 

where 

p(j/t|y t_i) = / p(j/ t |x t)p(x t |y t_i)dx t (2.3) 

From (2.1), to obtain the conditional probability density function p(xt\Yt), we 

need the observational noise probability density function p(yt\xt), one step ahead 

forecast probability density function p(xt\Yt-i) which is the prior knowledge of the 

state variable, and marginal observational probability density functionp{y t\Y t-i). 

Since the probability density function p(yt\xt) can be calculated from the measure­

ment model, the one step ahead forecast probability density function p(xt\Yt-i) 

can be calculated from the dynamic model, and p(yt\Yt-i) can be calculated 

according to (2.3). The target probability density function p(xt\Yt) can be esti­

mated. After that , with the new observation coming in and the dynamic model 

forward evolution, this estimation algorithm becomes recursive (Doucet ei al, 

2001; Schon, 2008). 

However, in general, there is no analytical solution to the nonlinear recursive 

estimation problem. This implies that we are forced to make approximations 

to approach this problem. The approximations suggested in the literature so 

far, can roughly be divided into two different classes, local approach and global 

approach (Schon, 2008). It is a matter of either approximating the nonlinear 

model and using the linear, Gaussian model estimator such as Extended Kalman 

Filter (EKF) or using the original nonlinear model and approximating the optimal 

solution such as Sequential Monte Carlo (SMC) methods. Despite the fact that 

there is a lot of different nonlinear estimators available, the local approximation 

approach is still the most commonly used nonlinear estimator when it comes to 

practical applications (Smith el aL, 1962; Schmidt, 1966; Evenseii & van Leeuwen, 

1996; Houtekamer <fe Mitchell, 1998; Burgers e* al, 199S; Tippett ct al, 2003: 

Evenseii, 2003; Lorenc, 2003). 
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2.2 Kalman Filter Framework 

Local Approach The idea employed in local methods is to approximate the 

nonlinear model by a linear, Gaussian model, which is called the linearization pro­

cess. This linearized model is only valid locally, but the Kalman Filter (Ka.lo.iaxi, 

1960) can directly be applied. This is the principle of the Extended Kalman Fil­

ter (EKF) (Smith et al, 1962; Schmidt, 1986). For a more thorough treatment 

of the EKF, please refer to Jazwinski (1970) and Anderson & Moore (1979). 

Global Approach The solution to the nonlinear recursive estimation problem 

exists theoretically, but not analytically. This fact is neglected by methods based 

on local model approximations. In fact, in the global approximation approach, the 

nonlinear models derived from the underlying physics can be used instead of the 

linearized models, and the optimal solution, or rather the conditional probability 

density function p(xt\Yt), can be approximated using the Monte Carlo techniques. 

One approach among the global approximations is provided by the Sequential 

Monte Carlo (SMC) methods, also known as the particle filter (Gordon et al, 

1993; Kitagawa, 1996; Dovicet et al, 2001; Schou, 2006). 

This SMC global approach is used in this thesis. In recent years the Sequen­

tial Monte Carlo methods have emerged as more effective global approaches and 

gained more and more ground, both when it comes to the theory and when it 

comes to the applications. For more references, please refer to Gordon et al. 

(1993), Doucet et al. (2001), Doueet et al. (2000), Kitagawa (1.996), Liu & Chen 

(1998), Arulampalam et al. (2002). 

2.2 Kalman Filter Framework 

2.2.1 Extended Kalman Filter (EKF) 

In the Extended Kalman Filter (EKF) (Smith et al, 1962; Schmidt, 1966), the 

nonlinear dynamic model and the observational model are linearised around the 

current estimate, then the standard Kalman Filter is applied. We directly give 

the EKF algorithm without the detailed proof. For the further and thorough 

treatment of the EKF, please refer to Jazwinski (1970) and Anderson & Moore 

(1979). 

8 
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2.2 Kalman Filter Framework 

Algorithm for Extended Kalman Filter 

x{ = .£{xU) (2.4) 

P{ = MP°_ tM
r + Q (2.5) 

K ^ P f H f ^ P / H f + R,)"1 (2.6) 

xa
t=x{ + Kt(;y°t-Mx{)) (2.7) 

P.» = ( I - K t H t ) P / (2.8) 

where ^ is the nonlinear dynamic model, J^7 is the nonlinear measurement 

model; x1__l is the best estimate of the true state at time t — 1; x{ is the forecast 

of the model state at time t, given only the data available until time t — 1; Q 

is the covariance matrix of the model error; R is the covariance matrix of the 

observational error; P^ is the covariance matrix of the forecast error; P° is the 

covariance matrix of the analysis error; and K is the Kalman gain matrix. M 

and H are tangent linear models (TLM) of nonlinear models jft and ,¥<?. 

2.2.2 Ensemble Kalman Filter (EnKF) 

In the Extended Kalman Filter (EKF), the linearised models (M and H) are used 

for the prediction of error statistics. 

The Ensemble Kalman Filter (EnKF) is proposed by Evensen (1994) and 

modified by Burgers et al (1998). In the EnKF, they employ an ensemble of 

model state members to represent the best estimate of the state variable and 

error information about its covariance. The ensemble mean states, x\ and xf, 

correspond to the Kalman Filter estimates x* and xa. The covariance matrices 

P^ and P a can be estimated from the spread of the ensembles x\ and xf. As the 

ensemble size becomes larger, the approximation to the Kalman Filter becomes 

better. 
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2.3 Sequential Monte Carlo (SMC) Methods 

The Algorithm for EnKF (Hoiitekarner & Mitchell, 2005) as below: 

x{ =J?(xlt_1)+qi, i = l,...,N (2.9) 

* ~ i V ( 0 , Q ) (2.10) 

pf~pf = (xf-xf)(xf-xf)T (2.11) 

pa ^ pa = ^ a _ £5) (3.0 _ ^T (2 .12) 

K = P / ^ T ( J f P / J T T + R)" 1 (2.13) 

V°i=V° + ru i = l,...,N (2.14) 

r<~7V(0,R) (2.15) 

x1 = x{ + K(y°-Jfx{), i = l,...,N (2.16) 

The EnKF uses the full nonlinear model j& to transport the error covariances. 

As can be seen from these equations, given an ensemble of analyses at time t — 1, 

the EnKF algorithm yields an ensemble of analyses at time t, that is, EnKF can 

be performed continuously in time. 

2.3 Sequential Monte Carlo (SMC) Methods 

Sequential Monte Carlo methods, or particle filter, deal with the problem of re­

cursively estimating the probability density function p(xt\Yt). According to the 

viewpoint of Bayesian statistics, p(xt\Yt) contains all the statistical information 

available about the state variable xt, based on the information in the measure­

ments Yt. 

10 



2.3 Sequential Monte Carlo (SMC) Methods 

The key idea underlying the Sequential Monte Carlo methods is to represent 

the probability density function p(xt\Yt) by a set of samples {x]1 : i = 1,..., M} 

(also referred to as particles, hence Sequential Monte Carlo methods also known 

as particle filter) from the probability density function p(xt\Yt) and its associ­

ated weights. The probability density function p(xt\Yt) is approximated with an 

empirical density function (Sclion, 2006), 

M M 

P(xt\Yt)« Yl *®6(x* - xt]i Y, *(?;) = l> *w ^ ° > V i (2-17) 
i= i J = I 

where t denotes time, <$(•) is the Dirac delta function and qt^' denotes the weights 

associated with the particles x\ . 

The Dirac delta function S(-) can be defined as a function on the real line 

which is zero everywhere except at the origin, where it is infinite, 

and which is constrained to satisfy the identity 

/

+oo 

5[x)dx = 1 (2.19) 
-co 

The Dirac delta function <$(•) has the fundamental property that 

/

+oo 

f(x)5(x - a)dx = f(a) (2.20) 

-oo 

2.3.1 Perfect Monte Carlo Sampling 

In the perfect Monte Carlo sampling, all the random samples, also known as parti­

cles {x\ : i = 1 , . . . , M} are independent and identically distributed (i.i.d.) from 

the PDF p(xt\Yt), and every sample has equal weight, which is 1/M. The prob­

ability density function can be estimated by these samples according to (2.17). 

However, it is usually impossible to get i.i.d. samples from the PDF p(xt\Yt) at 

any time t. Nevertheless, the perfect Monte Carlo method shows the key idea in 

Sequential Monte Carlo (SMC) methods. 
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2.3 Sequential Monte Carlo (SMC) Methods 

2.3.2 Sequential Importance Sampling (SIS) 

Unlike the perfect Monte Carlo sampling, all the i.i.d. samples are equally 

weighted, in Sequential Importance Sampling (SIS), all the i.i.d. samples are 

weighted according to importance weights qt^K In Sequential Importance Sam­

pling, the importance weights qt^> contain the information on how probable it 

is that the corresponding sample was generated from the target PDF p(xt\Yt). 

Sequential Importance Sampling is a more general Monte Carlo method than the 

perfect Monte Carlo method. 

In the SIS implementation, as t increases, the importance weights become 

more and more skewed and tend to degenerate, which is called the sample im­

poverishment problem or the weight degeneracy problem. To avoid this weight 

degeneracy problem, one needs to introduce an additional selection step. In the 

selection step, the importance weights can be used as the acceptance probabil­

ities, which allows us to generate approximately independent samples {x^}^ 

from the target density function to be estimated. This implies that the process of 

generating the samples from the target density function is limited to these sam­

ples. More specifically this is realized by resampling among the samples according 

to 

Pr(x{i) = x( i)) = g(x(i)), i = l,...,M (2.21) 

where q(x^) is the weights associated with the particles, and Pr(-) is the prob­

ability evaluation. 

