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Abstract 

The crux of this thesis is to study the Restricted Quackenbush Problem: if B is a finite 
algebra of finite type and V(B) is residually finite, must V(B) be residually < N, for some 
positive integer AT? 

We show that the Restricted Quackenbush Problem is answered affirmatively with re­
spect to unary algebras, a result first shown by Baldwin and Berman in 1975. Then we 
turn our attention to groupoids and show that all groupoids that generate residually finite 
varieties must satisfy an identity of the form k(x) » x*x, where k(x) is an identity of type 
{*} that is not equal to x *x. Due to this result, we focus on a particular class of idempo-
tent groupoids, called absorbing groupoids. We show that if a certain property holds, with 
respect to absorbing groupoids, then the Restricted Quackenbush Problem is answered af­
firmatively. 
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Chapter 1 

Introduction 

1.1 The Problem 

The Restricted Quackenbush Problem is a problem that originated in the seventies. An 

answer to this problem would yield a further understanding of the residual character of 

finitely generated varieties of finite type. 

Problem (Restricted Quackenbush Problem). Let Bbea finite algebra of finite type. If all 

subdirectly irreducible algebras in the variety generated by B have a finite universe, must 

there exist a finite bound on the cardinality of the universe of each subdirectly irreducible 

algebra in this variety? 

In this chapter, we start by looking at some necessary background material in Universal 

Algebra to understand the problem. This chapter concludes with a section that discusses 

the origin and evolution of the Restricted Quackenbush Problem. 

12 Background Material 

To understand the problem, specific concepts and definitions are needed. The following 

background material is taken from either [2] or [13]. Unary algebras and groupoids will 

1 



be used extensively throughout this document. For a list of common and exotic algebras, 

see §1 of Chapter 2, and §1 and §2 of Chapter 3 in [2] or see Chapter 1.1 in [13]. 

1.2.1 Algebras, Terms and Identities 

A set T is called a type of algebras or a language of algebras if T is a family of finitary 

operation symbols such that to each operation symbol there corresponds a non-negative in­

teger called the operation symbol's arity or rank. For each positive integer n, the symbol Tn 

denotes the set of n-ary operation symbols in T. 

Definition. An algebra B of type T is a non-empty set, called a universe or an underlying 

set B, together with a family of finitary operations F defined on the universe and indexed 

by members of T such that the arity of an operation agrees with the arity of the corre­

sponding symbol in F. That is, for each n-ary symbol / in T, there exists a unique finitary 

operation /B in F such that the arity of /B is n. 

The algebra B described in the above definition is often written as B = (B \F) .  If |F| is 

smal l  then ,  o f ten ,  the  f in i t a ry  opera t ions  a re  l i s t ed  in  decreas ing  a r i ty .  Fur ther ,  B = (B;T)  

is often used to define an algebra, with the implicit understanding that there exists a set F 

of finitary operations as defined above. Similarly, if \T\ is small then, often, the finitary 

operation symbols are listed in decreasing arity. 

Example. The group with four elements and addition and subtraction modulo 4, 

Z4 = ({0,1,2,3};{+ZVZ4,0Z4}) or Z4 = ({0,1,2,3};+,-, 0), 

is an algebra of type {+, - ,0}, where + is a binary operation symbol, - is a unary operation 

symbol and 0 is a nullary operation symbol. The set {0,1,2,3} is the universe of the group, 

while {+Z4, -z450Z4} is the family of fundamental operations. See Table 1.1 and Table 1.2 
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for the operation tables of +Za and -z4, respectively. The nullary operation O24 is defined 

tobeO. 

+Z4 0 1 2 3 -Z4 

0 0 1 2 3 0 0 

1 1 2 3 0 1 3 

2 2 3 0 1 2 2 

3 3 0 1 2 3 1 

Table 1.1: The Operation Table of +2*4 Table 1.2: The Operation Table of -Z4 

Definition. Let T  be a language and X be a set of variables. Further, let T ( X )  denote the 

smallest set that contains X and all nullary operation symbols such that if p i, pi,.. .pn are 

in T{X) and / is in Tn, then f(p\,p2,...,pn)\s'mT(X). Each member of T(X) is called 

a term of type T over X. 

Alternatively, we can think of a term as a string that is a well defined concatenation 

of operation symbols and variables. When a term is realized in an algebra, it becomes a 

composition of operations. 

Example. Let J7 be the language of Abelian groups. That is, let T = {+,-,0}, where + is a 

binary operation symbol, - is a unary operation symbol and 0 is a nullary operation symbol. 

Further, let X = {xj,x2}. The strings 

5I(XI,X2)-(0+JTI) + (-X2), 52(*i) =0+(-0) and J3(*i,*2,*3) =*i+*i 

are all terms of type T over X. Alone, they are no more than a concatenation of symbols. 
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However, 

jf4 (1,2) = (O24 +z* 1) +Z4 (-^ (2)) 5^(3) = O24 (-^(O24)) 

= (0+Z 4 l)+Z 42 

= 1+Z42 

= 3, 

= 0+Z4(-Z4(0)) 

= 0+Z40 

= 0 

and 

5Z4(3,1,0) = 3+Z43 

= 2. 

Definition. Let T be a language of algebras and let n be a positive integer. Further, let X = 

j denote an indexed set of n variables. An n-ary identity of type T over X is an 

expression of the form 

are terms of type T over X. 

Usually, an identity is written without the quantifiers. Sometimes, if the variables need 

not be explicitly defined, an identity is written without listing the variables. That is, often 

the identity in Statement (1.1) is written as t\ «f2. An algebra B of type T satisfies the n-ary 

identity given in Statement (1.1) if and only if 

V JCI V * 2 V x 3 [ / I(*I,.*2,*3>--M*II) «f2(xi,x2,x3,(1-0 

where 

t\(xj ,JC2, and f2(xj ,x2,jC3,... ,xn) 

t f (b 1 , b 2 , b3 , . . . , b n )=t f (b i ,b 2 , b 3 , . . . , b n ) .  

4 



This is denoted by 

If B does not satisfy the identity given in Statement (1.1), then we write B^<|« t2. 

Example. Returning to the example on page 2, since Z4 is an Abelian group, it satisfies 

the Abelian group identities. That is, 

BI= ( j t+y)+z WJC+^ + Z), BI=X+0WJC, BI=X+-(X)«0, 

and 

Bt=Jt+;y »y+jc. 

When realized in Z4, the terms s\ and 52. defined in the example on page 3, correspond to 

compositions of the operations +Z4,-Z4 and O24. That is, 

s^ (x  I , X 2 ) = X I + Z 4 ( - Z 4 { X 2 ) )  and s f* (x  i )  = 0 z \  

In the previous definition, notice the use of = and «. They both mean equality to some 

extent. They are similar in meaning; but, are different in their utilization. In general, when 

dealing only with the language of an algebra and other logical devices, the symbol » is 

used; however, when a specific algebra is being looked at, with elements of the universe 

being used, the symbol = is used because actual equality of elements is intended. 

This distinction is very useful in switching from the class of all algebras of a similar type 

to a specific algebra in that class and vice versa, without formally stating the distinction. 

The next example illustrates the need for the distinction between = and «. 

Example. Consider the language of a monoid !F = {*, 1}, where * is a binary operation 

symbol and 1 is a nullary operation symbol. The terms 1 and 1 * 1 are not equal. Specifi-
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*Ei 0 1 *E* 0 1 

0 0 0 0 1 1 

1 0 0 1 1 1 

Table 1.3: The Operation Tables of Ej and E2 

cally, 1 is the concatenation of one symbol while 1 * 1 is the concatenation of three. There­

fore, the term equality 1 * 1 = 1 is false. On the other hand, 1 * 1 » 1 is an identity that may 

or may not hold in an algebra. 

Consider the monoids Ei = ({0, l};*El, lEl) and E2 = ({0, 1};*E*, lEz} where 1E< = 1 

and 1E2 = 1. The operation table for the binary operation corresponding to each monoid is 

given in Table 1.3. 

The monoid E2 satisfies the identity 1 * 1« 1, whereas the monoid Ei does not. Under 

these conditions, we may write 

lEz *e* 1e2 = lEz and lEl *El lEl * lEl. 

Let K denote a class of algebras of type T. The set of identities of type T over some set 

of variables X that hold true in K is denoted by Id^(X). Often, we are not too concerned 

with the set of variables and use Id* instead of Id* (X). 

1.22 Obtaining New Algebras from Old Algebras 

There are three general ways of constructing new algebras from old algebras: direct prod­

ucts, subalgebras and homomorphic images. Their definitions are described formally. 
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122.1 Direct Products 

Let {Bi}iti denote an indexed set of algebras of type T. The algebra 

iel \ iel I 

is called the direct product of the B;'s and each B, is called & factor of the direct product. 

The universe of the direct product is the cartesian product of the universe of each factor. 

The finitary operations are defined coordinate wise. That is, for the positive integer n, if / 

is in Tn and {b/}"= \ £ n«. ,then 
i€/ 

. ,&„)) ( / )  =  ( / ) ,b 2 { i ) , . . . , b„( i ) ) .  

For the remainder of this subsection, assume that B is an algebra of type T. 

If |fl| - 1, then B is called a trivial algebra of type T. Note that up to isomorphism, 

there exists only one trivial algebra of type T. 

Note that if the index 1 is empty, then ]~[B; is a trivial algebra. The universe of this 
i«/ 

direct product is the set containing only the empty tuple. 

1222 Subuniverses and Subalgebras 

A subset M of B is called a subuniverse of B if for all / in T, the set M is closed under /B. 

The smallest subuniverse of B that contains M is denoted by SgB(M). 

Definition. Suppose that 5 9 B such that SgB(S) = B. Then S is called a generating set 

of B; the set S is said to generate B and the members of S are called generators. If for all s 

in S, the set 5\{s} does not generate B, then S is said to be a minimal generating set or an 

irredundant basis. 

Example. Consider the group 

Zio = {Z10;+z'0,-z'0,Oz'o), 



where +Zl° is addition modulo 10. The set {3,6,7} is a generating set; but, it is not a 

minimal generating set as {7} generates {0,1,...,9}. Also, {2,5} is an irredundant basis, 

as is {1}. 

Definition. An algebra M of type T is called a subalgebra of B if M is a subuniverse of B 

and the operations of M are the restrictions of the operations of B to M. That is, if M is a 

subalgebra of B, denoted by M < B, then M is a non-empty subuniverse of B and for all / 

in T, we have /M = /B \M- If M is a non-empty proper subuniverse of B, then M is a strict 

subalgebra of B and the notation changes to M < B. 

The main difference between a subuniverse and a subalgebra, aside from the former 

being a set and the latter being an algebra, is a subuniverse can be empty, while the uni­

verse of a subalgebra cannot. If the language of an algebra B does not contain any nullary 

operation symbols, then the subuniverse generated by 0 is 0. If a nullary operation symbol 

is present, then this cannot occur as every subuniverse must contain at least one member, 

the constant corresponding to the nullary operation symbol. 

1223 Congruences and Homomorphic Images 

Let 0 denote a relation on B. The relation 6 satisfies the compatibility property if for 

all n > 0, for all / in Tn, and for all {a;}"=1 £ B and {bi}"=l c B such that 

ai 6 bi for all i € {1,..., n} 

we have 

/ B (a i ,a 2 ,  f B (b u b 2 , . .  . , b n ) .  

Definition. A congruence on B is an equivalence relation defined on B that satisfies the 

compatibility property. 
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Often, we want to discuss or use the smallest congruence that relates element b\ to 

element bi. This is denoted by CgB({(fci,&2)}) or just CgB((bi,£>2)) and is read as the 

congruence on B generated by relating b\ to bi- A congruence generated by relating two 

elements is called a principal congruence. For S, a non-empty subset of B, the smallest 

congruence that relates every member of S to every member of S is denoted by CgB(52). 

There always exist at least two congruences on B. They are the congruence obtained by 

relating every element in B to every element in B and the congruence obtained by relating 

every element in B to only itself. Respectively, these congruence are denoted by 

&B = { (b ,b ) \beB} and VB=B2. 

These congruences are sometimes referred to as the trivial congruences on B. 

Definition. A first order formula is a well defined concatenation of identities, relation 

symbols, propositional connectives and quantifiers. The propositional connectives are A 

(and), v (or), (not), -* (implies) and <->• (if and only if). The quantifiers are 3 (existential) 

and V (universal). 

Given a metric space (B,d), variables x, y and z, real addition +, and real less than or 

equal to <, the triangle inequality 

VxV;yVz[y( . t , ; y )+*/ (>>,z )  >d(x , z )~] ,  

is a common first order formula found in the study of metric spaces. A principal congruence 

formula is an example of a first order formula that will be used in later sections and chapters 

of this document. 

Definition. A principal congruence formula is a first order formula jt(h>I,h>2,W3,h>4) of 

type T that is of the form 

3K^WI *H(XUK)A /\ (^(YF^JW/I+I^I+I.FT)) A/„(Yn,J) «W2J, (1.2) 
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where n is a positive integer and the symbol k denotes a vector of variables distinct from wj, vt>2, W3 

and  W4.  Fur ther ,  fo r  a l l  1 < i  < n ,  we have  {*; , )> , •}  =  {W 3 ,H> 4 }  and  the  t e rm t t  i s  o f  type  T 

over {xi,yt} and the variables in k. 

For b\ ,b2 ,h  and £4 in B,  we may represent jr^4) holding in B using the 

following staircase diagram: 

b \  = f f ( j q , e )  

t f ( y \ , e )  =  t f ( x 2 , e )  

t2 (y2 ,e )=t f (*3 ,e )  

tn-i(y n-i, e )  = t*{x n , e )  

$ (y n , e )  = b2 ,  

where for all 1 <i<n,  we have = {£3,64} and e  is a vector of members from B.  

Theorem 12.1 (Mal'cev's Principal Congruence Formula Theorem). Let B be an algebra 

and {&i,&2,^3)^4} - B- Then, {b\,bi) is in CgB((^3,i>4)) if and only if, for some principal 

congruence  formula  n ,  the  a lgebra  B sa t i s f i es  J t (b i ,b 2 , b i ,b4) .  

10 



Corollary 122. Let B be a unary algebra and b\, b2, 63 and £4 be members in B. If 

(b\,b2) is in CgB((bi,b4)) then there exists some set ofn unary terms realized in B, say 

{ti}"=i> such t^at 

b\=t f (x \ )  

'J-lfrn-l ) = *?(*!.) 

$(yn)  = b 2 ,  

where for all 1 <i<n,we have {x;,}1;} = {^3,^4}. 

Proof The principal congruence formula guaranteed to exist by Theorem 1.2.1 is of the 

form of Statement (1.2), where the terms are unary. • 

Loosely speaking, if an equivalence relation is a congruence, then the fundamental 

operations respect the equivalence relation. In fact, this idea leads to a natural construction 

of an algebra based on the congruence. 

Let B be an algebra of type T and 0 be a congruence on B. Further, let 

B/6  = {b /6  |  b  e B}  where b/6  = {b \  tB-b  6  b i } .  

For all positive integers n and b\ through bn in B, define for all / in Tn, 

f B / e (b l /d ,b 2 / e , . . . , b n /o )=f B ( i>ub 2 , . . . , b n ) /o -

The resulting algebra B/6  -  (B/6;  J 7 )  is called the factor algebra or the quotient algebra 

of B by 6. The notation B/6 is read as B modulo d or just B mod d. 
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We may think of B/6  as a collapsed copy of B. Further, we may think of 6  as a set 

of instructions that describe how to collapse B without forcing the operations to become 

multivalued. 

Definition. Let B and M be two algebras of the type T. For all positive integers n, if the 

function fcB->M satisfies the property 

for all / in Tn and {6,}"=1 £ B, then h is called a homomorphism. 

Given a homomorphism h:  B -• M, the relation defined on B 2 ,  

ker(h )  = {{b x , b 2 ) e B 2 :  h (b \ )  =  h (b 2 ) } ,  

is called the kernel of h. This relation is denoted by ker (h) and can be shown to be a 

congruence on B. 

Theorem 123 (First Isomorphism Theorem). Let h\--B -*• M be a surjective homomor­

phism. Then, there is an isomorphism h2 from Bjker (hi) to M defined by h\ = /12 ° /13, 

where h-$ is the homomorphism from B to B J ker (hi) obtained by mapping each element in 

B  to  the  congruence  b lock  tha t  i t  i s  a  member  o f  in  B fker (h x ) .  

If h is surjective, then M is called a homomorphic image of B. If h is injective, then h is 

called an embedding of B and B is said to be embedded into M. If h is bijective, then h is 

called an isomorphism. If h is an isomorphism and B = M then h is called an automorphism. 

If M is a homomorphic image of B, then by the First Isomorphism Theorem, there exists 

a congruence 6 such that M = B/0. That is, all homomorphic images of B are collapsed 

copies of B with the elements in the universe of the collapsed copy relabelled. 
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To every congruence 6 on B there corresponds a surjective homomorphism, vg:B 

B/0 called the natural homomorphism, defined by vg(b) =b/6. To every surjective homo­

morphism of B corresponds a congruence, namely, ker (h). Thus, there exists a one-to-one 

correspondence between the set of congruences on B and the set of homomorphic images 

of B. 

In general, direct powers of an algebra (direct products where each factor is the same al­

gebra) yield an algebra with a larger universe, while subalgebras and homomorphic images 

of an algebra yield an algebra with a smaller universe. 

123 Subdirectly Irreducible Algebras 

Subdirectly irreducible algebras play a large role in the Restricted Quackenbush Problem. 

For the following few definitions, let n be a positive integer and I be some index set such 

that B and each member of {B,};€/ are algebras of the same type. 

Let X denote a non-empty set. For each positive integer n and 1 < i < n, the i'h n-ary 

projection map is a function from Xn to X that maps each n-tuple in X" to the value in 

the ith coordinate of the n-tuple. 

The j'th n-ary projection map is denoted by the symbol xWhen the /th n-ary projection 

map is restricted to some proper subset of its domain, p, is used in place of TT, . 

The algebra B is said to be a subdirect product of the B, 's if for some index set /, 

BsnB, and for all tin/, p,(B) = B/. 
!€/ 

An embedding h from B to J~[B/ is a subdirect embedding if /i(B) is a subdirect product of 
(€/ 

the B,'s. 

Definition. The algebra B is subdirectly irreducible if for every subdirect embedding 

h:B-+H B i '  
IE/ 
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there exists j in / such that B = B7. 

Unfortunately, using the formal definition of subdirectly irreducible in practice is net-

tlesome. Luckily, a tool, given as an upcoming theorem, is available. 

Definition. Let B = {B\!F) be an algebra and let Con B denote the set of congruences on B. 

For 0i and 02 in Con B, let 

• 0i ACon B 02 denote 0j n02 and let 

• 0j vCon B 02 denote the least congruence on B containing 0i and 62. 

Then (Con B;AConB ,vConB) forms a lattice called the congruence lattice of B. The con­

gruence lattice of B is denoted by Con B. 

Theorem 12.4. Let B = (B;!F) be an algebra. The lattice Con B has a minimum non-As 

congruence or B is trivial if and only if B subdirectly irreducible. 

The minimum non-As congruence of a subdirectly irreducible is called the monolith 

of B. 

The two following examples demonstrate how to apply the above theorem to show that 

an algebra is subdirectly irreducible. 

Example. The commutative groupoid E3, whose single fundamental operation is described 

in Table 1.4, is subdirectly irreducible. The congruence lattice of E3, depicted in Figure 

1.1, has a minimum non-A#, congruence, namely, {0,1 }2 u AE3 . 

Example. The unary algebra E4, whose fundamental operations are described in Table 1.5, 

is not subdirectly irreducible. The congruence lattice of E4 is depicted in Figure 1.2. There 

are three minimal non-A£4 congruences, namely, 

{0,3}2UA£4, {1,3}2UA£4 and {2,3}2uA£4; 

but, there does not exist a minimum non-Af4 congruence. 
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*E3 0 12 3 

0 0 10 1 

1 10 0 1 

2 0 0 11 

3 1 1 1 1  

Table 1.4: The 

Operation Table of *E3 

/E4 g®4 hE4 

0 3 0 0 

1 1 1 3 

2 2 3 2 

3 3 3 3 

Table 1.5: The 

Operation Table of /E4, 

g®4 and A®4 

{0,1,3}2uA£3 

,1}2uA£3 

OA* 

Figure 1.1: The Congruence Lattice of E3 

VE4 

{123}2uA £4 

{2,3}2uA£4 

Figure 1.2: The Congruence Lattice of E4 

Is the trivial algebra really subdirectly irreducible? The answer depends on whom this 

question is asked to. See §8 of Chapter 2 of [2]. For our purposes, we consider the trivial 

algebra to be subdirectly irreducible. 
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As we shall see in Theorem 1.2.8, in the next subsection, subdirectly irreducible alge­

bras are a key component in understanding varieties. 

1.2.4 Varieties 

A class of objects that is of great interest in Universal Algebra is the class of varieties. 

In this subsection, the definition of a variety is given and the relationship between the 

variety and subdirectly irreducible algebras in the variety is explained. We then define 

many popular subclasses of varieties. This subsection is concluded with a tool that is useful 

in classifying varieties: the residual character of a variety. 

12.4.1 Definition of a Variety 

Due to Birkoff and Tarski, there exist two very different views of a variety. We present both 

as, under certain conditions, one is easier to apply than the other and vice versa. 

Let K denote a class of algebras, all of the same type. 

•  F ( K )  to be the class of all direct products of non-empty families of members in K ,  

•  § ( K )  to be the class of all subalgebras of each member in K ,  

• H(£) to be the class of all homomorphic images of each member in K, 

•  P S (K)  to be the class of all subdirect products of non-empty families of members 

in K and 

• Pfin(^) to be the class of all direct products of non-empty finite families of members 

in K. 

Here, P,S, H, P$ and Pfin are operations acting on a class of algebras of the same type. In 

particular P, § and H play a critical role in the construction of a variety. 
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Definition. A non-empty class of algebras, all of the same type, that is closed under P, § 

and H is called a variety. 

If AT is a non-empty class of algebras, all of the same type, then denote V(A') as the 

smallest variety that contains K. The class of algebras V(K) is called the variety generated 

by K. The variety V is said to be finitely generated if V = ¥(A"), where K is a finite set 

of finite algebras. If K contains exactly one member, suppose B, then V(B) is commonly 

u s e d  i n  p l a c e  o f  V ( K )  o r  V ( { B } )  t o  d e n o t e  t h e  v a r i e t y  g e n e r a t e d  b y  K .  

For K, a non-empty class of algebras of the same type, we may use Tarski's HSP 

Theorem to interpret ¥(K) as the class of all homomorphic images of all subalgebras of all 

possible direct products of members in K. 

Theorem 1.2.5 (Tarski's HSP Theorem). Let K denote a non-empty class of algebras, all 

of the same type. Then V(AT) = HSP(AT). 

We show that a finitely generated variety is equivalent to a variety generated by a single 

finite algebra, as these two constructions of a variety are often used interchangeably. 

