
RANK AND DUALITY OF ESCALATOR ALGEBRAS

by

Erin Natalie Beveridge 

B .Sc., University of Northern British Columbia, 1997

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

in

MATHEMATICAL, COMPUTER, AND PHYSICAL SCIENCES

(MATHEMATICS)

@  Erin Natalie Beveridge, 2002 

THE UNIVERSITY OF NORTHERN BRITISH COLUMBIA

August 2002

All rights reserved. This work may not be 
reproduced in whole or in part, by photocopy 

or other means, without the permission of the author.



1^ 1 National Library 
of C anada

Acquisitions and 
Bibliographic Services
395 Wellington Street 
Ottawa ON K1A0N4 
Canada

Bibliothèque nationale 
du Canada

Acquisitions et 
services bibliographiques
395, rue Wellington 
Ottawa ON K1A0N4 
Canada

Your&9 V<^réténnc0

OurSie Notre féfénncê

The author has granted a non­
exclusive hcence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats.

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author’s 
permission.

L’auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfîche/fUm, de 
reproduction sur papier ou sur format 
électronique.

L’auteur conserve la propriété du 
droit d’auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation.

0 - 612 - 80678-2

CanadS



APPROVAL

Name:

Degree:

Thesis Title:

Examining Committee:

Erin Natalie Beveridge 

Master of Science

RANK AND DUALITY OF ESCALATOR ALGEBRAS

Chair: Dr. Martha MacLeod, RN 
Associate Professor, Nursing Program 
UNBC

JÈA.
o i  Jennifer HyndmanSuper

Associate Professor, Mathematics & Computer Science Program 
UNBC

Committee Member: Dr. Lee Keener
Professor and Chair, Mathematies & Computer Science Program 
UNBC

Committee Member: Dr. Da\|fd Casperson'̂
Assistant Professor, Mathematics & Computer Science Program 
UNBC

Committee Member: Dr. Todd Whitcombe 
Associate Professor, Chemistry Program 
UNBC

.

External Examines Dr. Shelly Wismath
Professor, Departrnent of Mathematics & Computer Science
University of Lethbridge

Date Approved:



A b stra c t

We define a specific family of finite bi-unary algebras called escalator algebras. 

These algebras were introduced in the work of Hyndman and Willard [9] and Little 

[10]. We show that they have infinite rank, are dualizable but are not strongly 

dualizable.
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Chapter 1

Introduction

The birth of natural duality theory occurred in the 1930’s when Birkhoff, Pontryagin 

and Stone developed representations for specific algebras using toplogical spaces 

[2], By the 1980’s many other algebras had been represented in a similar manner 

(Priestley duality for bounded distributive lattices [14] being the most well known). 

These were useful as they allowed algebraic problems to be solved using topological 

tools. At this time a general theory of duality emerged: dualities were defined in 

terms of quasi-varieties of finite algebras, and furthermore the concepts of full duality 

and strong duality were formalized. Subsequent research then focused on questions 

regarding which finite algebras are dualizable, which of the dualizable algebras are 

fully dualizable and which are strongly dualizable.

In 1998 Ross Willard [15] defined the rank function of an algebra homomorphism 

and of a finite algebra. He proved that if an algebra was dualizable and had finite 

rank then it was strongly dualizable. In 1999 Jennifer Hyndman and Ross Willard 

[9] constructed a three element algebra that was dualizable but not fully dualizable
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by any appropriate set of operations, partial operations and relations. This was 

the first example of such an algebra. In 2000 Richard Little [10], using Prolog, was 

able to compute an approximate rank of a homomorphism. Little’s progam failed 

to approximate the rank of the algebra in [9]. This result was not surprising as the 

algebra is known to have infinite rank. He speculated that a similar four element 

algebra for which his program had failed also had infinite rank.

In this thesis we generalize the three element algebra of [9] into a family of 

algebras called escalator algebras and explore both the rank and duality of this 

family of algebras. To this end. Chapter 2 covers required definitions from universal 

algebra, topology, and natural duality theory. Particular attention is given to the 

definition of rank. Chapter 2 also presents some discussion of current research in the 

area of natural duality theory. Escalator algebras are carefully defined in Chapter 3 

and several useful properties and constructions are presented. This leads to Chapter 

4 where we show that escalator algebras have infinite rank, are dualizable but not 

strongly dualizable. We conclude in Chapter 5 with a brief discussion of questions 

about full duality of the escalator algebras that are not answered in this thesis.



Chapter 2

Prelim inary M aterial

2.1 Definitions from Universal Algebra

To have an understanding of natural duality theory one must first be conversant 

in the languages of both universal algebra and topology. We start by defining 

the algebraic terminology that we require. These definitions are heavily influenced 

by [11] and [5] where they are discussed more fully. Sometimes the scope of the 

definition is restricted to the material needed here.

First we define an algebra  as an ordered pair A =  {A,F),  where A is a non­

empty set, called the universe,  and F  is a set of basic operations  each taking 

a fixed number of elements of A as arguments and returning a single element of A. 

For simplicity we denote an algebra with universe A by A when it is clear which 

set of functions is intended. The a r ity  of an operation is the number of arguments 

the operation takes. Thus an operation that takes n arguments is called an n-ary 

operation. For example a bi-unary algebra is an algebra that has exactly two



operations both of which are unary, that is 1-ary. A nullary  operation takes no 

arguments. Two algebras have the same type  if for each n € N the number of n-ary 

operations is the same for each algebra. If we have algebras A and B, that use the 

same symbol /  for an operation then for clarity we sometimes use the notation 

and respectively and say that is the in terpre ta tion  of /  in A. If S' C  A  and 

f  : A B is a function then there is a function h : S B  given by h{a) =  /(a )  

for all G E S' and it is called the restr ic t ion  of /  to S'. It is denoted by f\s-

A subalgebra of an algebra A is an algebra whose universe is a non-empty 

subset of A and the operations of the subalgebra are restrictions of the operations 

of A to the new universe. We use the notation B < A to say that B is a subalgebra 

of A. If A  Ç A is non-empty then the subalgebra generated by X  is the smallest 

subalgebra of A that contains X .  This is denoted by Sg^lA ).

An algebra h om om orph ism  is an operation preserving mapping from one al­

gebra to another algebra of the same type. That is if A, B are algebras, h is a 

homomorphism from A to B, f  is an n-ary operation and ai ,G2, . . .  ,o„ are ele­

ments of A then

02, . . ., On)) =  h(a2 ) , . . . ,  /i(a„)).

The set of all homomorphisms from A into B is denoted by Hom (A, B). Notice that 

Hom (A, B) is a subset of the set B^ of all mappings from A to B. A homomorphism 

h : A  —>■ B is onto, or surjective  if for all 6 E B there exists an a E A such that 

h{a) — b, or more simply h{A) =  B.  And h is one-to-one,  or in jective,  if f{x) =  

f{y)  implies that x =  y. An isom orph ism  or bijection  is a homomorphism that



is both onto and one-to-one.

Given a non-empty set A and a positive integer n, an n-ary rela tion  on A 

is a subset of A", the set of all n-tuples of A. The kernel of a homomorphism 

/i : A  —)■ B is the binary relation ker(h) =  {(a, a') : a, a' G A and h{a) =  h{a')}. 

Binary relations which occur as kernels of homomorphisms are called congruences, 

and the intersection of any family of congruences is again a congruence (see [1]). 

Given a congruence, 0  of A, there is an algebra denoted A /0 ,  and a homomorphism 

0 : A  —)■ A /0  such that ker(< )̂ =  0 .

Let A” =  {(«1, 02) • • ■, On) I Oj G A}. If A is an algebra then A" is called the 

n-th  pow er  of A and is the algebra (A", F ) where F  is the set of functions on 

A” created by applying the operations of A coordinatewise. If o G then a is 

really an n-tuple a =  (oi, 02, . . . ,  o„). This long notation will only be used where 

context does not make the usage of a clear. For convenience the notation of tuples 

is sometimes truncated from (0%, 02, . . . ,  o„) to O1O2 . . .  o„. For an arbitrary set I  let 

A  ̂ — {<  tti : i e  I  >\ üi e  A}. If A  is an algebra then A^ is also an algebra with 

the operations of A acting coordinatewise.

E xam ple  2.1. Let M  =  (0 ,1 ,2 ,3} and f ,g  be unary operations on M  given by 

/(O) =  1 ,/(1 ) =  2 ,/(2 ) =  /(3 ) =  3 and g{0] =  s ( l)  =  0,s(2) =  l,g (3) =  2. 

(See Figure 2.1.) Then M  =  is an algebra and so is M^. The pairs

(1,0), (1,3) are in so g ^ '( ( l ,0 ) )  =  (g '^ (l),p^(0 )) =  (0,0) and / ’̂ "((1,3)) =  

/^ (3 ) )  =  (2,3). Let B =  SgM2{(l, 1)}, then B  =  {(0,0), (1,1), (2,2), (3,3)} 

and equals restricted to B,  is g^^ restricted to B.

Assume is a A;-ary relation on a set M. Then is the /c-ary relation 

on M" defined by (o^, o^, . . . ,  o'') G if and only if (o{, G R  for all
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Figure 2.1: The algebra M  =  ({0,1, 2, 3}; f ,g)  of Example 2.1

i < n. We almost always omit the superscript on In Example 2.1 the standard 

integer relations < and < restricted to M  are binary relations on M.  Therefore we 

can consider the corresponding binary relations < and < on M^. It should be clear 

that ((0, 2), (1, 2)) is in < but ((2, 0), (1, 2)) is not in <

Let A be an algebra. For each i < n there is an n-ary p ro jec tion  opera­

tion  TTj on A given by 7Tj(ai, 02, . . . ,  a„) =  Oj. If /  is an n-ary operation on A and 

9 i , 9 2 -- ■ , 9 n are all k-avj operations on A then h =  /(^ i , 52, ■ ■ ■ , 9 n) is a A-ary oper­

ation on A given by h{a) — f { 9 i {a),g2 {a), ■ • • ,gn{o))- This is called com position  

o f  operations.

Given a set F  of operation symbols and an index set S let X  =  | s G S'} be

a set of variables. Then an S -a ry  te rm  o f  type F  is defined recursively by

1. every x ^ X  and every nullary /  G F  is an S-ary term, and

2. if t i , t 2 , ■ ■ - tn are S-ary terms and /  is an n-ary operation symbol of F  for 

some n > 1 then the string f{t i ,  2̂, . . .  is an S-ary term.



The length o f  a te rm  is defined recursively with length of Xj =  0 and length of 

f{gi ,  ■ ■■,9n) =  1 +  max (length gi). The te rm  operations,  or te rm  fu nction s,  

of A are all the operations constructed by composition of operations using the 

basic operations of A, the projection operations on A and all operations that are 

constructed in this manner. For an example if /  is a unary basic operation of A 

then /  o 7T3 is a term operation and so is / / t t s .  If S' is a non-empty set and A  is a 

subset of then X  is term -closed  if for all y G \  A  there exists S-ary term

functions a ,r  : A^ A such that a\x  =  t \x but a{y)  /  r(y).

A set P  is called a partia lly  ordered se t  if there is a binary relation < on P  

such that for any a , h , c  E P  we  have

1. a <  a,

2. a < b  and b <  a implies a =  b, and

3. a <  b and b <  c implies a <  c.

A chain  is a partially ordered set in which any two elements are related. That 

is, for all a,b E P  either a < b ox b < a. Other names for a chain are to ta lly  

ordered se t  or linearly ordered set.  An intuitive example of a chain is the set 

of non-negative integers where the < relation on this set is the every-day definition 

of less than or equal to.

We define the operations, m eet  (A) and jo in  (V),  on a partially ordered set P . 

For all a , b , c , d  E P  we say a A 6 =  c if for every p E P  such that p < a,  and p < b

then p < c. Also a V 6 =  d if for every q E P  such that a < q, and b < q then d < q.

Note that A and V may not be defined for all pairs on a partially ordered set P . If

P  is a chain and a < b then a A b  = a  and a V 6 =  6.



A lattice  is an algebra where the universe is a partially ordered set and the 

operations are A and V and these are defined on every pair of elements (a chain is 

one example of a lattice). A lattice h om om orph ism  is an algebra homomorphism 

where the two algebras are lattices.

Let M  be some algebra and /C be a class of algebras. Then P(M ) is the class of 

all algebras that are isomorphic to a power of M , S(/C) is the class of all algebras 

that are isomorphic to a subalgebra of a member of /C, and I(/C) is the class of all 

algebras that are isomorphic to a member of /C. The qu asi-var ie ty  generated  

by M  is ISP(M ), the class of all algebras that are isomorphic to a subalgebra of a 

power of M.

2.2 Rank

In this section we provide the definition of the rank of a homomorphism and the 

rank of an algebra. These were originally defined in [15]. As this is a fairly complex 

concept we start with some simpler definitions and build up to rank.

A diagram  is a directed graph in which the nodes represent sets and the edges 

represent functions mapping one set to another. A com m uting d iagram  is a 

diagram where for every path between a pair of sets the composition of the functions 

represented by the paths yields the same result. In a commuting diagram we use 

A A- 5  to denote that a  is injective.