Resampling step is first introduced in SIS by Rubin (1988) and the modified 

SIS is renamed after Sampling Importance Resampling (SIR). The SIR algorithm 

is closely related to the bootstrap procedure, introduced by Efron (1979). This 

relation is discussed in Smith & Cel.fa.nd (1992). 

2.3.3 Sequential Monte Carlo Methods/Particle filter 

In SMC methods, predicted particles { i S J ^ are generated from the underly­

ing dynamic model and the filtered particles from the previous time {xf^u^^. 

Conceptually, the predicted particles are obtained simply by passing the filtered 

particles through the system dynamics. Since the weight function reveals how 

12 

http://Cel.fa.nd


2.3 Sequential M o n t e Carlo (SMC) M e t h o d s 

probable the obtained measurement is given the present state, the more a cer­

tain particle explains the received measurement, the more probability that the 

particle was in fact drawn from the true density. Furthermore, a new set of parti­

cles {x^fjfij approximating p(xt \ Yt) is generated by resampling with replacement 

among the predicted p a r t i c l e s j : ! ; ^ ^ } ^ , belonging to the sampling density 

Pr{x% = 4 } _ J = q(x^), i = l,...,M (2.22) 

where q(x^') is the weights associated with the particles, and Pr(-) is the prob­

ability evaluation. 

This procedure can be repeated over time, which forms the algorithm of SMC 

methods. This algorithm was first successfully implemented in practice by Gordon 

et al. (1993). Later it was independently rediscovered by Kitagawa (1996) and 

Isard & Blake (1998). Further references see Doucet et al. (2000), Kitagawa 

(1996), Liu & Chen (1998), Aruktrnpalam et al (2002). 

2.3.3.1 Sequential M o n t e Carlo Algor i thm 

This algorithm is used in Gordon et al (1.993) and Schon (2006). 

Step 1. Initialize the particles, {X-QVJJ^-, ~ pxo{
xo) a n d set t := 0 

The particle filter is initialized by drawing samples from the prior density 

function pxo(x 'o)-

Step 2. Measurement update: calculate the importance weights {q\ }fix ac­

cording to 

qf^p^tlxf^), i = l,...,M (2.23) 

and normalize q\1' = q\• / Ylj=i Qt • 

In the measurement update, the new measurement is used to assign the proba­

bility, represented by the normalized importance weight q±', to each particle. This 

probability is calculated using the likelihood functionp(yt\%t\t-i)> w r n c r i describes 

how likely it was to obtain the measurement given the information available in 

the particle. 

13 



2.3 Sequential Monte Carlo (SMC) Methods 

Step 3. Calculate target probability density function p(xt\Yt), according to 

M M 

p(xt\Yt) « J2 9*(0*(^ - 4°) , E * W = X' ®W ^ 0, Vi (2.24) 
i = l i=l 

where t denotes time, <!>(•) is the Dirac delta function and qt^' denotes the weights 
(i) 

associated with particles xt . 

The normalized importance weights and the corresponding particles constitute 

an approximation of the filtering probability density function p(xt\Yt). 

Step 4. Resampling: draw M particles, with replacement, according to 

Pr(x§ = x^_x) = q(x{j)), i = l,...,M (2.25) 

The resampling step will then return particles which are equally probable. 

Step 5. Time update: predict new particles according to 

4li\t~P(xt+i\t\x§), i = l,...,M (2.26) 

The time update is just a matter of predicting new particles according to 

the underlying dynamic model and the filtered particles from the previous time 

{^t-iit-ili^i- Conceptually, the predicted particles are obtained simply by pass­

ing the filtered particles through the system dynamics. 

Step 6. Set t := t + 1 and iterate from step 2. 

Together with the new observations, these predicted particles form the starting 

point for another iteration of the assimilation algorithm. 

14 



Chapter 3 

Assimilation Experiment I: 

Lorenz 1963 Model 

Both Sequential Monte Carlo (SMC) Methods (Gordon et aL, 1993) and Ensemble 

Kalman Filter (EnKF) (Evenseii, 1994) are sequential data assimilation methods 

and of stochastic nature, and both of them rely on Monte Carlo integration of the 

statistical behavior of the dynamic and measurement model system. Therefore, 

they have some similarities, and we can make some comparison to investigate the 

properties of these methods, especially in nonlinear and non-Gaussian dynamics. 

It is qtiite common that the atmospheric and oceanic dynamic systems are 

nonlinear and non-Gaussian. In this study, we choose the Lorenz model as a test 

bed (Lorenz. 1.983). It describes to some extent the nonlinear and chaotic nature 

of the atmosphere and ocean. 

The renowned Lorenz 1963 model was introduced by Edward Lorenz in 1963, 

who derived it from the simplified equations of convection rolls arising in the 

equations of the atmosphere. The Lorenz 1963 model consists of a system of 

three coupled and nonlinear ordinary differential equations (Lorenz, 1983), 

~ = a(y-x) (3.1) 

px — y — xz (3.2) 

xy - Qz (3.3) 

dy_ 
dt 

dz_ 
lit 
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where, x(t), y(t), and z(t) are the dependent variables, and we have chosen the 

following commonly used values for the parameters in the equation: a = 10, 

p = 28, and (3 = 8/3. 

Our goal is to compare the properties and capabilities of Sequential Monte 

Carlo (SMC) methods and Ensemble Kalman Filter (EnKF) in strongly nonlin­

ear non-Gaussian dynamics. What is the non-Gaussian dynamics? Let us define 

the Gaussian dynamics first. In the mathematical theory of probability, a Gaus­

sian process {xt,t 6 T} is a stochastic process, of which the probability density 

function p is normally distributed. 

p(xi,x2,X3,xt,...,xt-a,xt-2,xt-i,xt) ~ N(ij,,a) (3.4) 

where p is the joint probability density function of the dynamic process, x 

is the random variable, and t refers to time. If the process is a not Gaussian 

process, it is a non-Gaussian process. 

The Gaussian process is distributed as the normal distribution, also called the 

Gaussian distribution, which is defined by two parameters, location and scale: the 

mean and variance (or standard deviation) respectively. 

The arithmetic mean is the average, often simply called the mean. The vari­

ance is one measure of statistical dispersion, averaging the squared distance of its 

possible values from the expected value (mean). Whereas the mean is a way to 

describe the location of a distribution, the variance is a way to capture its scale 

or degree of being spread out. The unit of variance is the square of the unit of the 

original variable. The positive square root of the variance, called the standard 

deviation, has the same units as the original variable. 

Mean \i is defined as: 

Standard deviation a is defined as: 

a "i 
i£pq-,i)2 (3.6) 
n . 

8 = 1 
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where [i is the mean of the dynamic process. 

For a Gaussian process, the mean and the standard deviation fully charac­

terize the probability density function of the process; however, for non-Gaussian 

process, the mean and the standard deviation only are insufficient, and higher 

order moments of the process are needed. Usually the coefficient of skewness and 

the coefficient of kurtosis are employed. 

In probability theory and statistics, the coefficient of skewness is a measure of 

the asymmetry of the probability distribution. A negative coefficient of skewness 

means the left tail is longer; the mass of the distribution is concentrated on 

the right of the figure. The distribution is said to be left-skewed. A positive 

coefficient of skewness means the right tail is longer; the mass of the distribution 

is concentrated on the left of the figure. The distribution is said to be right-

skewed. 

The Coefficient of kurtosis is a measure of the peakedness of the probability 

distribution. The higher coefficient of kurtosis means more of the variance is 

due to infrequent extreme deviations, as opposed to the frequent, modestly-sized 

deviations. 

The coefficient of skewness 71 is defined as: 

7 l = nElLl(*i »f (3 7) 

where \i is the mean of the dynamic process. 

The coefficient of kurtosis 72 is defined as: 

i2-^m^^f? (3-8) 

where Li is the mean of the dynamic process. 

Through this thesis, we will use the mean [x, the standard deviation a, the 

coefficient of skewness 71, and the coefficient of kurtosis 72 as criteria to compare 

the assimilation results from EnKF method and SMC methods. Meanwhile, the 

first quartile, the second quartile (median), the third quartile, and the range of 

data are employed to check the assimilation results. 
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3.1 Observation Interval St0bs = 0.50 

We design four different scenarios for the Lorenz 1963 model data assimilation. 

They axe assimilations with observation interval of 0.50, with observation interval 

of 0.25, with the initial error probability density function of Beta Distribution, 

and with the initial error probability density function of Gamma Distribution, 

see Table 3.1. 

Table 3.1: Experiment Design for Lorenz 1963 

Assimilation Method SMC(250 particles) and EnKF(250 ensembles) 

Scenario 1 Observation Interval 5t0bs = 0.50 

Scenario 2 Observation Interval 5t0bs = 0.25 

Scenario 3 Non-Gaussian Initial Error: Beta 

Scenario 4 Non-Gaussian Initial Error: Gamma 

3.1 Observa t ion In terval St^,s = 0.50 

The parameters of the Lorenz 1963 model in this case study are a — 10, p = 28, 

and P = 8/3. In this experiment we choose the same initial conditions as in Miller 

et ol (1994). The initial condition (x, y, z) is given by (1.508870, -1.531271, 

25.46091), and the integration duration of the experiment is 50 dimensionless 

time units, with an integration time step of 0.01. The true value (reference 

resolution) is created by integrating the model with the above configurations. 

The distance between two nearest measurements is 5t0i>s = 0.50 and obser­

vations are made on the x, y and z coordinates. In this case study, the system 

initial error is Gaussian iV(0.0,2.0), and the observational error is also Gaussian 

iV(0.0, 2.0). The observations are simulated by adding normally distributed noise 

with zero mean and variance equal to 2.0 to the true value (reference solution). 

