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Abstract

Face recognition has attracted much attention from Artificial Intelligence researchers 

due to its wide acceptability in many applications. Many techniques have been sug­

gested to develop a practical face recognition system that has the ability to handle 

different challenges. Illumination variation is one of the major issues that significantly 

affects the performances of face recognition systems. Among many illumination ro­

bust approaches, scale-space decomposition based methods play an important role in 

reducing the lighting effects in facial images. This research presents a face recognition 

approach for utilizing both the scale-space decomposition and wavelet decomposition 

methods.

In most cases, the existing scale-space decomposition methods perform recogni­

tion, based on only the illumination-invariant small-scale features. The proposed 

approach uses both large-scale and small-scale features through scale-space decom­

position and wavelet decomposition. Together with the Nearest Linear Combination 

(NLC) approach, the proposed system is validated on different databases. The exper­

imental results have shown that the system outperforms many recognition methods 

in the same category.
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Chapter 1

Introduction

1.1 Motivation

Face recognition is a major and well-known research area in computer vision. 

It is also closely related to pattern recognition, image processing, neural networks, 

computer graphics, and psychology [112]. It is a biometric method that is used to 

identify or verify persons from a digital image or video, based on different facial 

features.

Face recognition has several advantages over other biometric methods, which make 

it the most favourable choice for identifying people today. Face images can be easily 

captured from a distance by a camera without much involvement of the user, and 

this is useful for security and surveillance purposes [50]. The presence of noise and 

variation of illumination in obtained face images can be removed by using proper 

preprocessing and recognition algorithms.

Due to these advantages, face recognition has many important applications in 

biometrics, access control, security [47], video surveillance, law enforcement [112] and
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entertainment [49]. The increasing demand of commercial and security applications 

has inspired the researchers to focus on developing various machine face recognition 

systems.

However, to design a robust and practical face recognition system, researchers 

have to overcome different limitations, such as variation in lighting or illumination, 

head pose, facial expression, accessory, aging, and so on [45]. The changes that 

occur in facial appearance under abnormal lighting conditions can severely degrade 

the performance in face recognition. To solve the problem of face recognition under 

varying illumination, various approaches have been proposed in the past. Among these 

approaches, scale-space decomposition based methods have attracted a lot of attention 

because of their simplicity and efficiency. Scale-space decomposition methods roughly 

decompose a facial image into large-scale features (like illumination, shadow cast 

etc.) and small-scale features (like eyes, nose and mouth). These methods use only 

the illumination-insensitive small-scale features for recognition and ignore the large- 

scale features [45]. However, according to various researches [44] [106] [105], large- 

scale features are also useful for good recognition performance. The goal of this 

research is to use both large- and small-scale features of facial images for the purpose 

of recognition.

1.2 Contribution

The proposed approach is developed based on utilizing facial features of different 

scales. The major contribution of this research is that it uses a combination of scale- 

space decomposition and wavelet decomposition, to extract the facial features from 

images. Then for the classification, the representation of an individual is generated as 

a linear combination of decomposed feature vectors by using the Nearest Linear Com­

bination (NLC) approach. Results obtained from experiments on several benchmark
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databases have shown that the proposed approach is better than various standard face 

recognition methods. Also, the approach reduces the error rates of several scale-space 

decomposition based methods.

1.3 Overview of the Thesis

The conducted research presented in this thesis is organized into several chapters. 

Chapter 2 contains the basic ideas and background of the face recognition problem. It 

also reviews the existing approaches that are related to the proposed method. Chapter

3 provides an overview of different illumination invariant approaches. It also intro­

duces the scale-space decomposition and wavelet decomposition methods. Chapter

4 briefly describes the design of the proposed methodology. Chapter 5 demonstrates 

the experimental procedure, the results, and a comparative study with other methods 

to evaluate the effectiveness of the proposed approach. Finally, Chapter 6 concludes 

the thesis, and summarizes the proposed approach and provides suggestions for ex­

ploration in the future.
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Chapter 2

Literature Review

Many researchers have tried to use knowledge of the human recognition process in 

order to solve the automatic face recognition problem.

Recent studies [14] [70] have found that the ability to recognize face is an excep­

tional feature of our brains and a special part of the brain is used to do this. However, 

researchers are still working to find accurate information about how the brain per­

forms face recognition. It is useful to observe that when the special area of the brain 

responds to faces, many neural networks become involved in processing information 

from the faces. Here, this mechanism uses almost hundreds of billions of neurons. 

Therefore, it may be impractical to implement the same process through the machine 

face recognition system.

Furthermore, the human brain can easily recognize a face even if the appearance 

of the face is changed by illumination, expression, pose, or accessories. However, an 

automatic face recognition system sometimes may not be successful in this case.

Considering these facts, it is very difficult to design a face recognition system
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which simulates the human face recognition process absolutely. To solve the problem, 

various approaches have been developed with different mathematical tools to compute 

the similarity between faces instead of using human-relevant features.

2.1 Face Recognition System

Face recognition systems simply take an image or video as an input, and identify 

the person or people from the image or video. To recognize a face, a system can be 

designed using these three steps [112] as shown in Figure 2.1.

Input
Image

Feature
Extraction

Face
Detection

Face
Recognition

Identity 
of the 
person

Figure 2.1: Face Recognition System.

The first stage involves locating and extracting all faces in the image using different 

algorithms. Performance of the face recognition partially depends on how perfectly the 

faces are detected and this step plays a vital role in the recognition systems. Most of 

the recognition approaches were evaluated by using different image databases, where 

faces are already detected, aligned, and cropped from the original picture. Machine 

recognition systems work with two set of face images: firstly, a gallery image set, where 

the faces are known. Secondly, a test or probe image that needs to be identified. The 

gallery image set contains one or more than one image for each person with variation 

in expression, pose, lighting, or accessory.

The second step of the recognition system is designed to obtain significant features 

from the gallery face image set using various feature extraction techniques. These 

techniques represent the gallery images and the test image through lower dimensional
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feature vectors [67].

Finally, the system uses a classification algorithm that compares the gallery image 

representations and the test image vector (both obtained from the second step) to 

compute the similarity between them and the recognition result is reported. Numerous 

face recognition approaches have been proposed based on the combination of the last 

two steps. The issues of different feature extraction, as well as classification algorithms 

will be highlighted in this chapter.

2.2 Feature Extraction Approaches

Humans can easily recognize a person even when wearing sunglass, hat, or other 

accessories. Age of the person also does not affect the recognition ability of humans. 

All these appear as challenging factors for the machine face recognition system and 

these effects can be handled through the use of efficient feature extraction techniques. 

The goal of feature extraction is to obtain a small set of relevant features from a face, 

which will decrease the false positive ratio in classifiers [51]. Feature extraction is 

also useful for dimension reduction, which in turn reduces the computation time and 

memory requirement. Therefore, feature extraction is treated as a core part of the 

face recognition problem.

There are many algorithms for feature extraction and these approaches are divided 

into two major categories: geometrical local feature based methods and holistic tem­

plate matching or appearance based approaches [50] [17] [41] [46]. Holistic approaches 

use the overall representation from the whole facial image while local feature based ap­

proaches use some prominent features of the face to perform recognition. An overview 

of these two approaches is given below.
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2.2.1 Local Feature based Approach

In this approach, discrete facial features like eyes, mouth, nose, hair, and chin 

etc. are extracted and then geometric relationships including areas, distance, and 

angles among those features are measured [50] [63]. Face images are compared 

through these geometric feature representations using various standard recognition 

techniques [50] (76]. The Elastic Bunch Graph Matching (EBGM) method [102], De­

formable Templates [110], and Hough Transform methods [74] are well-known local 

feature based approaches. Advantages of this scheme are that it is insensitive to pose, 

illumination, or size variation in the input images [50]. Although it provides a con­

densed feature representation of a face image that makes the matching faster [16], 

the convenience of these features depends on the efficiency of the feature detection 

stage [50] [30] [63]. In practise, the low accuracy and high computational complex­

ity of the available feature detection techniques degrade the performance of the local 

feature based approaches [57]. Hence, nowadays holistic approaches are extensively 

used in solving most of the face recognition problems.

2.2.2 Holistic Template or Appearance based Approach

This approach represents a face image as a two-dimensional array of intensity 

variation and compares the image to several templates of other faces to classify the 

image [50]. In earlier solutions, face matching was performed using direct correlation 

based approaches. Due to very high dimensional space, these approaches were not 

able to overcome the limitations of face size, orientation, lighting, and noise [50]. The 

common solution is to apply dimension reduction tools that extract the basis informa­

tion required for classification. These projection methods create a lower dimensional 

face space, where faces of different classes reside in separate regions in that space.
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The general idea behind the dimension reduction method is stated below.

In projection based approaches, a training data G can be represented as a matrix 

of N  rows of m n  dimensional image vectors. After the dimension reduction step, a 

lower dimensional subspace denoted as P  of size m n x k  is obtained. To obtain the 

most significant information from the images, G is projected into the subspace as 

following:

Ap -  GP  (2.1)

where X p is a N  x k matrix that is the basis of the low dimensional projection of G.

From a test image Y  of size m  x n, we obtain, Yp = Y P .  Finally, a comparison 

between Yv and X p is performed using some measures to find the highest similarity.