Lemma 1.2.6. The variety V is finitely generated if and only if V is generated by a single 

finite algebra. 

Proof. For the forward implication, assume that V is a finitely generated algebra. That is, 

for a positive integer n, let {B,}"=1 denote a finite set of finite algebras, all of the same type 

such that V = V({B,}"=1). We show that 

(1.3) 

to obtain the desired result: the variety V is generated by a single finite algebra. 

Using Tarski's MSP Theorem, or Theorem 1.2.5 

n 

JIB, € P({B,}»,,) cHSP({Bj}"=1) = V({B, 
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Hence, 

v(nB>)EV(«?,,). (i.4) 

Note that for all i between 1 and n, inclusive, 

is a surjective homomorphism. That is, 

each B, is a homomorphic image of n*. 
i= 1 

Therefore, 

Thus, 

V({Bi}"=1)s vfpjBjj. (15) 

The subset relations in Statement (1.4) and Statement (1.5) yield the equality in State­

ment (1.3). 

The reverse implication is immediate. • 

Let K denote a class of algebras. If there exists a set of identities 2, of type T over 

some set of variables, such that K is equal to the class of all algebras of type T that satisfy 

each identity in 2, then K is called an equational class. 

Theorem 1.2.7 (Birkoff). Let K denote a class of algebras, all of the same type. The class 

K is a variety if and only if K is an equational class. 

Thus, there are two ways to interpret V(B): 

1. the class of all homomorphic images of subalgebras of direct powers of B with a 

non-empty index, that is, HSP(B) or 

2. the class of all algebras of type T that satisfy all of the identities in Id{B}. 
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12.42 Essential Building Blocks of the Algebras in Varieties 

The following Theorem explains the importance of determining what the subdirectly irre­

ducible algebras in a given variety are. 

Theorem 1.2.8 (Birkoff's Theorem). Let V be a variety. Every member in V is isomorphic 

to a subdirect product of subdirectly irreducible members in V. 

Therefore, the subdirectly irreducible members in a variety are, loosely speaking, the 

building blocks of the members in a variety. Their importance is that they yield a deeper 

understanding of the structure of varieties. 

12 A3 Flavours of Varieties 

We give a brief outline of a few popular subclasses of varieties. The first few subclasses 

require that we look at the congruence lattice of the algebras in a given variety. 

The algebra B is said to be congruence-distributive if Con B satisfies the distributive 

identities. That is, B is congruence distributive if Con B satisfies the identities 

XV(YAZ) RS (xvy) A(JCVZ) and -*A(Y vz) * (XA>>)V(.*AZ). 

This means that for all 6\, 02 and 03 in Con B, 

0! VCON B (02 ACON B 03) = (0! VCON B 02)  ACON B (0! VCON B 03) 

and 

01 ACON B ( 02 VCON B 03 ) = ( 01 ACON B 02 ) VCON B ( 0! ACON B 03 ). 

If Con B satisfies the meet-semidistributive formula 

VjtV_yVz[jcA)> «jEAz-»-.XA;y » jca (y vz)], 
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then B is said to be congruence-meet-semidistributive. Note that Con B satisfies the above 

first order formula if and only if for all Q\, 02 and 63 in Con B, 

01 A 02 * 01 A 03 01" 01 A 02 = 01 A ( 02 V 03 ) 

Let o\ and 02 be two binary relations on the set B. The relational product of o\ and 02 

is defined as 

{{a,c)  |  3b  tB  such that (a ,b )  e 0\  and (b ,c )  e cr2} 

and is denoted by o\  002 .  The congruence lattice of B is said to be permutable if for all 0i 

and 02 in Con B 

01 o 02 = 02 o 0j. 

If the congruence lattice of B is permutable, then B is said to be congruence-permutable. 

If the congruence lattice of B satisfies 

then Con B is said to be modular and B is said to be congruence-modular. 

Both congruence-distributivity and congruence-permutability imply congruence-

modularity. Hence, if a variety is not congruence-modular, then that variety is neither 

congruence-distributive nor congruence-permutable. 

One can determine if a finite lattice, and hence a finite congruence lattice, is not modular 

by looking at the Hasse diagram that corresponds to the lattice. Let N5 be the lattice 

depicted by the Hasse diagram in Figure 1.3. 

Theorem 12S (Dedekind's Theorem). A lattice is not modular if and only if N5 can be 

embedded into the lattice. 
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0 

Figure 1.3: The Lattice N5 

The following definition is taken from [16]. An algebra B is said to be congruence-

regular if and only if every congruence of the algebra is completely and uniquely deter­

mined by any equivalence class. Groups and rings are examples of congruence-regular 

algebras. 

Definition. If all algebras in a variety V are congruence-distributive, congruence-meet-

semidistributive, congruence-permutable, congruence-modular or congruence-regular then 

V is said to be congruence-distributive, congruence-meet-semidistributive, congruence-

permutable, congruence-modular or congruence-regular, respectively. 

A Mal'cev condition is an identity or set of identities, that involves a particular term, 

such that when satisfied by all algebras in a given variety, implies a particular property 

must hold for the variety. For example, there exist Mal'cev conditions that can be used to 

determine if a variety is congruence-distributive, if a variety is congruence-permutable or 

if a variety is congruence-modular. The next example shows how a Mal'cev condition can 

be used to show that all varieties of lattices are congruence-distributive. 
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Example. All varieties of lattices are congruence-distributive. It is known that for a vari­

ety V and ternary term t(x,y,z), if V satisfies 

t  ( x ,  x ,  y)  « T (x, y, x )  M  t  (y,x, x )  X,  (1.6) 

then V is congruence-distributive. The identities above form an example of a Mal'cev 

condition. If such a term exists, it is called a majority term for V. 

Let V be a variety of lattices, L be a lattice in V and 

t ( x , y , z )  = (*vy) A (x vz) A ( y  v z ) .  

It can be shown, using the absorption identity, that for all 11 and £2 in L, 

«rL(€i,£2,^i) * h -

Therefore, L satisfies the identities listed in Statement (1.6) and hence V satisfies the same 

identities. Thus, V is congruence-distributive. 

An algebra B is said to be locally finite if every finitely generated subalgebra of B is 

finite. A variety V is locally finite if every algebra in V is locally finite. As the next theorem 

states, every finitely generated variety is locally finite. 

Theorem 12.10. I f  B i s  a  f i n i t e  a l g e b r a ,  t h e n  V(B) is a locally finite variety. 

12.4.4 Residual Character of a Variety 

A method of classifying varieties is by the existence of or size of the minimum bound on 

the cardinalities of the subdirectly irreducible algebras in the variety. 

Definition. Let V be a variety. If there exists a least cardinal number K such that the 

cardinality of the universe of every subdirectly irreducible member in the variety is less 

than K, then K: is called the residual character or residual bound of V. 
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There also exist more general classifications of varieties that involve the residual bound. 

A variety V is said to be 

• residually large if no such cardinal number K exists, 

• residually small if the cardinal number JC exists, 

• residually finite if the cardinality of the universe of each subdirectly irreducible mem­

ber in V is finite and 

• residually < N if, for some fixed positive integer N, the cardinality of the universe of 

each subdirectly irreducible member in V is less than N. 

Determining the residual character of a given variety, or deciding if a given variety is 

residually finite, is generally extremely difficult. 

Example. Consider the groupoid e5, whose binary operation table is given in Table 1.6. 

The binary operation *Es is the first projection map on {0,1 }2. What is the residual charac­

ter of V(E5)? 

0 1 2 •• n-1 n 

0 0 0 0 0 0 

1 1 1 1 1 1 

2 2 2 2 •• 2 2 

*ES 0 1 : : : 

0 0 0 n-1 n-1 n-1 n - 1  •• n-1 n-1 

1 1 1 n n n n n n 

Table 1.6: The Operation Table 1.7: The Operation Table of *B, for a Finite 

Table of *Es Algebra B in V(E5) 
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As E5 satisfies the identity x * y < * x ,  every member in V(Es) satisfies the same identity. 

Therefore, for all finite B in V(Es), the operation table of *B looks like that given in 

Table 1.7. 

Let b\ and b2 in B and define 

Further, let 

r = & B u { ( b i , b 2 ) , ( b 2 , b i ) } .  

Certainly, t c d(h{ h2y Is there something in 0{bub2) that is not in r? To answer this, we 

n e e d  t o  n o t e  t h a t  r  i s  t h e  s m a l l e s t  r e f l e x i v e ,  s y m m e t r i c  a n d  t r a n s i t i v e  s e t  c o n t a i n i n g  { b \ , b 2 ) .  

We verify that it is a subuniverse of B2 as this is tantamount to t satisfying the compatibility 

property. To see that T is a subuniverse of B2, note that if {t\,t2) and <^4) is in r then 

{*i>'2)*BxB{'3,^4) = (*i * B h , t 2 * V h )  

=  { h , h )  

e A B u  { { b u b 2 ) , ( b 2 M ) } -

Hence, r is the smallest congruence on B that contains { b \ , b 2 } .  That is, 

for all b{ and&2 in B, we have 0{bub2) = AB^{(bi,b2),(b2,bi)}. (1-7) 

Suppose that B is in V(Es) and |Z?|>2. Without loss of generality, assume that {b 1, b2, £3} 

is a three element subset of B. Under this assumption, and using Statement (1.7), we have 

d ( b i , b 2 ) A C o n  B  e ( b 2 , b 3 )  =  (A« u {<^1M ,  { h , b \ )}) n (Ab u {<^2,^3), ( h , b 2 ) } )  

=  & B u ( { ( b i , b 2 ) , { b 2 , b i ) } n { ( b 2 , b 3 ) , ( b 3 , b 2 } } )  

= Ab U0 

= AB-
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Neither 0^, ^ nor D{b2,b3) equals A B , but, their meet is A B - Thus, the algebra B cannot 

possible have a monolith and therefore is not subdirectly irreducible. We have just shown 

that if B is in V(Es) such that \B\ > 2 then B is not subdirectly irreducible. In fact, the 

only subdirectly irreducible algebras in V(Es), up to isomorphism, are E5 and the trivial 

algebra. That is, V(Es) is residually < 3. 

Must all residually finite varieties be residually < N, for some positive integer /V? The 

following example, taken from a footnote in [8], will show that the answer is no. 

A Pixley variety is a variety of finite type that is residually finite, but, is not residually < 

N, for any positive integer N. Note that a Pixley variety is not required to be finitely 

generated. 

Example. Consider the variety V of all bi-unary algebras over the language {/,g} that 

satisfy the following identities: 

( f ° 8 ) ( x ) " x  and /)(*)«*. (1-8) 

In the remainder of this section, we show that V is a residually finite variety that is not 

residually < N, for any positive integer N, and that V is not finitely generated. Throughout 

the proofs of this claim, we make use of the fact, shown in the next lemma, that all unary 

algebras in V have at least one irredundant basis. 

Lemma 1.2.11. Every member of V has at least one irredundant basis. 

Proof. Let B be a member of V. Let GB denote the undirected multi-graph obtained by 

removing the labels from the edges and their direction, in the graph that corresponds to B. 

For all r\ and ri in B, say that (r\,ri) is in the relation R if and only if r\ and r2 are in the 

same component of gB- Thus, there exists a path from r\ to r2 in gB if and only if (n ,r2) 

is in R. That is, there exists a finite sequence {&'}"=0, of members in B such that b'Q = r\ 
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and b'n = ri and 

/ B ( ^ )  =  ̂ + 1 ,  f B ( b ' j + l ) = b ' j ,  g
B ( b 'j) = b ' J + l ,  or g

B ( b ' j + l ) = b ' j  

for all 0 < j < n. Note that the path from r\ to ri must be finite. 

Since B satisfies the identities in Statement (1.8), 

for all 0 < j < n  we have f B ( b ' j )  =  b'j+l or gB(b' j )  =  b'j+l. (1.9) 

Without loss of generality, assume that f B ( b ' Q )  =  b ' v  We show that f B ( b ' j )  =  b ' j + l  for 

all 0 < j < n, using weak induction. We have already dealt with the base case. For the induc­

tion hypothesis, assume that fB(b'k_j) = b'k, for some k less than n. Using Statement (1.9), 

we have 

f B ( b ' k )  =  b ' k + 1 or 8B(b'k)=b'k+l. 

If the former of the two outcomes occurs then we are done. Suppose, for a contradiction, 

that the latter of the two outcomes occurs. That is, assume that gB(b'k) = b'k+l. Since B 

satisfies the identities in Statement (1.8), we apply gB to fB(b'k_l) = b'k to obtain gB(b'k) = 

b'k_p by the induction hypothesis. This is impossible as gB is not a multi-valued opera­

tion. Since a contradiction occurred under the assumption that gv(b'k) = b'k+l, we must 

have that fB(b'k) =b'M. This completes the induction process. Thus, fB{b'j) = b'j+x for 

a l l  0  <  j  < n .  

We have just shown that either 

w r w - K  or («Bm) 

Thus, the subuniverse generated by any member in B generates the component that that 

member belongs to in gB- Therefore, picking a representative from each equivalence class 

modulo/? yields an irredundant basis. • 
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Note that in the proof of the previous lemma, producing an irredundant basis required 

the use of a choice function when picking one member from each equivalence class modulo 

R. That is, the Axiom of Choice is implicitly being applied. 

Lemma 1.2.12. Let B be member of V and S be an irredundant basis ofB. If |S| > 3, then B 

is not subdirectly irreducible. 

Sketch of Proof. For a positive integer m, given a term t = t\ °t2°---°tm, with t i  in {/, g}, 

set t = tmotm..\ o--oFi where?,- is in {f,g}\{ti}. For example, 

if t  =  f o g o g o f o f o f o g  then t = f o g o g o g o f o f o g .  

Note that (t o t) ( x )  «  x  by Statement (1.8). 

Let si and 52 be in S such that si * S2. Note that for all terms t\ and ti of type {/, g}, we 

m u s t  h a v e  t f ( s \ )  *  t f  ( $ 2 )  a s  o t h e r w i s e ,  t h e r e  e x i t s  a  t e r m  t  o f  t y p e  { f , g }  s u c h  t h a t  t B ( s \ )  =  

S2 and hence S is not an irredundant basis. To see this, assume that ($1) = tf fa). Let 

t = t2°ti and 

fB(*i) =  ( ( J i ) B ° t f ) ( s i )  - ((5)®°*?)(*2) = s 2 .  

Therefore, 

forallsi and 52 in S,if si #52 then SgB({si})nSgB ( { s 2 } )  =  0 .  ( 1 1 0 )  

We require Lemma 2.2.2 on page 57, that will be proved in a later chapter. The lemma 

states that, for unary algebras, if Mi is a subalgebra of Bi and 6 is a congruence on Mi, 

then 

CgBl(0) = 0uAfil. 
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3 By hypothesis |S| > 3. Without loss of generality, let 1,52,^3,54} be a four element 

subset of S. Then, acknowledging that 

(SgB({,i})uSgB({,2})) and (SgB({s3}) u SgB({s4})) 

are congruences on 

SgB({^i})uSgB({52}) and SgB({s3}) uSgB({54}), 

respectively, and that both are subalgebras of B, we can apply Lemma 2.2.2 and utilize 

Statement (1.10) to obtain the following: 

CgB|(SgB({51})uSgB({j2 } ) ) 2 ) A ConBCgB|(SgB({53})uSgB({54} ) ) 2 j  

= ^(SgB({5i})uSgB({s2})) uABJn^(SgB({s3})uSgB({54})) uABj 

= |(sgB({*i})uSgB({s2})) n(SgB({53})uSgB({^4})) juAB 

= 0uAg 

= A B-

Since we obtained a meet of two non-trivial congruences that equate to AB , the congru­

ence lattice of B cannot possibly have a minimum non-trivial element. That is, B is not 

subdirectly irreducible, under the assumption that \S\ > 3. • 

We define an algebra called Q in V that plays a crucial role in the proof of an upcoming 

lemma. Let Q = {Q\ where Q is the set of integers and for all q in Q, 

f Q ( q )  =  q  + 1 and g Q ( q ) = q ~ l ,  (1.11) 

using regular integer addition and subtraction. 
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Lemma 12.13. The algebra Q is not subdirectly irreducible. 

Proof. For each prime p, the equivalence relation modulo p, denoted by =p, is an equiv­

alence relation on Q because it is an equivalence relation on the integers with the usual 

operations. Since for all q\ and qi in Q and any prime p, 

q i = p < l 2  if and only if <?i +1 <?2 +1 if and only if <7i -1 =/><72_ 

the relation =p is a congruence on Q. 

Consider the congruence 

0 = (~1 =p • 
p  is prime 

Suppose that ( q \ , q i )  is in Q .  Then for any prime p ,  we have p  |  ( q \  - q i )  and <71 -qi is an 

integer. This can only occur if q\ = qi- Therefore, 6 = AQ. That is, 6 is a meet of non-Ag 

congruences that is equal to AQ. Hence, Q cannot have a monolith and is therefore not 

subdirectly irreducible. • 

Lemma 1.2.14. Let B be in V and S be an irredundant basis of B. If \B\>a> and \S\ < 3, 

then Q can be embedded into B. 

Proof. As |S| < 3 and |B| > co, there exists s in S such that SgB({j})| > co. Note that since / 

undoes g and vice versa, 

SgB({s}) = { h " ( s )  |  h  is in {/B,gB} and n  is a positive integer} u {5}. 

Since V satisfies the identities in Statement (1.8), for all hi and A2 in {/B,gB} and positive 

integers n\ and «2.we have 

hn
x1 (5) t s and 

(1.12) 

if h."1 (5) = h ^ { s )  then h \  = h i  and n \  =  n i  
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as otherwise jSgB({s})| < to. 

Let 

D = (sgB(W);/D,sD), 

where f D  =  /B to and g D  =  g B  \ D .  It is easier to work with Q, defined on page 28, than it is 

to work with D. 

Since / undoes g  and vice versa, for all positive integers n ,  define f ~ n  to be g n .  We 

show that a Q^D,defined by 

a { q )  
( f D ) q ( s )  if <7*0 

s if q = 0 

is an isomorphism and continue onward using Q in place of D. Statement (1.12) implies 

that a is injective. From its definition, a is surjective. To show that a is a homomorphism, 

we look at 3 cases, dependent upon what q is. 

Case 1 Assume that q is in £?/{-l,0,1}. 

«(yQ(«))=<»(4+i) 

=(/°r'w 

=/D((/>)»(J)) 

=/"(«(?)) 

Case 2 Assume that q is in {1, -1}. 

a(/Q0)) = «(2) 

=/D(/D«) 

=A«(i» 
Use a similar idea when q  =  - 1 .  

«(sQ(«)) = <*(«-!) 

= (/")«-'W 

= SD((/D)'W) 

= «"(«(«)) 

a(g«(l)) = a(0) 

= 5 

= SD(/D(*)) 

= 8°( a(l)) 
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Case 3 Assume that q = 0. 

a(/<>(0)) = a(l) 

=  f % )  

= /D(a( 0)) 

«(§Q(0)) = «(-1) 

= gD(-s) 

= gD(a(0)) 

As, D is a subalgebra of B and Q is isomorphic to D, we have just shown that Q can be 

Theorem 1.2.15. The variety V ofalibi-unary algebras satisfying the identities (f°g){x) 

and (g o f)(x) « x is residually finite. 

Sketch of Proof. Let B be an algebra in V and S be an irredundant basis of B. Recall 

Lemma 1.2.12: If |S| > 3, then B is not subdirectly irreducible. Further, recall Lemma 

1.2.14: If |£| > to and |S| < 3, then Q can be embedded into B and Q is not subdirectly 

irreducible. 

To continue, we use Lemma 2.2.6 on page 59, that will be proved in a later chapter. 

The lemma states that if Mi is a subalgebra of Bj and Bj is a subdirectly irreducible unary 

algebra then Mi is subdirectly irreducible. The contrapositive of this Lemma applied to 

Lemma 1.2.14 yields the following: if |B| > to and |S| < 3 then B is not subdirectly irre­

ducible. This implication together with Lemma 1.2.12 imply that if |2?| > to, then B is not 

subdirectly irreducible. Finally, we have shown that V is residually finite. • 

Theorem 12.16. The variety V of all bi-unary algebras satisfying the identities (f°g)(x)*x 

and (g o /) (jc) « x is not residually < N,for any positive integer N. 

Proof. Suppose that B is a singly generated finite member in V. Under these assumptions, 

the graph of B can best be described as a cycle. In particular, for a prime number p, the 

prime cycles 

embedded into B. • 

Pp = ({0,l,2,...,p-l};/p>,*p'), 
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where 

f V p ( x )  = x +  l(mod p )  and g P p ( x )  = x - l(mod p ) ,  

are of interest. See Figure 1.4 for the graphs of P2, p3 and p5. The prime cycles are of 

interest because they are simple and hence subdirectly irreducible. Thus, since there exist 

infinitely many primes and V contains all prime cycles, V is not residually < N, for any 

positive integer N. 

Figure 1.4: The Graphs of the Prime Cycles Pj, P2 and p4 

• 

Theorem 1.2.17. The variety V of all bi-unary algebras satisfying the identities (f°g)(x)*x 

and (g°f)(x) » x is not finitely generated. 
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Sketch of Proof. Notice that all of the prime cycles are singly generated. We can use this 

fact to show that V is not finitely generated. To do this, we use Lemma 1.3.3 on page 37, 

that will be proved in a later chapter. The Lemma can be used to show the following: for 

the finite unary algebra W, where \W\ = w, if U is a singly generated algebra in V(W), 

then |I/| < ww. Since V contains all prime cycles, there can exist no finite algebra that 

generates V. Therefore, V is not finitely generated. • 

Thus, V is a residually finite variety; however, V is neither residually < N, for any 

positive integer N, nor is V finitely generated. 

13 Origin and Evolution of the Problem 

The Restricted Quackenbush Problem started as a more general question posed to others 

in an article by Quackenbush. The crux of the problem is to determine if residually finite 

implies residually < N, for some positive integer N. Around the time of the problem's 

conception, "very little was known ... about [the] residual smallness of specific varieties" 

and posing the problem "nicely exposed our [everyones] ignorance and caused a lot of work 

to be done" (McKenzie, [10]). 

13.1 Quackenbush's Problem 

The earliest precursor of the Restricted Quackenbush Problem appeared in 1971: 

" The example given below shows that an equational class K can have the 
following property: (*) fC has infinitely many finite subdirectly irreducible 
algebras but no infinite ones. In the example below, fC is not generated by a 
finite algebra. Does there exist a finite algebra such that the equational class 
it generates has (*)? Can the algebra be of finite type; can it be a groupoid, 
semigroup, or group? " 

(Quackenbush, [ 15]) 
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Note that when discussing the number or amount of subdirectly irreducible algebras, 

Quackenbush implicitly means up to isomorphism. 