E xam ple  2 .2 . The diagram in Figure 2.2 has nodes representing the sets A , B , C  

and D.  The edge from A to B  labelled a  indicates that a  is a map from A to B.  

This diagram commutes it ^ o a  =  g o f  =  h.

8



A
a B

C D9

Figure 2.2: A commuting diagram

Let M  be a finite algebra and n and k be finite positive integers. Let B be a 

subalgebra of M " and let A : B -4- M  be a homomorphism. We say a map o from 

B to uses repetition  o f  coordinates  when there is a surjective map r  :

{1, 2 , . . . , n +  A:} —> { 1 ,2 , . . . ,a} such that for all a G B and for z G {1,2 , . . .  , n  + k} 

we have a{a)i — ar{i). Let a  be such a map and let B ' be the subalgebra of 

obtained by applying a to B. Denote this embedding by B B ' and note that B 

is isomorphic to B '. Let h' =  ho  a~^, the homomorphism that is the the natural 

extension of h from B to B'.

Let C ,D  be subalgebras of where B ' < C < D < and let Y  Ç

H om (D ,M ). Denote the algebra D /Q {k er^  | g G Y} by D /Y . Note that D /Y  

is isomorphic to IIY(D) =  {(p(o) : g E Y) \ a Ç. D}.  The notation IIY(D) is used 

in [8]. Similarly denote the algebra C /Q {kerg '|c  | S' G Y} by C /Y . The set Y 

separates  B ' if Q{ker(g|B,) \ g e  Y }  =  {(æ, a:) | x G B'}. A map /i' : B ' ^  M  

lifts  to C /Y  if Y separates B ' and there exists a homomorphism 7 such that the 

diagram in Figure 2.3 commutes.

E xam ple  2.3. Let M  be the same algebra given in Example 2.1. (See Figure 2.1.) 

Let B be the subalgebra of depicted in Figure 2.4 and <7 ; B —>• M® be the



B 'c <

C/y7

Figure 2.3: The commuting diagram for lifting

repetition of coordinates map given by cr{xyz) = [xyyyzz).  Applying n to B gives 

us B'. (See Figure 2.5.) Finally let C =  D =  SgM6{000011,000111,011111}, the 

subalgebra of M® shown in Figure 2.6, and let Y  — {tti, 7T4, TTe} Ç Hom (D, M ). We 

use the table in Figure 2.7 to convince ourselves that

Q{kerg I p G y}  =  {(z,a;) \ x e  D}

U{(000111,011111), (111222,122222), (222333, 233333), 

(011111,000111), (122222,111222), (233333,222333)}.

The elements 000111,111222,222333 ^ B ' so

P|{ker(^|B') \g e V }  = {(a:,x) \ x  e  D}  

and the set Y  separates B'.
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o333 ,#

222 •

111

000

223

112

001

233 •

122

•  Oil .
.......Y

Figure 2.4: An algebra B < for Example 2.3

333333 ,•

222222 •

m ill

000000

233333 •

111122

000011  . •  011111

Figure 2.5: An algebra B ' < M® obtained by repetition of coordinates

333333 •

222222 •

111111

000000

•  222333 233333

111122 111222 #  122222

0 0 0 0 1 1 . #  00011 .1 . • o n u L *

Figure 2.6: A diagram showing C =  D < M® of Example 2.3

1 1



X 7ri(z) 7T4(a;) 7T6(a;)
000000 0 0 0
111111 1 1 1
222222 2 2 2
333333 3 3 3
000011 0 0 1
111122 1 1 2
222233 2 2 3
000111 0 1 1
111222 1 2 2
222333 2 3 3
011111 0 1 1
122222 1 2 2
233333 2 3 3

Figure 2.7: Table of values of tti, 7T4 and ttg for Example 2.3

1 2



Given a homomorphism h : B -4- M  where B < M " define the rank  of h 

recursively as:

1. rank(h) <  0 if and only if h is a projection.

2. For a countable ordinal a, rank(fi) < a  if and only if there exists an integer

> 1 such that for all integers k >  0, for all D  < M"+^, and for all 

commuting diagrams as in Figure 2.8 where there exists a homomorphism 

: D -4 M , there exists Y  Ç Hom (D, M) such that

(a) |y | <  N, and

(b) h' lifts to C/ Y ,  and

(c) for all g EY,  rank(^|c) < ex.

Figure 2.8: The commuting diagram for rank

If rank(h) < a  and it is not true that rank(h) < a  then rank(h) =  a. If for all 

homomorphisms /i : B ^  M  where B is a subalgebra of a finite power of M  we have 

rank(h) < a  but at least one of these homomorphisms does not have rank strictly 

less than a  then rank(M ) =  a.

13



Figure 2.9: An algebra A that has rank 2

E xam ple  2.4. Let A =  ({0, a, b, c}, f )  where /(a) =  f{b) =  /(O) =  0 and /(c ) =  a. 

See Figure 2.9. This example, found by Ross Willard, was the first known algebra 

to have rank 2.

2.3 Definitions from Topology

Next we need some basic definitions from topology. These are either motivated by, 

or come directly from, [12] and [2]. As with the algebra definitions, the scope is 

often limited to what is needed for this thesis.

Given a set A , a topology  on A  is a collection, T , of subsets of A  having the 

following properties:

1. 0,A  e r .

2. Given any subcollection of T  the union of its elements is also in T.

3. Given a finite subcollection of T  the intersection of its elements is also in T.

The pair (A; T) is a topological space, often referred to simply as the space 

A. Operations, or functions, that map one topological space to another can be

14



labelled as injective, surjective and bijective similar to algebra homomorphisms. 

We will also consider partia l operations,  that is, functions h : X  Y  where 

dom(h) is a proper subset of X.  Relations on the underlying set of a topological 

space are defined similarly to those on the universe of an algebra. Let G, H, R  be 

fixed sets of operations, partial operations and relations on the set X ,  respectively. 

Then ( X; G, H, R , T)  is a structured topological space o f  type {G, H, R). 

The structure X is a to ta l s tructure  if it contains no partial operations, that is if 

X =

For Y  a subset of X  we say Y  is open  if F  G T, we say Y  is closed if % \ F  € T  

and Y  is clopen  if it is both closed and open. The discrete  topology  on a set X  

is the collection of all subsets of X .  All sets in this topology are clopen.

A basis for a topology on a set W is a collection of subsets of X  such that

1. For each x E X  there is at least one B £'B such that rr € J5.

2. If Ri, R2 ^ and x £ BiC] B 2 then there exists B  ̂ £ “B such that x £ B 3  and 

B3 Q Bi ri B2.

The topology generated by a basis B is the collection of all unions of elements 

of “B. A subbasis  for a topology on a set % is a collection of subsets of X  whose 

union equals X .  The topology generated by a subbasis is the collection of all 

unions of finite intersections of elements of the subbasis.

Let X  — {X\Tx)  be a topological space and Y  C X.  The subspace topology  

induced on Y  by Tx is the set 7y =  { F n  Î7 | t /  £ Tx}- So F  =  (F; 7ÿ) is a topo- 

logical aubapoce of X . If X =  (%; 7]^) and Y =  (F ; 7^)

are structured topological spaces of the same type then Y is a substructure  of X

15



if F  is a subset of X  and

1. If ^ is an n-ary operation then for all j/i, 2/2 • • •, 2/n £ ^  we have

! /2 ,  . . . , 3/n) =  1/2, . . . , ! / n ) ,

2. If h is an n-ary partial operation then dom(A^) =  dom(A^) n  F ” and for each

[Vu 1/2, ,  Vn) G dom(h^) we have

1/ 2 , . . .  , 1/n) =  1/2, . . .  , 1/m),

3. If r is an n-ary relation then fl F ", and

4. 7y is the subspace topology induced on F  by Tx-

Let 5  be a set and be an indexed family of topological spaces then

r i a e s ^ “ is a topological space whose topology is the product topology. The 

basis for the product topology on HaGS is all sets of the form H  where Ua 

is open in Xa for each a  and Ua — Xa except for finitely many values of a. If 

Xa =  X^ for all a,/3 e  S  then we define X^ — flaes

If X  and F  are both topological spaces then /  : X  —> F  is a continuous  

fu n c tio n  if for all open subsets F  G F  the set f~^{V) is an open subset of X.  If /  

is a bijection and both /  and are continuous then /  is a hom eom orph ism .  If 

X and Y are topological structures of the same type then /  ; X —>■ Y is a m orph ism  

if /  is continuous and
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1. if ^ e  G is an n-ary operation then for all Xi, 2:2 . . . ,  G X  we have

%2, . . . ,  a;»)) =  - - -,

2. if h is an n-ary partial operation then for all {x\,X2 , ■ ■ ■ ,Xn) E dom(h^) 

we have { f {x i ) , f {x 2 ) , . . . , f {xn) )  G dom(h^) and f {h^{xi ,X2 , . . . ,Xn))  =

/ W , . . . ,  / W ) ;  and

3. if R  is an n-ary relation then for all (a;i, 2:2, . . . ,  Xn) G we have

( / ( a : i ) , / W , . . . , / W )  E

The set of all morphisms from X to Y is denoted Horn (X, ¥). A morphism /  : X -^ ¥  

is an iso m o rp h ism  if there exists a morphism g : Y  ^  X such that for all 2; G X 

we have {g o f){x)  =  x and similarly for all y G ¥  we have ( /  o g)(y) =  y. If 

/  : X —>■ ¥  is a morphism, /(X ) is a substructure of ¥  and f  : X  /(X ) is an 

isomorphism we call /  an embedding.

Let M be a topological structure and X be a class of topological structures of the 

same type. Then P(M) is the class of all topological structures that are isomorphic 

to a power of M, Sc(X) is the class of all topological structures that are isomorphic 

to a closed substructure of a member of X, and I(X) is the class of all topological 

structures that are isomorphic to a member of X. So X =  IScP(M) is the class 

of all topological substructures of the same type as M which are isomorphic and 

homeomorphic to a closed substructure of a power of M.
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2.4 Definitions from

Natural Duality Theory

The definitions given in this section are specific to natural duality theory and are 

given a full treatment in both [2] and [4]. Let M  be any non-trivial finite algebra. 

An a lter  ego of M  is any structured topological space M =  (M; G, H, R, T)  where

1. G is a set of total operations on M  such that if ^ G G is nullary then {g} is 

a subalgebra of M  and if G G is n-ary for n > 1 then g : M ” -4 M  is a 

homomorphism.

2. H is a, set of partial operations on M  of arity at least 1 such that if h G iL 

is n-ary then the domain, dom(h), of h is  a non-empty subalgebra of M " and 

h : dom(h) —)• M  is a homomorphism.

3. i? is a set of finitary relations on M  of arity at least 1 such that if r  G i? is 

n-ary then r  is a subalgebra of M ” .

4. T  is the discrete topology.

For the remainder of this thesis A  is defined to be ISP(M ), the quasi-variety 

generated by M. For any A G A define the dual of A to be D(A) =  Hom (A, M) 

seen as a substructure of Then for any A  G X the dual of X  is E(X)  — 

Hom (X, M), seen as a subalgebra of M ^.

For each A G A there is a natural embedding ca : A ^  E{D(A))  defined for 

all a G A and for all x G D(A) by 6 ^( 0 ) (x) =  x{a). There is a similar natural 

embedding for all X G X. The map 6% : X — D(E(K))  is defined for all x € X
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and for all a € E'(X) by £x(a;)(a) =  a[x). These natural embeddings are called 

evaluation m aps.

We say that M yields a duality  on A  if for every A E Vf the evaluation map 

ca is an isomorphism. We say that M yields a fu ll  duality  on A  if the additional 

condition that for all X € X the evaluation map is also an isomorphism is met. 

If M yields a (full) duality on A  we may alternately say that M (fu lly) dualizes  

M. An algebra M  is dualizable  if there is some alter ego M that dualizes M. Not 

surprisingly an algebra M  is fu lly  dualizable  if there is some alter ego M that 

fully dualizes M.

The Full Duality Theorem (see [2] or [4]) says, in part, that if M yields a full 

duality on A  then every closed substructure of a non-zero power of M is isomorphic 

to a term-closed substructure of a power of M. If in fact every closed substructure 

of a non-zero power of M is a term-closed substructure of a power of M we say that 

M yields a strong duality  on A, or that M strongly dualizes  M . An algebra 

M  is strongly dualizable  if there is some alter ego M that strongly dualizes M. 

Clearly every strong duality is a full duality.

E xam ple  2.5. Although bounded distributive lattices are not directly relevant to 

this thesis they provide the example that, in many ways, started study in the area 

of natural duality theory.

Let M  =  ({0,1}; V, A, 0,1) be the two element bounded distributed lattice. Then 

A  =  ISP(M) is the class of all bounded distributed lattices. If M =  ({0,1}; < , T)  

then M yields a duality on A.  This duality was first found by Hilary Priestley and 

was one of the first non-trivial dualities ever found. In fact it can be shown that M 

strongly dualizes M. See [4] and [14].
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We say that the in terpolat ion condition  or (IC) holds if for each n G N and 

each substructure X of M ", every morphism a  : X —> M extends to a term function 

r  : M ” ^  M  of the algebra M.