Many statistical projection based procedures are used as feature extraction meth­

ods, such as PCA [98], LDA [12], ICA [10], weighted PCA [101], two dimensional 

PCA [108] [64], kernel PCA [71], and so on. Some feature extraction approaches, 

like Discrete Cosine Transform [29] and Discrete Wavelet Transform [60] are used to 

downsample images into lower resolution components. Mostly these feature extraction 

approaches are used as a portion of face recognition systems with different classifi­

cation techniques. The basic principles of Principal Component Analysis (PCA) are 

explained in the following section, which is used in the proposed approach to extract 

features, as well as to reduce dimension.

2.2.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a common statistical technique for de­

riving features from multi-dimensional data so that the features contain most of the 

variance of the data. In addition to feature extraction, PCA is also used to reduce 

dimension, eliminate redundancy, and have a compact representation of huge data



without much loss of information. Turk and Petland [98] first introduced the tech­

nique to solve the problem of face recognition. They proposed the Eigenfaces approach 

based on the fact that compressed but important patterns from a facial image could 

improve performance of the face recognition approaches.

The Eigenfaces approach consists of two stages: training and recognition.

Assume the training set contains M  images of size m x n and each image is 

converted to one-dimensional column vector of size mn x 1 or N  x 1 (let N  — mn).  

These column vectors are inserted into a matrix in row wise. Direct use of this high 

dimensional space to the face recognition task makes it very complex. Therefore, to 

perform recognition, we need to derive a lower dimensional space that retains as much 

variance of the images as possible [5]. In this method, maximum nonconformity of 

each face from the mean face image is computed to form the covariance matrix of all 

faces. The variance of face images is then represented through eigenvectors obtained 

from the covariance matrix [9].

Let X  be the resultant training data matrix of size M  x N.  Firstly, we have to 

calculate the mean vector u along each dimension =  1,2,..., M.

N

(2 .2 )

Then the mean vector is subtracted from each column of X  to create the mean-centred
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matrix X m, where

X u  — U i  X 12 ~ U i  •• • X\N  — Ui

X21 ~  U2 X22 ~  U2 ‘ ’ X2N ~  U2
(2.3)

X m  1 -  u m  X m 2  ~  u m  ■ ■ ■ X m n  -

Next step is to find the N  x N  covariance matrix C  of X m.

(2.4)

Then the matrices of eigenvectors and related eigenvalues are computed from the 

covariance matrix. Both of them will have dimension N x N .  This computation causes 

high memory and time consumption. An alternative solution to this problem is to 

check if M < N , then eigenvectors and eigenvalues are calculated using the following 

covariance matrix C  of size M  x M,  which can lessen the computational complexity.

In this case, eigenvectors and eigenvalues will have dimension M  x M.

Computed eigenvectors indicate a set of features or eigenfaces that express the 

direction of maximum variance among faces and the corresponding eigenvalues denote 

the value of variance [98]. Eigenvectors are usually arranged in decreasing order 

according to eigenvalues.

To reduce the dimension, let P  eigenvectors be selected from the eigenfaces, to

C = X mx'm (2.5)

10



form a set V  that has the P  highest eigenvalues. These P  eigenfaces are used to create 

a P-dimensional subspace or face space that describes the most variance within the 

set of face images [98].

Afterwards, the training data matrix X m is projected into the face space to obtain 

the matrix X p of size M  x P

where X p is the representation of training images in the face space. The advantage 

of this transformation is that each training image is now converted into a vector of 

size 1 x P  instead of 1 x N,  where P  < N.

In the recognition stage, a probe face image is taken that contains the same di­

mension of the training images, and converted into a matrix Y  of size 1 x N  (where 

N  =  m  x n), which comprises the mean subtracted values in its columns. To get the 

feature vector from the probe image, Y  is projected into the same subspace to get a 

row vector Yp consisting of P  columns.

Classification is done by using the Nearest Neighbour (NN) classifier. The probe 

feature vector is compared to every training projection and the identity of the training 

image that has the best match to the input face is chosen to be the result of recog­

nition. Recognition is done by computing the Euclidean distance D  from the probe 

image representation to all training image representations.

(2 .6)

(2.7)

D = \\YP- X P (2 .8 )

11



There will be a total of M  distances for M  training images and the unknown 

probe image is classified to the class of the most similar training image, which has 

the minimum distance with the input image.

With the introduction of the Eigenfaces approach, other subspace projection tech­

niques can be explored. In 1997, Belhumeur [12] proposed the Fisherfaces approach 

based on Fisher’s Linear Discriminant Analysis (LDA) [31]. It creates a lower dimen­

sional space to project the input data, where patterns belonging to different classes 

are well separated from each other while patterns of the same class stay relatively 

close. This task is accomplished by extracting a set of vectors, which best discrimi­

nates among the classes in order to minimize the within-class scatter and maximize 

the between-class scatter [26]. PCA is used as a preprocessing step to reduce the 

computational complexity. The recognition of face images is done in the same way as 

in the Eigenfaces approach. The limitations of LDA are that it requires more than one 

gallery image per person to work properly and it is also sensitive to different training 

data sets [50].

Independent Component Analysis (ICA) is another subspace projection method 

proposed by Barlett [10], which is used to find basis vectors that are spatially local­

ized and statistically independent [26]. This approach was tested using two different 

representations on the FERET [79] database. Although pre-application of PCA in­

creases the performance of ICA by reducing dimension, it still requires more time to 

compute ICA basis vectors compared to PCA.

Instead of having other subspace projection approaches, PCA is considered one 

of the most popular and efficient approach for feature extraction. This approach is 

embedded into the proposed research to extract features. However, in PCA repre­

sentation, two images of the same person and two images of different persons are

12



treated almost in the same way, which characterizes the poor discriminatory power 

of PCA [30] [63] [86]. This problem can be solved by using Linear Discriminant 

Analysis (LDA) [12], but this requires a large number of images per class. The ex­

pensive process of finding eigenvectors is also a disadvantage of PCA. If the number 

of training images M  is larger than N  (the number of pixels in training images), then 

it involves very high computational complexity that depends on N.  To reduce the 

complexity, eigenvectors are calculated through an alternative way using (2.5) when 

M  < N.  However, the complexity will be increased in polynomial order with the 

increase of M. The problem can be solved by combining the Discrete Wavelet Trans­

form (DWT) with PCA to extract features, which reduces the computational load, 

and also improves the discriminatory power of PCA [30].

2.3 Classification Approaches

The classification approaches are applied on the feature space obtained from the 

feature extraction step. The goal of the classification problem is to properly sepa­

rate the patterns belonging to different classes by decision boundaries. The decision 

boundaries are determined through the probability distribution of features of each 

class [87]. Classification is performed based on the similarity of the input image with 

the gallery images, which is measured through minimizing the error between them. 

Different classifiers are usually used in face recognition algorithms, such as the Nearest 

Neighbour (NN) [3], Nearest Linear Combination (NLC) [58], Bayesian classifier [81], 

Neural Networks [66], Support Vector Machines [43], and Decision tree [28]. To solve 

the classification problem in this proposed study, the Nearest Linear Combination 

(NLC) classifier is preferred to use.
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2.3.1 Nearest Linear Combination

Nearest Linear Combination (NLC) is a pattern classification approach which is 

successfully applied in face recognition [58]. The main concept of this technique is 

that patterns belonging to a same subject or class are assumed to be the elements of 

one linear subspace [12] [11] [48]. Based on this concept, a linear combination of the 

gallery image vectors from an individual is developed to represent a probe or query 

image vector of that person [58]. The linear combination is termed as NLC since it 

is closest to the probe face. The NLC establishes relation between the gallery images 

and the probe image. For the classification, distances between the given probe image 

and all the linear combinations that represent classes are computed. The class of the 

probe image will be decided in favour of the class with minimum distance [48].

Let N  be the number of classes and m be the number of prototypes for each class. 

Assume that {xl5 x 2, ..., x m} is a set of prototypical vectors of gallery images from 

a face class C. In the training stage, each prototypical vector in n-dimensional space 

can be represented as, Xk =(£fci, •••,£*«) where Xk G Rmxn, k = 1 ,2 , . . .  ,m.

A linear combination Yp € Rnxl of the prototypical vectors of the same class is 

formed as

Yp — XiPi +  x2&2 +  • • ■ +  xm0m =  X 0  (2 -9)

where X  € Rnxm is the class specific model or predictor of the class C tha t can be 

developed by piling each n-dimensional vectors of that class and 0  G Rmxl is the 

vector of parameters or weights of the linear model. The expression can be written

14



in matrix notation.

"

V pi

=

X n X 12 X 1 m

X n  X 22 ••• X.2m

Xn  1 X n2 ' * ’

P i

Pi

Pn

(2 .10)

For a given unknown probe image vector Y  € R "x l, weights can be estimated using 

the least-square estimation [48] [88] [84].

P = {X 'X )~ lX ' Y ( 2 .11)

With the calculated weights P and predictors X ,  the linear combination or response 

vector Yp for the class C  can be determined using (2.9) and (2.11).

Yp =  X { X ' X ) - ' X ' Y ( 2 . 12)

At the recognition step, the Euclidean distance between the response vector Yp 

and the probe image vector Y  is measured using the following formula [48]:

Dist(Y,Yp) = \ \ Y - Y p\\2 (2.13)

There will be N  linear combinations to represent N  classes and therefore, a total of

N  distances need to be computed to classify the probe image Y.