Although written in 1969, the article [14], by A. Ju. Ol'sanskii, can be used to an­

swer Quackenbush's problem, with respect to groups. Specifically, Ol'sanskii proves the 

following Theorem, 

Theorem 13.1 (Theorem 2, [14]). I f V  i s  a  v a r i e t y  o f  f i n i t e l y  a p p r o x i m a b l e  g r o u p s ,  i t  

contains a finite group B such that any other group in V is embedded in some full direct 

power of B. 

As is described in his paper, a finitely approximable group is a residually finite group. 

Thus, Ol'sanskii's result can be restated as follows: If V is a residually finite variety, then 

there exists a finite group B such that V = ISP(B). Projection maps can be used to show that, 

up to isomorphism, the subdirectly irreducible algebras in ISP(B) are all in §(B). Thus, up 

to isomorphism, there exist only a finite number of finite subdirectly irreducible algebras 

in ISP(B). Therefore, Ol'sanskii showed that if V is a variety of groups, and hence an 

equational class of groups, that contains no infinite subdirectly irreducible algebras then V 

contains, up to isomorphism, a finite number of finite subdirectly irreducible algebras. That 

is, Ol'sanskii's result can be used to answer Quackenbush's question negatively for groups. 

Not long after the Quackenbush's problem was posed to the public, a more succinct 

version appeared in [17], We will call this version of Quackenbush's problem the Quacken­

bush Problem. 

Problem (Quackenbush Problem). Does there exist a finite algebra B such that V(B) con­

tains infinitely many finite subdirectly irreducible members but no infinite subdirectly irre­

ducible members? 
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We will show in the next section that the Quackenbush Problem can be rephrased as 

follows: Does there exist a finite algebra B such that V(B) is residually finite and not 

r e s i d u a l l y  < N ,  f o r  a n y  p o s i t i v e  i n t e g e r  N !  

In 1975, Baldwin and Berman partially answered the Quackenbush problem. They 

assume that the language of B is finitary and countable. That is, the arity of the operation 

symbols in the language of B is finite and there can exist at most countably many operation 

symbols. To describe what Baldwin and Berman did, we need to describe what is meant by 

a variety having definable principal congruences. 

Let FI denote the set of principal congruence formulas of type T over some infinite set 

of variables K. A variety V is said to have definable principal congruences if there exists a 

finite set IIo 9 n such that for all B in V and all b\, bz, 63 and 64 in B, the 2-tuple (61,62) is 

in CgB((&3,£>4)) if  and only if ,  for some n in Ilo,  the algebra B satisfies ^(61 , 6 2 , 6 3 , 6 4 ) .  

With regard to the Quackenbush Problem, Baldwin and Berman show "that there is no 

such variety with definable principal congruences" (Baldwin and Berman, [1]). Specifi­

cally, they proved that the Quackenbush Problem is answered negatively if the variety has 

definable principal congruences (Theorem 4). They prove this under the assumption that 

the variety is only residually small and not necessarily residually finite. Further, they do 

not assume that the variety is finitely generated. 

As McKenzie showed that all directly representable varieties have definable principal 

congruences, the Quackenbush Problem is settled negatively for Boolean algebras. See 

Chapter 3 §13 of [2] for a definition of a directly representable variety. See Chapter 5 §3 

of [2] for a proof showing that a given variety being directly representable implies that the 

same variety has definable principal congruences. 

Further, Baldwin and Berman prove that if a variety is locally finite and has the congru­

ence extension property, then that variety has definable principal congruences (Theorem 3). 
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See the set of exercises in Chapter 2 §5 of [2] for a definition of the congruence extension 

property. Hence, if B is a unary algebra, then the Quackenbush Problem is answered neg­

atively, as all finitely generated varieties are locally finite and all classes of unary algebras 

have the congruence extension property. 

A few years later, in 1979, Taylor answered the Quackenbush problem negatively when V(B) 

is congruence-permutable and congruence-regular. The central theorem in Taylor's article 

[17] is that if B is a finite algebra, with V(B) being congruence-regular and congruence-

permutable, and V(B) containing arbitrarily large finite subdirectly irreducible algebras, 

then it contains an infinite subdirectly irreducible algebra. As all rings generate congruence-

permutable and congruence-regular varieties, the Quackenbush Problem is answered neg­

atively if B is a finite ring. That is, there does not exist a finite ring B such that V(B) 

contains infinitely many finite subdirectly irreducible members and no infinite subdirectly 

irreducible members. 

132 The Reworded Quackenbush Problem 

In 1981, the wording of the problem changed; but, the crux of the problem remained exactly 

the same. The following rewording of the Quackenbush Problem appeared in [4]: 

Problem (Reworded Quackenbush Problem). Does there exist a finite algebra B such that 

V(B) is residually finite and not residually < N,for any positive integer N? 

We show, in an upcoming theorem, that the Quackenbush Problem and the Reworded 

Quackenbush Problem are equivalent problems. First, we require a few technical lemmas. 
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132.1 The Equivalence of the Quackenbush Problem and the Reworded Quacken-

bnsh Problem 

The following Lemma makes use of the free algebra of type J7 over the set of variables X - {*} "=, 

in the variety V. This special algebra is denoted by Fy(X). Though much can be said of 

the free algebra, all we need to know is that Fy(X) is in V and that Fy(X) has the universal 

mapping property for V overX. That is, for all B in V and every map 

a-.X -*• B, there exists a homomorphism /3:Fy(X) -• B 

such that for all x  in X ,  we have /3(3C) = a(x). Note that if a ( X )  generates B ,  then B is a 

homomorphic image of Fy(X). Another interesting property of the free algebra is stated 

as the following Lemma. 

Lemma 132. Let B be an algebra of type T. For any positive integer n, the free algebra 

of type T over a setX ofn variables FV(B)PO can be embedded into Blfll'X|. 

The previous Lemma is posed as an exercise on page 85 of §12, chapter 2 of [2]. For 

a complete description of the free algebra, see §10 and §11 of Chapter 2 in [2] or see 

Chapter 4.11 in [13]. 

Lemma 133. Let B = (B\T) be a finite algebra, where |B| = b, and let M be an algebra in 

V(B). IfM has a finite irredundant basis of size n then \M\ < bh". 

Proof Note that if B is trivial then every member in V(B) is trivial and the claim is true. 

Hence, we may assume that V(B) contains a non-trivial member. That is, we may assume 

that b > 1. 

For some positive integer n, let S = {si}"=] denote an irredundant basis of M and let Y = 

{yiljLi ^ a set n variables. Recall that fV(b)(5f) has the universal mapping property. 
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Define a - Y  - * S  by a(j,) = Si. By the universal mapping property, there exists a homomor-

phism 

/3:FV(B)(F)~M 

such that P (yi)= Si for all 1 < i < n .  

Note that as M is generated by 5, every member of M is equal to some term real­

ized in M and applied to members of S. That is, for all m in M, there exists at least one 

term tm(yx ,y2,.. .,y„) of type T over Y = {y,}"=1 such that t%(si,s2, ...,s„) = m. Therefore, 

for all m in M, we have 

P  (fmV(B)(K) (5*1 J2> • • • Jn)) = f m ( P ( y i  f a ) ,  • • • , P ( J n ) )  

=  t m ( s h s 2 , - - - , S n )  

= m. 

Thus, /3 is a surjective homomorphism. 

Using Lemma 1.3.2, we obtain the following sequence of inequalities: 

Ni|fv(B)(F)U|B||S|l" = iB||fir=f^-

This proves the lemma. • 

Corollary 13.4. Let B = {B\T) be a finite algebra of finite type. For any positive integer n, 

there exists only a finite number of members inV(B),upto isomorphism, that are minimally 

generated by n elements. 

Proof. Let |B| = b. By hypothesis, we have |^| < co and b<(o. For each / in T , let r ( f )  

denote the arity of /. Note that if K is a finite set that contains exactly k elements, then 

there exist kkP distinct p-ary operations that can be defined on K. Thus, up to isomorphism, 

t h e r e  c a n  e x i s t  a t  m o s t  ] ~ [  k ^ ( f )  a l g e b r a s  o f  t y p e  T  

(1.13) 

that have a universe with cardinality k. 
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Using Lemma 1.3.3, if M in V(B) is minimally generated by n elements then \M\ < bb". 

Therefore, using Statement (1.13), there can exist, up to isomorphism, at most 

k = l f &  

members of V(B) that are minimally generated by n elements. As all constants are finite, 

the claim is proven. • 

The next Lemma yields some insight into a finitely generated variety being residually < 

N, for some positive integer N. 

Lemma 135. Let B be a finite algebra of type T that generates a residually finite variety. 

The variety generated by B contains finitely many finite subdirectly irreducible members, 

up to isomorphism, if and only ifV( B) is residually < N,for some positive integer N. 

Proof. Since B generates a residually finite variety, all subdirectly irreducible algebras 

in V(B) are finite. If V(B) contains finitely many finite subdirectly irreducible members, 

up to isomorphism, then take the subdirectly irreducible member with maximum cardinality 

and add 1 to determine the residual character of the variety. 

Now suppose that ¥(B) is residually < N, for some positive integer N. Let |fi| = b and Y 

denote a set of N variables. Since FV(B)(^) has the universal mapping property, every 

algebra in V(B) with a universe of cardinality less than or equal to TV is a homomorphic 

image of FV(B)(y). Thus, by the assumption that V(B) is residually < JV, for some positive 

integer N, all subdirectly irreducible members in V(B) are members in H(FV(B)(JO)- By 

Lemma 1.3.3, we know that |/V(B)(*0I ^ ^• Hence, up to isomorphism, H(FV(B)(K)) 

contains a finite number of algebras. That is, V(B) contains finitely many finite subdirectly 

irreducible members, up to isomorphism, • 

We now have all that is needed to show that answering the Reworded Quackenbush 

Problem answers the Quackenbush Problem and vice versa. 
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Theorem 13.6. The Reworded Quackenbush Problem and the Quackenbush Problem are 

equivalent. 

Proof. If the Reworded Quackenbush Problem is answered no then there does not exist 

a finite algebra B that generates a variety that is residually finite and not residually < N, 

for any positive integer N. Therefore, for any finite algebra M, if the variety V(M) is 

residually finite, then V(M) residually < N, for some finite N. Thus, using Lemma 1.3.5, 

if V(B) contains no infinite subdirectly irreducible members, then it contains finitely many 

finite subdirectly irreducible algebras. That is, the Quackenbush Problem is answered no. 

If the Reworded Quackenbush Problem is answered yes, then there exists a finite alge­

bra B such that V(B) is residually finite and not residually < N. Using Lemma 1.3.5, there 

exists infinitely many finite subdirectly irreducible members in V(B), but, no infinite ones. 

That is, the Quackenbush Problem is answered yes. • 

Therefore, since the Quackenbush Problem and the Reworded Quackenbush Problem 

are equivalent, we may state them interchangeably. 

1322 Before the Reworded Quackenbush Problem 

Although the Reworded Quackenbush Problem was asked in 1981, a paper published in 

1964 by Foster and Pixley [3] can be used to answer the problem if V(B) is congruence-

distributive, as pointed out by Kearnes and Willard in [8]. Specifically, Theorem 2.5 of [3] 

can be used. We state Theorem 2.5 without proof and proceed to show that this theorem can 

be used to answer the Reworded Quackenbush Problem if ¥(B) is congruence distributive. 

Theorem 13.7 (Theorem 2.5 of [3]). If B is congruence distributive and B is isomorphic 

to a subdirect product of algebras where n is a positive integer, then every 

homomorphic image of B is isomorphic to a subdirect product of homomorphic images of 
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the Bj. 

Notice that Foster and Pixley's theorem is only applicable to congruence-distributive 

algebras that are isomorphic to a subdirect product of a finite number of algebras. The 

following well known Lemma, will help to deal with this problem. 

Lemma 13.8. Suppose that B is a finite algebra. If M is a member in V(B) and |M| is 

finite, then M is a member in HSP^„(B). 

For the proof of the upcoming theorem, we will need to know what a directly inde­

composable algebra is. A directly indecomposable algebra is one that is not isomorphic 

to a direct product of two non-trivial algebras. They are related to subdirectly irreducible 

algebras in that all subdirectly irreducible algebras are directly indecomposable; but, the 

converse is not necessarily true. 

In the proof of the following Theorem, we make use of Foster and Pixley's Theorem 2.5 

in [3], or Theorem 1.3.7, to show that Reworded Quackenbush Problem is answered nega­

tively with respect to congruence-distributive algebras. 

Theorem 135. The Reworded Quackenbush Problem is answered negatively with respect 

to congruence-distributive algebras. 

Proof. Let B be a finite algebra and assume that V(B) is residually finite and congruence-

distributive. We show that, under this assumption, the variety generated by B is residu­

ally < N, for some positive integer N. Doing this implies that the Reworded Quackenbush 

Problem is answered negatively. 

If B is the trivial algebra then V(B) contains only trivial algebras. Thus, we may assume 

that B is not the trivial algebra. 

By Tarski's HSP Theorem, on page 17, we have 

V(B) = HSP(B) = H(S(P(B))). 
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As B is not trivial, the only algebra in P(B) that is possibly directly indecomposable 

is B. The contrapositive of subdirectly irreducible implies directly indecomposable yields 

the following: with the exception of possibly B, all algebras in P(B) are not subdirectly 

irreducible. 

Suppose that M is a subdirectly irreducible member in S(P(B)) and that M is not a 

member in P(B). For some index set I, the algebra M is a subalgebra of B7. As homomor-

phisms preserve subalgebras, for all i in I, we have p,(M) is a subalgebra of B, where pi is 

the ith projection map on M. Note that 

M<npi(M)<B/. 
16/ 

Thus, M is a subdirect product of the members in {pj(M)} . 

As M is subdirectly irreducible and the identity map from M to ]~| is an embed-
16/ 

ding, there must exist some i in / such that M = p;(M). As p,(M) is a subalgebra of B, we 

have \M\ < |fl|. Hence, the subdirectly irreducible members in §(P(B)) all have a universe 

with cardinality less than |B|. 

Now suppose that M is a subdirectly irreducible member in H(S(P(b))) and that M 

is not isomorphic to a member in S(P(B)). Since V(B) is residually finite, the algebra M 

is finite. There must be an index set J such that M is a homomorphic image of S where S 

is a subalgebra of B-7. By Lemma 1.3.8, the index set J can be assumed to be finite. Like 

before, for all j in J, the homomorphic image p;(S) is a subalgebra of B, where pj is the 

/h projection map on S. Further, S is a subdirect product of the members in {p;(S)}^y, 

that is 

s<i1p,(s)<b'. 
jeJ 

By applying Foster and Pixley's Theorem 2.5 in [3], or Theorem 1.3.7, we obtain the 

following: the algebra M is isomorphic to a subdirect product of homomorphic images 
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of the members in (p7-(S)} £/. As M is subdirectly irreducible, there exists j in J such 

that M is isomorphic to a homomorphic image of Pj(S). Thus, M is a homomorphic image 

of pj{S). Let a-pj(S) -> M be this homomorphism. We have just shown that 

M  = |a(p;(S))|<|p;(S) | < l 4  

Thus, all subdirectly irreducible members in H^S(P(B)) j have universes with cardinality 

no greater than |5|. That is, V(B) is residually < |B|. • 

As all lattices can be shown to generate congruence-distributive varieties, using a Mal'cev 

condition, the Reworded Quackenbush Problem is answered negatively if B is a lattice. Fur­

ther, as all n-Post algebras, Boolean algebras and Heyting algebras can be shown to gener­

ate arithmetical varieties and hence congruence-distributive varieties, using a Mal'cev like 

condition, Quackenbush's problem is answered negatively if B is a n-Post algebra, Boolean 

algebra or a Heyting algebra. 

Even though the Quackenbush Problem has been dealt with by Foster and Pixley in 

1964, a paper by Jonsson [7], written in 1967, can also be used to answer the Reworded 

Quackenbush Problem, with respect to algebras that generate congruence-distributive vari­

eties. In Jonsson's paper, Corollary 3.4 states that if B is finite and V(B) is congruence-

distributive, then every subdirectly irreducible member in V(B) belongs to HS(B). There­

fore, V(B) is residually less than |fi|. This is a stronger result than that obtained by an­

swering the Reworded Quackenbush Problem. Specifically, J6nsson's result reveals that all 

congruence-distributive varieties that are generated by a finite algebra are residually < N, 

for some positive integer N. Not only this, Jonsson's result gives the location, with respect 

to the class operations H, § and P, of the subdirectly irreducible members. 

It is interesting to note that in [1], Berman and Baldwin define and utilize the residual 

character of a variety. For example, they define and use the terms residually < N and resid-
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ually small. However, they do not use these terms when stating Quackenbush's Problem. 

That is, the tools to state the Reworded Quackenbush Problem were around in 1975; but, 

were not used to do so until 1981 in an article by Freese and McKenzie, [4], 

1323 After the Reworded Quackenbush Problem 

Theorem 8 of [4] shows that for an algebra B of size m, if B is in a congruence-modular 

variety then V(B) is residually small if and only if V(B) is 

residually < ( £ +  1 ) \ - m + 1, where . 

In other words, the Reworded Quackenbush Problem is answered negatively if B generates 

a congruence-modular variety. As congruence-permutable implies congruence-modular 

and all varieties of quasigroups are congruence-permutable, the Reworded Quackenbush 

Problem is answered negatively for quasigroups. 

During the same year, McKenzie answered the Reworded Quackenbush Problem neg­

atively when B is a semigroup. See Theorem 30 of [9]. In this article, McKenzie does 

more than just answer the Reworded Quackenbush Problem, he determines conditions for 

a variety of semigroups to be residually small. 

In 1982, McKenzie proved that any locally finite and residually small variety of K-

algebras is residually < N, for some positive integer N. See Theorem 8.1 in [10]. For a 

definition of a A'-algebra, see [10]. 

An example of a finite algebra that generated a residually finite variety that was not 

residually < N, for any positive integer N, was found in 1996 by McKenzie in [12]. That 

is, McKenzie found an example of an algebra that could be used to answer the Reworded 

Quackenbush Problem affirmatively. In his own words, he "destroy[ed] the Quackenbush 

Conjecture" (McKenzie, [12]). 
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133 Dealing with the Destruction of Quackenbush's Problem 

Though the Reworded Quackenbush Problem, and hence the Quackenbush Problem, was 

answered by McKenzie, the examples used to achieve this answer were algebras of infinite 

type and "there is no obvious way to convert them into algebras of finite type with the same 

residual bound" (McKenzie [12]). Hence, a new problem can be asked. The following 

problem is taken from [8]: 

Problem (Restricted Quackenbush Problem). L e t B b e a  f i n i t e  a l g e b r a  o f  f i n i t e  t y p e .  I f Y (  B) 

is residually finite, must V(B) be residually < N.for some positive integer N? 

How is the Restricted Quackenbush Problem related to the Reworded Quackenbush 

Problem and hence the Quackenbush Problem? The following Lemma answers this ques­

tion. 

Lemma 13.10. If the Reworded Quackenbush Problem is answered negatively for a class 

of algebras then the Restricted Quackenbush Problem is answered affirmatively for that 

class of algebras. 

Proof. Suppose that the Reworded Quackenbush Problem is answered no for a class of 

algebras fC. That is, there does not exist a finite algebra B in K, such that V(B) is residually 

finite and not residually < N, for any positive integer N. Hence, for all B in K, if V(B) 

is residually finite then V(B) is residually < N, for some positive integer N. That is, the 

Restricted Quackenbush Problem is answered yes for the class of algebras K,. • 

Note the that the inverse of the previous Lemma is not necessarily true. Suppose 

that the Reworded Quackenbush Problem is answered yes for a class of algebras K. Un­

der this assumption, there exists a finite algebra B in K such that V(B) is residually fi­

nite and not residually < N, for any positive integer N. This finite algebra, like McKen-
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zie's, may not be of finite type. That is, B may not satisfy the hypothesis of the Re­

stricted Quackenbush Problem and hence, an answer to the Restricted Quackenbush Prob­

lem with respect to the algebras in fC is not immediate. 

During 1999, in the article [8], Kearnes and Willard proved that the Restricted Quacken­

bush Problem is answered affirmatively when V(B) is congruence-meet-semidistributive. 

Specifically, they answer Pixley's Problem (Theorem 4.1). Pixley's Problem is similar to 

the Restricted Quackenbush Problem and can be used to answer it. The authors point out 

that due to meet-semidistributivity, the Restricted Quackenbush Problem is answered affir­

matively with respect to algebras that include a semilattice operation. 

1.4 Restatement of the Problem 

The problem of interest is the Restricted Quackenbush Problem. 

Problem (Restricted Quackenbush Problem). Let B be a finite algebra of finite type. IfV(B) 

is residually finite, must V(B) be residually < N,for some positive integer N? 

This problem has been answered with respect to many popular algebras: groups, Heyt-

ing algebras, lattices, quasigroups, rings and semigroups. The problem has also been 

answered when V(B) satisfies certain properties: being congruence-distributive, being 

congruence-modular, being congruence-permutable or having definable principal congru­

ences. Even with all of this work done, the problem, to date, remains open when consider­

ing an arbitrary algebra. 

In Chapter 2, we give an explicit proof showing that the Restricted Quackenbush Prob­

lem is answered affirmatively with respect to unary algebras. Then our attention turns to 

groupoids. Specifically, in Chapter 3, we show that groupoids that generate a residually 

finite variety must satisfy an identity of a particular form. Then, in Chapter 4, we look at 
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absorbing groupoids and show that if a certain property holds then the Restricted Quacken-

bush Problem is answered affirmatively. Lastly, in Chapter 5, a summary of what was done 

in this thesis is given and some questions are posed to the reader. 
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Chapter 2 

Unary Algebras and the Restricted 

Quackenbush Problem 

Amongst other results, Baldwin and Berman, in [1], show that for B, a finite unary alge­

bra of finite type, if V(B) is residually finite then V(B) is residually < N, for some positive 

integer N. That is, they show that the Restricted Quackenbush Problem is answered affirma­

tively, with respect to unary algebras. In Subsection 1.3.1 Quackenbush's Problem, on page 

35, are details as to how Baldwin and Berman showed their result. In particular, Baldwin 

and Berman make use of all unary algebras having the Congruence Extension Property. 

In this chapter, we show that the Restricted Quackenbush Problem is answered affirma­

tively, with respect to unary algebras without the explicit use of the Congruence Extension 

Property. 

As an introduction to unary algebras, the first section of this chapter will present Yoeli's 

result on connected subdirectly irreducible mono-unary algebras. These algebras are easy 

to describe and have a nice visual representation. 

Since there are subdirectly irreducible mono-unary algebras that are not connected, 

Yoeli's result is not sufficient to answer the Restricted Quackenbush Problem for mono-
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unary algebras. The remaining sections provide an explicit proof to show that the Restricted 

Quackenbush Problem is answered affirmatively for arbitrary unary algebras. 

2.1 Yoeli's Result 

A 1967 article [19], by Yoeli, can be used to visually classify all connected subdirectly 

irreducible mono-unary algebras. To state Yoeli's result, we need to make use of his defini­

tions. 

