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Abstract 

Due to ever increasing demand for network capacity, the congestion problem is 

inflating. Congestion results in queuing within the network, packet loss and increased 

delays. It should be controlled to increase the system throughput and quality of 

service. The existing congestion control approaches such as source throttling and 

re-routing focus on controlling congestion after it has already happened. However, 

it is much more desirable to predict future congestion based on the current state 

and historical data, so that efficient controlling techniques can be applied to prevent 

congestion from happening in future. 

We have proposed a Neural Network Prediction-based routing (NNPR) protocol 

to predict as well as control the network traffic in distributed real time environment. 

A distributed real time transaction processing simulator (DRTTPS) has been used 

as the test-bed. For predictions, multi-step neural network model is developed in 

SPSS Modeler, which predicts congestion in future. ADAPA (Adaptive Decision and 

Predictive Analytics) scoring engine has been used for real-time scoring. An ADAPA 

wrapper calls the prediction model through web services and predicts the congestion 

in real-time. 

Once predicted results are obtained, messages are re-routed to prevent congestion. 

To compare our proposed work with existing techniques, two routing protocols are 

also implemented - Dijkstra's Shortest Path (DSP) and Routing Information Protocol 

(RIP). The main metric used to analyze the performance of our protocol is the per-

centage of transactions which complete before their deadline. The NNPR protocol is 

analyzed with various simulation runs having parameters both inside and outside the 

neural network input training range. Various parameters which can cause congestion 

were studied. These include bandwidth, worksize, latency, max active transactions, 



mean arrival time and update percentage. Through experimentation, it is observed 

that NNPR consistently outperforms DSP and RIP for all congestion loads. 
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Chapter 1 

Introduction 

Database system is a collection of information shared by many users [1] . In today's 

world, databases and database systems have become a crucial part of life . When a 

database system is accessed, read and write operations are executed. When these 

operations are executed on the database in a particular order, it is called a transac-

tion [1], for example depositing money in a bank. To maintain integrity and consis-

tency of the database, a transaction must follow ACID properties: atomicity, con-

sistency, isolation and durability [8]. Atomicity makes sure that a transaction will 

fail , if any part of the transaction dies. Consistency ensures that a transaction will 

always leave the database in a consistent state, whether it is completed or not. When 

many transactions are executing concurrently, isolation guarantees that all the trans-

actions are running independent of each other. Durability implies that a committed 

transaction cannot be undone, even if the system crashes. 

Database systems can be classified as centralized and distributed. In a centralized 

database system, data is stored and maintained on a single node; whereas in a dis-

tributed database system many nodes run independently at different locations, and 

they interact and share data with each other via a communication network [9]. In 

distributed database systems, availability of data can be augmented by replication of 

data. In a fully replicated system, each node stores the entire database, thus allowing 
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easy access to all the database entities. In this system, there is no risk of loss of data 

if any node fails. However, it also raises issues related to concurrency control. In 

a partially replicated system, the database is replicated on a subset of the network 

nodes. 

In a real-time system, every transaction has a specified time allocated to com-

plete. If a transaction does not complete in the assigned time, it is called a tardy 

transaction [8]. System's throughput is determined by the transactions completed in 

the assigned time. Distributed real-time database system (DRTDBS) [10] is a collec-

tion of databases scattered over different data sites connected via a communication 

network, where transactions have consistency and time constraints. The primary ob-

jective of DRTDBS [5] is to increase the number of completed transactions before 

their deadlines, while maintaining the serializability of transactions. If the outcome 

of the transactions running concurrently is same as of running them serially, then 

transactions are said to be serializable. 

In DRTDBS, nodes communicate through messages by finding an efficient link, as 

specified by the network. A link (pipe) has parameters, such as latency, bandwidth, 

source and destination node. Latency is the amount of time taken to send a message 

from source to destination node. Bandwidth represents the total amount of data 

which can be passed through the link at any given time. The number of messages 

being sent from source to destination node depends on the source-destination link's 

bandwidth. If the messages coming on the link are more than link's bandwidth, they 

wait in a queue. Because of resource and time constraints, every computer tries to 

complete its operations in the assigned time. However, when resource requirement 

surpasses the capacity of network, congestion occurs [ll]. In a distributed network, 

congestion occurs if a network link has queued messages waiting to get processed 

thereby decreasing the quality of service. Some effects of congestion are increased 

delay and dropping of packets. 

Congestion should be controlled to improve the system throughput and quality of 
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service. There are many techniques to control congestion [11], but these techniques 

control the congestion after it has happened. With an increased demand for highly 

efficient networks, it is important to analyze the potential network traffic beforehand 

and predict the traffic [12], so that efficient control techniques can be applied. 

Our hypothesis is that network congestion can be reduced by predicting traffic 

and dynamically re-routing the messages, thus increasing the percentage of completed 

transactions before their deadlines. 

1.1 Transaction Execution 

Transaction is a list of operations executed as a basic unit of data processing in 

database systems. The transaction 's operations to read and write a database object 

can be denoted by Rr(O) and Wr(O) , respectively. A transaction can be either local 

or global depending on the way it needs to access data [l]. Local transaction demands 

data access at its local node only, whereas global transaction requires data access at 

multiple nodes and may spawn many sub-transactions. In DRTDBS, execution of 

a transaction is managed by processes executing on different nodes to collaborate 

between a transaction and its sub-transactions. The process executing on the node 

where transaction generates is called coordinator, and processes executing at other 

nodes on behalf of coordinator process to support global execution of transaction by 

synchronizing transaction with its sub-transactions are called cohorts [l]. When co-

horts complete their tasks , they send acknowledgments to their coordinator, resulting 

in the successful execution of a transaction. 

1.1. 

When a transaction executes , it goes through various stages as shown in Figure 

• Active State - In this stage, transaction starts its execution. 

• Partially Committed - In this state, when cohorts complete their assigned tasks, 

they send an acknowledgment to the coordinator process. 

3 



Figure 1.1: Life Cycle of a Transaction 

• Aborted - If transaction's execution gets interrupted by terminating the current 

ongoing operation, it gets aborted. Thereby, the transaction is rolled back i.e. 

database is returned to its starting state. Once the transaction is aborted, it 

can be restarted or terminated. 

• Committed - When coordinator receives an acknowledgment from all the co-

horts , the transaction successfully completes or commits. All the changes re-

sulting from this transaction are permanently updated to the database. 

In real-time systems, availability of data at the required time is very significant. 

When the entire database is stored on each node, data is available to a transaction on 

its local node. However, when the database is partitioned across the nodes, the data 

may not be directly accessible. Hence, the type of data distribution decides data's 

accessibility. 

1.2 Distribution of Data 

In DRTDBS, database is distributed across the system and the system's perfor-

mance significantly depends on the way data is distributed. There are two ways in 

which data can be distributed: partitioned and replicated. 
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• In partit ioned distribut ion, there is only one copy of the database, which is 

distributed across some or all nodes as shown in Figure 1.2. An advantage of 

such distribution is t hat it enhances t he performance of t he system because 

of easy management , back-up, and restore of data. Since a small volume of 

data is accessed, data retrieval operations are also efficient. On the contrary, a 

drawback is that failure of one node may lead to the breakdown of the entire 

system because t he failed node may have high valued data that is accessed by 

different nodes. 

