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Abstract Tavish Barnes 

There is increasing evidence that mammalian endoribonucleases play a significant 

role in the degradation of messenger RNA (mRNA) and are key players in the regulation 

of gene expression particularly under conditions of cellular stress. 

The main goal of this thesis was to re-purify and conclusively identify the 

mammalian hepatic-derived endoribonuclease(s) and the proteins that co-purified with 

endonucleolytic activity against c-myc CRD RNA in vitro. The first aim of this 

investigation was to purify and identify enzyme(s) responsible for endoribonucleolytic 

activity. The second aim of this study was to further characterize the endoribonuclease(s) 

and to confirm the identity of the enzyme(s) by immunodepleting native 

endoribonuclease activity. The third aim of this study was to test the recombinant 35 kDa 

endoribonuclease (APEI) for endoribonuclease activity. This study demonstrated that 

recombinant APEI does possess endoribonuclease activity and cleaves specifically at 

dinucleotide UA 1751 of c-myc CRD RNA. 
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CHAPTER 1- INTRODUCTION 

CHAPTER 1 

Introduction 

1.1 Messenger RNA Regulation and Gene Expression- An Overview 

The many complexities involved in the processes required for gene expression 

necessitates an understanding of a diverse set of cellular pathways. One such gene 

regulatory pathway is the process of mRNA (messenger RNA) degradation. Identifying 

the mechanisms and players involved in the regulation of mRNA decay has become 

paramount in our understanding of gene expression. The control of gene expression 

occurs at various levels including: transcriptional, post-transcriptional and translational 

levels. Cytosolic levels of mRNA transcripts are generally believed to be an indicator of 

gene expression levels; moreover, the longer an mRNA persists in the cytosol, the higher 

the levels of protein expression (Dodson and Shapiro 2002). The stability of different 

mRNAs within a cell can vary by orders of magnitude and thus contribute greatly to 

differential gene product levels (Parker and Song 2004). The stability of individual 

mRNAs can be regulated in response to a variety of stimuli, allowing for rapid alterations 

in gene expression (Parker and Song 2004; Wilusz and Wilusz 2004; Khodursky and 

Bernstein 2003; Brewer 2002; Guhaniyogi and Brewer 2001). 

•7 

A number of elements contribute to the stability of a given mRNA. The m G 

(methyl guanosine) cap at the 5' termini of the mRNA and the poly (A) tail at the 3' 

termini of the transcript provide the basic level of transcript stability. Specific cis 

elements also contribute to mRNA transcript stability. Stability elements of many 

mRNAs are located within the 3'-untranslated region (3'-UTR) of the transcript. It has 

become increasingly clear that higher-order structures of RNA and trans-acting proteins, 

1 



CHAPTER 1- INTRODUCTION 

such as RNA-binding proteins, ribonucleases and RNA helicases are the critical 

determinants of mRNA longevity; moreover, cw-determinants, trans-acting factors, and a 

variety of secondary structural features inherent in the transcript determine the 

accessibility for cleavage by cellular exonucleases and endoribonucleases (Dodson and 

Shapiro 2002; Coburn and Mackie 1999; Mackie 1998). The following review sections 

will examine the various pathways involved in the control and processes governing 

mRNA degradation. Specific emphasis will be given to the family of endoribonuclease 

proteins that initiate mRNA degradation from within the sequence. These review 

sections will serve as a framework for the investigations within this thesis. Specifically, 

this thesis aims at identifying and exploring the properties of a novel mammalian 

endoribonuclease that possesses the ability to degrade c-myc mRNA in vitro. 

1.2 Generalized Mechanisms and Pathways of Messenger RNA Decay 

The core mRNA degradation pathways and quality control mechanisms governing 

RNA decay and processing have been well-characterized in bacteria, lower eukaryotes 

(predominantly using Saccharomyces sereviciae) and higher eukaryotes-albeit to a lesser 

extent. Core mRNA degradation events can be classified into a defined number of 

pathways. Consequently, the mRNA regulatory functions involved in gene expression 

within the cell direct the initial events of mRNA degradation into one of these defined 

pathways (see Figure 1). The major degradation pathways appear to be as follows: 

deadenylation-dependent removal of the poly (A) tail at the 3' terminus of the mRNA 

transcript followed by 3'-5' exonucleolytic decay, deadenylation-dependent removal of 

the poly (A) tail followed by decapping and 5'-3' exonucleolytic decay, deadenylation-

independent 5' decapping and 5'-3' exonucleolytic degradation, nonsense-mediated 

2 



CHAPTER 1- INTRODUCTION 

decay, and endoribonucleolytic degradation (Figure 1) (Parker and Song 2004; 

Guhaniyogi and Brewer 2001). In addition, there exists several decay pathways in what 

are termed mRNA-surveillance mechanisms (Garneau et al. 2007) (Figure 2). A more 

detailed account of each of these pathways will be discussed shortly. 

The enzymes that are responsible for cleavage of mRNA in vivo and in vitro can 

be classified into two broad categories; the exoribonucleases and the endoribonucleases. 

The exoribonucleases cleave between consecutive nucleotides, starting at either the 5'- or 

the 3' end of an RNA strand (Gerlt 1993). In contrast, endoribonucleases are capable of 

cleaving the internal phosphodiester bonds in an RNA strand (Gerlt 1993). 

Exoribonucleases generally do not recognize specific RNA targets but degrade any RNA 

that is single-stranded. In contrast, endoribonucleases differ greatly among each other in 

their individual substrate specificities. Furthermore, endonucleases possess diverse 

functionality in the processing of RNA. Their function ranges from the generation of 3' 

ends of mRNAs to processing tRNAs, microRNA's, small nuclear RNAs and nucleolar 

RNAs. Endoribonuclease recognition of RNA sequences displays a range of specificity 

(Dodson and Shapiro 2002). For example, RNases T2 and VI exhibit cleavage of the 

bonds between nucleotides in a single- or double-stranded configuration, respectively; 

thus exhibit little sequence specificity (Lockard and Kumar 1981). RNase 1 and RNase 

Tl exhibit some degree of sequence specificity as they cleave 3' to single-stranded 

pyrimidines and G-residues, respectively (Czaja et al. 2004; Thompson et al. 1995). In 

addition, more complex recognition determinants are required for cleavage. Bacterial 

RNase E cleaves single-stranded regions near the 5'-terminus (close to the translation 

initiation site). It specifically cleaves upstream of 5' secondary structural features of 

3 



CHAPTER 1- INTRODUCTION 

target mRNA and generates fragments that can be degraded by 3'-5' exonucleases and by 

RNase E itself (Coburn and Mackie 1998). In addition, studies have shown that RNase E 

preferentially cleaves 5' to AU dinucleotides within A/U-rich regions (Coburn and 

Mackie 1998; Mackie 1998). 

a Deadenyfation-depsndant mRNA decay b Deadenylation-independerrt mRNA decay 

5' UTR ORF 3' UTR 
in'G —-^IISHJKI™ JSS..'...' !•••——MM 

c Endonutlease-riKKfated mRNA d«cay 

- M M 
Endonuetesse 
(for example, 1RE1, PMR1, 
RNase MRP) 

5'-»3' decay | 

S E Z H I AAA* 
1*1 

Exosome 'XRN1 

Figure 1: A schematic representation of the normal pathways of mRNA degradation 
in yeast (Garneau et al. 2007) 
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Figure 2: A schematic representation of the specialized surveillance mechanisms of 
mRNA degradation in yeast (Garneau et al. 2007) 

1.2.1 Messenger RNA Decay in Prokaryotes (Bacteria) 

A significant amount of research within the field of prokaryotic mRNA turnover 

has been based on studies using the simple bacteria Escherichia coli as the primary model 

organism. Initially it was believed that the processes that operated within these systems 

would be true of any organism. However, it is now abundantly clear that there are many 
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CHAPTER 1- INTRODUCTION 

differences between the mechanistics of mRNA metabolism in prokaryotes and that of 

eukaryotic cells. Prokaryotic mRNA is accessible to the protein synthetic machinery as 

soon as it is transcribed from DNA. Since translation and transcription occur somewhat 

simultaneously, bacterial mRNA is utilized very rapidly. This process is highly efficient 

since many genes can be transcribed together in a single polycistronic mRNA, 

consequently mRNAs generally have relatively short half-lives. Bacterial RNA 

transcripts initially possess a triphosphate at the 5' end and a stem-loop structure at the 3' 

end. In E. coli, the degradation of most mRNAs is thought to begin with internal 

cleavage by RNase E, an endonuclease that cuts RNA in single-stranded regions that are 

AU-rich (Mudd et o/.1990; Babitzke and Kushner 1991; Melefors and von Gabain 1991; 

Taraseviciene et al. 1991; McDowall et al. 1994). Less frequently, mRNA decay in E. 

coli starts with cleavage by another endonuclease, such as RNase III, RNase G, or RNase 

P (Schmeissner et al. 1984; Portier et al. 1987; Umitsuki et al. 2001; Li and Altman 

2003). The transcript is no longer protected by the 3' stem-loop, and the resulting 

endonuclease-mediated cleavage products with monophosphorylated 5' termini are 

rapidly degraded by 3' exonucleases (Mackie 1998; Feng and Cohen 2000). The 

downstream endonuclease-mediated cleavage products can also undergo further 

endonucleolytic cleavage as RNase E exhibits a strong preference for 

monophosphorylated RNA substrates (Mackie 1998; Feng and Cohen 2000). 

Intriguingly, RNase E has been shown to function within a large multiprotein complex 

termed the RNA degradosome (Regonesi et al. 2006). In addition to RNase E, the 

degradosome contains the exoribonuclease polynucleotide phosphorylase (PNPase), an 

RNA helicase RhlB, and enolase that functions within the glycolytic pathway (Jain 2002; 

6 



CHAPTER 1- INTRODUCTION 

Kushner 2002). A number of other endoribonucleases also participate in the mRNA 

decay processes although their involvement is believed to be considerably less important. 

These include RNase G, a known homolog of RNase E (Li and Deutscher 1994), RNase 

III which acts on double stranded RNA substrates (Li and Deutscher 1994), RNase P 

which acts predominantly on tRNA precursors but has been shown to possess the ability 

to cleave several polycistronic operon mRNAs in vitro in E. coli (Li and Deutscher 1994) 

and several bacterial toxins such as RelE, MazF, Kid and PemK (Li and Deutscher 1994; 

Zhang et al. 2004). The major endoribonucleases present in E. coli are shown in Table 1. 

5'-3' exonucleases are not thought to participate in bacterial mRNA degradation, as no 

such ribonucleases have been identified in any prokaryotic organism (Deana and Belasco 

2005). There are, however, three major 3'-5' exoribonucleases in E. coli: PNPase, RNase 

II, and oligoribonuclease as shown in Table 1, that appear to be involved in mRNA decay 

(Li and Deutscher 1994). RNase II, is a hydro lytic enzyme that removes nucleoside 

monophosphates from an RNA (Li and Deutscher 1994). PNPase is a phosphorolytic 

enzyme that utilizes inorganic phosphate to remove nucleotides from RNA ends, yielding 

nucleoside diphosphates (Carpousis et al. 1994; Blum et al. 1997). Oligoribonuclease 

functions to degrade small oligonucleotide substrates (4-7 nt) to mononucleotides and has 

been shown to be essential for cell viability (Yu and Deutscher 1995; Ghosh and 

Deutscher 1999). Additionally, the enzyme RNase R has been implicated in 

exoribonucleolytic decay of repetitive extragenic palindromic (REP) sequences in 

prokaryotic and eukaryotic systems (Cheng and Deutscher 2005; Baker and Condon 

2004; Deutscher 2003). 
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CHAPTER 1- INTRODUCTION 

Table 1: A summary of the major mRNA degrading endo- and exo-
ribonucleases present in E. coli. (Steege 2000) 

Enzyme Gene 

Etectrophoreiic 
Monomer mobility 

size (kDa) Subunit 
(Wa) on SDS-PAGE structure Reference 

A. Endoribonucleases 

RNase E 
RNase G 
RNase 111 

me 
mg {cafAftwe) 

mc 

118 180 dimef? 
55 55 ? 
25 25 «2 dtmer 

Coburn et al„ 1989 

Dunn, 1976 

B. 3' ~> 5' Exoribonucleases 

RNase [I 
Polynucleotide phosphorytase 
Oligoribonuciease 

mb 
pnp 
orn 

72.5 72.5 monomer 
77 85 «3 trirmer 
20.7 20 «2 dtmer 

Gupta et a!., 1977 
Portier. 1975; Soreq & Uttauer, 1977 
Ghosh & Deutsciw, 1999; Zhang et ai. ,1998 

1.2.2 Messenger RNA Decay in Lower Eukaryotes 
(Saccharomyces cerevisiae) 

Much of our current knowledge of eukaryotic mRNA decay systems stems from 

research using yeast, specifically, Saccharomyces cerevisiae. In contrast to prokaryotic 

mRNA turnover, transcription in eukaryotes occurs in the nucleus and translation 

generally occurs in the cytoplasm, a circumstance that imposes spatial barriers between 

the transcription and translation processes. These barriers are further enhanced by the 

necessity of splicing intervening sequences from most eukaryotic transcripts prior to 

translation. As a result, the primary transcripts, which generally code for a single protein, 

must be processed and translocated across the nuclear membrane prior to translation and 

as such, these mRNAs have relatively long half-lives. The predominant mechanism of 

mRNA decay in yeast involves deadenylation (shortening of poly (A) tail) with the 

primary deadenylase composed of nine proteins termed CCR4-NOT or with a secondary 

deadenylase Poly(A) ribonuclease enzyme (PARN). The deadenylation process is then 

followed by decapping with Dcplp, Dcp2p and subsequent 5'-3' exoribonuclease decay of 

the transcript by the exoribonuclease Xrnlp (Parker and Song 2004). More recently, a 
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10-12 multisubunit complex of 3'-5' exoribonucleases, termed the exosome, was 

discovered and appears to be involved in the cytosolic 3'-to-5' degradation of mRNA and 

in the 3' processing of noncoding RNAs in the nucleus (Garneau et al. 2007). Following 

3'-5' exonucleolytic decay, the 5' oligonucleotide cap is hydrolyzed by the scavenger 

decapping enzyme DcpS (Parker and Song 2004; Liu et al. 2002). Several accessory 

proteins are also required for efficient decapping. After the mRNA has been 

deadenylated, a complex of Sm-like (Lsm 1-7) proteins associates with the 3' end of the 

mRNA (Tharun et al. 2000; Tharun and Parker 2001). Other proteins, namely Lsm 16 

(also termed enhancer of decapping-3 or EDC3), Lsm 14, Poly(A) binding protein-1 

(Pbpl), Patl, and the DExD/H-box RNA helicase Dhhl are known to help mediate the 

decapping process (Garneau et al. 2007; Coller et al. 2001; Bonnerot et al. 2000). The 

deadenylation-dependent and deadenylation independent mRNA decay pathways are 

summarized in Figure 1 (a and b). Endoribonucleolytic decay represents an additional 

method of mRNA degradation (see Figure 1-c) 

There are several other specialized 'surveillance' mRNA degradation pathways in 

yeast. A summary of these pathways is shown in Figure 2 (a,b and c). The first such 

pathway termed nonsense-mediated decay (NMD) is activated by the presence of a 

premature stop codon (nonsense termination codon) within an otherwise normal open 

reading frame. The premature stop codons can be created through mutation, frame-shifts, 

incomplete translation initiation and incorrect 3' UTRs (Garneau et al. 2007). Once 

detected, these incorrect transcripts are degraded by several pathways; however, much 

remains to be discovered about these pathways. The next surveillance type pathway is 

termed nonstop decay (NSD). mRNAs that do not possess translation termination codons 
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results in the ribosome proceeding onto the poly(A) tail, thereby displacing the poly(A)-

binding protein and stalling at the 3' end of the transcript (Garneau et al. 2007). As 

shown in Figure 2 (b), there are two proposed pathways for decay of such mRNAs. The 

first pathway which is conserved in yeast and mammalian cells degrades mRNAs 3'-5' 

with the cytoplasmic exosome (van Hoofed al. 2002, Frischmeyer et al. 2002; Garneau et 

al. 2007) and the second pathway, found solely in yeast, utilizes a 5'-3' decay mechanism 

(Garneau et al. 2007). The third mRNA surveillance decay pathway is no-go decay 

(NGD). As outlined in Figure 2 (c), this pathway is initiated as a result of ribosomal 

stalling and is believed to be triggered by the associated translation initiation complex 

(Doma and Parker 2006). The mRNA is subsequently endonucleolytically cleaved near 

the stall site. The mRNA fragments are released and subsequently degraded by the 

exosome and by Xrnl (Doma and Parker 2006). 

1.2.3 Messenger RNA Decay in Higher Eukaryotes (Mammalian Cells) 

By and large, homologous degradation pathways and enzymes are present in 

lower eukaryotes (yeast) and in higher eukaryotes (Tucker and Parker, 2000). 

Deadenylation followed by 3'-5' exonucleolytic degradation catalyzed by a putative 

complex of exonucleases (exosome) and 5' decapping followed by 5'-3' exonucleolytic 

degradation are relatively well established mRNA degradative pathways in mammalian 

cells. In support of the exosome-mediated degradation pathway, the mammalian 

exosome has been purified and its composition is very similar to its yeast counterpart 

(Mukherjee et al. 2002). Also, the recent discovery of a mammalian homolog to yeast 

decapping enzymes (Lykke-Andersen 2002) and the 5'-3' exonuclease Xrnl (Bashkirov 

1997) suggests that decapping followed by 5'-3' degradation are evolutionarily conserved 
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mechanisms. In addition, there are other known specialized degradation pathways 

similar to their yeast counterparts including: nonsense mediated decay (NMD) nonstop 

decay (NSD), no-go decay (NGD) and endonucleolytic cleavage. While many of the 

endonucleolytic decay pathways remain poorly characterized, there has been substantial 

in vivo evidence of decay products for specific mRNA transcripts. 

1.3 RNA-Binding Proteins 

In order to fully understand the interactions between RNA and RNA-binding 

proteins, one must be somewhat familiar with the basic structural features inherent in 

RNA-binding proteins. The specific interaction of a protein with RNA occurs through 

various peptide motifs in the protein, termed RNA-binding domains. Often these are 

structural features of the folded protein. The binding domains enable the protein to 

recognize and bind to target areas in an RNA molecule. Often, RNA-binding proteins 

contain multiple copies of these domains. Furthermore, RNA binding can be determined 

via cooperative interaction of two or more domains (Perez-Canadillas and Varani 2001; 

Deo et al. 1999). The multiple interactions of repeat domains within an RNA-binding 

protein or the interaction with various types of domains in other RNA-binding proteins 

permits great diversity in RNA molecule recognition. Ultimately, this translates into a 

greater variety of biological function (Maris et al. 2005; Siomi et al. 1997). 

There are three general categories of eukaryotic RNA-binding protein domains. 

The most extensively characterized single stranded RNA-binding domain is the 

ribonucleoprotein (RNP) motif, also referred to as RNA-binding domain (RBD) or RNA 

recognition motif (RRM) (Perez-Canadillas and Varani 2001; Maris et al. 2005; Siomi et 

al. 1997). RRM's are frequently found in proteins that function in post-transcriptional 
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regulation of RNA (Maris et al. 2005; Siomi et al. 1997). The second domain termed 

hnRNP K homology domain or K-homology domain (KH) is one of the most commonly 

identified motifs found in RNA-binding proteins. KH domains have been associated with 

a wide variety of cellular functions including nuclear localization (Nielsen et al. 1999), 

nuclear export (Nielsen et al. 1999) and post-transcriptional mechanisms governing 

mRNA stability (Ioannidis et al. 2004). The third major RNA-binding domain found in 

eukaryotic cells is the double stranded RNA-binding domain (dsRBD). The dsRBD 

functions in binding to double stranded regions of structured RNA molecules (Chang et 

al. 2005; Chen 2005). The dsRBD motif is found in both eurkaryotic and prokaryotic 

systems, and has been implicated in a variety of RNA metabolic processes including 

RNA localization (Chang et al. 2005; Chen 2005; Siomi 1997). 

In addition to the motifs found within RNA binding proteins, specific secondary 

structural conformations can be adopted by single stranded RNA. These conformations 

are often required for protein recognition and include regions of base-pairing (Watson-

Crick) interspersed among regions that form single stranded loops (hairpin and internal), 

bulges and helical junctions (Chen and Varani 2005). It should be noted, however, that 

the study of protein-RNA binding in vitro as a model for mechanisms in vivo is difficult 

and is complicated by the secondary structures adopted by single-stranded RNA in vivo 

and by the structural alteration as a result of the binding of additional proteins or ligands 

in vivo (Perez-Canadillas and Varani 2001; Chen and Varani 2005). 

In summary, our knowledge of the fundamental mechanisms and basic principles 

involved in protein-RNA interaction provide the underlying foundation for many areas of 

study within the field of RNA metabolism including the field of mRNA decay. 
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1.3.1 mRNA Stability and RNA-Binding Proteins 

The 3' UTR of mRNA transcripts has a major role in controlling their stability 

(Guhaniyogi and Brewer, 2001). Several proteins that bind the 3' UTR of mRNA's in 

vivo such as AUF 1 (Brewer 1991), Aldolases A and C (Canete-Soler et al. 2005) and 

HADHB (Adams et al. 2003) are known to function as mRNA-destabilizing factors. In 

addition, there are numerous 3' UTR mRNA-binding proteins such as GAPDH (Nagy and 

Rigby 1995), HuD, HuC (Levine et al. 1993), HuR (Ma et al. 1996; Levy et al. 1998), 

aCP (Wilson and Brewer 1999; Kiledjian et al. 1997), IRE-BP (Rouault and Klausner, 

1997), and vigilin (Cunningham et al. 2000; Kruse et al. 2003). These proteins are 

proposed to specifically bind AU-rich elements (AREs) within the 3' UTR of specific 

mRNAs and prevent ARE-mediated decay (Park-Lee et al. 2003). 

The interaction between RNA-binding proteins and the 5' UTR of select mRNAs 

has been shown to influence their stability in vivo. Examples include: nucleolin and YB-

1 proteins which bind to and stabilize the JNK-response element (JRE) in the 5' UTR of 

IL-2 mRNA (Chen et al. 2000) and the IL-la protein which binds to the 5' UTR and 

stabilizes KC mRNA (Tebo et al. 2000). 

In addition to 3' UTR- and 5' UTR-binding proteins, there are proteins which bind 

to the coding regions or instability (decay) elements of several mRNAs. A complex of 

proteins including AUF1, NSAP1, PABP, Unr and hnRNP-R bind to and function to 

destabilize c-fos mRNA (Schiavi et al. 1994; Chen et al. 1992). The coding region of c-

myc mRNA, which will be the focus of this thesis, is bound by a protein termed CRD-BP 

(Prokipcak et al. 1994). The binding of CRD-BP is hypothesized to stabilize c-myc 

mRNA by protecting it from cleavage by cellular ribonucleases (Prokipcak et al. 1994). 
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In fact, this hypothesis has been directly demonstrated and confirmed in vitro (Sparanese 

and Lee, 2007). 

1.4 The c-myc Proto-Oncogene 

Rapid advances in understanding of cellular genetics have enabled a greater depth 

of understanding into the mechanisms that govern cancer cell biology. Proto-oncogene 

refers to a sequence of DNA that has been altered or mutated from its original form. 

Generally, they code for proteins that are involved in normal cellular growth and 

proliferation. Consequently, they promote specialization and division of normal cells. A 

change in their genetic sequence can result in uncontrolled cell growth, ultimately 

causing the formation of a cancerous tumor (Varmus 1984). 

In humans, proto-oncogenes can be transformed into oncogenes in three ways: 

point mutation (alteration of a single nucleotide base pair), translocation (in which a 

segment of the chromosome breaks off and attaches to another chromosome), or 

amplification (increase in the number of copies of the proto-oncogene). Oncogenes were 

first discovered in certain retroviruses and were later identified as cancer-causing agents 

in many animals (Varmus 1984). The myc gene was first discovered in Burkitt's 

lymphoma patients whom exhibit chromosomal translocations; most often involving VIII. 

Subsequent cloning of the break point of the fusion chromosomes revealed a gene that 

was similar to avian myelocytomatosis viral oncogene (v-myc). Thus, the newly 

discovered cellular gene was named c-myc (Varmus 1984). It is roughly estimated that 

the c-myc proto-oncogene influences the expression of at least 10% of all human genes 

(Levens 2003). The c-Myc protein or the c-myc gene is overexpressed in a wide variety 

of human cancers with 80% of breast cancers, 70% of colon cancer, 90% of 
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gynecological cancers, 50% of hepatocellular carcinomas and a variety of hematological 

tumors possessing abnormal myc expression. On the basis of these frequencies, it is 

estimated that approximately 100,000 US cancer deaths per year are associated with 

changes in the c-myc gene or its expression (Gardner et al. 1998). Given that alterations 

in the expression of the c-myc gene may contribute to one-seventh of U.S. cancer deaths, 

it continues to be a target for the development of specific anti-cancer therapies. 

1.4.1 The Functional Importance of the c-myc Gene in Mammalian 
Cells 

The c-myc gene codes for the protein c-Myc that functions as a transcription 

factor by heterodimerizing with a partner protein, termed Max, to regulate gene 

expression. Thus it acts as a regulator of cell proliferation, differentiation and apoptosis 

(Levens 2003). In fact, c-myc is expressed in almost all proliferating normal cells, and its 

repression is required for terminal differentiation of many cell types (Levens 2003). 

Deregulated expression of c-myc prevents differentiation of many cell types, can induce 

apoptosis, can induce genomic instability, and is associated with many tumor phenotypes 

(Felsher and Bishop 1999a). Mutations, amplification, chromosomal rearrangements, 

and translocation of this gene in addition to mRNA stabilization have been associated 

with a variety of hematopoietic tumors, leukemias and lymphomas, including Burkitt 

lymphoma (Hermeking 2003). Regardless of the mechanism by which the c-myc gene is 

activated, the final outcome is the overexpression of c-myc mRNA and the associated 

higher level of c-Myc protein. 

The ultimate function of the c-Myc protein is largely influenced by its interaction 

with numerous networks of proteins (Atchley and Fernandes 2005). A variety of cellular 

responses are generated by the expression and suppression of different overlapping 
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subsets of target genes (Hoffman et al. 2002). Moreover, the final cellular response to c-

Myc is most probably situation-specific and is dictated by the expression of numerous 

other genes including oncogenes and tumor suppressor genes (Hoffman et al. 2002). 

Although the c-Myc protein is responsible for the activation of several growth-promoting 

genes in a variety of cancers, the precise mechanisms by which these transformations 

occur remain somewhat unclear (Levens 2003). 

1.5 c-myc, mRNA-Binding Proteins and mRNA-Degrading Enzymes 

The complexity of mRNA metabolism from post-transcriptional maturation to 

degradation of messenger RNA (mRNA), requires specific RNA-protein interactions. In 

addition, these RNA-protein interactions must occur with a high level of specificity to 

ensure the correct control and sequence of events leading to the decay or the stabilization 

of the mRNA transcript. In light of these critical interactions, considerable research has 

focused on the proteins and associated factors that bind or interact with the instability 

elements present in mRNA transcripts. The following sections will address the 

interactions between RNA-binding proteins, RNA-degrading enzymes and the c-myc 

mRNA transcript. 

1.5.1 c-myc mRNA Stability and Degradation 

c-myc gene expression is regulated at many levels including: transcriptional 

initiation (Brewer 2003; Lee et al. 2003), translational elongation (Lemm and Ross 2002) 

and post-transcriptional processes (Yeilding et al. 1996). Furthermore, there is 

widespread evidence that mRNA stability plays a critical role in the regulation of c-myc 

gene expression (Brawerman 1987; Ross 1995). The stability of c-myc mRNA, like 

many other mRNAs is believed to be a result of several factors including the presence of 
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as-acting adenosine and uridine (AU)-rich instability elements (AREs) inherent in the 3' 

untranslated regions (3'UTRs) of the RNA sequence, ^rarcs-acting regulatory factors such 

as RNA-binding proteins, and the presence of exo- and endo-ribonucleases that function 

to degrade the mRNA transcripts (Ross 1995). 

The half-life of c-myc mRNA is also controlled by multiple instability elements 

located within both the 249-nucleotide coding region instability determinant known as 

the coding region determinant (CRD) and the 3' untranslated region (3' -UTR) (Bremer et 

al. 2003; Doyle et al. 2000; Brewer 1999) as shown in Figure 3. Highly unstable 

transcripts such as c-myc generally contain one to three AUUUA elements spaced 

throughout the 3'-UTR (Jones et al. 1987; Langa et al. 2001; Brewer 2003). In addition, 

ARE's are often targeted and bound by proteins that trigger the removal of the poly(A) 

tail and the 5' cap structure. Consequently, the mRNA transcripts become susceptible to 

exonucleolytic degradation (Park et al. 2000; Brewer 2003). 