Definition (Yoeli, [19]). A finite mono-unary algebra B is connected if the corresponding 

graph is connected. 

Alternatively, a finite mono-unary algebra B = ( B \ /B) is connected if for all b \  and b 2  

in B there exists positive integers n\ and ni such that 

(/")"'(t 0  =  ( / * ) " ' ( h ) -

Definition (Yoeli, [19]). A finite mono-unary algebra B is irreducible if whenever B can 

be embedded into a direct product of two other mono-unary algebras, suppose Bj and B2, 

then either B can be embedded into Bi or B can be embedded B2. 

We show that Yoeli's definition of irreducible and our definition of subdirectly irre­

ducible are equivalent properties of a finite mono-unary algebra. We need the following 

technical Lemma. 

Lemma 2.1.1. Let B and M be finite algebras of the same type. Suppose that B can be 

embedded into M1, for some infinite index set I. Then B can be embedded into MJ for some 

finite index J. 
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Proof. Suppose that \B\ = b and \M\ = m. Let a be the embedding of B into M7. Since B is 

finite, the algebra a(B) is also finite. Thus, |a(B)| = b. Enumerate the elements in a(B) 

by {cij}bj=l and consider the relation 

T={(a;(0)y=ll'6/}-

Note that |T| < mb < (o. Now define the relation a on / as follow: for all i\ and i2 in /, 

b b 
let { i \ ,  i i )  be in a if and only if (a;(i \ ))J=l = ( a j ( h ) ) ^ x  • The relation r can be shown to be 

an equivalence relation. Then, since r is a finite relation, the collection I jo must also be 

finite. 

We will show that a(B) can be embedded into using the mapping /3: a(B) -*• M1/0 

where for all aj in a(B), we have (/3(aj))(i/a) =aj(i). Then, since B = a(B) and //a is 

a finite collection, the claim will be proved. Thus, to complete the proof, we verify that /3 

is well-defined and injective and is a homomorphism. 

Note that if for some a j  in a ( B ) ,  and i \ j o  and i i j o  in I / o  such that i \ / o  =  i i j a ,  

then aj(i\) = aj(i2) and hence, 

( P ( < * j ) ) ( i i / o )  =  a j ( . h ) = a j ( i 2 )  =  (P ( a j ) ) ( i 2 / a ) .  

Thus, j3 is a well-defined map. 

Let ay, and a72 be in a ( B )  such that j3 (a,,) = /3 ( a j 2 ) .  Hence, for all i j o  m l  j o ,  we 

have 

Thus, for all i / a  in //a and hence all i  in I ,  we have a/,(i) = a j 2 ( i ) .  That is, a jx - a j 2 . 

Therefore, /3 is injective. 

Let / be an n-ary operation symbol in the language of B and M. Further, let ajx,..., ajn 
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be n-elements from a ( B ) .  For all i / o  in 7/cr, we have 

( p  ( / a ( B )  ( « / , ,  •  •  • ,  a j n ) ) )  ( i / o )  =  ( / a ( B )  ( a h  , . . . , a j n ) ) ( i )  

=  ( f M '  ( a j v - i a j n ) ) ( i )  

= /M(ayi(0,--->ay„(0) 

=  f M  (  { P  ( a h  )  )  ( ' / a ) » •  •  • »  ( P  ( a J n  )  )  ( i / a  )  )  

=  ( / M ' / a  { P  ( a h  ) , - i P ( a h ) ) ) ( i / ° )  

Thus, /3 is a homomorphism. 

• 

Lemma 2.12. Let B = ( B ; f B )  d e n o t e  a  f i n i t e  n o n - t r i v i a l  c o n n e c t e d  m o n o - u n a r y  a l g e b r a .  

The algebra B is subdirectly irreducible if and only if B is irreducible. 

Proof. We start by showing that if B is subdirectly irreducible then B is irreducible. We 

do this by proving the contrapositive. Suppose that B is not irreducible. That is, there 

exists mono-unary algebras Mi and M2 such that B can be embedded into Mi x M2; but, B 

cannot be embedded into either Mi or M2. Assume that B is isomorphic to M, where M is 

a subalgebra of Mi x M2. 

For the first and second projection maps on M, denoted by p 1 and p2 respectively, let 

6 =ker(pi)nker(p2) 

and note that 6 is in Con M as 9 is the meet of two congruences. 

As M cannot be embedded into Mj or into M2, there does not exist an injective ho­

momorphism from M to Mi or from M to M2. Therefore, pi and P2 are not injective. 

Hence, ker(pi) does not equal AM and ker(P2) does not equal AM-

Let 

F = ((WI,W2>,{FFI3,M4)}. 
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be an element in 6. As / is an element in ker(pi), we have m\ = m3. Similarly, as t is 

an element in ker(p2), we have mi = m4. Therefore, 0 £ and hence 6 = AM. Thus, 8 

is a meet of two non-A^ congruences that equates to AM- That is, no monolith can exist. 

Therefore, B is not subdirectly irreducible as M is not subdirectly irreducible. 

For the reverse implication, assume that B  is irreducible. We want to show that B  is 

subdirectly irreducible. That is, we want to show that, if for some index set/, if o r B - +  ] ~ I  B ,  

id 
is a subdirect embedding then there exists i in / such that B  =  B / .  Since a is a subdirect 

embedding, for all i in 7, the image of the ith projection map applied to a(B) is B/. Thus, 

each Bj is a homomorphic image of a(B). As a(B) = B and B is a finite algebra, there are 

at most a finite number of homomorphic images of a(B). For the positive integer n, let the 

members of {D7}"=1 denote the distinct homomorphic images of a(B). We have implicitly 

just shown that 

[ ] B ,  s  fl(Dy)^ where I, = {i e /:  B ,  s D , } .  

/€/ 7=1 

n 

Hence, there exists an embedding from B  to I~[(®/)/;- n *s and B  is irreducible, 
7=1 

by repeated application of the definition of irreducible, we must have an embedding from B  

into (Dj)1' for some j between 1 and n, inclusive. By Lemma 2.1.1, there exists a finite 

subset I'j of Ij such that B can be embedded into (Dy)7>. Again by repeated application 

of the definition of irreducible, there must exist an embedding from B into D;. Therefore, 

|B| < |D7|. Since Dj is a homomorphic image of B, we must have \B\ >\Dj\. Hence, the 

embedding from B into Dy is an isomorphism, as |B| = \Dj\. Thus, B is subdirectly irre­

ducible. • 

Yoeli proved that the graph of a connected and irreducible mono-unary algebra is lim­

ited to a finite number of possible general shapes. To state Yoeli's result, we need to 

identify two classes of mono-unary algebras. Denote the mono-unary algebra of size pn 
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whose graph is in Figure 2.1 by , where p is a prime number and n is a positive integer, 

and denote the mono-unary algebra of size h whose graph is in Figure 2.2 by J/,, where h 

is a positive integer greater than 1. 

Recall, from the previous lemma, that a finite mono-unary algebra is subdirectly irre­

ducible if and only if it is irreducible. We now state Yoeli's result. 

Theorem 2.13 (Yoeli, [19]). A finite connected non-trivial mono-unary algebra B is irre­

ducible if and only if B is isomorphic to Hp» or to J/,, where p is a prime number, n is a 

positive integer and h is a positive integer greater than 1. 

Notice that Yoeli's result only deals with connected mono-unary algebras. With respect 

to mono-unary algebras, Yoeli's result needs to be generalized to include algebras that are 

not connected, to be helpful in answering the Restricted Quackenbush Problem. 

In the following sections, we construct a model of what finite subdirectly irreducible 

Figure 2.1: The Graph of Hp* 

Figure 2.2: The Graph of J/, 
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unary algebras look like. Loosely, their corresponding graphs look like part of a circulatory 

system. This model is then used to answer the Restricted Quackenbush Problem. 

22 Connected, Pseudoconnected and Disconnected Unary 

Algebras 

The class of all finite unary algebras are partitioned into three subclasses, based on the 

appearance of each unary algebra's corresponding graph, to assist in determining which 

finite unary algebras are subdirectly irreducible. In this section, we define three subclasses 

of unary algebras, that union to the class of all unary algebras, and show that only one class 

needs to be explicitly considered, when answering the Restricted Quackenbush Problem. 

For the remainder of this subsection assume that B = (B\F) is a unary algebra of finite 

type. 

A unary algebra B can be viewed as a directed multi-labelled graph. Let G(B) denote 

the undirected multi-graph that is obtained by removing the direction and labels from the 

directed multi-labelled graph corresponding to B. Say that there is a walk from b\ to bz in 

B if and only if there is a path from b\ to bi in G(B), 

Example. Looking at the undirected multi-graph G(E6) that corresponds to E6, displayed 

in Figure 2.3, there exists a walk from 1 to 2. In fact, for all e\ and e2 in E$, there exists a 

walk from e\ to ei. 

We can use a walk, from one member of B to another, to define an equivalence relation 

that will later help in the classification of all finite subdirectly irreducible unary algebras of 

finite type. Define the equivalence relation UB on B by relating b\ to bi if and only if there 

exists a walk from b\ to bi. 
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Lemma 22.1. Each equivalence class oflZs is a subuniverse of B. 

Proof. Let T be an equivalence class of 7Z g .  Further, let / be any operation symbol in T .  

To prove the Lemma, we must show that for all t in T, the element fB(t) is in T as well. 

Since there exists a path from t to fB(t) in G(B), the elements / and fB(t) must belong to 

t h e  s a m e  e q u i v a l e n c e  c l a s s .  H e n c e ,  f B ( t )  i s  a n  e l e m e n t  i n  T .  •  

Definition. If there is only one distinct equivalence class of 7ZB ,  then B is said to be con­

nected. If there are exactly two distinct equivalence classes on 7ZB, such that at least one 

equivalence class has unit cardinality, then B is said to be pseudoconnected. Otherwise B 

is said to be disconnected. 

Applying Lemma 2.2.1, if B pseudoconnected, then there exist two proper connected 

subalgebras, Bi and B2, such that B\ = B and at least one of Bi and B2 is trivial. 

Example. See Figure 2.3 for E6, an example of a connected algebra. See Figure 2.4 for E7, 

an example of a pseudoconnected algebra. See Figure 2.5 for Eg, an example of a discon­

nected algebra. 

Figure 2.3: A Connected Unary Algebra E6 and Associated Undirected Multi-Graph 

G(E6) 
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2 JL ' C0.: 

Figure 2.4: A Pseudoconnected Unary Algebra: E7 

Figure 2.5: A Disconnected Unary Algebra: Eg 
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2.2.1 Subdirectly Irreducible Implies Connected or Pseudoconnected 

Of connected, pseudoconnected and disconnected unary algebras, which class contains 

subdirectly irreducible algebras? We show that all subdirectly irreducible unary algebras 

must either be connected or pseudoconnected. An understanding of congruences that are 

present in a disconnected unary algebra is necessary. 

Lemma 222. If M is a subalgebra of B and 6 is a congruence on M then CgB(0) = 

0 u A  B -

Proof. We show that 8 u Ag is a congruence on B. Then, since 8 u Ag is the the smallest 

binary relation on B that contains 8, we obtain the desired result. 

The binary relation 8 u  Ag is certainly reflexive and symmetric. To complete the proof, 

we must show that 0 u Ag satisfies the transitive property and the compatibility property. 

Let ( b \ , b i )  and (62,^3) be elements in 0 u Ag. Suppose that both (61,^2) and {62,63) 

are in 6. Since 8 is transitive, we obtain the following: 

{ b i , b i )  6  8  £  8  u A # .  

Now, without loss of generality, assume that { b \ , b i )  is in AB - Then b \  = b i  and hence ( b \ ,  63) 

is in 0 u AB. Therefore, 8 u Ag is transitive. 

Let / be an operation symbol in T. Suppose that (b \, 62) is in 8, which implies that b \ 

and bj are in M and hence B. As 8 satisfies the compatibility property, we have 

( f B ( b i ) , f B ( b 2 ) )  =  ( f M ( b i ) , f M ( b 2 ) )  €  8  c  0 u A B .  

Now suppose that ( b \ , b i )  is in Ag. As b \  = b j ,  we must have f B { b \ ) = /B(^2). Hence, 

{/B(^i),/B(M)eABc0uAB. 

Therefore, 8 uAg satisfies the compatibility property. • 
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In the proofs of the next few lemmas, we use the following set equality: for the sets A, 

B, C and D, 

( A n f l ) x ( C n D )  =  ( A x C ) n ( B x D ) .  ( 2 . 1 )  

Lemma 223. If there exist at least two distinct equivalence classes in 71B  such that neither 

have unit cardinality then B is not subdirectly irreducible. 

Proof. By Lemma 2.2.1, there exist two distinct connected subalgebras, Bj and B2, of B 

such that B\ nS2 = 0- Further, |fii | > 1 and \Bi\ > 1. 

By Lemma 2.2.2, we have 

CgB(Si2 ) A ConBCgB(fi2
2) =  ( B l 2 u A f i ) n ( B 2

2 u A f l )  

=  ( B 1
2 n B 2

2 ) u A f i  

= (fiin£2)2uAfl 

= 02uAs 

=  A B  

and neither CgB(fii2) nor CgB(S2
2) is Ag. Hence, B is not subdirectly irreducible. • 

Lemma 2.2.4. If there exists at least three distinct equivalence classes of 11% such that two 

of them have unit cardinality then B is not subdirectly irreducible. 

Proof. By hypothesis, there exist at least three distinct connected subalgebras, Bi, B2  

and B3, of B such that {61,^,63} is a mutually disjoint collection of subuniverses of 

B and two of the subalgebras are trivial. Without loss of generality, assume that Bi and B2 

are trivial. Let B\ = {b\} and fi2 = {62}-

By Lemma 2.2.2, we obtain the following: 

CgB((B! u f i 2 ) 2 )  AConBCgB((B1 u f i 3 ) 2 )  =  ( ( B i  uB 2 ) 2 n ( B l  UB3)2)UAB. 
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By Statement (2.1), 

( f l i  u 5 2 ) 2  n ( S i  u  B 3 ) 2  =  ( ( B i  u B 2 ) n ( B l  u B 3 ) f  

= B\2 

Thus, 

C ^ ( ( B {  u B 2 ) 2 )  AConBCgB((51 u B 3 ) 2 )  =  A B .  

Since both CgB((Si UB2)2) and CgB((Z?i ufl3)2) are non-Ag congruences, but, meet to 

AB, we have shown that B is not subdirectly irreducible. • 

Theorem 225. If B is subdirectly irreducible, then B is connected or pseudoconnected. 

Proof. We prove the contrapositive of the claim. Assume that B is disconnected. We must 

show that, under this assumption, B is not subdirectly irreducible. As B is disconnected, 

there exist two possible cases. Either there exist at least two distinct equivalence classes 

in TZB, such that neither have unit cardinality, or there exist at least three distinct equiva­

lence classes in 11b, such that two of them have unit cardinality. Lemma 2.2.3 implies that 

the former case does not yield a subdirectly irreducible algebra while Lemma 2.2.4 implies 

that the latter case does not yield a subdirectly irreducible algebra either. • 

2.22 Correspondence of Connected and Pseudoconnected Unary Al­

gebras 

We show that every pseudoconnected subdirectly irreducible unary algebra is the disjoint 

union of the trivial unary algebra and a connected subdirectly irreducible unary algebra. 

Lemma 22.6. Let M be a subalgebra of B. If B is subdirectly irreducible, then M is 

subdirectly irreducible. 
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Proof. We prove the contrapositive. Suppose that M is not subdirectly irreducible. We 

want to show that B is not subdirectly irreducible. Let T = (Con M)\{AM}-

As M is not subdirectly irreducible, no monolith can exist and hence 

A 0 = f l 0  =  A M .  < 2 - 2 >  
OiT BzT 

Further, since M is not subdirectly irreducible, 

|F|>2. (2.3) 

Notice that for all 6 in T, we have 6 t AM- Thus, applying Lemma 2.2.2, we obtain the 

following: 

CgB(0)*Afl. (2.4) 

By Lemma 2.2.2 and Statement (2.2), 

ACgB(9)= MeuAB) 
OeT 8eT 

= d(0ua B) 
8eT 

=(n ®)uAs 
= A^uAb 

= A B-

Thus, the above meet of congruences equates to AB - By Statement (2.3), the above meet 

of congruences involves at least two non-trivial congruences. By Statement (2.4), none of 

these congruences are As. Thus, B cannot possibly have a monolith. Therefore, B is not 

subdirectly irreducible. • 

Suppose that B is pseudoconnected. Recall that under this assumption, there exist two 

proper connected subalgebras, Bi and B2, such that B\ uBj = B and at least one of Bj 

and B2 is trivial. Without loss of generality, assume that Bi is trivial. 
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Lemma 2.2.6 implies that if B is subdirectly irreducible, then B2 is a connected subdi-

rectly irreducible subalgebra. Thus, if there exist, up to isomorphism, a finite number of 

subdirectly irreducible connected algebras in a variety, then there exist, up to isomorphism, 

a finite number of subdirectly irreducible pseudoconnected algebras in the variety. Hence, 

from here, we focus on connected unary algebras. 

23 Every Unary Algebra in a Finitely Generated Variety 

Has an Irredundant Basis 

To continue looking at subdirectly irreducible unary algebras, we look at their irredundant 

bases. A problem arises: which unary algebras have at least one irredundant basis, finite or 

infinite? 

Example. Consider the mono-unary algebra E9= {Eg\ f E 9), where Eg is the set of non-

positive integers and 

The algebra E9 is one of the subdirectly irreducible mono unary algebras looked at, by 

Wenzel, in [18]. The algebra E9 does not have an irredundant basis, finite or infinite. See 

Figure 2.6 for the graph of E9. 

e +1 if e * 0 
f 9 ( e )  =  -

0 if e = 0. 

Figure 2.6: A Unary Algebra Without an Irredundant Basis: E9 
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Showing that each member in a finitely generated variety has at least one irredundant 

basis will be enough for our purposes. 

Suppose that B is an algebra in some finitely generated variety. We show that each 

member in the universe of B belongs to at least one maximal singly-generated subuniverse, 

in the following sense: if b\ generates a maximal singly-generated subuniverse of B and 

b2 is in B such that b\ is in SgB({&2}) then SgB({fci}) = SgB({Z?2})- We do this by using 

Zorn's Lemma, which requires the definition of a chain. 

Definition (Burris and Sankappanavar, [2]). A chain of sets C is a family of sets such that 

for each set C\ and C2 in C either Ci Q C2 or C2 £ C\. 

We state Zorn's Lemma as it appears in [2], without proof. 

Lemma 23.1 (Zorn's Lemma). I f F  i s  a  n o n - e m p t y  f a m i l y  o f  s e t s  s u c h  t h a t  f o r  e a c h  c h a i n  C  

of members ofF there is a member ofF containing [JC then F has a maximal member. 

Note that Zorn's Lemma is equivalent to the Axiom of Choice. 

Lemma 232. Let B be a unary algebra contained in some finitely generated variety of 

type T. For all members b in B, there exists a maximal singly-generated subuniverse of B 

that contains b. 

Proof Let K denote the set of all singly-generated subuniverses of B that contain b. The 

collection JC is non-empty as Sg®({6}) is in JC. To complete the proof, we will show that 

fC has a maximal element, using Zorn's Lemma. 

Let C be a chain of elements from K. By hypothesis, there exists an algebra M such 

that B is in V(M) and |M| = m, for some positive integer m. Note that for all C in C, the 

unary algebra (C; T) is a member in the variety generated by B and hence is a member in 

the variety generated by M. Hence, by Lemma 1.3.3, on page 37, 

all singly-generated subuniverses in C can contain at most mm elements. (2.5) 
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To complete the proof, we show that (J C is equal to one of the members in C. By 
CeC 

Statement (2.5), we obtain the following: 

max{|C| |CeC} <mm. 

Pick a C in C  that has maximum cardinality. We must have C  £  (JC .  Pick a c in \ J C .  

There must exist a C' in C such that c is in C'. As C is a chain, either C £ C' or C' £ C. 

Since C was chosen to have maximum cardinality, we must have C' £ C. Hence, c is in C 

and thus,C = \^}C. 

Therefore, by Zorn's Lemma or Lemma 2.3.1, we have shown that K has a maximal 

element. • 

Theorem 233. Let Bbe a unary algebra that is a member of a finitely generated variety. 

T h e r e  e x i s t s  a t  l e a s t  o n e  i r r e d u n d a n t  b a s i s  o f B .  

Proof. Let S' denote the set of all members of B that generate a maximal singly-generated 

subuniverse. Enumerate the elements of S' using {^}i6/,for some index set I. By Lemma 2.3.2, 

USg^W})^. (2.6) 
16/ 

Define the equivalence relation ju on S' by 

relating /, to s'2 if and only if SgB({5,/
1}) = Sg®^^})-

Use a choice function to pick a member from each equivalence class modulo fx and enu­

merate these members by {sj} ju for some index set J. We have 

L)sgB({sj}) = u( U SgB(M)]=USgB(«}). 
N  j * J  \ s ' i s j / f i  J  M  

Thus, by the previous equations and Statement (2.6) we obtain that { s j } j £ j  generates B .  

L e t  S  =  { s j } j e j .  
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To complete the proof, we show that S is irredundant. Each member of S generates 

a maximal singly-generated subuniverse. Hence, by the the definition of the equivalence 

relation ^t, for each s in S we have for all s' in S\{s}, we have the following: 

s is not in SgB({s'}). 

Thus, 

s is not in [J SgB({/}) or SgB(S\{s}). 
ygS\{s} 

• 

Due to the previous Theorem, when we are working with an algebra that is a member 

of a finitely generated variety, we implicitly assume that an irredundant basis exists. 

2.4 The Appearance of Connected Subdirectly Irreducible 

Unary Algebras 

The graph of a finite subdirectly irreducible unary algebra looks similar to a circulatory 

system. In this subsection, we define the heart of a unary algebra, assuming it exists, and 

define the veins of an algebra. 

2.4.1 The Heart of a Unary Algebra 

Let B = (S;T) be a unary algebra. Let Hv be the intersection of all maximal singly-

generated subuniverses of B. If HB is empty then say that B is heartless. If HB is not 

empty then call HB = (HB,T) the heart of B. 
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Example. Consider the algebra Eio, depicted in Figure 2.7. Let T denote the language 

of Eio- The subalgebra 

He>° = ({1,2,3,4,5,6,7};^) 

is the heart of Eio-

A 

Figure 2.7: A Connected Unary Algebra with a Heart: Eio 

As we show in the following theorem, to determine what the heart of a unary algebra is, 

rather than finding all of the maximal singly-generated subuniverses, we may look at the 

subuniverses generated by each member in any irredundant basis. 

Theorem 2.4.1. Let B be a unary algebra that has a heart and for some index set I, 

let {M, }i€/ denote the set of members of B that generate maximal singly-generated sub-
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universes. Further, for some index set J, let S = {sj} j<u be an irredundant basis of B. Then 

HB=nssB({«i})=n si?({s,}). 
UI jiJ 

Also, each member ofS generates a maximal-singly generated subuniverse ofB. 