DistpY,  Yp,) = ||K -  Y ^ ,  i =  1 ,2 , . . . ,  N. (2.14)
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The probe image is classified into one of N  classes, with which it has minimum 

distance.

Compared to the Nearest Neighbour (NN), the NLC approach is more suitable for 

the case if there exists more than one training image per class [58]. In NN classifica­

tion, it needs to compare a probe image to every training image, where the expression 

and illumination variations in training images affect the result. But unfortunately in 

most cases, sufficient numbers of prototypes are not available for a face class that can 

account for all the changes in images. To overcome this limitation of the NN, the 

NLC approach makes a linear combination of the prototypical vectors of each class 

and compares the probe image to each linear combination. The changes in estimated 

parameters that form the linear combinations are considered to cover all the possible 

variations in face images [58]. In this way, it provides a large number of representative 

prototypical points for each class, which characterize more changes in images than the 

available prototypes [59].

Li [58] proposed the NLC approach that used the Eigenfaces technique [98] in the 

feature extraction step. The approach achieved considerably better recognition result 

than the standard Eigenfaces technique and the NN method when experimented on 

two custom databases.

Later in 1999, Li and Lu [59] proposed another classification method, called the 

Nearest Feature Line (NFL) approach, based on the idea of the NLC approach. In 

the NFL method, a linear model with a pair of images of a person is used to form 

a feature line (FL) that passes through the two prototype feature points of the class 

and expands the two points. Then the probe image is compared with each feature 

line for recognition purpose. Experiments on a combined dataset reported that the 

error rate of the NFL method was 43.7% to 65.4% lower than the standard Eigenfaces

16



method. Also it showed better performance compared to the Eigenfaces method on 

the ORL [8] dataset.

In 2010, Naseem, Tongeri and Bennamoun [48] suggested an approach to make 

linear combinations of downsampled gallery images. The efficiency of the proposed 

method was evaluated by performing experiments on five well-known databases: the 

AT&T ]85], Georgia Tech [1], FERET [79], Extended YaleB ]35] [55], and AR [61]. The 

experimental results showed that this approach improved the performance compared 

to several standard approaches, like the Eigenfaces, Fisherfaces fl2], Kernel eigenfaces 

]108], 2DPCA ]108], and ICA [108] [10].

Moon and Lee ]92] proposed an illumination invariant face recognition approach 

based on linear combination of face prototypes. The prototypes are synthesized from 

the photometric stereo images of each subject by using PCA. After that, a linear 

combination of the exemplars is formed to represent a new image of a subject and 

an input image is classified by determining the minimum distance between the input 

image and the linear combinations of prototypes. The approach was evaluated using 

the MPI [15] face database and showed better performance when compared with the 

Eigenfaces and Bilinear analysis approach [32].

The efficiency of the NLC approach is thus evaluated using several standard 

databases. To classify the face images, this novel classification method is used in 

the proposed research.

2.4 Summary

In this chapter, the basic steps of face recognition system are introduced. It 

also provides a detailed description of a well-known feature extraction method and a 

classification technique that are utilized in the proposed approach. The main difficulty
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caused by illumination variation in face images and the different approaches that can 

be used to handle the problem will be stated in the next chapter. A brief overview of 

the Discrete Wavelet Transform (DWT) is also provided in the next chapter.
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Chapter 3

Illumination Invariant Approaches 

and Wavelet Decomposition

Illumination variations in images usually appear if the images are taken under un­

controlled lighting environments. The illumination effect can severely degrade the 

performance of various face recognition approaches [106J. Sometimes due to the ex­

treme lighting situation, the whole face or part of the face can be in a shadow, which 

makes it very difficult to extract any feature from the face or the part of the face. 

It has been proven both experimentally [4] and theoretically [ il l]  that the variation 

in face images due to changing illumination is more significant than the differences 

among different individuals under same illumination conditions. The effect of lighting 

variation on face images in the CMU PIE [96] database is shown in Figure 3.1, where 

face images of same person having illumination variations appeared very different 

compared to images in normal lighting condition.

In recent years many face recognition algorithms have been proposed to tackle 

the illumination problem. Some of the approaches are summarized in the following
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Figure 3.1: Face images under different illumination conditions in CMU PIE Database.

sections.

3.1 Statistical Approach

In several studies [89] [38], statistical methods have been used in illumination 

invariant face recognition approaches. Linear subspace algorithms including Linear 

Discriminant Analysis (LDA) [12] [95] and Bayesian methods showed better perfor­

mance than the Eigenfaces [98] approach in terms of illumination variation, but still 

they are not successful in practical applications. To improve the performance, non­

linear methods, such as Kernel PCA [71], and Kernel LDA [82], are used. In many 

cases, these algorithms struggle to deal with huge differences in lighting among face 

images [78].

3.2 Light Modelling Approach

To develop illumination invariant face recognition approaches, researchers are now 

focusing on establishing different methods to balance lighting in images, such as Illu­

mination Cone methods [13] [35], spherical harmonic based representations [11] [83], 

and quotient image based approaches [91] [90] [93].
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3.2.1 Illumination Cone Methods

The Illumination Cone method proposed by Belhumeur and Kriegman [13] showed 

that a set of images under varying illumination but with a fixed pose can be used to 

create a convex cone to represent each individual. The illumination cone is estimated 

through low dimensional linear-subspaces that are built from the training images by 

using traditional approaches. The test image is recognized according to the identity 

of the illumination cone that is nearest to the image. The method is based on the 

assumption that the objects’ surfaces have Lambertian reflectance functions, as well 

as convex shapes to avoid cast shadows. The objects are illuminated using arbitrary 

number of point light sources and the illumination cone is built by using very few 

images. Georghiadas and Belhumeur [35] proposed another variation of the Illumi­

nation Cone method, where an illumination cone is generated for each pose of a face 

class and the illumination cones for all poses of a face class are combined to represent 

each face class. For the recognition, the Euclidean distance between a test image 

and each face class representation is computed and then the closest representation is 

determined based on the minimum distance. The drawback of the illumination cone 

based approach is that to create a linear subspace from the training data, it requires 

multiple images of a face class with uneven lighting condition ]39].

3.2.2 Quotient Image (QI) based Approaches

Quotient Image (QI) based approaches extract an illumination invariant image for 

each object class from a small set of images. The QI approach was first proposed by 

Shashua and Riklin-Raviv [91]. Initially, this method generated a linear combination 

of the set of face examples from each object class. Then a lighting invariant quotient 

image was obtained by computing the ratio of albedo between an image of arbitrary
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face class and the computed linear combination. Performance of the method is better 

than the Eigenfaces approach, but it requires a large training data set [33]. S. Shan 

et al [90] presented a Quotient Image Relighting (QIR) approach using some models 

of the QI method. The proposed approach used some face images having abnormal 

lighting condition to obtain a face image that is re-lighted using normal lighting. This 

approach improved the performance compared with other illumination normalization 

approaches; however, one of the limitations was that it requires prior knowledge about 

the lighting system of the images.

3.2.3 Spherical Harmonic based Approaches

R. Basri and David Jacobs [11] suggested the use of spherical harmonic based 

representations to describe lighting. The set of images of an object that are seen in 

the harmonic lighting are defined as harmonic images and these harmonic basis images 

form a low-dimensional linear subspace model of that object. A given unknown image 

with arbitrary lighting conditions can be recognized by comparing the image with 

each linear subspace model that represents an object. This method showed some 

limitations in dealing with cast shadow, specularity, and pose variation in images. 

Since the representation of the harmonic image set is dependent on the way of lighting, 

accuracy can be improved by selecting appropriate lighting.

From the above analysis, it can be said that most of these approaches have some 

constraints. For example, they may need assumption of the lighting mode, or they 

require a large number of training images that are considered as major obstacles to 

be applied in a practical system. To deal with illumination variation in practical 

applications, recently researchers have paid much attention to other approaches that 

are based on image scale-space decomposition by using total variation image models. 

One of the most well-known total variation image models is T V +L 1 model [21],
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3.3 The TV+L1 Model for Additive Signal Decom­

position

To extract useful feature components from an image by scale driven decomposition 

is an important task in image analysis. This decomposition can be accomplished by 

applying Total Variational image models. A 2-dimensional grey-scale image can be 

denoted by a function / ,  which is defined on a bounded image domain Q of R2 and 

Q is generally a rectangle in R2 [75] (103) (20) (19). In the Total Variation (TV) 

regularization framework, the observed image /  is considered as an additive signal 

that is composed of image cartoon u and texture v, where u and v are functions 

in Q [23]. Cartoon u mainly contains extrinsic features or large-scale features, like 

background hues, shadow and important boundaries, such as sharp edges. Texture v 

covers small-scale patterns or intrinsic features and some noise.

The image decomposition problem is viewed as splitting an image /  into u and v 

components. Image /  can be decomposed by using the Total Variation regularization 

with an L1 fidelity term, also known as T V +L 1 model. Since u is more regular than 

v, u can be obtained from image /  by solving the following variational regularization 

problem [21] [24]:

min  I |Vu| +  A | | /— k||x,i (3.1)
J n

The TV+ L1 model involves two different terms and a scalar constant A (lambda) that 

adjusts the truncation scale between u and v [23]. The first term f Q |Vit| denotes the 

total variation of u over the image domain Q and the second term states the L1 norm 

| | /  — u||, which is the degree of closeness between /  and u [21] [23]. Since f  — u + v, 

with u solved from (3.1) the small-scale component v can be calculated as, v = f  -  u.