Initial conditions are also simulated by adding normally distributed noise with 

zero mean and variance equal to 2.0 to the true value (reference solution). This 

system of equations is integrated by Numerical Algorithms Group (NAG) Nu­

merical Libraries with the fourth-order Runge-Kutta method. The assimilation 

18 



3.1 Observation Interval 5t0t,s = 0.50 

experiments are run on an SGI Altix 3000 (64 Intel Itanium - 2 1500 MHz CPUs) 

global shared memory supercomputer. 

The filter performance will be evaluated by three factors: 1) root mean square 

error (RMSE); 2) CPU computation time; 3) statistics of the probability den­

sity function (PDF), which is estimated from the true resolution and assimilated 

estimates. 

The root mean square error (RMSE) is calculated between the reference 

solution and the filtering estimate (analysis) averaged over the whole assimilation 

period. 

We performed both the SMC methods and the EnKF method data assimi­

lation in the Lorenz 1963 model, with different numbers of SMC particles and 

EnKF ensemble members. The number of SMC particles is 250. The number of 

EnKF ensemble members is also 250. 

The assimilation for x, y, and z is performed. However, the assimilation 

method is independent of state variables, thus the assimilation results for three 

variables x, y, and z are quite similar. Therefore, only the assimilation result for 

x is showed in this thesis. 

Table 3.2: Computation time and RMSE for Lorenz 1963 (Case: 8t0i,s = 0.50) 

Assimilation Method SMC (250 particles) EnKF (250 ensembles) 

Time (In Seconds) 4.830 11.246 

RMSE (X) 1.8520 2.0208 

RMSE (Y) 2.9850 3.2572 

RMSE (Z) 2.7383 2.9262 
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3.1 Observation Interval Stobs = 0.50 

State Estimate 
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Figure 3.1: State estimate and error variance of ^-component of Lorenz 1963 

model for EnKF and SMC methods with filter size of 250, 5i0t,s = 0.50 
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3.1 Observation Interval 5tobs = 0.50 

Density 

0.01 

10 15 20 25 

Density 

- 2 5 -20 - 1 5 -10 - 5 0 5 10 15 20 25 

Figure 3.2: Probability density function of as-component of Lorenz 1963 model 

for EriKF and SMC methods with filter size of 250, 5tobs = 0.50 
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3.1 Observation Interval Stobs = 0.50 

Figure 3.1 shows the variable x estimate and the error variance estimate with 

time step from both SMC methods and EnKF method with 250 particles and 

ensemble members. The error variance which defined, as in Evetisen (.1997) is 

scaled by N where N is a scalar quantity of time steps of the total assimilation 

period 

Error Variance = _L(Xfstemate - X f i e ) 2 (3.9) 

Both the SMC methods and the EnKF method do reasonably good jobs in 

tracking the phase transitions and also in reproducing the correct amplitudes of 

the reference solution. There are some locations where the filter estimates start 

to diverge from the reference solution. To compare the assimilation results, we 

divide the total assimilation period into two, the first half and the second half, 

so that we want to examine whether the assimilation results become better with 

more observations coming into the data assimilation system. Meanwhile, since 

the error variance is already rescaled, the error variance in all figures is just used 

to compare its relatively range within two methods, EnKF and SMC methods. 

To compare the RAISE variation with time, we choose 0.006 as a standard. For 

the EnKF method, at time 3, 11, 17, 23, 27, 30, 35, 37, 39, 42, 44, and 49, the 

error variance is greater than 0.006, which means the filter estimates deviate from 

the true solution. Among these locations, 8 out of 12 are in the second half of the 

assimilation period. For SMC methods, at time 5, 9, 14, 17, 23, 30, 35, 42, 43, 

and 47, the error variance is greater than 0.006. Among these locations, 5 out of 

10 are in the second half of the assimilation period. Despite these divergences, 

both methods recover quickly and track the reference solution again. 

Table 3.2 indicates the CPU computation time and the RMSE for both meth­

ods in this case. The CPU computation time is 4.830 s for SMC methods, while 

11.246 s for EnKF method. The EnKF method takes almost twice longer than 

the SMC methods. The RMSE is 1.8520, 2.9850, and 2.7383 for x, y, and z for 

SMC methods, while it is 2.0208, 3.2572, and 2.9262 for x, y, and z for EnKF 

method. SMC methods are slightly better than the EnKF method in this case. 
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3.2 Observation Interval 5tobs = 0.25 

Figure 3.2 shows the probability density function of x component of the Lorenz 

1963 dynamic system for both EnKF and SMC methods. The probability den­

sity function is calculated by the kernel density estimation method (Parzen, 1982 

and Silverman, 1986). In Matlab, the kernel density estimation is implemented 

through the ksdensity function. In this thesis, all probability density functions 

are estimated by Matlab ksdensity function. From Figure 3.2, we can see clearly 

that the probability density functions are non-Gaussian. Both methods can as­

similate it quite well, but, they both have some difficulties to reach the exact 

peaks of the probability density function. 

Table 3.3 shows the statistics of the probability density function of x compo­

nent of the Lorenz 1963 model. The mean, the standard deviation, the coefficient 

of skewness, and the coefficient of kurtosis for the SMC methods are closer to 

those of the true state than those of the EnKF method. The quartiles and range 

from the SMC methods are closer to those of the true resolution than those of 

the EnKF method. Therefore, the SMC methods estimate the probability density 

function slightly better than the EnKF in this case. 

3.2 Observation Interval 8t0bs = 0.25 

In this second experiment, the experimental setup is the same as the previous one, 

except that the observation interval between two measurements decreases from 

St0bs = 0.50 to St0bs ~ 0.25 for this case. That means we have more observations 

in the assimilation process in case 2 than in case 1. 

Table 3.4: Computation time and RMSE for Lorenz 1963 (Case: 5t0bs = 0.25) 

Assimilation Method 

Time (In Seconds) 

RMSE (X) 
RMSE (Y) 

RMSE (Z) 

SMC (250 particles) 

5.309 

1.4003 

2.1914 

1.9663 

EnKF(250 ensembles) 

18.169 

1.0156 
1.6157 

1.5755 
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3.2 Observation Interval St0hs = 0.25 
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Figure 3.3: State estimate and error variance of x-component of Lorenz 1963 

model for EnKF and SMC methods, Filter size = 250, 5tohs = 0.25 
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3.2 Observation Interval 5t0i,s — 0.25 
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Figure 3.4: Probability density function of as-component of Lorenz 1963 model 

for EnKF and SMC methods, Filter size = 250, Stobs = 0.25 
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3.2 Observation Interval 5t0bs — 0.25 

Figure 3.3 shows the variable x estimate and the error variance estimate with 

time step from both the SMC methods and the EnKF method with the filter 

size of 250. In tracking the phase transitions, there are some locations where 

the filter estimates diverge from the reference solution. For EnKF method, at 

time 5, 11, and 30, the error variance is greater than 0.006, which means filter 

estimates deviate from true solution. Among these locations, 1 out of 3 is in the 

second half of the assimilation period. For SMC methods, at time 4, 5, 11, 20, 

24, and 34, the error variance is greater than 0.006. Among these locations, 1 out 

of 6 is in the second half of the assimilation period. With more observations, the 

EnKF method outperforms the SMC methods. For both methods, the transition 

in the second half becomes smoother than that in the first half. Despite these 

divergences, both methods recover quickly and track the reference solution again. 

From the error variance with time, we can see the error variance decreases with 

time in this case. 

Table 3.4 indicates the CPU computation time and the RMSE for both meth­

ods in the case. The CPU computation time is 5.309 s for SMC methods, while 

it is 18.169 s for EnKF method. The EnKF method takes almost 3 times longer 

than the SMC methods. The RMSE is 1.4003, 2.1914, and 1.9663 for x, y, and z 

for SMC methods, while it is 1.0156, 1.6157, and 1.5755 for x, y, and z for EnKF 

method. The EnKF method is significantly better than the SMC methods in this 

case with more observations available. 

Figure 3.4 shows the probability density function of x component of the 

Lorenz 1963 dynamic system for both the EnKF method and the SMC meth­

ods. From Figure 3.4, we can see clearly that the probability density function is 

non-Gaussian. Both methods can assimilate this nonlinear dynamic process quite 

well; however, the EnKF method almost reaches the exact peak of the probability 

density function, which is better than the SMC methods. 

Table 3.5 shows the statistics of the probability density function of x compo­

nent of Lorenz 1963 model. The mean for the SMC methods are closer to the 

true resolution than that of the EnKF method, while the standard deviation, the 

coefficient of skewness, and the coefficient of kurtosis for the EnKF method are 

closer to the true state than the SMC methods, as well as the quartiles and range 

of the data. 

28 



3.3 Non-Gaussian Initial Error: Beta 

In Table 3.2 and Table 3.4, EnKF takes more than twice the time than the 

SMC methods do. That means both methods can achieve reasonably good results, 

but the SMC methods is more efficient than EnKF in this case. The EnKF 

algorithm used in this thesis is explained in Evensen (2003). We need to perform 

an analysis algorithm to each individual member, which is why EnKF takes much 

more time than SMC methods. In addition to the reason above, the EnKF 

analysis algorithm requires the calculation of the inverse of matrix, which is quite 

time consuming. One way to reduce the computational time for the EnKF is 

to reduce the ensemble size. For this, one possible option is to replace random 

perturbation in Kalman Filter by a deterministic perturbation, which turns out 

to be Unscented (Sigma-Point) Kalman Filter (Julier & Uhlmami, 1998). 

3.3 Non-Gaussian Initial Error: Beta 

For the third case, we keep the experimental setup the same as the first one; 

expect that the system initial error is non-Gaussian, Beta Distribution. In Case 

Beta, Beta (2.0, 5.0) is used as the initial probability density function for model 

integration. In the first two cases, the model starts with a Gaussian error, and the 

probability density function may become non-Gaussian after the model iteration 

starts. In this case, in the beginning, the model starts with a non-Gaussian 

probability density function, and it will remain non-Gaussian after the model 

iteration. 