• A part ially replicated system stores copies of database fragments at each node. 

In a fully replicated system, there are multiple copies of the database and each 

node stores one copy of the entire database. It increases t he availability of data 

facilitating transaction's execut ion. Even if one node fails, t he system will not 

collapse because other nodes will have t he required data. However, maintaining 

consistency is t he main problem here. To prevent inconsistencies, if one copy 

of the database gets updated, that change should get reflected in other copies 

as well. This can be achieved by concurrency control protocols [13]. 

Partitioned Data Full y Repl icated Data 

Figure 1.2: Part it ioned vs . Replicated Data Distribut ion 
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The primary factors affecting the decision to use data replication are database 

size and usage frequency. When the usage frequency is excessive, data replication 

decreases the cost of data retrieval operations [14] . 

1.3 Transaction Deadlines and Priority Scheduling 

In DRTDBS, the performance of the system depends on the number of transactions 

completing before their deadlines. In general, transaction's deadline can be classified 

into three types namely hard, soft and firm deadline [l] . For each type of deadline, 

there is a value associated that declines as the function of completion time if deadline 

is missed. 

Value Value Value 

-----t----Time ----~--Time 
Arrival Time Deadline Arrival Time Deadline Arrival Time Deadline 

Hard Deadline Soft Deadline Firm Deadline 

Figure 1.3: Transaction Deadlines [l] 

• In hard deadline, transaction is assigned a rigid deadline to complete its opera-

t ions. If deadline is missed, the value gets reduced to negative amount , indicat-

ing disastrous consequences on the system. The examples of hard deadline ap-

plications include radar tracking system and military applications. So, to handle 

hard deadline application effectively there is a need to design a fault-tolerant 

system. Redundancy is a standard approach to attain fault tolerance [15]. 

There are three types of redundancies: hardware redundancy, software redun-

dancy, and time redundancy [15]. Hardware redundancy means crit ical hard-
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ware components of the system are duplicated, when failure occurs duplicated 

components replace the faulty ones. Software redundancy refers to the software 

components duplication, which are functionally identical. It comes into effect 

when the working software crashes/ fails. Time redundancy is giving extra time 

to execute failed operations (Failed operations can be software failure or any 

other kind of failure). 

• A soft deadline allows a transaction to miss its deadline and allocates extra 

time (slack time) to complete its operations. Once deadline is missed, the value 

starts decreasing; but the transaction is still allowed to complete its tasks. When 

the transaction has still not completed within the additional allocated time, its 

value becomes zero. The examples can be stock trading and payment of taxes. 

• A firm deadline is same as the soft deadline, but it does not provide extra time 

to transaction to complete its operations. Once deadline is missed, the value 

becomes zero. For example - incorrect forecasting of a sales company can lead 

to a great loss in terms of revenue. 

Priorities are allocated to transactions in order to define their significance and 

order of executions. Priority assignment algorithms can be predominantly catego-

rized into three types: static, dynamic and hybrid [l]. In static priority scheduling 

algorithm, transaction's priorities are fixed and do not change once they are assigned. 

When priorities are assigned at run time, it is called dynamic scheduling of transac-

tions. Dynamic scheduling algorithm assigns priority to transaction considering the 

factors such as deadline, slack time ( extra time given to a transaction after deadline to 

complete its operations), execution time, and others. A hybrid algorithm is a mixture 

of static and dynamic priority scheduling i.e. some transactions have fixed pribrities, 

while others get assigned at run time. Some of the examples of priority scheduling 

algorithms are described below [8] : 

• Earliest Deadline First (EDF): In EDF, transaction with the closest dead-

line is allocated the highest priority. A limitation of this algorithm is that it 
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may assign higher priority to a transaction which may have almost missed its 

deadline, and thus restricting other transactions to execute which may complete 

before the deadline. 

• First Come First Serve (FCFS): According to FCFS, transaction with ear-

lier arrival t ime will be designated higher priority. It does not consider deadline 

information of the transactions , and may assign higher priority to a transaction 

having longer deadline and vice-versa. 

• Shortest Job First (SJF): SJF assigns the highest priority to the transaction 

having minimum execution time. However, SJF does not perform well in appli-

cations where execution time of transactions cannot be computed beforehand. 

• Minimum Slack First (MSF): According to MSF, transaction having mini-

mum slack time will be assigned the highest priority. 

These priority scheduling algorithms decide the order in which transactions exe-

cute in case of congested scenarios, hence increasing the overall performance of the 

system. 

1.4 Network Congestion and Control Techniques 

Network congestion is defined as a state when the quality of service deteriorates 

because of an increase in network load [11 ]. It occurs when data arriving on node's link 

exceeds its bandwidth capacity. During congestion, data gets queued on the node 's 

buffer, which results in increased packet delays and hence decreases the number of 

transactions completed before the deadline. Congestion cannot be just determined 

from queue 's length, it also depends on link's bandwidth and latency. For example, 

suppose Node A needs to send 40 message units to Node B. Iflink A-B has 20 message 

units bandwidth, with 5 seconds latency, it will take 10 seconds to clear Node A's 

queue. But if bandwidth is 5 and latency 10 seconds, it will take 80 seconds to clear 

the queue. So, even if queue length is same in both the scenarios, bandwidth and 
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latency play a major role in determining the congestion of link. Congestion can be 

classified as low, medium or high depending on the threshold time limit(time taken 

to clear a node 's queue). We define congestion of a link as follows: 

. I I:n-o sizei l 
Congestwn1 = I 'BWi x L1 (1.1) 

where sizei is the size of queued message i, BW is the bandwidth of the link l, 

and L is the latency of the link. 

In DRTDBS, if queues on individ~al nodes are not cleared/ processed for a pro-

longed time, transactions will start missing their deadlines at a very high pace, con-

sequently engendering low system throughput. To be efficient, DRTDBS should have 

a congestion control algorithm that can manage traffic efficiently. The aim of con-

gestion control algorithm is to increase the network efficiency i.e. throughput of the 

network by decreasing the delay and packet drops. Congestion control schemes are 

classified as [11 , 16]: 

• Open loop control: Open loop control does not use any feedback to control 

the system, for example - light switch automatically gets turned off after certain 

duration [11]. It has no knowledge of the output state i.e. it does not inspect 

system dynamically. It is further divided into source control and destination 

control. 

- Source control [17] tries to control traffic at the source level by controlling 

arrival rate of traffic, for example - Input buffer limit algorithm [18] controls 

traffic by applying a limit on input buffer, which eventually prevents the 

input traffic from entering the system. 

- Destination control tries to control the traffic at intermediate or destination 

nodes , for example - Selective packet discarding policy [19] simply discards 

the packet when there are no empty buffers. 

• Closed loop control: Closed loop system uses feedback from the output to 

control the system [20], for example, when the room temperature is high, the 
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thermostat sends a signal to air conditioner to switch on the cooling unit. Closed 

loop system has complete knowledge of the output state i.e. it analyzes network 

performance dynamically. It is further divided into global and local feedback 

control. 