In vitro and in vivo evidence has shown that the CRD region of the c-myc mRNA 

transcript plays a fundamental role in destabilizing c-myc mRNA during translation 

(Lemm and Ross 2002). Evidence from these studies suggests that pausing of the 

ribosome during translation due to the presence of rare codons in a region upstream of the 

CRD results in rapid decay of the c-myc transcript (Lemm and Ross 2002). Interestingly, 

in vivo experiments have shown that removing the 3'- or 5'-UTR of c-myc mRNA has 

little effect on stability thus lending further support for the notion that the CRD plays an 

important role in regulating c-myc stability (Bonnieu et al. 1988; Laird-Offringa et al. 

1991). Furthermore, the sequence spanning the CRD has been shown to be an essential 

regulator of mRNA stability in vivo. Firstly, when the CRD region of c-myc was inserted 

17 



CHAPTER 1- INTRODUCTION 

into the coding region of the stable globin mRNA, it became rapidly destabilized (Ross 

and Herrick 1994). Secondly, several studies have shown that the CRD was required to 

post-transcriptionally down-regulate c-myc mRNA during differentiation of C2 myoblasts 

(Kren et al. 1996). Thirdly, cell-free mRNA decay experiments using polysome extracts 

and a 180nt RNA sense strand for c-myc CRD was sufficient to induce endonucleolytic 

cleavage within the CRD region and an 8-fold increase in c-myc mRNA destabilization 

(Berstein et al. 1992). In addition, this increase in c-myc mRNA destabilization was 

highly specific as experiments using competitor RNA corresponding to other areas of c-

myc mRNA did not result in transcript destabilization (Berstein et al. 1992). 

c-MYC 5'-CRD PROBE FOR ASSAYING THE SOLUBLE 
LIVER ENDONUCLEASE 

j-,. „™ Coding Region 
' : ^ | 2-JE1. ivvggn 3'-UTR 

c*m>-r atRKA y^ CRD 

Fell-lragth c-myc Coding Region 

Figure 3: Human c-myc mRNA with 3'-, 5'-UTRs and the full length CRD 
(nts 1705-1886) regions highlighted (Lee et al. 1998) 

Endoribonuclease-mediated decay in vivo (Hanson and Schoenberg 2001) and in 

vitro (Wennborg et al. 1995; Tourriere et al. 2001; Tourriere et al. 2003; Lee et al. 1998; 

Bergstrom et al. 2006) of c-myc mRNA has also been shown to occur in a stem-loop 

structure within nucleotides 1705-1790 of the CRD region (Lemm and Ross 2002). 

Therefore, c-myc mRNA degradation can occur in vivo via two pathways: deadenylation 

followed by 3'-5' exonucleolytic decay starting in the AU-rich region of the 3' UTR 

(Brewer 1999; Doyle et al. 2000; Bremer et al. 2003) or endonucleolytically within the 
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CRD at the carboxyl terminal end of the coding region shown in Figure 3 (Hanson and 

Schoenberg 2001; Wennborg et al. 1995; Tourriere et al. 2001; Tourriere et al. 2003; Lee 

et al. 1998; Bergstrom et al. 2006). 

1.5.2 c-myc mRNA and the Coding Region Determinant Binding 
Protein (CRD-BP) 

The CRD region of the c-myc mRNA transcript is the target of a 68-kDa RNA-

binding protein known as the coding region determinant binding protein (CRD-BP). 

CRD-BP contains two RNA recognition motifs and four hnRNP K homology domains 

(Lemm and Ross 2002). The proposed model functions such that under normal cellular 

conditions when CRD-BP is bound to c-myc mRNA, the CRD of the mRNA is shielded 

from endonucleolytic attack (Bernstein et al. 1992; Doyle et al. 1998; Prokipcak et 

al. 1994). In this case, the mRNA transcript is degraded only by an ARE-dependent 

deadenylation pathway (Brewer and Ross 1988). When the CRD-BP dissociates from the 

c-myc mRNA, the CRD is believed to be exposed and susceptible to endonucleolytic 

attack (Bernstein et al. 1992). The transcript is then rapidly degraded by endonucleolytic 

cleavage within this CRD region. Additionally, direct in vitro evidence in support of this 

shielding hypothesis has recently been demonstrated (Sparanese and Lee, 2007). 

Several in vivo observations support the hypothesis that CRD-BP binds to and 

protects c-myc mRNA. Firstly, the overexpression of CRD-BP in colorectal cancer is 

associated with a slight elevation in c-myc mRNA levels (Ross et al. 2001). Secondly, a 

decrease in c-myc mRNA levels were observed in MCF-7 cells (Ioannidis et al. 2005) 

and colorectal cells (Noubissis et al. 2006) following downregulation of CRD-BP. 

Finally, the addition of sense RNA corresponding to c-myc CRD in cells was shown to 

result in an increased decay of c-myc mRNA (Coulis et al. 2000). In contrast to the 
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aforementioned supporting evidence for the CRD-BP-c-myc CRD shielding hypothesis, 

two recent studies do not support this hypothesis. For example, transgenic mice over 

expressing CRD-BP in mammary tissue, did not exhibit elevated levels of c-myc mRNA 

(Tessier et al. 2004). In addition, knockdown of CRD-BP in a K562 cell line, had no 

effect on levels of c-myc mRNA (Liao et al. 2004). 

1.6 Mammalian Endoribonucleases 

Many of the mRNA-degrading pathways characterized to date in mammalian cells 

involve cellular exoribonucleases; however, there is substantial evidence for the 

functional involvement of endoribonucleases within mammalian mRNA degradation 

pathways; the CRD region of c-myc mRNA is a prime example (Bernstein et al. 1992; 

Doyle et al. 1998; Prokipcak et a/.1994). Several of the known mammalian proteins that 

possess endoribonucleolytic function are shown in Table 2. In vivo evidence of mRNA 

decay products has been documented for several transcripts such as: transferrin receptor 

(Cairo et al. 1994), insulin-like growth factor-II (van Dijk et al. 2000), avian apo-very 

low density lipoprotein II (Binder et al. 1989), Xenopus Xlhbox2B mRNA, Xenopus p-

globin (Bremer et al. 2003), albumin (Cunningham et al. 2000), c-myc (Lee et al. 1998; 

Bergstrom et al. 2006), vitellogenin (Cunningham et al. 2000), hepatitis B virus (Hou et 

al. 2005), and a-globin (Liu and Kiledjian 2000), cytokine groct (Stoeckle 1992), and 

several maternal homeodomain proteins (Brown and Harland 1990; Brown et al. 1993). 

Although most proteins with endoribonucleolytic properties exibit some degree of 

substrate specificity, few of the endoribonucleases characterized in mRNA decay 

pathways have been shown to target specific transcripts in vivo (Dodson and Shapiro 

2002). One of the major challenges remains identifying and assessing the significance of 
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Table 2: A summary of mammalian endoribonucleases that have been characterized 

Mammalian 
Endoribonucleases 

PMR-1 

ErEN 

ARD-l/NIPP-1 

RNase L 

IRE-1 

RasGAP-associated 
G3BP 

Aldolase A, 
Aldolase C 

Argonaute 2 

Dicer 

RNase A Family 
*pt RNase 1 

**nptRNase2 
Eosinophil-Derived 
Neurotoxin (EDN) 

npt RNase 3 
Eosinophil Cationic 

Protein (ECP) 
pt/npt RNase 4 

Angiogenin/RNase 5 

npt RNase 6 

npt RNase 7 and 8 

Size 

60kDa 

40kDa (denaturing 
conditions) 

ARD-1: 13.3kDa 
NIPP-l:38.5kDa 

741 kDa 

110 kDa 

52 kDa 

- 4 0 kDa 

130 kDa 

218 kDa 

-13 kDa 

***12-17kDa 

***12-17kDa 

***12-17kDa 

***12-17kDa 

***12-17kDa 

***12-17kDa 

Cellular 
Location of 

Action 
RNP complex, 
sequestered to 

polysomes 

Non-Polysomal, 
Precise location 

unknown 

Polysomes 

Cytoplasm/ER 

ER membrane 

Cytoplasm 

Neuronal RNP 
complex 

RISC complex 

RISC complex 

Extracellular 

Eosinophils, 
spleen, liver, 
placenta, and 
kidney tissues 

urine 
Granulocytes 

Exibits 
neurotoxicity 

Pancreas, liver, 
lung, skeletal 
muscle, heart, 
kidney tissues 
Human plasma 

Primarily lung 
tissue 

Primarily liver 

Activation 
Signal 

Estrogen 

ATP-dependent, 
Deadenylation 

ofmRNA 
transcript 

-

INF, 2-5A 

Unfolded/ 
proteins in ER 

lumen 
Phosphorylation 

-Dependent 

Unidentified 

Unidentified 

ds RNAs in 
RNAi pathway 

miRNAs 

unknown 

unknown 

unknown 

unknown 

unknown 

unknown 

unknown 

Cleavage 
Specificity 

ssUG 
dinucleotides 
ss AYUGA 
(Y= C or U) 
dinucleotides 
63-64-CU in 

CU- rich 
regions 
ss AREs 

ss UA and UU 
dinucleotides 
ss GC, GA, 

UG, AC, CU 
dinucleotides 

ssCA 
dinucleotides 

UG 
dinucleotides 

3' UTR AREs 

None 

ss UA, CA, CC, 
UG; preference 
for poly(C) over 

poly(U) 
Preference for 
poly (U) over 

poly(C) 

Preference for 
poly (U) over 

poly (C) 

Predominantly 
poly(U) 

Weak activity 
against ss UA, 

CA, 
unknown 

unknown 

Reference 

Cunningham etal. 2001a; 
Stevens et al. 2002; Bremer 
et al. 2003; Chernokalskaya 

etal. 1998 
Wang and Kiledjian 2000a; 
Wang and Kiledjian 2000b 

Claverie-Martin et al. 1997; 
Change^/. 1999 
Zhou etal. 1993; 

Mishra2001 
Tirasophon et al. 2000; 

Lee et al. 2002; 
Hollien and Weissman 2006 

Tourriere et al. 2001; 
Barnes et al. 2002; 
Gallouzie^a/. 1998 

Canete-Soler et al. 2005 

Hammond et al. 2001; 
Liu et al. 2004 

Fortin et al. 2002; Nicholson 
and Nicholson 2002; Doi et 
al. 2003; Zhang et al. 2004a 

Barnard 1969; Sorrentino 
and Libonati 1994 

Sorrentino 1998 

Barker etal. 1989; 
Sorrentino etal. 1992 

Hofsteenge et al. 1998 

Shapiro etal. 1986; 
Saxena etal. 1992 

Riordan 1997 
Rosenberg and Dyer 1996 

Zhang et al. 2003 

* pt refers to pancreatic-type, with homology to bovine pancreatic RNase 
** npt refers to nonpancreatic-type 
***unglycosylated state 
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these enzymes within the context of normal cell function. With these challenges in mind, 

the following sections endeavor to explore the features of known mammalian 

endoribonucleases. In addition, the structural and functional similarities and the cellular 

distribution of bi- or multi-functional proteins that possess documented 

endoribonucleolytic activity will be highlighted. 

1.6.1 The Diversity of Mammalian Endoribonuclease Proteins and their 
Role in RNA Processing 

Research continues to uncover and highlight the importance of endoribonuclease-

mediated mRNA decay pathways. Endonucleolytic RNA cleavage pathways 

characterized to date have largely been represented as site-specific mechanisms for fine 

tuning levels of specific mRNA transcripts, under specialized cellular conditions of stress 

(Dodson and Shapiro 2002). Perhaps the most striking feature of recent studies is the 

diversity of proteins responsible for RNA degradation and their site-specific distribution 

within the mammalian cell. In fact endoribonucleases are present in a wide range of 

locals within the cell, including the nucleolus, nucleus, cytosol, endoplasmic reticulum, 

polysomes, and specialized foci such as stress granules and processing bodies (Dodson 

and Shapiro 2002; Yang and Schoenberg 2004; Tourriere et ah 2001). In addition, there 

are secreted extracellular members and non-secretory cytoplasmic members of the RNase 

A superfamily; however, the extent to which this group of endoribonucleases functions in 

mRNA remains uncertain. Current belief is that the primary mechanistic regulation of 

endoribonuclease enzymes occurs by one of two methods; regulating the access to 

mRNA transcripts with trans-acting RNA-binding proteins such as CRD-BP and by the 

sequence specificity of the endoribonuclease itself (Dodson and Shapiro 2002). In 

contrast to decapping and exonuclease degradation where the mRNA is no longer 
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engaged by translating ribosomes, endonuclease-mediated mRNA degradation requires 

that either the endonuclease proteins that promote cleavage be targeted to the site of 

function or that the endonuclease proteins reside in the location of function (ie. within an 

mRNP complex) (Dodson and Shapiro 2002; Yang and Schoenberg 2004; Hollien and 

Weissman 2006). 

1.6.2 Mammalian Endoribonucleases that function in mRNA Decay in 
vitro and in vivo 

n PMR-l 

Polysomal ribonuclease 1 (PMR 1) is a well-characterized endoribonuclease 

belonging to the peroxidase gene family, that is capable of initiating the destabilization of 

albumin mRNA (Bremer et al. 2003; Yang et al. 2004; Yang and Schoenberg 2004). In 

addition, estrogen stimulation in Xenopus hepatocytes activates a pathway in which 

PMR1 functions to destabilize certain serum protein mRNAs via endonucleolytic 

cleavage (Chernokalskaya et al. 1998; Cunningham et al. 2001a; Stevens et al. 2002; 

Yang and Schoenberg 2004). There is, however, some uncertainty as to whether PMR1 

is latent in ribonuclear protein (RNP) complexes associated with polysomes or recruited 

to an appropriate RNP complex bound to the polysome. Recent evidence suggests the 

latter as PMR1 is uniformly distributed throughout the cytoplasm, on polysomes and does 

not co-localize in cytoplasmic processing bodies with proteins such as human Dcpl 

(Yang and Schoenberg 2004). Additionally, it has been shown that PMR 1 requires 

phosphorylation-dependent activation which may be required for targeting PMR 1 to 

polysomes (Peng and Schoenberg 2007). In the 'recruitment' model of PMR 1 

activation, the binding of one or more specific proteins to a substrate mRNA (e.g., 

albumin) generates a platform for the binding of PMR1 to the larger complex of proteins 
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present on the actively- translating RNP complex (Chernokalskaya et al, 1997). PMR 1 

can then gain access to the mRNA substrate. Studies have revealed that vitellogenin 

mRNA is selectively stabilized relative to albumin mRNA (Cunningham et al. 2001a). 

The mechanism by which this occurs is believed to involve binding of the protein vigilin 

in the 3'UTR binding site of vitellogenin mRNA (Cunningham et al. 2000). When the 

vigilin protein is bound, cleavage of vitellogenin mRNA is effectively blocked from 

PMR 1 (Cunningham et al. 2000). In the absence of vigilin, PMR 1 cleaves vitellogenin 

mRNA within the 3'UTR region in vivo and in vitro (Cunningham et al. 2000). Evidence 

has shown that the 3'UTR of vitellogenin mRNA binds the vigilin protein with a -30 fold 

higher affinity as compared to albumin mRNA containing known PMR 1 recognition 

sequences (Cunningham et al. 2000). 

Specific domains of PMR1 in both the C-terminal and N-terminal domains are 

necessary for targeting to polysomes and a loss of the targeting domains has been shown 

to result in stabilization of several mRNAs (Yang and Schoenberg 2004). Additionally, it 

has been suggested that PMR 1 may function in the NMD pathway. Nonsense-containing 

P-globin mRNA exhibits endonuclease-mediated decay in erythroid cells in vivo and the 

cleavage products are similar to those generated by PMR1 in vitro (Bremer et al., 2003; 

Stevens et al., 2002). In vitro studies have also shown that PMR 1 generates cleavage 

products with free 3' ends; ideal substrates for subsequent degradation by the exosome 

(Chernokalskaya et al, 1997). 

PMR 1 may also be implicated in signal transduction mechanisms in response to 

extracellular stimuli (Chernokalskaya et al. 1998; Peng and Schoenberg 2007). In support 

of this notion, increasing estrogen levels have not been sufficient to directly stimulate 
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PMR1 activity, consequently, researchers have hypothesized that a signal transduction 

mechanism is required from the estrogen receptor to activate PMR1 present in an mRNP 

complex (Chernokalskaya et al. 1998). Recently, it has been shown that phosphorylation 

of a tyrosine residue at position 650 in the C-terminal portion of the protein by the 

tyrosine kinase c-Src activates the endonuclease activity of PMR 1 and is required for 

efficient targeting of PMR 1 to polysomes (Peng and Schoenberg 2007). A summary of 

RNA cleavage specificities, cellular location and properties of PMR 1 are shown in Table 

2. 

ii) RNase L 

RNase L is a 740 kDa endoribonuclease that has been shown to target and 

endonucleolytically cleave single stranded mRNA, rRNA and viral RNAs (Silverman 

2003) and is believed to play a role in interferon-inducible antiviral defense (Li et al. 

2000). RNase L catalytic activity necessitates activation. When there is no activating 

stimulus present, the RNase L protein exists in a latent, catalytically inactive monomeric 

form and is bound by an inhibitory protein (RLI) (Bisbal et al. 1995). However, upon 

binding 5'-triphosphorylated-2'-5'-A synthetase molecules, the protein forms a dimerized 

structure that activates the cytosolic endoribonucleolytic domain (Zhou et al. 1993). In 

mammalian cells, activation of the RNase L protein leads to cell death via an apoptotic 

pathway (Pandey and Rath 2004). A summary of RNA cleavage specificities, cellular 

location and properties of RNase L are shown in Table 2. 

iift IRE-1 

In a somewhat analogous oligomerization-based mechanism, similar to the type I 

growth factor receptors that require dimerization/oligomerization for activation, the 
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endoplasmic reticulum located Inositol-Requiring type 1 transmembrane protein (IRE 1) 

requires activation of its respective kinase and endoribonuclease domains for RNase 

activity (Niwa et al. 1999, Tirasophon et al. 2000; Lemmon and Schlessinger 1994; 

Wrana et al. 1994). IRE 1 possesses a lumenal stress sensor domain, a hydrophobic 

transmembrane anchor sequence, and cytosolic kinase/endoribonuclease domain. IRE-1 

was initially discovered in yeast (S. cerevisiae) in a stress-induced pathway termed the 

unfolded protein response (UPR). The UPR is responsible for transmitting information 

about the status of protein folding in the lumenal portion of the ER to the cytoplasm and 

nucleus (Dong et al. 2001: Yin-Liu and Kaufman 2003). In mammalian cells, IRE 1 

induces the synthesis of chaperone proteins that assist in the refolding and assembly of 

misfolded proteins within the ER (Pillai 2005). Misfolded proteins can result from a 

number of different causes of ER stress including: viral infection, heat shock, and nutrient 

deprivation (Kaufman 2002; Sitia and Braakman 2003). 

The mechanism of activation of IRE 1 in mammalian cells is hypothesized to 

occur such that the ER lumenal sensory domains, normally bound by the ER chaperone 

Bip, are released from Bip when misfolded proteins are present. This promotes 

dissociation of Bip from IRE 1 and allows Bip to associate with misfolded proteins. The 

release of Bip results in the oligomerization and activation of the IRE 1 kinase and 

endoribonuclease domains (Yin-Liu and Kaufman 2003; Shamu and Walter 1996; Pillai 

2005). The activation of the endoribonucleolytic domain of IRE 1 is believed to promote 

splicing and activation of the XBP1 gene (Yin-Liu and Kaufman 2003; Shamu and 

Walter 1996; Pillai 2005). In support of this theory in vertebrate cells, IRE 1 lies 

upstream of X-box-binding protein 1 (XBP1 mRNA), the vertebrate homolog of HAC1 
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mRNA in yeast. Studies suggest that XBP1 orchestrates the transcriptional activation of 

target genes that include ER chaperones and enzymes that facilitate this mechanism of 

protein folding (Yin-Liu and Kaufman 2003; Shamu and Walter 1996; Pillai 2005). 

Research has added additional insight into the critical role of IRE 1 in localized 

mRNA processing events. Based on studies utilizing S2 cells from Drosophila, novel 

IRE 1-targeted mRNA substrates have been discovered (Hollien and Weissman 2006). 

The substrate mRNAs appear to be specifically targeted based on their localization to the 

ER membrane and on the secondary structure of the mRNA itself (Hollien and Weissman 

2006). It is still not yet known whether IRE 1 mediates all of the observed 

endonucleolytic cleavages and it has been proposed that a second ribonuclease by itself 

or in combination with IRE 1 may be responsible for some of these observed mRNA 

decay events. 

iv) RasGAP-Associated G3BP 

RasGAP-associated G3BP is a 52 kDa single strand-specific endoribonuclease 

exhibiting no sequence homology with other known mammalian endoribonucleases. 

G3BP was initially characterized with the ability to cleave within the 3'UTR of c-myc 

mRNA in vitro (Barnes et al. 2002; Guitard et al. 2001; Tourriere et al. 2001). 

Interestingly, it has been shown in vitro that G3BP requires phosphorylation-dependent 

activation for endonucleolytic function (Gallouzi et al. 1998; Tourriere et al. 2001; Irvine 

et al. 2004; Zekri et al. 2005). Gene knockout animal model studies involving G3BP 

have resulted in both embryonic lethality and growth retardation (Zekri et al. 2005). 
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v)ErEN 

Erythroid enriched endoribonuclease (ErEN) was discovered and characterized as a 

part of a 160 kDa multiprotein complex which possessed the ability to cleave within the 

3' UTR of a-globin mRNA in vivo and in vitro (Rodgers et al. 2002; Wang and Kiledjian 

2000). Subsequent studies utilizing denaturing gel filtration have shown that ErEN is a 

40 kDa protein requiring ATP for endoribonucleolytic activity (Wang and Kiledjian 

2000b; Rogers et al. 2002). ErEN appears to be poly (A) tail-dependent in that it requires 

deadenylation of the mRNA transcript prior to cleavage within the 3' UTR of a-globin 

mRNA (Rodgers et al. 2002; Wang and Kiledjian 2000). 

vi) ARD-l/NIPP-l 

ARD-1 (Activator of RNA Decay) was initially found in humans as a a cDNA 

sequence that possessed the ability to reverse the pleiotropic effects of temperature-

sensitive and deletion mutations in the E. coli rne gene (Claverie-Martin et al. 1997; 

Chang et al. 1999). Studies have shown that human ARD-1 protein is a 13.3 kDa single-

strand-specific endoribonuclease that cleaves RNA in much the same fashion as bacterial 

RNase E; moreover, it cleaves at similar sites and produces cleavage products with 5'-

phosphates (Claverie-Martin et al. 1997). It has also been shown to function as a domain 

of the NIPP-1 protein (Claverie-Martin et al. 1997). 

NIPP-1 (Nuclear Inhibitor of Protein Phosphatase 1) isolated from bovine cells is a 

38.5 kDa protein that was found to contain a peptide sequence at its carboxyl terminal 

region with homology to that of human ARD-1 cDNA (Claverie-Martin et al. 1997; 

Chang et al. 1999). It has now been established that in human cells, ARD-1 and NIPP-1 

are isoforms, encoded by a single gene and are produced by alternatively splicing 
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precursor mRNA (Chang et al. 1999). Recent studies have shown that both ARD-1 and 

NIPP-1 contain lysine-rich regions in their carboxy-terminal regions that associate with 

AU rich sequences and promote endoribonucleolytic cleavage within these areas (Parker 

et al. 2002; Chang et al. 1999). 

vii) Argonaute 2 

The field of RNA interference in mammalian cells has also served as a reminder of 

the complexity and importance of the spatial localization of mRNA processing events 

required for correct protein expression. Argonaute 2 (Ago 2) is a member of a larger 

complex which is made up of Dicer and TAR RNA-binding protein (TRBP) located 

within the RNA-induced silencing complex (RISC) and is believed to be the enzyme 

required for endonucleolytic cleavage of the target mRNA (Martinez and Tuschl 2004; 

Liu et al. 2004). Ago 2 contains an N-terminal PAZ domain, two middle domains and a 

fourth C-terminal PIWI domain. These domains are believed to interact and form a 

supportive structure required for efficient cleavage of the mRNA transcript (Liu et al. 

2004; Parker et al. 2004). The N-terminal PAZ domain is believed to function in RNA-

binding (Parker et al. 2004) whereas the C-terminal PIWI domain, based on structural 

similarity with RNase H, is believed to be the catalytic domain required for 

endoribonucleolytic cleavage (Parker et al. 2004). Ago 2 exhibits several distinct cellular 

locales including cytoplasmic P-bodies. The widespread distribution of Ago 2, including 

known RNA decay centers may indicate that it functions in overlapping RNA 

degradation pathways (Sen and Blau 2006; Jing et al. 2005). RNA cleavage specificities 

and a summary of the properties of Ago 2 are shown in Table 2. 
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viii) Dicer 

Dicer is a large 218 kDa endoribonuclease belonging to the RNase III family of 

endoribonucleases (Fortin et al. 2002). Dicer cleaves without sequence specificity, 

double stranded RNA substrates into smaller 21-23 nucleotide segments which are 

referred to as siRNAs (small interfering). Dicer also functions in the excision of 

microRNAs (miRNAs) from hairpin precursors (Fortin et al. 2002; Nicholson and 

Nicholson 2002; Doi et al. 2003; Zhang et al. 2004a). In mammalian cells, Dicer 1 gene 

{Deri) has been discovered which encodes a Dicer-like protein that is essential for the 

viability of cells (Zhang et al. 2004a). RNA cleavage specificities, cellular location and 

properties of Dicer are shown in Table 2. 

ix) RNase A siiperfamily 

This family of proteins includes eight known members (1-8) in human cells which 

are grouped into four RNase families based on structural, catalytic and biological 

characteristics (Sorrentino and Libonati 1997). In fact, the RNase A superfamily of 

endoribonucleases have been the subject of some of the most intensive biochemical 

studies dating back over 50 years (Sorrentino and Libonati 1997). During the mid-1980s, 

a group of human RNases garnered interest based on some of the properties that they 

were found to possess (reviewed in Beintema et al. 1988; Benner and Allemann 1989; 

D'Alessio 1993). Subsequent studies have shown that several RNase A proteins possess 

special biological actions such as neurotoxicity, angiogenic activity, 

immunosuppressivity and antitumor activity (reviewed in Beintema et al. 1988; Benner 

and Allemann 1989; D'Alessio 1993). RNA-cleavage specificities and general properties 

of this group of enzymes are shown in Table 2. 
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1.7 Research Objectives 

Mammalian endonuclease-mediated mRNA degradation pathways identified to 

date include the RNAi pathway, the ER stress response, no-go decay and the decay of 

several specific mRNA transcripts; however, the identity of many of the 

endoribonucleases responsible for these decay products have yet to be conclusively 

identified. In addition, there remains significant debate as to the precise role of 

endonucleolytic degradation in controlling basal mRNA levels in mammalian cells. One 

of the major questions that remains is whether endonucleolytic cleavage events play a 

significant role in controlling mRNA abundance under normal cellular conditions as 

opposed to specialized conditions such as cellular stress. Given their role in a seemingly 

diverse set of mRNA degradation pathways, the numerous requirements for functional or 

structural activation, the lack of primary amino acid sequence homology among 

endoribonucleases, and the difficulties associated with detecting endonucleolytic mRNA 

decay products in vivo, it is not surprising that identifying novel members of this family 

of mammalian enzymes poses many challenges. 

Recently, a mammalian endoribonuclease was purified and biochemical 

characterization was subsequently undertaken (Bergstrom et al. 2006). The 

endoribonuclease was originally isolated in high salt ribosomal salt washes from rat liver 

tissue. Fractions from the heparin-sepharose column containing peak endonuclease 

activity were pooled and analyzed on an SDS-PAGE gel using silver stain. Five clear 

proteins of sizes ranging from 15-35 kDa co-purified with endonuclease activity. The 

major component of this enzyme complex was tentatively identified as a 35 kDa protein; 

however, the amino acid sequence and identity of the endoribonuclease has not been 
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determined. Given the lack of mammalian endoribonucleases identified and characterized 

to date, the identity of this endoribonuclease is of paramount importance for advancing 

our knowledge of endoribonucleases that function within the field of mRNA degradation. 

In order to fully understand the biological role of the endoribonuclease that had 

been purified it was necessary to re-purify and definitively identify this enzyme. In light 

of these gaps in our understanding of this endoribonuclease, the main objective of this 

thesis was to re-purify, identify and further characterize all of the major proteins that co-

purified with endoribonucleolytic activity against the CRD region of c-myc mRNA. 