The next theorem is a portion of the Second Duality Theorem (see [2], Theorem 

2.7) and is useful for showing that an algebra is dualizable.

Theorem  2.1. Assume that the alter ego M =  {M]G, R , T )  is a total structure 

with R  finite. I f  (IC) holds then M yields a duality on A.

2.5 Work Leading to this Thesis

Which finite algebras are dualizable? This is called the dualizabili ty problem.  

W hat is the relationship between dualizability, full dualizability and strong dualiz­

ability? These are the main questions of natural duality theory as of the publication 

of [2] in 1998. Three years later these are still the main questions although some 

advances have been made on both fronts.

Strong dualizability implies full dualizability which requires dualizability. (See 

[2]). Also, if an algebra has finite rank and is dualizable, then it is strongly dualizable 

[15]. Two questions naturally arise from these statements.

1. Are all dualizable algebras also fully dualizable?

2. Are all fully dualizable algebras also strongly dualizable?

If the answer to these questions is no then not only are we interested in which 

algebras can be dualized but also in what type of dualizability the algebra possesses.
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In [9] Hyndman and Willard provide an example of a bi-unary three-element 

algebra that is dualizable but not fully dualizable, thus answering no to Question 

1. Although rank does not appear explicitly in that paper they were able to use 

rank to determine that their algebra was a good candidate for further study. The 

fact that it had infinite rank meant that it might not be strongly dualizable. If 

their algebra had been shown to be fully dualizable then they would have known it 

was a good candidate for getting a no answer to question 2. This is a fine example 

of how determining the rank of an algebra before proceeding with research into its 

dualizability can be quite useful. This will certainly guide the direction the research 

takes and may prove the strong dualizability of the algebra being studied.

Little’s work [10] provides a tool for approximating the rank of a function. When 

he ran his program on algebras of known rank one of three things happened: the 

program correctly approximated the rank of a function; it failed to make an ap­

proximation due to memory issues; or it failed due to what he called separation 

issues. The last case occurred when the algebra being tested was that of [9] which 

is known to have infinite rank. When Little ran his program on the corresponding 

four-element algebra he got a similar failure due to separation issues, which sug­

gested that this algebra might also have infinite rank. This thesis shows that not 

only was his prediction correct, but that a whole class of such algebras have infinite 

rank.

The rank function was used again by Hyndman in [6] to show that mono-unary 

algebras are strongly dualizable. In [3], Clark, Davey and Pitkethly looked at all 

three-element unary algebras and solved the dualizability problem for these algebras. 

In the companion paper [13] Pitkethly looks at the nature of strong and full duality
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within the class of three-element unary algebras. She was able to show that for 

these algebras the answer to Question 2 is yes. In [8] Hyndman and Pitkethly 

further explore the area of finite rank in relation to three-element unary algebras.

Hyndman and Willard [9] describe a bi-unary three-element algebra that is du­

alizable but not fully dualizable. As noted above Pitkethly et al then classified 

three-element unary algebras. We generalize Hyndman and Willard in a different 

direction, by looking at all bi-unary n-element algebras that are similar to their 

algebra. We carefully define this family of bi-unary algebras; determine their rank; 

and study their dualizability.
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Chapter 3

Escalator Algebras o f Length //

3.1 Escalator Algebras

In extending the work of Hyndman and Willard in [9] we need to generalize their 

algebra. To this end we define an escalator algebra o f  length fj, as an algebra 

M  =  ({0,1, - . . ,  yu}; / ,  g) where g > 2  and /  and g are the unary functions

X +  1 if X  ^  jJL
f{x)  =  { &nd g{x)

fj, i f  X  =  g ,

X  — 1 if X  0

0 if a; =  0.

where the symbols +  and — are used to represent normal integer addition and 

subtraction. (See Figure 3.1). Thus f{x)  =  min(a; +  l , //) and g{x) — max(x —1,0). 

The algebra of [9] is an escalator algebra of length 2.
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2 •

Figure 3.1; An escalator algebra of length ij,

3.2 Basic Properties and Definitions

In looking at escalator algebras and the quasi-variety generated by an escalator 

algebra there are many things that are useful to note or define ahead of time. For 

the rest of this chapter let M  be an escalator algebra of length fi. If there is a need to 

specify the value of /x then we write M^. Since the universe M  is the set of integers 

from 0 to ^  the normal integer relations <  and < behave exactly as expected on M  

and M ”, that is if a; < y then f{x) < f{y)  and g{x) < g{y).

Let X be an element of M. Then =  fi  ĝ  — 9, and for n > 1 the term 

operations =  and g^ =  g o g'^~^ satisfy

X  + n  if X  -\-n < jx
P { x )  = { and =  <

/ X  a  X  +  n  >  fx,

X  — n if X  — n >  0

if X  — n  < 0.
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That is, /" (z )  =  mm{x+n, n) and g' {̂x) =  max(a; —n,0).

Recall that if a: € M ” then x is really an n-tuple x =  (xi,X2 , , %*)- The f o r m  

of x is the (n —l)-tuple (x2  — Xi,Xs — X2 , . . . ,  a;„ —x„_i). For an algebra A denote the 

tuple {x, . . .  ,x) e A  a.s ca{x) or c(z) if the context is clear. If B < M " the centre 

of B is Cb =  {cB{m)\m G M}.  If z G such that x G {0,1}" \  {cM/(0), 0^/(1)} 

we call X a { 0 , 1 } -element.

For any x G M ” define min(a;), max(æ),Sa,, E Z as follows; 

min(a;) =  min(a;i, 0:2, • • •, a;„), max a; =  max(a;i, 3:2, • • •, Sx =  / / — min(a;), and 

tx =  max (a:).

L em m a 3.1. If x e  then Sx is the smallest integer such that (z) =  Cm/(/x) 

and tx is the smallest integer such that ĝ  ̂(x) =  (0).

Proof. Let ki ,k 2 be integers such that f ’̂ {̂x) =  cmKa*) (0). For

all i we have a;* +  fci >  /a. So A:i > ^  — min(a;) > g, — Xi as Xi >  min(a:). Hence 

Sx is the smallest integer such that (z) =  Cm/(/x). Similarly for all i we have 

X i~ k 2  < 0  and Xi <  max(a:). So k\ > max(æ) > Xi. Hence tx is the smallest integer 

such thatg^^{x) =  CMa(O). □

L em m a 3.2. Let A  < M-  ̂ and h : A  ^  M. be a homomorphism. For all c^i{m)  

in the centre of A , h{cMi{m)) — m.

Proof. Let a =  h{cM^{0))- Therefore 0 — g^(a) =  g^{h{cM^{0))) =  h(^^(cM"(0))) =  

h(cjvf"(0)) as h is a homomorphism. So A(cM"(0)) =  0. For all m  G M  we have 

/™ (0 )  =  m  so  h{cMn{m)) -  /i( /" * (c m " (0 )))  =  f^{h{cMn{0) ) )  =  / ”"(0) =  m . □

L em m a 3.3. Let A  < and h : A  ^  M. be a homomorphism. For all x E A 

such that X is a {0,l}-element we have h{x) =  0 or h{x) =  1.
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Proof. If 2; is a {0,l}-element then g{x) = CM" (0). So by Lemma 3.2 we have 

g{h{x)) = h{g{x)) =  h{cMn{0)) =  0 which implies that h{x) =  0 or h[x) =  1. □

If A < M " then a homomorphism h from A into M  is called irresponsible  if 

there exist {0,l}-elements a and 6 G A such that a < b  and h{a) =  1 and h{b) =  0. 

Conversely h is responsible  if for all {0,l}-elements a and b with a < 6 if h{a) =  1 

then h{b) =  1.

E xam ple  3.1. Let p — 3 and B be the Sg&^^001,011). (See Figure 2.4 page 11). 

For i € {1,2,3,4} let hj(OOl) and hi (Oil) be given by the following table;

hi h2 ha h4

001 0 0 1 1

o il 0 1 0 1

By inspection of the table it is easy to determine that each hi extends to a homo­

morphism hi : B ^  M  and hi, h2, and are responsible while hg is irresponsible.

3.3 Ladders

A ladder  o f  is a set {zi,Z 2, .. . ,Xr} Q with the following properties:

1. For all t < r ,  f{xt)  =  Xt+i,

2. For all t < r, g(xt+i) = Xt,

3. If xi ^  CM/(0), f{g{xi)) ^  Xi, and

4. If Xr ^  CMf(h), aifiXr)) Xr-
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The element Xi is the ladder  foot,  and Xr is the ladder  head.  Notice that 

for all ladder elements Xi except the foot and the head we have f{g{xi)) =  g{f{xi)).  

The conditions on the foot and the head elements mean precisely that Xi must have 

at least one coordinate equal to 0 and that Xr must have at least one coordinate 

equal to jx (see Lemma 3.4). Moreover, any ladder element with an occurance of 

H must be the head of its ladder, and it is this property that gives uniqueness of a 

ladder with foot x. It is sometimes useful to use to denote the ladder that has 

X as the foot element. If y is the head of then there is an integer k such that 

f^{x)  = y and g’̂ iy) — x. We say the length o f  the ladder  is k. Note that M  

itself is a ladder of length fx with 0 as its foot.

D4444 ,#

3333 •

2222

1111 •

3334 •

2223

1112

2224 •

0001

1113

0002

1114

0003

0004 .•

...

0000  ' if

Figure 3.2: A subalgebra of

Recall that the form of a; is {x2 —xi,Xz — X2 , . . .  ,Xn~ Xn-i) which is an (n — 1)- 

tuple. All elements of a ladder have the same form. The behaviour of a homomor­

phism on a ladder is completely determined by the behaviour of the head (or foot) 

element. This is illustrated in Lemma 3.6
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Exam ple 3.2. In Figure 3.2 There are 5 ladders. The feet of the ladders are 0000, 

0001, 0002, 0003 and 0004 and the heads of the ladders are 4444, 3334, 2224, 1114 

and 0004 respectively. The form of 0001 and 3334 is 001.

Lem m a 3.4. Let x G be an element of a ladder. Then æ% =  0 for some i if  and 

only if  X is the foot of the ladder, and Xj =  fx for some j  if and only if  x is the head 

of the ladder.

Proof. If Xj =  0 then fg{xi)  = /^(O) — /(O) =  1 /  Xj so fg{x)  /  x and there­

fore X is the foot of the ladder. Now assume x is the foot of the ladder. If 

X =  C]vi/(0) we are done so we assume x CM̂ (0). By property (3) f{g{x)) 7̂  x 

so i fg{xi),  fg {x 2 ) , . . . ,  fg{xn)) f  (xi, X2, . • •, Xn) which implies that for some i we 

have fg{xi) ^Xj .  As M  is a ladder the only element that satisfies this is 0.

If Xj =  g  then gf{xj)  =  g  f i n )  =  g ( g )  =  /u — 1 7̂  Xj so gf(x )  7̂  x and therefore x 

is the head of the ladder. Now assume that x is the head of the ladder. If x =  Cm/ (/x) 

we are done so assume x 7̂  Cm/(/x). Then g{f{x)) =  {g f{x i ) ,g f{x 2 ) , .. . ,g f{xn))  f  

(xi,X2, . . .  ,x„) which implies that for some i we have gf{xf) 7̂  Xj. Again M  is a 

ladder so Xj =  /x. □

Lem m a 3.5. Let x he the foot of a ladder. Then the ladder has length g — tx 

and the head of the ladder is /^ "^ (x ).

Proof. Recall that tx — max(x). There is some j  < n  such that Xj =  tx, so 

fij.-tx(^Xj) =  f^~^^{tx) =  /X and f ~̂̂ ""~̂ {xj) =  =  g — 1- This means that

g — tx is the smallest integer k such that /*(x) has g as a coordinate. By Lemma 3.4 

and the definition of a ladder (x) is the head of the ladder Lx and the length 

of the Lx is g — tx- □
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Lem m a 3.6. Let x  e  A  < and h \ A  be a homomorphism. Assume x  is 

the foot of a ladder Lx- For all y in Lx there exists j  < p such that y = f^{x) and 

if  h{x) = 7Ti{x) then h{y) =  'Ki{y).

Proof. Let Lx =  {b i , . . . ,  br} and assume y E Lx and h{x) =  Xi. So y G {fei, 62, • • • > W} 

and by property (1) we may assume f{bi) =  62, f^ih)  =  f i h )  =  h ,  ■■■, -

f{br-i)  =  br. l î y  =  bi\et j  — i — 1. The cardinality of any ladder is at most p +  l s o  

j  < p  and f^{x) =  f^{bi) ~  y. From this we see that h{y) =  h{f^{x)) =  f^{h{x)) =

f^{Xi) ^  =  7Ti(y). □

For 1 <  j  < n define the {0,l}-eIement of M ” by =  { v ( ,v l , . . .  ,v l)  where 

v( =  V2 =  . . .  =  vj — 0 and =  . . .  =  — 1. It is important to note that if

i < j  then < u*. So u” < < . . . < t ^ < % \  Define =  f^~^{v^). For future

reference note that

0 if i < j  U  - 1  if * <  i
=  <! and <

1 if i > j, \ p  if i > j.