- In global feedback control, feedback is attained from complete path i.e. 

destination to source, for example - Rate based control [21] examines the 

incoming traffic on each node and compares it with threshold capacity. 

If incoming traffic is greater than threshold value, it tunes the rate of 

incoming traffic and broadcasts the messages to all nodes in the network. 

- According to local feedback control, feedback is attained just from the 

neighbour node, for example - Hop by hop control [16]. In this algorithm, 

each node will monitor its outgoing link traffic to the neighbour node. It 

then realizes the congestion status using feedback information from neigh-

bour and adjusts traffic rate dynamically. 

There are many congestion control techniques (such as controlling the arrival rate 

of packets in the network, discarding packets and routing techniques) proposed by 

the researchers over many years [16 , 18, 19, 22-24]. However, these algorithms come 

into effect once congestion has been discovered by the system. An ideal approach 

would be to analyze the present data, predict network congestion and take corrective 

actions to prevent the congestion. 

1.5 Data Mining and Predictive Analytics 

Data mining is a mechanism to extract meaningful information from data through 

different mathematical algorithms [25]. This information can be discovering patterns 

or trends, finding correlation or clustering of data. Data mining is a crucial step in 

the process of predictive modelling. For example - to predict which customers are 

most likely to purchase the new product , data mining provides hidden and relevant 

information from the present data and identifies meaningful trends or patterns in 
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data. By analyzing present scenarios and predicting events using statistical and 

mathematical techniques, predictive analytics determines uncertainty and risk within 

data, as a result deciding optimal outcomes for the system. Based on the business 

requirement , predictive analytics life cycle has the following phases [25]: 

• Data Understanding - This phase includes understanding business/ system 

needs, determining system goals and planning accordingly. 

• Data Preparation - Data preparation collects, selects and verifies data ac-

cording to system objectives. In this phase, data cleaning, integration and 

transformation are the vital steps. Data cleaning handles missing or irrelevant 

information present in the data. Disparate data sources from different locations 

are integrated into one data source through data integration. Data transforma-

tion converts the format of data from one type to another. 

• Data Modelling - In data modelling, a model is developed trying to achieve 

the business goals. Modelling techniques can be classified into the following 

categories [25]: 

Clustering is grouping of data objects based on the similarity in one way 

or other ( distance, nature and characteristics). Each group, called cluster, 

is dissimilar to other clusters. Clustering helps to identify the natural 

groupings present in the data. It is being used in many applications such 

as pattern recognition, image processing, and others. 

Association modelling discovers relationships between one or more vari-

ables in a dataset. The relationships defined between attributes are called 

association rules. For example, customers who buy cheese in grocery mar-

ket are most likely to buy bread as well. So, bread and cheese relationship 

can be expressed as an association rule - cheese implies bread, with 90 

percent probability. 

Classification predicts and categorizes the data based on their attributes. 

For example, the classification model can be used to identify student as a 
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good or bad scorer based on student 's attributes such as attendance details 

and exam scores. 

• Result Interpretation - The model is analyzed and evaluated in this phase. 

One way to evaluate a model is to randomly divide the large dataset into three 

sub-sets, which are then used for training, validation and testing. The train-

ing set is used to train the model; validation set assesses model 's performance 

by analyzing the trained model; and testing set is used to estimate the error 

rate of the model. If results are not satisfactory, this phase goes back to data 

preparation phase (Figure 1.4) to remove model's deficiencies; else next phase 

is followed. 

• Decision Optimization - In this end phase, an optimal decision is taken on 

the basis of result evaluation phase. One best solution is chosen among many 

feas ible solutions considering factors like cost, profit , and others. 

Vb ci&tr = ~ AW 

Figure 1.4: Data Mining Process 

A desirable feature of analytics is to develop a predictive model, which is readily 

available to the users present at different locations. The data generated by predictive 

models is extremely critical to the businesses, therefore the model should be accurate 

and accessible to the decision makers on-demand. The deployment of predictive 

models on the cloud allows users to deploy and score the predictive models in real-

time ( explained in Chapter 3). 

12 



1.6 Contribution 

Due to increase in network demand, congestion problem is increasing. Congestion 

results in queuing within the network, packet loss and increased delays. With an 

increased demand for high-performance networks , there is a need to increase the 

network's throughput and quality of service. Various congestion control techniques 

are discussed in [11 , 16]. However, these techniques attempt to control congestion after 

it has already happened. It is important to proactively analyze network traffic and 

predict potential congestion before it occurs, so that efficient controlling techniques 

can be applied as a preemptive measure. 

We have proposed a protocol to predict congestion as well as control the network 

traffic in distributed real-time environment using distributed real-time transaction 

processing simulator (DRTTPS) as a test-bed. For predictions, multi-step neural 

network technique is used, which predicts congestion (1 step ahead , where 1 step 

is 100 ticks) . After predicting the network traffic, the predicted congested link's 

messages are re-routed to other links. To compare the proposed work with other 

techniques, two routing protocols are implemented - Dijkstra's Shortest Path (DSP) 

algorithm [26] and Routing Information Protocol (RIP) [27] . The primary metric 

used to analyze the performance is the percentage of transactions completed before 

their deadline. Some of the key considerations of our work are listed below: 

• To meet real-time system requirements, the proposed technique ensures that 

prediction results are attained in a reasonable time. 

• Instead of reducing the traffic in system or increasing the inter-arrival time of 

packets [17, 20 , 21, 28 , 29], network traffic is controlled by routing techniques . 

• Invocation of prediction model is a controllable parameter that is configured by 

the user according to the requirement (by default , it is set to 100 ticks). 
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1. 7 Thesis Organization 

The rest of the thesis is organized as follows. In addition to literature survey, 

Chapter 2 also contains some information about different data mining methods. 

Chapter 3 provides a brief discussion of our test-bed i.e. DRTTPS, neural networks 

and cloud computing. Chapter 4 explains the prediction model developed to predict 

congestion, and gives the implementation details. Chapter 5 presents experimenta-

tion and analysis of results. Chapter 6 provides the conclusion and directions for 

future research. 
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Chapter 2 

Related Work 

With an increased growth in network applications, network congestion is growing 

rapidly. Congestion should be controlled not only to increase system throughput, but 

also to improve quality of service and data transmission reliability. Many congestion 

control schemes have been proposed by researchers to control and prevent congestion. 

This chapter is divided into two sections. The first section outlines general congestion 

control mechanisms proposed in the literature, and second section describes conges-

tion control using data mining and predictive algorithms. 