The first aim of this research was to re-purify the native enzyme and the 

associated proteins from juvenile rat liver tissue that co-purified with endoribonucleolytic 

activity. The purification scheme was designed such that one pH precipitation step and 

five separate liquid column chromatography steps were used. The resulting eluted 

fractions from the final gel filtration purification column were resolved on a Coomassie 

Blue-stained SDS-PAGE gel. SDS-PAGE gel slices containing each of the proteins were 

sent to the Proteomics Centre at the University of Victoria for protein identification using 

LC-MS Mass Spectrometry. The results obtained were expected to definitively identify 

the 35 kDa protein and the four co-purified proteins. 

The second aim of this research was to confirm the identity of the protein(s) 

responsible for endoribonucleolytic activity against the CRD region of c-myc RNA. 

Given the strong probability that the novel mammalian endoribonuclease being studied 

formed a complex with the co-purified proteins, the identity and a test designed to assess 

potential in vitro interactions among the co-purified proteins was performed. The 

techniques employed for this were Western blotting and immunoprecipitation 
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experiments. Ultimately, the immunoprecipitation experiments were performed in an 

attempt to immuno-deplete native endoribonucleolytic activity. The second aim was also 

to understand the kinetics of the native enzyme(s); namely Vmaxand Km values. In order 

to accomplish this, a 17 base pair (mer) synthetic oligonucleotide substrate with a single 

incorporated ribonucleotide site was designed to rapidly assess the catalytic capabilities 

of the native enzyme. 

The third aim of this research was designed to generate the recombinant form of 

the mammalian endoribonuclease(s) and if necessary generate recombinant forms of the 

co-purified proteins. The final portion of this research utilized RNA sequencing gels in 

an attempt to map the cleavage sites of the recombinant form of the endoribonuclease 

against the CRD of c-myc RNA. 
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CHAPTER 2 

Purification and Identification of Two Distinct Mammalian 
Hepatic Endoribonucleases with the Ability to Degrade c-myc 
CRD RNA in vitro 

This chapter describes and discusses the approach taken to purify two mammalian 

endoribonuclease proteins isolated from juvenile rat liver tissue. It includes the steps 

required to generate the in vitro transcribed c-myc CRD RNA substrate that was used to 

assay endoribonuclease activity throughout the purification. This chapter also presents 

the results of each step in the purification, discusses the observed results, and 

identification of protein bands as determined by mass spectrometry. 

2.1 Methodology 

2.1.1 Isolation of Polysomes and Preparation of Ribosomal Salt Wash from Rat 
Liver Tissue 

95 juvenile frozen rat livers (approximately 175g each) from male Sprague-

Dawley rats purchased from Harlan Bioproducts (Madison, Wisconsin) were placed in 

liquid nitrogen, crushed using a pestle, re-suspended in Buffer A (buffer contents listed in 

Table 3) and homogenized at 14,000 rpm for 2-3 min with a Polytron 3000 (Brinkmann). 

All procedures were performed on ice unless otherwise indicated. The slurry was further 

hand-homogenized with 20 strokes to ensure adequate cell breakage. Approximately two 

livers were re-suspended and homogenized in 50 mL of Buffer A (buffer contents listed 

in Table 3). The tissue extract was centrifuged at 12,500 rpm for 10 min at 4°C. The 

supernatant was carefully removed and the pelleted cellular debris discarded. The 

supernatant was then placed in 10 mL of Buffer B (30% sucrose w/v) (buffer contents 

listed in Table 3). This solution was then placed into SW28 Beckman ultracentrifuge 
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tubes and centrifuged at 27,000 rpm for 90 min at 4°C. The supernatant was 

subsequently removed, and the pofysome-enriched pellet was re-suspended in 35 ml of 

Buffer A. This mixture was transferred to a 50 mL Falcon tube. 

Five ml of Buffer C was added to the 35ml of isolated polysomes in each 50 mL 

Falcon tube. The tubes were gently inverted 10 times. This mixture was then placed into 

SW28 Beckman ultracentrifuge tubes each containing 10 mL of Buffer B (30% sucrose 

w/v) and centrifuged at 27,000 rpm for 90 min at 4°C. The supernatant, termed 

Ribosomal Salt Wash (RSW) was subsequently removed and placed in 50 mL Falcon 

tubes. A total volume of 9 L of RSW (10 g of protein) was isolated and refrigerated at 

4°C. 

Table 3: Reagents and composition utilized in the preparation and purification of 
rat liver tissue extract 

Reagent 
Buffer A 

Buffer B 

Buffer C 

Composition 
ImM potassium acetate (KOAc) (Fisher Scientific, New Jersey 
NY), 1.5 mM magnesium acetate (MgOAc) (Fisher Scientific, 
New Jersey NY), 2mM DTT, 10% (v/v) glycerol, O.lmM 
ethylene glycol tetraacetic acid (EGTA) (EM Sciences Darmstadt, 
Germany), lOmM Tris-Cl, pH 7.4 
1 mM potassium acetate (KOAc) (Fisher Scientific, New Jersey 
NY), 1.5mM magnesium acetate (MgOAc) (Fisher Scientific, 
New Jersey NY), 2mM DTT, 10% (v/v) glycerol, 0.1 mM 
ethylene glycol tetraacetic acid (EGTA) (EM Sciences Darmstadt, 
Germany), lOmM Tris-Cl pH 7.4, 30% w/v sucrose 
4M potassium acetate (KOAc) (Fisher Scientific, New Jersey 
NY), 1.5mM magnesium acetate (MgOAc) (Fisher Scientific, 
New Jersey NY), 2mM DTT, 10% (v/v) glycerol, O.lmM 
ethylene glycol tetraacetic acid (EGTA) (EM Sciences Darmstadt, 
Germany), lOmM Tris-Cl pH 7.4, 30% w/v sucrose 

2.1.2 Non-Chromatographic Protein Purification 

The RSW was subjected to a pH-dependent protein precipitation step to remove 

bulk, non-soluble proteins. All procedures were performed on ice unless otherwise 

indicated. The pH of the RSW was lowered to 5.0 using a solution of 1M hydrocholoric 
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acid (HCL) (BDH Toronto, Ontario). The RSW was subsequently centrifuged at 18,000 

rpm for 25 min at 4°C. The supernatant was carefully removed, and the pH was re

adjusted to 7.0 using a solution of 1M sodium hydroxide (NaOH). The final solution was 

then placed in 50 ml Nalgene tubes and frozen at -20°C for storage. 

2.1.3 Plasmid Digestion 

Prior to plasmid digestion, stock solutions of 10 mg/mL Proteinase K (EM 

Sciences, Darmstadt, Germany) and a 10 X Proteinase K buffer (100 mM Tris-Cl pH 8.0, 

50 mM ethylenediamine tetra-acetic acid (EDTA) pH 8.0 (Sigma-Aldrich, St. Louis, 

MO), 500 mM sodium chloride (NaCl) (Sigma-Aldrich, St. Louis, MO) were prepared. 

The plasmid construct used in this study was pUC19-CRD-wyc-1705-1886. Plasmid 

digestion was performed using a single restriction enzyme, EcoRI (New England 

Biolabs). Approximately 7.0 u.g of pUC19-CRD-wyc-1705-1886 plasmid in a 10 uL 

reaction mixture was subjected to restriction enzyme digest (1U/ uL) at 37°C for 60 min. 

Immediately following plasmid digestion, the mixture was treated with 0.5 % sodium 

dodecyl sulfate (SDS) (EM Sciences, NJ) and 50 ug/mL diluted aliquot of Proteinase K 

solution in 10X Proteinase K buffer. This mixture was subsequently incubated at 50 °C 

for 30 min. 

Following incubation with Proteinase K, 90 uL of Milli-Q-ddHaO was added. 

The mixture was then subjected to a standard phenol/chloroform extraction, followed by 

ammonium acetate/isopropanol precipitation. One half volume of phenol (Sigma) and 

one half volume of chloroform: isoamyl alcohol (CHCI3: IAA) (49:1) (Fluka) was added 

and vortexed thoroughly. After the mixture was centrifuged at 13,200 rpm for 2.5 min 

the top aqueous layer was extracted and placed in a fresh eppendorf tube. One full 

36 



CHAPTER 2- PURIFICATION OF TWO MAMMALIAN ENDORIBONUCLEASES 

volume of CHCI3: IAA was then added and the mixture was vortexed thoroughly and 

centrifuged at 13,200 rpm for 2.5 min. The aqueous top layer was again extracted and 

transferred to a fresh eppendorf tube. This procedure was repeated once again. The 

DNA was precipitated by adding 1/10 volume of 7.5 M ammonium acetate and 1 volume 

of isopropanol (Sigma). Following centrifugation at 13,200 rpm for 45 min at 1°C, the 

supernatant was removed and the pellet was washed once with 200 u.1 of isopropanol. 

The supernatant was again removed and the pellet was air dried for 10 min prior to 

resuspension in 25 uL of nuclease-free water (Ambion). 

The resuspended DNA was quantified using an ND-1000 UV-Spectrophotometer 

(NanoDrop Wilmington, Delaware). DNA concentrations were determined at 260nm 

using the following relationship: DNA concentration (ug/ml) = (OD260) x (dilution factor) 

x (50 ug DNA/ml)/ (1 OD26o unit). The digested products were resolved in a 50 mL 2% 

agarose (Invitrogen) gel containing 1 uL of a 10 mg/mL stock ethidium bromide solution. 

Agarose gels were resolved at 30 mA in lx TBE buffer (buffer composition shown in 

Table 4) for approximately 60 min and visualized by UV-transillumination using a 

Chemilmager™ System (Alpha Innotech Corporation, San Leandro, CA). 
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Table 4: Reagents and composition utilized in the generation of unlabeled and 5'-
radiolabeled c-myc CRD RNA 

Reagent 

lxTBE 

lx MOPS 

RNA Loading Dye 

Formamide Loading Dye 

Urea/Phenol Loading Dye 

Probe Elution Buffer 

Composition 

0.9M Tris-Cl/Boric acid (Sigma), 0.01M EDTA 
pH 8.3 (Sigma) 
0.2M MOPS (Sigma), 50mM sodium acetate 
(NaOAc) (Sigma), lOmM EDTA (Sigma) 
50% formamide, 2% formaldehyde, lx MOPS, 
0.05 mg/mL bromophenol blue (Sigma), 0.05 
mg/mL xylene cyanol (Sigma) and 0.01M 
EDTA pH 8.0 (Sigma) 
80% formamide, 0.05 mg/mL bromophenol 
blue (Sigma), 0.05 mg/mL xylene cyanol 
(Sigma), 0.01 M EDTA pH 8.0 (Sigma) 
9M Urea (Fisher Scientific), 10% Phenol v/v, 
0.05 mg/mL bromophenol blue (Sigma), 0.05 
mg/mL xylene cyanol (Sigma) and 0.01M 
EDTA pH 8.0 (Sigma) 
lOOmM Tris-Cl (pH 7.5), 0.5M EDTA (Sigma), 
Vi volume phenol (Sigma), Vi volume 
chloroform: isoamyl alcohol (49:1) (Fluka) 

2.1.4 Generation of Unlabeled c-myc CRD RNA 

Generation of RNA was accomplished from linearized plasmid using either T7 or 

SP6 RNA polymerase-mediated in vitro transcription kits (MEGAscript, Ambion, Austin, 

TX). Transcription reactions were carried out in a final volume of 20 uL. The reaction 

mixture typically contained 1.5 ug of linearized plasmid, 5mM ATP, CTP, GTP and 

UTP, respectively, 20 mM DTT (Promega Madison, WI), IX reaction buffer (Ambion), 1 

uL/40U RNasin (Promega, Madison, WI), and 4 |JL/40 units of SP6 or T7 polymerase 

enzyme (Ambion). In vitro reactions were incubated at 37°C for approximately 90 min. 

Following the incubation period, 2U of TURBO DNase 1 (Ambion) was added to the 

reaction mixture and incubated at 37°C for 15 min. The RNA was isolated using a 

standard phenol/chloroform extraction and ammonium acetate/isopropanol precipitation. 
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The RNA pellet was air dried for 10 min and resuspended in 25 uL of 

diethylpyrocarbonate (DEPC) (Sigma) Milli-Q-ddFbO. The RNA was quantified by 

measuring the absorbance at a wavelength of 260 nm on a UV/Visible Spectrophotometer 

(Biochrom, Ultrospec 1000). RNA concentration was determined using the relationship 

RNA (ug/mL) = (OD26o) x (dilution factor) x (40 ug RNA/mL)/ (1 OD26o unit). The 

purity of the RNA was also examined by assessing the A260 : A2so ratio using the ND-

1000 UV-Spectrophotometer (NanoDrop Wilmington, Delaware). The quality of the 

RNA product was also assessed using a 50 mL, 2% agarose (Invitrogen) gel containing 

37% formaldehyde (v/v) (Sigma) and 1 uL of a stock 10 mg/mL solution of ethidium 

bromide. Approximately 500 ng of RNA was mixed with RNA loading dye (composition 

shown in Table 4), and electrophoresed at 35 raA in lx MOPS buffer (buffer composition 

shown in Table 4) for approximately 90 min. The agarose gels containing the RNA were 

visualized by UV-transillumination using a Chemilmager System (Alpha Innotech 

Corporation, San Leandro, CA). 

2.1.5 Preparation of 5'-Radiolabeled c-myc CRD RNA 

c-myc CRD RNA (nts 1705-1886) was subsequently dephosphorylated at the 5' 

terminus. A typical dephosphorylation reaction contained 7 ug of RNA, 10 U (1 uL = 

1U) alkaline phophatase from calf intestine (Roche Diagnostic Inc., Montreal), 2.5 uL of 

a lOx dephosphorylation buffer, lOmM DTT and 40 U (40U/ uL) of RNasin (Promega). 

The volume of the reaction mixture was brought up to 50 uL by adding DEPC (Sigma)-

treated Milli-Q-ddH20. The mixture was incubated at 37°C for 60 min. The 

dephophorylated RNA was isolated using a standard phenol/chloroform extraction and 

ammonium acetate/isopropanol precipitation. RNA pellets were air dried for 10 min and 
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re-suspended in 25 uL of nuclease-free water (Ambion). The RNA was subsequently 

quantified using the ND-1000 UV-Spectrophotometer (NanoDrop Wilmington, 

Delaware). 

5'-y32P-radiolabeling of c-myc CRD (nts 1705-1886) RNA transcripts were carried 

out using the following conditions. Approximately 8 ug of dephosphorylated RNA was 

phosphorylated using 3 uL of 100 mM DTT, 80 U RNasin (80U/ uL) (Promega), 5 uL of 

a 10 X reaction buffer (New England Biolabs), 60 uCi (6 uL) y 32 P-ATP (Amersham 

Biosciences), and 40U (10 U/ uL) T4 Polynucleotide Kinase (PNK) (New England 

Biolabs). The reaction was incubated for 60 min at 37°C and the RNA was isolated using 

a standard phenol/choloroform extraction and ammonium acetate/isopropanol 

precipitation. 

The RNA pellet was air dried for 10 min and resuspended in 20 uL of formamide 

loading dye (composition shown in Table 4), loaded onto an 8% denaturing 

polyacrylamide/ 7M urea (Fisher Scientific) gel and electrophoresed at 30 mA in lx TBE 

running buffer for approximately 60 min. The RNA bands that were separated within the 

gel were visualized using a Cyclone Storage Phophor Screen System (Packard, Meriden, 

CT). The screen was then visualized with a Cyclone Phopholmager (Packard, Meriden, 

CT) and OptiQuant software. A full-sized image of the audioradiographed gel containing 

the visible RNA bands was printed and placed below the gel. The appropriate bands 

were excised and the gel slices were placed into 1.5 mL eppendorf tubes containing probe 

elution buffer (composition of probe elution buffer shown in Table 4). The gel slices 

were incubated at 60°C for 5 hrs and vortexed periodically (45 min intervals). 
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RNA was recovered following the elution by way of standard phenol/chloroform 

extraction and ammonium acetate/isopropanol precipitation. The RNA pellet was air 

dried for 10 min and resuspended in 50 uL of nuclease-free water (Ambion). The 

radioactivity of the RNA measured in counts per minute (cpm) was assessed using a 

Packard 1600 TR liquid scintillation analyzer. The 5'- y 32P-radiolabeled c-myc CRD was 

further diluted into working aliquots of 50,000 cpm and stored at -20 °C. 

2.1.6 Performing Endoribonuclease Assays using 5'-Radiolabeled c-myc CRD 
RNA 

To assess the enzyme activity of the purified endoribonuclease, a standard in vitro 

endoribonuclease assay was performed. The reaction mixture used for the standard assay 

consisted of final concentrations of 10 mM Tris (pH 7.5), 2mM MgOAc, 50 mM KOAc, 

O.lmM spermidine (Sigma), 2mM DTT, 0.5U RNasin (40U/ uL). DEPC-treated Milli-Q-

ddFfcO was added to ensure that the appropriate final reaction mixture volume was 

attained. 18 uL of the reaction mixture was aliquoted into 20 separate 1.5 mL eppendorf 

tubes. 

The appropriate amount of enzyme was added to the bottom of each tube 

containing 18 uL of reaction mixture. 4 uL of DEPC-treated H2O was placed in the tube 

serving as negative control (in place of the enzyme). 1 uL of 30 000 cpm, 5'-y P-

radiolabeled c-myc CRD RNA was added to the side of the tubes containing the reaction 

mixture and the tubes were pulsed to ensure the aliquot of radiolabeled RNA entered the 

enzyme/reaction mixture at the bottom of the tube. The reactions were incubated in a 

heat block at 37°C for 5 min unless otherwise stated. The reaction was terminated by 

placing the tubes in a heat block at 100°C for 3 min followed by the addition of 4 uL of 

urea/phenol loading dye (contents of dye shown in Table 4). The samples in the tubes 
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were then loaded onto an 8% or 12%/7M urea denaturing polyacrylamide gel. The gel 

was electrophoresed at 30 mA for 60 min in IX TBE buffer (until the primary dye front, 

bromophenol blue approached the bottom of the glass plates). Following electrophoresis, 

the gel plates were separated and the gel was transferred to filter paper and placed in a gel 

dryer (LABCONCO, Kansas City, MI) for approximately 45-60 min. The dried gel was 

exposed to a phosphor image storage screen overnight and the image was subsequently 

visualized using the Cyclone Phospholmager and Optiquant software. 

2.1.7 Protein Purification Utilizing Column Chromatography 

It should be noted that prior to each step in the chromatographic sequence of 

purification, the quantity of protein was determined using the Bradford Assay 

methodology. All column chromatographic purifications were performed using an ISCO 

Model 160 Gradient Former and a FoxyR Jr. Fraction Collector (ISCO, Lincoln NB, 

USA). 

2.1.7.1 Ion Exchange Chromatography 

Cellulose-Phophate Matrix 

The post-pH precipitated RSW, pH 7.0 samples were dialyzed in dialysis Buffer A 

(composition shown in Table 5) for 12 hrs using SnakeSkinR Pleated Dialysis Tubing 

(PIERCE, Rockford, IL) with a 10,000 molecular weight cutoff. This was performed to 

remove high salt concentrations prior to loading onto the column matrix to ensure that 

proteins would bind efficiently. The cellulose phosphate column matrix (Sigma) (bed 

volume 900 mL) was equilibrated with 3 column volumes of Buffer D (buffer 

composition shown in Table 5). Approximately 1.5-2.0 g of RSW proteins were then 

loaded onto a 100cm x 5.0 cm, XK 50 chromatographic column (Amersham Pharmacia 
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Biotech.Quebec) at a flow rate of 1.8 mL/min. The column was washed until the 

absorbance at 280 nm (A280) as measured by the UV chart recorder unit (UA-6 UV/Vis 

Spectrophotometer, ISCO) returned to base line (2 column volumes Buffer D). Bound 

proteins were then eluted in 1.5 column volumes of Buffer E using a linear gradient from 

0.1 to 0.75 M KC1. A total of 80, 15 mL fractions were collected. A 4 uL aliquot of a 

subset of fractions were assayed for the presence of endonuclease activity as previously 

described (section 2.1.6). Given the large quantity of protein that was purified, 20 

separate cellulose phosphate matrix-based chromatography runs were performed using 

the 100cm x 5.0 cm, XK 50 column. Column runs were highly reproducible. 

2.1.7.2 Affinity Chromatography 

Reactive Green-19 Dye Matrix 

The post-phosphocellulose pooled fractions with peak endonuclease activity were 

dialyzed in dialysis Buffer A (composition shown in Table 5) for 12 hrs using 

SnakeSkinR Pleated Dialysis Tubing (PIERCE, Rockford, IL) with a 10,000 molecular 

weight cutoff. Again, this was performed to remove high salt concentrations prior to 

loading onto the column matrix to ensure that proteins would bind efficiently. The 

reactive green matrix (Sigma) (bed volume 160 mL) was equilibrated with 3 column 

volumes of Buffer F (buffer composition shown in Table 5). Approximately 2 mg of 

post-phosphocellulose protein with peak endonuclease activity were then loaded onto a 

XK 26, 70cm x 2.6 cm chromatographic column (Amersham Pharmacia Biotech.) at a 

flow rate of 1.25 mL/min. The column was washed until the absorbance at 280 nm 

(A280) returned to base line (2 column volumes Buffer F). Bound proteins were then 

eluted in 1.5 column volumes of Buffer G using a linear gradient from 0.1 to 0.75 M KC1. 
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A total of 140, 2.5 mL fractions were collected. 10 separate reactive green-19 columns 

were run. A 2.5 uL aliquot of a subset of fractions were assayed for the presence of 

endonuclease activity as previously described (section 2.1.6). Column runs were highly 

reproducible. 

Affi-Gel Heparin Matrix 

Pooled post-Reactive Green-19 fractions with maximum endonuclease activity 

were dialyzed in dialysis Buffer B (composition shown in Table 5) for 12 hours using 

SnakeSkinR Pleated Dialysis Tubing (PIERCE, Rockford, IL) with a 10,000 molecular 

weight cutoff. The Affi-gel/heparin gel matrix (Biorad) (bed volume 120 mL) was 

equilibrated with 3 column volumes of Buffer F (buffer composition shown in Table 5). 

Approximately 1 mg of proteins were loaded onto a XK 26, 70cm x 2.6 cm 

chromatographic column (Amersham Pharmacia Biotech.,Quebec) at a flow rate of 1.5 

mL/min. The column was washed until the absorbance at 280 nm (A280) returned to 

base line (2 column volumes Buffer F). Bound proteins were then eluted in 1 column 

volume of Buffer G using a linear gradient from 0.1 to 0.75 M KC1. A total of 120, 1.5 

mL fractions were collected. 8 separate AffiGel-Heparin columns were run. Column runs 

were highly reproducible. A 1.5 uL aliquot of each was assayed for the presence of 

endonuclease activity as previously described (section 2.1.6). 

Heparin-Sepharose Matrix 

Pooled post-AffiGel-Heparin fractions with maximum endonuclease activity were 

dialyzed in dialysis Buffer B (composition shown in Table 5) for 12 hrs using 

SnakeSkinR Pleated Dialysis Tubing (PIERCE, Rockford, IL) with a 10,000 molecular 

weight cutoff. The pre-packed 5 mL HiTrap Heparin-Sepharose HP column (Amersham 
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Biosciences) equilibrated with 10 column volumes of Buffer F. Approximately 0.50 mg 

of proteins were loaded at a flow rate of 1.2 mL/min onto the column. The column was 

washed until the absorbance at 280 nm (A280) returned to base line (4 column volumes 

Buffer F). Bound proteins were then eluted in three column volumes of Buffer G using a 

linear gradient from 0.1 to 0.75 M KC1. A total of sixty, 0.5 mL fractions were collected. 

The post heparin-sepharose fractions with maximum endonuclease activity were pooled. 

Three separate column runs were performed and each was highly reproducible. One u,L 

aliquot of each fraction was assayed for the presence of endonuclease activity as 

previously described (section 2.1.6). 

2.1.7.3 Gel Filtration Chromatography 

The gel filtration column was equilibrated with 5 column volumes of Buffer F 

(composition shown in Table 5). The column was calibrated with molecular weight 

standards using a flow rate of 1.0 mL/min and a total column/elution volume of 100 mL 

as follows: 1.80 mL of Buffer F (Table 4) was used to dilute 0.2 mL (0.5 mg/mL) BSA 

0.2 mL (4.0 mg/mL) Ovalbumin, 0.200 (4.0 mg/mL) Carbonic Anhydrase, 0.2 mL (6.0 

mg/mL) Myoglobin, 0.2 mL (6.0 mg/mL) Cytochrome C. BSA (66 kDa) eluted at volume 

(Ve) of 40.6-42.2 mL, Ovalbumin (49 kDa) Ve of 43.5-45.6 mL, Carbonic Anhydrase (29 

kDa) Ve of 52.4-55.2 mL, Cytochrome C (Dimeric form, 24.8kDa) Ve 60.8-63.6mL, 

Myoglobin (17 kDa) Ve of 66.5-70.5 mL, Cytochrome C (monomeric form, 12.5 kDa) Ve 

of 72.8-78.4 mL. 

Approximately 3.0 mL of pooled post heparin-sepharose sample exhibiting peak 

endonuclease activity was placed in 1.0 mL aliquots using 1.5 mL eppendorf tubes and 

centrifuged at 10, 400 rpm for 10 min. The sample was again pooled and loaded onto a 
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Superdex 75 Hi Load 16/60 prep grade gel filtration column (GE Healthcare) at a flow 

rate of 1.0 mL/min. A total of two hundred fractions of 0.5 ml were collected in 

microcentrifuge tubes (total of 100 mL column/elution volume). A 4 uL aliquot of each 

fraction was assayed for the presence of endonuclease activity as previously described 

(section 2.1.6). 

Table 5: Reagents and composition utilized in the chromatographic purification of 
two mammalian endoribonucleases. 

Reagent 
Buffer D: Potassium phosphate 

binding/wash buffer 
Buffer E: Potassium phosphate elution 

buffer 
Buffer F: TEA binding/wash buffer 

Buffer G: TEA elution buffer 

Dialysis Buffer A 

Dialysis Buffer B 

Composition 
50 mM KC1 (Fisher Scientific), 100 mM 
K2HP04/ KHP04 (Sigma) pH 7.0 
1M KC1 (Fisher Scientific), 100 mM 
K2HPO4/ KHPO4 (Sigma) pH 7.0 
50 mM KC1 (Fisher Scientific), 50 mM 
Triethanolamine (TEA) (Sigma), pH 7.4 
1M KC1 (Fisher Scientific), 100 mM 
Triethanolamine (TEA) (Sigma), pH 7.4 
25 mM KC1 (Fisher Scientific), 100 mM 
K2HPO4/ KHPO4 (Sigma) pH 7.0 
25 mM KC1 (Fisher Scientific), 50 mM 
Triethanolamine (TEA) (Sigma), pH 7.4 

2.1.8 SDS-PAGE/Silver Stain Analysis of Post Heparin-Sepharose and Gel 
Filtration Elution Fractions. 

Following purification using heparin-sepharose and gel filtration column 

chromatography steps, and after the routinely performed standard endoribonuclease 

assay, elution fractions were frequently concentrated by pooling and subjecting them to a 

standard acetone precipitation procedure. In brief, an equal volume of ice-cold acetone 

(-20°C) was added to the tubes containing the protein sample. Tubes were placed in 

-20°C for 60 min and centrifuged at 13,200 rpm for 45 min. The acetone was removed 

and the protein pellets were air-dried for 10 min. The protein pellets were re-suspended 

and pooled in 10 uL of Milli-Q-dd H2O and 10 uL of IX SDS loading dye (composition 

shown in Table 6). The 20 uL mixture was boiled for 5 min, allowed to cool to room 
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temperature and loaded onto a sodium dodecyl sulphate 15% polyacrylamide, 19:1 

acrylamide/N,N'-methylenebisacrylamide (Invitrogen) gel (SDS PAGE gel). The 

samples were electrophoresed at 120V until the bromophenol blue dye front reached the 

bottom of the gel. The gel was then fixed with gently shaking for twenty minutes in a 

solution of 100 mL methanol, 20 mL acetic acid, 20 mL of Bio-Rad fixative enhancer 

concentrate, and 60 mL of Milli-Q-dd H2O. The gels were subsequently rinsed twice for 

10 minute intervals in Milli-Q-dd H2O. As per BioRad Silver Stain Plus protocol, 35 mL 

of Milli-Q-dd H2O, 5.0 mL of Bio-Rad silver complex solution, 5.0 mL of Bio-Rad 

reduction moderator solution, 5.0 mL of Bio-Rad image developing reagent, and 50 mL 

of Bio-Rad development accelerator solution were mixed thoroughly in a 250 mL 

Erlenmeyer flask and added to the gels. The gels were allowed to stain with gentle 

shaking for 10-15 min at room temperature. Once the desired staining was achieved, the 

gel was placed in a 5% acetic acid solution and fixed with gentle shaking for 20 min. 