Clearly each is a foot element of a ladder that has as the head element. In the 

case that E  M " and v̂ ' G M "' we indicate the difference with the notation 1/ '"  

and ,

If a, 6 G M ” are {0,l}-elements and a < b, define the w-element w{a,b) =

0 if ai =  bi =  0

{ W i , W 2 , . . . ,  W n )  as follows: Wi  =  < 1 if 0; ^  bi

2 if Gi =  bi =  1
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Or more concisely w, =  a , +  6%. The rc-elements are the foot elements of ladders 

that connect the ladders of a and b. This can be seen in Lemma 3.7. We can think 

of a and b as being connected by w{a,b). (See Figure 3.3).

Q

Y

444 •

333

222

111

334

223

112

000

234

123

0 1 2 .

Y#. 344

Y•. 233

Y
#. 122

î;2=00.1...»  .....  .# „i-011
if

Figure 3.3: A subalgebra of that has a w-element, w{v'^,v^)

Lem m a 3.7. I f  a, b are {0,1}-elements such that a < b and a, b, w{a, b) are in A  < 

then Lyj(̂ a,b) has length /j, — 2 and g(w(a, b)) = a and b)) =

Proof. Since a, b are {0,l}-elements and a < b there is some i such that Oj =  =  1

and Wi =  2. Because max(a) =  max(6) =  1, we have max('u;(a, 6)) =  2. So length 

Pw{a,b) h lw{a,b) “  /̂  2. If Wi — 0 or W{ — 1 then a{ — 0 and b{ —

so g{wi) — 0 =  üi and f^~^{wi) = f^~^{bi). If lUj =  2 then — bi =  1 and 

g{wi) =  g{2) =  1 =  üi and ff^~ {̂wi) =  f^~^{2) =  n =  f^~^{l) =  So
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g{w{a, b)) =  a and f^~^{w{a, b)) =  f^~^{b). □

Lemmas 3.8, 3.9, and 3.10 illustrate how homomorphisms behave on zn-elements.

Lem m a 3.8. Let a,b be {0,1}-elements such that a < b and a,b,w{a,b) are in 

A < M^. I f  h : A  Nl is a homomorphism and h{a) =  1 then h{b) =  1.

Proof. Assume h{a) =  1 then g{h{w{a,b))) = h{g{w{a,b))) =  h{a) =  1 and 

so h{w{a,b)) =  2. Applying f>̂ ~̂  we get ff^~^{h{w{a,b))) =  /^ “ ^(2) or we get 

h{f^~^{w{a,b))) =  /r. By Lemma 3.7 f^~^{w{a,b)) =  f^~^{b) and it follows that 

h{f^~^{b)) =  IJ,. As the element 6 is a {0,l}-element, it is the foot of a ladder of 

length n — 1 and g^~^{f^~^{b)) =  b. Apply h to obtain h{b) — h{g^^~^ff^~^{b)) =  

g^~\h{f f^- \b)) )  = gf^-\ij) -  1. Thus h{b) -  1. □

Lem m a 3.9. Given {0,1}-elements a,b such that a < b and a,b,w{a,b) are in 

A  < and mi, m 2 E {0,1}, mi < m 2 and h : A  —¥ M. a homomorphism, then 

h{a) =  mi and h{b) =  m 2 if and only if h{w{a, b)) =  mi + m2 .

Proof. Assume h{a) — m% and h{b) =  m 2 . Then by Lemmas 3.3 and 3.8 there are 

three cases.

First if h{a) =  h{b) — 0 then h{f^~^{w{a,b))) =  h{f>̂ ~'^{b)) =  f^~^{h{b)) =  

f^~^{0) =  p — l. A ladder of length n —1 has its head mapped to /r — 1 only when 

its foot, in this case w{a, b), is mapped to 0. That is h(w{a, 6)) =  0 =  mi +  mg.

Next if h{a) =  h(b) =  1 then by Lemma 3.7 g(h(w(a,b)) =  h(g(w(a,b))) — 

h{a) =  1. So h{w{a, 6)) =  2 =  mi +  mg.

Finally if h{a) =  0 and h{b) =  1 then again by Lemma 3.7, we have

A ( r - \ u ; ( a , 6))) =  =  //
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so h{w{a,b)) >  1. Since

g{h{w{a,b))) =  h{g{w{a,b))) =  h{a) =  0

we have h{w{a, b)) < 1. So h{w{a, b)) — 1 =  mi +  m2. So for all possible cases we

have h{w{a, b)) =  m\ +  m 2 .

Now assume h{w{a, b)) =  m i + m 2 - By Lemmas 3.3 and 3.7 there are three cases.

Since f^~^{b) — ff^~^{w{a,b)) we have

A(6) =

b))) =  g^~'^r~^{mi  +  m 2 ) 

g^~^f^~^{0) if mi =  m2 =  0,

if mi — 0,m 2 =  1, 

gti-ij! 11-1̂ 2) if mi =  m 2 =  1,

0 if mi — m2 =  0,

1 if mi =  0, m2 =  1,

1 if mi — m2 =  1,

=  m2.
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Thus h{b) =  m 2 as required. To see that h{a) — mi is simpler:

h{a) =  h{g{w{a,b)))

=  g(A(w(o, 6)))

=  g{mi +  m 2 )

g{0) if mi =  m2 =  0,

p(0) if mi =  0, m2 =  1,

g{l)  if mi =  m2 =  1,

—  m i -

□

C orollary 3.1. I fa ,b  be are {0,1}-elements such that a < b and a,b,w{a,b) are in 

A < and if  h : A  is a homomorphism then h{a) =  Uj and h{b) =  bi if and 

only if h{w{a, b)) = Wi.

Proof. Recall that for w{a, b) the definition of le-element says that Wi =  Ui bi. 

Assuming that h{a) =  o, and h{b) = bi then by Lemma 3.9 we have h{w{a,b)) =  

o>i +  bi =  Wi. Conversely if h(w{a, b)) — Wi =  a, +  6, then h{a) = a* and h{b) =  bi. □

Lem m a 3.10. I f  a,b are {0,1}-elements such that a < b and a,b,w{a,b) are in 

A < and if h : A  ^  M. is a homomorphism then there exists i < n such that 

h{a) = üi, h{b) = (bi) and h{w{a,b)) =  Wi.

Proof. As a < b there exist j , j ' , j  such that Uj = bj — 0, ay = 0, by — 1 and 

oj =  èj =  1. By Lemmas 3.3 and 3.8 there are only three cases. If h{a) =  h{b) =  0
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then let i — j .  If h{a) = 0, and h{b) =  1 then let i = f .  If h{a) — h{b) =  1 then let 

i — J. Thus h{a) =  n, and h{b) =  bi and by Corollary 3.1 h{w{a,b)) =  wi. □

Lemmas 3.11 and 3.12 state that certain ladders can be added to a subalgebra 

of to obtain a new subalgebra. Then Lemma 3.13 says that a homomorphism 

is determined completely by its behaviour on the foot elements.

Lem m a 3.11. / /  A < then A' =  (A U L^j, {/, g}) is a subalgebra of M^.

Proof. Pick a e  A'. If a G A then f{a),g{a) G A C A' as A is a subalgebra. If 

a G Lyi and a ^  then g{a) G Lyj C A' and if a =  then g{a) =  ca(0) G A C A'. 

Similarly if a G Lyj and a ^  then /(a )  G Lyj C A' and if a =  then /(a )  =  

CA(yu) G A C A'. So for all a G A', f(a),g{a)  G A' and A' is a subalgebra of M- .̂ □

Lem m a 3.12. I f  A  < and a, 6 G A are {0,1}-elements with a < b then A ' — 

{AU Ly,(^a,b)Af^9}) M a subalgebra o f M P

Proof.  Let A' =  A U Lyj(̂ a,b) and pick a' G A. If a' G A then f {a ' ) ,g {a ' )  G A Ç  A' 

as A is a subalgebra. If a' G Ly,{a,b) and fi =  2 then a' =  w (a ,b )  and so f {a ' )  =  

f {b )  G A Ç  A' and g{a')  =  a  G A C A'. Otherwise if // > 2 and a' G Lyj(̂ a,b) 

then there are three cases. First if a' =  w{a ,b )  then g{a')  =  a G A Ç  A' and 

f {a ' )  G Ly,( â,b) C  A'. Next if a' =  f ^ - ‘̂ {w{a,b))  then f {a ' )  =  f^~^{b) G A Ç  A' 

and g{a') G Ly,(̂ a,b) C A'. Finally if a' ^  w{a ,b )  and a' ^  ff^~‘̂ {w{a,b))  then 

f {a ' )  G C A' and g{a')  G Ly,{a,b) C A'. So for all a' G A', both f {a ' ) ,g {a ' )  are

in A' and A ' is thus a subalgebra of M^. □

Lem m a 3.13. For A  < let S  Ç such that A  — [J{Lx\x G S}. I f  the map 

h : S  ^  M  extends to a homomorphism h* : A ^  M  then h* is unique.
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Proof. Assume h : S  ^  M  and h* : A -> M  is a homomorphism that agrees 

with h on S. Pick y in A. Then y =  x ox y — f^{x)  for some a: in S', l i  y =  x

then h*{x) = h{x). If y =  f'^{x) then h*{y) ~  h*{f^{x)) — f^{h*[x)) as h* is a

homomorphism and so h*{y) =  f'^{h{x)). Thus

h(x) if z E S
h* = ^

f'^{h{x)) if y =  f^{x)  for some x E S

is the unique extension of A to A. □

Uniqueness follows directly from Theorem 6.2 of [1] but the above explicitly 

defines h* for later use.

3.4 The Algebras.

Recall the definition of given on page 29. For any n > 3  define Tn as follows:

J. \fi — U  1 LJ L yn ~ 2  l_j . . .  LJ L .f j i .

By Lemma 3.11 T„ =  y}) is a subalgebra of M ” . A w-algebra  is a

subalgebra of M ” that has as its universe the union of the set T„ with some subset,

possibly empty, of ladders, , where a,b are {0,l}-elements in T„ with a < b.

Lemma 3.12 shows this definition is well-defined.

Lem m a 3.14. For any w-algebra W  if h : W  M. is a responsible homomorphism 

then h is a projection.
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Proof. Recall that c(0) < < ■ • • <v^ < c(l). First we need to show that there

exists an i < n such that h{v^) — T̂ i{v̂ ) for all j  < n. If h is responsible then there 

are three cases.

C a s e  1 : Assume h{v^) =  0 for 1 <  j  <  n. Since Tri(u^) =  0 we have h{v^) =  7!-i{v )̂. 

C a s e  2 : Assume h{v^) =  1 for 1 < j  < n. Again 7r„(n- )̂ =  1 so h{v^) =

C a s e  3 ; There is some 1 < i < n such that h(v }̂ =  0 and h(v^~ )̂ =  1. If j  > i 

then h(v^) =  0 and if j  < i then h(v^) =  1, as h is responsible. By the definition of 

uÀ if j  > i then 7Ti(v̂ ) — 0 and if j  < i then 7Ti(v̂ ) =  1. So h(v^) — 7Ti(v̂ ).

Thus there exists i with h(v^) =  7Ti(v^). Now we need to show that h is tTj 

restricted to W . By Lemma 3.6 we know that if a; G L.yj then h(x) =  7Tj(a;). By 

Lemma 3.1 we have that if w{a,b) G W , then h{w{a,b)) = TTi{w{a,b))\ so, for all

X G L^(a,6) it follows that h{x) — 'Ki{x). Finally note that h{x) =  'Kiix) for all

X G C w  So for all a; G W  we have h{x) =  7ri(a;). □

Now we consider algebras that have subsets of a specific structure. Later we

construct homomorphisms on some of these algebras that have infinite rank. If 

A  < M ” where n > 7 then A has a p r im a r y  sect ion  at of size k (denoted 

(uÀ A:)-section) if 6 < j  < n, and there exists an even integer 4 <  /c < j  — 2 such that 

uÀ . . . ,  G A and the w-elements in A connecting . . . ,  are

precisely

w{v^, w{v^, . . . ,  w{v^, and

. . . ,

The next lemma deals with homomorphisms that are irresponsible on a {v ,̂k)~ 

section.
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. J
^   ...

• iv{v'̂  ,v̂ ) ,• w{v'̂  ,v̂ )
....................

  — D® „4

• lü(V̂ ,V̂) •  W{V̂yV̂)
, , #

7jl

Figure 3.4: A subalgebra of M^° with a (u^, 4)-section
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Lem m a 3.15. Let A have a [v^,k)-section and : A —)■ M  èe a homomorphism 

such that h{v^) — 1 and h{v^~^~^) — 0. Then for all elements x of the primary 

section, h{x) is uniquely determined, and in particular

h{v^~^) =  h{v^^^) =  • • • =  h{v^~'^'^^) =  1 and

h{v^~‘̂) —  h{v^~^) =  • • • =  h{v^~^) =  0 .

Additionally

h{w{v^, v^~^)) — h{w{v\  =  • • • =  h{w{v^, =  2 and

h{w{v^~‘̂ ,v̂ ~'̂ ~̂ )) =  h{w{v^ '̂ ,̂v^~'^~ )̂) =  • • • =  h{w{v̂ ~'̂ ,v̂ ~'̂ ~'̂ )) =  0 .