The EnKF method always uses Gaussian marginal probability density func­

tion to represent non-Gaussian marginal probability density function during the 

assimilation process; theoretically it is not sufficient, because only lower-order 

moments (mean, variance) are considered. While SMC methods directly esti­

mate non-Gaussian marginal density function, theoretically it is much better 

than EnKF. 

Figure 3.5 shows the variable x estimate and the error variance estimate with 

time from both SMC methods and EnKF method with 250 particles and ensemble 

members. In tracking the phase transitions there are some locations where the 

filter estimates diverge from the reference solution. In spite of these divergences, 

both methods recover quickly and track the reference solution again. For the 
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3.3 Non-Gaussian Initial Error: Beta 

EnKF method, at time 2, 5, 6, 11, 16, 23, 30, 37, 43, 44 and 45, the error variance 

is greater than 0.006, which shows filter estimates deviate from true solution. 

Among these locations, 5 out of 11 are in the second half of the assimilation 

period. For the SMC methods, at time 2, 3, 6, 9, 11, 16, 17, 23, 27, 30, 37, and 

44, the error variance is greater than 0.006. Among these locations, 4 out of 12 

are in the second half of the assimilation period, which indicates that the second 

half assimilation transition for the SMC method is smoother than that for the 

EnKF method. 

Table 3.6 indicates the CPU computation time and the RMSE for both meth­

ods in the case. The CPU computation time is 4.877s for SMC methods, while 

it is 11.297s for EnKF method. The RMSE is 2.1640, 3.3007, and 3.8650 for x, 

y, and z for SMC methods, while it is 2.3394, 3.5670, and 2.9842 for x, y, and z 

for EnKF method. For variables x and y, the SMC methods is better, while for 

variables z, the EnKF method is better. 

Figure 3.6 shows the probability density function of the x component of the 

Lorenz 1963 dynamic system for both EnKF and SMC methods. From Figure 

3.6, we can see clearly that the probability density function is non-Gaussian, 

which has one major peak and two weak peaks. Both methods can assimilate it 

reasonably well, but both of them have trouble to track the exact peaks of the 

probability density function. 

Table 3.7 shows the statistics of the probability density function of x of Lorenz 

1963 model. The EnKF assimilated result is closer to the true resolution than 

SMC methods in the mean, the coefficient of skewness, the median, the third 

quartile and the range; while the SMC methods are better in the standard devi­

ation, the coefficient of kurtosis, and the first quartile than the EnKF method. 
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3.3 Non-Gaussian Initial Error: Beta 
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Figure 3.5: State estimate and error variance of rc-component of Lorenz 1963 

model for EnKF and SMC methods, Filter size = 250, Initial Beta distribution 
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3.3 Non-Gaussian Initial Error: Beta 

Table 3.6: Computation time and RMSE for Lorenz 1963 (Case: Beta) 

Assimilation Method 

Time (In Seconds) 

RMSE (X) 

RMSE (Y) 

RMSE (Z) 

SMC(250 particles) 

4.877 

2.1640 

3.3007 

3.8650 

EnKF(250 ensembles) 

11.297 

2.3394 

3.5670 

2.9842 

32 



T
ab

le
 3

.7
: 

S
ta

ti
st

ic
s 

of
 P

D
F

 o
f 

^-
co

m
po

ne
nt

 o
f 

L
or

en
z 

19
63

 (
C

as
e:

 B
et

a)
 

S
ta

ti
st

ic
s 

M
ea

n 

S
ta

nd
ar

d 
de

vi
at

io
n 

C
oe

ff
ic

ie
nt

 
of

 s
ke

w
ne

ss
 

C
oe

ff
ic

ie
nt

 
of

 k
ur

to
si

s 

F
ir

st
 Q

ua
rt

il
e 

Se
co

nd
 Q

ua
rt

il
e 

T
hi

rd
 Q

ua
rt

il
e 

R
an

ge
 

T
ru

e 
P

D
F

 

0.
64

15
 

7.
87

52
 

-0
.1

54
4 

-0
.6

07
7 

-4
.3

85
7 

1.
05

67
 

5.
96

89
 

35
.4

20
0 

SM
C

(2
50

 p
ar

ti
cl

es
) 

0.
94

65
 

7.
98

73
 

-0
.2

29
1 

-0
.6

90
2 

-4
.4

12
7 

1.
68

45
 

6.
74

03
 

34
.7

57
7 

E
nK

F
(2

50
 e

ns
em

bl
es

) 
T

ru
e 

- 
S

M
C

 
T

ru
e 

- 
E

nK
F 

0.
76

76
 

8.
00

14
 

-0
.1

65
9 

-0
.7

42
6 

-4
.7

07
8 

1.
39

63
 

6.
54

98
 

35
.2

27
9 

-0
.3

04
9 

-0
.1

12
0 

0.
07

47
 

0.
08

24
 

0.
02

70
 

-0
.6

27
8 

-0
.7

71
4 

0.
66

23
 

-0
.1

26
0 

-0
.1

26
2 

0.
01

15
 

0.
13

48
 

0.
32

21
 

-0
.3

39
6 

-0
.5

80
9 

0.
19

21
 



3.3 Non-Gaussian Initial Error: Beta 
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Figure 3.6: Probability density function of x-component of Lorenz 1963 model 

for EnKF and SMC methods, Filter size — 250, Initial Beta distribution 
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3.4 Non-Gaussian Initial Error: Gamma 

3.4 Non-Gaussian Initial Error: Gamma 

For the fourth case, we keep the experimental setup the same as the third one; 

expect that the system initial error is non-Gaussian, Gamma Distribution. In 

Case Gamma, Gamma (2.0, 2.0) is used to integrate the model forward as the 

initial error probability density function. 

Figure 3.7 shows the variable x state estimate and the error variance estimate 

variation with time forward for both the SMC methods with 250 particles and 

the EnKF method with 250 ensemble members. In tracking the phase transitions 

there are some locations where the filter estimates diverge from the reference 

solution. For example, for the EnKF method, at time 4, 5, 18, 24, 30, 36, 37, 44, 

and 49, the error variance is greater than 0.006, which indicates filter estimates 

deviate from true solution. Among these locations, 5 out of 9 are in the second 

half of the assimilation period, or rather, the estimate deviation occurs all through 

the assimilation process. For the SMC methods, at time 2, 4, 5, 9, 17, 20, 21, 

24, 37, 39, 44, and 49, the error variance is greater than 0.006. Among these 

locations, 4 out of 12 are in the second half of the assimilation period, which 

shows the second half assimilation is better than the first half. Despite these 

divergences, both methods recover quickly and track the reference solution again. 

In general, both the SMC methods and the EnKF method do the case experiment 

well. 

Table 3.8 indicates the CPU computation time and the RMSE for both meth­

ods in the case. The CPU computation time is 4.925 s for SMC methods, while 

it is 11.295 s for EnKF method. The EnKF method takes almost as three times 

long as the SMC methods. The RMSE is 2.5674, 4.0898, and 3.7482 for x, y, 

and z for SMC methods, while it is 2.3808, 3.5195, and 3.4267 for x, y, and z 

for EnKF method. The EnKF method is slightly better than that of the SMC 

methods in this case with Gamma Initial Distribution. 

Figure 3.8 shows the probability density function of the x component of the 

Lorenz 1963 dynamic system for both EnKF and SMC methods. From Figure 3.8, 

we can see clearly that the probability density function is non-Gaussian, since it 

has one major peak and another two small peaks. Both methods can assimilate it 

reasonably well, but neither of them can reach the exact peaks of the probability 
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3.4 Non-Gaussian Initial Error: Gamma 

density function. Based on the 4 cases above, the process probability density 

functions are quite similar to one another in the 4 experiments, which indicate 

that the process PDF is mainly determined by dynamics itself. Still we could 

try to find the optimal initial probability density function for the specific data 

assimilation sytem. 

Table 3.9 shows the statistics of the probability density function of x of the 

Lorenz 1963 model. Both the mean for the SMC methods and the EnKF method 

are slightly larger than the true resolution; the standard deviation for the SMC 

methods is smaller than that of the true resolution, while the standard deviation 

for the EnKF method is slightly larger than that of the true resolution, the coeffi­

cients of skewness are -0.1544, -0.1819, and -0.1897; the difference of coefficients of 

kurtosis between true resolution and assimilated estimate for the EnKF method 

is 10 times larger than that of the SMC methods, both absolute values are quite 

small though. Moreover, all the quartiles in the EnKF method are better than 

that of the SMC methods, except the range in the SMC methods are better. 

The SMC methods have the theoretical advantage, why do the experimental 

results show similar estimates? Why do not the SMC methods outperform EnKF 

methods? 

p(xi,x2, • • • ,xn) is the probability density function of the dynamic process, 

which is non-Gaussian. The marginal probability density function p(xn) is es­

timated through the data assimilation process is also non-Gaussian. In EnKF, 

we assume all the marginal probability density function is Gaussian, which is 

not true for non-Gaussian dynamics, no matter whether it is linear or nonlinear 

dynamics, and the mean and covariance of marginal probability density is used 

to fully characterize the dynamics. However, in SMC methods, the marginal 

probability density function is estimated directly from sample particles. 

The RMSE is calculated from true resolution and assimilation resolution, it 

is only mean value or rather the first order of the moment of marginal probability 

density function. EnKF employs Gaussian marginal probability density function 

to represent non-Gaussian marginal probability density functions, which is not 

sufficient theoretically. However, it may be sufficient to represent the mean value 

of marginal probability density function. That is why RMSE for both EnKF 

and SMC are quite similar. Since we do not have a true non-Gaussian marginal 
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3.4 Non-Gaussian Initial Error: Gamma 

probability density function as a reference, it is difficult to verify whether the 

marginal density function in SMC methods can fully represent true dynamic 

marginal probability density function or not. 