The gel was then rinsed with Milli-Q-dd H2O for 5 minutes and visualized using the 

Chemilmager™ System. 

2.1.9 Determining Specific Activity of Endoribonuclease Activity 

One unit (U) of enzyme was defined as the quantity of post heparin-sepharose 

partially purified enzyme required to cleave 25% of the 5'- y 32P-radiolabeled c-myc CRD 

RNA input probe to decay product in the standard endoribonuclease assay reaction as 

described in section 2.1.6. 

Post-gel filtration purified native endoribonuclease samples corresponding to 17 

kDa and 35 kDa respectively, were assigned units of enzyme activity based on 

comparative ratio of their endonuclease activities against c-myc CRD RNA. 1U of 17 
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kDa enzyme was defined as 1 uL of post gel filtration-purified sample (elution volume 

65-80mL) in a standard endoribonuclease assay (described in section 2.1.6). 1U of 35 

kDa enzyme was defined as 5 uL of post gel filtration-purified sample (elution volume 

30-40 mL) in a standard endoribonuclease assay (described in section 2.1.6) 

The yield of the enzyme, shown in Table 7, was calculated by dividing the activity 

in each step of the purification by the activity present in the initial sample of RSW. The 

fold purification as shown in Table 6 was calculated by dividing the specific activity 

(units/mg) in each step of the purification by the specific activity (units/mg) of the initial 

starting sample of RSW. 

2.1.10 Sample Preparation and SDS-PAGE/Coomassie Staining for the First 
LC/MS/MASS Spectrometry Analysis 

Approximately 20 mL (0.3 mg) of post-Heparin/Sepharose purified protein was 

utilized for MASS Spectrometry Analysis. The 20 mL volume was measured into forty, 

0.5 mL aliquots and pipetted into forty separate eppendorf tubes which had been 

thoroughly rinsed with methanol to avoid keratin protein contamination. The tubes were 

then subjected to a standard acetone precipitation procedure as previously described in 

section 2.1.8. The protein pellets were re-suspended and pooled in 10 uL of Milli-Q-dd 

H2O and 10 uL of IX SDS loading dye (composition shown in Table 6). The 20 uL 

mixture was boiled for 5 min, allowed to cool to room temperature and loaded onto a 

sodium dodecyl sulphate 15% polyacrylamide, 19:1 acrylamide/N,N'-

methylenebisacrylamide (Invitrogen) gel (SDS PAGE gel). The samples were 

electrophoresed at 120V until the bromophenol blue dye front reached the bottom of the 

gel. The gel was subsequently stained for 3 hrs with gentle shaking in a solution of 

Coomassie Brilliant Blue G dye (composition shown in Table 6). The gel was then de-
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stained (composition of de-stain shown in Table 6) with gentle shaking for 1 hr. The 

appropriate bands were excised from the gel with a razor blade and placed in eppendorf 

tubes which had been pre-rinsed with 100% methanol. The tubes containing the protein 

bands of interest were sent to the Genome B.C. Proteomics Center at the University of 

Victoria for LC/MS/Mass Spectrometry/trypsin digest analysis and protein identification. 

Table 6: Reagents used in the preparation and staining of SDS-PAGE gels 

Reagent 

IX SDS loading dye 

Coomassie blue staining solution 

Coomassie blue de-staining solution 

Composition 

25 mM Tris-Cl pH 7.4, 20% glycerol (v/v) 
(Sigma), 4% SDS (v/v) (OmniPur/EM Science, 
Gibbstown NJ), 0.2 % bromophenol blue (w/v) 
(Sigma), 0.1 % p-mercaptoethanol (v/v) (Sigma) 
50% methanol, 10% acetic acid, 1% (w/v) 
Coomassie Brilliant Blue G 
50% methanol, 10% acetic acid 

2.1.11 Sample Preparation and SDS-PAGE/Coomassie Staining for the Second 
LC/MS/MASS Spectrometry Analysis 

Fractions from gel filtration columns 5 and 7 containing peak endonuclease 

activity corresponding to an elution volume of 44-50 mL (30-40 kDa protein size range) 

were pooled. The total volume of 6 ml was measured into 0.5 mL aliquots and pipetted 

into twelve separate eppendorf tubes. The eppendorf tubes had been thoroughly rinsed 

with 100% methanol to avoid keratin protein contamination. Due to the sensitivity of 

LC/MS/MASS Spectrometry analysis, keratin protein contamination prevents accurate 

identification of target proteins. A standard acetone precipitation procedure was 

performed as previously described in section 2.1.8. The protein pellets were re-

suspended in 10 uL of Milli-Q-dd H2O and 10 uL of IX SDS loading dye (composition 
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shown in Table 6) for a total of 20 uL/ tube. The samples were then boiled for 5 min, 

allowed to cool to room temperature and loaded onto 15% polyacrylamide SDS-PAGE 

gel. The samples were electrophoresed at 120V until the bromophenol blue dye front 

reached the bottom of the gel. The gel was subsequently stained for 3 hours with gently 

shaking in a solution of Coomassie Brilliant Blue G dye (composition shown in Table 6). 

The gel was then de-stained (composition of de-stain shown in Table 6) with gentle 

shaking for 1 hr. The appropriate bands were subsequently excised from the gel and 

placed in eppendorf tubes which had been pre-rinsed with 100% methanol. The tubes 

containing the protein bands of interest were sent to the Genome B.C. Proteomics Center 

at the University of Victoria for LC/MS/Mass Spectrometry/trypsin digest analysis and 

protein identification. 

2.2 Results and Discussion 

2.2.1 Protein Purification 

The first non-chromatographic/pH precipitation step used to purify a total volume 

of nine liters of Ribosomal (Liver) Salt Wash (RSW or LSW) generated a seven-fold 

increase in protein purity and a total increase in units of enzyme activity, as shown in 

Table 7. The total protein, total volume, specific activity and yield are also shown in 

Table 7. 

Chromatographic purification of two endoribonucleases was successfully 

accomplished using ion exchange, affinity, and size exclusion chromatography. The 

column matrices utilized yielded highly reproducible results. The matrices used in this 

purification scheme were chosen based on previous work done in Dr. Lee's lab 

(Bergstrom et al. 2006). There were, however, two major differences in the purification 
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used in this research as compared to previous research undertaken to purify these 

mammalian endoribonucleases. Firstly, the purification described in this research 

omitted a Reactive-Blue-4 dye affinity matrix. Secondly, a dialysis procedure was 

performed to remove excess KC1 prior to loading pooled elution fractions (with peak 

endoribonuclease activity) onto subsequent column matrices. To reduce the 

concentration of KC1, previous work done to purify the endoribonucleases (Bergstrom et 

al. 2006) diluted pooled elution fractions (exhibiting peak endoribonuclease activity) 

with buffer prior to loading onto subsequent column matrices. 

Table 7: Summary of the Partial Purification of Two Mammalian Endoribonucleases 
from Rat Liver Tissue. 

Step 
Ribosomal Salt 
Wash 
pH Precipitation 
Phosphocellulose 
Reactive Green-
19 
AffiGel/Heparin 
Heparin-
Sepharose 

Total 
Protein 
mg 
36,000 

26,000 
679.80 
21.00 

5.33 
0.84 

Volume 

mL 
9,000 

9,350 
7,590 
3,250 

750 
45 

Activity 

units 
4.41 x 107 

2.15 x10s 

3.22 xl0 v 

8.30x10" 

4.15 xlO6 

9.97 x10s 

Specific 
Activity 
units/mg 
1225 

8269 
43,367 
395,238 

778,612 
1,186,905 

Yield 

% 

100 

100 
73 
18.9 

9.4 
2.3 

Purification 

Fold 
1 

6.80 
35 
323 

635.6 
1069 

Each ion exchange column matrix composed of cellulose phosphate 

(phosphocellulose) with a bed volume of 900 mL was capable of binding approximately 

2-3 g of post-pH treated proteins. Endoribonuclease activity eluted from the column at a 

gradient KC1 concentration of 0.45-0.55M (Figure 4, top panel). 
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Figure 4: Analysis of endonucleolytic activity of samples from column 
chromatography purification. All reactions were performed using 5'- y 32P-
radiolabeled c-myc CRD (30,000 cpm/lane). RNA was resolved on 12% denaturing 
polyacrylamide/7M urea gels. Fully intact c-myc CRD RNA is shown with a filled arrow. 
The top panel depicts 4.0 uL (1U) sample aliquots from eluted fractions of 
phosphocellulose column 5. The middle panel depicts 2.5 uL (1U) sample aliquots from 
eluted fractions of reactive green-19 column 2. The lowest panel depicts 1.5 uL (1U) 
sample aliquots from eluted fractions of affi-gel/heparin column #3. Lanes containing no 
enzyme are labeled 'none'. Lanes used as positive control are labeled LSW (liver salt 
wash), post-PC (pooled phosphocellulose elution fractions with endonuclease acitivity 
and post-RG (pooled Reactive Green-19 elution fractions with endonuclease activity) 
respectively. Filled arrow indicates intact c-myc CRD RNA. Bracket and unfilled arrow 
indicates RNA decay products 
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Cellulose phosphate chromatography was efficient at binding endoribonuclease proteins; 

however, there was significant endonucleolytic activity exhibited in the first flow through 

fraction collected during column loading (Figure 4 top panel, FT-1 lane 6). This was 

most likely due to overloading the binding capacity of the column matrix. Optimal 

protein load needed for efficient binding of endoribonucleases to the phosphocellulose 

column matrix was roughly 1.5 g. Overall, phosphocellulose chromatography yielded a 

35-fold increase in enzyme purity as judged by specific activity (Table 7). 

The Reactive Green-19 affinity matrix exhibited a high capacity to bind 

endoribonucleases present in post-phosphocellulose purified sample. The Reactive 

Green-19 dye affinity matrix (bed volume 160 mL) was capable of binding 

approximately 50 mg of protein. Endoribonuclease activity eluted from the column at a 

gradient KC1 concentration of 0.35-0.45M (Figure 4, middle panel). The 

endoribonuclease assay of the fraction collected for flow through 1 (FT-1) during column 

loading (Figure 4, middle panel, lane 6) exhibited strong endoribonucleolytic activity. 

Again, this was most likely due to overloading the binding capacity of the column matrix. 

Optimal protein load needed for efficient binding of endoribonucleases to the Reactive 

Green-19 dye matrix was 30-40 mg. Overall, Reactive Green-19 affinity 

chromatography resulted in a 323-fold increase in enzyme purity (Table 7). 

Affi-gel/Heparin affinity chromatography also exhibited a high capacity to bind 

endoribonucleases isolated from rat liver tissue. Optimal protein load concentration for 

each column run was approximately 1.5 mg. Endoribonuclease activity eluted from the 

column at a gradient KC1 concentration of 0.55-0.65M (Figure 4, lower panel). Overall, 
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affi-gel/heparin affinity chromatography resulted in a 635-fold increase in enzyme purity 

(Table 7). 

Heparin-Sepharose affinity chromatography exhibited a high degree of binding 

capability for endoribonucleases present in post affi-gel/heparin pooled elution fractions. 

Endoribonuclease activity eluted from the column at a gradient KC1 concentration of 

0.35-0.60M (Figure 5A). Overall, heparin-sepharose affinity chromatography resulted in 

a 1069-fold increase in enzyme purity (Table 7). 

A subset of elution fractions from the first heparin-sepharose column containing 

endoribonuclease activity (assay shown in Figure 5A) were visualized by SDS-PAGE 

electrophoresis/silver staining (Figure 5B) to gauge the degree of protein purity within 

the sample fractions. Not surprisingly, there were several major protein bands remaining 

in the post-heparin-sepharose elution fractions (Figure 5B, lanes 5-8). Furthermore, the 

correlation between the fractions assayed in Figure 5A and the proteins visualized by 

SDS-PAGE in Figure 5B reveals that there is a mixture of proteins present in the eluted 

fractions with endonucleolytic activity (lanes 5 and 6). There is an increase in the 

intensity of a protein band at 33 kDa, 37 kDa, and 45 kDa (Figure 5B, lanes 4-8; fractions 

32, 38, 41, 44, and 47, respectively); however, when comparing these fractions to the 

endoribonuclease assay in Figure 5A, it is evident that the increase in the intensity of the 

aforementioned proteins does not correlate with the observed peak endonucleolytic 

activity present in fractions 20-42. Moreover, the presence of a mixture of protein bands 

in the post heparin-sepharose sample coupled with the lack of correlation between protein 

band intensity (Figure 5B) and endoribonucleolytic activity (Figure 5A) prevented an 

accurate size estimate of the proteins responsible for endoribonuclease activity. 
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Figure 5: Endonucleolytic activity and SDS-PAGE analysis of post heparin-
sepharose purified fractions (A) Autoradiograph depicting sample 1 uL aliquots (1U) 
taken from eluted fractions and incubated with 5'- y P-radiolabeled c-myc CRD RNA. 
Filled arrow indicates intact c-myc CRD RNA. Bracket and unfilled arrow indicates 
RNA decay products (B) 15% polyacrylamide SDS-PAGE gel visualized with silver 
stain. Lane 1 corresponds to protein marker (M). Lanes 2-10 correspond to selected 0.5 
mL elution fractions containing peak endonuclease activity from heparin-sepharose 
column 1. Molecular weights are indicated on the left. 

Gel filtration chromatography was utilized as a means of size separating proteins 

remaining in pooled post heparin-sepharose elution fractions containing peak 
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endoribonucleolytic activity. Interestingly and somewhat unexpectedly, standard 

endoribonuclease assays of gel filtration fractions revealed two distinct regions of 

endoribonucleolytic activity (Figures 6A and 6B). The first activity was observed within 

elution volume 44-50 mL (Figure 6A). The second activity was observed within an 

elution volume of 64-85 mL (Figure 6A). The elution volumes exhibiting 

endoribonucleolytic activity correspond to proteins of sizes 30-40 kDa and 15-20 kDa, 

respectively, as calculated from the molecular weight standards used to calibrate the 

column (section 2.1.7.3). 

As shown by Figures 6A, 6B and 7A, gel filtration columns exhibited a high 

degree of reproducibility. It should be noted, however, that the standard endoribonuclease 

assay (shown in Figure 6B) of the elution fractions from gel filtration column eight, does 

not exhibit sharp, clear boundaries between larger molecular weight and smaller 

molecular weight endonucleolytic activities. Given the larger amount of post heparin-

sepharose sample loaded onto this column (approximately 0.4 mg) as compared to the 

lesser amount of protein loaded onto columns shown in Figures 6A and 7A 

(approximately 0.10 mg), the observed results are most probably due to excessive amount 

of protein. 
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Figure 6: Analysis of endonucleolytic activity of fractions from gel filtration 
chromatography. (A) Depicts gel filtration column 7. 4.0 uL (0.75 U) sample aliquots 
taken from the corresponding elution volume was incubated with 5'-y P-radiolabeled c-
myc CRD RNA in a standard endoribonuclease assay. Filled arrow indicates intact c-myc 
CRD RNA. Bracket and unfilled arrow indicates RNA decay products (B) Depicts gel 
filtration column 8. 4.0 uL (0.75U) sample aliquots taken from the corresponding elution 
volume, labeled above each lane, was incubated with 5'-y P-radiolabeled c-myc CRD 
RNA in a standard endoribonuclease assay. Filled arrow indicates intact c-myc CRD 
RNA. Bracket and unfilled arrow indicates RNA decay products 
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To accurately determine the protein size responsible for endoribonucleolytic 

activity, a standard endoribonuclease assay was performed on eluted fractions from gel 

filtration column run five. The fractions from this column were pooled and visualized on 

an SDS-PAGE/silver stained gel. As shown in Figure 7B (lanes 4-7), there appears to be 

an increase in intensity of a protein band corresponding to a molecular weight of 35 kDa. 

In addition, there appears to be an increase in protein bands corresponding to molecular 

weights of 25 kDa, 18 kDa, and 14 kDa (Figure 7B, lanes 9 and 10). The protein band at 

35 kDa in Figure 7B, lanes 4-7 appears to exhibit a slight correlation with 

endonucleolytic activity in elution volumes 46-50 mL (Figure 7A). The proteins bands at 

18 kDa, and 14 kDa (Figure 7B, lanes 9 and 10) appear to correlate with endonucleolytic 

activity in elution volumes 62-70 mL (Figure 7A). 
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Figure 7: Endonucleolytic activity and SDS-PAGE analysis of elution fractions 
from gel filtration chromatography. (A) Autoradiograph depicting 4.0 uL (0.75U) 
aliquots taken from eluted fractions and incubated with 5'- y 32P-radiolabeled c-myc CRD 
RNA. Filled arrow indicates intact c-myc CRD RNA. Bracket and unfilled arrow 
indicates RNA decay products (B) 15% SDS-PAGE gel visualized with silver stain. 
Lane 1 corresponds to protein marker (M), molecular weights are labeled on the left. 
Lanes 2-10 depict pooled elution volumes from gel filtration column 5. The pooled 
elution volumes labeled above lanes 2-10 in (B) correspond to elution volumes labeled 
above lanes in (A). 

To confirm the findings of the aforementioned correlation experiment, a second 

endoribonuclease assay/SDS-PAGE correlation-type experiment, using elution fractions 

from gel filtration column runs 7 and 8, was performed. The endoribonuclease assays of 
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fractions from gel filtration column runs 7 and 8 are shown in Figure 6A and 6B, 

respectively. The SDS-PAGE/silver stained gel used for the analysis gel filtration 

column run 7 and the pooled sample from gel filtration column 8 is shown in Figure 8. It 

is apparent from Figure 8, lanes 4-6, there is an increase in intensity of a protein band at 

35 kDa, corresponding to elution volumes of 42-49 mL. Additionally, there is a an 

increase in intensity of protein bands with molecular weights of 25 kDa, 18 kDa, and 14 

kDa which corresponds to gel filtration elution volumes of 62-67 mL (Figure 8, lanes 9 

and 10). The protein with apparent molecular weight of 35 kDa exhibited in gel filtration 

column 7 (Figure 8, lanes 4, 5 and 6) correlates with increasing endoribonucleolytic 

activity from gel filtration column 7, elution volumes 42-51 mL (Figure 6A). The 

proteins with apparent molecular weights of 18 kDa and 14 kDa (Figure 8, lanes 9 and 

10) correlate with endoribonucleolytic activity from gel filtration column 7, elution 

volumes 62-85 mL (Figure 6A). The pooled sample of elution volumes 45-50 mL (gel 

filtration column runs 7 and 8) shown in Figure 8, lane 8 lends further support for the 

notion that a protein of a molecular weight 35 kDa is responsible for endoribonucleolytic 

activity in gel filtration elution volumes 40-50 mL. It is evident in Figure 8, lane 8 that 

there is an intense band of protein with an apparent molecular weight of 35 kDa. 

Unfortunately, the presence of additional protein bands below and above the 35 kDa band 

(Figure 8, lane 8) contribute to the uncertainty in determining the precise molecular 

weight of the protein band responsible for endoribonucleolytic activity in elution volumes 

40-50 mL. 
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Figure 8: SDS-PAGE analysis of elution fractions from gel filtration 
chromatography. The gel was silver stained. Lane 1 depicts protein marker with 
molecular weights labeled to the left of the lane. Lanes 2-7, 9 and 10 depict elution 
fraction volumes from gel filtration column run 7. Lane 8 depicts a 2.0 mL pooled 
sample representing elution volumes 45-50 mL from both gel filtration columns 7 and 8. 

Overall, the data collected to date suggests that the protein with apparent 

molecular weight of 35 kDa in Figure 7B (lanes 4-7) and Figure 8 (lanes 4-6 and 8) is the 

candidate protein responsible for endoribonucleolytic activity in gel filtration elution 

volumes 40-50 mL. In addition, the data suggests that either the protein band of apparent 

molecular weight 18 kDa or the protein band of 14 kDa (Figure 7B, lanes 9 and 10; 

Figure 8, lanes 9 and 10) is responsible for endoribonucleolytic activity in gel filtration 

elution volumes 60-85 mL. 

Post heparin-sepharose purified sample was chosen for protein identification 

using LC/MS/Mass Spectrometry because of the high abundance of protein present 

relative to that of gel filtration purified sample. This was particularly important because 

there is a minimum quantity of protein needed in gel bands for accurate mass 

spectrometry analysis. Also, the gel staining reagents are required to be non-silver 
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containing, as silver ions interfere with the mass spectrometry analysis procedure. Given 

the conditions required for accurate mass spectrometry analysis, Coomassie Brilliant 

Blue stain was used, although the lower end detection limits of protein using Coomassie 

Blue stain is far less than the lower end detection limits of protein using silver-based 

stains. The Coomassie Brilliant Blue-stained gel from which proteins were excised and 

sent for mass spectrometry analysis is shown in Figure 9. It was decided that the major 

proteins of sizes corresponding to the general molecular weights ranges were: 40-50kDa 

(Figure 9, #1), 30-40kDa (Figure 9, #2), 20-25kDa (Figure 9, #3 and #4), and 10-20kDa 

(Figure 9, #5 and #6). These size ranges were chosen as they best-correlated with 

endoribonucleolytic activities as judged by gel filtration chromatography. 
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66 kDa __». [ ,Ammm. 

45 kDa —»- : #»#**? 

36 k D a — * • • « • 
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#1 

#2 

Figure 9: SDS-PAGE analysis of partially purified liver endoribonuclease following 
heparin-sepharose column chromatography. SDS-PAGE gel was stained with 
Coomassie Blue. Lane 1 represents protein marker. Lane 2 represents pooled post 
heparin-sepharose sample. The protein bands indicated with arrows to the right of lane 2 
(labeled 1-6) represent the bands that were excised and sent to Genome BC Protemics 
Center at UVIC for LC/MS/Mass Spectrometry protein identification. Lane 3 represents 
another sample of protein molecular weight marker. Molecular weights are indicated 
with arrows to the left. 
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The results of protein identification using LC/MS/Mass Spectrometry enabled the 

formulation of a short list of plausible protein candidates which could be responsible for 

endoribonucleolytic activity as judged by heparin-sepharose chromatography. The list of 

protein candidates resulting from mass spectrometry analysis is shown in Table 8. There 

are several possible protein candidates for several of the protein bands. This is most 

likely due to a mixture of proteins with similar molecular weight within the stained 

(visible) protein band that were excised. The identity of the largest protein band #1 

(Figure 9) was either thioredoxin reductase or glutamate dehydrogenase (Table 8). 

Neither of these proteins possesses known endoribonucleolytic activity in vivo or in vitro. 

Furthermore, the molecular weights of 57 kDa and 61 kDa, respectively, do not correlate 

with the 35 kDa molecular weight protein associated with endoribonucleolytic activity 

and were thus excluded as possible endoribonuclease candidates. 

Table 8: Summary of LC/MS/Mass Spectrometry data and peptide analysis results used 
to identify purified proteins from the post heparin-sepharose column shown in 
Figure 9. 

Protein 
Band# 

1 

2 

3 
4 
5 
6 

Top Protein Matches {Rodentia Species) of 
Relevant 

1) Thioredoxin reductase 2 (57kDa) 
2) Glutamate dehydrogenase 1 (61 kDa) 
1) L-3-hydroxyacyl-CoA dehydrogenase (HADHSC) (34 kDa) 
2) Apurinic/apyrimidinic lyase (AP 

endonuclease/APEl) (35 kDa) 

1) Cyclophilin B (Peptidyl prolyl isomerase) (23 kDa) 
1) Pancreatic Ribonuclease A (17 kDa) 
1) Cytochrome C (12.5 kDa) 
1) Small nuclear ribonucleoprotein E (11 kDa) 
2) Small nuclear ribonucleoprotein sm dl, chain A (9 kDa) 
3) SNRPF (small nuclear ribonucleoprotein F) (10 kDa) 

Sequence 
Coverage 

(%) 

1) 34% 
2) 41% 
1) 62% 

2) 3% 

1) 56% 
1) 45% 
1) 55% 
1) 65% 
2) 74% 
3) 50% 

# of Matched Peptides 
(Continuous Stretches 

of Amino Acids) 

1)12 
2)16 
1)10 

2)1 

1)14 
1)5 
1)11 
1)4 
2)4 
3)2 

The identity of protein band #2 was confidently narrowed to two choices. As 

shown in Table 8, the mass spectrometry data for HADHSC exhibited 62% sequence 
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coverage (10 major peptides identified). The other possible protein candidate was APE 

1; however, the mass spectroscopy data for APE1, shown in Table 8, was very weak as 

there was one peptide match (3% sequence coverage). HADHSC has no known 

endoribonuclease activity although its molecular weight of 34 kDa corresponds to the 

largest endoribonucleolytic activity from gel filtration chromatography. Given the high 

degree of certainty in identifying this protein, the commercially-available recombinant 

form of HADHSC was obtained for further investigation. Details of the investigation 

using recombinant HADHSC are provided in Chapter 3. 

Mass spectrometry data for protein band #3 was clearly identified as cyclophilin 

B (Table 8). The mass spectrometry data did not identify any plausible protein 

alternatives at or near 25 kDa. 

Mass spectrometry data for protein band #4 was identified as a known 

endoribonuclease; rat pancreatic ribonuclease A (RNase 1) (Table 8). Five major 

peptides were matched which translated into a sequence coverage of 45%. Given the fact 

that the identity of this band was a known endoribonuclease and the fact that the mass 

spectrometry peptide sequence data shown in Table 8 was strong, it was tentatively 

concluded that pancreatic RNase A was responsible for the endoribonucleolytic activity 

observed in elution volumes 60-85 mL (protein size of 10-20kDa) from gel filtration 

chromatography. Further evidence to support this conclusion is provided in Chapter 3. 

Mass spectrometry data for protein band #5 conclusively identified it as 

cytochrome C (Table 8). The mass spectrometry data did not identify any plausible 

protein alternatives at or near 12-14 kDa. 
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The identity of the final protein band #6 was not entirely clear. The mass 

spectrometry data (Table 8) identified three possible protein candidates which were all 

within the small ribonucleoprotein family of proteins. There was no further investigation 

undertaken to determine the identity of this protein. This is due in large part to the 

unavailability of specific antibodies against this group of proteins. 

In an attempt to conclusively identify the 35 kDa protein responsible for 

endoribonucleolytic activity, a second set of pooled samples containing peak 

endoribonucleolytic activity from gel filtration column runs 5, 6, 7 and 8, were sent for 

LC/MS/Mass Spectrometry analysis. The Coomassie Brilliant Blue-stained SDS-PAGE 

gel from which candidate stained protein bands were excised, is shown in Figure 10. As 

shown in Figure 10, lane 2, a range of major protein bands (#1, #2, and #3) corresponding 

to molecular weights of 38 kDa, 34 kDa, and 28 kDa, respectively, were chosen based 

largely on the data from gel filtration chromatography. 
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kl)a 

Figure 10: SDS-PAGE analysis of partially purified liver endoribonuclease from gel 
filtration chromatography. SDS-PAGE gel was stained with Coomassie Brilliant Blue 
Lane 1 represents protein marker with molecular weight indicated to the left. Lane 2 
represents post-gel filtration purified pooled elution volumes of 43-50mL (protein sizes 
30-40kDa) from gel filtration column runs. The arrows indicate the protein bands that 
were excised and sent to Genome BC Protemics Center at UVIC for LC/MS/Mass 
Spectrometry protein identification. Lane 3 represents post-gel filtration purified pooled 
elution volumes 65-85 mL (protein sizes 10-20kDa). 

The results of LC/MS/Mass Spectrometry protein identification using the second 

set of samples is shown in Table 9. The largest protein band (#1) was identified as either 

APE1, annexin III or aldo-keto reductase. The similarity in their molecular weights 

(shown in Table 9, protein band #1) and the high degree of amino acid sequence coverage 

from the matching peptides (Table 9, protein band #1) suggests that all three proteins 

may have co-migrated within the band that was excised. 

Interestingly, APE1 was observed in the data from the first mass spectrometry 

analysis (Table 8, protein band #2). Given its predicted molecular weight of 35 kDa and 

its known multifunctionality as a DNA-specific endonuclease (Demple and Harrison 

1994), redox activator of transcription factor DNA-binding (Xanthoudakis et al. 1992; 
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Evans et al. 2000), mediator of parathyroid hormone (PTH) gene (Okazaki et al. 1992; 

Okazaki et al. 199'4) and additional properties such as 3'-5' exonuclease activity 

(Richardson and Kroenberg 1964), phosphodiesterase activity (Richardson et al. 1964) 

and RNase H-like activity (Barzilay et al. 1995), it was decided to further investigate 

APE1. The amino acid sequences of the seven matching peptide fragments for APE 1 are 

shown in Table 10. 