Proof. Let i E { j  — 1, j  — 3 , . . . ,  j  — k + 1} then, by Lemma 3.7, g{w{v^,v'^)) = 

implying that h{w{vPv'^)) =  2 as h{v^) = 1 is assumed. Lemma 3.7 also says that 

f^~^{w[v^,v'^)) =  Hence

=  Kf^'~'^{w{v^,v^)))

= f^~^{h{'w{v\v^)))

=  r - ' ( 2)

=  T

and so h(n®) > 1. By Lemma 3.3 it follows that h{v^) =  1.

Let i e  { j  — 2, j  — A,. . .  , j  — k} then by using the two parts of Lemma 3.7 again
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we get

^{h{w{v\v^ * 1))) = /i(/^ ^{w{v\v^ ^)))

=  A(/''-'(w>-‘ - ') )

=  /< - ‘(A(u'-‘ ' ‘))

=  / “- '(o )

=  /X — 1

which implies that h{w{v\v^~^^^)) =  0. As g{w{v\v^~'^~^)) =  u' we also get 

h (f') =  0. □

For A < M ", 1 < X < n, and k > 0 define the repetition of coordinates mapping 

: A by adding k copies of the xth coordinate between the ith  coordinate

and the {i +  l)th  coordinate. So for x G A

( ^ )  —  ( ^ 1  ) ^ 2  • • • ? ^ î 5  • • • ) 3^45 ^ 4 + 1  ) • • • ) ^n) •' »✓ ^
k copies

We now start to construct a commuting diagram as in Figure 2.8. We start with 

a w-algebra A in place of B in the diagram and using the map a"'* as a.

Let A < M " be a w-algebra, k an even integer greater than 3 and let h : A  -4 M  

be a homomorphism. Let A ' =  «" ’̂ (A) < As A is a w-algebra the {0,1}-

elements are precisely
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The corresponding {0,l}-elements in A ' are

l,n + k  2,n-\-k i - l ,n + k  ..i+ k ,n + k  i+ k+ l,n + k  n + k - l ,n + k
U  ̂ U  ̂ U ) 1/  ̂  ̂ u  •

Assume is not in A  then ^«-1,»+/:̂  ig not in A ' and we

can define S(A') to be the w-algebra created by adding all the necessary elements 

to form a &)-section to A'. Specifically the universe of §(A ') is

S' =  A' U L î+k-i U L̂ i+k-2 U  • • • U Lyi

tj S ^ ( ^ y i + k  ^ y i + k  —  l ^  U L y j f ^ y i + k  ^ ^ i + k  —  3 ^  * '  • U L ^ ^ y i + k  ^ ■ j j i + 1 ' ^

U  L-iy^yi + k-2  ̂ yi—1'̂  U  Lyj(^yi + k — 4 • • • U  Lyl^yi^y i - l \

This is possible as none of î n*+fc 2  ̂ ^re in A ' and so there are no

w-elements connected to these {0,l}-elements in A'.

L em m a 3.16. Let A' < Given h' : A' an irresponsible homomorphism

with =  1 and h'{v^~^) =  0, then h' extends to : S(A') —> M .

Proof. Define Ji =  {i + k — l , i  + k — 3 , . . .  , i + ^} and I 2  — {i + k — 2, i +  k — 4 , . . .  , i} 

and
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h'^{x) =

h'{x) if X e A'

r ( i ) if X =  for t e  Ii, 0 < s < fx — 1,

r ( o ) if X =  f^{v*) for t G 72) 0 < s < fx — 1,

f ( 2) if X =  n*)) for t G /i , 0 <  s <  IX —2,

r ( o ) if Æ =  for t G ig) 0 ^ s jx — 2.

To show that is a homomorphism we need to show that f{h'^{x)) — h'^{f{x)) 

and g{h'^{x)) =  h'^{g{x)) for all five cases.

C a s e  1 : x e  A'.

1ÎX is in A' then f{x)  and g{x) are in A'. Thus /(h+(a;)) =  f{h'{x)) =  h'{f{x)) =  

h-^ifix)) and gih-^(x)) =  g(h'(x)) =  h'(g(x)) =  h+{g{x)).

C ase  2 \ x =  f^{v*) for t e  {i +  — 1, i +  A: — 3 , . . . ,  i +  1} and 0 < s < // — 1.

If s =  yu -  1 then /i+(/(a:)) =  h+{f{f>^~^{v^))) =  h+{c{g)) =  // =  /^ ( l )  =

/ ( / ^ “^(l)) =  f{h^{x)). Otherwise if s < yu — 1 then h^{f{x)) =  —

/^+ i(l) z= /( /* ( ! ) )  =  f{h'^{x)). For s > 0 we have h'^{g{x)) =  =

/«-1(f) =  p ( / '( l ) )  =  g{h+{x)). If s 0 then h+(g(z)) =  h+(c(0)) =  0 =  g{l) =

g(/i+(3:)).

C ase  3 : x — /®(n*) for t 6 {i +  k ~ 2,i +  k -  A,. . .  , i }  and 0 < s < fx -  1.

If s =  yu -  1 then h+ (/(z)) =  h+(/(/^"^(n*))) =  /i+(c(yif)) =  fx =  /^(O) =

/( /^ ~ H 0)) =  /(^"^(^))- If) on the other hand, s < /i — 1 then h+(/(a;)) =

h+(/*+^(a;)) — =  /(/* (0 )) =  f{h~^{x)). For s > 0 we have /i+(p(z)) =

=  5'(/®(0)) — g(h+ (æ)). If s =  0 then h'^{g(x)) =  h+(c(0)) =
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0 =  ^(0) =  W ).

C a s e  A : x  =  f^{w{v^,  %*)) for t e  { i  +  k — l , i  +  k — 3 , . . . , i  +  l }  and 0 <  s <  ^ — 2.

If s =  11 — 2 then by Lemma 3.7 we have ,v^)) =  So

A + ( /W )  =  h+(/(/"(iü(n^n*)))) =  =  h+(/^'^(n*)) = / ^ - i ( l )  =

A* =  =  /(/®(2)) =  f{h'^{x)). Otherwise, if s < n — 2 then h^{f{x))  =

/^+^(2) =  /(/®(2)) - f{h~^{x)). For s =  0 we have h'^{g{x)) =  /i+(n^) =  1 =  g{2) =  

^(/i+(a:)). If s > 0 then h+{g{x)) =  r;*))) =  /®“H2) -  0(/*(2)) =

g(h+(%)y

C a s e  5 : z  =  f^{w(v*,  for t e  +  A: — 2, f +  A; — 4 , . . . ,  i }  and 0 <  s <  — 2.

Finally if s =  /i — 2 then by Lemma 3.7 we have 

So h+{f{x)) =  =

/^ - i ( 0) =  / ( / ^ “^(O)) =  /(/i+(a;)). If s <  AX -  2 then h+(f{x)) =  /'+^(0) =  

/(/* (0 )) =  f{h'^{x)). For s =  0 we have h'^{g{x)) =  =  0 =  g'(O) — p(h+(2)).

If s > 0 then h+{g{x)) =  =  g (/'(0 ))  =  9 (h+(%)).

So is a homomorphism and by Lemmas 3.13 and 3.15 it is the only such 

homomorphism. □

If h : A  —)• M  is an irresponsible homomorphism such that h(u*) =  1 and 

=  0 then h! =  h o is the natural extension of h from A to A'

and — 1 and =  0. Lemma 3.16 shows that h' extends

uniquely to a homomorphism : S(A') -4- M. This construction sets up the 

commuting diagram for rank starting with algebra A, as in Figure 2.8, and hence 

will be important in the proof of Theorem 4.1 that escalator algebras have infinite 

rank.
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E xam ple  3.3. Let n =  3, i =  2, /c =  4 and A be as in Figure 3.5. Then «^’̂ (OOl) =  

0000001 =  and «^’̂ (Oll) =  0111111 =  The algebra A ' =  «^’̂ (A) is shown 

in Figure 3.6. To form an algebra with a (u®, 4)-section we add L ŝ, Lyi, LyS, and 

Ly2 to A ' and the appropriate w-elements and their ladders. The resulting algebra 

S(A') is shown in Figure 3.7.

O333 #

222

223 •

112 •
111  #

001

000

233

122

•  Oil .

if

Figure 3.5: An algebra A < for Example 3.3

3333333 •

2222222 •

1111111

2222223 •

12222221111112

0000000

«6,7= 000000.1...# «1>7= 0111.11.1..

if

Figure 3.6: An algebra «^’̂ (A) =  A' <  for Example 3.3
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•  v^ .• •̂ ::

CM?(0) # ,̂

Figure 3.7; An algebra §(A') < M^ showing the addition of a (n®, 4)-section
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Chapter 4

Rank and D uality

4.1 Rank of an Escalator Algebra

In this section we consider the rank of an escalator algebra. Hyndman and Willard’s 

algebra that is dualizable but not fully dualizable for any set of operations is the 

escalator algebra of length 2. Little’s algebra P 12 [10] is an escalator algebra of 

length 3. See Figure 4.1. His work suggests that the rank of this algebra is infinite. 

We show that this is true for all escalator algebras, not just P 12. Recall the definition 

of the {0,l}-element from page 29.

We will use the notation H F(D ) in place of D /F .  See page 9 for these equivalent 

concepts.

L em m a 4.1. Let B' < C < M " where 0 < k < j  < n and , v^~^,. . . ,  G C. 

Let Y  Ç Horn (C, M) be a set of projections. I f  . . . ,  determine distinct

elements in HY{C)then |F | > k.

Proof. Assume determine distinct elements in H F(C ). Then for
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a 9
2 »

1

a

Figure 4.1: The diagram showing Little’s P 12

all 61 ^  62 E {v ,̂ v^~^,. . . ,  fJ-k} there exists a projection tTj G F  such that 7Tj(6i) 7̂  

■Ki(b2 ). For j  G { j , j  — l , . . . , j  — k +  l } w e  have v̂ , G C  and if z 7̂  J then 

7Ti{v̂ ) =  7rj(u^“ )̂ so TTj G F . Hencc we need at least k projections in F  to separate

v^~^,. . . ,  □

Lem m a 4.2. Let A < M ” be a w-algebra, let h : A  ^  M. be a homomorphism 

such that for some 1 < i < n both h(u*) =  1 and =  0, and let k be an

even integer greater than 3. Define A '  =  a f ’’̂ {A) and h' = h o ((0 ;”’*’)“^). For 

Y  Ç Horn (S(A'), M), if  h' lifts to nF(S(A')) then for i < j < i  + k — 1 we have 

UY{v^) /  UY{v^+^).

Proof Assume h' lifts to nF(S(A ')) then there exists a homomorphism 7  such that 

for all a G A' we have h'{a) =  7 (IIF(a)). As =  1 both fi'(̂ ŷ +k,n+k̂  _  i

and 7 ( r i F — 1 . Similarly =  0 implies that = 0

and thus 7 (nF(u*"^’"+*’)) =  0. Let j  = i + k then j  — k < j < j  — 1 and there 

are two cases. If J G { j  — k, j  — k + 2 , j  — 2}  then by Lemma 3.15, and using 

7  o n F  it follows that 7 (nF(u^’”‘*"̂ )) =  0 and 7 (riF(a- '̂^^)) =  1. Otherwise if
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j Ç . { j - k  +  l , j  — k +  3, — 3} then once again by Lemma 3.15 it follows that

=  1 and 7 (Iiy(i;-^+^)) =  0. In both cases we have Ü Y nY(t)-^+̂ ) 

as required. □

C oro lla ry  4.1. For  W  a w-algebra i f  h : W  ^  M. is an irresponsible hom om or­

phism then  rank(h) > 1.

Proof. The proof is by contradiction. Assume rank(h) < 1. We have W  < M ” 

where n > 3. Since h is irresponsible there exists 1 < i < n such that /i(u*’"') =  1, 

and =  0. We can construct the commuting diagram for rank (Figure 2.8)

as follows. Let k be any even integer greater than 4. Let B =  W,<r =  =

cr(B) =  W ', C =  D — 8(W ') and h' — ho{of''^)~ .̂ Then h'̂  exists and is the natural 

extension of h' from W ' to S(W ') as discussed on page 42. By the definition of rank 

there exists an Nq and a Y Ç Hom (§(W '), M) such that |Y| < Nq, the map h' 

lifts to nY (S(W ')), and for all g E Y we have rank(p) < 1. So we know that Y 

is a set of projections and by Lemma 4.2 that IIY(u*) ^  nY(u®+^) which implies 

that TTj+i e  Y. For i <  ̂ < i +  A: we have 7ri+i(v )̂ = 0 ^ 1  =  7Ti+i(u') and so 

riY(u*) ^  riY(u*) and thus h' separates . . . ,  uL W ith j  — i-\- k hy

Lemma 4.1 we get |Y| > k. The only restriction on our choice of k was that it be 

an even integer greater than 4 so let k =  2No +  2. Then |Y| > A; =  2Nq -\-2 > Nq. 

This is a contradiction as |Y| < Nq. Therefore rank(h) > 1 . □

T h eo rem  4.1. The rank of  the escalator algebra of  length p  is infinity.