In Figure 3.2, an example of image decomposition using the T V + L 1 model is
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shown along with corresponding cartoon (it) and texture (v). It is easily observable 

that with different A values, u and v parts are showing varying large-scale and small- 

scale features respectively.

u3(0.4)

vl(1.2) v2(l .0) v3(0.4) v4(0.1)
Figure 3.2; Image decomposed into cartoon (u) and texture (v) using varying value 
of A.

To solve (3.1), different approaches have been proposed, such as PDE-based gradi­

ent descent technique [21], Second-order Cone Program (SOCP) [6] [36], and Paramet­

ric Maximum Flow (PMF) algorithm [37]. The PDE approach can be implemented 

easily and requires less memory, although it sometimes creates numerical difficul­

ties [24]. To escape from this problem, the SOCP approach can be used that finds 

a solution of (3.1) using modern interior-point methods [6] [36]. It provides better 

accuracy but a significant amount of memory is needed for this approach [24]. Using 

the PMF algorithm, the user can obtain approximately the same result as the SOCP 

approach [106]. However, it can perform computation much faster. This influences 

many researchers to accept this algorithm for solving (3.1).
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3.3.1 Parameter A and Image Feature Scale

By changing the value of the parameter A, we can determine which image features 

need to be kept based on their scale. The scale of a feature is defined as the ratio of 

the area of the feature to its perimeter [94]. For example, the scale of a circle with 

radius r can be written as following:

2
t i t  r

S ~  2nr = 2 (3'2>

D. Strong and T. Chan [94] proved that the intensity change of any image feature, 

caused by regulation, is proportional to truncation scale a  and inversely proportional 

to the scale of image feature. Here truncation scale (a) determines the closeness 

between u and /  by controlling regularization and it is inversely proportional to A. 

For a smaller truncation scale or larger value of A, regularization is minimized and 

u becomes close to /  by retaining the sharp edges or large-scale features in u. The 

opposite effects will occur when a larger truncation scale or smaller value of A is 

selected.

According to the definition of scale, the intensity change <5 is defined as following 

|94|:
S = (3.3)

scale

Now, the parameter A can be related to the features in different scales that need to 

be preserved. For a small truncation scale (a), the change of large-scale features will 

be less and they will be kept in u. Thus, u will be similar to /  with a larger value 

of A because only a little amount of small-scale features will be removed in v. If we 

need to remove most of the small-scale features to v, then we need to choose a large 

truncation scale and a smaller A. This effect is illustrated in Figure 3.2, where with
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the decrease of the value of A from larger to smaller, almost all the small-scale features 

have been extracted in v, and only some large-scale features, such as shadow, lighting 

effect, and background hues, are kept in it.

Thus, the parameter A plays an important role in extracting image features in dif­

ferent scales through multi-scale image decomposition. Based on the size of an image, 

a proper A can be selected from some recommended values or by exploration [23]. 

To use the TV +L1 model for different face image sizes, the following recommended 

A values can be used: 100x100 (pixels): A =  0.7 to 0.8, 200x200: A =  0.35 to 0.4, 

400x400: A =  0.175 to 0.2 [24]. According to [44], for handling most of the lighting 

variations in face images of size 64x80, A can be selected in the range of [0, 1.2].

з.3.2 Properties of the TV +L1 Model

The TV +L1 model is popular for its important merit of preserving edges [94]. 

This property can be analysed in a simple way. Firstly, minimizing the term f n | Vuj 

attempts to reduce the variation of u over Q [23]. Secondly, minimizing the L1 term 

| | /  — u ||, which has a tendency to keep u almost the same as / ,  and reserves the sharp 

object edges of image f  in u [23]. In this way, the entire sharp edges of shadow cast on 

faces can be preserved in u by reducing Jn |Vu| + A [ |/ -  i t | / i  with an appropriate large 

A. These large-scale features do not affect the recognition process, so after removing

и, the impact of lighting can be reduced in / .  Finally, the features in small-scale band 

(i.e. shape, contours, the size and relative position of eyes, nose, mouth, eyebrows) 

are obtained in v. These features are more important to distinguish different persons, 

because classification is made based on comparison of the positions of small-scale 

facial features in two face images [23] [24].

Another exceptional property of the T V +L1 model is the ability to perform scale-
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dependent and intensity-independent decomposition [24]. For a simple 2-dimensional

image / ,  this property can be illustrated by using the approach described in [103] [23]

Let /  =  cBr(y){X) be a function that has intensity c ~  0 everywhere except at 

all the points inside the disk B r(y) with center y and radius r, where the intensity 

c > 0. For this / ,  Chan and Esedoglu [21] showed that after solving (3.1), we get the 

following:

From the above analysis of the example, we can infer two important facts. First, the 

value of parameter A, which controls whether ux will be equal to 0 or / ,  depends on 

the radius of the disk only, and intensity c does not have any impact on A. Secondly, 

the signal of the disk or /  is either completely preserved in u\  or v\  for all values of

model [103] [23]. An example of scale-dependent image decomposition property of the 

TV +L1 is presented in Figure 3.3. It is observed that signals with different scales are 

separated into either u or v, but not into both u and v. Based on these properties, 

the TV +L1 model with an appropriate A can reduce the lighting effects from face 

images and extract the illumination invariant small-scale features that can improve 

the performance of the face recognition algorithms. The effect of applying the T V + L 1 

model on some input images with illumination variation from the Yale [107] database 

is shown in Figure 3.4.

[24]-

0

u * c ' f  fo r  any d  E [0.1] i f  A =  | (3.4)

/

A (except A =  |) ,  which depicts the least signal corruption property of the T V +L 1
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Figure 3.3: Extraction of signals with different scales by the T V -L 1 model [109]. 

Input

TV+L1

Output

Figure 3.4: Input images and their v components as the result of the TV L 1 model.

3.3.3 Application of the T V +L 1 Model

The TV +L1 model has been successfully applied to many other image processing 

tasks based on its properties. Alliney [7] and Nicolova [72] [73] analysed the proper­

ties and applied the 1-dimensional or 2-dimensional version of the T V + L 1 model to 

different signal processing tasks. Nicolova [73] suggested the use of the TV -rL1 model 

to noise removal and outlier identification. Chan and Esedoglu [21] first utilized its 

cartoon-texture decomposition property. By taking the advantage of this property, 

W. Yin and T. Chen applied this model to correct the irregular background for cDNA
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microarray images [104] and digital microscope images [23].

Based on the basic properties of the TV +L1, various improvements have been 

made over it. W. Yin and T. Chen [23j [24] enhanced the T V +L 1 model to be used 

as a multiplicative model that can factorize images under multiplicative illumination 

effect, and can provide the lighting robust facial features. They proposed the Total 

Variation based Quotient Image (TVQI) model [23] and Logarithmic Total Variation 

(LTV) model [24] to normalize the illumination condition in face images. In the TVQI 

model, initially an image /  is decomposed using the TV +L1 model; and then, /  is 

divided by u to get the illumination normalized component, v (v =  £), where small- 

scale features are evenly emphasized. This approach showed significant performance 

improvement over the other normalization techniques on the Yale face database B [35]. 

The LTV model [24] applies the logarithmic transformation on the image /  at first, to 

convert it from the multiplicative image model to additive, and then uses the T V + L 1 

model on logarithm of the image. To compare the performance of the model with 

other algorithms, it was tested on the Yale face database B [35] and CMU PIE [96] 

database, and it showed better recognition rate for both of the databases.

Xie et al. [105] [106] suggested an approach using both small- and large-scale fea­

tures. After decomposing a face image into large- and small-scale feature images, 

illumination normalization is performed on the large-scale feature image and smooth­

ing operation is performed on the small-scale feature image to get better visual results. 

Finally, the normalized large-scale feature and smoothed small-scale feature images 

are combined to form a normalized face image, which is classified using the Nearest 

Neighbour (NN) classifier. The approach was evaluated on the Extended YaleB [35] 

and CMU PIE [96] databases, where it outperformed other existing methods.

H. Han et al. [44] proposed Separability Oriented Preprocessing (SOP) approach
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that utilizes the facial features of different scales to pre-process a face image for illu­

mination invariant face recognition. In this approach, features are extracted using the 

TV +L1 model. The extracted features are linearly combined to infer an illumination 

robust image, which is used with different face recognition approaches. While forming 

the linear combination, the weights are determined from the training images by max­

imizing the Fisher separability of different subjects’ faces. In the SOP formulation 

step, the solution of the optimization problem is obtained by using simulated anneal­

ing [54]. From the conducted experiment, SOP with the Fisherfaces [12] approach 

achieved 75% recognition rate on the Multi-PIE [40] database and 84.1% on the Ex­

tended YaleB [35] database, that were higher than other preprocessing methods. To 

evaluate SOP with different face recognition approaches other than the Fisherfaces, 

it was combined with the Eigenfaces [98] and LBP [97] and showed significant im­

provement on their performances when experimented on the FRGC Ver2.0 Exp.4 [77] 

dataset.

From the above mentioned applications, it is clear that the T V +L 1 model can be a 

good choice for face recognition under lighting variation due to its ability to preserve 

the illumination invariant facial structure from a single face image. The model has 

other advantages; it does not require any lighting assumption, and it needs to set 

only one parameter, A. Due to these benefits, the T V +L 1 model is embedded into 

the proposed approach for scale-space decomposition of images.