Protein band #2 (Figure 10, lane 2) was definitively identified as HADHSC. The 

mass spectrometry analysis did not present plausible protein alternatives for this protein 

band. Protein band #3 (Figure 10, lane 2) was not conclusively identified; however, upon 

closer examination, the most plausible protein listed in Table 9, protein band #3 appears 

to be Glutathione S-transferase. The predicted molecular weight of Glutathione S-

transferase is 26 kDa (Table 9, protein band #3) and the protein band that was excised 

from the gel (Figure 10, lane 2, #3) corresponded to a protein band of 25kDa-30 kDa. 

Table 9: Summary of LC/MS/Mass Spectrometry data and peptide analysis results to 
identify purified proteins following gel filtration chromatography. 

Protein Band 
# 

1 

2 

3 

Top 3 Protein Matches (Rodentia 
Species) 

1) Apurinic/apyrimidinic lyase (AP 
endonuclease/APEl) (35 kDa) 

2) Annexin III (36.5 kDa) 
3) Aldo-keto reductase El (34.8 kDa) 
1) L-3-hydroxyacyl-CoA dehydrogenase 

(HADHSC) (34 kDa) 

1) Peroxisomal enoyl hydratase-like 
protein (36.5 kDa) 

2) HADHSC (34 kDa) 
3) Glutathione S-transferase (25.6 kDa) 

Sequence 
Coverage 

(%) 
1) 32% 

2) 38% 
3) 40% 
1) 55% 

1) 46% 

2) 20% 
3) 54% 

Matched Peptides (Amino Acid 
Sequences) 

1)7 

2)10 
3)11 
1)8 

1)12 

2)3 
3)7 
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Table 10: Matched peptides and the corresponding amino acid sequences of rat 
Apurinic/apyrimidinic endonuclease (AP endonuclease-APE 1) 

Peptide Fragment 
1 
2 
3 
4 
5 
6 
7 

Amino Acid Sequence of Peptide Fragment 
KICSWNVDGLRA (amino acids 61-72) 
KEEAPDILCLQETKC (amino acids 83-97) 
KLPAELQELPGLTHQYW (amino acids 101-123) 
KEGYSGVGLLSRQ (amino acids 124-136) 
KVSYGIGEEEHDQEGR (amino acids 140-155) 
RQGFGEMLQAVPLADSF (amino acids 236-252) 
KALGSDHCPITLYLAL (amino acids 301-316) 

Evidence presented in this chapter highlights several candidate proteins that may 

contribute to native endoribonuclease activity against c-myc CRD RNA. Three major 

protein candidates, HADHSC, annexin III and APE1 were chosen as possibilities for 35 

kDa endoribonuclease activity. HADHSC was chosen because it contains a predicted 

RNA-binding Rossmann fold motif. The Rossmann fold motif is known to bind 

nucleotides, in particular, the cofactor NAD and its structure is composed of three or 

more parallel beta strands linked by two alpha helices (Arnez and Cavarelli, 1997; Rao 

and Rossmann 1973). Annexin III was chosen because another member of the annexin 

family of proteins (annexin A2) has been shown to bind ribonucleotide homopolymer 

RNA and human c-myc RNA (Filipenko et al. 2004). APE1 was the most intriguing 

candidate since it had known multifunctionality, including DNA-specific endonuclease 

activity. Consequently, APE1 became the prime candidate for our investigation into the 

identity of the 35 kDa protein responsible for endoribonuclease activity observed in gel 

filtration elution volume 40-50 mL. 
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CHAPTER 3 

Identification and Characterization of the 35 kDa and 17 kDa 
Hepatic Endoribonucleases 

This chapter presents the methods and discusses the results of the experiments used to 

identify 35 kDa and 17 kDa endoribonucleases, including Western blots, standard 

endoribonuclease assays, electrophoretic mobility shift assays (EMSA) and 

immunoprecipitation/immunodepletion of native endoribonuclease activity. This chapter 

also includes characterization experiments and kinetic analysis of purified 

endoribonucleases with apparent molecular weights of 17 kDa and 35 kDa, respectively. 

3.1 Methodology 

To conclusively determine the identity of the purified enzymes and to better 

characterize the properties of each enzyme, numerous experiments were designed and 

conducted. The following chapter covers the experimental approach used to definitively 

confirm the identity of two mammalian endoribonucleases. This chapter describes the 

techniques used and discusses the relevant findings from the variety of protein 

identification and protein characterization experiments. The biochemical properties of 

both endoribonucleases are discussed; however, emphasis will be given to the 

endoribonuclease with an apparent molecular weight of 35 kDa. 

3.1.1 Western Blotting to Confirm the Proteins Identified with LC/MS/Mass 
Spectrometry 

Western Blotting analysis was used in an attempt to confirm the identity of the 

candidate proteins identified by mass spectrometry analysis. The standard SDS-

PAGE/Western Blot protocol and reagents outlined below were similar for all samples 

unless stated otherwise. Pooled samples from post heparin-sepharose chromatography 

69 



CHAPTER 3- IDENTIFICATION AND CHARACTERIZATION OF 35 kDa AND 
17 kDa HEPATIC ENDORIBONUCLEASES 

and gel filtration chromatography were divided into the appropriate number of 1.5 mL 

eppendorf tubes. Proteins were concentrated using the standard acetone precipitation 

procedure as outlined in chapter 2, section 2.1.8. Protein pellets were resuspended in 10 

uL of IX SDS/p-mercaptoethanol loading dye (composition shown in Table 6) and 10 uL 

of Milli-Q-ddH20. 8 uL of rainbow marker (GE Healthcare, Montreal) was mixed with 

10 uL of IX SDS/p-mercaptoethanol loading dye. All samples except the rainbow 

marker were boiled for 5 min and electrophoresed on a 15% SDS-PAGE gel as described 

in chapter 2, section 2.1.11. 

Prior to protein transfer from the SDS-PAGE gel to a nitrocellulose membrane, 

four pieces of filter paper and one piece of nitrocellulose membrane were soaked in 

western transfer buffer (composition shown in Table ) for 10 min. The SDS-PAGE gel 

was placed in a 'sandwich' consisting of (in order): one foam spacer, two pieces of filter 

paper, nitrocellulose membrane, SDS-PAGE gel, two pieces of filter paper, one foam 

spacer. The 'sandwich' was then placed in a Bio-Rad western blot sandwich cassette, 

and submerged in transfer buffer, within a Western blot apparatus. An ice block and a 

stir bar were added to the apparatus. Proteins in the gel were transferred to the 

nitrocellulose membrane at a constant 190 raA for 100 min. 

After protein transfer was complete, the nitrocellulose membrane was removed 

from the sandwich and placed in Western blocking buffer (composition shown in Table 

11) and shaken for 90 min at room temperature. Following the blocking step, the 

membrane was rinsed twice for 5 min in Western wash buffer (composition shown in 

Table 11). Primary antibodies used were anti-RNase 1 (GeneTex Inc., San Antonio, TX), 

anti-cyclophilin B (Abeam Inc. Cambridge MA), anti-cytochrome c (Abeam Inc. 
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Cambridge MA), anti-HADHSC (GenWay Biotech Inc., San Diego, CA), anti-APEl 

(Affinity BioReagents, Golden, CO) and anti-annexin III (GenWay Biotech Inc., San 

Diego, CA). All primary antibodies were diluted 1:2500 in Western wash buffer. 

Primary antibody solutions were added to the blot and incubated with gentle shaking at 

room temperature for 60 min. Blots were then rinsed three times (5 min/rinse) with 

gentle shaking. Secondary antibodies containing the appropriate Ig chain and the 

horseradish-peroxidase (HRP) conjugation (all secondary antibodies obtained from 

Promega Corporation, Madison, WI) were diluted 1:4000 in Western wash buffer. 

Secondary antibody mixture was added to the blots and incubated at room temperature 

with gentle shaking for 60 min. The blot was then rinsed for 20 min in Western wash 

buffer. The wash step was repeated three times. After the final wash, PIERCE 

SuperSignal West Pico Chemiluminescent visualizing solution (MJS BioLynx Inc. ON, 

Canada) was prepared. This was accomplished by mixing equal parts (total 8 mL) of the 

luminal/enhancer solution with the stable peroxidase buffer solution. The 

Chemiluminescent solution was added to the blot and the blot was shaken vigorously for 

1 min. Prior to visualization, excess Chemiluminescent solution was removed from the 

blot. The blot was visualized with the Chemilmager™ System (Alpha Innotech 

Corporation, San Leandro, CA). 
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Table 11: The identity and composition of reagents used for Western Blotting 

Reagent 

Transfer buffer 

Western blocking buffer 

Western wash buffer 

Western stripping buffer 

Composition 

0.050M Tris (w/v), 0.040M glycine (w/v), 20% methanol 
(v/v) 
70% Milli-Q-ddH20 
7% Skim milk powder (w/v) (Nestle Carnation), IX TBS, 
0.01M Tris, 45 mL Milli-Q-ddH20 
2.0% Skim milk powder (w/v) (Nestle Carnation), IX TBS, 
0.01% Tween 20 (v/v), 900 mL Milli-Q-ddH20 
lOOmM p-mercaptoethanol, 2% SDS, 62.5mM Tris pH 6.7 

3.1.2 Determining the Identity of the 17 kDa Endoribonuclease 

Western Blots were used to confirm the identity (pancreatic RNase A, based on 

mass spectroscopy data) of the enzyme responsible for endoribonucleolytic activity 

corresponding to 17 kDa as judged by gel filtration chromatography. Affinity-purified 

polyclonal antibodies for RNase 1 (GeneTex Inc., San Antonio, TX) were obtained. The 

RNase 1 antibodies were used to probe post-gel filtration fractions, and post-heparin-

sepharose fractions. Sample fractions from post-heparin sepharose and gel filtration 

exhibiting endoribonucleolytic activity were acetone precipitated using the standard 

acetone precipitation procedure (chapter 2, section 2.1.8). The samples were then loaded 

onto 15% SDS-PAGE gel and transferred to a nitrocellulose membrane and visualized 

with Chemiluminescent substrate as previously described for the standard Western blot 

protocol (section 3.1.1). 

3.1.3 Determining the Identity of the 35 kDa Endoribonuclease 

Several approaches were used to conclusively identify the 35 kDa protein 

responsible for endoribonucleolytic activity exhibited by endoribonuclease assays of 
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elution fractions from gel filtration chromatography. The following sections describe the 

methodologies utilized in these approaches. 

3.1.3.1 Stripping Antibodies from Western Blots 

Western stripping buffer (composition shown in Table 11) was heated to 60°C 

and 100 mL was added to the specific nitrocellulose blot. The blot was shaken 

vigorously in a fume hood for 20 min. The stripping buffer was removed and 50 mL of 

fresh 60°C Western stripping buffer was added to the blot, and the blot was shaken 

vigorously for an additional 10 min. The Western stripping buffer was then removed. 

The blot was washed 3 times (5 min each wash) in Western wash buffer (composition 

shown in Table 11). The blot was then re-blocked in Western blocking buffer 

(composition shown in Table 11) for 60 min at 37°C. Blots were then re-probed with 

desired primary antibody appropriate secondary antibody, and visualized as previously 

described (section 3.1.1). 

3.1.4 Characterizing the 35 kDa and 17 kDa Endoribonucleases 

To confirm the identity of candidate proteins responsible for endoribonucleolytic 

activity against 5'-radiolabeled c-myc CRD RNA, and to distinguish between 

endoribonuclease activity corresponding to molecular weights of 17 kDa and 35 kDa as 

observed with gel filtration chromatography, it was necessary to assess the differences 

between the 17 kDa and 35 kDa endoribonucleases with respect to cleavage specificity, 

differences in enzyme kinetic and sensitivity to known RNase inhibitory proteins. 

3.1.4.1 Assessing the Sensitivity of the 35 kDa and 17 kDa Enzymes to 
Ribonuclease Inhibitor Protein (RNasin) 

Post-gel filtration purified pooled fractions corresponding to elution volumes 40-

50mL (protein sizes 30-40kDa) and 65-80mL (protein sizes 10-20kDa) were utilized for 
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RNasin experiments. 5 uL (1U) aliquots from elution volumes 40-50mL (protein sizes 

30-40kDa) and 5 uL (5U) aliquots from elution volumes 65-80mL (protein sizes 10-

20kDa), respectively, were utilized for assay reactions. The reaction incubations and the 

assay procedures were identical to those previously described for a standard 

endoribonuclease assay (Chapter 2, section 2.1.6). All RNasin assays were performed 

using 5'-y32P-radiolabeled c-myc CRD (30,000 cpm/lane) and 1U RNasin (1U=1 uL). 

RNA was resolved on a 12% denaturing polyacrylamide/7M urea gel. 

3.1.4.2 Endoribonuclease Assays of Recombinant Protein Candidates Using 
5'-Radiolabeled c-myc CRD mRNA 

Commercially available recombinant proteins for HADHSC (GenWay Biotech.), 

annexin III (GenWay Biotech), APE1 (Hickson lab, Oxford, UK) were obtained and 

tested for endoribonucleolytic activity. A second sample of recombinant APE1 was 

obtained from Dr. Mitra Sankar's lab (University of Texas Medical Branch [UTMB], 

Galvestin, TX). Prior to testing recombinant proteins for endoribonucleolytic activity, 

samples were dialyzed overnight. Dialysis of recombinant protein samples was 

performed with 10,000 molecular weight cutoff Slide-A-Lyzer dialysis cassettes 

(PIERCE, Rockford, IL). Dialysis buffer (Dialysis Buffer B, composition is shown in 

Table 5) was utilized for all recombinant protein samples. Standard endoribonuclease 

assays using 5'-radiolabeled c-myc CRD RNA (nts 1705-1886) were performed as 

previously outlined in Chapter 2, section 2.1.6. 

3.1.4.3 Mapping the Cleavage Sites of the 35 kDa and 17 kDa 
Endoribonucleases using 5'-Radiolabeled c-myc CRD mRNA 

Prior to performing the mapping experiments, an RNase Tl digest and an alkaline 

hydroxy 1 ladder of c-myc CRD RNA were prepared. RNase Tl digests were generated 
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by incubating 200,000 cpm 5'-radiolabeled c-myc CRD RNA (nts 1705-1886) in 10X 

sequencing buffer (Ambion Inc., Austin, TX) (total volume of 30 uL). 2U of RNase Tl 

(1U= luL) was added to the 30 uL mixture and incubated at room temperature for 10 

minutes. The reaction was terminated and the RNA was extracted using a standard 

phenol/chloroform and ammonium acetate/isopropanol precipitation procedure as 

outlined in Chapter 2, section 2.1.3. The dried RNA pellet was re-suspended in 10 uL of 

urea/phenol loading dye (composition shown in Table 4). RNase Tl digest was stored at 

-20°C until required. 

Alkaline hydroxyl ladders were generated by combining 100,000 cpm 5'-

radiolabeled c-myc CRD RNA (nts 1705-1886) with IX alkaline hydrolysis buffer for a 

total reaction mixture of 20 uL. The reaction mixture was heated to 95°C in a heat block 

for 10 min. The mixture was immediately transferred to ice and 20 uL of formamide 

loading dye was added. The mixture was stored at -20°C until required. 

Mapping of cleavage sites for both the 35 kDa and 17 kDa endoribonucleases was 

carried out using reaction incubation conditions identical to those that were outlined in 

the standard endoribonuclease assay (Chapter 2, section 2.1.6). Assays were resolved at 

25 mA for 90 min on a 12% poly aery lamide/7M urea gel, dried and visualized using 

Cyclone Phosphor Imager and Optiquant Software. 

3.1.4.4 Assessing the Possibility of N-linked Glycosylation 

Additional experiments to conclusively determine the identity of the enzyme 

responsible for endoribonucleolytic activity (from candidate proteins identified by mass 

spectrometry corresponding to 35 kDa were performed (Table 8, protein band #2; Table 
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9, protein band # 1). These experiments were needed to rule out the possibility of post-

translational modification within a member of the RNase A family of proteins. 

The first such experiment tested the possibility of N-linked glycosidations present 

on the endoribonuclease. The enzyme N-glycosidase F (removes N-linked protein 

glycosylations) was utilized. 100 U of recombinant N-glycosidase F (Roche Diagnostics, 

Mannheim, Germany) was incubated with 3.0 mL of post heparin-sepharose sample 

overnight at 30°C. The N-glycosidase F-treated post heparin-sepharose sample was 

aliquoted into separate 1.5 mL eppendorf tubes. The tubes were centrifuged at 10,400 

rpm for 10 min. The samples were then pooled and loaded onto a Superdex 75 Hi 

Loadl6/60 prep grade gel filtration column (GE Healthcare) at a flow rate of 0.75 

mL/min using Buffer F (composition shown in Table 5, Chapter 2). A total of two 

hundred, 0.5 mL fractions were collected in microcentrifuge tubes (total of 100 mL 

column/elution volume). A 5 uL aliquot (1U native 35 kDa enzyme) from separate 

elution fractions was incubated with 5'-radiolabeled c-myc CRD RNA (nts 1705-1886) 

and visualized using the standard endoribonuclease assay as previously described (section 

2.1.6). 

3.1.4.5 Determining if the 35 kDa Endoribonuclease is Dimeric 

To assess whether the endoribonuclease with apparent molecular weight of 35 

kDa was a hetero- or homodimeric protein, an experiment using DTT was designed to 

assess whether the 35 kDa endoribonuclease was composed of multi subunits (with 

disulfide linkages). 3.0 mL of post heparin-sepharose sample was incubated for 60 min at 

4°C in the presence of 250mM DTT. The DTT-treated post heparin-sepharose sample 

was aliquoted into separate 1.5 mL eppendorf tubes. The tubes were centrifuged at 
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10,400 rpm for 10 min. The samples were then pooled and loaded onto a Superdex 75 Hi 

Loadl6/60 prep grade gel filtration column (GE Healthcare) at a flow rate of 0.75 

mL/min in Buffer F (composition shown in Table 5, Chapter 2). A total of two hundred 

0.5 ml fractions were collected in microcentrifuge tubes (total of 100 ml column/elution 

volume). A 5 uL aliquot (1U native enzyme) from separate elution fractions was 

incubated with 5'-radiolabeled c-myc CRD RNA (nts 1705-1886) and visualized using a 

standard endoribonuclease assay as previously described (section 2.1.6). 

3.1.5 Electrophoretic Mobility Shift Assays 

EMSA protocols were adopted from the methodologies previously described by 

Prokipcak et ah (1994), with modifications made by Sparanese and Lee (2007). EMSA 

protocols were designed for CRD-BP; however, similar reaction conditions were adopted 

for binding of HADHSC, APE1 and annexin III to 5'-y32P-radiolabeled c-myc CRD-

1705-1886 RNA. EMSA binding buffers were prepared fresh on ice prior to each 
-IT 

experiment. 5'-y P-radiolabeled c-myc CRD was denatured (heated to 75°C) and 

renatured (cooled to room temperature) prior to addition in the EMSA binding buffer 

(composition shown in Table 12). This was done to ensure proper folding of the RNA 

transcript. EMSA binding buffer containing radiolabeled c-myc RNA was incubated in 

separate experiments with commercially obtained recombinant HADHSC protein 

(GenWay Biotech., San Diego, CA), recombinant APE1 protein (Dr. Sankar's lab, TX) 

and commercially obtained recombinant annexin III protein (GenWay Biotech., San 

Diego, CA). The final reaction mixture for all EMSA experiments was 20 \iL and 

reactions were incubated at 30°C for 10 min, transferred to ice for 5 min and then again 

incubated at 30°C for 10 min. Following the final 10 min incubation at 30°C, heparin 
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(Sigma) was added to a final concentration of 5 mg/mL and the reaction was placed on 

ice for 5 min. 2 uL of EMSA loading dye (composition shown in Table 12) was added 

to the reaction mixture. The entire reaction mixture was loaded onto a 6% native 

polyacrylamide gel and resolved at 20 mA for approximately 90 min. Following 

electrophoresis, the gel was transferred to filter paper and dried using a gel drying 

apparatus (LABCONO, Kansas City, MO) for 45 min. The dried gel was then exposed to 

a phosphorimager screen overnight. The autoradiographs were visualized using a 

Cyclone Storage Phosphor Screen System and Optiquant Software. 

Table 12: The identity and composition of reagents used in the EMSA experiments 

Reagent 
EMSA binding buffer 

EMSA loading dye 

Composition 
5mM Tris-Cl (pH 7.4), 2.5 mM EDTA (pH 8.0), 2mM 
DTT, 5% glycerol, 0.1 mg/mL (BSA), 0.5 mg/mL yeast 
tRNA (Ambion), 5U RNasin 
250 mM Tris-Cl (pH 7.4), 0.2% bromophenol blue, 0.2% 
xylene cyanol, 40% sucrose (w/v) 

3.1.6 Enzyme Kinetic Analysis of the 35 kDa and 17 kDa Endoribonucleases 
Using 5'-labeled Oligonucleotide Substrate. 

Kinetic analysis of the 35 kDa and 17 kDa endoribonucleases was performed 

using a synthetic DNA oligonucleotide substrate (Integrated DNA Technologies [IDT], 

Coralville, IA). The synthetic oligo substrate was designed based on a short stretch of 

sequence from the CRD region of the c-myc mRNA transcript, as shown in Table 13. 

The substrate was composed of 16 chimeric DNA bases and 1 RNA base. The predicted 

secondary structure is shown in Table 13. The commercially-obtained oligo was initially 

lyophilized and required re-suspension in 100 uL of DEPC-treated Milli-Q-ddH20. 

Stock oligonucleotide was quantified using the NanoDrop spectrophotometer. Amount 
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of oligo was calculated using the formula provided by IDT (Table 13). Oligonucleotide 

substrate was frozen at -80°C for storage. 

Prior to performing kinetic assays, 16 ug (4 uL) of oligonucleotide substrate 

(stock concentration 4.1 ng/uL) was dephosphorylated and subsequently 5'-y P-

radiolabeled. The remaining steps used for dephosphorylation reactions were identical to 

those previously described for c-myc CRD RNA, in Chapter 2, section 2.1.5. 5'-y32P-

radiolabeled reactions were performed using half (roughly 8 ug or 2 uL) of the previously 

generated dephosphorylated oligonucleotide substrate. Preparation and procedures for 5'-

y 32P-radiolabeled reactions using oligonucleotide substrate were performed as previously 

described for c-myc CRD RNA, in Chapter 2, section 2.1.5. 

The first step in preparation for assays used to assess Michaelis Menten kinetics 

involved determining a workable or 'optimal' concentration range of gel filtration-

purified 35 kDa and 17 kDa enzyme, respectively, for a given time period. Stop-time 

assays using various enzymes concentrations over several time periods were performed. 

Data from the intensities of decayed 5'-radiolabeled oligonucleotide RNA (calculated as 

DLU/time) was obtained and was subsequently entered into a Microsoft Excel 

spreadsheet. Of note, DLU intensities were obtained directly from autoradiographs using 

Optiquant Software. All data was then transferred to KaleidaGraph 3.6.2 (Synergy 

Software) for linear and nonlinear regression analysis. DLU decay intensities for the 

different time periods were plotted against enzyme concentration using linear regression 

analysis. It should be noted that all procedures herein were performed in duplicate; once 

for the analysis of the native 17 kDa enzyme and once for analysis of the native 35 kDa 

enzyme. 
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The next step was performed using an 'optimized' value of native 17 kDa or 35 

kDa enzyme. The optimal quantity of enzyme was then incubated with a set 

concentration of 5'-y P-radiolabeled oligonucleotide substrate in a stop-time assay . This 

procedure was repeated for multiple substrate concentrations. The second set of data 

was plotted as DLU intensities (at various [substrate]) versus time, and analyzed using 

linear regression. 

To obtain data for the nonlinear regression plots (Michaelis Menten plots) of the 

respective 17 kDa and 35 kDa enzymes, slope values (rate of appearance of decay 

product) from the aforementioned linear regression analysis were plotted against the 

varying substrate concentrations utilized. Nonlinear regression analysis was performed 

using KaleidaGraph 3.6.2. The values from the nonlinear regression analysis were fit 

into the Michaelis Menten equation v = V[S] /(Km + [S]) to obtain Km and Vmax values 

for the 17 kDa and 35 kDa endoribonuclease, respectively where v = velocity, [S] is 

molar amount of substrate, V= maximum velocity, Km = Michaelis Menten constant ([S] 

at half-maximal velocity). 
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Table 13: Sequence, structure and calculation the amount of the synthetic 
oligonucleotide used to assess kinetic properties of the respective 35 kDa and 
17 kDa endoribonucleases. Filled arrow indicates the ribonucleotide UA 
base-pair that is predicted to be cleaved by native endoribonucleases 

Substrate 

DNA Oligonucleotide Sequence 

Structure of Oligonucleotide 
Substrate 

Amount of Oligonucleotide 
Calculation 

Data 

5'-CAA GGT AGT rUAT CCT TG-3' 

G T r U > t 
A A 
T T 

G-C 
G - C 
A - T 

1 7 4 3 A - T 1 7 5 7 
5 ' 3 ' 

11.1=66.80 = 0.35 
OD 260 nmoles mg 

3.1.7 Immunoprecipitation of Gel Filtration-Purified Native Extract 

Immunoprecipitation experiments were designed to immunodeplete the native 35 

kDa endoribonuclease candidate protein, APE1. Pooled post-heparin sepharose and 

pooled gel filtration elution fractions corresponding to elution volumes of 40-50 mL were 

utilized for immunodepletion experiments. 

Immunoprecipitation reaction preparations and experimental procedures were 

performed as follows and were identical unless otherwise stated: 400 uL of PIERCE 

Immunopure Immobilized Protein A slurry (MJS BioLynx Inc. ON, Canada) was placed 

in a Pierce Seize X kit Handee™ Spin Cup and centrifuged at 3000 rpm for 30 sec. The 

flow through was discarded and 400 uL of binding/wash buffer (PIERCE; composition 

shown in Table 14) was added to the beads. The Handee™ Spin Cup Column was 

capped and inverted 10 times. The spin cup was then centrifuged at 3000 rpm for 30 sec 
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and the flow through was discarded. The wash/centrifugation steps as previously 

described were repeated two more times. 

The spin cup was placed in a fresh 1.5 mL eppendorf tube and a total volume of 

200 uL primary APE1 antibody solution (equivalent to about 25 tig of primary APE1 

polyclonal antibody diluted in 175 uL of binding/wash buffer [PIERCE]) was added to 

the beads contained in the spin cup. Primary antibody solutions were incubated with 

gentle rocking for 2 hrs at 4°C. The tubes were centrifuged at 3000 rpm for 30 sec. The 

flow-through was saved and identified as antibody flow through 1. 400 uL of 

binding/wash buffer was added to the spin cup and mixed by inverting 10 times. The 

tubes were centrifuged at 3000 rpm for 30 sec and the flow through was saved and 

termed wash 1. The wash/centrifugation steps were repeated two more times. The spin 

cup was then transferred to a new 1.5 mL eppendorf tube. 

One pre-packaged lyophilized sample of DSS (disuccinimidyl suberate; PIERCE) 

was opened and re-suspended in 80 uL of DMSO (dimethyl sulfoxide). 25 uL of the 

DSS crosslinking agent was added to the spin cup. The mixture was incubated with 

gentle rocking at room temperature for 60 min. The spin cup was then centrifuged at 

3000 rpm for 30 sec and the flow through was discarded. 400 uL of binding/wash buffer 

was then added to the spin cup and mixed by inverting 10 times. The spin cup was 

centrifuged at 3000 rpm for 30 sec. The flow through was discarded. Addition of wash 

buffer and centrifugation was repeated two more times. The spin cup was placed in a 

fresh 1.5 mL eppendorf tube. 

In duplicate, a spin cup containing DSS-crosslinked polyclonal syntaxin 18 

antibodies was prepared using a procedure identical to that previously described above to 
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prepare the APE1 monoclonal antibody containing spin cup. The spin cup containing 

cross-linked polyclonal syntaxin 18 antibodies was used as negative control. 

Table 14: Composition and identity of the reagents used in immunoprecipitation 
experiments 

Reagent 

Binding/Wash buffer (PIERCE) 

Elution Buffer (PIERCE) 

Antibody Crosslinking Agent (PIERCE) 

Handee™ Spin Cup Columns (PIERCE) 

Composition 

0.14M NaCl, 0.008M sodium phosphate, 
0.002M potassium phosphate, 0.01M KC1 
Final pH= 7.4 
Primary amine solution, Final pH = 2.8 

DSS (disuccinimidyl suberate) 

0.45 urn cellulose acetate filter 

One hundred uL of post-heparin sepharose purified sample or 400 uL of pooled 

gel filtration elution volumes 40-50mL (protein sizes 30-40kDa) were utilized (separate 

spin cup trials) for immunodepletion experiments. Post-heparin-sepharose purified 

sample or gel filtration purified sample was pipetted on top of the beads in the spin cup. 