Proof.  Assume for contradiction that there is an ordinal Pi such that rank(M ) =  P\. 

Let P be the least ordinal such that there exists a m-algebra, W  < M ", and an 

irresponsible homomorphism h : W  M  with rank(h) =  P < Pi- Let N  witness
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this. By Corollary 4.1, /? > 2. As h is irresponsible there exists i < n  with h(u®) =  1 

and =  0. Let k =  2{N +  2) and a =  As shown at the end of the last

chapter we can construct the commuting diagram in Figure 4.2.

W ' < S(W ') < 8(W ') <

Figure 4.2: A commuting diagram for a w-algebra

In the definition of rank we found an integer A' > 1, a set F  Ç Hom (S(W '), M) 

with |y | < N,  where h' lifts to H F(C) such that for all G F  we have rank(g'|§(w')) < 

(5. As k =  2(N +  2) then |F | < A  =  ^  ^ so by Lemma 4.1 there exists at

least one homomorphism, gi, in F  that is not a projection. By Lemma 3.14, the ho­

momorphism Qi is irresponsible. Since S(W ') is a w-algebra our initial assumption 

says that rank(gri) > /3 and we have our contradiction. So rank(M ) is infinite. □

4.2 M is Dualizable

The next goal is to show that every escalator algebra is dualizable. In [9], Hyndman 

and Willard showed that M 2 is dualizable. The general proof follows the structure 

of their proof quite closely but requires additional algebraic relations in the alter 

ego.

Given M  we need to find M such that M is a Unitary alter ego for M. First we 

define two families of relations. In the case where ji =  2 these relations are precisely
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the relations E  and R  of Hyndman and Willard’s proof in [9]. Let

S =  {r I r  is a unary term operation of M}.

Recall that an element y  e  is a &-tuple (yi, t/2, . . . ,  yk)- For 2 < k < fx +  1 let

5'k =  { 3/ E M * : 3/1 <  3/2 - "  <  yk} -

Recall for a unary term operation r  that t {x i ,X 2 , ■ - -, Xn) — ( % i ,  X2 , . . . ,  x„) =

(t'^(æ i), t ^ { x 2 ), . . . ,  T^{xn))- We are omitting the superscripts for convenience. 

For all y ^ Sk define

Py =  { p e  : 3 r  e  S, r(p) =  (yi, yg, y2, • • •, y&-i, y&-i, y k ) }

Qy =  { q e  :  9 i  <  9 2  <  "  <  92^ - 2 }  \  P y

For each 2 < k < y + l w e  define

Qk  — ( ^ { 03/ 1 y G Sk} -

Then Qk Ç and for all y E Sk we have QkflPy =  0 as Qy n  =  0. Note that

0 1 ...  1 is in and 0 1 ...  1 is not in Py. Otherwise if 0 1 ...  1 E then there

exists T E E  with r ( 01 . . .  1) =  (yi, y2, y2, • • •, Vk-i, Vk-i, Vk) which would result in

V2  =  Vs — " ' =  Vk- Thus for all y E Sk we have 0 1 ...  1 E Qy and so Qk ^  0- For
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1 < j  < fj, define

Ej =  {(a;, j;), (a;, , (a:, f  W ) | z € M} Ç

Lem m a 4.3. Both Ej =  {Ej\ f , g)  and Qk =  {Qk', f , g)  are algebras.

Proof. To show this we need only show that the Ej and Qk are closed with respect 

to /  and g.

Let p e E j .  Then for some 0 < i < j  we have p — { x , f \ x ) ) .  Thus f{p)  = 

f {x,  f^{x)) =  {f{x),  f{f^{x)))  =  {f{x),  f \ f { x ) ) )  which is an element of Ej as f {x)  e 

M.  Similarly g{p) =  g{x, f%x)) =  {g{x), g{ f \ x) ) ) .  Let

( =  -  g(a;)

0 if z =  0, 2 =  0

* i — 1 if a; =  0

f^{x) — X  if z  > 0

< x  + i — X  — i.

So 0 < t < i < j  < p,. As g{x) G M and f \ g{ x ) )  =  g{x) + t = g{x) +  (g{ f \ x) )  -  

g{x)) = g{f '{x))  we have g{p) — (g(x), f \ g ( x ) ) )  is in Ej  as desired.

Assume Qk is not closed with respect to /  and g. Then there exists some r  G S 

and some q ^ Qk such that r(ç) ^ Qk- As q is ordered we know that r(g) is also 

ordered and hence r(g) G Py for some y. This implies that q ^ Py but this is a 

contradiction as g G Qt- Both Ej and Qk are algebras. □
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The alter ego that dualizes M  is

M  =  ( M ,  A ,  W , E i , E 2 , . . . ,  E f , - i ,  Q s ,  • • • ,  Qfi+i ,  Td)

where Td is the discrete topology.

Hyndman and Willard define two algebraic relations as follows:

E =  {{x,y) : X  < y  &-aà {x, y) ^  (0, 2)}

R =  {{x,y,  z ,w) : X < y < z < w  and x =  y or z =  w}

They then show that the topological structure M =  (M , A, V , E, R, Td) dualizes 

M 2. As jj, =  2 the only possible value for A: is 3. Then our alter ego for M 2 is 

M =  {M, A,\/,  El, E 2 , ■ ■ ■, Ef^_i,Q^,. . .  ,Qn^i,Td) =  {M, A,\J ,Ei,Qz,Td)-  Thus to 

show that our construction matches Hyndman and Willard’s we need only show that 

E\ =  E  and Q3 =  R.

Sz =  {y : y i < y 2 < yz} =  {(0, 1, 2)} and, 

fo i2  =  { p  e  M'^ : 3T  G 2 ,  T (p) =  ( 0 , 1 , 1 , 2 ) }

=  { (0, 1, 1, 2)}.
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From this we determine that

0 0 1 2  = { q G : Çi <  Ç2 <  Ç3 <  9 4 }  \  ■P012

= { ( 0 , 0 , 0 , 0),  (0 , 0, 0 , 1),  (0, 0 , 1, 1),  (0 , 0, 1, 2), (0 , 0 , 2 , 2), 

(0 , 1, 1, 1), (0 , 1, 2 , 2), (0 , 2 , 2 , 2), (1, 1, 1, 1), (1, 1, 1, 2), 

(1 , 1 , 2 , 2),  (1 , 2 , 2 , 2),  (2 , 2 , 2 , 2)} .

As there is only one element in % we have Q3 =  0012 =  R- We also have

El =  {(z,a;), \ x E M}

=  { ( 0 , 0), (1, 1), (2 , 2), (0 , 1), (1, 2) }

=  E

So we have E — E\ and Qs =  R a,s desired.

Now we present three lemmas. The first two (Lemma 4.4 and Lemma 4.5) are 

required for the third and have very similar proofs. Then we have Lemma 4.6 which 

is required for the proof that M  is dualizable.

L em m a 4.4. 7 / r  G E, p, ç G M  and r(p) < r{q) then p < q.

Proof. First assume that length of r  is 1. Thus r  =  /  or r  =  p. If r  =  /  then 

f{p) < /(? )  <  h which implies that p < p and f{p) — p +  1. If q =  p, then p < q. If 

q < p  then f{q) =  q +  1 and p +  1 < q +  1 which also implies that p < q. Similarly, 

if T =  g then 0 <  g{p) < g{q) which implies that q > 0 and g{q) =  q — 1. If p =  0 

then p < q. If p > 0 then p — 1 < ç — 1, which again gives p < q.
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Now assume that if the length of Tq =  s then To{p) < To{q) implies that p < q,

also assume length of r  is s +  1. Then r  =  /  o tq or r  =  ^ o tq for some tq with

length s. If r  =  /  oTo then r(p) < r(g) < p, implies that (/oro)(p) < (f°To){q) < p 

and so To{p) < p  and f{ro{p)) =  To{p) +  1. If To{q) =  p then To{p) < To{q) and 

by assumption p < q. If To{q) < p  then t q {p )  +  1 < ro(ç) +  1 which implies that 

To(p) < To(g) and again by assumption p < q. Alternately if r  =  g o tq then 

0 < t {p ) < r{q) gives 0 < (^ o t q ) { p ) < {g o To){q) which implies that To{q) > 0 and 

9{To{q)) =  To(g) -  1. If t q (p ) =  0 then To(p) < ro{q) and by assumption p < q. If 

To{p) > 0 then To{p) -  1 < ro(ç) -  1 and so To{p) < To{q) and again by assumption 

p < q. So by induction p < ç for all terms r  G E. □

L em m a 4.5. If Pi,P2 ,Ps,Pa G M  and r  G E such that p\ < P2 < Pz < Pa cmd 

t{P2 ) =  t{Pz), then either r(p i) =  r(p 2) or T(ps) =  r(p 4).

Proof. First note that for any x < y G M  if f{x) =  f{y)  then either x — y ox 

X =  p  — 1 and y =  p. Similarly, if g{x) =  g{y) then either x y ox x =  0 and y =  1.

The proof is by induction on the length of terms. Assume that length of r  is 1. 

Thus T =  f  ox T =  g. If r  =  /  then /(pg) =  /(pa) which implies that p2  =  p  — 1 

and ps  — p =  Pi .  If r  =  g  then g ( p 2) -- g { p z )  which implies that P2 =  0 =  pi and 

Pa =  1. Thus either r(p i) =  T(pg) or r(pa) =  r(p4).

Now assume that if the length of To =  a then ro(p2) =  To(pa) implies that either 

To(pi) =  to(p2) or To(pa) =  To(p4). Assume the length of r  is a +  1, then r  =  f  otq

ox T =  g otq  for some tq of length a.

If r  =  /  o Tq then r(p 2) =  r(pa) implies that ( /  o ro)(p2) =  ( /  o To)(pa) and thus 

we have two cases. If ro(p2) =  To(pa) then by assumption To(pi) =  ro(p2) or To(pa) =
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tq{p^). Otherwise 7b0%) =  p - I  and To(pg) =  p =  70(^4)• So /  o 70(^3) =  /  ° 7b(^4), 

that is, t{pz) =  r(p 4).

If r  =  5  o To then 7 (^2) =  T(ps) implies that (g o 7q)(p2) =  (^ °  7-o)(pa) and 

again we have 2 cases. If 7o(%) =  To(p3) then by assumption 7q{pi) =  70(^2) or 

7o(p3) =  to{pa)- Otherwise 70(^3) =  1 and 70(^2) =  0 =  To(pi) and 7 (^2) =  t{Pi)- O

Lem m a 4.6, IfpÇ: with k > 2 such that there exists n 7  E S and

7"(p)  =  ( m ,  1 / 2 , 1/2 , ,  1 / t - i ,  1 / k - i ,  1 /t )  1/1 <  3/2 <  - "  <  !/k , ( A e n

P — (bi, 62, 62, . . .  bk-i, bk) for some elements 61, 62, . . . ,  6fe m M  with

b\ < <- • ' • < bk-

Proof. Let

and 7  G E such that

P =  { P i , P 2 , P 3 , . . .  ,P2k-2)  e  M
2 k - 2

7"(p) =  ( 3/1 , 3/2 , 3 / 2 , . . . ,  3 / t - i ,  3 / k - i ,  3 / t > .

Looking at each coordinate we see that

{
Vi+i if i is odd,

yi_^i if i is even.

For all jf < k — 1 we know that pj < yj^ i  so for all i  < 2k — 2 we have

T{Pi) < T'iPi+i) First we need to show that if i is odd then pi < pi+i and that

if i is even then pi =Pi+i-

Assume i  is odd then 7 (pj_,_i) =  3/iti+ i =  3/ i^  > 3/ i^  =  7 (p,).

Assume i is even then 7 (p i+ i)  =  n i+1+1 =  =  i / i+ i  =  T(Pi)-
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S o  T ( p i)  <  T (p 2) =  T (P 3) <  "  - <  T (p 2 * -4 )  =  T(p2&_3) <  T (p 2*_2) a n d  b y

Lemma 4.5 and Lemma 4.4 we have P\  < P 2 =  Pz <  ■ ■ ■ <  P2k-A =  P 2k - z  <  P 2k - 2 -

Let bi =  < 

Then

Pi

P2Î-2

if i =  l, 

if i > I.

P =  (Pl,P2,P3,...,P2t-2)

=  ( P l , P 2 , P 2 , P 4 ,  . . . , P 2 t - 4 , P 2 t - 4 , P 2 k - 2 )

— {b i t  ^2) ^2) • • • ) b k—It  b k —I t  ^ k )  •

□

Theorem  4.2. M dualizes M.

Proof. Since M is a total strncture whose set of relations is finite, by Theorem 2.1 

we need only show that the interpolation condition holds to show that M dualizes 

M.

Let X < M™ and h : X ^  M. To show that the interpolation condition holds we 

need to show that h is the restriction to X  of an n-ary term operation of M. The 

proof is broken into three cases. Case 2 uses Ej while case 3 uses Qk 

C a s e  1 : | range(h) | =  1.

In this case h is constant, say h{x) — p — i îor some fixed i with 0 < i < p. So 

h is the restriction to X  of g f̂' {̂'Ki{x)).

C a s e  2 : | range(h) | =  2.