Proof. We show that each member in S generates a maximal singly-generated subuniverse 

of B. By doing this, we are showing that 

nsg»({«,})=nsgB(te}). (2-7) 
i'e/ jfJ 

Suppose that there exist b in B and j\ in J such that 

SgB({i;,»SSgl,({M). 

As S is an irredundant basis, there exists ji in J such that 

SgB({M)ssg
B(fe}). 

Therefore, 

SgB({f/i}) ^ SgB({sy2})-

As S is an irredundant basis, s/, = Sj2. Hence, 

Sg"({^i}) = SgB({i.}). 

That is, sjt generates a maximal singly-generated subuniverse. We have just shown that 

Statement (2.7) holds. 

Suppose now that M, generates a maximal singly-generated subuniverse of B, for some 

i in I. We show that 

SgB({";}) = SgB({s;}) 
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for some j in J. Doing this proves that 

nsg'({»y})EnsgB({i'i})- (28) 
jiJ iel 

Since S is an irredundant basis of B, there must exist j in J such that 

As Ui generates a maximal singly-generated subuniverse, we must have equality. We have 

just shown that the subset relation in Statement (2.8) holds. 

Together, Statement (2.8) and Statement (2.7) yield the desired result. • 

Theorem 2.4.1 makes the heart, assuming that one exists, easier to find. When we wish 

to identify the heart of a unary algebra, we often make use of this Theorem implicitly. 

Example. Consider the algebra En, depicted in Figure 2.8. The elements 1 and 5 must be 

in every irredundant basis. Further, SgB({ 1}) and Sg®({5}) are maximal singly-generated 

subuniverses of En. As their intersection is empty, Theorem 2.4.1 implies that En is 

heartless. 

Figure 2.8: A Connected Unary Algebra that is Heartless: En 
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In the previous two examples, on page 64 and page 67, the algebra Eio is subdirectly 

irreducible and has a heart; whereas, En is not subdirectly irreducible and does not have 

a heart. The next theorem shows that all connected subdirectly irreducible unary algebras 

that belong to a finitely generated variety have a heart. 

Theorem 2.42. Let B = be a connected unary algebra that is a member of a finitely 

generated variety. If B is subdirectly irreducible, then B has a heart. 

Proof. Note that if B is generated by a single element, then HB = B and the claim is true. 

Assume that B is not singly generated. That is, assume that each irredundant basis contains 

at least 2 elements. 

We prove the contrapositive. For some index set I that contains at least 2 elements, 

let {si}ui be an irredundant basis of B. We are guaranteed the existence of an irredundant 

basis by Theorem 2.3.3. Further, suppose that B does not have a heart. To complete the 

proof, we show that B is not subdirectly irreducible. 

As B is heartless, for each b in B, there must be some generator Sjh, such that b is not 

in SgB({syi}). For all b in B, define 

Notice that if 6b = A#, for some b in B, then SgB({syt,}) = {s/fc}. Hence, if db = Ab then 

as sjb is a member of an irredundant basis of B, this means that B is not connected and a 

contradiction occurs. As B is connected, we may assume that 

Thus 

for all b  in B ,  we have b / d b  =  { b } .  (2.9) 

for all & in B, (2.10) 
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Since B is minimally generated by at least two elements, 

there exists b\ and bi in B such that 0^ # 0^2. (2.11) 

By Statement (2.9), we obtain the following: 

/\ Of, = A b-
btB 

Statement (2.10) implies that none of the congruences are Ag. Statement (2.11) implies 

that this meet must involve at least two distinct congruences. Thus, B cannot possibly have 

a monolith. Finally, B is not subdirectly irreducible. • 

The next example shows that a connected unary algebra that is not subdirectly irre­

ducible may or may not have a heart. Thus, the inverse of the previous Theorem is not 

necessarily true. 

Example. Consider the unary algebras En and E12 seen in Figure 2.8 and Figure 2.9, on 

page 67 and page 70, respectively. It can be determined that both algebras are connected 

and not subdirectly irreducible. Further, it can be determined that En is heartless and 

He" =S^"({1,2,3}). 

Lemma 2.4.2 states that a connected subdirectly irreducible unary algebra has a heart. 

The next lemma states that the heart has a universe of at least size 2. 

Lemma 2A3. Let B = {B;T} be a non-trivial unary algebra that has a heart and is a 

member of some finitely generated variety. If B is subdirectly irreducible, then HB is not 

trivial. 

Proof. We prove the contrapositive. Assume that H® is trivial. That is, assume that HB - {h}, 

and let S be an irredundant basis of B. We are guaranteed the existence of an irredundant 
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Figure 2.9: A Unary Algebra that has a Heart and is not Subdirectly Irreducible: Ei 
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basis by Theorem 2.3.3. By Theorem 2.4.1, the universe of the heart of B is equal to the 

intersection of the subuniverses generated by each element of S. Thus, 

H* = nSg"(W)-W- (212) 
seS 

The objective is to show that B is not subdirectly irreducible. 

If |S| = 1 then B  is singly generated and B  =  H v  =  { h } .  As B is not trivial, we may assume 

that \S\ > 1. 

For all t in 5, we must have |SgB({f})| > 1 as otherwise, using Statement (2.12), 

W = nsgB(W)ESg
B({<}) = M 

seS 

and hence t would be generated by each individual member of S, contradicting the assump­

tion that S is an irredundant basis that contains at least 2 elements. 

By Lemma 2.2.2 and Statement (2.12), we have 

/\CgB^(SgB({s})) ) = Q((SgB(W)) uAflJ 

=(n(ssB(w))2)' 
=(nsgB(w)) uab 
=  { h } 2  u A f l  

=  A B -

Therefore, since |S| > 1 and, for all 5 in 5, since SgB({s})| > 1, the algebra B cannot possibly 

have a monolith and hence is not subdirectly irreducible. • 

2.42 Veins of a Unary Algebra 

The subalgebra generated by a single member of an irredundant basis, used in the proof 

of Theorem 2.4.2, turned out to be helpful. We generalize this concept in the following 
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definition. 

Definition. Let B = { B \ T )  be a unary algebra and M be a member of V(B). Call each 

maximal singly-generated subalgebra of M a vein. Further, define a vein of V(B) to be a 

vein of some member of V(B). 

Example. In the algebra Eio depicted in Figure 2.7 on page 65, the subalgebra 

(sgE'»({0});r) 

is a vein of EJO- In fact, up to isomorphism, it is the only vein of Eio-

Recall that by the proof of Theorem 2.4.1, the subuniverse generated by any member of 

any irredundant basis is maximal, with respect to singly generated subuniverses. We show 

that each member in the universe of a unary algebra that is a member of a finitely gener­

ated variety is a member of some irredundant basis if and only if it generates a maximal 

subuniverse. 

Lemma 2.4.4. Let B = (B^J7) be a unary algebra that is a member of a finitely generated 

variety. For all b in B, we have |SgB({&});jr| is a vein of B if and only ifb is a member of 

s o m e  i r r e d u n d a n t  b a s i s  o f B .  

Proof. We start with the forward implication. Let |SgB({i});Jr| be a vein of B. Further, 

let 5 be an irredundant basis of B. We are guaranteed the existence of an irredundant basis 

by Theorem 2.3.3. There exists an s in 5 such that 

SgB({i>})gSgB(W). 

By assumption, Sg ({6}) is a maximal subuniverse of B, with respect to singly generated 

subuniverses. Hence, 

sgB({i>}) = sg
B(w). 
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Thus, (S\{s}) u { b }  is an irredundant basis of B .  

The reverse implication was proved in Theorem 2.4.1. • 

The following Corollary gives information regarding the size of veins in a finitely gen­

erated variety. 

Corollary 2.45. Let B be a finite unary algebra of finite type, |fi| = b and M be a member 

ofV( B). The following statements are true. 

1. Every vein of M has a universe with a cardinality less than or equal to bh. 

2. There exists only a finite number of veins, up to isomorphism, o/¥(B). 

Proof. Recall that Lemma 1.3.3, on page 37, states that for all Mi in V(B), if M\ has an 

irredundant basis of size n, then |Mj| < bh". Thus, to prove Part 1 of the Corollary, apply 

Lemma 1.3.3 and note that every vein of M is a subalgebra of M and is singly generated. 

Recall that Corollary 1.3.4, on page 38 states that for any positive integer n, there exists 

only a finite number of members in V(B) that are minimally generated by n elements, up 

to isomorphism. Thus, for Part 2 of the Corollary, apply Corollary 1.3.4 and let n = 1. • 

2.5 Orientation 

What happens when two isomorphic veins of a unary algebra overlap each other? In this 

subsection, we define what it means for two veins to overlap each other and show that, if the 

overlap is in some sense nice, then the resulting unary algebra is not subdirectly irreducible. 

Definition. Let B = ( B \ T )  be a unary algebra. Suppose that distinct elements b i  and b j  

generate isomorphic veins of B and the intersection N of the veins is non-empty. Let Q be 
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a subalgebra of N. If for each q  i n  Q  and each term t ( x )  of type T ,  

t B ( b i )  =  q  if and only if t B ( b j )  =  q ,  

then the two veins of B, 

( S g a n d  ( S g  

are said to have the same orientation with respect to Q in B. 

Example. Consider Eio, depicted in Figure 2.7 on page 65, the subalgebra generated 

by {0} and {8} do not have the same orientation with respect to the subalgebra generated 

by {1,2,3,4,5,6,7} because, for example, 

/Elo(0) =2 and /El0(8) = l. 

Example. In E13, depicted in Figure 2.10, the subalgebra generated by {0} and {1} have 

the same orientation with respect to the subalgebra generated by {2,3,4}. This algebra is 

not subdirectly irreducible as the congruence generated by collapsing the elements 0 and 1 

has nothing in common, outside of elements in A£I3, with the congruence generated by 

collapsing everything in {2,3,4}. 

We show, in the next lemma, that if a unary algebra with a heart has 2 distinct veins that 

have the same orientation with respect to the heart of the algebra, then the algebra is not 

subdirectly irreducible. 

Lemma 2.5.1. Let B = (B\T) be a unary algebra. Further, suppose that M is in V(B) and 

that HM exists and is non-trivial. Ifm\ and mi generate distinct veins of M that have the 

same orientation with respect to HM in M, then M is not subdirectly irreducible. 

Proof. By hypothesis, \HM\ > 1. Therefore, 

CgM((//M)2)#AM. (2.13) 
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Figure 2.10: A Connected Unary Algebra with a Heart that has Two Veins that have the 

Same Orientation with Respect to the Heart: E13 

By hypothesis, mi is not equal to m2. Hence, 

CgM({(m1,m2)})*AM. (2.14) 

Suppose that {m^^ma) is inCgM({{mi,/n2)}). Then, by the Corollary 1.2.2 on page 11, 

for some positive integer n, there exist terms {f/}"=1 of type T such that 

"13 = ^(^1) 

<2M(»)=<3Mfe) 

<"iOy»-i )=<"(**) 

where for all 1 < i  <  n ,  we have {*,•,)>,'} = { m \ , m 2 } .  

Suppose that m $  is in H M .  Thus, m 3 = ^(*1) where x \  is in { m i , m i } .  As m i  and 012 

generate subalgebras of M that have the same orientation with respect to HM, the follow­
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ing equation is derived: ^(mi) = ^(m2). Therefore, = ^(y). Using induction, for 

all 1 < i < n, we can show that = tf*(yj). Therefore, under the assumption that m3 

is in Hm, we obtain m3 = m4. Using a similar idea, we can show that if W4 is in //M 

then m-i = m4. That is, if one of 013 and m4 is a member of HM, then W3 = m4. Therefore, 

CgM({{m,,m2)})n(//M)2 = AW M .  

Thus, using Lemma 2.2.2, we obtain the following: 

CgM ( {{HM, /?I2)} ) ACON M CgM ( (Hm )2 ) 

= CgM({{mi ,m2)}) n ((/fM)2 u 

= ^cgM({(mi,m2)}) 
n (HMf j u ̂ CgM({<mi,m2)}) n Afl j 

= AwmuAM 

= AM. 

Statement (2.13) and Statement (2.14) imply that the above expression is a meet of 2 distinct 

congruences on M that equates to AB- Thus, the algebra M cannot possibly have a monolith. 

Finally, M is not subdirectly irreducible. • 

We have shown that the orientation of veins in a given unary algebra can affect whether 

or not the unary algebra is subdirectly irreducible. The orientation of veins play a crucial 

role in answering the Restricted Quackenbush Problem. 

2.6 Subdirectly Irreducible Mono-Unary Algebras 

We have enough tools available to describe all finite subdirectly irreducible mono-unary 

algebras. Recall the mono-unary algebras Hp" and J/,, whose graphs are depicted in Fig­

ure 2.1 and Figure 2.2, respectively. Further, recall Yoeli's result regarding subdirectly 

irreducible mono-unary algebras: 
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Figure2.11: The Graph of H^, Figure 2.12: The Graph of T+. 

Theorem (Yoeli, [19]). A finite connected non-trivial mono-unary algebra B is irreducible 

if and only if B is isomorphic to or to Jwhere p is a prime number, n is a positive 

integer and h is a positive integer greater than 1. 

To extend Yoeli's results, we introduce notation for additional mono-unary algebras. 

Define T to be the trivial mono-unary algebra. Further, define to be with the 

addition of a single element to the universe, such that this element is mapped to itself, 

and define T+ to be T with the addition of a single element to the universe, such that this 

element is mapped to itself. See Figure 2.11 for the graph of H^, and Figure 2.12 for the 

graph of T+. 

Recall, by Theorem 2.2.5, on page 59, that all subdirectly irreducible unary algebras are 

either connected or pseudoconnected. Hence, to extend Yoeli's result, we must determine 

what the pseudoconnected subdirectly irreducible mono-unary algebras are. 

Lemma 2.2.6, on page 59, can be stated as follows: if a unary algebra is subdirectly irre­

ducible, then every subalgebra must be subdirectly irreducible. Hence, to identify the finite 

pseudoconnected subdirectly irreducible mono-unary algebras, we need only take disjoint 

unions of the trivial mono-unary algebra and finite connected subdirectly irreducible mono-

unary algebras. The disjoint union of the trivial mono-unary algebra and Hp* yields H^, 
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and the disjoint union of the trivial mono-unary algebra and T yields T+. The disjoint union 

of the trivial mono-unary algebra and Jh does not yield a subdirectly irreducible algebra. 

The restriction of Theorem 1 in [18] to finite algebras gives the following Theorem, which 

is an extension of Theorem 2.1.3. 

Theorem 2.6.1 (Wenzel). Let B be a finite mono-unary algebra. The algebra B is subdi­

rectly irreducible if and only B is isomorphic to Hp*, to H^„, to J/,, to T or to T+, where p 

is a prime number, n is a positive integer and h is a positive integer greater than 1. 

Notice, in the above Theorem, that all finite connected subdirectly irreducible mono-

unary algebras are veins or veins with the addition of the trivial mono-unary algebra. By 

Part 2 of Corollary 2.4.5, on page 73, if B is a finite unary algebra of finite type, then 

there exists a finite number of veins, up to isomorphism, of V(B). Therefore, if V(B) is 

residually finite, then V(B) is residually < N, for some positive integer N. That is, the 

Restricted Quackenbush Problem is answered affirmatively, with respect to mono-unary 

algebras. 

2.7 Answering the Restricted Quackenbush Problem with 

Respect to Unary Algebras 

We are now ready to answer the Restricted Quackenbush Problem, with respect to unary 

algebras. The answer is obtained by showing that within the variety generated by a finite 

unary algebra, there exists a finite bound on the number of generators a subdirectly irre­

ducible algebra can have. Specifically, we show that when a unary algebra has too many 

distinct veins, all isomorphic to one another, the algebra is not subdirectly irreducible. 

Let D denote a class of algebras, all of the same type. For all Ki and K2 in D, define 
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the relation a on D by 

relating Ki to K2 if and only if Ki = K2. 

The relation o can be shown to be an equivalence relation. Each member of {K/ct | K € D} 

is called an isomorphism class. 

Assume that B is a finite unary algebra of finite type. By Part 2 of Corollary 2.4.5, on 

page 73, there exist only finitely many veins, up to isomorphism, of V(B). Let v denote 

this number. Choose a set of distinct representatives from each isomorphism class in the 

class of all veins of V(B) and label the representatives using the indexed set {V,}V=1. By 

Part 1 of Corollary 2.4.5, 

for all i in {1,2,3,...,v} |V,-| < |fl|M < co. 

By Theorem 2.4.2, on page 68, every connected subdirectly irreducible member of 

V(B) has a heart. The heart of a unary algebra, assuming that it exists, is a subalgebra 

of every vein of that algebra. Thus, the heart of every connected subdirectly irreducible 

member in V(B) must be isomorphic to a subalgebra of at least one of the members in 

{V,}V=1. Noting that, up to isomorphism, there exist a finite number of veins and each vein 

is finite, there exist, up to isomorphism, a finite number of possible hearts of connected 

subdirectly irreducible elements in V(B). For the finite integer h, let {HY}*=1 be a set of 

distinct representatives from each isomorphism class of S({Vi}V=1). 

For i in {1,2,3,...,v} and j in {1,2,3,...,h}, let m* - denote the number of distinct 

embeddings of Hy into V,. Note that since both Hj and Vj are finite, m*j must also be finite. 

Define mi, to be m* , + 2. 
v 1, J 

Lemma 2.7.1. For alii in {1,2,3, , v} and j in {1,2,3,..., A}, if Mis a connected non-

trivial algebra in V(B) that has a heart isomorphic to H7 and M has m,j distinct veins 
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isomorphic to V, then there exist two distinct veins of M that have the same orientation 

with respect to HM. 

Proof. Let 5 be an irredundant basis of M. By hypothesis, there exists m, j distinct veins 

of M isomorphic to V;. Let {sk}™=l be a subset of distinct generators from S such that for 

all 1 < k < mtj, the vein |SgM({jfjt});^ is isomorphic to V,. 

Without loss of generality, focus on the generator s \ .  For 2 < t <m,j, let denote an 

isomorphism from 

(SgM({^»;^) to (SgM({5i});^). 

Consequently, there are j -1 = m*j +1 isomorphisms in 

{a t \ 2<t< m* j }  

Hence, by the Pigeon Hole Principle, at least two of the maps in 

{ae \ H M \ 2<t<mi j }  

are the same embeddings of HM into ^SgM({si}); Assume that 

ah = a<2 ^HM 

for some t\ and ti in Consider 

0 = 0,^0 0,,, 

an isomorphism from 

(SgM({fi});JF) to (Sg M ( { t 2 }y ,F) .  (2.15) 

and note that 

=idW M ,  (2.16) 

80 



where idHM is the identity automorphism on H M .  

Note that a( t \ )  might not equal f2- There could be many members of SgM({/2}) 

that singly generate SgM({^})- As a is an isomorphism, a(f]) must singly generate 

SgM({^})- Hence, we may replace /2 with a(?i) in the irredundant basis S and in 

We are permitted to change irredundant bases in this manner because we are working with 

unary operations and 

(sg"^});^) = |sg
M({a(tl)}); A. (2.17) 

Therefore, we may assume that t 2  =  a ( t \ ) .  Define 

Ci = (Sg and C2 = (sg
M({r2});^). 

We show that Ci and C2 have the same orientation with respect to HM in M. Note that 

using Statement (2.15) and Statement (2.17), the map a is an isomorphism from C1 to C2. 

Le t  h  be  a  member  o f  H M  and  suppose  tha t  r (x )  i s  a  t e rm o f  type  T,  such  tha t  r C l  ( t i  )  =  h .  

Then, using Statement (2.16), 

h  = a (h )  

=  a ( r C l  ( t i ) )  

=  r c >(a(> 1 ) )  

= rc'((2). 

That is, for all h  in H M ,  if r C l ( t \ )  =  h ,  then rc2(/2) = h .  We can use a-1 to get the 

converse. Therefore, Ci and C2 have the same orientation with respect to HM in M. • 

Theorem 2.72. Let B = be a finite unary algebra of finite type. IfV(B) is residually 

finite then V(B) is residually < N,for some positive integer N. 
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Proof. To prove the theorem, we show that, for some positive integer m, every connected 

subdirectly irreducible member in V(B) must have less than m generators. We then show 

that there exist, up to isomorphism, a finite number of subdirectly irreducible members 

in V(B). To complete the proof, we take the cardinality of the universe of a subdirectly 

irreducible member in V(B) that contains the most elements, add one, and call the resulting 

integer N. 

Recall that by Theorem 2.4.2, on page 68, every connected subdirectly irreducible mem­

ber of V(B) has a heart. The heart of a unary algebra, assuming that it exists, is a subalgebra 

of every vein of that algebra. By Lemma 2.7.1, if M is a connected non-trivial algebra in 

V(B) that has a heart isomorphic to Hj and, for some i in /, the algebra M has rriij dis­

tinct veins isomorphic to V, , then there exist two distinct veins of M that have the same 

orientation with respect to HM. 

If HM is non-trivial then by Lemma 2.5.1, on page 74, M is not subdirecdy irreducible. 

If HM is trivial, then by the contrapositive of Lemma 2.4.3, on page 69, M is not subdirectly 

irreducible. Thus, if M is a subdirectly irreducible connected non-trivial algebra in V(B) 

that has a heart isomorphic to H; , then M can have at most -1 veins isomorphic to V,. 

Now let 

m* =max{m,-j-l 11 <i<v, 1 <j<h}  and m = v -m*  +1. 

Note that m is finite, due to there existing a finite number of veins and hearts and each 

vein and heart is finite. Recall that by Lemma 2.4.4, on page 72, for a unary algebra 

Mi that is a member of a finitely generated variety, every member of every irredundant 

basis of Mi generates a vein of Mi. Thus, given any connected non-trivial algebra M 

in V(B), by the Extended Pigeon Hole Principle, if there are at least m members in an 

irredundant basis of M, then at least m* of them generate veins all isomorphic to V, for 

some V in {V,}V=1. By the argument in the preceding paragraphs, M is not subdirectly 
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irreducible. Therefore, every connected subdirectly irreducible non-trivial member in V(B) 

must have an irredundant basis with a cardinality less than m. 

By Corollary 1.3.4, on page 38, there exist a finite number of algebras in V(B), up to 

isomorphism, that are minimally generated by k elements, where k is a finite integer. As m 

is a finite integer, there exists, up to isomorphism, a finite number of connected subdirectly 

irreducible non-trivial members in V(B). 

Every pseudoconnected subdirectly irreducible member in V(B) must have a connected 

subdirectly irreducible component and a trivial component that make up the entire pseudo-

connected unary algebra. By Lemma 2.2.6, on page 59, as there exists, up to isomor­

phism, a finite number of connected subdirectly irreducible members in V(M), there exists, 

up to isomorphism, a finite number of pseudoconnected subdirectly irreducible members 

in V(M). 