2 .1 Congestion Control Mechanisms 

In literature, many approaches have been proposed to handle congestion, either 

by preventing or controlling or avoiding mechanisms. Some of the congestion control 

mechanisms are discussed in the following subsections: 

2.1.1 Slow Start Congestion Control 

Slow start [22] is a type of congestion control mechanism, in which the sending rate 

of packets is proportional to the transmitting rate of the network. Initially, sender 

determines network's capacity by transmitting one packet to the receiver. When a 

node receives the packet, it sends an acknowledgement (ACK) to the sender. The 
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sender then increases the congestion window ( cwnd) size to 2, and sends 2 packets 

as shown in Figure 2.1. After receiving each ACK from the receiver, it elevates 

congestion window size by 1. For example, when ACK 1 and ACK 2 are received, 

congestion window size becomes 3 and 4 respectively ( as shown in Figure 2.1). This 

results in exponential growth of congestion window size over round trips. Once cwnd 

is more than the threshold value, slow start algorithm increases cwnd linearly, rather 

than exponentially (i.e. window size is increased by 1 for each round trip time). 

Sender 

Cwnd=l 

Cwnd=2 

Cwnd=3 

Cwnd=4 

k to 

• • • • • 

Packets 

Packet6 

Figure 2.1: Slow Start Algorithm [2] 

Receiver 

Slow start is crucial in avoiding congestion collapse [30]. Congestion collapse 

occurs when the sending rate of packets exceeds the network capacity. Thus, when a 

sender sends a large file , network can be overloaded and packets may start dropping. 

Slow start algorithm overcomes this problem but can cause delays in transmission, 
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which can be a significant limitation for real-time applications. 

2.1.2 Fast Retransmit and Fast Recovery 

Fast retransmit and fast recovery [22] is used to promptly regain the lost packets. 

Unlike transmission control protocol (TCP 1) , it does not use a transmission time-out 

to resend the packets. If a node receives a data segment which is not in sequence, it 

will send a duplicate acknowledgement. Duplicate acknowledgement (DUP ACK) is 

an acknowledgement sent by a node to sender while receiving an out of order data 

packet. For example, when sender transmits packet 1 to receiver, upon receiving the 

packet receiver sends an ACK 1 to sender and expects packet 2 from sender. Now if 

packet 2 gets lost and receiver receives packet 3, it will send again ACK 1 to sender 

(as shown in Figure 2.2), which is called duplicate acknowledgement. 

If sender receives three duplicate acknowledgements from the receiver, it will con-

sider that data packet (packet number greater than duplicate ACK number) is lost 

and retransmits the packet . This algorithm works efficiently when data packet losses 

are not frequent. 

2.1.3 Random Early Detection 

Random Early Detection (RED) is a congestion avoidance technique proposed by 

Floyd and Jacobson [23], which controls congestion by dropping packets when queue 

size exceeds a threshold value. In this technique, once average queue length surpasses 

maximum threshold value, new arriving packets are discarded or marked by setting 

a bit in packet 's header with a certain probability, where probability is a function of 

average queue size. If average queue size is less than the minimum threshold value, 

packets are allowed to enter into the queue. 

Contrarily, May et al. [31] argued and experimentally proved that if the average 

queue size exceeds the maximum threshold value, then dropping good packets do not 
1TCP is a connection-oriented protocol responsible for setting-up the connections and handle 

data-communication over network layer. 
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Figure 2.2: Fast Retransmit and Fast Recovery Algorithm [2] 

increase the performance of the system. They demonstrated that RED implemented 

with small buffers does not alleviate system throughput significantly, whereas large 

buffers increase system throughput but parameter setting is challenging. 

2.1.4 Back Pressure Technique 

In back pressure technique [32], once a node becomes congested, it ceases receiving 

packets from its immediate upstream node. It may result in the congestion of imme-

diate upstream nodes, which consequently stop receiving packets from their preceding 

nodes as shown in Figure 2.3. 

This technique starts with congested node and disseminates in the opposite di-
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Figure 2.3: Back Pressure Technique [3] 

rection of packet flow , to the source node. However, this technique can be of limited 

value, since it can only be used for connection-oriented networks. 

2.1.5 Choke Packet Technique 

Choke packet [32] is a packet generated by the congested node and transmitted 

back to the source node for congestion notification as shown in Figure 2.4. Inevitably, 

source has to reduce its sending rate until it stops receiving these packets. Unlike 

back pressure technique, choke packet technique gives congestion warning directly 

to the source node, skipping intermediate nodes. Therefore, it is a fast technique to 

notify sender to decrease its sending rate. This technique is good when there are fewer 

source nodes causing congestion at a particular time. But, when the congested node 

has queued data from different sources, it is difficult to determine where to transmit 

choke packets. 

2.1.6 Implicit and Explicit Congestion Notification 

In implicit signalling, source node waits for a hint / signal to take congestion control 

steps in the system [24]. From those signals, sender believes that there is congestion in 

the system. For example, when sender does not receive confirmation of sent packets, 
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Source Node Congested Node 
Destination Node 

Figure 2.4: Choke Packet Technique [3] 

it assumes there is a congestion. As a result , sender reduces its transmission rate. 

Explicit Congestion Notification [24] is a congestion avoidance technique, which 

notifies congestion by setting a congestion notification bit , rather than dropping the 

packets. A Congestion Experienced (CE) bit is included in each packet's header, 

which is set by routers to signal congestion. So, when the network starts approach-

ing congested state, receiver sends an acknowledgement to sender. In response to 

this acknowledgement, sender reduces the sending rate of packets and it further in-

forms the receiver about the reduction in sending rate, so that it stops resending 

acknowledgements. 

2.2 Congestion Control using Predictive Analytics 

In the developing world of networking, more emphasis is placed on network's 

reliability and efficiency. To ensure this, network congestion should be handled in a 

way so that it minimizes network breakdowns. There is a necessity to detect network 

problems as soon as possible, so that preventive measures can be taken accordingly. 

Hence, historical network traffic needs to be analyzed to predict network behaviour 

so that efficient congestion control techniques can be applied. 

There are two approaches to build a prediction model: empirical and analytical. 

Empirical approach is based on the observation and experimentation. Model is ex-

perimented on a real system or a simulator representing real system. Simulator-based 

models are the most common models to predict network congestion because simula-
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tor captures the details of the underlying system and provides a variety of real-time 

scenarios to test the model. On the other hand, analytical models are less expensive, 

easy to evaluate but complex to build. Some of the techniques proposed in literature 

are discussed in the following subsections: 

2.2.1 Time Series Prediction 

To forecast , past data is analyzed to identify trends and seasonality. Using this 

information, data is projected into the future using statistic modeling techniques. 

Time series is an ordering of data noted at regular intervals of t ime, for example, 

monthly sales of a store. It is very important in the time series to analyze each 

point 's correlation (measure of degree of association) with the previous point in the 

series. Two functions to analyze this correlation are discussed in [33] and presented 

below: 

• Autocorrelation function (ACF): It is defined as the correlation of an ob-

served value with its past values, for example, autocorrelation of X time series 

at lag 2 is the coefficient of correlation between X(t) and X(t-2) , and similarly 

X(t-2) with X(t-4). So, it is also expected that there is a correlation between 

X(t) and X(t-4). 

• Partial Autocorrelation function (PACF): It is defined as the correlation 

of the observed data with its lag after removing the observed data correlation 

with lower order lags. 