Assume range(h) =  {^1, 1/2} where y i,y2 € M  with yi <  3/2. As h can also 

be viewed as a homomorphism from the finite distribntive lattice {X,  A, V) onto a
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two-element lattice there exists r^s G X  such that

h~^{yi) =  {x E X  \ X < r }  

h~ {̂y2) =  {a; G % : T > a}.

Let r =  r \ /  s and a =  y2 - y i .  Since h{f) =  2/2 and h{r) =  yi we now need to choose 

a coordinate i  so that n  +  o  <  S j .  This is accomplished by looking at two cases 

based on the value of a.

If a =  1 may choose any i  such that r* < f,. This gives us r, +  u =  r* -I-1 < n  — 

riW Si =  Si as desired.

If a > 1 then {h{r),h{f)) =  (yi ,y 2 ) =  (2/1, 2/i + a) ^ Ej for all j  < a. This

implies that for all j  < a we have (r, f  ) ^ Ej  as h respects all Ej G M. Then there

must exist i  < n  such that (r ,,n )  0  Ea-i- As Ei Ç E 2  Ç . . .  Ç Ea~i we also get 

(fj, fj) ^ Ej for all j  < a. Let b =  fi -  r,. Then (n, fj) =  (r*, ri +  b) e  Eb so b > a 

and Tj -I- a <  fj =  Tj V Sj =  Sj as desired.

For this fixed i  define Xi =  {xi : x Ç: X }  and hi'. Xi  range (h) by hi{xi) =  h{x) 

for all x E X.  This is possible since if x^x' E X  and Xi — x[ it is impossible to 

have X  < r and x' > s ov x' < r and x > s, so h{x) =  h{x'). Thus we have

K^{yi)  =  ^ X i ' . X i <  Ti) and h~^{y2 ) =  {zj E Xi : Xi >  S j } .

Let r  be the term operation and recall that rj -f- a <  Sj. If Xj < rj

then T(Tj) =  (/i -  a) =  1/1. If >  Sj

then T(zj) =  f̂ "~°'g'"̂ {xi) — g>̂ ~°‘~ŷ  f>̂ ~°'{xi -  fj) =  (^) =  u +  2/i =  2/2-

Thus r\xi =  hi and h =  t  o 7Tj|x- 

C a s e  3 : | range(h) \ =  k for 2 < k < /i.
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Then range (h) — {y i , y 2 , ■ ■ - Vk}- As each yi is a distinct element of M  we 

may assume that yi < y2 < ■ • ■ <  yk so y =  {yi ,y2 , ■ ■ - yk) € Sk- Thus h is 

a lattice homomorphism from {X,  A, V) onto a k element chain and there exists

r

h~^(yi) =  {xÇ. X \ x < r ^ }  

h~^{y2 ) ^  {x e  X  \ s ‘̂ < x  <r ^ }  

h~^(y3)  =  {x  e  X  I <  a; <  r^}

h 'X m -i)  =  { x  e X  \ < X <

h~^{yk) =  {x  G X  1 <  a;}.

Note: It is possible to define =  / \ X  and =  \ /  X  so that < a: < r* is 

always satisfied. This allows us to rewrite the above set of equations as

h'~̂ {yi) =  {a; G X  I s* < X < r*} for all 1 < i <  k.

For 1 < 3  < k define 0  =  H V As h preserves V we get h{f^) =  h{r^) V

h(s'?+^) =  yj  V yj+i  =  and we have

Now define ü =  (r^, r^, r^ , . . . ,  Then

h{a) =  (h(r^), h{f^), . . . ,

~  { v i j  2/2, 2/2, • - • , Vk — lj Vk — li  Vk) •

57



and using r(x) =  x we obtain h(a) € Py as well as h{a) ^ Qy. As h respects Qy 

there exists i < n  such that there is an element p of where

p =  ( r - , , r?, f ? , . . . ,  ^

Because â is ordered we know that p is also ordered and thus p E Py. This means that 

there exists a term r  with r{p) =  {yi, p2 , 2/2, ,  Vk-i, Vk-i, Vk) and, by Lemma 4.6, 

r{ < fi and thus =  f j  — rj V as these elements are in the chain M.

Let cr be the term operation j ^ > j - - y k + y i and let x E X.  If h{x) — y\ 

then X E h~^{yi). It follows that x < P  and Xi < r] =  pi. Thus

a{x) =

—  gf^~yk jfj^-yk+yi

=  gy'-y f̂^̂ -y' +̂y {̂0) as r { x i )  < r(p i) =  yi 

=  - y k  +  yi) =  2/1 =  h{x).

If h{x) =  yk then x E h~^{yk) and we have x > s^, Xi > =  P2 k- 2 , and

T(Ti) > T(pt) =  Z/k, 80
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a ( x )  —

=  g^~' '̂°iiJ') =  Vk =  h{^)-

Finally if h { x )  =  % for 2 < j  < k — I then x  G h ~ ^{ y j )  and < x  <  W and 

Pj  =  =  s {  <  Xi <  r \  =  p j  or, more succinctly, Xi =  p j .  This gives us

a { x )  =  y/'-yt +«i ̂ «1 (a;)

_  gk'-yk jfj'-yk+yigyir,-(^^.^ — gk -̂Vk jy--yk+yigVi^y.^^ a . s T { x i )  =  r(pj) =  %

=  g^~^'^{yj +  H - V k )

=  Vj 

=  h { x ) .

□

So for all X  we have o-|%(a;) =  h { x )  as required. For each case h  is the restriction 

to % of a term operation and so M  is dualizable by Theorem 2.1.
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4.3 M is N ot Strongly Dualizable

In this section we show that M  is not strongly dualizable using two lemmas from [13]. 

The first of these states the existence of a given structure for any n € N. Hyndman 

and Willard give a more general version of the lemma that does not restrict itself 

to uj but uses any cardinal number [Lemma 4.1 [9]].

L em m a 4.7. (Lemma 4.1 [13]) There is a chain L — (L; <) and a partially ordered 

set r '  =  (T; <) such that < is strictly contained in < and the following condition 

holds:

for all c,d e T  with c < d and c <f\d, there exists {cn | n  e  N }  U | n  G N }  Ç  T 

such that c <\ Cn and dn <  d and Cn <  dn <  Cn+i, for every n  G N.

L em m a 4.8. (Lemma 4.2 [13]) Let M. be a finite algebra. Given F and F ' as in 

Lemma 4-7 let B < A  in A  =  ISP(M) with T Ç B . Assume there is a chain 

C =  (C; <), with C Ç. M , such that the maps |p : Hom (A, M ) -4- Hom (F, C) and 

|r : H om (B ,M ) -4 H om (F ',C ) are bijections. Then the algebra M  is not strongly 

dualizable.

We now show how we can apply Lemma 4.8 to escalator algebras. Fix F as in 

Lemma 4.7. Define the set F"*" =  F U {T, _L} where ±  < 7 < T  for all 7 G F. Also 

let f  =: (F; <) where <  is some relation contained in <  and let C =  ({0,1}; <) be 

the chain with {0,1} Ç M.

Define the mapping g :F + - 4  by g(T) =  Cjy[r+(1) and q{±) =  Cj^r+(0) and
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for all 7  in r  we have g (7 ) =  e  where

aj{i)

1

1 if * <  7,

0  if 7  < z.

Clearly is a {0,l}-element as ±  < 7  <  T .  If 7 i < 7 j  then 7 , < j j  and â  ̂ <

a.l i . For 7 i ^  7 j, w(0 / y . , i s  defined and is in M  . For brevity we will denote 

w{aj^,a^.) by Wij. Let D be the subalgebra of generated by S' =  {a^ | 7  G 

F} U {wij I 7 i < Jj}.  Define the maps (  : F -4 ' | 7  G F} by ( ( 7 ) =

and |r : Hom(D,M ) -4 H om (f,C ) by \r{h) =  h o  (. Denote \ r{h)  by h\r.  (See 

Figure 4.3.)

_  C -^{(4 I 7  G F} Ç  D
\

\

h\r \
\

\
\

A
M

Figure 4.3; A diagram for |r : Hom (D, M) -4- Hom (F, C)

We now show that for h in H om (D ,M ), we have h\r G Hom (F, C). Start by 

picking h in Hom (D, M ). Then A : D —> M  is a homomorphism and each is a 

{0,l}-element and so by Lemma 3.3 we have /t|r : F -4 {0,1}. Pick j i , j j  G F such 

that j i  <  Jj and j i  ^  j j .  Then a.ŷ , a.y., w{ j i , j j )  G D and by Lemma 3.10 there 

exists an i such that h{a^^) =  Ug,.(z) and h{a.yj) =  a.y.{i). The fact that j i  < j j  

implies that aŷ  < a.y., so ay.(i) < ajj(i) and thus h{ajJ < h{a^.). Finally we have
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that A|r : F —> (7 and that /i|r 6 Hom ( f , C).

Now pick h G H om (f, C). Then h : F -> {0,1} and respects the relation <.  

Extend h to the mapping h' : S —> {0,1,2} by

M'y) if a =  üry for some 7 G F
=  ;

h(7i) +  h(7j) if a =  Wij for some 7 ,̂ 7  ̂ G F with 7  ̂ < jj .

This mapping respects the functions /  and g restricted to S'. To see this pick x G S 

such that g{x) G S. Then x =  w{a,b) and g{x) =  a for some a , 6 G {a^ | 7  G F )  

and a < b so h{a) < h{b). If h{a) =  h{b) =  0 then h'{x) =  0 and h'{g{x)) =  

h'{a) =  0 =  g{0) — g{h'{x)). If h{a) — 0 and h{b) =  1 then h'{x) =  1 and 

h'{g{x)) =  h'{a) =  0 =  c/(l) =  g{h'{x)). If h{a) =  h{b) — 1 then h'{x) =  2 and 

h'{g{x)) =  h'{a) — 1 =  g{2) — g{h'{x)). Note that there is no way of picking x G S 

such that /(x )  G S.

The map h' extends to the map h* : D — M  as follows:

h*{x) =
h'{x) if  X G S

f'^{h'{a)) if  X  — f^{a) w ith  a  G S.

The next lemma shows that h* is a homomorphism and by Lemma 3.13 it is the 

unique extension of h' to D.

L em m a 4.9. If h is an element of Hom (F, C) then the unique extension of h' to 

D , h* : D —>• M  is a homomorphism.

Proof. We need to show that h*(/(x)) =  f(fi*{x)) and h*{g{x)) =  g(h*{x)). Pick
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X e D — {La  ̂ I 7  e r} u {Lyj .̂ | 7 , < 7 }̂. The construction of D gives us 4 cases. 

If a; G Lq then x =  ov x — f^ia^) for some 1 < k < f x - l .  Otherwise if a: G Ly, .̂

then X  — Wij ov x — f^{wij) for some 1 < k < jj, — 2.

C a s e  1 : Assume x =  a .̂

It follows that h*{f{arj)) =  f{h'{ary)) =  f{h*{a^)). By Lemma 3.3, h*{x) 

h*{a-y) G {0,1} and so g{h*{x)) =  0 =  h*(cD(0)) =  h*{g{a^)) =  h*{g{x)).

C a s e  2 : Assume x =  /^ (« 7) with 1 < k < g, — 1.

We have

/,*(/(a;)) =  / , * ( / ( r W ) )  =

= /(h'(a;)).

As a: G La  ̂ and x we have gf^{a^) — and thus

C a se  3 : Assume x =  Wij.

Then h*{f{x)) =  h*{f{wij)) =  f{h'{wij)) =  f{h*{wij)) =  f{h*{x)).
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As h' \s  respects g and Wij is in S  we have g{h'{x))  =  h'{g{x))  and

=  h [g[wij))

=  g{h'{wij)) =  g{h*{wij)) =  g{h*{x)).

C a s e  4 : Assum e x =  with \  < k < g. — 1.

It follows that

h-(f(x.)) =  h ' ( f { f (w , j ) ) )  =  A*(/‘+'(u,«))

=  /*’+'('> '(»«)) =  / ( / ‘ (A'(»«))) =  f (h- { f (wi i ) ) )  

=  / (V W ) ,

and

=  f - \ h ' { w i j ) )

=  W ).

So for all cases we have h*{f{x)) =  f(h*(x)) and h*(g{x)) — g{h*{x)) and so h 

is a homomorphism. By Lemma 3.13 this homomorphism is the unique extension 

of h'. □

L em m a 4.10. / / D  =  5 p]vir+({^7 | 7 E L} U {w{aJ^,aJ.) | 7* <  7^}) then the map 

|r : Hom (D, M) —>• Hom (F, C) is a bijection.
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Proof. First pick h in H o m (f,C ). Then h* : D M  as constructed above is a 

homomorphism and A*|r : F —> {0,1}. For any 7 in F we have A*|r(7) =  (h*oQ(‘y) =  

h*{C{'y)) =  h*{arf) =  h'(a-y) =  ^(7). So h*\r — h and thus |r is onto.