Table 3.8: Computation time and RMSE for Lorenz 1963 (Case: Gamma) 

Assimilation Method SMC(250 particles) EnKF(250 ensembles) 

Time (In Seconds) 4.925 11.295 

RMSE (X) 2.5674 2.3808 

RMSE (Y) 4.0898 3.5195 

RMSE (Z) 3.7482 3.4267 
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3.4 Non-Gaussian Initial Error: Gamma 
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Figure 3.7: State estimate and error variance of x-component of Lorenz 1963 

model for EnKF and SMC methods. Filter size = 250, Initial Gamma distribution 
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3.4 Non-Gaussian Initial Error: Gamma 
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Chapter 4 

Assimilation Experiment II: 

Lorenz 1996 Model 

The second experimental design employs the Lorenz 1996 model as the test bed. 

The Lorenz 1996 model (Lorenz, 1996) represents an atmospheric variable X at J 

equally spaced points around a circle of the constant latitude. The j th component 

is propagated forward in time following the differential equation 

f]X 

- ^ = (Xj+1 - XJ-JXJ-L - Xj + F (4.1) 

where j = 0 , . . . , J — 1 represents the spatial coordinates (longitude). F is a 

constant external forcing term, which indicates the dynamics is weakly chaotic 

when F — 5 or F = 6, it is highly chaotic when F — 8, and it is fully turbulent 

when F = 16. Note that this model is not a simplification of any atmospheric 

system, however, it is designed to satisfy three basic properties: it has linear 

dissipation (the — Xj term) that decreases the totally energy , an external forcing 

term F that can increase or decrease the total energy and a quadratic advection 

term that conserves the total energy just like many atmospheric models. In its 

configuration, J — 40 variables and boundary conditions are cyclic, i.e. X-\ = 

Xj-i, Xo = X^ and Xj+i = X\. which means the distance between two adjacent 

grid points roughly represents the midlatitude Rossby radius (about 800 km), 

assuming the circumference of the midlatitude belt is about 30000 km (Majda k 

Harlim, 2008). 
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In this experimental design, we define three different forcing term F scenarios. 

The first category is F — 5, which indicates that the model is weakly chaotic, the 

second category is F — 8, which indicates that the model is highly chaotic, and 

the last category is F — 16, which indicates that the model is fully turbulent, see 

Table 4.1. 

This dynamic model is integrated by the Numerical Algorithms Group (NAG) 

Numerical Libraries with the fourth-order Runge-Kutta method, and the inte­

gration time step of 0.05, corresponding to 6 hours in the realistic atmospheric 

physics. The initial condition is given after a spin up integration for 10 years. 

The duration of the experiment setup is 40 dimensionless time units. The ob­

servation interval between two measurements is 5t0f,s — 0.50 and observations 

are available for all 40 variables. In this case study, the system initial error is 

Gaussian A(0.0,2.0), and observational error is also Gaussian N(0.0,2.0). The 

observations are simulated by adding normally distributed noise with zero mean 

and variance equal to 2.0 to the reference solution. Initial conditions are simu­

lated by adding normally distributed noise with zero mean and variance equal to 

2.0 to reference solution. 

The filter performance will also be evaluated by the root mean square error 

(RMSE) between the true value (reference solution) and the filtering estimate 

averaged over the whole assimilation period, the CPU computational time, and 

the statistics of the probability density functions. The assimilation experiments 

ran on an SGI Altix 3000 (64 Intel Itanium - 2 1500 MHz CPUs) global shared 

memory supercomputer. 

We performed both the SMC methods and the EnKF method data assimi­

lation in the Lorenz 1996 model, with different numbers of SMC particles and 

EnKF ensemble members equal 250. 

For the Lorenz 1996 model, 40 variables are functionally equal. Also the 

assimilation method is independent of model state variables. Therefore, only the 

assimilation result for state variable XI, A20, and X30 are shown in this thesis. 
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4.1 Weakly Chaotic F = 5 

Table 4.1: Experiment Design for Lorenz 1996 

Assimilation Method 

Scenario 1 

Scenario 2 

Scenario 3 

SMC(250 particles) and EnKF(250 ensembles) 

Weakly Chaotic F = 5 

Highly Chaotic F = 8 

Fully Turbulent F = 16 

4.1 Weakly Chaotic F = 5 

In Fig 4.1, both the SMC methods and the EnKF method perform reasonably well 

in tracking the phase transitions and also in reproducing the correct amplitudes 

of the reference solution. We divide the whole assimilation period into two. Both 

the SMC methods and the EnKF method take almost half of the whole period to 

start to track the reference solution accurately. When the dynamics are weakly 

chaotic, both methods can assimilate the dynamic process well and quickly, since 

the second half is obviously better than the first half. However, there are some 

locations where the filter estimates start to diverge from the reference solution. 

For the EnKF method, at time 3, 12, and 13, the error variance is greater than 

0.006, which means filter estimates deviate from true solution. Among these 

locations, none of 3 is in the second half of the assimilation period. For the SMC 

methods, at time 3, 4, 16, 22, and 33, the error variance is greater than 0.006. 

Among these locations, 2 out of 10 are in the second half of the assimilation 

period. Despite these divergences, both methods recover quickly and track the 

reference solution again. From the error variance variation with time, we can 

see the strong error growth at those phase transition locations. Furthermore, 

the noisy level of RMSE for the EnKF method is lower than that for the SMC 

methods. 

Table 4.2 indicates the CPU computation time and the RMSE for both meth­

ods in the case. The CPU computation time is 15.809 s for the SMC methods, 

while it is 142.960 s for the EnKF method. The EnKF method takes almost 9 

times longer than the SMC methods. The RMSE is 1.2777, 1.1791, and 1.1207 

for XI, X20, and X30 for the SMC methods, while it is 0.9404, 0.9297, and 
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4.1 Weakly Chaotic F = 5 

0.9310 for XI, X20, and X30 for the EnKF method. The SMC methods are 

slightly worse than the EnKF method in this case. 

From Figure 4.2, we can see clearly that the probability density function of XI 

is non-Gaussian, not strongly non-Gaussian though. Both methods can assimilate 

it quite well, but, they both have some difficulties to reach the exact peaks of the 

probability density function. 

Table 4.3 shows the statistics of the probability density function of XI of the 

Lorenz 1996 model. The mean and the standard deviation for the SMC methods 

assimilated result are closer to the true state than that of the EnKF method. 

However, for the higher order moments of the probability density function, the 

coefficient of skewness for the SMC methods is closer to the true resolution than 

the EnKF method, while the coefficient of kurtosis for the EnKF method is closer 

to the true resolution than the SMC methods. All three quartiles in the SMC 

methods are better than those in the EnKF method except the range. 

Table 4.2: Computation Time and RMSE of Lorenz 1996 {F = 5) 

Assimilation Method SMC(250 particles) EnKF(250 ensembles) 

Time (In Seconds) 15.809 142.960 

RMSE (XI) 1.2777 0.9404 

RMSE (X20) 1.1791 0.9297 

RMSE (X30) 1.1207 0.9310 
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4.1 Weakly Chaotic F = 5 
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Figure 4.1: State estimate and error variance of XI of Lorenz 1996 model (F = 5) 

for EnKF and SMC methods with filter size of 250 
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4.1 Weakly Chaotic F = 5 
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Figure 4.2: Probability density function of XI of Lorenz 1996 model (F — 5) for 

EnKF and SMC methods with, filter size of 250 
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4.2 Highly Chaotic F = 8 

4.2 Highly Chaotic F = 8 

When F = 8, the dynamics become highly chaotic. In Fig 4.3, both the SMC 

methods and the EnKF method can track the phase transitions and also in re­

producing the correct amplitudes of the reference solution reasonably well, not 

as good as in the case with F = 5 though. If we still divide the whole period 

into two. There is not much difference between the two halves in performance. 

When degree of chaos increases, the difficulty to track the true resolution in­

creases. From the error variance variation with time, we also can see the strong 

error growth at those phase transition locations. 

For the EnKF method, at more than 1/3 of the whole time period, the error 

variance is greater than 0.006, which means filter estimates deviate from true 

solution quite frequently. These locations are distributed in the whole assimilation 

period. For SMC methods, at more than 1/3 of the whole assimilation period, 

the error variance is greater than 0.006. Those locations also exist in the whole 

assimilation period. Compared to Fig 4.1, the data assimilation performance for 

both methods is worse than that in case F — 5. The noisy level of RMSE is 

also greater than that in case F = 5. Despite these divergences, both methods 

recover quickly and track the reference solution again in general. 

Table 4.4 indicates the CPU computation time and the RMSE for both meth­

ods in the case. The CPU computation time is 21.968 s for SMC methods, while 

it is 148.003 s for EnKF method. The CPU computation time for the SMC meth­

ods increase significantly from 15.809 s to 21.968 s with the degree of chaos from 

F = 5 to F = 8. The EnKF method takes almost 9 times longer than the SMC 

methods. The RMSE is 1.8116, 1.8128, and 1.8967 for XI , X20, and X30 for 

the SMC methods, while it is 1.6783, 1.6406, and 1.8820 for XI , X20, and X30 

for the EnKF method. The EnKF method outperforms the SMC methods. 

From Figure 4.4, the probability density function of XI is still weakly non-

Gaussian. Both methods can assimilate the probability density functions quite 

well in general, however, the EnKF method cannot reach the exact peak of the 

probability density function, while the SMC methods produced two false peaks 

of the probability density function. 
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4.2 Highly Chaotic F = 8 

Table 4.5 shows the statistics of the probability density function of XI of 

Lorenz 1996 model. The mean, the standard deviation, and the coefficient of 

skewness for the SMC methods are closer to the true state than those of the 

EnKF method. However, the coefficient of kurtosis is -0.598373, -0.502227, and 

-0.661721, which shows the EnKF method assimilates better. Besides, the first 

and third quartiles and ranges estimate in the EnKF method are better than 

those from the SMC methods except the second quartile (median). 