In order to predict through time series, the stationary assumption should be satisfied, 

which is defined by ACF and PACF functions [34]. If the stationary assumption is 

not satisfied, Mean Square Error (MSE) will be high , leading to inaccurate predicted 

results. MSE indicates the difference between predicted and estimated values. Some 

models for t ime series prediction are described in [12] and summarized below: 
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• Auto Regressive (AR) model : AR model is based on the belief that each 

observed value in the time series is correlated to its previous lag values, for 

example, if the order of AR model in time series X is 3, it means X(t-3) is 

required to predict X(t). This model is used when the present data is related 

to the previous data, for example - student's previous scores are required to 

predict present scores. 

• Moving Average (MA) model : In this model, a moving average is measured 

to analyze the seasonality or trend of data, for example, moving average order 

of 2 indicates that deviation of previous two values from the mean should be 

inspected to predict the current value. This model is generally used to forecast 

financial data and stock prices. 

• Auto Regressive Moving Average (ARMA) model : This model consists 

of AR and MA models, called ARMA(p, q) model, where p is the order of AR 

model and q is the order of MA model. 

• Auto Regressive Integrated Moving Average (ARIMA) model : When 

the data is not stationary, some differencing or transformation is applied on the 

data to satisfy the time series stationary assumption. If the time series data is 

differenced by the order of d, the model is called ARIMA(p, d, q). 

Different t ime series models have been used to predict network traffic. It is, 

however, assumed that the data is stationary [34]. Stationary data has constant 

mean, constant variance, and the covariance is independent of time. The stationary 

assumption can be measured by ACF and PACF. To predict the network packets, 

traffic monitoring was done for one year by connecting to intra-network [12]. The 

total number of packets was measured every hour. ACF and PACF functions were not 

satisfied when predictions were done with the collected data or even after transforming 

the data. The data was then classified first by monthly, then by weekly periods; still 

the stationary assumption was not satisfied. Finally, when the data was classified 
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on a daily basis, the stationary assumption was satisfied and network packets were 

predicted using AR model. 

Jung et al. [12] used AR model to predict network congestion, followed by an-

other method [33] which focuses on controlling the traffic using routing techniques. 

Each node has its own routing table and routing decisions are made using Dijkstra's 

algorithm. The proposed algorithm checks if the predicted packets are greater than 

the given bandwidth and updates the routing table accordingly. etwork Simulator-

2 (NS-2) [35] has been used as a test-bed to compare the proposed algorithm with 

OSPF routing protocol and prove algorithm's efficiency. This work is similar to our 

work with following exceptions: 

• Unlike Jung et al. 's research, neural network is being used in this research to 

predict network congestion because DRTTPS has many parameters affecting 

the congestion value (queue length) , and neural network can understand the 

complicated relationships between the parameters and predict non-linear com-

plex functions . If one parameter is tweaked, congestion value changes, and 

neural model analyzes the congestion successfully (shown in Chapter 5). 

• Our prediction model is robust in a sense that it can analyze and predict different 

types of congestion loads (low, medium or high) in the system. 

• Routing algorithm is dynamic i.e. if congestion is not predicted, then routing 

tables are not updated. 

Long-range dependence and self-similarity in larger time span are the characteris-

tics which should be captured by a good traffic model [36] . Zhou et al [36] proposed a 

model which is a combination of linear time series ARIMA and non-linear time series 

GARCH2 model. Three separate time scales have been used to predict the network 

traffic from one-step-ahead to k-step-ahead prediction. It captures long as well as 
2 GARCH (36] is a non-linear time series model used to capture the varying variance over time. 
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short-range dependence. The model was compared with FARIMA 3 model to prove 

its efficiency. 

2.2.2 Neural Networks 

Artificial neural network is influenced by the biological nervous system, such as 

brain. The basic units are neurons and these units are organized in layers [4]. There 

are three layers in neural network (Figure 2.5) explained below: 

Input 
layer 

Input #1 ~ 

Input #2 -. 

Input #4 -, 

Hidden 
layer 

Output 
layer 

Figure 2.5 : Neural Network Structure [4] 

Output 

• Input Layer: Units in the input layer are the inputs of neural network. 

• Hidden Layer: Depending on the network structure, there can be one or more 

hidden layers in the neural network. Hidden layer transforms the input data 

and capture non-linear dependencies in the data through activation functions 

(explained in Chapter 3). 
3FARIMA [37] model is capable to capture the property of real traffic with long-range and short-

range dependent behavior. 
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• Output Layer: Output layer represents the output of the system. 

The edges through which these units are connected in the layers have some weights , 

representing a numeric value controlling the input. Neural network learns through 

training i.e model is fed with many datasets of known outputs. As training contin-

ues, the model keeps on adjusting its weights according to the input , and gradually 

becomes more accurate. Because of an efficient learning mechanism of neural net-

work, it can predict network congestion with good accuracy [20, 28]. After prediction, 

congestion can be controlled by many ways. One way is to throttle the input arrival 

rate [20, 28], or apply different routing mechanisms [38- 40]. The following subsections 

explain the congestion prediction done through neural network model and congestion 

control by throttling the source or applying different routing techniques. 

2.2.2.1 Congestion control by throttling the source 

Bivens et al. [28] have used simple feed forward neural network to predict the 

source of congestion. Once the congestion is predicted, flow rate 4 restriction is applied 

to the source node which is responsible for congestion. This technique is able to 

detect and correct congestion in almost 90 percent of the cases ( out of 31 cases , 

congestion is correctly predicted 27 times) [28]. Network Simulator (NS), a discrete 

event simulator, is used to model the traffic patterns. In this simulator, a topology 

is chosen where all the network nodes are trying to send messages to one node at 

a random bit rate to depict the real network traffic. For each node, statistics are 

recorded during the simulation run, such as the packets received and queue size. The 

bandwidth allocation to links is random and the latency is set to a constant value. A 

control agent has been implemented that executes at a polling interval and contains 

two programs - C wrapper and MetaNeural Network Software. The communication 

between NS simulator and these two programs is done through files. Initially, C 

wrapper is called from the simulator, which reads the files updated by the simulator 

and then performs calculations like the average number of packets, the variance of 
4Flow rate is the number of messages moving in a link/ pipe in a given time frame 
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packets, and the third moment5 . These values are normalized and then sent to neural 

network to make a decision. Neural network program generates the prediction result 

in another file which is converted to a readable format by C wrapper so that the 

simulator can process the file. Once the congested node is predicted, bit rate is 

reduced by adding a small amount of time to the sending interval. 

When the incoming traffic packets exceed the outgoing packets, congestion is re-

duced by controlling the traffic rate [17, 20, 21 , 28, 29]. A feedback control algorithm 

is proposed in [21] to predict the buffer occupancy L step-ahead through multi-step 

neural network. It also estimates the resources required through Back-Propagation 

(BP) neural network which is then used by the source node to adjust the sent-out 

rate accordingly. With the help of simulation model, it is shown that high prediction 

accuracy can be achieved by using fewer predictive steps. Thottethodi et al. [17] pro-

posed a self-tuned mechanism which throttles the source upon congestion detection. 

Congestion is estimated by comparing the global information of network with the 

threshold value. If the global estimate is larger than the threshold value, packet in-

jection is controlled. Threshold value is not static; it gets changed through self-tuned 

mechanism. 