Now pick a  and f  in Hom (D, M) such that a |r  =  ,d|r- Let x be an element of

D. IÏ X — a.y for some 7  G F then a{x) =  a(aj) =  (a o ( ) ( j )  =  a |r ( 7 ) — P\v{l) —

(/5oC)(7) =  !3{a.y) — P{x). Alternately ifz  =  Wij for some j i  <  7, then by Lemma 3.9 

we have a{x) =  a{wif) =  +  Oi{â f) =  =  P{wij) =  /5(^)- So

a[x) =  P{x) for all a; in 5  and by Lemma 3.13 we have a{x) =  P{x) for all x in D.

Thus |r is one-to-one and hence a bijection. □

T h eo rem  4.3. M  is not strongly dualizable.

Proof. Let F =  (F; <), F' =  (F; <) as in Lemma 4.7, and let

B  =  *S'^j^r+({n7 I 7  ^  F }  U \w{a^^.,a.yf) | 7* ^  7 j } ) j

A =  ({07 I 7 G F} U  {w(̂ arŷ , a ĵ) | 7* ^  7j})) and

C = ({ 0 ,  !};<> .

By Lemma 4.10, the maps |r : Hom (A, M) -4- Hom (F, C) and |r : Hom (B, M) -> 

Hom ( r ',  C) are bijections. Hence by Lemma 4.8 M  is not strongly dualizable. □

4.4 Steps Towards M is Not Fully Dualizable

To show that the escalator algebra of length 2 is not fully dualizable Hyndman and 

Willard showed that the relations of M2 were balanced. They then constructed two
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bi-graphs and relations on each of the bi-graphs. Full dualizability of M 2 would 

require that one of the relations was the reflexive transitive closure of the other. As 

this is not the case M 2 is not fully dualizable.

In the attem pt to parallel this work we show that the relations of are bal­

anced. We tried to build a graph structure and relations on those graphs that would 

match the construction of [9]. Instead of getting bi-graphs the structures obtained 

were multigraphs. It was at this point that work was halted.

4.4 .1  Ej  and Qk are B alanced

Recall the deflnitions of Ej and Qk from page 49. Before we show that the rela­

tions Ej and Qk are balanced we define balanced and present several lemmas about 

homomorphisms from Qk to M. We also need to show that Ej and Qk are both 

algebras.

For A a finite algebra let S < A ” and S  be the corresponding n-axj relation 

on A. The relation S is balanced if | Hom (S, A)| =  n and for i ^  j  we have 

TT'zIs ^  TTj|g.

L em m a 4.11. For 1 < j  < 2k—1,1 < n < fj, we have and E { v Q in Qk <

Proof. As and all its ladder elements are ordered, to show they are in Qk we only 

need to show they are not in Py for any y € Sk- First assume € Py for some y E Sk- 

Then there is a term operation, r , such that t {v )̂ — (2/1, ^2, 2/2, • • • ,yk-i ,yk-i ,yk)-  

Since Qk is only defined for A; > 2 then 2A: — 2 > 4 and we can look at the first four 

coordinates of r(v^). If j  =  1 or j  =  2 then r(ug) =  r ( l )  =  2/2 and t (vI) — r ( l )  =  1/3 

thus 2/2 =  j/3 which is false. If j  > 2 then r(v{) =  r(0) =  yi and r(v^) =  r(0) =  1/2
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thus Hi =  y2 which also is false. We have ^ Py and consequently ^ Pk- All 

elements of Ly, being in Qk follows directly from the fact that Qk is an algebra. □

Recall the definition of from page 29.

L em m a 4.12. / / h : Qk —t M  is a homomorphism then h is responsible.

Proof. Pick v \  G Qk such that j  < i and h{v )̂ =  1. To show that h is responsible

we need to show that h{v )̂ =  1. By Lemma 3.7 we know that g{w{v' ,̂v^)) =  n* and 

f^~^{w{v\v^)) =  =  uK So g{h{w{v\v^)))  =  h{g{w{v\v^))) =  h{v )̂ =  1

which implies that h{w[v' ,̂v^)) =  2. Furthermore we can deduce that

h{f^~^{w{v\v^))) =  f^"~^{h{w{v\v^))) =  =  //.

So we get

h{v )̂ =  h{g^-^{u^)) =  g^~ {̂h{u )̂) =  g>^~'^{h{f^~ {̂w{v\v^)))) =  g^~ {̂if) =  1.

So h is responsible. □

L em m a 4.13. / /  h : Qk —>■ M  is a homomorphism then h is a projection.

Proof. Pick X G Qk By Lemma 4.12, h is responsible and thus there are three 

cases.

C a s e  1 : For all i <  2k — 2, h(i»*) =  0.

Then there exists G Qk such that f =̂̂ ~̂ {x) =  uK So

=  h ( /* ”“ ^(a;)) =  h{u^) =  h{f^-^{y^))  =  =  / ^ “ (̂O) =  p . - l .
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This implies that h{x) +  S j ; - 1  =  / U- 1  and because x is ordered we get h{x) =  

jjL — Sx — min(a;) — X\. So h{x) — 'ïïi{x).

C ase  2 ; For all i < 2k - 2 , h{v )̂ -  1.

Then there exists € Qk such that g*^~ {̂x) =  vK So

g^^~ {̂h{x)) — h{g^^~ {̂x)) =  h{v^) =  1.

This implies that h{x) —tx +  l  =  l  and we get h{x) =  tx =  max(a;) =  X2 k- 2  since x 

is ordered and we have h{x) — 'K2 k-2 { )̂-

C a s e  3 : There exists i  <  2k —2 such that for 1 <  j  <  2A: — 2 if j  >  i  then h{v^) =  0 

and if j  < z then h{v )̂ =  1. We claim that h =  TTj.

Then there exists l < j < j < 2 k  — 2 such that g*^~ {̂x) — and =  uK

As h{v' )̂ equals 0 or 1 and h{u )̂ equals /z or // — 1 we have three subcases; 

S u b c a s e  i : h{v' )̂ =  1.

If h{v' )̂ — 1 then j  < i and vf =  1. We now have g^^~ {̂xi) =  =  1 which

implies that Xi — tx +  1 =  1 and we get Xi =  tx- This gives us g*^~ {̂h{x)) =  

h{g^^~ {̂x)) =  h{v )̂ =  1 which implies that h{x) — tx +  I — 1 and h{x) — tx — Xi 

and thus h{x) =  7Ti(æ).

S u b c a s e  ii : h{u )̂ =  /z -  1.

As f^^~' {̂h{x)) — h{f^^~^{x)) — h{u )̂ — iJ, -  1 we get h{x) +  -  1 =  / z - l

which implies that h{x) — /x — Sx- To show that j  > i we only need to note that 

h{v )̂ — h{gf^~ {̂u )̂) — g^~ {̂h{u )̂) =  g ~̂̂ {l  ̂ — 1) =  0. From this we get that 

f^^~ {̂xi) =  ui =  fj, — 1 which implies that Xi +  Sx — l  =  ix — 1 which gives that 

Xi =  fx — Sx =  h(x) and finally h{x) — 'Xi{x).
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S u b c a s e  ni : h{v^) =  0 and h{u^) =  //.

To get j  < i < j  'we only need to note that h(v )̂ =  0 and that h{v^) =  

h{g>̂ ~̂ {û )) — gf^~ {̂h{u )̂) =  g^~ {̂ij) =  1. From this we get =  uj =  /x

which implies Xi +  — 1 > IJ. and Xi +  ii — min(a;) — I > IĴ, Xi — 1 >  min(z), or

Xi > min(a;) =  Xi. Similarly g^̂ ~̂ {xi) =  0 implies Xi — +  1 <  0, Xj +  1 < tx,

^  tx '

Now assume for contradiction that h{x) =  Xr < Xi. Let x' =  g '̂~^{x). This 

gives us x'i =  g^^~ {̂xi) =  1 and x[ =  g '̂~^{xi) — 0, as X{ > Xi. So sy =  p and 

f^ '̂~ (̂x') =  f^~^(x'). Thus f^~^{x[) =  / ^ “ (̂O) =  ^ —1 and f^~ {̂x'i) =  ^

so f^~^{x') =  ut' for some f  < i which implies that h{v '̂) —  1 and h{u '̂) =  jj,. Then

h{x') =  h{g^*~ {̂x)) =  =  g '̂~ {̂Xr) =  0 and h (/^ “ ^(a;')) =  f^^^{h{x')) —

— II — 1. But h{f^~^{x')) — h{u '̂) =  II which is a contradiction and thus 

Zi <  A(z) <

Now assume for contradiction that h{x) =  Xr > Xi and without loss of generality 

assume that Xr-i < x -  r. Let x" — f^~^’'{x). So x" — =  At and x"_  ̂ =

ffj-~xr^Xr-i) < /a, as Xr-i < X — r. So tx" =  fi and g^̂ "~̂ {x") =  g^~^{x”). Thus 

g^~^(x"_i) =  0 and g^~ (̂x") =  g^~^{n) =  1 so g^~ {̂x") =  and — 0

as i < r — 1. Then h{x") =  h{f^~^''{x)) =  f^^^^{h{x)) — =  fi and

h{g^~^{x")) =  g^~^{h{x")) =  g' ~̂̂ {ij) =  1. But h{g'^~ {̂x")) — h{v‘̂ ~̂ ) =  0 which is

a contradiction. So h{x) =  Tri{x). So for all x S Qk, h(x) =  7Ti(x). □

L em m a 4.14. If h : Ej —>■ M  is a homomorphism then h is a projection.

Proof. Assume h ; Ej ^  M  is a homomorphism. Given that U Loi then

for 1 < j  < A* we have Ej — Ej^i U Loj. We will use induction on j  to show that h 

is a projection.
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The base case is j  =  1. Then we have Ej — Ex which consists of the centre 

and one ladder only. By Lemma 3.2 we know where the centre elements are sent so 

we only need to determine where the ladder elements are sent. This is completely 

determined by where the foot element, (0,1), is sent. We see that g{h{01)) — 

h{g{01)) =  h{00) =  0 and thus h(01) =  0 =  7rx(01) or h(01) =  1 =  7r2(01). So for 

all X e Ex we have h{x) =  ni{x) for some i < 2 .

Assume that for some j  all homomorphisms from Ej to M  are projections. Then, 

by an argument similar to the one in the previous paragraph, to determine what all 

the homomorphisms from Ej+i to M  are we need only look at where {0, j  +  1) is 

sent as Ej+x =  Ej U Toy+i). If h(Oj) =  7ri(0j) =  0 then h(p -  j, /x) -  =

=  / ^ “•’(O) =  p - ;  and 5f(h(0, ;  +  l)) =  h{g{0,j +  l)) =  h{Oj) =  0 which 

implies that h{0,j  +  l) =  0 or 1. Assume for contradiction that h( 0 , j + l )  — 1. Then 

h(/x -  /x) = h (r -;  (0, j + 1)) = r-:' (h(0, j +1)) = = /x -  j +1 /x -  ; So

h{0,j  +  1) =  0 =  7Ti(0,y +  1). If h{Qj) ^  0 then by assumption h(OJ) =  7r2(0j) =  J. 

Then g(h(0,j  +  1)) =  h(g(0,j  +  1)) =  h(Oj) =  j  and thus h{0,j  +  1) — j  +  1 — 

7x2(0, j  +  1). And so by induction we know that h : Ej —>■ M  is a projection for all j .

□

L em m a 4.15. Ej and Qk are balanced with respect to M.

Proof. By Lemma 4.14 we know that all homomorphisms in Hom (Ej, M) are pro­

jections. The element (0,1) G Ej for all j  < p  and 7ri((0,1)) =  0 1 =  7Tx((0,1))

so 7Ti and 7x2 are distinct and therefore Ej is balanced.

By Lemma 4.13 we know that all homomorphisms in Hom (Qk, M) are projec­

tions. W ithout loss of generality assume j  < i < 2k — 2. Then by Lemma 4.11
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G Qk and 'Kj{vQ — 0 ^ 1  =  7Tj(n̂ ). So there are 2k - 2  distinct projections and 

therefore Qk is balanced. □
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Chapter 5

W here to go from Here

In this paper we have shown that escalator algebras have infinite rank, and are 

dualizable but not strongly dualizable. Following the work of Hyndman and Willard 

in [9] we showed that the relations of M are balanced which suggest that escalator 

algebras of length greater than 2 may not be fully dualizable. This work still needs 

to be completed.

Hyndman and Willard have proven [7] the following;

Suppose that M  is some dualizable algebra. Assume (j){x, y) is a primitive 
positive formula that defines an acyclic binary relation. If there exists a 
set {0,1} contained in M  such that 0(0,0), 0(0,1), and 0(1,1) hold then 
M  is not strongly dualizable.

This result can also be used to show that escalator algebras are not strongly dual­

izable and thus verifies the results in this thesis.

Open questions that follow directly from this thesis are; whether or not all esca­

lator algebras are not fully dualizable? Do other fam ilies of algebras have analogues

72



to w-algebras? If so can they be used to prove infinite rank of those families?

It is possible that answers to the above may provide clues to the following more 

general questions about unary algebras and their dualizability. For unary algebras 

with more than three elements, can we find nice conditions for dualizability? Can we 

find nice conditions for full/not full dualizability, or strong/not strong dualizability? 

Finally, another question of significant interest is whether there exists an algebra 

which is not strongly dualizable but is fully dualizable.
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