Table 4.4: Computation Time and RMSE of Lorenz 1996 (F = 8) 

Assimilation Method SMC (250 particles) EnKF (250 ensembles) 

Time (In Seconds) 21.968 148.003 

RMSE (XI) 1.8116 1.6783 

RMSE (X20) 1.8128 1.6406 

RMSE (X30) 1.8967 1.8820 
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4.2 Highly Chaotic F = 8 
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Figure 4.3: State estimate and error variance of XI of Lorenz 1996 model (F = 8) 

for EnKF and SMC methods with filter size of 250 
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4.2 Highly Chaotic F = 8 

Probability Density Function 

Probability Density Function 

Figure 4.4: Probability density function of A'l of Lorenz 1996 model (F = 8) for 

EnKF and SMC methods with filter size of 250 
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4.3 Ful ly T u r b u l e n t F = 16 

4.3 Fully Turbulent F = 16 

If we continue to increase the external forcing F, when F = 16, the dynamics 

become fully turbulent. In Fig 4.5, both the SMC methods and the EnKF method 

can track the phase transitions and also reproduce the correct amplitudes of the 

reference solution. Obvio\isly it is worse than the first two cases with F = 5 and 

F = 8. Since the degree of chaos increases, the whole dynamic process becomes 

highly unstable and fully turbulent, which increases the difficulties for the data 

assimilation system. The locations where the filter estimates start to diverge from 

the reference solution become more frequent than in the first two cases. These 

locations appear also in the whole assimilation period. From the error variance 

plot with time, we can see the strong error growth at those phase transition 

locations. The noisy level of RMSE increases significantly. We cannot use 0.006 

as a standard any more. In this case, we choose 0.01 as the standard. For the 

EnKF method, at more than 1/2 of the whole time period, the error variance 

is greater than 0.01, which means filter estimates deviate from the true solution 

significantly and frequently. These locations are in the whole assimilation period. 

For SMC methods, at more than 1/2 of the assimilation time period, the error 

variance is greater than 0.01. 

Table 4.6 indicates the CPU computation time and the RMSE for both meth­

ods in this case. The CPU computation time is 33.493 s for SMC methods, while 

it is 161.101 s for EnKF method. The EnKF method takes almost 4 times longer 

than the SMC methods. One interesting feature is that the CPU computation 

time used by the SMC methods increased significantly with the degree of chaotic 

nature, while the EnKF method does not. This may indicate that the SMC 

methods depend on model chaotic nature to some extent. The RMSE is 3.9114, 

3.9858, and 3.5495 for XI, X20, and X30 for SMC methods, while it is 3.3883, 

3.7520, and 3.7619 for XI, X20, and X30 for EnKF method. Both RMSE from 

two methods are quite similar. 

From Figure 4.6, we can see clearly that the probability density function is 

non-Gaussian, the same as the previous two cases. Both methods can assimilate 

it quite well, but, they both have some difficulties to reach the exact peaks of the 

probability density function. 
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4.3 Fully Turbulent F = 16 

Table 4.7 shows the statistics of the probability density function of XI of 

Lorenz 1996 model. The difference of the mean between true state and estimate 

for the SMC methods are much larger than that of the EnKF method as well 

as the coefficients of skewness and kurtosis. While the standard deviation of the 

estimate for the SMC methods are closer to that of the true state than the EnKF. 

Besides, the first and third quartiles and ranges estimate in the EnKF method are 

better than those from the SMC methods except the median. The range estimate 

in the SMC method is almost 10 times larger than that in the EnKF estimate, 

which means the SMC methods generate some extreme values in the assimilated 

process, more unstable than the EnKF. 

Table 4.6: Computation Time and RMSE of Lorenz 1996 (F = 16) 

Assimilation Method SMC(250 particles) EnKF(250 ensembles) 

Time (In Seconds) 33.493 161.101 

RMSE (XI) 3.9114 3.3883 

RMSE (X20) 3.9858 3.7520 

RMSE (X30) 3.5495 3.7619 
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4.3 Fully Turbulent F = 16 

State Estimate 
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Figure 4.5: State estimate and error variance of XI of Lorenz 1996 model (F 

16) for EnKF and SMC methods with filter size of 250 
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4.3 Fully Turbulent F = 16 

Probability Density Function 

-20 -15 -10 -5 0 5 10 15 20 25 30 

Probability Density Function 

-30 -20 

Figure 4.6: Probability density function of XI of Lorenz 1996 model (F — 16) 

for EnKF and SMC methods with filter size of 250 
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4.4 Filter Size Comparison 

4.4 Filter Size Comparison 

In the EnKF method, the error statistics such as mean and variance (covariance) 

are represented using the model state ensemble. In the SMC methods, the error 

statistics of the probability density function are estimated using a set of sample 

particles. In both methods, the larger the ensemble size, the better estimate of 

the error statistics. As the ensemble size approaches infinity, the estimate of error 

statistics reaches the optimal estimate. 

In practice, it is impossible to employ an ensemble of infinite model mem­

bers or sample particles to perform data assimilation. In realistic applications, 

especially in the atmospheric and oceanic fields, the ensemble size varies from 

10 to 1000, because the computational cost limits the ensemble size. Since the 

ensemble size is limited, the estimate based on limited ensembles is not optimal, 

it is suboptimal. In this section, we compare the different ensemble size of two 

data assimilation methods. The filter size varies from 5, 10, 25, 50, 75, 100, 250, 

500, 750 and 1000. 

Figure 4.7 shows the effect of ensemble size on data assimilation in the Lorenz 

1963 model. Figures 4.8 and 4.9 show the effect of ensemble size on data assimi­

lation in the Loren 1996 model. 

It is clear that TV = 100 is the critical point of the ensemble size in both the 

EnKF method and the SMC methods. The RMSE is quite large and oscillates 

when the ensemble size N is smaller than 100, while the RMSE is quite stable 

when the ensemble size N is larger than 100. It indicates that in Lorenz models, 

the ensemble size of 100 is sufficient to achieve reasonably good estimates. 

However, in Fig 4.7, the ensemble size of the SMC methods decreases more 

quickly than that of the EnKF method when the ensemble size is smaller than 

100, and it still decreases slowly when the ensemble size is larger than 100, while 

EnKF does not. In Fig 4.8 and 4.9, the ensemble size of the EnKF method 

decreases more quickly than that of the SMC methods when the size is smaller 

than 100. After N greater than 100, both of them are stable. 

However, the number of particles needed to perform a successful Sequential 

Monte Carlo methods increases exponentially with the size of the assimilated 

dynamic system (Snyder et «•!., 2008). It is not practical to implement the SMC 
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4.4 Filter Size Comparison 

methods directly to atmospheric and oceanic models at present, since the model 

has 107 degrees of freedom. 
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Chapter 5 

Discussions and Conclusions 

Although significant progress has been made in the data assimilation field, it is 

still difficult to deal with the nonlinear and non-Gaussian state estimation prob­

lems, which cannot be resolved with the traditional data assimilation methods. 

The Sequential Monte Carlo (SMC) methods are among the latest innova­

tions that attempt to bridge the existing gap between the Gaussian dynamics 

estimation and the non-Gaussian dynamics estimation in the data assimilation 

process. It has been shown that they perform quite well in the complex practical 

scenarios. 

In the Kalman Filter framework, nonlinearity and non-Gaussianity state esti­

mation problems cannot be solved theoretically; they can only employ the Gaus­

sian probability density function to characterize the non-Gaussian probability 

density function. Therefore, to tackle this estimation problem of the nonlinear, 

non-Gaussian dynamic system, SMC methods directly approximate the proba­

bility density function (PDF) associated with the dynamic system with finite 

samples, which is a powerful tool to characterize the uncertainty of the dynamic 

system instead of only mean and covariance of the system. Different order sta­

tistical moments such as mean and variance can be calculated directly from the 

probability density function. 

In this thesis, the SMC methods were used to perform data assimilation in 

strongly nonlinear dynamic systems, the Lorenz 1963 and 1996 models. Com­

parison in the same scenarios is made to the EnKF data assimilation method. 

In the experiment design with the three variables Lorenz 1963 model, we choose 
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4 scenarios: observation intervals with 0.50 and 0.25, initial non-Gaussian error 

probability density functions of Beta distribution and Gamma, distribution. In 

the experiment design with the 40 variables Lorenz 1996 model, we use 3 sce­

narios: the weakly chaotic dynamics with external forcing F — 5, the highly 

chaotic dynamics with external forcing F — 8, and the fully turbulent dynamics 

with external forcing F — 16. Both Lorenz models are relatively low dimensional 

simplified dynamic models, but they are highly nonlinear dynamics of stochastic 

nature. Different model parameters represent different situations in the realistic 

world. 

However, in the experiments with Lorenz 1963 and 1996 models as test beds, 

the SMC methods perform almost as well as the EnKF method, which does not 

outperform the EnKF method as it is in the theoretical aspect. The reasons may 

be: 1) the non-Gaussianity of all the probability density functions either in the 

Lorenz 1963 dynamics or the Lorenz 1996 dynamics are not significantly strong. 

Those probability density functions are not obviously bimodal or multimodal, 

though the coefficients of skewness and kurtosis exist. Since the Gaussian proba­

bility density function is completely characterized by the first two moments, it is 

clear that one can obtain the probability density function of a Gaussian process 

from its mean and covariance information. That explains why the EnKF method 

generates good results as well as the SMC methods. 2) The criteria RMSE and 

assimilated probability density function are calculated only from mean values of 

the true resolution and the assimilated resolution. There are no criteria consid­

ering the higher order moments of the error statistics, which is the advantage of 

the SMC methods. 