By Theorem 2.2.5, on page 59, each subdirectly irreducible member in V(B) is either 

connected or pseudoconnected. Thus, there exists, up to isomorphism, a finite number of 

subdirectly irreducible members in V(B). By hypothesis, the universe of each subdirectly 

irreducible member is finite. Take the universe with the largest cardinality, add one to 

the obtained finite cardinal number and call the resulting finite cardinal N. Then V(B) is 

residually < N. • 

We have just shown that the Restricted Quackenbush Problem is answered affirmatively 

for unary algebras. 
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Chapter 3 

A Property of Finite Groupoids that 

Generate Residually Finite Varieties 

The Restricted Quackenbush Problem has been answered affirmatively with respect to 

groups in [17] and semigroups in [9]. So far, the Restricted Quackenbush Problem has 

not been answered with respect to arbitrary groupoids. In this chapter we look at groupoids 

that are influenced by a partial order relation. Groupoids are of importance because Quack­

enbush specifically asked about them in [15], the article where the earliest form of the 

Restricted Quackenbush Problem appeared. 

Since the language of any groupoid B = (B ,  *B) consists of a single binary operation 

symbol, we refer to this operation as multiplication. Thus, if b\ and bi are in B, we may 

call *B(fti,&2) orb\ *B £2, the product of bi andbj inB. 

Groupoids are versatile in the sense that for many properties, there often exists a groupoid 

that does not satisfy such a property. For example, not all groupoids are associative or com­

mutative or idempotent or congruence-regular or congruence-modular. 

Example. To see that not all idempotent groupoids are congruence-modular or associative, 
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consider the groupoid E14. The operation table of the binary operation of E14 is presented 

in Table 3.1 and the congruence lattice of E14 is pictured in Figure 3.1. Since Con E14 = N5, 

we may apply Theorem 1.2.9, on page 20, to show that the groupoid E14 is not congruence-

modular. To see why E14 is not associative, note the following: 

(0 *El4 1) *E'4 2 = 2 *E|4 2 = 2 and 0*El4 (1 *El42) = 0*El40 = 0. 

V£,4 

*E14 0 1 2 3 4 5 

0 0 2 2 0 2 2 

1 2 10 2 10 

2 1 1 2  1 1 2  

3 0 2 2 3 5 5 

4 2 1 0 5 4 3 

5 1 1 2 4 4 5 

Table 3.1: The Operation Table 

of *Ei<* 

{0,3}2 u {1,4}2 u {2,5}2 

{0,1,2}2u{3,4,5}2 

{0,1,2}2UA£i. 

Figure 3.1: The Congruence Lattice of E14 

In this chapter we determine a property that the generator of a variety of groupoids 

must satisfy to be residually finite. Specifically, we show that every residually finite variety, 

generated by a finite groupoid, must satisfy a particular kind of identity. These kinds of 

identities help to decide what subclass of groupoids to look at, with respect to the Restricted 

Quackenbush Problem. 

We start by looking at a particular class of finite groupoids whose elements, in a loose 

sense, converge to a particular element. These groupoids are said to be influenced by a 

partial order relation. We show that each groupoid in a subclass of these groupoids gen­

erates a residually large variety. To conclude this section, we derive an identity that every 
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residually finite variety generated by a finite groupoid must satisfy. 

3.1 Groupoids that are Influenced by a Partial Order Re­

lation 

The formal definition a groupoid influenced by a partial order relation follows after two 

examples. 

Example. The groupoid E15 is influenced by the partial order relation < of height 4. The 

operation table of *Eis is given in Table 3.2 and < is displayed as a Hasse diagram in 

Figure 3.2. Note that the product of e\ and e% in £is\{7} is greater than both e\ and ei with 

respect to the partial order relation <. Further, E15 is not a semigroup due to 

(0 *E|5 1) *El5 2 = 3 *E'5 2 = 6 and 0*E'5 (1 *E'52) = 0*E>54 = 5. 

Example. The operation table for the groupoid E^'s operator *El6 is given in Table 3.3. 

The groupoid E16 is influenced by the partial order relation < of height 3, displayed as a 

Hasse diagram in Figure 3.3. The groupoid Ej^ is associative due to the property that the 

product of any three elements is 11. 
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*E1S 0 1 2 3 4 5 6 7 

0 7 3 7 7 5 7 7 7  

1 7 7 4 7 7 7 7 7  

2 7 7 7 7 7 7 7 7  

3 7 7 6 7 7 7 7 7  

4 7 7 7 7 7 7 7 7  

5 7 7 7 7 7 7 7 7  

6 7 7 7 7 7 7 7 7  

7 7 7 7 7 7 7 7 7  

Table 3.2: The Operation Table of *E'5 

7 

5 

3 

0 

Figure 3.2: The Partial Order 

Relation < that Corresponds to *El5 

*E16 0 1 2 3 4 5 6 • 

0 6 8 8 6 8 8 

1 8 7 6 8 7 6 • 11 

2 7 7 8 7 7 8 

3 6 8 8 9 11 11 • 11 

4 8 7 6 11 10 9 

5 7 7 8 10 10 11 

6 11 11 11 11 11 11 11 • 

11 11 11 11 11 11 11 11 • • 11 

Table 3.3: The Operation Table of *E>6 

0 1 2 3 4 5 

Figure 3.3: The Partial Order 

Relation < that Corresponds to *E'6 
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Definition. Let B = (Z?;*B,<B) be a finite first order structure such that *B is a binary 

operation and <B is a partial order relation. Suppose that the following conditions are 

satisfied: 

1. (Maximum Element) There exists a unique maximum element A in B such that for 

a l l  b  i n  B,  we have  b< B  A .  

2. (Upward Multiplication) For all b\ in £\{A} and bi in B, 

b\<Bb2*Bbi and b\<?b\*Bb2. 

3. (Operation Respects Partial Order) For all b\ ,bi,bj, and b$ in B, 

if b \  <B b i  and b j  <B b$  then b \  * B b j  < B  £>2 *B^4-

Let M = (M; *M) be a reduct of B to a groupoid. That is, let M = B and *M = *B. Lastly, let 

h = max {|C|: (C; <B) is a chain such that Cefi}. 

If a groupoid M can be constructed in this way, say that M is influenced by a partial order 

relation of height h and use to denote the maximum element. 

Remarks. A few comments regarding the previous definition. 

1. The partial order <, and subsequently <, are not relation symbols in the language 

of M. Hence, <M and <M do not have any meaning. We make use of < and <, with 

respect to members of M, with the understanding that M is a reduct of a structure 

with an appropriate language. 

2. As M = (M, *M) is influenced by a partial order relation, for any given m in M, if m is 

multiplied by itself enough times, the result is AM- In fact, h instances of any element 

in M multiplied by itself yields AM-



3. As the set M is finite, the height of the partial order relation h must be a positive 

integer. 

3.1.1 Subdirectly Irreducible Groupoids that are Influenced by a Par­

tial Order Relation 

What do the subdirectly irreducible algebras, that belong to a variety generated by a groupoid 

that is influenced by a partial order relation, look like? In this subsection, we describe two 

special elements in the universe of such a groupoid and how they interact with the other 

elements in the universe. Further, we give a complete description of its monolith. 

For the remainder of this chapter, assume that B is a groupoid that is influenced by 

a partial order operation of height h. Further, assume that S is a subalgebra of B7, for 

some index set /, and assume that 9 is a congruence on S. Let TQ = {s/6 \ s e S}, the set 

of congruence blocks of 6 on S. Recall that since B is a groupoid that is influenced by a 

partial order relation, there exists a partial order relation on B, denoted by <. For b\ and b2 

i n  B l ,  def ine  b \  <  b j  i f  and  on ly  i f ,  fo r  a l l  i  i n  / ,  we  have  b \{ i )  <  b i ( i ) .  

For BINB1 ,  define the relation fa, on TQ , as follows: for all t\ and TI in TQ ,  relate t\ to TI 

if and only if 

1. for all j in {1,2}, there exists an element Sj in tj such that b < sj; or 

2. t \  is equal to t i .  

Lemma 3.1.1. For b in B1, the relation fa is a congruence on S/9. 

Proof. We start by showing that (pf, is an equivalence relation. The reflexive property of fa 

follows from Part 2 the definition of <fe. The symmetry property follows from the lack of 

the use of the order of t\ and in the definition of fa. For the transitive property, suppose 

that ti and t2 <pt h- We consider 3 cases. 

89 



Case 1 Suppose that t \  *  ̂  and h  * t $ .  By Part 1 of the definition of <fc, for j  in {1,2,3}, 

there exists Sj in tj such that b < Sj. There may be two such elements in tj. Regardless, 

we have t\ fo t$. 

Case 2 Without loss of generality, suppose that t \±h  and ti = t$. Then 

= (h ,h ) e h-

Case 3 Suppose that t \  = t j  and t i -h .  Then t \  = t$ ,  by the transitivity of equality, and 

hence t\ fo t$. 

Thus, <pb is an equivalence relation. 

To complete the proof, we show that fa satisfies the compatibility property. Suppose 

that t\ fa t2 and h fa U. We want to show that 

(h  * s , e t 3 )<t> b ( t2* s / e t 4 ) -

If t\ = t% and t$ = t4, then t\ *s/e = ti *ste Now, without loss of generality, assume 

that t\ * ti. That is, assume that there exists elements s\ and in t\ and ti, respectively, 

such that b < s\ and b<S2- Pick 53 in *3 ands4 in t^. Thus,for all ./'in {1,2,3,4}, the set tj 

is equal to sj/6. Due to upward multiplication of B, we obtain the following: 

b<s i<s i  *s53 e(si * s S i ) /d  

=  s i / e ^ e s 3 / e  

= h*wt3 

and using a similar idea 

b < S2 *s S4  €  t2 * s ! e  t4.  

Thus, the relation ^ is a congruence on S/0. • 

90 



K K K 

KnS  KnS  

S 

B1 

Figure 3.4: How B1, S, K and K Interact 

For b in B, knowing whether or not <pb is As/d will play a role in describing the sub-

directly irreducible members in V(B). We use the following notations throughout the re­

mainder of this subsection. Define 

K={beB I :< l> b *A S i e }  and K = B'\K. 

Further, let 

4>= Afc-
kfK 

See Figure 3.4 for a visualization of how B ! , S ,K  and K interact. The constant mapping 

from I to {As}, in B1, plays an important role in the following proofs. Denote this element 

by kB. 

Lemma 3.1.2. The following are true: 

1. The element kg is a member of S. 

2. For all b in B1, such that fa = ASjQ, we have 

{ s€S-b<s}  £XB / 9 .  
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3. The set KnS is contained in Xb /6 .  

4. For all t in TGYIFTNK* 0, then t = XB/6 .  

5. l f t \  and  t2  are  in  TQ such that t\ n K1 0  and ti^K + <Z, then t\ - ti. 

6 .  I f t  i s  i n  TQ such that t n  K =  0  then TTXSJB. 

Proof. The Lemma's Parts are proved in sequential order. 

By Remark 2 concerning groupoids influenced by a partial order relation, on page 88, 

for all b in B1, we have M = As, where t/1 is some /i-fold product of b. Therefore, as S is a 

non-empty subuniverse of B1, the element XB is in S. This proves Part 1 of the Lemma. 

Note that for all s in 5, we must have s < XB . That is, XB is the maximum element in S. 

With regard to Part 2 of the Lemma, note that if, for some b in B, we have <pb = &s/e then 

the elements in {5 € S: b < 5} must belong to the same 0 congruence block, specifically 

{s  S S  •• b  <  s }  C XB / 6 ,  

otherwise at least two distinct B congruence blocks must be related in fa. 

Since K = Bl\K, Part 3 of the Lemma follows from Part 2 of the Lemma. 

Assume that for some t  in TQ we have t nk  1 0 .  By Part 3 of the Lemma, since there 

exists an element s in t nK, the element s is in As/0. That is, 

t  =  s /d  =  XB / 0 •  

This proves Part 4 of the Lemma. 

Part 5 of the Lemma is a consequence of Part 4 of the Lemma. 

To prove Part 6 of the Lemma, assume that t nk  = 0 .  Hence, t  g K.  Suppose, for a 

contradiction, that 

/ = Xii/6. 
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Thus, 

As  6  A# /d  =  t £K  

and hence ^ * A5 /r 0 .  Hence, there must exist an element in S that is greater than Ag. A 

contradict ion has  occurred,  as  KG is  the maximum element  in  S. •  

For the remainder of this chapter, we acknowledge AB as the maximum element in S, 

without statement. 

Lemma 3.1 J. Suppose that for distinct elements t [ and ti in TQ, we have {tut 2)  in O. 

I f t \  c \k  = 0 ,  then for  al l  t  in  TQ, 

t \  * s / 0 t  =  A5 /0  and  t  t \  =  A f l /0 .  

Proof. By assumption t\nk = 0. Hence, by Part 6 of Lemma 3.1.2, 

fi^Afl/0. (3.1) 

By hypothesis, (fi,*2) is in <E>. Thus, for all k in K, the pair is in 0*. Therefore, 

for all k e K  there exists e t \  such that k  <  u k .  (3.2) 

Pick si in t \  and r  in t .  We will show that si * s r  is in Ag/0. By doing this, we are 

showing that 

tx *s'et=Ysie. 

Using a similar idea, we will also obtain 

t  * s ^ e t i  =  Ab /& 

and thus the proof will be complete. 
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Now to see that si *s r is in KB /6 suppose, for a contradiction, that 

s\*srikslQ. (3.3) 

Recall from Part 3 of Lemma 3.1.2 that KnS £ Ag/0. Thus 

s i  * s r iKnS;  

As both si and r are in S, we have si *s r in S and hence, sj *s r is in K. 

By upward multiplication, for all i  in /, we have s \ ( i )  <  s \  (i) * B r ( i ) .  Thus, si < si * s  r .  

By S ta temen t  (3 .2 ) ,  t he re  ex i s t s  r \  i n  t \  such  tha t  s \* s r<r i .  Thus ,  fo r  a l l  i  i n  I ,  

s i ( i )<{s i  * S r ) ( i )  <r \ ( i ) .  

By Statement (3.1), the element r\ cannot be equal to KB - Further, r\ *sr cannot be in Ag/0 

as otherwise (r\ *s r)/6 = XB/6 and, as r\jQ = t\,we obtain the following: 

(JI * s r ) /d=s i ld* s ' e r /d  

= t i  * s l e r /6  

= r \ /6  * s / e r /d  

=  (n  * s r ) /d  

=YBte. 

Hence, if r \  * s r  is in ks /d ,  then a contradiction occurs from the assumption made in 

Statement (3.3). 

Since t\ c K, we may repeat the above process to find ri in t\ such that for all i in I, 

r i ( i )  <  (n  * s ^ ) (0  ̂ r2 ( ' ) -

Repeating this process h times in total, where h denotes the height of the partial order 

relation that influences B, we obtain rh(i) = AS for all i e I. Therefore, rh = AB and rh is a 
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member in fj. A contradiction has occurred due to Statement (3.1). Thus, 51 *sr is in A#/0 

and the proof is complete. • 

Lemma 3.1.4. Let M denote a groupoid. If there exists m\, m2 and //13 in M such that for 

allm in M and j in {1,2}, 

m* M mj  = w?3  and  m j* M m = m3 

then 

Cg M  ( {mi ,m 2 ) )  =  { (m u m 2 ) , (m 2 ,m i ) }u^ .  

Proof. Denote {(m\,m2),(m2,mi)}u&M by r. Clearly, r is an equivalence relation on M. 

Let (t\,t2) and (^3,^4) be in r. If t\ = t2 and = t4, then t\ *M*3 = t2 *Mf4 and hence 

<'i * M h , t 2 * M u)^x .  

Without loss of generality, assume that t\ * t2. Then {t\, t2} = {mi, mi) .  Again, without loss 

of generality, assume that t\ = m\ and t2 = m2. By hypothesis, 

(*i * M t i , t 2 * M t 4 )  =  {mi  * M t 3 ,m 2  * M t 4 )  = (m3,m3) € x .  

Thus, r satisfies the compatibility property and hence is a congruence on M. 

As r is the smallest congruence on M that relates m\ to m2t we obtain the desired 

result. • 

Corollary 3.1.5. Let t\ and t2 be elements in TQ such that {t\,t2) is in <t>. If t\ nK = 0 

and t2nk = 0, then either t\ = t2 or S/6 is not subdirectly irreducible. 

Proof. By assumption tjnK = 0 for j in {1,2}. By Part 6 of Lemma 3.1.2, we have 

t j * f a / e .  (3.4) 
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Lemma 3.1.3 and Lemma 3.1.4 imply that both T \ and T2, defined below, are congru­

ences: 

tj = { ( t j ,  X B / d ) ,  < AbI  9, t j ) }v  As / 0 .  

Note that by Statement (3.4), neither t\ nor T2 are equal to &s/6- Thus, two possibilities 

emerge. Either the congruence blocks t\ and ti are equal or they are not. With regard to the 

latter scenario, since x\ at2 = &s/q and neither t\ = ks/e nor t2 = the algebra S/0 is 

not subdirectly irreducible. • 

Lemma 3.1.6. Suppose that S/8 is subdirectly irreducible and that there exist elements t\ 

and ti in TQ such that (ti,tz) " i" tfh * 0 and tif\k - 0, then there exists a unique 

element AG in TQ such that for all t in TQ, we have 

t  * s / e  ag  = a0  and  <XQ *SL81 = GCQ 

and there exists a unique element fig in TQ\{CIQ} such that for all t in TQ, we have 

t *ste PQ = oIQ and PQ *ste t = ciQ. 

Further, CXQ = t\ and fig ~h-

Proof. By Part 4 of Lemma 3.1.2, we have t\ = kg/d and by Part 6 of Lemma 3.1.2 we 

have  t 2  *  Ag/0 .  Fur the r ,  by  Lemma 3 .1 .3 ,  we  have  fo r  a l l  t i nTe ,  

T2* SF 6T = XB/6 and T* SLET2 = XB/6.  

Let CXQ =t \  and /3Q - ?2-

The element CIQ is unique due to XM /6 being the only member in S/6, and hence TQ, 

that  contains  the maximal  e lement  in  S. 
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Suppose that there exists an element r in TQ ,  distinct from FIE and ctQ such that for all t 

in  TQ, 

r* s / e t  = KB / d  and t  * s / e  r  =  XB / 6 .  

Thus, we have three distinct elements, a#, /3# and r in TQ, such that any product that 

involves any one of them is ag. By Lemma 3.1.4, 

{<a0,/3fl),(0e,a0)}uAs/0 and {(ae,r>,(r,ae)}uAs/e 

are congruences on S/0. Therefore, as r  is distinct from ag  and pe  then S /6  cannot be 

subdirectly irreducible due to the presence of two non-trivial congruences that meet to 

A s jq .  Hence ,  fo r  S /0  to  be  subd i rec t ly  i r r educ ib le ,  we  mus t  have  f i g  =  t .  Uniqueness  o f  f i e  

has been achieved. • 

We have all of the ingredients to state the Theorem central to this subsection. That 

is, we are able to provide a partial description of the subdirectly irreducible members in 

varieties generated by groupoids that are influenced by a partial order relation. 

Theorem 3.1.7. Let B = (B; *B) be a non-trivial groupoid that is influenced by a partial 

order relation and suppose that M is in V(B). If M is subdirectly irreducible, then the 

following statements are true. 

1. There exists a unique element a\f in M such that for all m in M, 

m* M aM = aM and  =  

and there exists a unique element PM in M\{a,v/} such that for all m in M, 

and f$M *M nt = am• 
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mi mi m3 ... m|A*|-2 PM aw 

mi ? ? ? ... ? CtM 

«J2 ? ? ? ... ? O-M CtM 

m3 ? ? ? ... ? O.M 

: ? aw 

m\M\-2 ? ? 9 ? ? OM OM 

Aw OM O-M O-M OM aw 

V-M CfM CtM aw aw 

Table 3.4: The Operation Table of a Finite Subdirectly Irreducible Member in a Variety 

Generated by a Groupoid Whose Binary Operation is Influenced by a Partial Order 

Relation 

2. The monolith of M is 

HM= { (<*M,PM)  , (PM,<*M)}V  AM-

Before the proof is given, note that Part 1 of Theorem 3.1.7 states that, for 1 < \M\ < o), 

the operation table of *M must look like the operation table given in Table 3.4. 

Proof Of Lemma 3.1.7. We start with Part 1 of the Theorem. 

By Tarski's 1HESP Theorem, Theorem 1.2.5 on page 17, for each M in V(B), there 

exists an index I and subalgebra S, such that S < B7, and there exists a 0 in Con S such 

that M = S/0. Hence, for the remainder of the proof we focus explicitly on S/0. To 

simplify notation, let TQ = S/0. 

Recall from Part 3 of Lemma 3.1.2 that KnS £ As/0. Note that if K = 0 then S  = KnS .  

Thus, S c As/0. This implies that 5 = As/0. Therefore, if K = 0 then S/0 is the trivial 
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algebra. Since we are assuming that S/0 is not the trivial algebra, this means that K + <Z 

and hence, the congruence <t> exists. 

Suppose that for t \  and t i  in 5/0, we have { t \ , h )  in <E>. There exist a few possibilities 

regarding how t\ and tj interact with K. They are as follows. 

Possibility 1: Suppose that t\ r\K 10 and tir\K + 0. By Part 5 of Lemma 3.1.2, we have t\ = 

h-

Possibility 2: Suppose that t\ nK = 0 and t2<~\k = 0. By Corollary 3.1.5, we have t\ = h 

or S/0 is not subdirectly irreducible. 

Possibility 3: Without loss of generality suppose that t\ n K10 and ti n£ = 0. By 

Lemma 3.1.6, there exists a unique element AG in 5/0 such that for all t in TQ ,  we 

have 

t *s/0 ag = ag and ag *s^e t = ag 

and there exists a unique element in  7e\{ae} such that for all t in TQ, we have 

t  * s / e  p e  = ae  and  * s / e  t  =  a e .  

With respect to all (*i,f2) in if only Possibility 1 and Possibility 2 occur then ei­

ther O = ASje or S/0 is not subdirectly irreducible. 

Note that if 4> = A s / e  then |Jf| 4-1 as by definition, for all k  in K,  we have fa * A s / e .  

Thus, if = As/e then 4> is a meet of at least two non-AS/0 congruences that equates to 

A5/0. That is, S/0 is not subdirectly irreducible. 

For S/0 to be subdirectly irreducible and non-trivial, there must exist a pair i ,*2) in <I> 

such that, with respect to t\ and ti, Possibility 3 occurs. This proves Part 1. 
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For Part 2, assume that S /d  is subdirectly irreducible and not trivial. Part 1 of the 

Theorem and  Lemma 3 .1 .4  imply  tha t  T ,  de f ined  be low,  i s  a  congruence  on  S /6 :  

T = {{a0,0e),<j3e,af l)}uAs/e. 