3.4 Wavelet Transform

The wavelet transform [25] is a popular image decomposition approach that pro­

vides both spatial (location in time) and frequency information of an image simul­

taneously [34], It is more suitable than Fourier transform methods to analyse sig­

nals that contain small discontinuities. The Fourier transform methods analyse all
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frequencies in the signal through the same window or resolution while the wavelet 

transform uses multi-resolution technique. The multi-resolution technique examines 

different frequencies with different sized windows to indicate the exact position (in 

time) of discontinuity. The wavelet transform uses small window for high frequen­

cies to provide good time resolution, but poor frequency resolution. On the other 

hand, low frequencies are viewed through large window that gives poor time, but 

good frequency resolution [52].

The wavelet transform provides information of the image in the form of a small 

number of wavelet coefficients that can be stored and analysed for further use [53]. 

There are two classes of wavelet transform: continuous and discrete. Continuous 

Wavelet Transform (CWT) is defined by the following equation [65]:

/ oo

x(t)i/j(scale,position, t) dt (3.5)

•OO

where C  represents the set of wavelet coefficients that is obtained from the signal 

x(t). Many wavelet coefficients are generated by applying wavelet function ip’{t) for 

each time interval over the signal through changing position and scaling (stretching 

or compressing). Low frequencies in the signal are stretched and overall information 

about the signal is represented. On the other hand, compression is done on the high 

frequency parts of the signal that provides detail information in the signal. Since 

wavelet coefficients are computed at every possible scale and shifting position, CWT 

requires a lot of time and resources to store redundant information.

In contrast, the Discrete Wavelet Transform (DWT) is performed only on a subset 

of scales and positions that results in faster and easier computation of wavelet coeffi­

cients. The DWT decomposes a signal into coarse approximation (low frequency) and 

detail (high frequency) information by using a low pass and a high pass filter respec­
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tively. After the filtering step, downsampling operation is performed that halves the 

resolution by discarding every second sample. The process of one-dimensional DWT 

is shown in Figure 3.5.

Upp Downutnplinf

HiZKD~*0 •500 costs

S | 1000 samples
IPF

-500 coefs

Figure 3.5: Discrete Wavelet Transform (DWT) [65].

Considering the advantages of DWT, two-dimensional DWT is generally preferred 

for performing wavelet decomposition of two-dimensional images. It is performed by 

two steps: firstly, one-dimensional DWT is applied on each row of an image to produce 

a row transformed image and then the same one-dimensional DWT is performed on 

the columns of the new image in the second step. As a result, the image is decomposed 

into four sub-band images corresponding to various frequency ranges. The process is 

illustrated in Figure 3.6.

•HH

>HL

►W

Figure 3.6: An image is decomposed into four images after one level DWT.

As shown in Figure 3.6, the sub-band images are denoted as low-low (LL), low-high
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(LH), high-low (HL) and high-high (HH). The LL sub-band reflects global information 

(approximation) and represents the visual mood of the original image. The high 

frequency components, like the LH band denotes horizontal details, the HL band 

provides vertical details, and the HH band is the representative of diagonal details 

and noise [52] [27] [42], Each of these sub-band images represents a smaller version 

of the original image. If the size of the original image is A'xN, then four N/2  x 

N /2  sub-band images are obtained after the first level decomposition. The LL band 

image represents the identity of the original image and contains the most prominent 

information. Further levels of decomposition will be carried on the LL sub-band as 

in Figure 3.7. The maximum number of levels is chosen depending on the size of the 

image or type of application.

To implement the DWT, a mother wavelet function is needed as a source and all 

wavelet functions in the transformation can be produced from this original function 

through shifting and scaling. Efficiency of the wavelet transform depends on the 

use of appropriate wavelet function. The wavelet function is selected based on the 

need of application. A number of wavelet functions are currently available, such as 

Haar, Daubechies, Coifletl, Symlet2, Meyer, Morlet, and Mexican Hat etc. Among 

these wavelet functions, Daubechies wavelet [25] is usually used in wavelet transform 

because of its ability to retain most of the information of the data.

In wavelet decomposition based recognition process, the selection of a sub-band 

image plays an important role in the recognition performance. Nastar et al. [68] [69] 

found that, high frequency part of the image is affected by the facial expression and 

small accessories while variation in pose affects the low frequency part. By removing 

the high frequency components, the effects of various facial expressions and occlusions 

in the images of the same person can be reduced [100]. Therefore, through the use 

of the low frequency sub-band image (LL band image) for recognition purpose, it
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Figure 3.7: Two level wavelet decomposition [65].

can improve the matching of different images of the same person. Furthermore, the 

selected LL band images will have lower resolution than the original image dimension, 

which reduces the computational load in computing eigenvectors by PCA.

From the above analysis, it can be said that the following advantages make the 

DWT a widely used tool in face recognition [30] [63] [86]:

1. In DWT, by discarding the high frequency information from the low frequency 

data at each level, the size of the sub-band images are reduced by 2" times of 

the original image after n level decomposition. Therefore, by extracting features 

from a compressed sub-band image, the computational work can be reduced.

2. Time and frequency information can be located more exactly by the advantage 

of mutiresolution decomposition, which is useful to attenuate distortion from an 

image.

Numerous studies on face recognition including [30] [63] [86] [52] [53] [42] [100] [62] 

have used the DWT to improve performance. In [100], different types of wavelet 

transform were applied on the ORL [8] dataset to evaluate the recognition performance
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with different distance measures. The benefits of feature extraction through PCA from 

the wavelet sub-bands were investigated in [30] [86] [62], In [63] [42], a combination of 

wavelet decomposition and the Eigenfaces method was used to compute features from 

images and the recognition task is performed by using the Support Vector Machines 

(SVM) classifier.

For the multilevel dimension reduction property, wavelet transform is combined 

with the TV +L1 model in the proposed approach. This is done to reduce the compu­

tational load of extracting features from images.

3.5 Summary

Different algorithms for solving illumination problems are presented in this chap­

ter. The basic concepts of the T V +L1 model and Discrete Wavelet Transform (DWT) 

that play an important role in the proposed approach are also stated concisely. A 

brief overview of the proposed approach is illustrated in the next chapter.
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Chapter 4

Proposed Approach

The proposed face recognition approach is developed based on scale-space decom­

position by the TV +L1 model and wavelet decomposition. Instead of using only 

small-scale features for recognition, the approach presented here takes into consider­

ation the importance of both large-scale and small-scale features. It is designed to 

utilize the features at different scales that are extracted from face images using the 

TV +L1 model. After that, the wavelet decomposition followed by PCA is applied 

on the extracted components of various scales to find the compact and important 

features that improve the performance of the classification step.

Some of the factors that can be considered as important to design this approach

The TV +L1 model, which is used for scale-space decomposition, can be solved 

using the following equation:

are:

m m (4.1)
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Here the observed image /  is decomposed into image cartoon u and texture v. The 

illumination component u contains large-scale features, such as background hues and 

shadow, or lighting effect. The small-scale component v contains intrinsic features, 

like eyes, nose, and mouth. The parameter A (lambda) adjusts the truncation scale 

between u and v.

Analysis of the traditional uses of the Total Variational model (see section 3.3.1) 

reveals that it is sometimes hard to determine the truncation scale, which is inversely 

proportional to A. According to the analysis of parameter A in [21], face images 

with normal lighting will need a larger truncation scale to reduce less illumination 

components from image / ,  and a smaller A should be set for that purpose. This will 

remove very small amounts of large-scale features to u and the small-scale component 

v will be close to / .  In case of abnormal lighting, more large-scale features need to 

be removed from /  to u. Therefore, a small truncation scale is used with a larger 

A. Thus, the result will not be desirable if a single A is chosen for face images with 

different lighting attributes.

Another important aspect of the T V +L 1 based face recognition method (see sec­

tion 3.3.3) is that it assumed that only features in small-scale component are sufficient 

to identify a person. Therefore, the features in large-scale component are ignored, but 

large-scale features can also be helpful to classify different faces [44] [106] [105]. Large- 

scale features are important to explain the sex information and they also represent 

the overall description of the individual, which is useful for feature-based recogni­

tion [112]. Moreover, it is very difficult to produce a frontal-illuminated image having 

a good visual quality without large-scale features [106]. On the other hand, small- 

scale features provide finer details that facilitate the identification process. Therefore, 

both small-scale and large-scale features have importance in face recognition process.
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To overcome the above-mentioned constraints, the proposed approach is designed 

with the combination of multiscale decomposition and wavelet decomposition. In 

multiscale decomposition method using the TV +L1 model, the values of A are linearly 

selected within a range that will cover all the lighting variations. Then the features 

at different scales of face images are exploited with the help of wavelet decomposition 

and PCA. Finally, the use of the Nearest Linear Combination (NLC) approach for 

classification, expands the representational capacity of images, which is expected to 

reduce the margin of error.

4.1 Face Recognition System based on the Proposed 

Approach

The proposed approach is designed in two stages: training and recognition. In 

the training stage, a set of training or gallery images is used to derive training image 

representations that are required in the recognition step. After getting probe image 

representations, similarity between the probe and training image representations is 

computed to identify the probe image. The block diagram of the proposed approach 

is shown in Figure 4.1.