Liu et al. [29] considered queue length as a measure to estimate the performance 

of Asynchronous Transfer Mode (ATM) network. The congestion control of Available 

Bit Rate (ABR) service in ATM networks is achieved by implementing predictor and 

controller in the system using BP neural networks. The future arrival rate of traffic 

is predicted with metrics, such as past arrival rates and bandwidth. The controller 

predicts the queue length by taking inputs like predictive available bandwidth, queue 

length, control law6 and their historical values. By using fairness algorithm at dif-

ferent connections, dynamic fair rate is allocated to each virtual circuit. At last , the 

performance of predictor and controller is compared to FARIMA model to prove its 

efficiency. 
5Third moment is used to define the skewness of numbers . 
6 Control law computes source arrival rate 

26 



Fan and Mars [20] predicted the video traffic by finite impulse response (FIR) 

neural network and controlled congestion by throttling the input arrival rate. FIR 

neural network is a modification of conventional neural network, where network's 

weights are replaced by FIR linear filter. 11 FIR means that for an input excitation of 

finite duration, the output of the filters will also be of finite duration 11 [20]. Ogras and 

Marculescu [41] pred.icted the congestion on Network-on-Chip (NOC) and proposed 

a flow control algorithm which controls the total number of packets in the network. 

The primary drawback of both the aforementioned work is that they are reducing the 

input arrival rate, rather than controlling the existing congestion. 

2.2.2.2 Congestion control by Re-routing 

With the increasing complexity of network structure, it is difficult to find the best 

path [30]. In [38], two approaches are implemented using neural networks to resolve 

the routing and congestion control problem. The first approach uses feed-forward 

neural networks. This neural network indicates whether the link is congested or not 

by receiving input , such as the average number of packets, the variance of packets 

and the polling flag of sending packets. The second approach uses a recurrent neural 

network to decide the complete path from source node to destination node. eural 

network inputs are source node, destination node, link time costs and congestion 

status (output obtained from first neural network). The best path is obtained as 

an output through several iterations. Both approaches are applied to two different 

network topologies and demonstrated promising results. 

Prediction models are much more efficient as compared to the mathematical mod-

els [39]. Mohan et al. [39] has implemented two approaches to predict the congestion 

free path. In the first approach, association rule mining and traditional artificial 

neural network are used. Association rule mining defines the constraints , rules and 

statements derived from the data. Neural network takes the input like packet drop, 

response time and node degree, and yields output as the congestion weight that is 

used to determine the best path. The second approach is an improved version of 
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the feed-forward neural network, called self-motivated functional link feed-forward 

neural network. With an improvement in the architecture, the neural network was 

trained with additional inputs to give the best reliable path. Finally, the two ap-

proaches have been compared to prove that the prediction error of the proposed work 

is comparatively less as compared to the traditional feed-forward neural network. 

Barabas et al. [40] incorporated neural network with multipath routing algorithm 

(Situation Aware Multipath algorithm) to improve the performance of the congested 

network. A comparison of proposed work has been made with OSPF and EMP 

routing protocols. Through experimental results, it is proved that the percentage 

of lost packets is reduced significantly and hence the performance of the network is 

improved. 

2.2.3 Fuzzy Logic 

The fuzzy logic technique has been used by many researchers to predict the net-

work congestion [42- 44]. In this context, fuzzy logic scales the degree of congestion, 

rather than defining complete congestion or not. Xiang et al. [42] developed a fuzzy 

neural network 7 to predict the arrival rate of traffic in future. After predicting arrival 

rate, the queue length is calculated by Lindley equation [45]. If the queue length is 

estimated to overflow, encoding rate of the source is reduced by 25 percent of the 

current sending rate. The fuzzy logic approach was examined with BP network and 

no-feedback control method, and concluded that its packet discarding rate is much 

smaller as compared to these methods. Swathiga and Chandrasekar [44] developed a 

fuzzy logic system to predict congestion level in wireless sensor networks. The con-

gestion level is scaled as low (Al), medium (A2) and high (A3) (based on threshold 

values). After a certain interval, each node in wireless sensor networks measures node 

degree, data arrival rate and queue length. These three values are accepted as input 

by the fuzzy logic system, and the congestion level is yielded as an outcome. If the 

congestion level is Al , no control algorithm is applied. However, if the congestion 
7Fuzzy neural network is a combination of fuzzy logic and neural network. 
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level is between A2 and A3 , adaptive rate adjustment technique is triggered. In this 

technique, node sends a rate regulation message to upstream nodes and a new data 

sending rate is generated using current rate, node degree and queue length. NS-2 has 

been used to implement the proposed technique and compare with Hybrid conges-

tion control [46] in wireless sensor networks. It has been shown that the proposed 

technique is superior by analysing a number of performance metrics such as average 

packet delivery ratio and packet drops. 

2.2.4 Other Techniques and Applications 

A Kalman-filter based prediction technique is proposed in [47], [48]. Haught et al. 

[47] extended the work done by Stuckey et al. [48] on Kalman-filter based prediction. 

Stuckey et al. worked with very small network whereas Haught et al. are dealing with 

complex network structure. Kalman filters are placed on network links to record data 

periodically. The sample rate of the filter is one second. Periodically, it records the 

queue size and current arrival rate. It predicts the queue size at next interval based 

on the current and past queue sizes. So, the arrival rate of the packet is controlled by 

analyzing the predicted queue size with the help of control algorithm implemented in 

the network. NS-2 is used to implement the proposed algorithm. 

A new system called Network Bandwidth Predictor (NBP) to forecast the network 

bandwidth is proposed in [49]. NBP uses Network Weather Service (NWS) 8 to gather 

traffic statistics. The raw data is further processed by Network Traffic Pre-Processor 

and neural network is trained with the input such as timestamp, minimum and maxi-

mum number of bits in one second in that bin size (the period at which user wants to 

make prediction) , average number of bits in one second, and the predicted value. By 

testing many real-time datasets, NBP prediction mechanism is shown to be superior 

to NWS. A Graphical User Interface (GUI) is also provided, which gives a report for 

analysis and accuracy comparison with NWS. 

Neural networks have also been used to predict road traffic with high accuracy 
8 NWS is a methodology which measures the hop-by-hop available bandwidth on all links. 

29 



[50 , 51]. Yu et al. [50] successfully captured bursty nature of traffic by developing a 

back-propagation feedforward neural network model. Hussein Dia [51] has developed 

dynamic neural network models (time-lag recurrent network and hybrid networks) to 

predict short-term traffic. The models are trained with the speed measurements from 

the historical time intervals. Through experimentation, it has been proved that high 

degree of accuracy is obtained when speed data was predicted up to 5 ( or 15 minutes) 

into the future. 

2.3 Summary 

Congestion Control techniques using prediction algorithms are far more superior 

than general congestion control techniques in terms of network's performance. For 

congestion prediction, it has been demonstrated that neural network is a very fea-

sible method because of its highly sophisticated learning mechanism and complex 

computational capability. To predict congestion, the input parameters for a predic-

tive model are generally based on the packet arrival rate and queue length. Many 

solutions are proposed to control congestion by reducing/ controlling the sending rate. 