Spin cups were capped, and incubated with gentle rocking for 2 hrs at 4°C. Spin cups 

were then centrifuged at 3000 rpm for 30 sec. The flow through was saved and labeled 

flow through 1 (FT-1). 400 uL of binding/wash buffer was then added to the top of the 

spin cup. The spin cup was capped, inverted 10 times and centrifuged at 3000 rpm for 30 

sec. The wash/centrifugation step was repeated two more times. 

Elution of bound proteins was performed as follows. 200 uL of PIERCE Seize X 

Immunoprecipitation kit Immunopure IgG Elution Buffer (pH 2.8) was added to the spin 

cups. The cups were capped and inverted 10 times. The cups were then centrifuged at 

3000 rpm for 30 sec and the flow through fraction was saved and labeled elution 1. 
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Elution steps were repeated two more times for a total of 3 times. The elution fractions 

were immediately neutralized with the addition of an equal volume of Tris-Cl pH 9.5. 

A total of one control column using syntaxin 18 polyclonal antibodies and post 

heparin-sepharose purified sample, two APE 1-specific immunodepletion column using 

post heparin-sepharose sample, and one APE 1-specific immunodepletion column using 

pooled (40-50mL) gel filtration purified sample, were performed. 

3.2 Results and Discussion 

3.2.1 Identification of Co-purified Proteins by Western Blot 

Candidate proteins identified in the first and second LC/MS/Mass Spectrometry 

analysis were confirmed using Western blot. Co-purified proteins included cytochrome c 

(lanes 2 and 3, Figure 11-A), cyclophilin B (lanes 2 and 3, Figure 11-B), pancreatic 

ribonuclease A (RNase A) (lane 2, Figure 12; lanes 2 and 3 Figure 13; lane 5, Figure 15-

A; lanes 6-8, Figure 16-A; lanes 6-8, Figure 17-A; lane 3, Figure 18-A), HADHSC (lane 

1, Figure 18-B), and APE1 (lane 2, Figure 15-B; lane 6, Figure 16-B; lanes 5-7, Figure 

17-B) and annexin III (Figure 18-C). Rabbit affinity-purified polyclonal antibodies for 

thioredoxin reductase were obtained and used to determine the presence of thioredoxin 

reductase in post heparin-sepharose purified sample; however, this protein was not 

detected (data not shown). It was concluded that either thioredoxin reductase was not 

present in purified heparin-sepharose sample or was present in extremely low 

concentrations thus preventing detection using Western blot analysis. 
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#*W 

1 2 3 1 2 3 
Anti- Cytochrome c Anti- Cyclophilin B 

Figure 11: Western blot analysis confirming the presence of cytochrome c and 
cyclophilin B in partially purified liver extract. (A) Depicts a Western blot for 
cytochrome c protein using commercially-obtained mouse monoclonal antibody (Abeam 
Inc, Cambridge, MA). Lane 1 contains 2 ug of recombinant bovine pancreatic RNase A. 
Lane 2 contains 5 ug of pooled post-heparin-sepharose purified sample. Lane 3 contains 
pooled post gel filtration purified sample (protein not quantifiable) corresponding to 
elution volumes 65-85 mL. Molecular weight markers (kDa) are shown to the left of blot 
(B) Depicts a Western blot for cyclophilin B protein using rabbit polyclonal antibody 
(Abeam Inc., Cambridge, MA). Lane 1 contains 2 ug of recombinant bovine pancreatic 
RNase A. Lane 2 contains 5 ug of pooled post-heparin-sepharose purified sample. Lane 
3 contains 5 ug of post-Affigel purified sample. Molecular weight markers (kDa) are 
shown to the left. 

A summary of the results from Western blots used to confirm the presence of co-

purified proteins identified using LC/MS/Mass Spectrometry analysis is shown in Table 

15. Several of the protein candidates identified with mass spectroscopy analysis 

including: glutamate dehydrogenase, peroxisomal enoyl hydratase, aldo-keto reductase 

El, glutathione S-transferase, and small nuclear ribonucleoprotein E, were not 

investigated. 
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Table 15: Summary of results from Western blots used to determine the presence of co-
purified proteins identified with LC/MS/Mass Spectrometry analysis one and 
two. 

Protein Candidate from 
LC/MS/Mass Spectroscopy 

Analysis 

Glutamate dehydrogenase 
Thioredoxin reductase 

Peroxisomal enoyl hydratase-like-protein 

Annexin III 

Apurinic/apyrimidinic lyase (AP-
endonuclease) -APE 1 

Aldo-keto reductase El 

L-3 -hydroxyacyl-CoA dehydrogenase 
(HADHSC) 

Glutathione S-transferase 
Cyclophilin B (Peptidyl prolyl isomerase) 

Pancreatic ribonuclease A (RNase A) 

Cytochrome C 

Small nuclear ribonucleoprotein E 

Probed using 
Western blot 

analysis 

No 
Yes 
No 

Yes 
(Figure 33) 

Yes 
(Figures 15,16,17) 

No 
Yes 

(Figure 18) 

No 
Yes 

(Figure 11-B) 
Yes 

(Figures 12,13, 
15-18) 
Yes 

(Figure 11-A) 

No 

Present in post-
heparin-

sepharose sample 

Not determined 
No 

Not determined 

Yes 

Yes 

Not determined 

Yes 

Not determined 
Yes 

Yes 

Yes 

No 

Predicted 
molecular 

weight/Observed 
molecular weight 

(kDa) 
61/-
57/-

36.5/-

36.5/55 

35/34.5 

34.8/-
34/32 

25.6/-
23/22 

17/17 

12.5/13 

11/-

3.2.2 Identifying the 17 kDa Hepatic Endoribonuclease 

One of the major challenges of this research was conclusively identifying the 

proteins responsible for the endoribonuclease activities corresponding to 17 kDa and 35 

kDa as observed from endoribonuclease assays of gel filtration-purified fractions. 

Identification of the 17 kDa endoribonuclease was relatively straight forward as 

compared to the identification of the 35 kDa endoribonuclease. LC/MS/Mass 

Spectrometry data for the 17 kDa endoribonuclease in post heparin-sepharose purified 

sample suggested that it was a member of the RNase A family (RNase 1). Western blot 
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data using RNase 1 affinity-purified polyclonal antibody, conclusively demonstrated that 

RNase 1 was present in post-heparin-sepharose purified sample (Figure 12, lane 2) and in 

post-gel filtration elution volumes of 60-80 mL (10-20 kDa) (Figure 13-B, lane 3; Figure 

15-A, lane 5; Figure 16-A, lanes 6-8; Figure 17-A, lanes 6-8; Figure 18-A, lane 3). In 

addition, correlation between endoribonucleolytic activity in gel filtration elution 

fractions assayed using the standard endoribonuclease assay (Figure 13-A) and a subset 

of the same gel filtration elution fractions visualized with Western blot analysis (Figure 

13-B, lane 3) support the presence of RNase 1. 

Somewhat surprisingly, however, was the presence of multiple bands with 

molecular weights ranging from 30-37 kDa in several of the Western blot samples. Post 

heparin-sepharose sample probed with RNase 1 polyclonal antibody (Figure 12, lane 2) 

exhibit the predicted band at 17 kDa; however, there is a clear band present at 35 kDa. 

Gel filtration elution fraction volumes corresponding molecular weights of 30-40 kDa 

(Figure 13-B, lane 2; Figure 15-A, lane 2) probed with RNase 1 antibody clearly exhibit 

respective bands at 30 kDa and 37 kDa. In addition, anti-RNase 1 Western blot data of 

pooled gel filtration elution fraction volumes (40-50 mL), without treatment with 

reducing agent P-mercaptoethanol, exhibits a dark band of protein at 37 kDa (see Figure 

18-A, lane 1). 

Numerous factors may potentially account for these observations. The polyclonal 

nature of the commercial RNase 1 antibody source may contribute to cross-reaction with 

proteins with approximate molecular weights of 30 kDa and 37 kDa, respectively, present 

in post heparin-sepharose and post gel filtration-purified samples. Alternatively, there 

has been documented glycosylated (Barrabes et al. 2007; Ye et al. 2006) and dimeric 
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(Piccoli et al. 2000; Arnold et al. 1999) mammalian isoforms of RNase 1 -like proteins 

(within the RNase A superfamily) that migrate with molecular weights larger than the 

observed standard sizes of 12- 17 kDa (see Table 2, Chapter 1). This topic will be further 

discussed in section 3.2.4.2. 

V & 

Anti-
RNase 1 

Figure 12: Western blot analysis demonstrating the presence of pancreatic 
ribonuclease A (RNase 1). Lane 1 contains 2 ug of recombinant bovine pancreatic 
RNase A. Lane 2 contains 5 ug of pooled post heparin-sepharose purified sample. The 
blot was probed with commercially obtained RNase 1 polyclonal antibody (GeneTex 
Inc., San Antonio, TX). Molecular weight markers are shown to the left. 
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Figure 13: RNase A is present in partially purified rat liver extract from elution 
volumes following gel filtration chromatography. (A) Depicts an endoribonuclease 
assay of gel filtration column 9. 3.5 ml of post heparin-sepharose sample was loaded at a 
flow rate of 1 mL/min. 4.0 uL sample aliquots taken from fractions with the 
corresponding elution volumes were used for the standard endoribonuclease assay. Filled 
arrow indicates intact c-myc CRD RNA. Bracket and unfilled arrow indicates RNA 
decay products (B) Depicts Western blot analysis of pooled fractions from gel filtration 
column 9. Lane 1 contains 5 ug of recombinant bovine pancreatic RNase A protein. 
Lane 2 contains pooled gel filtration fractions (protein not quantifiable) corresponding to 
elution volumes 40-50 mL. Lane 3 contains pooled gel filtration fractions (protein not 
quantifiable) corresponding to elution volumes 40 -50 mL. 

In summary, substantial evidence gathered using LC/MS/Mass Spectrometry 

analysis, Western blot analysis, and endonuclease activity/protein identity correlation 

experiments using standard endoribonuclease assays and Western blotting, coupled with 

known endoribonucleolytic properties of the RNase A family of proteins, supports the 

notion that rat pancreatic ribonuclease A (RNase 1) is responsible for the observed 

endoribonuclease activity in gel filtration elution volumes 60-80 mL (10-20 kDa). 
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3.2.3 Identifying the 35 kDa Hepatic Endoribonuclease 

As previously stated, identification of the 35 kDa endoribonuclease proved to be 

extremely challenging. Evidence from LC/MS/Mass Spectrometry data, previously 

discussed in Chapter 2 (Table 8 protein band #2; Table 9 protein band #2) supported 

HADHSC (native molecular weight 32 kDa (see Figure 18-B, lane 1) as the 35 kDa 

protein present in both post-heparin-sepharose and gel filtration elution volumes 40-50 

mL (30-40 kDa) which best-correlated with endoribonucleolytic activity. Western blot 

data (Figure 18-B, lane 1) also confirmed the presence of HADHSC in gel filtration 

elution volumes 40-50 mL (30-40 kDa). However, native HADHSC possesses no known 

endonuclease activity. Furthermore, as shown in the standard endoribonuclease assay 

(Figure 14-A, lanes 4-9), the commercial recombinant HADHSC possesses no 

endoribonucleolytic activity in vitro. Standard endoribonuclease reaction cocktail 

mixtures (see Chapter 2, section 2.1.6) were used to test recombinant HADHSC. Based 

on this data, alternative routes were explored in an attempt to elucidate the identity of the 

35 kDa endoribonuclease. 

As shown in Figure 33 (lane 2), the presence of annexin III was confirmed using 

Western blot analysis. Unexpectedly, the observed molecular weight of annexin III was 

approximately 55-60 kDa; a significant discrepancy from the predicted molecular weight 

of 36.5 kDa (see Table 15). Several possible explanations for the observed differences 

include; post-translational modifications and multi-subunit/covalent interactions (non-

disulfide linkages). In addition, annexin III antibodies were rabbit polyclonal in origin, 

thus it is plausible that the commercially-obtained polyclonal antibody source may have 

bound non-specifically to one of the proteins present in post-heparin purified sample. 
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Recombinant commercial annexin III was also tested for endoribonucleolytic activity. As 

shown in Figure 14-B (lanes 4-6 and 10-12), annexin III did not exhibit 

endoribonucleolytic capabilities in vitro. Once again, standard endoribonuclease reaction 

cocktail mixtures outlined in Chapter 2, section 2.1.6, were used to test recombinant 

annexin III. 

B 
Re 

HADHSC 
Nuclease 

(Post-Hep) 
+ + + + + + 

c-myc RNA MDR\RNA 

+ + 
'''"w -i»«Hwi wn^ m v 

c-myc 
CRD 
RNA 

1 2 3 4 5 6 7 8 9 4 5 8 9 10 11 12 

Figure 14: Recombinant HADHSC and annexin III do not exhibit endonuclease 
activity against c-myc CRD RNA. (A) Lanes 1 and 2 contain 1 uL (1U) of post-heparin-
sepharose-purified sample. Lane 3 contains c-myc CRD RNA alone. Lanes 4-9 contain 
increasing concentrations (0.5 uL, 1.0 uL, 1.5 uL, 2.0 uL, 2.5 uL, 3.0 uL, respectively) 
of recombinant HADHSC (stock concentration 3.5 mg/mL) (B) Lane 1 contains c-myc 
CRD RNA alone. Lanes 2 and 3 contain 2 uL (2U) and 4 uL (4U) post heparin 
sepharose purified sample, respectively, incubated with c-myc CRD RNA. Lanes 4-6 
contain 2 uL commercial recombinant annexin III (stock 1.5 mg/mL; GenWay Biotech., 
San Diego, CA) with c-myc CRD RNA. Lanes 2 and 3 contain 2 uL (2U) and 4 uL (4U) 
post heparin sepharose purified sample, respectively, incubated with c-myc CRD RNA. 
Lanes 4-6 contain 2 uL commercial recombinant annexin III (stock 1.5 mg/mL; GenWay 
Biotech., San Diego, CA). Lane 7 contains MDR 1 RNA alone. Lanes 8 and 9 contain 2 
uL (2U) and 4 uL (4U) post heparin-sepharose purified sample, respectively, incubated 
with MDR 1 RNA. Lanes 10-12 contain 2 uL commercial recombinant annexin III 
(GenWay Biotech., San Diego, CA). All reactions were performed for 7 minutes. 
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Figure 15: Western blots illustrating the presence of candidate endoribonucleases 
APE 1 and RNase 1. Elution fractions from gel filtration chromatography #10 were 
utilized (A) Depicts a blot of sequentially pooled elution fractions (lanes 1-5) probed with 
RNase 1 polyclonal antibody. Molecular weight markers (kDa) are shown to the left. (B) 
Depicts the same blot that has been stripped of RNase 1 antibody and re-probed with 
APE 1 (mouse monoclonal; Abeam Inc.). Molecular weight markers (kDa) are shown to 
the left. 

APE1 was the final recombinant protein candidate obtained in an attempt to 

determine the identity of the 35 kDa protein (s) responsible for endoribonuclease activity 

observed in gel filtration elution volumes 40-50 mL. Western blots that were probed for 

RNase 1 and subsequently stripped and re-probed for APE1 clearly demonstrate a protein 

band corresponding to a molecular weight of 34 kDa (Figure 15-B, lane 2; Figure 16-B, 

lane 6; Figure 17-B, lanes 4 and 5). It should be noted that the protein band exhibited in 

Figure 17-B, lane 1 is RNase 1 from the corresponding lane (1) in Figure 17-A. The 
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presence of this band in Figure 17-B was most likely due to incomplete stripping of the 

antibodies from the Western blot exhibited in Figure 17-A. 

In summary, it is evident that APE1 is present in gel filtration elution volumes 

corresponding to peak endoribonuclease activity (40-50 mL). Consequently, two sources 

of recombinant APE1 protein were requested. Initially, APE1 was obtained from Dr. 

Hickson at Oxford University. The second sample was obtained from Dr. Mitrasankar 

UTMB, Galvestin, TX). Experiments involving recombinant APE1 will be presented and 

discussed shortly (see section 3.5.2). 
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Figure 16: Western blots illustrating the presence of candidate endoribonucleases 
APE 1 and RNase 1. Elution fractions from gel filtration chromatography #11 were 
utilized (A) Depicts a blot of sequentially pooled elution fractions (lanes 3-8) probed with 
RNase 1 polyclonal antibody. Lane 1 contains 5 jag of recombinant bovine pancreatic 
RNase A. Lane 2 contains rainbow marker. Molecular weight markers (kDa) are shown 
to the left. (B) Depicts the same blot that has been stripped of RNase 1 antibody and re-
probed with APE 1 (mouse monoclonal; Abeam Inc.). Molecular weight markers (kDa) 
are shown to the left. 
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Figure 17: Western blots illustrating the presence of candidate endoribonucleases 
APE 1 and RNase 1. (A) Depicts a blot of sequentially pooled elution fractions (lanes 3-
8) probed with RNase 1 polyclonal antibody. Lane 1 contains 3 |xg of recombinant 
bovine pancreatic RNase A. Lane 2 contains rainbow marker. Molecular weight 
markers (kDa) are shown to the left. (B) Depicts the identical blot, stripped of RNase 1 
antibody and re-probed with APE1. Molecular weight markers (kDa) are shown to the 
left. 
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Anti-RNase 1 
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Figure 18: Western blot analysis confirming the presence of candidate 
endoribonucleases RNase A, HADHSC and Annexin III (A) Depicts a blot of pooled 
elution volumes from gel filtration column 13 that were resolved on a 15 % SDS-PAGE 
gel without prior treatment with reducing agent (P-mercaptoethanol). The blot was 
probed with polyclonal RNase 1 antibody. Lane 1 consists of a total volume of 2.0 mL 
from pooled fractions corresponding to elution volumes 40-50 mL (protein sizes of 30-40 
kDa). Lane 2 represents 5 ug of recombinant bovine pancreatic RNase A. Lane 3 
contains a total volume of 2.0 mL from pooled fractions corresponding to elution 
volumes 65-80 mL (protein sizes of 10-20 kDa). Molecular weight markers (kDa) are 
shown to the left. (B) Depicts the same blot that has been stripped of RNase 1 antibody 
and re-probed with HADHSC polyclonal antibody (GenWay Biotech., San Diego, CA). 
Molecular weight markers (kDa) are shown to the left. 

3.2.4 Characterizing Native and Recombinant Endoribonucleases 

To further distinguish between the 17 kDa and 35 kDa endoribonucleases and to 

confirm the suspected identities of the proteins identified in the previous sections (3.2.2 

and 3.2.3) several characterization experiments were performed. The first such 

experiment tested the sensitivity to RNase inhibitory protein (commercially available as 
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"RNasin"). The autoradiograph in Figure 19 demonstrates the results of this experiment. 

As expected in the absence of the inhibitory protein, pooled samples from gel filtration 

corresponding to protein sizes 30-40 kDa (lanes 3-6) and 10-20 kDa (lanes 10 and 11), 

respectively exhibit endoribonuclease activity. In the presence of 1 U of RNasin (per 

reaction), endoribonuclease activity is significantly diminished for both gel filtration 

pooled samples (30-40 kDa, lanes 7-9 and 10-20 kDa, lanes 12-14). It should be noted 

that although RNasin is used in reaction mixtures for standard endoribonuclease assays 

(0.5 U/reaction; Chapter 2, section 2.1.6) and both 17 kDa and 35 kDa endoribonucleases 

are sensitive to RNasin, there does not appear to be inhibition of endonucleolytic activity. 

The most likely explanation for this is the ratio of inhibitory protein (RNasin) to 

endoribonuclease present in reaction mixtures. Moreover, the concentration of 

endoribonuclease present in purified samples was sufficiently high enough to mask the 

inhibitory effects of 0.5U RNasin used in the reaction cocktail mixture. 
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Figure 19: Sensitivity of native 35 kDa and 17 kDa endoribonucleases to 
commercial recombinant RNasin (Ribonuclease Inhibitor Protein). All assays were 
performed using 5'- y 32P-radiolabeled c-myc CRD (30,000 cpm/lane). Reactions were 
incubated for 5 minutes. RNA was resolved on a 12% denaturing polyacrylamide/7M 
urea gel. Lanes 1 and 2 contain no enzyme. Lanes 3-6 contain 5 uL aliquots (1U 
enzyme) from pooled fractions corresponding to elution volumes 40-50 mL (protein size 
of 30-40 kDa) without RNasin. Lanes 7-9 contain 1U RNasin and 5 uL aliquots (1U) 
from pooled fractions corresponding to elution volumes 40-50 mL (protein size of 30-40 
kDa). Lanes 10 and 11 contain 3 uL aliquots (3.0U) from pooled fractions corresponding 
to elution volumes of 65-80 mL (protein sizes of 10-20 kDa) without RNasin. Lanes 12-
15 contain 3 uL aliquots (3.0U) from pooled fractions corresponding to elution volumes 
of 65-80 mL (protein sizes of 10-20 kDa) with 1U of RNasin. Filled arrow indicates 
intact c-myc CRD RNA. Bracket and unfilled arrow indicates RNA decay products 

3.2.4.1 Kinetic Analysis 

Optimal enzyme concentrations for both the 17 kDa and 35 kDa native enzymes 

was found to correspond to the middle of DLU/time versus [Enzyme] linear regression 

plots (Figure 21-1(A) and 21-1(B)). Approximately 1U of post gel filtration-purified 17 

kDa native enzyme and 0.5U of post gel filtration-purified 35 kDa native enzyme were 
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used for subsequent kinetic studies. A comparative look at the autoradiographs for the 17 

kDa and 35 kDa enzymes (Figure 20, lanes 14 and 4, respectively), demonstrate that at 

the aforementioned concentrations roughly half of the substrate is decayed in a 5 min 

reaction using the 17 kDa enzyme and in an 8 min reaction using the 35 kDa enzyme. 

Analysis of the native 17 kDa and 35 kDa enzymes, using various substrate 

concentrations (Figure 21-2, (A) and (B), respectively), illustrates that both enzymes 

exhibit Michaelis Menten-type reaction kinetics. Figure 21-2 (A and B) represents assays 

of sample 5'-radiolabeled oligonucleotide substrate concentrations over various stop-time 

periods for the 35 kDa native enzyme. Figure 21-2 (C and D) represents sample 

oligonucleotide substrate concentrations over various stop-time periods for the 17 kDa 

native enzyme. Figure 21-2 (B and C), lanes 1-5, demonstrate that reaction rates as a 

function of time (measured as DLU intensity of decay products) for the 35 kDa native 

enzyme remain relatively constant using the highest subtrate concentrations (1000 pM 

and 5000 pM), respectively. A similar finding for the native 17 kDa endoribonuclease, at 

5000 pM substrate concentration, is shown in Figure 21-2 (D), lanes 1-5. 
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Figure 20: Optimizing working concentration ranges of 17 kDa and 35 kDa native 
enzyme for kinetic analysis. Autoradiographs using 5'-y32P-radiolabeled oligonucleotide 
substrate (all lanes approximately [500 pM\) and resolved on 12% denaturing 
polyacrylamide/7M urea gels. Reaction incubation times are shown on the right. Lanes 1 
and 11 contain oligonucleotide alone. Lanes 2 and 12 contain (3 uL) 3 U post heparin-
sepharose purified enzyme. Lanes 3-10 contain varying concentrations of 35 kDa native 
enzyme. Lanes 13-20 contain varying concentrations of 17 kDa native enzyme. Filled 
arrows represent intact substrate; unfilled arrows represent decay products. 
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Figure 21-1: Linear regression analysis of optimization experiments. All gels 
represent stop-time assays using different enzyme concentrations (A) Linear regression 
analysis using various concentrations of native 35 kDa enzyme. Incubation times were 5, 
8 and 12 min, respectively (B) Linear regression analysis using various concentrations of 
native 17 kDa enzyme. Incubation times were 5, 8 and 10 min, respectively. 
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Figure 21-2: A subset of sample stop-time assays used to obtain data for Michaelis 
Menten kinetic analysis of native 35 kDa and 17 kDa enzymes. Autoradiographs were 
performed using 5'-y 32P-radiolabeled oligonucleotide substrate and resolved on 12% 
denaturing polyacrylamide/7M urea gels. (A) Assay of native 35 kDa enzyme using 1000 
pM concentration of 5'-y32P-radiolabeled oligonucleotide per lane. Lanes 1-5 represent 4, 
8, 10, 12 and 15 minute incubation periods, respectively. (B) Assay of native 35 kDa 
enzyme using 5000 pM concentration of 5'-y32P-radiolabeled oligonucleotide per lane. 
Lanes 1-5 represent 4, 8, 10, 12 and 15 minute incubation periods, respectively. (C) 
Assay of native 17 kDa enzyme using 750 pM concentration of 5'-y32P-radiolabeled 
oligonucleotide per lane. Lanes 1-5 represent 2, 4, 6, 8 and 10 minute incubation periods, 
respectively. (D) Assay of native 17 kDa enzyme using 5000 pM concentration of 5'-
y32P-radiolabeled oligonucleotide per lane. Lanes 1-5 represent 2, 4, 6, 8 and 10 minute 
incubation periods, respectively. Filled arrows represent intact substrate; unfilled arrows 
represent decay product. 

100 



CHAPTER 3- IDENTIFICATION AND CHARACTERIZATION OF 35 kDa AND 
17 kDa HEPATIC ENDORIBONUCLEASES 

I 
70.00 

80.00 

SO .00 

40.00 

30.00 

20.00 

10.00 

DLU vs time (Varying Substrate [ ]) 
Native 17 kDa Endoribonuclease 

• T / / 

: ///* / X 

•//''' <y 

' . / / I . . . 

r// y 

p DLU|530oM| 
T DLU (250 pM) 
X DLU [)0 pM] 
* n i ' p i i r u 

m i 
» 1' 

0.0 

B 

4.0 6,0 8.0 

time (minutes) 

60.00 

1 — 1 

ID 
m 
m Si 
1 
(O 

~) —1 
a 

o 
X 

D _ i 
Q 
• — ' 

40.00 

30.00 

20.00 

10.00 

0.00 

DLU vs time (Varying Substrate [ ]} 
Native 35kDa Endoribonuclease 

10.0 15.0 

time (minutes) 

Figure 21-3: Linear regression analysis of stop-time kinetic assays using varying 5'-
radiolabeled oligonucleotide substrate concentrations Substrate concentrations are 
color-coded and shown in the bottom right corner of the plots. (A) Results for stop-time 
assays at 2, 4, 6, 8 and 10 min for eleven respective substrate concentrations using the 
native 17 kDa enzyme (B) Results for stop-time assays at 4, 8, 10, 12 and 15 min for ten 
respective substrate concentrations using the native 17 kDa enzyme. 
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Figure 21-4: Nonlinear regression analysis of Michaeiis Menten kinetics for the 
native 35 kDa and 17 kDa enzymes (A) Was generated from the slope values at the ten 
respective substrate concentrations in Figure 21-3(B). (B) Was generated from the slope 
values at the eleven respective substrate concentrations in Figure 21-3(A). 

Figure 21-3 (A) and 21-3 (B) display reaction rates (DLU intensity versus time of 

incubation) for the range of substrate concentrations used for both the native 17 kDa and 

35 kDa endoribonucleases. The data for the values of the slopes from these linear 

regression analyses were subsequently plotted as a function of substrate concentration. 

The results of nonlinear regression analysis using a Michaeiis Menten curve fit 

(KaleidaGraph 3.6.2) for the native 35 kDa and 17 kDa enzymes is shown in Figure 21-4 

(A) and (B), respectively. 

With increasing oligonucleotide substrate concentration, both the 17 kDa and 35 

kDa endoribonucleases exhibited saturation kinetics. Moreover, as substrate RNA is 

increased to very high levels, the enzymes become saturated and the rate of decay 

product approaches a constant rate. This is illustrated by a decrease in the slope values 
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exhibited in Figure 21-3 (A) and 21-3 (B) and by a horizontal flattening of the curves in 

Figure 21-4 (A) and 21-4 (B). As the enzymes become saturated with substrate (at very 

high substrate concentrations), Vmax is approached. However, theoretical Vmax values are 

never actually reached. Instead, the characteristic velocity (v) value for the enzymes is 

defined by the substrate concentration [5'-radiolabeled oligonucleotide substrate] equal to 

half of the maximum rate (Vmax/2). Moreover, Km is the concentration of substrate that 

leads to half-maximal enzyme velocity. This value is is termed the Michaelis Menten 

constant. It should also be noted that at Vmax other factors such as pH, and temperature 

may influence the rate of reaction. Km values for the 17 kDa and 35 kDa 

endoribonucleases were 381.82 pM and 75.593 pM, respectively. Vmax for the native 17 

kDa endoribonuclease was 763.64pM min"1. Vmax for the native 35 kDa endoribonuclease 

was 151.2/?M min"1. 