4.1.1 Training Stage

The training stage can be divided into 4 steps. A brief overview of each step is 

stated below:

(I) Multiscale Decomposition: The first step in the training stage is to extract 

facial features of different scales through multiscale decomposition. To address the 

issue of lighting variations in images, a gallery image of a person is decomposed using 

the TV +L1 model into pairs of large-scale and small-scale components: {uk, v*-}; k —
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Figure 4.1: Block diagram of the proposed face recognition system.

1 , 2 by changing the value of A. It is observed that A in the range of [0,1.2] 

will be sufficient to handle most of the lighting variations for face images of size 

64x80 [45]. The range is dependent on the size of the image. To include all possible 

lighting variations, it is necessary to find a way to determine the values of parameter 

A so that the values remain in that range.

Therefore, to decompose images cleanly into texture and cartoon components by 

the TV +L1 model, a schedule for the parameter A is determined as the following:

Aj — 2jAi, j  =  2 ,3,..., M  (4.2)

Here the value of regularization parameter A will increase linearly. For initial 

value; Ai =  0.1 and the number of decomposition; M  = 8, the resulting values of A 

will remain in the range of [0.1, 1.6] which is not far from [0, 1.2].

After getting the set of A values using (4.2), the values are arranged in decreasing
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order. As a result of multiscale decomposition using the values, eight different pairs of 

large-scale and small-scale features {uk, vk}; k — 1,2,.... M  can be obtained that are 

sufficient to cover almost all of the features of different bands (from fine to coarse). 

Initially, there will be only small-scale facial features in i>i. With the decrease of A

from the largest to smallest value in that range, it will continue to add more face

shape information from Vi to vm-

Since the image is decomposed into u and v based on an additive model, the

relationship among all Vj can be written as below [44]:

vi  C v 2 C  C v m  (4-3)

At first, the V\ component will contain very little small-scale information. After that, 

the features that are already in t>i will be included in v2 along with some additional 

features. Following in the process, more and more features will be added from v2 to 

% •

Facial features are extracted from these small-scale components. The features of 

different bands in scale-space can be obtained after decomposition as shown below [44]:

S j = <
vi i f  j  =  1

(4.4)

vj — Vj-\ otherwise

where Sj, j  =  1,2,..., M  are the extracted facial features that include both small-scale 

and large-scale features. Here, the S\ band contains the smallest-scale features, like 

eyes and mouth. The largest-scale features, such as shape and shading, are contained 

in the S m band. In Figure 4.2, some examples of the extracted features are presented 

along with the small-scale components.
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Figure 4.2: Extraction of features in different bands after scale-space decomposition 
of an image.

(II) Wavelet Decomposition: In the second step, Discrete Wavelet Transform 

(DWT) is applied on the extracted components to reduce the dimension of the re­

sultant images. After each level of DWT, there will be four sub-band (three high 

frequency sub-band and one low frequency sub-band) images that represent a wide 

range of variance and its sum is equal to that of the whole image [30]. An outline of 

the wavelet decomposition process is provided in Chapter 3 (see section 3.4).

According to the analysis in [68J [69| [100], the effects of various facial expressions 

and occlusions in the images of the same person can be reduced by using the low 

frequency sub-band (LL sub-band) image. Therefore, it can improve the performance



of recognition. Also, the lower resolution of the LL sub-band images can induce less 

computational load in computing eigenvector by PCA.

(Ill) Principal Component Analysis (PCA): PCA (see section 2.2.2.1) is used 

on the LL sub-band images to achieve the most of the image information, using the 

minimum number of representative vectors. As described in Chapter 2, the compu­

tational complexity in obtaining eigenvectors depends on the dimension (denoted by 

R) of the training images, which can have a standard value of 64 x 64. This induces 

a high computational load in computing eigenvectors, which is usually made lower by 

using the number of images N  when N  < R. However, the complexity is increased 

non-linearly with the increase of N  [30] [86]. In the proposed approach, to obtain 

the features in different scale bands through multiscale decomposition, an image is 

decomposed into M  images. There will be total Q (Q =  N  x M)  images instead of 

N,  which can induce significantly high computational weight in the feature extraction 

step of PCA.

By using the LL sub-band images obtained after DWT, the complexity in comput­

ing eigenvectors can be minimized significantly. For example, by using second level 

decomposition on 64 x 64 sized training images, LL sub-band images with resolution 

21 x 21 {R — 21 x 21 =  441) are obtained. Suppose, there are 120 (N  = 120) images 

in the training data set and each image is decomposed into 8( M  =  8) feature bands. 

Since now, the total number of training images, Q (120 x 8 =  960), is greater than 

the resolution (R  = 441) of the images (LL sub-band); therefore, the computational 

complexity will depend on the reduced resolution of 441. In this way, it makes a sub­

stantial reduction in the calculation load when the number of training images is larger 

than resolution 441. This is considered normal for most of the practical applications.

The result of PCA is a set of eigenvectors that will form an eigen subspace and
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the gallery image representations or prototypical vectors are computed by projecting 

the gallery or training images into the subspace.

(IV) Linear Combination of Extracted Features: Using the synthesized features 

of the different bands, suppose m prototypical vectors are formed for each person 

where, m  — k x M  with k is the number of images per person in the training data 

set and M  is the number of extracted features as described in the above analysis.

For classification using the Nearest Linear Combination (NLC) method, the proto­

typical vectors of images from an individual are linearly combined to form a response 

vector Yp, which represents the individual

Yp =  +  X 2P2 +  ■ • • +  X mfim (4-5)

where X \ , X 2, ..., X rn are the prototypes of the same class and 0\, 02, ■■■, Pm are 

the weights that are determined using the NLC approach, which is stated in Chapter 

2 (see section 2.3.1).

4.1.2 Recognition Stage

The recognition task is also performed using 4 steps. Initially, the test image is 

decomposed using the TV +L1 model to obtain the illumination invariant or small- 

scale facial structure (v component) from the image. According to the analysis in [45], 

use of the TV +L1 model with a large A value is appropriate for images with abnormal 

lighting condition, but it might cause negative impact if the input image is taken under 

normal lighting condition.1 To avoid this situation, decomposition is performed using 

a smaller A value in the range [0, 1.2], which is sufficient to remove the lighting effects 

'M ost of the small-scale features will be removed from the image for a larger A value.
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from the probe image.

In the next step, wavelet decomposition is conducted on the extracted component 

to transform the test image to the LL sub-band image that will be of the same 

resolution of the training images.

The resultant LL sub-band image is represented as probe image vector Y  by pro­

jecting the LL images into the subspace which is obtained in the training stage.

The probe image representation and the computed linear combinations or response 

vectors that represent all the classes are used in the final step to measure the similarity 

between them. If there are N c classes, then the probe image needs to be compared 

with a total of Nc linear combinations to determine whether the image is matched 

to any of the classes. Similarity is measured by using the following formula that 

computes the distance or difference between the probe image vector ( Y ) and all the 

response vectors (V̂ ,):

Di(Y,Ypi) = \ \ Y - Y pi\W, i — 1 ,2 , . . . ,  N c. (4.6)

The probe image will be recognized to a class if it has a minimum distance with 

that class.

Dedsion — argminDi(Y,Ypi); i ~  1 ,2 , . . . ,  Nc. (4.7)
i

4.2 Pseudo-code of the Approach

The overall algorithm can be presented in the following pseudo-code:

A. Training Stage:

Selection of A values: Form a schedule (denoted by L) of A values using (4.2) so
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that it can change linearly. Then arrange the A values of L  from the largest to smallest 

value within a specific range.

Require: A gallery or training image set G that contains n x n sized face images.

1. For each image f  in G

(i) Obtain the decomposed pairs of large-scale (u ) and small-scale (w) compo­

nents by using the TV +L1 model with the A values in L.

(ii) Extract the features of different scales from the v components using (4.4). 

Let S  be the set of features of various bands.

(iii) Perform wavelet decomposition on each extracted feature component in S  

and obtain the LL sub-band images.

2. Apply PCA on the LL sub-band images of all gallery images and generate an 

eigen subspace.

3. Calculate prototypical vectors by projecting the LL sub-band images into the 

subspace.

4. For each individual in G

generate a linear combination {Yp) of the prototypical vectors that is used as a 

representation of that individual.

B. Recognition Stage:

Require: T  is an n  x n sized probe image.

1. Decompose T  by the TV +L1 model using a single A to reduce the illumination 

effects from the small-scale component (t't).
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2. Obtain the LL sub-band image after applying wavelet decomposition on vt .

3. Compute the probe image vector Y  by projecting the LL sub-band image into 

the face space.

4. Compute the distance between the probe image representation and all the linear 

combinations according to equation (4.6).

5. Find the class C, which has a minimum distance with Y,  and classify Y  as the 

class C.

4.3 Summary

An overview of all of the steps of the proposed method is given in this chapter. 

Of most importance is the use of a multiscale decomposition process to extract com­

ponents representing the features of multiple scales. The performance evaluation of 

the proposed approach using different databases is provided in the next chapter.
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Chapter 5

Experimental Results

Several experiments were conducted on different datasets to demonstrate the effec­

tiveness of the proposed approach. In the experiments, the gallery face images were 

decomposed into different feature bands by using the T V +L 1 model. To solve the 

TV +L1 model, the Parametric Maximum Flow (PMF) algorithm [37] was adopted, 

and the code of PMF algorithm was embedded from CAAM’s website of Rice Univer­

sity [99]. To determine the A values for multiscale decomposition using the T V + L 1 

model, the A-schedule stated in Chapter 4 (see section 4.1.1) was used. To obtain illu­

mination insensitive small-scale facial features from the test images, the T V + L 1 model 

was used with A (approximately 0.1). For wavelet decomposition, Daubechies wavelet 

D4 [25] was used, as the experimental results in [30] [62] revealed that Daubechies 

wavelet D4 was better for recognition performance and computation time compared 

to other wavelets [27]. The implementation code of the baseline PCA algorithm was 

downloaded from Deng Cai’s website [18].