But decreasing traffic rate is like avoiding congestion, rather than controlling. More 

efficient techniques are needed to control the congestion without reducing the existing 

traffic rate. 
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Chapter 3 

Simulator Architecture, Neural 

Networks and Cloud-Computing 

This chapter contains three sections. The first section explains the design and archi-

tecture of the distributed transaction processing simulator (DRTTPS), which is used 

as a test-bed in this research to predict network congestion. The second section gives 

an overview of neural networks, and the training process. The last section discusses 

the importance of deployment of predictive models on the cloud. It further describes 

ADAPA on the Amazon cloud and the model deployment process. 

3.1 The Simulator - DRTTPS 

Studying and conducting experiments directly on a real system is not feasible due 

to cost, time, complexity and error-prone nature. Therefore, simulation is used to 

understand, model and analyze the system. A simulation model describes the real-

system workflow and relationship between different entities . Simulation of a system 

can be either continuous or discrete [52]. When the state of the system continuously 

changes over time, it is called continuous event simulation. For example, an air-plane 

has state variables - velocity and position, which change continuously with respect to 

time. In discrete event simulation, the state of the system is based on the occurrence 
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of events, which occur at discrete points in time. The banking system is an example 

of discrete event simulation, where the total number of customers is one of the state 

variables. This variable changes only by the occurrence of events such as the arrival 

of new customer and departure of the customer after being served. 

To predict and control network congestion in distributed real-time database sys-

tem, distributed real-time transaction processing simulator (DRTTPS) is used as a 

test-bed. DRTTPS [5] is a discrete event simulator developed to simulate distributed 

real-time transaction-based database system. It enables the user to configure various 

parameters through its highly interactive graphical user interface. Different protocols 

such as routing protocols, concurrency protocols , pre-emption protocols and priority 

protocols can be added to DRTTPS to test and analyze their performance. Its dis-

crete event simulation engine consists of tick (simulation clock) , entities, events, event 

queue, event scheduler and event processor. A tick is a unit used in the simulator 

to measure discrete amount of time. Events are created by entities and inserted in 

the event queue based on their execution time [5]. Examples of events in DRTTPS 

include: sending a message from one node to another, transaction arriving at a node 

and transaction committing. Event scheduler extracts an event from the top of the 

event queue and calls the event processor. Once the event is processed completely, 

the state of the system gets updated. Different simulator modules and their vital 

features are explained in detail in the following subsections. 

3.1.1 Network Architecture 

Network is the core component of DRTTPS, having one or more sites connected to 

each other through wide area network. Each site can have many nodes, and each node 

can have one or more real-time databases as shown in Figure 3.1. Nodes are connected 

to each other through local area network and communicate through messages using 

network connections. These network connections are called links (pipes) , which are 

bi-directional in nature. Each node has its own routing table, where the routing table 

stores paths to all the receivable destination nodes. If a link gets congested due to 
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heavy workload, the routing protocol updates the routing table to deliver the message 

in a timely manner . 

•••• 
Bus Topology • Site A 

WAN 

Tree Topology 

Ring Topology 

Figure 3.1: Network Architecture [5] 

Each link or network connection has the following components: 

• Source Node: node init iating network connection. 

• Destination Node: final node receiving the messages. A message originating 

from source node can travel through one or more intermediate nodes to reach 

its final destination node. 

• Bandwidth: the maximum capacity (number of messages) which can be t rans-

ferred from one node to another in a particular time period. Bandwidth is one 

of the major factors that affects network performance. 
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• Latency: time taken by a message to travel from one node to another. High 

latency network connection suffers long delays. 

• Queue Length: number of messages waiting on link's queue to get processed. 

When bandwidth is fully utilized, messages start queuing. Once queue length 

starts increasing, network delay is caused. 

Nodes ' connections to each other and data flowing within a network are determined 

by the network topology. Some of the network topologies implemented in DRTTPS 

are ring, star, tree, fully connected and hypercube. 

3.1.2 Node Architecture 

A node represents a single computer, which can perform computations and com-

municate with other nodes via messages. Messages can be sent directly to the neigh-

bouring nodes, whereas the messages have to pass through some intermediate nodes 

to reach non-neighbouring nodes. A node consists of many hardware components 

such as processor manager, disk manager, buffer and swap disk. These components 

are explained as follows: 

• Processor manager manages all the processors in a node. A node can have 

more than one processor, and each processor can process one page at a time. 

The number of ticks taken by a processor to process one page is called process 

time. More than one page can be processed at a particular instance, if hyper-

threading feature is enabled. 

• Disk manager manages the disks of a node. Each disk stores specified set 

of pages. A disk can read or write one page at a time. The ticks taken by a 

disk to read or write a page is called access time. The property that enables 

a disk to distribute data as partitioned or replicated is called data distribution 

( explained in section 1. 2). 
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• Buffer represents the memory storage of a node which temporarily stores data 

(pages). The page limit of the buffer depends on the buffer size attribute. If a 

page is available in the buff er, transaction accesses the page directly from the 

buffer instead of reading from the disk. 

• Swap disk represents the virtual memory of a node. It stores pages when 

buffer is full. 

A node may also have a workload generator which controls the workload of the 

system. The system's workload can be controlled by varying its various attributes, 

such as inter-arrival time, slack time, work-size, update percentage and workload size. 

Any distribution can be selected for these attributes as shown in Figure 3.2. 

Arrival time represents the inter-arrival time, which is the time difference be-

tween the two transactions arriving at a node. Low inter-arrival time results in high 

system load because many transactions enter the system within a short duration. 

The workload generator creates transactions with associated deadlines to complete 

the operations. Each transaction processes the pages to perform read or write op-

erations. The number of pages accessed by a transaction depends on an attribute 

called worksize. After processing, pages are updated on the disk; determined by an 

attribute called update percent (percentage of transaction's operations required to 

be updated on the disk). An extra time called slack time is allocated to the trans-

action for completing its operations. The total number of transactions generated by 

the workload generator depends on the workload size attribute. 

When a transaction gets delayed ( even after passing the slack t ime) because of in-

evitable problems like deadlock and congestion, it may get aborted. There is a trans-

action time-out attribute, which decides transaction's maximum waiting time limit 

during its execution. Another node attribute called maximum active transactions 

represents the maximum number of transactions which can run simultaneously on a 

node. When multiple transactions are generated by different nodes ' workload genera-

tors , numerous problems (such as concurrent access, resource sharing, and congestion) 
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can arise . To handle these problems various protocols are implemented in DRTTPS 

at the node level. Each node can run their own protocols based on their simulation 

environment. Some of t hese protocols are discussed hereunder: 

3.1.2.1 Concurrency Control Protocol 

Concurrency control protocols are used to handle simultaneous access of database 

by different users [1 3]. The aim is to coordinate concurrent access to t he database sys-

tem. These protocols control the transaction's requests for locks on pages. Transac-

t ions need a shared lock (or exclusive lock) to read/ access the pages, and an exclusive 

lock is required to perform the write operation on the pages. There are various con-

currency control protocols implemented in DRTTPS such as greedy locking, greedy 
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locking all copies, speculative locking and adaptive speculative locking [53, 54]. 