It should be noted that error bars were not included in Figure 21-3 (A and B), and 

Figure 21-4 (A and B) because duplicate experiments using the substrate values shown 

(see Figure 21-3 (A) and 21-3 (B), were not performed, thus no standard deviation values 

were calculated. Additionally, Vmax (±) and Km (±) values were not included as standard 

deviation values were not calculated. Future experiments designed to fully characterize 

reaction kinetics of the native 17 kDa and 35 kDa enzymes should repeat 

endoribonuclease assays two or three times for all substrate concentrations chosen. This 

will enable calculation of standard deviation values and will improve the accuracy of 

Vmax and Km values. 
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3.2.4.2 Assessing Structural Features of the Native 35 kDa Endoribonuclease 

Previous results from Western blots demonstrate that RNase 1 polyclonal 

antibody cross-reacts with proteins exhibiting molecular weights of 30 kDa and 37 kDa, 

respectively (Figure 12, lane 2; Figure 13-B, lane 2; Figure 15-A, lane 2). There are three 

possibilities to account for such observations: (i) The 17 kDa rat pancreatic RNase A is a 

monomeric N-glycosylated protein, (ii) 17 kDa rat pancreatic RNase A forms a dimer, or 

(iii) an RNase 1 -like protein within the the molecular weight range of 30-40 kDa can be 

detected by the RNase 1 polyclonal antibody source used. To test the first possibility, 

post heparin-sepharose sample was pre-treated overnight with N-glycosidase F and 

subsequently purified with gel filtration chromatography. Figure 22 clearly demonstrates 

endoribonuclease activity in elution volumes 45-53 mL (proteins in molecular weight 

ranges of 25-40 kDa), and elution volumes 62-80 mL. Therefore, it is not likely that the 

35 kDa endoribonuclease activity is due to an N-glycosylated isoform of rat pancreactic 

RNase A. Interestingly, there appears to be endonucleolytic activity in elution volumes 

38- 40 mL (corresponding to proteins within the molecular weight range of 60-70 kDa). 

These results were somewhat surprising given that endonucleolytic activity had not 

previously been observed in elution volumes 38-40 mL. It was concluded that these 

observations were most likely the result of elution fraction contamination prior to 

performing endoribonuclease assays. 
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Figure 22: Assessing post-translational modifications of native 35 kDa 
endoribonuclease using recombinant N-glycosidase F. Autoradiograph depicting a 
standard endoribonuclease assay using 5'- y 32P-radiolabeled c-myc CRD 1705-1886 of 
elution fractions from gel filtration chromatography. 3.0 mL of post-heparin sepharose 
sample was incubated overnight at 30°C with 100 U of N-glycosidase F enzyme mixture 
(100U; 1 U = 1 \iL) prior to loading on gel filtration column. 4 uL aliquots (0.75U 
enzyme) from 0.5 mL fractions corresponding to the elution volumes shown above each 
lane were utilized for the endoribonuclease assay. Intact c-myc CRD probe is shown with 
a filled arrow. RNA decay products are shown with a bracket and unfilled arrow. 

To test the second possibility, post heparin-sepharose purified sample was 

incubated with a final concentration of 250 mM DTT to determine if the 35 kDa 

endoribonuclease was monomeric or dimeric. If the 35 kDa endoribonuclease were 

dimeric, one would expect treatment with DTT to disrupt subunit linkages (disulfide 

bridging). Consequently the apparent molecular weight of endoribonuclease activity (if 

individual subunits retained enzyme activity) would become representative of individual 

subunit size. Moreover, one would expect a disappearance or a significant decrease in the 

intensity of endoribonuclease activity in elution volumes 40-50 mL (30-40 kDa 

molecular weight range). 
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As illustrated in the autoradiograph below (Figure 23), two distinct 

endoribonucleolytic activities are still observed. The larger activity suggests that 

endoribonuclease activity is present in elution volumes 41-49 mL (molecular weight 

range of 30 kDa-40 kDa) and elution volumes 63-82 mL (molecular weight range of 12-

20 kDa). The continued presence of endoribonuclease activity (molecular weight range 

of 30-40 kDa) indicates that the protein responsible for 35 kDa endoribonuclease activity 

is most likely monomeric. Given the evidence presented, this hypothesis appears to be 

most plausible. 
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Figure 23: Assessing the properties of native 35 kDa endoribonuclease using DTT. 
Autoradiograph depicting a standard endoribonuclease assay using 5'- y P-radiolabeled 
c-myc CRD 1705-1886 of elution fractions from gel filtration chromatography. 3.0 mL 
of post heparin-sepharose sample was incubated for 60 minutes at 4°C in the presence of 
250 mM DTT. 4 uL aliquots from 0.5 mL fractions corresponding to the elution volumes 
shown above each lane were utilized for the endoribonuclease assay. Intact c-myc CRD 
probe is shown with a filled arrow. RNA decay products are shown with a bracket and 
unfilled arrow. 
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3.2.5 Recombinant APE1 

Recombinant APE1 was obtained from a lab in Texas and from the Hickson lab in 

the UK. Following dialysis, recombinant APE1 was assayed using standard 

endoribonuclease assay protocol. Figure 24-A and 24-B depict the results of the assays. 

It is evident from Figures 24-A, lane 4 (Hickson's lab, UK) and 24-B, lanes 7-9 that both 

recombinant APE1 samples obtained exhibit endoribonuclease activity. Cleavage sites 

generated by recombinant APE1 samples appear to exhibit similarity to both post 

heparin-sepharose sample (Figure 24-B, lanes 2-6) and pooled post-gel filtration elution 

volumes 40-50 mL (30-40 kDa). In addition, recombinant samples of APE1 appear to 

generate additional cleavage products near the bottom of the gels (Figure 24-A, lane 4; 

Figure 24-B, lanes 7-9); however, sequencing gel analysis (shown in Figure 24-C) was 

required to definitively map endonucleolytic-cleaved RNA products. 
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Figure 24: Endoribonuclease assays illustrating the ability of recombinant APE 1 to 
endonucleolytically-cleave c-myc CRD RNA in vitro. All assays were carried out using 
5'- y P-radiolabeled c-myc CRD. Reactions were incubated for 5 minutes (A) 
Autoradiograph of a standard endoribonuclease assay using pooled post gel filtration 
purified sample and recombinant APE1 protein (obtained from Hickson's lab, UK). Lane 
1 contains c-myc CRD RNA alone. Lanes 2 and 3 contain 5 uL of pooled gel filtration 
elution volumes 40-50 mL (protein sizes 30-40 kDa). Lane 4 contains 1 uL dialyzed 
recombinant APE1 (stock 4 mg/mL). Intact c-myc CRD probe is shown with a filled 
arrow. RNA decay products are shown with a bracket and unfilled arrow. (B) 
Autoradiograph of a standard endoribonuclease assay using pooled post heparin-
sepharose purified sample and recombinant APE1 protein (Sankar's lab, TX). Lane 1 
contains c-myc CRD RNA alone. Lanes 2-6 contain 1 uL (1U), 2 uL (2U), 3 uL (3U), 4 
uL(4U) and 5 uL (5U), respectively, of post heparin-sepharose purified sample. Lanes 7-
9 contain 1 uL, 2 uL, 3 uL recombinant APE1 respectively (stock 0.3 mg/mL). 

Although endoribonuclease assays using recombinant APE1 samples exhibited 

endoribonucleolytic activity (Figure 24-A, lane 4; Figure 24-B, lanes 7-9) the purity of 

the recombinant samples to date was unknown. The possibility of contamination, in 

particular co-purification of RNases during recombinant APE1 preparation, could 

potentially have occurred. Figures 25-A and 25-B demonstrate the assessment of 

recombinant APE1 sample purity. As shown in Figure 25-A, lanes 2 and 3, a large 
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protein band is present corresponding to an approximate molecular weight of 33-35 kDa. 

Western blots of recombinant APE1 samples shown in Figure 25-B (lanes 1 and 2), 

clearly demonstrates the presence of a protein band corresponding to a molecular weight 

of approximately 34 kDa. The blot was probed with anti-APEl monoclonal antibody, 

thus it was concluded that the protein bands exhibited at 34 kDa were indeed recombinant 

APE1. Results to date using two different sources of recombinant APE1 strongly suggest 

that APE1 is the protein responsible for observed endoribonuclease activity exhibited by 

the 30-40 kDa purified native enzyme; however, the immunodepletion experiments 

presented and discussed shortly (see section 3.2.7) were used to further confirm these 

results. 
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Figure 25: Assessing the purity of recombinant APE 1 samples. (A) 15% SDS-
PAGE stained with Coomassie Brilliant Blue. Lane 1 contains low molecular weight 
protein marker. Lane 2 contains 5 |ug of recombinant APE1 (Dr. Sankar's lab, TX). 
Lane 3 contains 1 \ig recombinant APE1 (Hickson's lab, UK). Molecular weight marker 
sizes (M) are shown to the left of the lane 1 (B) Western blot depicting recombinant 
APE1 samples probed with mouse monoclonal APE1 antibody. Lane 1 contains 3 |ig of 
recombinant APE1 (Dr. Sankar's lab, TX). Lane 2 contains 3 (xg of recombinant APE1 
(Hickson's lab, UK). Molecular weight markers are shown to the left. 

*Note: Western blot shown in Figure 25-B does not represent the SDS-PAGE gel shown 
in Figure 25-B 
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3.2.5.1 Mapping RNA Cleavage Products Generated by Native 35 kDa, 
17 kDa and Recombinant Endoribonucleases 

A comparison of the RNA cleavage (decay) products generated with purified 

native enzyme from post heparin-sepharose, post gel filtration chromatography, bovine 

pancreatic RNase A and recombinant APE 1 are shown in Figure 26 panels A, B and C. 

The cleavage profile exhibited by post-heparin sepharose purified sample in the presence 

of c-myc CRD RNA 1705-1886 presented in Figure 26-A, lane 3 and Figure 26-B, lane 9 

was mapped according to previously reported data (Bergstrom et al. 2006) and using 

RNase Tl digest of c-myc CRD RNA 1705-1886 (Figure 26-A, lane 1; Figure 26-C, lane 

1). 

RNA cleavage products from post heparin-sepharose (Figure 26-A, lane 3; Figure 

26-B, lane 9), gel filtration 10-20 kDa (Figure 26-B, lanes 10-11), gel filtration 30-40 

kDa (Figure 26-A, lanes 4-6; Figure 26-B, lanes 12-13; Figure 26-C, lanes 4-5), and 

recombinant bovine pancreatic RNase A (Figure 26-B, lane 8) exhibited a high degree of 

similarity. Post heparin-sepharose-purified sample (Figure 26-A, lane 3; Figure 26-B, 

lane 9) and pooled gel filtration elution sample corresponding to proteins in the molecular 

weight range of 10-20 kDa (Figure 26-B, lanes 10-11) appeared to generate identical 

cleavage products. Recombinant bovine pancreatic RNase A appeared to generate nearly 

identical cleavage products (Figure 26-B, lane 8) with the exception of an additional 

cleavage product; (illustrated with the bracket, Figure 26-B, lane 8) as compared to both 

post heparin-sepharose and post gel filtration (10-20 kDa) samples. 

Pooled gel filtration elution volumes corresponding to proteins in the molecular 

weight range of 30-40 kDa (35 kDa endoribonuclease) (Figure 26-A, lanes 4-6; Figure 

26-B, lanes 12 and 13; Figure 26-C, lanes 4 and 5) produces several RNA decay products 
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identical to those observed in post-heparin, post gel filtration (10-20 kDa) and to that of 

recombinant bovine pancreatic RNase A. The major differences being that the 35 kDa 

produces fewer decay products and exhibits slightly different dinucleotide cleavage site 

preference. As shown in Figure 26-A (lanes 4-6) and Figure 26-B (lanes 12 and 13), 

native 35 kDa endoribonuclease appears to preferentially cleave the dinucleotide UA 

1751 shown by asterisks in Figure 26-A and -B. In addition, native 35 kDa 

endoribonuclease appears to preferentially cleave dinucleotide CA, 1771 and dinucleotide 

UA, 1773. 

If APE 1 is indeed the protein that exhibited endonuclease activity in native pooled 

gel filtration elution volumes (protein sizes 30-40 kDa), one would expect RNA cleavage 

fragments to have exhibited a high degree of similarity to decay products produced by 

native 35 kDa endoribonuclease. RNA decay products produced by recombinant APE1 

(Figure 26-C, lanes 5-7) and native 35 kDa endoribonuclease (Figure 26-A, lanes 4-6; 

Figure 26-B, lanes 12 and 13; Figure 26-C, lanes 3 and 4) exhibited one identical 

cleavage site. As illustrated with the un-filled arrow in Figure 26-C, both native 35 kDa 

endoribonuclease and recombinant APE1 preferentially cleave dinucleotide 1751 UA. 

This data does not conclusively prove that APE1 is the protein responsible for 35 kDa 

endoribonucleolytic activity in native extract; however, it does demonstrate that both 

recombinant APE1 and native 35 kDa endoribonuclease preferentially cleave 5'- y 32P-

radiolabeled c-myc CRD RNA at dinucleotide 1751 UA. 
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Figure 26: Mapping cleavage products generated with native endoribonuclease 
samples, recombinant RNase A and recombinant APE1. All mapping experiments 
were resolved on 12% denaturing polyacrylamide/7M urea sequencing gels. (A) 
Endoribonuclease assay using 5'-y32P-radiolabeled c-myc CRD RNA. Reactions were 
incubated for 7 minutes. Lane 1 contains RNase Tl digest of c-myc CRD RNA 1705-
1886. Lane 3 contains 2 uL (2U) of post heparin-sepharose purified sample. Lanes 4-6 
contain 4 uL (0.75U), 3 uL (0.6U), and 2 uL (0.4U) of pooled gel filtration elution 
volumes 40-50 mL (protein sizes 30-40 kDa), respectively. Tl digests are labeled to the 
left of lane 1. (B) Endoribonuclease assay using 5'-y32P-radiolabeled c-myc CRD. 
Reactions were incubated for 5 minutes. Lane 8 contains 1U (1 U=l uL) bovine 
pancreatic RNase A. Lane 9 contains 3 uL of pooled post heparin sepharose purified 
sample. Lanes 10 and 11 contain 1 uL (1U) and 3 uL (3U), respectively, from pooled 
fractions corresponding to elution volumes 65-80 mL (protein sizes of 10-20 kDa). 
Lanes 12 and 13 contain 4 uL (0.75U) and 5 uL (1U), respectively, of pooled gel 
filtration elution volumes 40-50 mL. (C) Autoradiograph of a standard endoribonuclease 
assay using 5'-y32P-radiolabeled c-myc CRD RNA. Reactions were incubated for 10 
minutes. Lane 1 contains RNase Tl digest of 5'-y32P-radiolabeled c-myc CRD 1705-
1886. Lanes 4 and 5 contain 3 uL (0.6U) and 4 uL (0.75U), respectively, of pooled gel 
filtration elution volumes 40-50 mL. Lanes 5-7 contain 1 uL, 2 uL, and 3 uL, 
respectively, of recombinant APE1 sample obtained from Dr. Sankra's lab (Texas) (stock 
0.3 mg/mL). Tl digests are labeled to the left of lane 1. 
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3.2.6 Electrophoretic Mobility Shift Assays 

EMSA experiments were designed to assess the physical interaction between 

respective recombinant samples of HADHSC, APE1 and 5'-y32P-radiolabeled c-myc CRD 

1705-1886 RNA. EMSA protocols were adopted from methods previously used by 

Sparanese and Lee (2007) and Prokipcak et al. (1994). Optimization of binding 

conditions was based on the in vitro interaction between CRD-BP and 5'-y P-

radiolabeled c-myc CRD 1705-1886 RNA. The optimal reaction conditions were 

identical to those previously outlined by Sparanese and Lee (2007). Optimum binding 

conditions were measured by the intensity of binding complexes. Figure 27, lanes 12 and 

13, illustrate an 'optimal' binding interaction between CRD-BP and 5'-y32P-radiolabeled 

c-myc CRD 1705-1886 RNA. Optimal binding conditions for CRD-BP/5'-y32P-

radiolabeled c-myc CRD 1705-1886 RNA were utilized for EMSA experiments using 5'-

y32P-radiolabeled c-myc CRD 1705-1886 RNA /HADHSC and APE1, respectively. 

Previous work by Sparanese and Lee (2007) demonstrated that recombinant forms of 

Rpp20, Rpp21 and Rpp40 do not bind 5'-y32P-radiolabeled c-myc CRD 1705-1886 RNA 

in vitro. As such, recombinant forms of Rpp20, Rpp21, and Rpp40 were utilized as 

negative controls in these experiments. Figure 27 (lanes 9, 10 and 11) and Figure 28 

(lanes 5, 6 and 7) demonstrate that at 500 nM Rpp 20, 21 and 40 do not bind 5'-y32P-

radiolabeled c-myc CRD 1705-1886 RNA. 

Figure 27 illustrates the binding of HADHSC to 5'- y 32P-radiolabeled c-myc CRD 

1705-1886 RNA. At lowest nanomolar concentrations (100 nM, lane 8), a lower binding 

complex is formed. As nanomolar concentrations of HADHSC are increased (200nM, 

300nM, 500nM; lanes 7, 6 and 5 respectively) a second binding complex is formed and 
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the intensity of the lower binding complex is greatly reduced. At highest nanomolar 

concentrations of HADHSC (750 nM, 1000 nM, 1500 nM; lanes 4, 3, and 2, 

respectively), the lower binding complex disappears whereas the larger binding complex 

is enhanced. It should be noted, however, that even at highest nanomolar concentrations 

of HADHSC (1500 nM, lane 2) the intensity of the larger complex is much lower when 

compared to that of the interaction between CRD-BP (2000 nM) and c-myc CRD RNA 

(lanes 12 and 13). 

c 

f_g_4Wf 
V ff$$#$$ / / 

Bound [ 

nM 

*M 

Unbound I , ...ittttt...,..^ „ , J 

' :»:;::.;':. i l X 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure 27: HADHSC is capable of binding to c-myc CRD RNA in vitro. Lanes 1 and 
14 contain c-myc CRD RNA alone. Lanes 13 and 14 contain 2000 nanomolar (nM) 
dialyzed CRD-BP as positive control. Lanes 9-11 contain 500 nM of non-RNA binding 
proteins Rpp 20, 21 and 40, respectively, as negative control. Lanes 2-8 contain varying 
nanomolar (nM) concentrations of HADHSC. 

As demonstrated in Figure 28, lane 4, 8 and 9, at 1000-2500 nM, recombinant 

APE1 binds 5'-y32P-radiolabeled c-myc CRD 1705-1886 RNA. Two binding complexes 

are observed for all micromolar concentrations utilized (1 uM, lanes 4; 2 uM, lane 8; 2.5 

uM, lane 9). Somewhat surprisingly, the intensity of the unbound substrate RNA in lanes 

containing recombinant APE1 (Figure 28, lanes 4, 8 and 9) is significantly diminished. 

The migration of most c-myc substrate RNA appears to have been retarded in the smallest 
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complex. By comparison, little substrate RNA appears in the larger complex. Given the 

relative uniformity in intensity of the larger complex across the range of micromolar 

concentrations utilized, the presence of the larger complex may represent non-specific 

protein/protein interaction, non-specific protein/RNA interaction or a combination of 

both. To determine if the c-myc CRD-1705-1886/HADHSC and c-myc CRD-1705-

1886/APE1 associations are specific, competition studies using unlabeled competitor 

RNA at various molar ratios, would be required. 

1 1.5 1 2.0 2.5 nM 

1 2 3 4 5 6 7 8 9 10 

Figure 28: Recombinant APE1 is capable of binding to c-myc CRD RNA in vitro. 
All lanes were incubated with 5'- y 32P-radiolabeled c-myc CRD 1705-1886 RNA (50,000 
cpm/lane). Lanes 1 and 10 contain c-myc CRD RNA alone. Lanes 2 and 3 contain 1.0 
uM (micromolar) and 1.5 uM of dialyzed CRD-BP, respectively, as positive control. 
Lanes 5-7 contain 500 nanomolar (nM) non-RNA binding proteins Rpp 20, 21 and 40, 
respectively, as negative control. Lane 4 contains 1.0 uM recombinant APE 1 (Hickson's 
lab, UK). Lane 8 and 9 contain 2.0 uM and 2.5 uM APE 1 (Sankar's lab, TX), 
respectively. Concentrations (uM) are shown above each lane. 
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3.2.7 Immunodepletion of Native 35 kDa Endoribonuclease Activity 

To further confirm the identity of the 35 kDa endoribonuclease, immunodepletion 

experiments of native 35 kDa endoribonuclease activity were performed with a PIERCE 

Seize X Protein A Immunoprecipitation kit. c-myc CRD RNA was the primary substrate 

RNA utilized for endoribonuclease assays of immunodepletion experiments. Of note, 

due to its availability, MDR1 RNA was utilized as a comparison RNA substrate in one 

endoribonuclease assay (see Figure 29). 

An autoradiograph of the results from the first immunodepletion experiment using 

the PIERCE Seize X Protein A Immunoprecipitation kit is shown in Figure 29. The spin 

column was constructed using anti-APEl monoclonal antibodies. 50 jag of anti-APEl 

antibody was cross-linked to the spin column matrix as previously described (section 

3.1.7). 

Spin column flow-through (FT, lane 3) and pooled wash fractions (Wash, lane 4) 

exhibit a significant decrease in endonuclease activity. A significant increase in 

endonuclease activity is once again observed in elution fractions 1 and 2 (lanes 5 and 6). 

These results suggest that the first attempted immunodepletion of native heparin-

sepharose extract, using monoclonal antibodies againt recombinant APE1, was 

successful. Moreover, an endoribonuclease present in post heparin-sepharose purified 

sample was bound to the matrix containing cross-linked anti-APEl monoclonal 

antibodies. 
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Figure 29: Autoradiograph depicting successful immunodepletion of native heparin-
sepharose purified extract using APE1 monoclonal antibodies. The endoribonuclease 
assay was performed using 5'- y 32P-radiolabeled MDR 1 RNA. Lanes 1 and 7 contain 
MDR 1 RNA alone. Lane 2 contains 2 uL (2U) post heparin-sepharose purified sample, 
prior to loading onto spin column. Lane 3 contains a 4 uL aliquot of flow through 
fraction 1. Lane 4 contains a 4 uL aliquot from spin column pooled wash (fractions 2 
and 3). Lanes 5 and 6 contain 4 uL aliquots from elution fractions 1 and 2 respectively. 

A second immunodepletion experiment also using a PIERCE Seize X Protein A 

Immunoprecipitation spin column was performed. An autoradiograph of the experiment 

is shown in Figure 30. Post heparin-sepharose purified sample pre-load (lanes 1 and 2) 

exhibited strong endonuclease activity. Pooled flow-through fraction 1 and wash flow #2 

and #3 is shown in 5. There was a clear reduction in observed endonuclease activity in 

the pooled flow through/wash sample (Figure 30; compare lane 5 to lanes 3 and 4). 

Elution fractions were hallmarked by the reappearance of strong endonuclease activity 

MDRU 
RNA 
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(lanes 6-8). Elution fraction 1 (Figure 30, lane 6) exhibited strongest activity. Elution 

fractions 2 and 3 (Figure 30, lanes 7 and 8, respectively) contained endonuclease activity; 

however, it was significantly diminished when compared to elution fraction 1 (Figure 30, 

lane 6). It should be noted that although endonuclease activity was diminished in pooled 

flow through/wash fractions (lane 4), activity remained readily apparent. 

There are two possible explanations for this observation. First, during loading of 

the heparin-sepharose sample, the antibodies present on the spin column matrix may have 

become saturated with protein present in the heparin-sepharose sample load. 

Consequently, unbound endoribonuclease would have passed directly through the 

column. Alternatively (bearing in mind that post heparin-sepharose sample contained 

two distinct (17 kDa and 35 kDa) endoribonuclease activities as previously shown in gel 

filtration chromatographic purification experiments; Chapter 2, Figure 6-A, 6-B and 

Figure 7-A), previous results suggested that the 17 kDa (RNase 1) and 35 kDa 

endoribonuclease (APE1) were distinct proteins. Considering that APE1 monoclonal 

antibodies were used to construct the immunoprecipitation spin column, it was expected 

that the 17 kDa RNase 1 protein in heparin-sepharose purified sample would not bind to 

the column matrix. Consequently, it is not surprising that endonuclease activity is 

present in pooled wash and flow through fractions (Figure 30; lane 5). 
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Figure 30: Autoradiograph depicting successful immunodepletion of native 
heparin-sepharose purified extract using APE1 monoclonal antibody. The standard 
endoribonuclease assay was performed using 5'-radiolabeled c-myc CRD RNA (A) 
Immunodepletion of native 35 kDa endoribonuclease activity. Lanes 1 contains 1 uL 
(1U) of post heparin sepharose purified sample (positive control). Lane 2 contains c-myc 
CRD RNA alone. Lanes 3 and 4 contain 2 ]xL (2U) and 3 uL (3U) aliquots of post 
heparin-sepharose purified sample (spin column pre-load). Lane 5 contains 4 uL of 
pooled flow through 1 and flow through 2 (wash). Lanes 6, 7 and 8 contain 4 ^L aliquots 
of elution fractions 1, 2 and 3, respectively. 

A third spin column (Figure 31-B) was constructed using syntaxin 18 polyclonal 

antibodies. Thirty |ig of syntaxin 18 polyclonal antibody was cross-linked to the protein 

A spin column matrix as previously outlined (Chapter 3, section 3.1.7). This column was 

constructed to function as a negative control. A Western blot of the third 

immunodepletion experiment was also performed (see Figure 32). 

Figure 31-A illustrates successful immunodepletion of post gel filtration (30-40 

kDa) purified native extract. This was perhaps the most clear-cut evidence supporting 

successful immunodepletion of post gel-filtration (30-40 kDa) purified native extract. 
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Flow-through/wash lanes (Figure 31-A, lanes 6 and 7) were marked by the absence of 

endonuclease activity. Elution fraction 1 (Figure 31-A, lane 8) illustrates the re

appearance of endonuclease activity. Elution fraction 2 (Figure 31-A, lane 9) also 

exhibited strong activity; however, it was slightly diminished when compared to elution 

fraction 1 (compare lanes 8 and 9). 

The control column shown in Figure 31-B, demonstrated that heparin-sepharose 

sample activity was not immunodepleted with syntaxin 18 polyclonal antibody. The flow 

through (FT, Figure 31-B, lane 1) and pooled wash fraction two and three (Wash, Figure 

31-B, lane 3) displayed strong endonuclease activity with similar intensity to post 

heparin-sepharose column pre-load (Figure 31-B, compare lanes 1, 2 and 3). In contrast, 

elution fractions 1 and 2 (Figure 31-B, lanes 4 and 5, respectively) did not exhibit 

endonuclease activity. Results from the control column demonstrated that 

immunodepletion of endoribonuclease activity observed in previous immunodepletion 

columns (Figures 29, 30, 31-A) was produced specifically by the presence of anti-APEl 

monoclonal antibodies. 
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Figure 31: Successful immunodepletion of native 35 kDa endoribonuclease activity. 
(A) Lane 1 contains c-myc CRD RNA alone. Lanes 2 and 3 contain 2 uL (2U) and 3 uL 
(3U) of post heparin sepharose purified sample, respectively. Lanes 4 and 5 contain 4 uL 
(0.75U) and 5 uL (1U) aliquots of pooled gel filtration elution volumes 40-50 mL 
(protein sizes 30-40kDa), respectively. Lanes 6 and 7 contain 4 uL aliquots of flow 
through 1 and flow through 2 (Wash), respectively. Lanes 8 contains 4 uL from elution 
1. Lane 9 contains 4 uL from elution 2. Lane 10 contains 4 uL from elution 3. (B) 
Control column using syntaxin 18 polyclonal antibody. Lane 1 contains 2 uL (2U) of 
post heparin-sepharose purified sample. Lane 2 contains 4 uL of flow through 1. Lane 3 
contains 4 uL of pooled flow through fractions 2 and 3 (Wash). Lanes 4 and 5 contain 4 
uL of elution fractions 1 and 2, respectively. 