To evaluate the proposed approach, four different datasets were selected to per­

form experiments: the Yale database [107], the Olivetti Research Laboratory (ORL)

47



database [8], the Carnegie Melon University Pose, Illumination, and Expression (CMU 

PIE) database [80] and the Facial Recognition Technology (FERET) database [78]. 

The performance of the proposed approach was compared with four different methods: 

the standard Eigenfaces or PCA [98] (see section 2.2.2.1), Nearest Linear Combination 

(NLC) [58] (see section 2.3.1) and combination of the T V +L 1 model [21] (see section

3.1) with PCA (TV+L*&PCA), as well as NLC (T V + L ^N L C ). For the NLC ap­

proach, the images were first converted into prototypical vectors using PCA and then 

classified using the NLC classifier. To combine the T V +L 1 model with PCA and 

the NLC, the images were first decomposed with a smaller A (approximately 0.1) to 

extract small-scale features. For feature extraction, PCA was performed on the small- 

scale feature images and then images were classified using the Nearest Neighbour (NN) 

classifier (for T V + L ^P C A ) and NLC classifier (for T V + L ^N L C ). To make an eas­

ier presentation, the proposed approach is called the Nearest Linear Combination of 

large and small-scale feature images (NLC+LS). The following sections will cover de­

scriptions of the datasets used, the results, the analysis, as well as evaluation of the 

results.

5.1 Experiments on Yale, ORL and PIE Datasets

To develop a reliable face recognition system, different databases of facial images 

and a testing procedure to evaluate the system need to be used [78]. As a part 

of testing, Yale, ORL, and PIE databases were used to verify the accuracy of the 

proposed approach initially. A short description of these datasets is provided below.

5.1.1 Datasets: Yale, ORL and PIE

The Yale dataset from Yale University contains 165 grayscale images of 15 persons. 

There are a total of 11 images per person that have variations in facial expression and
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configuration: centre-light, with glasses, happy, left-light, with no glasses, normal, 

right-light, sad, sleepy, surprised, and wink [107]. The set of face images that belong 

to one of the persons in the Yale dataset is shown in Figure 5.1.

The ORL dataset comes from Cambridge AT&T Laboratory, previously Olivetti 

Research Laboratory. This dataset contains 40 different subjects and each subject 

has 10 distinct images. Thus, there are total 400 grayscale images in this dataset that 

were taken at different times. The images have variations in lighting, facial expressions 

(open /  closed eyes, smiling/not smiling), and facial details ( glasses/ no glasses) [63]. 

Figure 5.2 shows face images of three persons (in three rows) in the ORL dataset.

Figure 5.1: Images from Yale Database.

The CMU PIE database from Carnegie Melon University consists of 41,368 images 

of 68 persons. There are 13 different poses, 43 different illumination conditions, and 

4 different facial expressions for each person [80]. However, only the five near frontal 

poses (C05, C07, C09, C27, C29) were used in the experiments, which makes a total 

of 11,554 face images. There are 170 images for each person, except subject 38, which 

has 164 images. Some of the face images of three persons in the PIE database are 

shown in Figure 5.3.

On Deng Cai’s website [18], face images for all three datasets have been manually
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Figure 5.2: Face images of 3 persons in ORL Database.

Figure 5.3: Eight different face images of 3 persons in PIE Database.

aligned by pupils and were cropped to 64x64 pixels, with 256 gray levels for each 

pixel [22j. The datasets were downloaded from the website and the experiments were 

carried out on exactly the same data.

5.1.2 Results on Yale, ORL and PIE Datasets

The experiments were conducted on each k train (k = 2, 3, 4, 5, 6, 7, 8 for Yale, k = 

2, 5, 8 for ORL and k = 5, 30, 80 for PIE), where k indicates the number of images per
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person in the gallery or training images. The rest were used as test images. For each 

k train, a total of 50 random splits are available in the original versions of these three 

datasets. For both Yale and ORL datasets, to test the performance of the proposed 

approach, the first 25 random splits were used for each k train. Average, as well as 

standard deviations (STD) of error rates were calculated for these two datasets. Due 

to the large size of PIE dataset, only the first random split was used and error rates 

were estimated.

For the Yale and ORL databases, features were extracted from 8 different bands 

through multiscale decomposition. For the PIE database, the images were decom­

posed into 3 feature bands. For PCA approach, the number of reduced dimension 

was chosen as min (M, S)-l, where M is the total number of gallery images (the num­

ber of extracted features from gallery images) and S is the number of pixels in each 

image [22].

The results for different training sets on the Yale and ORL databases are given 

in Table 5.1 and Table 5.2 respectively. Table 5.3 illustrates the results on the PIE 

database for 5, 30 and 80 training sets.

Table 5.1: Average error rates and STD on Yale Database with different Train/Test 
sizes.

Train Size PCA NLC T V + L ^ P C A T V + L ^N L C NLC+LS

2 Train 45.72±4.82 41.63±4.84 42.55±6.17 39.79±5.69 35.88±5.12

3 Train 43.13±4.44 36.33±3.72 39.60±4.72 35.57±4.02 30.83±3.95

4 Train 39.92±3.43 34.36±4.08 35.96±3.34 33.52±3.48 28.42±4.09

5 Train 35.60±3.32 30.27±4.80 30.53±3.77 28.71±4.91 24.44±4.94

6 Train 35.63±4.61 28.59±4.84 31.36±4.05 29.23±4.38 25.87±4.30

7 Train 34.47±4.36 30.33±4.88 28.47±5.05 30.07±5.02 26.47±4.99

8 Train 32.80±6.20 29.60±7.92 28.27±5.81 29.16±5.81 26.58±6.33
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Table 5.2: Average error rates and STD on ORL Database with different Train/Test 
sizes.

Train Size PCA NLC TV+L'& PCA T V + L ^N L C NLC+LS

2 Train 33.01±2.95 29.36±2.51 25.62±2.03 22.82±2.11 22.47±2.62

5 Train 14.34±2.32 8.40±1.83 10.78±2.31 7.43±1.84 6.20±1.25

8 Train 8.80±2.11 3.70±1.71 7.27±2.12 4.12±1.46 3.10±1.39

Table 5.3: Error rates on PIE Database with different Train/Test sizes.

PCA NLC T V + L ^ P C A T V + L ^N L C NLC+LS

Train Size Error Rate Error Rate Error Rate Error Rate Error Rate

5 Train 68.50 49.92 68.52 53.51 45.85

30 Train 25.81 6.32 25.81 6.52 5.76

80 Train 7.34 3.07 7.34 3.39 3.33

It is easy to see that the proposed approach has shown encouraging performance on 

the Yale, ORL and PIE datasets. It persistently achieves better recognition accuracy 

than all the other methods on different train sizes of the Yale dataset (see Table 5.1). 

For the Yale dataset, the best result of the NLC+LS is reported on 5 train where 

it outperforms the Eigenfaces, NLC, T V + L ^ P C A , and TV +LJ&NLC methods by 

11.16%, 5.83%, 6.09% and 4.27% respectively.

The proposed NLC+LS approach experimented on the ORL dataset (see Table

5.2) outperforms the traditional PCA and NLC approaches and it also improves the 

accuracy of the T V + L ^ P C A  approach. It is fairly comparable to the T V + L ^N L C  

method for all train sizes of the ORL dataset.

As shown in Table 5.3, the NLC+LS approach achieves impressively better perfor­

mance than the Eigenfaces and T V +L1&PCA methods on the PIE dataset. It attains 

low error rates of 5.76% and 3.33% for PIE 30 train and 80 train respectively, which
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are favourably comparable to accuracies achieved by the NLC and TV -tL 1&NLC 

methods.

To obtain a clear view of the experimental results, the effects of combining the 

large-scale and small-scale features by the NLC+LS method on the Yale and ORL 

datasets are depicted in Figure 5.4 and Figure 5.5 respectively.

NLC+LS
TVL1&NLC
7VL1&PCA

uj 32

Train Size

Figure 5.4: Comparison of error rates of the NLC i LS with two other methods for 
Yale Database.

These figures show the extent to which the performances of the standard T V + L 1 

based methods, T V + L ^ P C A  and TV +LX&NLC, can be improved by the NLC—LS 

method. These two methods (TV +LX&;PCA and TV—LX&NLC) only used the small- 

scale features for recognition and they discarded the large-scale features. The better 

performances of the NLC—LS approach compared to these two approaches validate 

the fact that only using the small-scale features of face images is not enough for 

recognition. Large-scale features also contain useful information and should not be 

discarded.
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Figure 5.5: Comparison of error rates of the NLC+LS with two other methods for 
ORL Database.