Since S /d  is subdirectly irreducible, we must have n S / e  5 T, where nS / e 's the monolith 

of S/6. As r covers AS/e, this implies that r = nSjQ. • 

Can any more be stated, regarding a description of subdirectly irreducible algebras in 

varieties generated by groupoids that are influenced by a partial order relation? In the next 

subsection, we show that, under certain circumstances, the answer is yes. 

3.12 Subdirectly Irreducible Groupoids that are Influenced by a Par­

tial Order Relation of Height 3 

If B is a groupoid influenced by a partial order relation of height 3, then we can obtain an 

even clearer picture of what the subdirectly irreducible members in V(B) look like than 

that presented in Theorem 3.1.7. Note that such a groupoid is associative, as the product 

of any three elements must be the maximal element in the universe of that groupoid. We 

conclude this subsection by showing that the varieties generated by some groupoids, that 

are influenced by a partial order relation of height 3, are residually large. 

Corollary 3.1.8. Let B = (B; *B) be a non-trivial groupoid that is influenced by a partial 

order of height 3 and M in V(B). If M is subdirectly irreducible, then the following 

statements are true. 

1. There exists a unique element CLM in M such that for all m in M, 

m* M c tM = c tM and  a^* M m = cxm 
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and there exists a unique element PM in M\{a^) such that for all m in M, 

m* M p M  = c t M  and  p^* M m = a^ .  

2. The monolith of M is 

VM = {(  <*M, PM) , (PM, <*M) }  U AM-

3. For all m\ and m2 in M, 

m\ *Mm2€ {aM,j3M}. 

Proof. By Tarski's HSP Theorem, Theorem 1.2.5 on page 17, for some index I such 

that S < B7 and for some 6 in Con S, we may assume that M = S/0. 

Together, Part 1 and Part 2 are a restatement of Theorem 3.1.7. Hence, only Part 3 of 

the Corollary must be proved. 

Recall from the Part 1 of Lemma 3.1.2, on page 91, that the maximum element in S 

exists and is the constant function from I to {KB). This element is denoted by AB- The 

congruence block in  S/9 that  contains  KG is  KB /6. 

Since B is a groupoid influenced by a partial order relation of height 3, the product of 

any three elements in B is Ab- Thus, the product of any three elements in B1, or any three 

elements in S, is A#, while the product of any three elements in 5/0 is Ag/0. Note that 

<xm is the element in M that corresponds to Ag/0, with respect to the isomorphism that 

relates M to S/0. Thus, for all m\,mi and m3 in M, 

(mi *Mwi2) *Mmi = am and m\ *M {mi *M/«3) = clm-

Suppose that for m\ and mi in M, we have = mi *M mi. Therefore, 

for all m4 in M m$ *M 024 = and *M /W3 = a^-
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Lemma 3.1.4, on page 95, yields that the following relation is a congruence: 

T = {(aA/,m3),<»J3,aM)}uAM. 

By Part 2, the monolith is 

MM = { ( a M,P\ f ) ,  (PM,  «M)} U AM-

Thus, r can either be jum or Am- That is, mj, is in {cxm^m}- C 

The previous Corollary yields the construction of a specific family of groupoids, namely, 

the Dk'S. For a non-zero cardinal number K, define 

D* = ({r I y is a cardinal number and y < jc}u{a,/3};*D,c} 

be the groupoid where for all d \  and d i  in D K ,  

fi if d\ t dj and for all 7 in {1,2}, the element dj is not in {a, /3 } 

a otherwise. 

See Table 3.5 for the operation table of *D|C, if K is a finite cardinal number. 

Lemma 3.1.9. Let K be a non-zero cardinal number. The groupoid D K is subdirectly irre­

ducible. 

Proof. We show that every non-trivial congruence on D* contains the element (a,/3). This 

will imply that DK's monolith is CgD,c((a,/3)). 

If there do not exist any non-trivial congruences, then DK is simple and hence, subdi­

rectly irreducible. Hence, we may assume that there exists at least one non-trivial congru­

ence on D*. For Q in (Con DIC)\{Adk, VDK},let {d\,d2} in 6 such that d\ + di- We examine 

3 cases. 

d\ *D,C dz = 
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0 1 2 . . .  K - l  P a 

0 a P P P a a 

1 P a P . . .  P a a 

2 P P a P a a 

• • P a a 

K" — 1 P P P P a a a 

P a a a a a a a 

a a a a a a a a  

Table 3.5: The Operation Table of *Dk, Assuming K is a Finite Cardinal Number 

Case 1 Suppose that d \  and J2 are not in {a,/3}. Since {d \ ,d \ )  is in 0, by the compatibility 

property we have 

<a,j3) = {d \  *D*d \ ,d2* D *d{ )  € 0. 

Case 2 Without loss of generality, suppose that d \ is not in {a, j3} and d2 is in {a, /3}. Pick 

a <^3 in DIC\{Ji,a,/3}. We are guaranteed such an element, as |DK| > 3. Therefore, as 

(d^ds) in 0, we obtain the following 

(p ,a )  =  (d i  * D «d 3 , d 2 * l ) K d 3 ) zd .  

By symmetry of a congruence, we obtain (a,/3) is in 0. 

Case 3 Suppose that {^1,^2} = {ce,/3}. Without loss of generality, assume that d \=  a  

and d2 = fi. Then, 

(a ,p )  =  (d u d 2 ) eO.  

Thus, Dk is subdirectly irreducible. • 
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The DK 'S each satisfy many identities. We use this property to show that a groupoid 

that is influenced by a partial order relation of height 3 generates a residually large variety. 

For the binary operation symbol *, let t be a term of type {*}. Define the length of the 

t e rm t  as  the  number  o f  exp l i c i t  occur rences  o f  the  symbol  *  in t .  

Let t\ and t2 be terms of type {*} such that the length of t\ is n\ and the length of t2 

i s  n 2 .  Def ine  the  l eng th  o f  the  iden t i t y  t \  &t 2  as  the  two- tup le  {n^n j ) .  

Example. Let 

be terms of type {*}. The lengths of ?i(x,y), of t 2 (x )  and of t $ (x , y , z )  are 0, 1 and 3, 

respectively. The lengths of the identities 

are {0,1) and (1,3), respectively. 

Lemma 3.1.10. Let * denote a binary operation symbol. Using the variables w, x, y and 

z, the following are the only identities of type { * } and of length (1,1), up to relabelling the 

variables or swapping sides of the identity. 

FI(JC,Y)« JC, t 2 ( x )xx*x  and t 2 (x , y , z )«(-**>0 * (**Z) 

t \ ( x , y )  « t 2 ( x )  and t 2 ( x )  « t i ( x , y , z )  

1. 5. W*X*W*X 9 .  w* jc«y*; t  

2. V f * w s s w * x  6. 10. w*xvy*w 

3 .  w*w«J t*w 7. w * w Ri x * y 11. w*;t«;y*z 

4 .  w*w*x*x  8. 
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Proof. We build all of the possible identities, up to relabelling and swapping, of length (1,1) 

using the variables w, x, y and z. 

There is only one identity of length (1,1) where one variable appears four times, namely 

equation 1. 

Of all identities, up to relabelling and swapping, of length (1,1) where one variable 

appears three times, only two are distinct, namely equations 2 and 3. 

The following are all identities, up to relabelling and swapping, of length (1,1) where 

two distinct variables appear two times: 

4. H"*W>5. wt-Xftsw*.* 6. 

The following are all identities, up to relabelling and swapping, of length (1,1) where 

exactly one variable appears two times: 

7. 9. 10. wx-jfayt-H' 

8. w*;c« 

There is only one identity, up to relabelling, of length (1,1), where four distinct vari­

ables appear, namely Equation 11. • 

Lemma 3.1.11. For each non-zero cardinal number K and p\ > 1 and pi > 1, the algebra 

D* sa t i s f i e s  every  iden t i t y  o f  l eng th  {p \ ,p i ) .  

Proof. Note that a product of any three or more elements in DK is a. Thus, for any integers 

p \  > 1  and  p2  > 1 ,  each  D*  sa t i s f i e s  eve ry  iden t i ty  o f  type  {*}  and  o f  l eng th  {p \ ,p i ) .  •  

Lemma 3.1.12. Let K be any non-zero cardinal number. The algebra D* satisfies Identity 1, 

Identity 4, Identity 5 and Identity 6, defined in Lemma 3.1.10. 
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Proof. Recall the following identities listed from Lemma 3.1.10. 

Identity 1: w*w » w *  w 

Identity 4: 

Identity 5: W*X«H>*X 

Identity 6: w * x « x * w 

Every groupoid satisfies Identity 1 and Identity 5. As the product of any element in DK 

with itself is a, the algebra DK satisfies Identity 4. As the product of two distinct elements 

in DK\{a,fi} is /3 and any product involving a or /3 is a, the algebra DK satisfies Identity 

6. • 

Lemma 3.1.13. LetX  = {w,x,>>,z} u {xi,x2,x3, • • • }  be  a  se t  o f  d i s t inc t  var iab les .  Le t  K  be 

a non-zero cardinal number. Assume that {y i, yi1J31 • • • > } £ X. For every n > I and every 

term t(yi,y2,yi, •. of length n, the algebra DK does not satisfy any of the following 

identities: 

Length (0,1): Length (1,1): Length (0,0): 

w * W » W *X W»JC 

W W *X w * w « x * w 

WRSX*X Vf*X»H>*;y 

Length (0,n): 

X" t (y \ , y2 ,y3 , . . . , y m )  

Length  (1  ,n ) :  W«X*;y W*X»y*H' 

w*x«;y*x Jc*y«/(yi,y2,y3.---iym) 

H>*X«)>*Z 
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Proof. Each D* cannot satisfy the length (0,0) identity listed in the statement of the 

Lemma, as a and /3 are in each DK and a * /3. 

For each identity of length (0,1), Table 3.6 shows that appropriate choices of a, b and c 

in DK yield an instance that falsify that identity. For example, if f(W,x,y) « g(w,x,y) is the 

iden t i ty  w «  w *x  then  le t t ing  a  = p ,b  = a  and  c  be  any  e lement  in  D K  yie lds  / D , c  (a ,  b ,c )  =  f i  

and g°K (a, b,c) = a. Thus, D* cannot satisfy the identity wxw*x, otherwise /3 = a and a 

contradiction occurs. Therefore, each D* does not satisfy any identities of length (0,1). 

f (w ,x ,y )*g(w,x ,y )  a b c J° K (a ,b ,c )  g D *(a ,b ,c )  

w w W* w 0 - - 0 a 

V f s s  W * X  P a - P a 

W K X * W  0 0 - 0 a 

w*x*x  0 0 - 0 a 

wr*x*y  P a a P a 

Table 3.6: Identities of Length (0,1) that each D* does not Satisfy 

For each identity of length (1,1) listed in the statement of the Lemma, Table 3.7 shows 

that appropriate choices of a, b, c and d in DK yield an instance that falsify that identity. 

Therefore, each D* does not satisfy any identities of length (1,1) listed in the statement of 

the Lemma. 

When the length of t ( x \ , x2 ,x$ , . . .  , x m )  is at least 2, as the product of any three elements 

in DK is a, we have the following: 

for all (d u d 2 , d 3 , . . . , d m )  in D£, t Y > K (dx ,d 2 , d^ . . . ,d m )  =  a .  

Thus, each D* does not satisfy any identity of the form Jt«f (y i, )>2, B, • • •, )>m) > as otherwise 

replacing x with |3 and the y('s with 0 yields ft = a. Similarly, each D* does not satisfy any 
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/(w,JC,y,z)«f(w,x,y,z) a b c d f ° K  ( a , b , c , d )  g ° K ( a , b , c , d )  

w  *  Vf «  w  * x  0 1 - - a  P 

W*H> war* w 0 1 - - a  P 

w*w * x * y  0 0 1 - a  P  

w * x & w * y  0 0 1 - a  P  

w * x & y * w  0 0 1 - a  P  

w * x n y * x  0 0 1 - a P  

w*x&y*z  0 0 0 1 a P  

Table 3.7: Identities of Length (1,1) that each D* does not Satisfy 

identity of the form x  *y  «t (yi , y2 ,y$ ,  •  •  •  , y m ) ,  as otherwise replacing x  with 0, y  with 1 and 

the yCs with 0 yields /3 = a. Thus, each D* does not satisfy any identities of lengths (0,n) 

or (l,n), where n> 1. • 

Lemma 3.1.14. For every non-zero cardinal number tc, the algebra DK satisfies every 

identity not listed in Lemma 3.1.13. 

Proof. Every identity not listed in Lemma 3.1.13 is dealt with in either Lemma 3.1.11 or 

Lemma 3.1.12. • 

Theorem 3.1.15. If B = (B;*b) is a non-trivial groupoid that is influenced by a partial 

order relation of height 3 and there exists an element b in B such that b*Bb± KB then V(B) 

is residually large. 

Proof. For any non-zero cardinal number K  and for any set of variables X, we will show 

that 

ld)B)(X)£ld{Dl((X). (3.5) 
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Since V(B) is an equational class, this will imply that DK is in V(B). Therefore, by 

Lemma 3.1.9, the class of algebras V(B) is residually large. Explicitly, we will show 

that for an identity t\ «ti of type {*}, 

if I>K: fi«^2 then (3-6) 

The contrapositive of this implication yields Statement (3.5). It follows that B does not 

satisfy any of the identities listed in Lemma 3.1.13. 

The only algebra that satisfies a non-trivial length (0,0) identity is the trivial algebra. 

Thus, B does not satisfy the length (0,0) identity. 

Since there exists a b' in B such that b' *B b' * AB, we must have 

b'<b'  **b '<k B .  

For each identity of length (0,1), Table 3.8 shows that appropriate choices of a, b and c 

in B yield an instance that falsify that identity. For example, if f(w,x,y) « g(w,x,y) is the 

iden t i ty  w »  x  *  x  then  le t t ing  a  = b ' ,b  = XB and  c  be  any  e lement  in  B yie lds  f ° K  (a ,  b ,  c )  =  b '  

and gT>K(a,b,c) = AB- Thus, B cannot satisfy the identity w « x*x, otherwise b' - AB and 

a contradiction occurs. Therefore, B does not satisfy any identities of length (0,1), that 

each Die does not satisfy. Similarly, for each identity of length (1,1), that each DK does not 

satisfy, Table 3.9 shows that appropriate choices of a, b and c in B yield an instance that 

falsify that identity. Thus, B does not satisfy any length (1,1) identities that each DK does 

not satisfy. 

When the length of/(yi , y i , y s , . .  •  , y m )  is at least 2 and B is influenced by a partial order 

relation of height 3, we have the following: 

for all {b \ ,b i ,b?„ . . . ,b m )  inBm, t B (b u b 2 ,h , . . . , bm)  =  X B .  

If B satisfied any identity of the form x »/(yi , y i , y s ,  •  • .  , y m )  then replacing each variable 
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f ( w , x , y ) * g ( w , x , y )  a  b  C  f B ( a , b , c )  g B ( a , b , c )  

b '  - - b '  b '  * B b '  

W w w *JC b <  fa - V fa 

b '  fa - b '  fa 

w & x * x  V fa - b '  fa 

w & x * y  V fa \ B  b '  fa 

Table 3.8: Identities of Length {0,1) that B and each D* do not Satisfy 

f ( w , x , y , z ) < * g ( w , x , y , z )  a  b  c  d  f B ( a , b , c , d )  g B ( a , b , c , d )  

W t - w  W  W * X  b  fa - - b * B b  fa 

W * W & X * W  b  fa - - b * B b  fa 

w * w  & x * y  b  fa fa - b * B  b  fa 

w * x & w * y  b  b  fa - b  * B  b  fa 

w * x & y * w  b  b  fa - b * B b  fa 

w * x * y * x  b  b  fa - b * B b  fa 

w * x * y * z  b  b  fa fa b * B b  fa 

Table 3.9: Identities of Length (1,1 > that B and each D* do not Satisfy 
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with b ' ,  yields b '  = Ag. Hence, for n  > 1, the algebra B does not satisfy any identities of 

length (0,n) that each DK does not satisfy. 

If B satisfied any identity of the form x*y  t ( y \ , y 2 , y 3 , . . . , y m )  then replacing each 

variable with b' yields b' *B b' = AB- Thus, for n > 1, the algebra B does not satisfy any 

identities of length {1 ,n) that each DK does not satisfy. 

Finally, we have shown that Statement (3.6) holds. • 

Although the previous Theorem does not answer the Restricted Quackenbush Problem, 

it can be used to tell us what groupoids to avoid. In the next section we alter the previ­

ous Theorem to derive an identity that all finite groupoids, that generate residually finite 

varieties, must satisfy. 

32 An Identity that Residually Finite Varieties Generated 

by Finite Groupoids Must Satisfy 

We generalize Theorem 3.1.15 to show that the variety generated by a finite non-trivial 

groupoid is residually finite if the generating groupoid satisfies a particular kind of identity 

that is expressed in one variable. 

Theorem 3.2.1. Let B = (5; *B) be a non-trivialfinite groupoid. For the variable x, if V(B) 

i s  no t  res idual ly  large  then  there  ex i s t s  some  term k (x )  o f  t ype  {*} ,  such  tha t  k (x )  t  x*x  

and  B sa t i s f i es  k (x )  «  JC *  x .  

Proof. We prove the contrapositive. Specifically, we show that if 

for all terms k(x )±x*x ,  we have B & k(x )  «x*x  (3.7) 

then V(B) contains all of the D^'s. We do this by showing that B does not satisfy any of 

the identities that each D* does not satisfy. Namely, B does not satisfy any of the identities 
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of length (0,0), (0,1), {0,n), (1,1) or (1 , n )  described in Lemma 3.1.13. In other words, 

each of the D^'s satisfy all of the identities that B satisfies. Thus, for any non-zero cardinal 

K and any set of variables X, 

Id(B}(X)Sld(D ,}(X) 

and hence, all of the D* are in V(B). That is, V(B) is residually large. 

The generating algebra B cannot satisfy the identity of length (0,0) as B is non-trivial. 

Under the assumption made at the beginning of the proof, B cannot be idempotent. 

Hence, there must exist an element b 'mB such that b*Bbtb. Hence, B cannot satisfy any 

identity of length (0,1) that each DK does not satisfy as otherwise for each such identity, 

each  var iab le  cou ld  be  rep laced  wi th  b  yie ld ing  b  = b* B b .  

By Statement (3.7), the algebra B does not satisfy the following identities: 

x*x<*x*(x*x)  and x*x*  (x*x)  *x .  

Thus, there must exist elements b\ and £>2 in B such that 

bi  *B^i *bi  * B (b i  * B bi )  and &2 *B£>2 * (^2 *B^2) *B^2- (3.8) 

For each identity of length (1,1) that each D* does not satisfy, Table 3.10 shows that appro­

priate choices of a, b, c and dinB yield an instance that falsify that identity. Therefore, B 

does not satisfy any of the identities of length (1,1) that each D* does not satisfy. 

Consider a term t (ji ,>'2,y3, • • • , y m )  o f  length n ,  where n  > 1. If B did satisfy an identity 

of length (0,n), that each D* does not satisfy, then we may replace every variable with the 

variable x to obtain 

B T= JC « / (JC, JC, JC, ..., JC) 

and hence 

B1= JC *  JT«F(X,.X:,  X, . . . ,  *)  *t (x ,x ,x , . . . , x ) .  
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f (w ,x , y , z )*g(w,x , y , z )  a b c d f B {a ,b ,c ,d )  g B (a ,b ,c ,d )  

H>*W» W*JC b\ b \  * B b\  - - b\  * B b\  b\ *B {b\ *Bbi) 

b2 b2 *B b2 - - b 2  * B b 2  (b 2  * B b 2 )* B b 2  

w*w»;c*;y  b\ bi b \  * B bi  - b\  * B b\  b \  * B {b \  * B b\ )  

bi h b\ *Bb\ - b\  * B b\  b\ *B {b\ *B£i) 

b2 bi b2 *B b2 - b 2 * B b 2  (b 2  * B b 2 )  * B  b 2  

w*;c«;y* jc  b2 b2 b 2  * B b 2  - b 2 * B b 2  {b 2  * B  b 2 )  * B  b 2  

b2 b2 bi *Bb2 b2 b 2  * B b 2  (b 2 * B b 2 )  * B  b 2  

Table 3.10: Identities of Length (1,1) that B and each D* do not Satisfy 

By the assumption described in Statement (3.7), the algebra B cannot satisfy an identity of 

length (0,n) that each D* does not satisfy. Similarly, B cannot satisfy an identity of (l,n), 

that each DK does not satisfy, as otherwise we may replace each variable with the variable 

x to obtain 

B l= jc *x  « t (x ,x ,x , . . . , jc) .  

Thus, the algebra B does not satisfy any of the identities that each DK does not satisfy. 

• 

Note that in the proof of Theorem 3.2.1, we showed that D* is in V(B), for any non­

zero cardinal number K. This leads into the following corollary. 

Corollary 322. Let B = (5; *B) be a finite groupoid and xbea variable. If for every term 

k(x) of type {*} such that k(x) tx*x, the algebra B does not satisfy k(x) S»JC*JC then 

1. the class of algebras V(B) is residually large; and 
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*E17 0 12 3 ••• n 

0 1 2  2 ? - ?  

1 2  2  2  ? - ?  

2 2 2 2 ? ••• ? 

3 ? ? ? ? • • • ?  

9 

n ? ? ? ? ? ?  

Table 3.11: The Operation Table of *E|7 

2. for any cardinal number y greater than 3, there exists a subdirectly irreducible mem­

ber M in V(B) such that \M\ = y. 

Proof. Part 1 of the Corollary is the contrapositive of Theorem 3.2.1. With regard to Part 2 

of the Corollary, if 3 < y < a> then let M = Dy_3 and if y > co then let M = Dy. • 

We can use the previous Corollary to rig the construction of groupoids to yield groupoids 

that generate residually large varieties. 

Example. Let En = (En;*El7) be a groupoid whose partial operation table is described 

in Table 3.11. Even though a partial description is given, V(En) is residually large by 

Corollary 3.2.2. To see why, note that 0 *E'7 0=1 and ?E|7(0) = 2, for any term t(x) of type 

{*} that is at least of length 2. Thus, for all terms t(x) tx*x of type {*}, we have E17 £ 

t ( x )  f a * * * .  

Corollary 3.2.2 yields an immediate question: If B = is a non-trivial finite 

groupoid such that V(B) is residually finite, must *B be idempotent? If we consider con­

stant groupoids, that is, groupoids where the lone binary operation maps everything in the 
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universe to one particular element, then the answer is no. The following example demon­

strates this. 

Example. Let Ejg be a constant non-trivial groupoid. One can verify that V(Eis) is the 

class of all constant groupoids. This variety is residually finite as the only non-trivial 

constant groupoid that is subdirectly irreducible is the two element constant groupoid. 

If B = (B \  *B) is a non-trivial finite groupoid such that V(B) is residually finite, must *B 

be idempotent? If we do not consider constant groupoids, then the answer to this question 

becomes less obvious. We conclude this section with the following question. 