Since all the data assimilation work are based on Bayesian statistics, the 

sensitivity analysis of different prior probability density function could be done 

in the future work to generate the optimal prior probability density function for 

the data assimilation system. 

Although Sequential Monte Carlo methods are suitable for the most general 

case: nonlinear, non-Gaussian dynamics, for linear, Gaussian dynamics, Kalman 

Filter will still be the first approach for its easy implementation; for linear or non­

linear, weakly non-Gaussian dynamics as in our experiments, Extended Kalman 

Filter and Ensemble Kalman Filter could be employed to achieve reasonably 
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good estimate; for highly nonlinear, strongly non-Gaussian dynamics, Sequential 

Monte Carlo methods will the best choice to fully capture the non-Gaussianity of 

the dynamics. In the Meantime, the choice of the assimilation method is limited 

by the computation power. 

One interesting feature found in our experiments is that the computational 

cost of the SMC methods is much cheaper than the EnKF method. This seems 

inconsistent with the perception that the SMC methods are very expensive com­

putationally. This is mainly because of relatively low dimensionality of the dy­

namic systems used in this study. As the dimensionality increases, the ensemble 

size required for SMC methods increases exponentially (Snyder el ai, 2008). 

Within the theoretical insight, Beugtssoii et al. (2008) point out that Se­

quential Monte Carlo (SMC) methods may fail in large scale dynamic systems. 

Their simulations suggest that the convergence to unity occurs unless the en­

semble grows super-exponentially in the system dimension. At present there is 

no SMC application in realistic atmospheric and oceanic models because of the 

high dimension of dynamic models. This is an obstacle to high-dimensional SMC 

data assimilation. According to Snyder et al. (2008), Gaussian errors, simula­

tions indicate that the required ensemble size scales exponentially with the state 

dimension. In his example, the particle filter requires at least 1011 members when 

applied to a 200-dimensional state for the posterior mean from the particle filter 

to have an expected error smaller than either the prior or the observations. 

However, in some cases, the system model has some substructure which can 

be tractable and analytically marginalized out. The advantage of this strategy is 

that it can drastically reduce the size of the space over which we need to sample 

and reduce the filter size. Marginalizing out some of the variables is a process 

which is called Rao-Blackwellisation, because it is related to the Rao-Blackwell 

formula: see (Casella & Robert, 1996) for a general discussion. 

In this thesis, the properties and capabilities of the SMC methods is inves­

tigated and compared to the EnKF method using the low dimensional, highly 

nonlinear dynamic systems, the Lorenz 1963 and 1996 models. Despite the inter­

esting fact that the EnKF method performs as well as the SMC methods in the 

highly nonlinear dynamics, the SMC methods have theoretical advantages and 
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potential practical significance, which is helpful when we design data assimilation 

systems for nonlinear. non-Gaussian realistic models. 
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Appendix A 

FORTRAN Code for the EnKF 

Method 

The EnKF algorithm implemented in this thesis is explained in Evensen (2003). 

For the detailed description, please refer to Evensen (2003). The following FOR­

TRAN code provides a detailed implementation of the EnKF analysis scheme. It 

assumes access to the Numerical Algorithms Group (NAG) Numerical Libraries, 

which specializes in the provision of software for the solution of mathematical, 

statistical and data mining problems. 

1 

3 

r. 
0 

7 

9 

subroutine EnKF(R, OBS, 

impl ic i t none 

integer 

integer 

integer 

integer 

: : ndim 

: : n r ens 

:: n robs 

: : l a t , Ion 

PCL, x h a t ) 

/ dimension of model state 

! number of ensemble members 

! number of observations 

! number of Latitude , Longitude 
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i n t e g e r : : l a t . o b s , lon_obs / number of Latitude , Longitude 

i n t e g e r :: ndim.T / grid of the whole domain 

p a r a m e t e r ( l a t = l , l o n = 3 , l a t _ o b s = l , l on_obs=3) 

p a r a m e t e r ( nd im=la t *lon , n r e n s = 2 5 0 , n robs = l) 

r e a l 

r e a l 

r e a l 

PCL(n r e n s , nd i m) 

OBS(ndim) 

Xhat (ndim) 

/ input ensemble matrix 

! input obs matrix 

! output analysis 

r e a l 

r e a l 

r e a l 

r e a l 

r e a l 

A(ndim , n r e n s ) 

X_A(ndim, l ) 

X _ F ( n d i m , l ) 

Y ( n d i m , l ) 

XJVl(ndim,l) 

/ Ensemble matrix 

! A n a I y s i s m a trix 

! forecast matrix 

! observations matrix 

! Ensemble mean matrix 

r e a l :: X_A2(ndim , n r e n s ) 

matrix 

r e a l :: Y_P2(ndim , n r e n s ) 

matrix 

! updated all member analysis 

! perturbed observations 

r e a l :: K(ndim , ndim) 

r e a l :: D(ndim ,1) 

/ Kalman Gain matrix 

! Innovation matrix 

r e a l :: P_A(ndim , ndim) 

matrix 

r e a l : : P_F(ndim ,ndim) 

matrix 

r e a l :: P_R(ndim ,ndim) 

/ analysis error covariance 

! forecast error covariance 

! observations error 
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covariance matrix 

r e a l :: H(ndim, ndim) / observation operator matrix 

r e a l :: I (ndim, ndim) / identity matrix 

! Local variables 

r e a l , a l l o c a t a b l e , d imens ion (: , :) :: XI, X2, X3, X4, X5, X6, & 

X7, X8, X9, X l l 

i n t e g e r :: NMAX, LDA, LWORK, INFO, N 

parameter (NMAX=lat *lon , LDA=NMAX, LWDRK=64*NMAX) 

r e a l , a l l o c a t a b l e , d imens ion ( :) :: WORK 

i n t e g e r , a l l o c a t a b l e , d imens ion (:) :: IPIV 

e x t e r n a l :: F07ADF, F07AJF, F06YAF 

i n t e g e r :: t , j , k appa , u 

r e a l : : a lpha = 1.0, b e t a = 0 . 0 , t h e t a = 1 .0 / (n rens —1) 

r e a l , a l l o c a t a b l e , d imens ion (: , :) :: X_F3 

c h a r a c t e r :: da te , t ime , zone 

i n t e g e r , d imens ion (8) :: v a l u e s 

r e a l :: s t a r t , f i n i sh , R 

i n t e g e r :: N02, N03 

p a r a m e t e r (N02 = ndim*nrens , N03 = ndim + n r e n s ) 



i n t e g e r :: IFAIL, IGEN 

r e a l :: X02(N02) , X03(N03) 

i n t e g e r :: ISEED(4) 

e x t e r n a l G05KCF, G05LAF 

Assimilation Cycle Starts, 

do t = 1, ndim 

do j = 1, n r ens 

A ( t , j ) = P C L ( j , t ) 

end do 

end do 

Perturbed Observation 

Initialize the seed to a un—repeat able sequence 

ISEED(l ) = 1762543 

1SEED(2) = 9324783 

ISEED(3) = 42344 

ISEED(4) = 742355 

IGEN identifies the stream, 

IGEN = 1 

c a l l G05KCF(IGEN, ISEED) 

IFAIL = 0 

c a l l G05LAF(0.0e0, R, N02, X02, IGEN, ISEED, IFAIL) 
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97 Y.P2 = r e s h a p e (X02, ( / n d i m , n r e n s / ) ) 

do u = 1, n r ens 

101 / *#*#*#*****#*#*****#*******#****#*#**#*******#** 

103 do t = 1, ndim 

X _ F ( t , 1) = A ( t , u) 

105 end do 

107 do t = 1, ndim 

Y ( t , 1) = O B S ( t ) + Y J P 2 ( t , u) 

109 end do 

111 / generate the identical matrix 

! II(ndim , ndim) 

113 

do t = l ,ndim 

115 do j = l , n d i m 

i f ( t = j ) t h e n 

117 H ( t , j ) = 1 . 0 

e l s e 

119 H ( t , j ) = 0 . 0 

end if 

121 end do 

end do 

123 

125 / Compute Background error covariance P-F 
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/ ^ s ^ ^ * ^ ^ ^ ^ ^ : ^ ^ * ; ) ! : ^ * ^ : ^ ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

127 

/ A(ndim , nrens) 

129 / XJA(ndim, 1) ensemble mean 

131 do t = l ,ndim 

X_M(t , l )= sum(A( t , : ) ) / n r e n s 

133 end do 

135 / background error covariance 

! X-F(ndim, ndim) 

137 

/ error 

139 do t = l , n r ens 

141 a l l o c a t e (X_F3(ndim, 1)) 

X.F3 ( 1 : ndim , 1) = A ( l : n d i m , t ) - X_M(1: ndim , 1) 

143 

/ error covariance 

145 / X.F3(ndim,l) 

! X.F3(ndim,l) 

147 / F-F(ndim, ndim) 

149 a l l o c a t e ( X l l (ndim , nd im) ) 

c a l l F 0 6 Y A F ( ' n ' , ' t ' , ndim, ndim, 1, & 

151 a lpha , X_F3 , ndirn , & 

X.F3 , ndim, & 

153 b e t a , X l l , ndim) 

155 P.F=X11 + P_F 

72 



157 d e a l l o c a t e (X_F3) 

d e a l l o c a t e ( X l l ) 

159 

end do 

161 

P_F=P_F*the ta 

163 

165 / step 1. compute innovation d 

167 

/ 1) compute X1=H"X„F 

169 / H(ndim, ,ndim) 

! X.F(ndim,l) 

171 / Xl(ndim,l) 