From these figures, it is observed that the error rates of the methods decrease 

with the increase of the size of the training sets. However, one exception is noticed 

in Figure 5.4, where the accuracy of the TV—LX&NLC method begins to drop for 7 

train and 8 train. This fact can be supported by the analysis in [58], which states that 

the performance of the NLC approach sometimes may not improve with the increase 

of the number of images per person in the training dataset.

In Figure 5.4, it is easy to see that the addition of features of different bands by 

the NLC+LS method has significantly improved the accuracies of the TV—L*&PCA 

and TV+L*&NLC.

From Figure 5.5, it is perceived that the NLC+LS method is more effective in 

improving performance than the TV—L*&PCA method and it also outperforms the 

TV—L*&NLC by a small margin for the ORL dataset.

Based on the above analysis, it can be observed that the proposed approach has
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better performance with small train size, which is true with conclusion of the study 

in [58].

5.1.3 Experiment on FERET Dataset

The facial images in the FERET database were collected by NIST from 1993 to 

1997 [56]. As described in [78], the standard FERET database consists of total 14051 

images from 1199 persons. It includes five subsets (one gallery set and four probe sets) 

that were used in this experiment for recognition test. The gallery set Fa contains 

1196 images from 1196 subjects; therefore, it has one image per subject. The set of 

probe images is divided into four partitions (subsets) based on expression variation, 

lighting change, and the time difference from the gallery images. The Fb probe set 

consists of 1195 images of the subjects in Fa, but with different facial expressions. In 

the probe set Fc, there are 194 images of the same subjects of Fa, taken under different 

lighting environments. The Dupl (Duplicate 1) probe set contains 722 images that 

are captured any-time between one minute and 1031 days after the matching gallery 

image was taken. The Dup2 (Duplicate 2) probe set, a subset of the Dupl, consists 

of 234 images, where the images are taken at least 18 months after the corresponding 

image in Fa. Figure 5.6 shows different images of a subject from the FERET database. 

Some images in the Fc probe set are shown in Figure 5.7.

The images were resized into 70x60 from the actual size of 150x130. To compute 

the eigenvectors from the extracted features initially, the minimum value between the 

total number of extracted images and the resolution of the images was chosen. Then, 

according to the FERET recommendation [56] [26], the subspace was formed by using 

the first 40% of the eigenvectors that would contain about 98% of the information 

stored in the eigenvectors. Since the gallery set Fa contains one image per subject, the 

same result was obtained for the Eigenfaces and NLC approaches. To avoid redun-



Fa Fb Dupl Dup2

Figure 5.6: Gallery image and different types of probe images of a subject from 
FERET Database.

Figure 5.7: Example of probe images from Fc probe set.

dancy, the comparison result for the NLC, T V + L ^N L C , and NLC+LS approaches 

on the FERET dataset is shown in Table 5.4.

From the results in Table 5.4, it is observed that the NLC—LS copes well with 

the problem of illumination variations by achieving comparatively better result for 

the Fc probe set. This is the toughest probe set, as it contains images of the subjects 

under considerably different lighting conditions [56]. In case of the Fc probe set, 

the NLC I LS outperforms the NLC approach and TV I L*&NLC by approximately 

7.7% and 8.8% respectively, which states the better tolerance of the NLC ) LS for 

varying illumination compared to the NLC and TV I L !&NLC. However, it shows 

slightly degraded performance compared to the NLC for the expression variation of 

the Fb probe set. For the Dupl and Dup2 probe sets, the accuracies achieved by the
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Table 5.4: Error rates on different Probe sets of FERET Database.

NLC T V + L ^N L C NLC+LS

Probe Set Error Rate Error Rate Error Rate

Fb+Fc+D upl+D up2 41.53 43.07 41.28

Fb 15.32 18.66 16.40

Fc 66.49 67.53 58.76

D upl 63.30 63.02 62.60
Dup2 87.61 85.90 88.03

Fb-f Fc+D upl 36.43 38.32 36.09

NLC+LS are fairly comparable to the NLC and T V + L ^N L C .

As stated by [48] [58], it needs to use more than one gallery image per person to 

form a reliable linear subspace by the Nearest Linear Combination (NLC) approach. 

Also the gallery images should represent variation in viewing, expressions, and illu­

mination conditions to consider all possible changes in the probe images. Since the 

gallery set Fa contains a single image for each person; the predictor of a class was built 

by using the extracted feature images from a single image to match with the probe 

image. However, the formed predictor is not sufficient to cover all of the required 

variations, which is essential for improving the performance by the NLC.

The results in Table 5.4 clearly reflect that the recognition performance of the 

NLC+LS is at least comparable to the NLC and T V + L ^N L C  methods for almost 

all of the cases of the FERET dataset.

5.2 Computational Complexity

The time complexity of the proposed approach can be determined in the following 

way:
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To find the time complexity of the testing stage, at first, the complexity of solving 

the TV +L1 model by the Parametric Maximum Flow (PMF) algorithm is considered. 

According to [37], the TV +L1 model can be solved in 0 ( m n l o g ^ ) )  time, where m 

and n  are the height and weight of the image. Wavelet decomposition is performed 

with complexity 0 (?nnf) [2], where I is the decomposition level. After wavelet de­

composition, the resolution of the image becomes r  x s, where r < m  and s < n. 

The complexity of the dimension-reduction algorithm (PCA) is 0 (rsd), where d is 

the number of dimension in reduced dimension space. After that, distance between 

the probe image and each subject in the gallery is calculated using the Nearest Lin­

ear Combination (NLC) [58] classification approach. During this step, required time 

complexity is 0  (rsc), where c is the total number of subjects to be compared. Thus, 

the total time complexity in the testing stage is 0((mn(log(^ )  + /)) +  (rs (d +  c))).

The complexity of the training stage is similar to that of the testing stage. Assume 

that each gallery image of a person is decomposed into q feature images using the 

TV +L1 model, where k is the number of images per person in gallery. Therefore, the 

estimated complexity is O [kq((mn(log(^)  +  I) +  (rs(d  +  c)))).

5.3 Summary

A comprehensive comparison of the proposed approach, with the state-of-the-art 

techniques, has been presented in this chapter. It is appropriate to indicate that 

the developed approach has been shown to perform well for the case of illumination 

variations. It shows quite agreeable results with large databases as well. The chapter 

also includes a complexity analysis of the proposed approach.
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Chapter 6

Conclusions

Performing face recognition under different illumination conditions is a challenging 

field for researchers. Many approaches have been proposed to tackle the problem 

of illumination changes, yet the problem is far from being solved. The approach 

presented in this research attempts to provide an illumination-invariant face recogni­

tion framework based on the combination of scale-space decomposition and wavelet 

decomposition.

Scale-space decomposition methods decompose a facial image into large-scale and 

small-scale features. One of the popular scale-space decomposition methods is the 

Total Variation model (TV +L1), which can be utilized to estimate the illumination 

component. The advantage of this model is that it requires only one parameter, 

lambda (A). Most of the T V +L1 based methods use only illumination-invariant small- 

scale features for recognition after removing the large-scale features.

Another popular tool for image analysis is Discrete Wavelet Transform (DWT), 

which decomposes an image into different sub-band images with various frequency 

ranges. The resultant low frequency sub-band (LL sub-band) image has lower resolu­
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tion than the original image and contains the most important information.

Unlike other scale-space decomposition based methods, the proposed approach is 

designed to use both large-scale and small-scale facial features of gallery images. For 

multiscale decomposition process using the T V +L 1 model, a schedule for the values of 

A is provided. To include all possible lighting conditions (from normal to abnormal), 

features of different scales are extracted using the A values within a predefined range. 

Then the LL sub-band images are obtained after applying DWT on the extracted 

feature images, which can reduce the computational complexity of deriving feature 

vectors by Principal Component analysis (PCA). For the classification, the Nearest 

Linear Combination (NLC) approach is used to combine the prototypical vectors of 

a person to represent that individual. Lastly, the probe image is compared to all the 

linear combinations to determine the class.

To evaluate the proposed approach, several experiments were conducted on dif­

ferent databases. The proposed approach has shown to be superior than the other 

two baseline approaches: PCA and NLC (for the Yale, ORL and PIE datasets). It 

also has a better or fairly comparable result to other T V + L 1 based methods: the 

T V + L ^ P C A  and TV+L^&NLC. It reveals that the integration of large-scale and 

small-scale features by the proposed method improves the results of the methods 

(TV +LX&PCA and T V + L ^N L C ) that perform recognition based on only small- 

scale features.

In this research, the proposed approach is validated with different databases. In 

the future, further research is needed to be done to improve the performance of the 

system for large databases.

Although the TV +L1 model is utilized in the proposed framework, the effective­

ness of the proposed framework should be applicable when it is in conjunction with
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other scale-space decomposition approaches for illumination normalization. Further 

research on replacing the TV +L1 with the LTV [24] and TVQI [23] is needed, to 

validate the generality of the proposed approach. The possibility of embedding other 

feature extraction methods will also be studied in future works.

Furthermore, the NLC classification approach is utilized in the proposed approach 

for the recognition task. Additional research could be done to get better performance 

by adding weights for computing linear combinations. The performance of the system 

can be tested by using other classification techniques, such as the Nearest Constrained 

Linear Combination (NCLC) approach and Support Vector Machines (SVM).

The proposed approach outperforms two different holistic approaches, and is also 

superior or equivalently accurate with other T V +L 1 based methods. The initial stud­

ies in this research show that there is still room for improvement, which can increase 

the effectiveness of the proposed method.
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