Question. With regards to Corollary 3.2.2, does there exist a non-trivial and non-constant 

groupoid B = {B; *B) such that *B is not idempotent andV(B) is residually finite? Must 

such a groupoid be a reduct of a group? 

33 Application: RS-Conjecture 

In 1988, Hobby and McKenzie posed the following problem in [6]: 

Problem (Problem 12). Prove or disprove: If B is a finite algebra such that V(B) admits 

no finite bound for the cardinals of its subdirectly irreducible algebras, then this class of 

cardinals is not bounded by any cardinal. 

In the same article [12] that McKenzie answered the Quackenbush Problem, he also 

answered Problem 12 and the RS-Conjecture. Recall the definition of the residual character 

o f  a  v a r i e t y  o n  p a g e  2 2 .  F o r  a  g i v e n  v a r i e t y  V ,  i f  t h e r e  e x i s t s  a  l e a s t  c a r d i n a l  n u m b e r  K  

such that the cardinality of the universe of every subdirectly irreducible member in V is 

less than K, then fc is called the residual character of V. 
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Conjecture (RS-Conjecture). Let B be an algebra. If the residual character o/V(B) is 

greater than or equal to co, then V(B) is residually large. 

Specifically, McKenzie disproved Problem 12 and showed that the RS-Conjecture is 

false in general. He did this by constructing an eight-element algebra of residual bound coi 

with just eight basic operations. 

From the work in the previous section, specifically Corollary 3.2.2 on page 113, we 

have shown that Problem 12 is proved and the RS-Conjecture is true when B is a finite 

groupoid that satisfies the following condition: for the variable x and all terms k(x) of type 

{*}  such  tha t  k(x )  ±x*x ,  the  a lgebra  B  does  no t  sa t i s fy  k(x )  *x*x .  

3.4 A Strategy Concerning Groupoids and the Restricted 

Quackenbush Problem 

Recall Theorem 3.2.1 on page 111. 

Theorem. Let B = (B; *B) be a non-trivial finite groupoid. For the variable x, if V(B) is 

not residually large then there exists some term k(x) of type {*}, such that k(x) ±x*x and 

B sa t i s f i es  k (x )  xx*x .  

This theorem implies that, with respect to the Restricted Quackenbush Problem, only groupoids 

that are almost idempotent need to be looked at, that is, groupoids that satisfy an identity 

of the form k(x) HX*X, where k(x) is a term of type {*} such that &(JC) ±x*x. The class 

of stricdy idempotent groupoids is a reasonable place to start. In the next chapter, we look 

at idempotent groupoids and attempt to answer the Restricted Quackenbush Problem. 
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Chapter 4 

Groupoids and the Restricted 

Quackenbush Problem 

With respect to the Restricted Quackenbush Problem, one class of algebras that was specif­

ically asked about by Quackenbush, and still remains unanswered today, is the class of 

groupoids. 

Groupoids are of interest because, using the tools developed by McKenzie in [11], an­

swering the Restricted Quackenbush Problem with respect to groupoids answers the Re­

stricted Quackenbush Problem with respect to arbitrary algebras. Specifically, McKenzie 

constructed an isomorphism F from the variety of all algebras of an arbitrary type T to a 

particular variety of groupoids, dependent on T. In Theorem 2.18, he shows that, for each 

algebra B of type T, the congruence lattice of F(B) is isomorphic to the congruence lattice 

of B, with the addition of a new maximum element. Thus, B is subdirectiy irreducible if and 

only if F(B) is subdirectiy irreducible. Since F is an isomorphism, F(V(B)) = V(F(B)). 

That is, F preserves subvarieties. Lastly, by the first Lemma in the paper, isomorphisms 

between varieties preserve finite algebras. That is, B is residually finite if and only if F(B) 

is residually finite. Using all of these ingredients yields the following: answering the Re­
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stricted Quackenbush Problem with respect to F(B) answers the Restricted Quackenbush 

Problem with respect to B. 

In this chapter, we define a particular kind of idempotent groupoid and identify some 

properties that could be useful in showing that the Restricted Quackenbush Problem can be 

answered with respect to these kinds of groupoids. 

4.1 A Property of Idempotent Groupoids 

Idempotent groupoids have a curious property; for an idempotent groupoid B, the congru­

ence blocks of any congruence on B, are subuniverses of B. In the following Lemma, we 

formalize this property and prove that it holds. 

Lemma 4.1.1. Let B = (B\ *B) be an idempotent groupoid and 6 be a congruence on B. 

There exists a family {S,•},-<=/ of subalgebras of B, such that (JS,- = B and the congruence 
ui 

blocks of Q are {S;},-6/. That is, 

B / e  =  {b /d \beB}  = {S i} i e I .  

Proof. We will show that each congruence block of 0 is a subuniverse of B. Then, because 

each member of B must belong to exactly one congruence block, B is equal to a disjoint 

union of subuniverses. Each block cannot be empty. Hence, each block together with *B 

yields a subalgebra of B. 

For b  in B,  let b\  and bi  be elements in b/6 . To show that b/6  is a subalgebra, we must 

show that b\ *Bbi in b/6. Note that (b\,b\) and (b\,62) are members of 6. Therefore, due 

to the compatibility property of congruences, 

(b \  * B b\ ,b \  *b&2) € 0 and thus, (b \ ,b i* B b2)£0 .  

That is, b\  and b\  * B b2  are in the same congruence block. Hence, b\  *B bj  is in b/6 .  •  
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*E19 0 12 3 4 

0 0 2 4 0 4 

1 4 13 0 4 

2 1 1 2  4  4  

3 1 4 0 3 4 

4 4 4 4 4 4 

Table 4.1: The Operation Table of *E|9 

42 Absorbing Groupoids 

We start this section with an example of an absorbing groupoid and then give its definition. 

Example. Consider the groupoid E19. The operation table for *E>9 is given in Table 4.1 

and the lattice of subuniverses of E19 is given in Figure 4.1. Notice that every subuniverse 

of E19 that contains at least two elements also contains 4. Further, notice that E19 is not 

associative as 

0*El9(l *Ei92) =0 and (0*El9 1) *El92 = 2. 

Let B be a groupoid. If for some dB in B and all b in B we have 

ds*Bb = &B  and 6 *B 6B = SB  

then call 5b the zero of B or just the zero and say that B has a zero. Note that if a groupoid 

has a zero, then the zero of the groupoid is unique. 

Definition. Say that a finite groupoid B = (B; *B) is absorbing if 

1. the operation *B is idempotent, 

2. the algebra B has a zero, and 
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{0,1,2,3,4} 

/ \ 

{0,4} {1,4} {2,4} {3,4} 

/ \ 
{0} {1} {4} {2} {3} 

0 

Figure 4.1: The Lattice of Subuniverses of E19 

3. the universe of every subalgebra of B that contains at least 2 elements also contains 

the zero of B. 

Note that not all absorbing groupoids are semigroups as the binary operation of an 

absorbing groupoid need not be associative. 

4.2.1 Absorbing Groupoids Do Not Necessarily Generate Congruence-

Modular Varieties 

Is it worth looking at absorbing groupoids? That is, has the Restricted Quackenbush Prob­

lem been answered with respect to absorbing groupoids? The groupoid E19, defined on 

page 119, is an example of an absorbing groupoid that is not associative. Hence, E19 is not 

a semigroup. We show that E19 does not generate a congruence-modular variety. Hence, 

there exist varieties of absorbing groupoids that are not congruence-modular and thus nei­

ther congruence-distributive nor congruence-permutable. 

It is unknown whether all absorbing groupoids generate varieties that either have defin­
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able principal congruences or are congruence-meet-semidistributive or are residually large. 

This means previous techniques can not yet be used to answer the Restricted Quackenbush 

Problem for absorbing groupoids. 

To show that E19 does not generate a congruence-modular variety, we use tools devel­

oped by Freese and Valeriote in [5]. Call a quadruple {bi,b2,bi,b4) in an algebra B a Day 

quadruple if in the subalgebra M generated by {b\,biM^H}, we have the following: 

(b i ,b 2 ) tCg M { (h ,b 4 ) )v (Cg M { (bub2) , (b3 ,b4})*Cg M { (b \Mh{b2 ,b4) ) ) -

In the language of a groupoid, Theorem 3.6 in [5] becomes the following: 

Theorem 4.2.1. Let B be an idempotent groupoid. Then V(B) fails to be congruence-

modular if and only if there is a Day quadruple in B2. 

For the remainder of this subsection, we denote the 2-tuple {a \ ,a 2 )  by a\a2. We explic­

itly show that 

(b u b 2 MM) = {00,01,40,41) (4.1) 

is a Day quadruple in E192. To show this, we must determine the following congruences: 

CgM({40,41)), CgM({00,01), (40,41)) and CgM«00,40), (01,41)). 

Note that 

SgB2({00,01,40,41}) = {00,01,02,03,04,40,41,42,43,44}. 

Denote this set by M and define M = (M; *M), where *M = *Ei*21M - See Table 4.2 for the 

operation table of *M. 

Recall that for an equivalence relation o, defined on the universe of a groupoid G to 

sa t i s fy  the  compat ib i l i ty  p roper ty ,  the  fo l lowing  condi t ion  mus t  be  sa t i s f i ed :  fo r  a l l  (g i ,g 2 )  

and (gi,g4) in a, the element <gi *Gg3,g2*Gg4) is in a. 
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00 01 02 03 04 40 41 42 43 44 

00 00 02 04 00 04 40 42 44 40 44 

01 01 01 03 00 04 44 41 43 40 44 

02 01 01 02 04 04 41 41 42 44 44 

03 01 04 00 03 04 41 44 40 43 44 

04 04 04 04 04 04 44 44 44 44 44 

40 40 42 44 40 44 40 42 44 40 44 

41 44 41 43 40 44 44 41 43 40 44 

42 41 41 42 44 44 41 41 42 44 44 

43 41 44 40 43 44 41 44 40 43 44 

44 44 44 44 44 44 44 44 44 44 44 

Table 4.2: The Operation Table of *M 

Looking at Table 4.2, we see that the relation 

T \  = {40,41,42,43,44}2u 

is a congruence on M. Since (40,41) is a member of %\, we must have 

CgM((40,41»cTl. (4.2) 

Further, since 

(40,41) *M (00,00) = (40,44), (40,41) *M (01,01) = (42,41) and 

(40,41) *M (02,02) = (44,43), 

the elements (40,44), (42,41) and (44,43) are all in CgM((40,41)). Thus, 40,41,42,43, 

44 are all related to each other, with respect to CgM((40,41)). No other distinct elements 
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can be related to each other, due to Statement (4.2). Hence, 

CgM((fc3,&4)) = CgM((40,41)) = T1. (4.3) 

The relation 

r2 = {00,01,02,03,04}2u{40,41,42,43,44}2 

is the congruence on M that is obtained from the first projection map on M. Since {00,01) 

and (40,41) are elements in t2, we obtain the following: 

By Statement (4.3), the elements 40,41,42,43 and 44 must all be related to each other, 

in CgM ((00,01), (40,41)). Further, since 

(00,01) *M(00,00) = (01,04), (00,01 )*M (01,01) = (02,01) and 

(00,01) *M (02,02) = (04,03), 

the elements 00,01,02,03 and 04 must all be related to each other, in CgM((00,01), (40,41)). 

Therefore, by Statement (4.4), 

The relation 

r3 = {00,40}2u{01,41}2u{02,42}2u{03,43}2u{04,44}2 

is the congruence on M that is obtained from the second projection map on M. Since (00,40) 

and (01,41) is contained in T3, the following is true: 

CgM((00,01),(40,41»cr2. (4.4) 

CgM((fci^2> ,^3^4)) = CgM({00,01),(40,41)) = r2. 

CgM((00,40),(01,41»CT3. (4.5) 
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As 

(00,40) *M (02,02) = (02,42), (00,40) *M (03,03) = (04,44) and 

(01,41) *M (02,02) = (03,43), 

the elements 00, 01, 02, 03 and 04 are related to 40, 41, 42, 43 and 44, respectively, 

in CgM((00,40), (01,41)). Therefore, due to Statement (4.5), 

CgM ( ( ^ , f c 3 ) , ( & 2 , 6 4 ) )  = CgM((00,40),(01,41)) = r3. 

Let 

{bub2MM) = (00,01,40,41). 

Using x\, T2 and t3, defined earlier, we obtain the following: 

CgM«^3^4))v(CgM((fei,fc2), (*>3,64)) ACgM((&i,fc3), {b 2 M)))  

= TIV(T2AT3) 

= ri vAm 

= TI. 

Thus, since 

(00,01) i  {40,41,42,43,44}2u AM  = xx ,  

the quadruple listed in Statement (4.1) is a Day quadruple. Hence, by Theorem 4.2.1, the 

variety generated by E19 is not congruence-modular. 

422 A Possible Approach to Deal with Absorbing Groupoids and the 

Restricted Quackenbush Problem 

For the remainder of this chapter, assume that B is an absorbing groupoid and S is a subal-

gebra of B7, for some index set I. Further, assume that 0 is a congruence on S. 
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Recall that the ith projection map on B1 restricted to S is denoted by p, instead of n 

Further recall, from Lemma 4.1.1, that each member of S/d is a subuniverse of S. Hence, 

we  denote  the  e lements  in  S/d  by  the  e lements  {S j} 7 e / ,  where  J  i s  an  index  se t .  For  a l l  i  

in /, define the binary relation fa on S/d as follows: for all Si and S2 in S/d, the 2-tuple 

(Si,S2) is in fa if and only if 

1. the element 8b is in p,(5j) np,^) or 

2. the congruence blocks Si and S2 are equal. 

Lemma 422. For all i in I, the relation fa is a congruence on S/d. 

Proof. To prove the Lemma, we show that fa is an equivalence relation on S/6 that satisfies 

the compatibility property. 

The relation fa is reflexive by definition and symmetry follows from the commutativity 

of set intersection and symmetry of equality. Suppose that Si, S2, S3 and S4 is in S/d. To 

show that fa is transitive, assume that {Si, S2) and (S2,S3) is in fa. Three cases emerge. 

Case 1 Suppose thatfifl is in bothpi(Si)npj(S2)andp,(S3)npi(S3). Then 8b is in p, (Si )n 

p;(S3) and hence {Si,S3) is in fa. 

Case 2 Without loss of generality, suppose that 8b is in p,(Si) np,(S2) and that S2 = S3. 

Then 

Pi(S  1) n p,(S2) = p,(Si) n pi  (S3) 

and hence (Si,S3) is in fa. 

Case 3 If Si = S2 and S2 = S3, then Si = S3 and hence (Si,S3) is in fa. 

Thus, fa is an equivalence relation. 
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To show that 0, satisfies the compatibility property, assume that (Si,S2) and (S3, S4) are 

in fa. Either Si = S2 and S3 = S4 or one of these equalities is not true. With respect to the 

former scenario, if Si = S2 and S3 = S4 then 

Si *s/e S3 = S2 *s/e S4 and hence (Si *s/e S3,S2 *s/e S4) 6 <pi-

With respect to the latter scenario, assume that Si * S2, without loss of generality. Thus, 8b 

is in Pi(Si) npi(S2). There exists ji in Si and s2 in S2 such that 

s i ( i ) = s 2 ( i )  =  d B .  

Pick arbitrary members 53 in S3 and 54 in S4. Then, 

(ji  * sJ3)(0= fi(0 * B M0 

= 8 B * B s 3 ( i )  

=  Sg .  

Similarly, (.s2 *ss^XO = 8B. As s\fQ = Si and S3/0 = S3, we have 

si * ss3  e (si * s s$) /d  

= s i f e* s / 0 s 3 f e  

= Si *s/0s3. 

Similarly, S2 *s S4 is in S2 *s/0 S4. Thus, 

8 b  € Pi(S i  * s/ e S3) nPi(S2 *s/e S4) and hence (Si *s/e S3,S2 *s/e S4) € 

Therefore, fa satisfies the compatibility property. • 

Lemma 4.2.3. Suppose that I is a finite set that contains at least two elements. If for all i 

in I, we have <f>, not equal to As/e> then S/9 is not subdirectly irreducible. 
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Proof. By Lemma 4.2.2, the relation fa is a congruence on S/d. By hypothesis, for some 

positive integer n, we have 1 < |/| < n and for all i in 7, the congruence fa is not equal to 

As/fl-

For Si and S2 in S/d ,  suppose that (Si,S2) is in / \ fa .  Therefore, for all i  in /, we 
i€l 

have (Si,52) in fa. Thus, either Si = S2 or, for all i in /, 

<5fi€Pi(Si)nPl(S2). 

Assume that the latter is true. Thus, for all i in /, we may pick t\ in Si and tl
2 in Si such that 

t \ ( i )=t i
2 ( i )  =  6 B .  (4.6) 

For j in {1,2}, define 

Tj  ~  ("" ( (*]  * S ^ )  *Sfy )  * s - -  -  * s t " .  

Lemma 4.1.1 yields Si and S2 being subuniverses of S. Hence, both Si and S2 are closed 

under *s. Thus, for all j in {1,2}, we have 7) in Sj. By Statement (4.6), we have both T\ 

and Ti equal to the n-tuple in B1 where every coordinate is 8B. Hence, Si nS2 * 0 and 

thus Si = S2. 

Therefore, /\<pi = &s/e- We have just shown that S/d is not subdirectly irreducible as 
i€/ 

there exists a family of congruences on S/d  that are all not A s / e , but, their meet is AS/e. • 

Define a (6, /, S, B)-algebra to be an algebra isomorphic to S/0, where S is a subalgebra 

of B7, for some finite index set I, and 6 is a congruence on S. Notice that all (0,/,S,B)-

algebras are in V(B). We are now ready to state and prove the main result of this section. 

Theorem 42 A. Let B be an absorbing groupoid that generates a residually finite variety 

and N be an integer greater than |fl|. If all subdirectly irreducible (9,1,S,B)-algebras 

with |/| > 2 satisfy the implication 

there exists i in I such that fa = A5/0 implies |S/0| < N 
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then V(B) is residually < N. 

Proof. Recall Lemma 1.3.8, on page 41: if B is a finite algebra then all finite members 

in V(B) are in HSPfin(B). Thus, each finite algebra in V(B) is a (0,/,S,B)-algebra. 

As V(B) is residually finite, each subdirectly irreducible algebra in V(B) is a (0,/,S,B)-

algebra. 

Let N be a fixed integer greater than |B| and let M be a subdirectly irreducible (0,/,S,B)-

algebra. If |/| = 1, then M is in HS(B) and hence \M\ < |fi|. Now assume |/| > 2. By 

Lemma 4.2.3, there must exist i in / such that </», = 6.s/0, as otherwise S/8, and hence M, is 

not subdirectly irreducible and a contradiction occurs. By the hypothesis, if there exists an 

i in I such that </>,• = &s/e then \S/6\ < N and hence |M| < N. Therefore, V(B) is residually 

less than max{|fi|,A^} = N. • 

The chapter is concluded with a question that asks if it is possible to use Theorem 4.2.4 

to answer the Restricted Quackenbush Problem, with respect to absorbing groupoids. 

Question. Let B be an absorbing groupoid. What additional conditions can be imposed on 

B to force the existence of an integer N greater than |2?| such that all subdirectly irreducible 

(6,1, S,B)-algebras with |/| > 2 satisfy the following implication: if there exists an i in I 

such that <pi = As/a then |S/0| < N? 
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Chapter 5 

Future Work 

Recall the Restricted Quackenbush Problem. 

Problem (Restricted Quackenbush Problem). LetBbea  f in i te  a lgebra  o f  f in i t e  t ype .  //V(B) 

is residually finite, must V(B) be residually < N,for some positive integer N? 

The problem looks at the number of subdirectly irreducible algebras in a finitely gener­

ated variety of finite type. An answer to the problem would yield a deeper understanding 

of varieties and their construction, as the subdirectly irreducible algebras in a given variety 

act as the building blocks of the algebras in that variety. Though the problem appeared in 

[81, the origins of the problem are in the 1970's. 

Over the past 40 years, a great deal of work has been done on answering the Restricted 

Quackenbush Problem and its precursors by the following individuals: Baldwin, Berman, 

Freese, Kearnes, McKenzie, Taylor, Willard and others. The problem has been answered 

with respect to many familiar algebras, with the exception of groupoids. 
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5.1 Summary 

In this thesis, we have given an explicit proof of the Restricted Quackenbush Problem with 

respect to unary algebras, a result that was initially discovered by Baldwin and Berman 

in [1]. The proof devised here did not explicitly use the Congruence Extension Theorem, 

whereas Baldwin and Berman explicitly utilized the Congruence Extension Property. 

In the latter half of the thesis, we turned our attention to groupoids. The subdirectly 

irreducible members in varieties generated by groupoids that are influenced by a partial 

order relation were then analysed. We were able to show that some groupoids influenced 

by a partial order relation of height 3 generate varieties that are residually large. From this 

result, the following result was derived: 

Theorem. Let B = (fi; *B) be a non-trivial finite groupoid. For the variable x, if V(B) 

i s  no t  res idua l ly  large  then  there  ex i s t s  some  term k{x)  o f  t ype  {*} ,  such  tha t  k (x )  ±x*x  

and  B sa t i s f i es  k (x )  *x*x .  

This theorem yields some insight in terms of what groupoids need to be looked at. Us­

ing the ideas that lead up to this Theorem, we were also able to answer the RS-Conjecture, 

a conjecture similar to the Restricted Quackenbush Problem, with respect to groupoids that 

do not satisfy any of the following identities: k(x) *x*x, where k(x) is some term of type 

{*}  such  tha t  k(x )  t x*x .  

Lastly, we looked at absorbing groupoids and tried to answer the Restricted Quacken­

bush Problem. Difficulties occurred when dealing with (0,/,S,B)-algebras where there 

exists i in / such that </>, = As/e. The outcome of this attempt yielded the following theorem: 

Theorem. Let B be an absorbing groupoid that generates a residually finite variety and n 

be an integer greater than |S|. If all subdirectly irreducible (6,1,S,B)-algebras with |/| > 2 

130 



satisfy the implication 

there exists i in I such that <j>, = As/d implies \S/d\ < N 

then V(B) is residually < N. 

The above theorem may be a step towards answering the Restricted Quackenbush Prob­

lem, with respect to absorbing groupoids. 

5.2 Questions 

The following is a list of questions that were asked throughout this thesis. 

Question. With regards to Corollary 3.2.2, does there exist a non-trivial and non-constant 

groupoid B = (B\ *B) such that *B is not idempotent and V(B) is residually finite? Must 

such a groupoid be a reduct of a group? 

Question. Let B be an absorbing groupoid. What additional conditions can be imposed on 

B to force the existence of an integer N greater than |fi| such that all subdirectly irreducible 

(9,1,S,B)-algebras with |/| > 2 satisfy the following implication: if there exists an i in I 

such  tha t  ( f ) i  =  As / e  then  \S /d \  <  N?  
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