173 a l l o c a t e (Xl(ndim , 1) ) 

c a l l F 0 6 Y A F ( ' n ' , ' n ' , ndim, 1, ndim, & 

175 a l p h a , H, ndim, & 

X_F, ndim, & 

177 b e t a , XI , ndim) 

179 / 2) compute d=yO-II'X.F=yO~Xl 

! Y(ndim,l) 

181 / XI (ndim, 1) 

! D(ndim, 1) 

183 

D=Y-X1 

185 d e a l l o c a t e (XI) 
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1 0 J / ?Jc; 5^ Ĥ ̂ K ^ ^ ^ ^ ^ ^ H1^ ̂  H< ̂  >K f̂; 3̂ ; ^ ^; 3^ ŝc ^ ^ Ĥ  ̂  ^ Ĥ  ̂  ^ H ^ ^ ^ ^ K ^ ^ H ^ ^ ^ H ^ ^ ^ Ĥ  Ĥ  ̂  ^ ^ ^ ^ ^ ^ ^ K ^ s f c 5jc ĉ ?f; s|= =|c f̂; sf; >(< ^< ^c s}c ĉ 

/ step 2. compute gain matrix K 

189 . ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H S ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^ 

191 / 1) compute Pf'H' 

! P.F(ndim, ndim) 

193 / H(ndim, ndim) 

! X2(ndim, ndim) 

195 

a l l o c a t e (X2(ndim , nd im)) 

197 c a l l F 0 6 Y A F ( ' n \ ' t \ ndim, ndim, ndim, & 

a lpha , P_F , ndim , & 

199 H, ndim., & 

be ta , X2, ndim) 

201 

/ 2) compute H'P.F 

203 / H(ndim, ndim) 

! P-F(ndim, ndim) 

205 / X3(ndim, ndim) 

207 a l l o c a t e (X3(ndim , ndim) 

c a l l F 0 6 Y A F ( ' n ' , ' n ' , ndim, ndim, ndim, & 

209 a lpha , H, ndim , & 

P_F , ndim , & 

211 b e t a , X3, ndim ) / (about 20 min) 

213 .' 3) compute XS'H' 

! X3(ndim , ndim) 

215 / H(ndim, ndim) 
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/ X4 (ndirn, ndim) 

217 

a l l o c a t e (X4(ndim , nd im)) 

219 c a l l F 0 6 Y A F ( ' n ' , ' t ' , ndim, ndim, ndim, & 

a lpha , X3, ndim , & 

221 II, ndim, & 

be ta , X4, ndim ) 

223 d e a l l o c a t e (X3) 

225 / 4) compute R+X4 

! P.R is the diagonal matrix 

227 

do t = l ,ndim 

229 do j = l , n d i m 

i f ( t = j ) then 

231 P _ R ( t , j ) = R 

e l s e 

233 P . R ( t , j ) = 0 . 0 

end i f 

235 end do 

end do 

237 

/ X5 (n dim , n dim ) 

239 

a l l o c a t e (X5(ndim , nd im)) 

241 X5=PJl+X4 

d e a l l o c a t e (X4) 

243 

/ 5) compute inverse of X5 

245 
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a l l o c a t e (WORK(LWORK)) 

247 a l l o c a t e (IPIV(NMAX)) 

249 / Factorize X5 

N = ridim 

251 c a l l F07ADF(N,N,X5,LDA,1PIV,INFO) 

i f (INFO.EQ.O) then 

253 / compute inverse of X5 

c a l l F07AJF(N,X5,LDA, IPIV ,WORK,LWORK,INFO) 

255 e n d i f 

257 d e a l l o c a t e (WORK) 

d e a l l o c a t e (IPIV) 

259 

/ 6) compute gain K= 

261 / X2(ndim ,ndim) 

! X5-inverse =(ndim, ndim) 

263 / Kfndim, ndim) 

265 c a l l F 0 6 Y A F ( ' n ' , ' n ' , ndim, ndim, ndim, & 

a lpha , X2, ndim , & 

267 X5, ndim, & 

be ta , K, ndim) 

269 d e a l l o c a t e (X2) 

d e a l l o c a t e (X5) 

271 

273 / Step 3. compute X-a, 

275 
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/ 1) compute K"d 

277 / K(ndim, ndim) 

! D(ndim, 1) 

279 / X7(ndim,l) 

281 a l l o c a t e ( X 7 ( n d i m , l ) ) 

c a l l F 0 6 Y A F ( ' n ' , ' n ' , ndim, 1, ndim, & 

283 a l p h a , K, ndim, fe 

D, ndim, & 

285 b e t a , X7,ndim) 

287 / 2) compute X„a 

! X.F(ndim,l) 

289 / X.A(ndim,l) 

291 X_A=X_F+X7 

d e a l l o c a t e (X7) 

293 

do t = 1., ndim 

295 X_A2(t , u) = X_A(t , 1) 

end do 

297 

299 / Step 4. compute P„A 

301 

/ 1) compute K'H 

303 / K(ndim , ndim,) 

! II'(ndim, ndim) 

305 / X8(ndim, ndim) 
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307 a l l o c a t e (X8(ndim , nd im)) 

c a l l F 0 6 Y A F ( ' n ' , ' n ' , ndim, ndim, ndim, & 

309 a lpha , K, ndim, & 

H, ndim , & 

311 b e t a , X8, ndim) 

313 

/ 2) compute I—K"H 

315 / I (ndim, ndim) 

! X9(ndim , ndim) 

317 

a l l o c a t e (X9(ndim , nd im)) 

319 X9=I-X8 

d e a l l o c a t e (X8) 

321 

/ 3) compute P„a 

323 .' P. A (ndim, ndim) 

! P-F(ndim,, ndim) 

325 / X9(ndim, ndim) 

327 c a l l F 0 6 Y A F ( ' n ' , ' n ' , ndim, ndim, ndim, & 

a l p h a , X9, ndim, & 

329 P_F, ndim, & 

be ta , P_A, ndim) 

331 d e a l l o c a t e (X9) 

end do 
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do t = 1, ndim 

Xhat(t) = sum(X_A2(t , :))/nrens 

end do 

do t = 1, ndim 

do j = 1, nrens 

PCL(j, t) = X_A2(t, j) 

end do 

end do 

P.F = 0.0 

P_A = 0.0 

return 

end subroutine EnKF 
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Appendix B 

FORTRAN Code for the SMC 

Methods 

The SMC algorithm implemented in this thesis is explained in Gordon et al. 

(1993). For the detailed description, please refer to Gordon et al. (1993). The 

following FORTRAN code provides a detailed implementation of the SMC anal­

ysis scheme. 

10 

12 

s u b r o u t i n e P a r t i c l e 

i n t e g e r :: i , j , M 

parameter (M = 250) 

rea l , d imens ion (M, 

rea l , d imens ion (3) 

real , parameter : : 

r e a l :: R 

/ step 1. 

. F i l t e r (R, y , x , x h a t ) 

3) :: x , e , q_w, qn, ind , 

: : y , PROB00, xhat , q.sum 

pi = 3 .1415926 

tempOl 

tempi 1 , prob 
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/ Calculate difference between Observations and model forecasts 

14 

do i = 1 , M 

16 e ( i , :) = y ( : ) - x ( i , :) 

end do 

18 

/ step 2. 

20 / Calculate weights from Gaussian Distribution 

do i = 1, M 

22 c a l l S t d _ N o r m a l ( e ( i , : ) , q . w ( i , : ) , R) 

end do 

24 

/ step 3. 

26 / summation of all the weights 

do i = 1. , 3 

28 q.sum ( i ) = sum (q_w (: , i ) ) 

end do 

30 

/ step 4-

32 / Normalize importance weights 

do j = 1, 3 

34 do i = 1, M 

q_w (i , j ) = q.w (i , j ) / q.sum ( j ) 

36 end do 

end do 

38 

/ step 5. 

40 / Get particle * weight 

do j = 1, 3 

42 do i = 1 , M 
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qn ( i . J ) = q-w ( i . J ) * x ( i > J ) 

44 end do 

end do 

46 

/ step 6. 

! Get analysis 

do i = 1, 3 

50 xha t ( i ) = sum (qn (: , i ) ) 

end do 

52 

.' step 7 ** Resampling ** 

54 c a l l r e s a m p l i n g (q_w, i n d ) 

do j = 1, 3 

do i = 1, M 

58 x ( i , j ) = x ( i n d ( i , j ) , j ) 

end do 

60 end do 

62 r e turn 

end s u b r o u t i n e P a r t i c l e . F i l t e r 

64 

66 / Resampling Process 

68 s u b r o u t i n e r e s a m p l i n g (q_w, i n d ) 

i m p l i c i t none 

70 

i n t e g e r : : M 

72 parameter (M = 250) 

82 



r e a l , d imens ion (M, 3) :: q_w, ind , qc , xxx , yyy , u , tempOl 

r e a l , d imens ion (3) : : ssum, ranOl 

i n t e g e r : : i , j , k , n 

ssum = 0.0 

do j = 1, 3 

do i = 1, M 

ssum (j ) = ssum (j ) + q_w (i , j ) 

qc ( i , j ) = ssum ( j ) 

end do 

end do 

c a l l random_seed () 

c a l l random_number ( r a n O l ) 

do j = 1 , 3 

do i = 1, M 

u ( i , j ) = ( i - 1 + r a i i 0 1 ( j ) ) / M 

end do 

end do 

do n = 1 , 3 

do j = 1, M 

k = 1 

do whi le ( q c ( k , n) < u ( j , n ) ) 

k = k + 1 

end do 

tempOl (j , n) = k 

end do 
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end do 

104 ind = tempOl 

106 r e t u r n 

end s u b r o u t i n e r e s a m p l i n g 

108 

110 / END 
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