Figure 32 demonstrates Western blot analysis of the immunodepletion experiment 

shown in Figure 31-A. There was a striking similarity between endonuclease activity in 

post gel filtration (30-40 kDa) purified pre-load (Figure 31-A, lanes 4 and 5), elution 

fractions 1 and 2 (Figure 31-A, lanes 8 and 9, respectively) and the presence of APE1 in 

corresponding fractions (Figure 32, pre-load lane 2; Figure 32, elution fractions 1 and 2, 

lanes 6 and 7, respectively). In addition, the absence of endonuclease activity in wash 
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fractions (Figure 31-A, lanes 6 and 7) corresponded with the absence of APE 1 in flow 

through (FT) and wash fractions (Wash) on the Western blot shown in Figure 32. 
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Figure 32: Western blot result of APE 1 immunodepletion experiment. Molecular 
weight markers are shown to the left of blot. Lane 1 contains 0.5 \ig recombinant APE 1 
(Sankar's lab, TX). Lane 2 consists of a total volume of 2.0 mL from pooled fractions 
corresponding to elution volumes 40-50 mL (protein sizes of 30-40 kDa). Lane 3 
contains flow through fraction 1. Lanes 4 and 5 contain flow through fractions 2 and 3 
(wash). Lanes 6 and 7 contain elution fraction 1 and 2, respectively. 

A final experiment was done to test for the presence of annexin III and HADHSC 

in the immunodepleted native gel filtration (30-40 kDa) sample. The blot shown in 

Figure 32 was stripped and re-probed with anti-HADHSC and anti-annexin III antibodies, 

respectively. Figure 33 illustrates that annexin III is present in post gel filtration (30-40 

kDa) pre-load sample (lane 2); however, it is not present in flow through (FT, lane3), 

wash (lanes 4 and 5), or elution (lanes 6 and 7) samples. HADHSC did not appear on the 

blot (data not shown). These results led to the conclusion that annexin III and HADHSC 

do not contribute to native 35 kDa endoribonuclease activity. 

122 



CHAPTER 3- IDENTIFICATION AND CHARACTERIZATION OF 35 kDa AND 
17 kDa HEPATIC ENDORIBONUCLEASES 

Overall, this evidence strongly supports the notion that APE1 was the candidate 

protein responsible for the 35 kDa endoribonuclease activity observed throughout the 

purification of native rat liver extract. 

^ 

kDa 

if 

Anti-Annexin3 

1 2 3 4 5 6 7 

Figure 33: Annexin III is present in post-GF 30-40 kDa sample but does not 
contribute to endonuclease activity. Lane 1 contains 0.5 ĵ g recombinant APE1 
(Sankar's lab, TX). Lane 2 consists of a total volume of 2.0 mL from pooled fractions 
corresponding to elution volumes 40-50 mL (protein sizes of 30-40 kDa). Lane 3 
contains flow through fraction 1. Lanes 4 and 5 contain flow through fractions 2 and 3 
(wash). Lanes 6 and 7 contain elution fraction 1 and 2, respectively. 
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CHAPTER 4 

General Discussion 

4.1 Introductory Overview-

Multifunctional Mammalian Proteins with Endoribonucleolytic Activity 

The role of endoribonucleases in mammalian gene expression has become 

increasingly evident; in particular, the role of these endoribonucleases in specialized 

mRNA decay pathways (Dodson and Shapiro 2002; Tourriere et al. 2001; 

Chernokalskaya et al. 1998; Hollien and Weissman 2006). However, much is still to be 

learned about the significance of mammalian endoribonucleases in controlling basal 

levels of gene expression. Of particular interest is the significance of the discovery that 

various mammalian proteins exhibit bifunctional or multifunctional capabilities, 

including endoribonucleolytic function. Often, the known function of a protein family, 

based largely on primary amino acid sequence, has not provided an adequate predictive 

measure of endonucleolytic function. Ras-GTPase activating protein SH3 domain 

binding protein (G3BP), Polysomal Ribonuclease 1 (PMR 1), Inositol-Requiring Enzyme 

1 (IRE 1), and Argonaute 2 (Ago 2) are but a few of the clear examples of 

endoribonucleases where such phenomena are observed. 

Recent studies would suggest that multifunctional mammalian proteins that 

exhibit endoribonucleolytic properties are of paramount importance for cell growth and 

differentiation (Bisbal et al. 2000). This is most clearly shown in current studies that 

have established a link between external stimuli and direct alteration of mRNA transcript 
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stability; most notably, the signal transduction pathways and hormonal based regulatory 

pathways. 

Hormonal regulation of mRNA transcripts represents an example of a well-

documented mechanism in which the availability of the target cleavage site is determined 

through trans-acting RNA-binding proteins. The effects of estrogen on vitelloginen and 

albumin mRNA stabilities in Xenopus laevis is one of the most extensively studied 

examples (Blume and Shapiro 1989; Chernokalskaya et al. 1998). Hormonal-based 

regulation of mammalian endoribonucleases has also been observed in the family of 

RNase A proteins. Studies designed to assess the extracellular distribution of this family 

of endoribonuclease proteins, performed in rat vaginal and uterine epithelial tissues, 

suggests that highly elevated levels of estradiol may alter the interaction between 

pancreatic type RNases and the inhibitory RNase proteins; however, the precise 

mechanism underlying the alteration is not yet known (Brockdorff and Knowler 1986; 

Schauer et al. 1991; Rao etal. 1994). 

Structural activation or suppression of proteins with endoribonuclease activity 

represents an alternate means for controlling their catalytic activity. Prime examples 

include RNase L and G3BP. It has been proposed that G3BP is targeted to the nucleus 

through phosphorylation of a serine 149 residue within an N-terminal fragment 2 (NTF-

2) like domain which functions as a signal for nuclear import and integration of G3BP 

into mRNP complexes with the eventual role of degrading c-myc mRNA via 

endonucleolytic cleavage (Tourriere et al. 2001). In fact, c-myc mRNA decay is delayed 

in RasGap-deficient mouse fibroblasts that lack the serine 149 phosphorylation site 

required for nuclear import, providing further support for this hypothesis (Tourriere et al. 
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2001). As such, it is quite plausible that a growth factor-induced change in mRNA decay 

may be modulated by the nuclear localization of a site-specific endoribonuclease such as 

G3BP (Irvine et al. 2004). The notion that a signal transduction mechanism is required 

for the activation of G3BPs endonucleolytic function is also supported by its localization 

in stress granules. Stress granule formation and the induction of heat-shock proteins and 

various stress-induced transcription factors upon exposure to UV light, elevated 

temperature and in the presence of oxidative reagents is a well documented pathway; 

however, the list of players involved in this response is incomplete (Tourriere et al. 2003, 

Tourriere et al. 2005). It is entirely possible that G3BP may function in controlling the 

fate of mRNAs during these cellular stress events. Further evidence of G3BP's role in 

vertebrate development has been generated through study of G3BP knockout mice. 

Absence of G3BP in mice during embryonic development has been shown to retard fetal 

growth and result in neuronal cell death (Zekri et al. 2005). Such findings lend support to 

the possibility that the endoribonucleolytic activity possessed by G3BP in vitro may play 

a significant role in posttranscriptional regulation of selected mRNAs in response to 

changing growth conditions and extracellular stimuli. 

As a testament to the diversity of endoribonuclease proteins, Canete-Soler and 

colleagues (2005) found that the aldolase A and C isozymes have a possible function as 

endoribonucleases within specific mRNP complexes, with an ability to cleave the NF 

transcript at UG sites. These studies suggest that a neuronal-specific mechanism, in 

response to an extracellular stimulus, functions to activate the endoribonucleolytic 

activity of aldolases A and C thus promoting cleavage of the NF-L mRNA transcript 

(Canete-Soler et al. 2005). This model of mRNA regulation is similar to the 
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aforementioned hormonal-type regulation of mRNA transcripts whereby access to the 

transcript is controlled by competing levels of endoribonuclease and the binding 

protein(s) that associate with select locations on the mRNA transcript. The neuronal-

expressed glycolytic enzymes aldolase A and aldolase C have also been shown to bind 

the light neurofilament (NF-L) in vitro and in vivo (Canete-Soler et al. 2005). 

Additionally, they have been shown to compete with poly (A)-binding protein (PABP) 

within NF mRNPs in vivo (Canete-Soler et al. 2005). The aldolase A and C isozymes 

were initially discovered and characterized as proteins functioning in glycolytic, 

gluconeogenic, and fructose metabolic pathways. Interestingly, cells coexpressing 

aldolases A and C have heterotetramers that bind to the NF-L mRNA and function 

differently than the homotetramers present in cells that express one distinctive form of 

the isozyme (Canete-Soler et al. 2005). Consequently, they have hypothesized that the 

differential expression may represent a mechanism that utilizes structural variation in the 

A and C isozymes to control gene expression in subsets of neurons, possibly in response 

to varying environmental stimuli. 

Given the wide-ranging implications of c-myc overexpression in carcinogenesis 

(Ioannidis et al. 2004), the link between signal transduction pathways/ endoribonuclease 

activation, and the numerous mammalian proteins that exhibit multiple functions 

including endoribonucleolytic activity, elucidating the identity of the native mammalian 

endoribonuclease(s) is of prime importance. In addition, it will provide insight into the 

mechanisms, players and pathways involved in mammalian mRNA decay. 
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Aims of this Investigation 

There were three aims of this investigation. The first aim was to re-purify the 

native enzyme(s) and the associated proteins from juvenile rat liver tissue that co-purified 

with endoribonucleolytic activity against c-myc CRD RNA. The second aim of this 

research was to confirm the identity of the protein(s) responsible for endoribonucleolytic 

activity against the CRD of c-myc mRNA and to immunodeplete native endonuclease 

activity using appropriate antibodies against the candidate endoribonuclease. The third 

aim of this research was to characterize recombinant form(s) of the native candidate for 

endonucleolytic activity. 

4.2 Purification and Identification of Candidate Endoribonucleases 
with LC/MS/Mass Spectrometry Analysis 

The primary objective of the first portion of this investigation was to re-purify and 

identify candidate proteins responsible for native endoribonuclease activity against c-myc 

CRD RNA. Results from the final column chromatography purification step (gel 

filtration) revealed two distinct endonuclease activities. The larger activity corresponded 

to a protein of 35 kDa, the smaller activity corresponded to a protein of 17 kDa (refer to 

section 2.2.1). Two sets of samples, post heparin-sepharose purified and gel filtration 

purified were sent for LC/MS/Mass Spectrometry analysis. Mass spectrometry results 

revealed several candidate proteins around 35 kDa and one candidate protein at 17 kDa 

(refer to section 2.2.1). The 35 kDa protein candidates investigated were HADHSC, 

annexin III, and APE1. The rationale for investigating these candidate proteins was their 

known or predicted ability to bind or interact with RNA. HADHSC contains a Rossmann 

fold motif known to facilitate binding of nucleotides, including RNA (Arnez and 
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Cavarelli 1997). The annexin family of proteins, namely annexin A2 as been shown to 

bind several RNA substrates, including human c-myc RNA (Filipenko et al. 2004). 

APE1 has multiple documented DNA-specific functionalities including both single-

stranded (Marenstein et al. 2004) and double-stranded DNA-specific endonulease 

activity. In addition, APE1 has been shown to bind RNA and to function by cleaving the 

RNA strand of RNA/DNA duplexes in a manner analogous to RNase H (Barzilay et al. 

1995). To our knowledge, none of the aforementioned proteins had been shown to 

possess endoribonucleolytic activity, so the possibility of uncovering a new function for 

one of these proteins was very exciting. In addition, it was determined that the likely 17 

kDa protein responsible for endoribonuclease acitivty was rat pancreatic RNase A 

(RNase 1). 

4.3 Confirming LC/MS/Mass Spectrometry Results and 
Characterizing Native 35 kDa and 17 kDa Endoribonucleases 

The primary objective of this section of the investigation was to test and confirm 

the identity of native 35 kDa and 17 kDa endoribonucleases. This was accomplished 

through a variety of Western blot and enzyme characterization experiments. It was 

determined that HADHSC, annexin III, APE1 and rat pancreatic RNase A (RNasel) were 

present in native extract (refer to section 3.2.1-3.2.3); however, at this point in the 

investigation it was not yet known which of these proteins contributed to native 35 kDa 

endonuclease activity. 17 kDa endonuclease activity was concluded to be the result of rat 

pancreatic RNasel as gel filtration data and Western blot data exhibited a high degree of 

correlation (refer to sections 3.2.1 and 3.2.2). Unexpectedly, anti-RNase 1 Western blots 

of post-gel filtration purified native sample (30-40 kDa protein sizes) identified a protein 

129 



CHAPTER 4- GENERAL DISCUSSION 

band at approximately 37 kDa. Consequently, further tests were needed to conclusively 

identify the protein(s) responsible for the native 35 kDa endoribonuclease activity. 

To rule out the possibility that the native 35 kDa endonuclease activity was a 

result of a structural variant of an RNasel-like protein, native post heparin-sepharose and 

post-gel filtration (protein sizes 30-40 kDa) was treated (in separate experiments) with N-

glycosidase F and DTT (Figure 22 and Figure 23, respectively). It was determined that 

the native endonuclease activity corresponding to a molecular weight of 35 kDa was 

likely due to a monomeric protein which does not possess N-linked glycosylated 

residues. 

4.3.1 Testing Recombinant Proteins for Endoribonucleolytic Activity 

To determine if HADHSC, annexin III, APE1 or a combination thereof were 

responsible for the native 35 kDa endoribonuclease activity, recombinant forms of these 

proteins were obtained and tested using standard endoribonuclease assays (refer to 

section 3.2.4). Results showed that HADHSC and annexin III did not possess 

endonuclease activity under the conditions utilized. In contrast, recombinant APE1 did 

exhibit weak endoribonucleolytic activity. The endoribonuclease activity was similar but 

not identical to the native 35 kDa activity as recombinant APE1 cleaves c-myc CRD 

RNA at one predominant dinucleotide; UA 1751 (Figure 27). By comparison, the native 

35 kDa endoribonuclease cleaved c-myc CRD RNA at more locations, yet this enzyme 

exhibited a strong preference for the same UA dinucleotide 1751 (Figure 26-A and 26-B). 

While the observed pattern of endonucleolytic cleavage from the comparison of the 

native 35 kDa endoribonuclease and recombinant APE1 RNA was not identical, both 

exhibit a strong preference for UA dinucleotide 1751. 
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4.4 Electromobility Shift Assays 

Previous studies have in fact shown that APE1 can bind both single- and double-

stranded DNA (Mol et al. 2000) as well as single-stranded RNA (Barzilay et al. 1995). 

Results confirm that both HADHSC and APE1 bind to c-myc CRD RNA contruct (nts 

1705-1886). Both APE1 and HADHSC exhibit two binding complexes, respectively, 

however, at similar protein concentrations it appears as though APE1 binds c-myc CRD 

RNA (nts 1705-1886) more tightly than HADHSC (refer to section 3.2.5). 

To our knowledge, there are no previous studies that demonstrate HADHSC 

ability to bind single-stranded RNA. The presence of an RNA binding motif (Rossmann 

fold) within the predicted structure of HADHSC, and the multiple documented DNA-

/RNA-APE1 interactions led us to perform EMS A experiments to determine if these 

proteins could bind c-myc CRD RNA. In support of the dehydrogenase family of 

metabolic enzymes with RNA-binding capabilities, GAPDH, another known 

dehydrogenase contains a predicted Rossmann fold motif. Subsequent studies have 

revealed that the Rossmann fold of GAPDH provides the molecular basis for RNA 

recognition (Nagy et al. 2000). GAPDH has also been shown to bind single-stranded 

DNA containing a TAAAT motif. In fact, several dehydrogenase enzymes from multiple 

domains of life have been shown to possess RNA- and DNA-binding capabilities (Ciesla 

2006; Evguenieva-Hackenberg et al. 2002). In light of this it would be of interest to test 

HADHSC's ability to bind both double- and single-stranded DNA. It should be noted 

that although HADHSC can bind c-myc mRNA, it does not appear to affect c-myc mRNA 

in cells. Studies in our lab (Sellers and Lee, unpublished results) have shown that 

knocking down HADHSC in MCF-7 cells had no effect on levels of c-myc mRNA. 
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4.5 Immunodepletion of Endonuclease Activity in Native Rat Liver 
Extract 

Results of this investigation indicated that APE1 was the protein responsible for 

35 kDa endoribonucleolytic activity. To confirm previous data, an immunodepletion 

experiment was performed using anti-APEl monoclonal antibodies. Western blot data 

(Figure 32) indicated that APE1 is indeed present in post-gel filtration elution fractions 

(30-40 kDa protein sizes) correlating with endoribonuclease activity. Flow-through and 

wash fractions contained little endonuclease activity (Figure 31-A); however, elution 

fractions contained activity similar in intensity to pre-load sample (Figure 31-A). 

Similarly, Western blot analysis of this immunodepletion experiment confirmed that 

APE1 was present in pooled gel filtration (30-40 kDa protein sizes) pre-load sample 

(Figure 32), APE1 was absent in flow through and wash fractions and APE1 reappeared 

in elution fractions (Figure 32). 

Comparison of c-myc CRD RNA cleavage sites by the native 35 kDa 

endoribonuclease in immunodepletion pre-load (gel filtration sample, 30-40 kDa) and 

immunodepletion elution samples (refer to Figure 31-A), reveals an identical pattern; 

both exhibiting the characteristic preference for dinucleotide UA 1751. This is 

significant in two respects. Firstly, successful immunodepletion of native gel filtration 

(30-40 kDa) sample using APE1 monoclonal antibodies confirms that APE1 is likely 

responsible for native 35 kDa endoribonuclease activity. It should be mentioned that 

there are differences in the cleavage sites produced by native APE1 and recombinant 

APE1 against c-myc CRD RNA. Previous studies have shown that RNA cleavage 

specificities are often altered slightly when comparing recombinant and native 

endoribonucleases. For example, recombinant PMR1 has been shown to cleave a 
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substrate RNA transcript at identical sites to native PMR1, however, several sites of the 

RNA transcript that are cleaved by native PMR1 are not cleaved by recombinant PMR1 

(Chernokalskaya et al. 1998). Chernokalskaya and colleagues (1998) speculate that a 

specific protein fold achieved by native PMR1, but not by recombinant PMR1, accounts 

for the observed differences in RNA cleavage (Chernokalskaya et al. 1998). Similarly, a 

specific folding conformation may need to be adopted by native APE1 to achieve the 

entire set of observed cleavage products against c-myc CRD RNA. 

Secondly, it confirms that APE1 protein alone generates the observed cleavage 

pattern of cleavage against c-myc CRD RNA. The finding that APE1 is singularly 

responsible for endonuclease acitivity is important because HADHSC, which was shown 

to bind c-myc CRD RNA, is present in post-gel filtration (30-40 kDa). Binding of 

HADHSC to c-myc RNA during standard endoribonuclease assays may have altered the 

structure of c-myc RNA. Consequently, this may have limited or altered the accessibility 

of target cleavage sites along c-myc RNA. However, this hypothesis is not supported by 

evidence from endoribonuclease assays of immunodepletion experiments. 

Monoclonal anti-APEl antibodies were used in constructing the immunodepletion 

spin column, thus the only protein that would have bound to the anti-APEl antibodies 

(cross-linked to the column matrix) would have been APE1. Consequently, the cleavage 

pattern exhibited in spin column elution fractions would result from native APE1. Since 

the cleavage pattern against c-myc CRD RNA in the elution fractions is identical to the 

cleavage pattern in native pre-load sample from gel filtration elution fractions (protein 

sizes 30-40 kDa) (see Figure 32) and the fact that HADHSC is not present in the eluted 

fractions (as determined by Western blot), APE1 alone must be responsible. 
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4.6 Apurinic/Apyrimidinic Endonuclease-APEl 

Human Apurinic/Apyrimidinic Endonuclease (APE1) also named (APEX, 

HAP-1, Ref-1) is a multifunctional protein homologue of E. coli Exonuclease III. It has 

been characterized as having three principle functions in vivo; however, several other 

properties have been discovered such as 3'-5' exonuclease (Chou et al. 2000), 

phosphodiesterase activity (Izumi et al. 2002), and RNase H activity (Barzilay et al. 

1995). 

The first principle function in vivo is in repair of abasic sites in single-stranded 

breaks of DNA. APE1 recognizes damaged DNA and utilizes a hydrolytic Mg2+-

stimulated mechanism to execute phosphodiester backbone cleavage 5' to the lesion 

(Beernink et al. 2001; Mol et al. 2000). This generates a free 3'-OH terminus which is 

suitable for priming DNA polymerases (Friedberg et al. 1995). 

The second function of APE1 has been identified as a redox activator of DNA-

binding activity (Xanthoudakis et al. 1992). In vitro studies have confirmed that APE1 

converts the oxidized form (inactive state) of c-Jun into a reduced, active form, which can 

then bind DNA (Xanthoudakis et al. 1994). Recently, APE1 has been shown to function 

in mediating the activation of additional transcription factors including Pax 5, Pax 8 

(Evans et al. 2000). In addition, APE1 has been shown to activate the tumor suppressor 

p53 by redox and non-redox mechanisms, thereby facilitating p53 nuclear translocation 

and DNA binding (Jayaraman et al. 1997). 

The third and somewhat distinct function of APE1 is in Ca2+ dependent 

downregulation (repression) of parathyroid hormone (PTH) gene via binding to negative 

calcium response elements (nCaREs) within the PTH gene promoter (Okazaki et al. 
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1992; Okazaki et al. 1994). Experiments have shown that APE1 is a part of nuclear 

protein complex that binds to nCaRE-A and nCaRE-B (Okazaki et al. 1994). 

APE1 has been shown to play yet another major role in mammalian cells. APE1 

has been identified as a component of a 270-420 kDa endoplasmic reticulum-associated 

complex, termed SET complex (Fan et al. 2002; Fan et al. 2003; Lieberman and Fan 

2003). SET complex is a target in caspase-independent cell death mediated by the 

cytotoxic T-lymphocyte protease granzyme-A (Lieberman and Fan 2003). Granzyme-A 

cleaves Apel at a Lys31 residue, thereby destroying its known oxidative repair functions 

(Fan et al. 2003). It is believed by doing so, granzyme-A blocks cellular repair mediated 

by APE1 and forces apoptosis. In support of this finding, cells with RNAi-induced APE1 

knockdown are more sensitive to granzyme-A-induced death, whereas cells 

overexpressing a mutant non-cleavable form of APE 1 are more resistant to granzyme-A-

mediated death (Fan et al. 2003). 

It is hypothesized that APE1 possesses a single catalytic active site for DNA- and 

RNA-specific nuclease activities (Beernink et al. 2001). The active site of the Apel 

contains one Mg2+ metal ion which is coordinated predominantly by acidic residues 

Asp70 and Glu96 (Beernink et al. 2001). The coordination of a single Mg2+ metal ion is 

required for efficient phosphodiester bond hydrolysis (Beernink et al. 2001). However, 

structural data shows that Apel can bind two Mg2+metal ions in its active site at neutral 

pH but only one at acidic pH (Beernink et al. 2001). This phenomenon at neutral pH may 

indicate an additional two-metal catalytic functionality. 
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4.7 Concluding Remarks 

This study provides the first documented evidence that APE1 possesses the 

abililty to hydrolyze a specific site of single-stranded RNA. Furthermore, other DNA 

specific endonucleases, most notably the structure-specific human Flap Endonuclease 1 

(Fenl) which functions as a DNA-specific endonuclease required for cleavage of 

unannealed 5' arms of template-primer DNA substrates, a processor of Okazaki 

fragments during DNA synthesis, and a key player in DNA replication and DNA repair, 

has been shown to hydrolyze several single-stranded RNA substrates (Stevens 1998). 

Thus there is precedent to suspect that a DNA-specific endonuclease such as APE1 has 

the ability to hydrolyze single-stranded RNA substrates. Support for this type of dual 

functionality has been shown. Spinach CSP41 protein functions both as an mRNA-

binding protein and cellular ribonuclease (Yang et al. 1996). Mammalian GAPDH 

(isolated from rabbit muscle) has also been shown to bind and cleave RNA (Evguenieva-

Hackenberg et al. 2002). Interestingly, mammalian GAPDH was found to be sensitive to 

the ribonuclease inhibitor protein (RNasin) and was found to preferentially cleave 

between UA and CA dinucleotides, in a manner analogous to RNase A (Evguenieva-

Hackenberg et al. 2002). 

The question remains; however, of what significance, if any, is the finding that a 

DNA repair enzyme possesses the ability to cleave c-myc CRD RNA? Could 

APE1/RNA interactions result from 'relic' interactions of a primitive 'RNA world' prior 

to the existence of DNA? Under this scenario, DNA-specific activities may have been 

acquired as organisms evolved and developed DNA for the storage of genetic materials. 

Evidence would suggest that multifunctional proteins would be more efficient for 
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building complex gene regulatory mechanisms in mammalian cells possessing relatively 

low numbers of protein-encoding genes (Venter et al. 2001; Evguenieva-Hackenberg et 

al 2002). 

The preference of APE 1 for the dinucleotide 1751 UA may have some in vivo 

significance. AU-rich elements at 3' untranslated regions are well-characterized 

instability elements. Given the strong cleavage preference of native and recombinant 

APE1 for dinucleotide UA, it is tempting to speculate that it may function in vivo as a 

cellular endoribonuclease to destabilize particular mRNAs. Consequently, in vivo 

studies, aimed at manipulating cellular expresion of APE1 while monitoring the 

corresponding changes in levels of specific mRNAs including c-myc, is certainly 

warranted. 

Arguably less exciting is the finding that one of the mammalian 

endoribonucleases purified from rat liver, with the ability to degrade c-myc CRD RNA, is 

a member of the well-studied RNase A superfamily of proteins. Often overlooked, 

however, is the possible role of this family of proteins in controlling gene expression. 

Given the known structural capabilities of the RNase A superfamily of proteins such as 

the formation of higher order structures, one must consider the plausible functional 

implications of dimeric, trimeric or higher order associations within RNA metabolic 

processes. Equally intriguing is the discovery of RISBASES (RNases with Special 

Biological Actions) which have been implicated in tumor cell growth, neurological 

development, and biological differentiation and the discovery of potential therapeutic 

cytotoxicity of certain members of the RNase A superfamily such as onconase and 

Bovine Seminal RNase (BS-RNase). Unfortunately, the physiological role, particularly 
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the role of RNase A-type endoribonucleases in mammalian RNA decay pathways (if any) 

remains unclear. Further investigation of this superfamily of enzymes as related to their 

role in mRNA metabolism, is warranted. With regards to the RNase A superfamily of 

enzymes, one particular question clearly remain unanswered; Are there any members of 

the intercellular RNase A family of proteins that perform a physiological function in 

normal mRNA metabolism? 

As more information becomes available about the mechanisms that control the 

interaction between all endoribonuclease proteins, RNase inhibitory proteins, the 

elements that are required for activation of endonuclease-mediated pathways, and the 

RNA-binding proteins that protect RNA from endonucleolytic cleavage, we may uncover 

new structural features inherent in known and yet-to-be discovered families of 

endoribonuclease proteins. 

Future studies aimed at identifying the significance of multifunctional mammalian 

proteins with endoribonucleolytic activity should be a priority. In fact, the importance of 

other known mammalian proteins with endoribonucleolytic function for correct organism 

development has already been well established. For example, the ER stress response also 

participates in development of vertebrates. It contributes not only to the expression of ER 

proteins but of many genes that contribute to the phenotypic changes that characterize 

secretory cells, such as expansion of the ER and induction of chaperones (Reimold et al. 

2001). Zhang and colleagues (2005) utilized a gene inactivation approach to show that 

IRE 1 is required for the development of plasma cells. Given that IRE 1 lies upstream of 

XBP1, it is hypothesized that the developmental role of XBP1 is coupled to an ER-

signaling event which is regulated by the endoribonucleolytic activity of IRE 1. The 
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RNase L-mediated endoribonucleolytic activity in response to 2-5A activation, has been 

shown to influence muscle cell differentiation by lowering murine MyoD mRNA levels 

(Bisbal et al. 2000). In effect, Bisbal and colleagues (2000) demonstrated that RNase L 

functions to delay the onset of C2 mouse myoblast differentiation via regulation of MyoD 

mRNA stability. Mutations in the gene encoding RNase L have been recently implicated 

in the pathogenesis of prostate cancer (Silverman, 2003). In addition, RNase L is 

hypothesized to function in a role as tumor suppressor suggesting that mutations in the 

RNase L gene would prevent the necessary RNA cleavage responsible for the 

antiproliferative and apoptotic activities of the RNase L protein (Silverman 2003). 

The value of studying mammalian proteins that possess endoribonucleolytic 

function including domain identification, key catalytic residue identification and 

functional interactions required for ribonucleolytic activation, is clear. We can now 

utilize new and more robust bioinformatic tools to identify new proteins, protein families 

and to a lesser extent the secondary and tertiary structures required for their respective 

endoribonucleolytic activities. Additional research into the physiological significance of 

these proteins is absolutely necessary as it will facilitate our understanding of the 

mechanisms by which endoribonucleases are differentially and site-specifically activated 

in RNA processing pathways. 
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