Greedy locking all copies protocol has been used in this research to handle concur-

rency. In this protocol, when a transaction starts its execution, it requests locks on 

all the pages which will be required during its lifetime . The transaction does not start 

its operation until all the locks have been granted to it. Locks are released when the 

transaction is completed. Greedy locking and greedy locking all copies are similar, 

except for the fact that the later protocol supports replication across nodes. 

3.1.2.2 Preemption Protocol 

When two or more transactions try to access the same page, priority inversion 

may occur [1]. Priority inversion happens when a high priority transaction waits for 

low priority transaction to commit . Preemption protocols handle these scenarios by 

controlling the preemption of transactions. The preemption protocols implemented 

in DRTTPS are listed below: 

• High Priority Preempts: A transaction holding a lock on page can be pre-

empted only if a transaction trying to preempt has higher priority. 

• Never Preempts : No preemption will happen. 

• Priority Inheritance: Priority inheritance is a method for avoiding priority 

inversion. When a transaction with high priority waits for the transaction 

having low priority, low priority transaction inherits the priority of high priority 

transaction in order to complete itself instead of being aborted. 

3.1.2.3 Routing Protocols 

In a network, nodes communicate with each other via messages. Routing algo-

rithms determine the route of a message from one node to another, according to the 

network topology. In a fully connected network, routing is simple because there is a 

direct path from one node to the other. But, topologies like hypercube, ring and tree 
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have intricate routing due to indirect paths between nodes. Messages from the source 

node (node sending messages) are routed to intermediate nodes before reaching the 

final destination node ( node receiving messages), and these paths are determined by 

the routing algorithms. We have selected DSP and RIP for comparison with our 

proposed NNPR protocol. DSP is a classical routing protocol, whereas RIP is widely 

used in today 's distributed networks. These protocols are described below: 

• Dijkstra's Shortest Path (DSP) [26] - Dijkstra's Shortest Path Algorithm 

computes the shortest path between two nodes. The cost of the route is the 

sum of the latencies of all the intermediate routes from source to destination 

node. For example, in Figure 3.3 there are many paths from Node 1 to Node 

8, but the shortest path between these nodes is [1-2-5-8] with a total cost of 4. 

The routing table format for Node 1 is shown in Table 3.1. 

In DSP algorithm, once the routing table is set-up it never changes during 

the simulation run. The cost of the route is not affected by the amount of 

congestion. 

Figure 3.3: Shortest path between Node 1 and 8 using DSP Algorithm 

• Routing Information Protocol (RIP) - RIP is a distance vector routing 

protocol [27] in which each node shares routing information with its neighbour-
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Table 3.1: Routing table for Node 1 
Source Node Destination Node Shortest path Cost 

1 2 [1-2] 1 

1 3 [1-3] 2 

1 4 [1-4] 2 

1 5 [1-2-5] 3 

1 6 [1-3-6] 3 

1 7 [1-4-7] 4 

1 8 [1-2-5-8] 4 

ing nodes at set time intervals. In turn , the neighbours exchange t he routing 

information with their nearest neighbours, and so on, until all the nodes have 

the same routing information of the network (this state is known as conver-

gence). While generating a simulation with RIP, a parameter called update-

Time defines how often each node sends its entire routing information to t he 

neighbouring nodes. Unlike DSP, RIP takes into account both congestion and 

latency metrics while updating the routing tables. 

In RIP, when a path becomes congested, the network does not discover it im-

mediately due to the slow convergence. Another disadvantage of RIP is the 

count to infinity problem. It happens when a network link breaks, and nodes 

mislead each other by calculating the shortest path to infinity ( a node sends 

the wrong and outdated shortest path calculation to another node, which prop-

agates through the entire network and reaches infinity). 

• Neural Network Prediction-based Routing protocol (NNPR) - This is 

the main contribution of this thesis and has been discussed in detail in Chapter 

4. 
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3.1.3 Simulation Set-up 

DRTTPS's set-up tool provides the user with a graphical user interface to configure 

and simulate a real-t ime distributed database system. It involves setting up site 

components, network architecture, node structure and other simulation settings. The 

user can save the configured settings and run t he simulation from the set-up interface. 

It has another important component called variation container, which allows the user 

to run and compare many simulations simultaneously. After setting up t he required 

parameters , variation tab can be opened to vary the desired parameters. For example, 

in Figure 3.4, a variation is created by varying the bandwidth parameter. Many 

variations can be generated through the variation tab. 

C.iJ AutotMtic. Simulation <xnffation l ..... ~ .... i 

; Buffer r Disk l ~ Node [ Processor r Swap Disk t WorkkJad Genera10f ( VBrtatkJH i ~~~~~~~~~~~====::::::;-i 
\ Ad<!Variolion I 

{) ConfiguratiOn 0 Number Of Nodes 

(!) Bandwidth 0 Latency 

0 PnorttyProtoaii 0 External Usage 

0 Latency OistJhltion 

' I Ge .. ,. .. 

Figure 3.4: Variation Container 

3.1.4 Performance Analysis 

When a simulation runs, run-t ime performance analysis can be done through 

report-tool graphical user interface ( as shown in Figure 3.5). There are many perfor-
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mance metrics implemented which can be analyzed through this window. PTCT is 

the main performance metric of DRTTPS, which indicates the percentage of transac-

tions completed on time. Report tool has a feature called loading and opening report, 

which facilitates the user with a functionality of saving and opening the graphs later 

for analysis purpose. 

Report Tool 
File 

load 

=· o- L'.l Average Load Auoss ActJVe No 
:: ~ Cl MaX1mum Load Difference 

o,. L'] Load De,fatiun 

• ,.------x_.A_xis __ ~~,__···_,_~--..__~ 
Final \lalue of Percent Completed 

Y.Axis 

Title 

I!'.] Only one data line pos-
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Figure 3.5: Report Tool 

3.2 Neural Networks 

Open 

"Human brain is the most powerful processor and the most efficient" [55]. It 

has millions of neurons connected to each other in a complex manner. There are 

multiple layers of neurons interacting with each other. Each neuron in the layer 
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receives inputs from the previous layer and forwards it to t he next layer and vice-

versa. Based on the learning and memorization, neurons keep sending signals and 

finally adjust themselves for the best decision making. Hence, researchers mimicked 

the human brain 's functionality to solve complex problems and achieve the same 

extent of accuracy. This is called Art ificial Neural Network (ANN). 

ANN is a mathematical model, which consists of t hree parts : input layer , one or 

more hidden layers and output layer [6]. These layers have many neurons connected 

to each other through edges as shown in Figure 2.5 (This figure is an example of a 

simple feed-forward neural network). Each neuron consists of numerical information 

called activation value, which is a function of its input value (input fields and weights). 

A sample of neuron structure and its working design is shown in Figure 3.6. 

f. = ~l X· W· L L...n L L 

Yi= f(h) 
Transfer Function 

Figure 3.6: Neuron Design [6] 

The activation value is high when the input value is large. The activation values 

are passed from one layer to another, where each neuron aggregates t he received 
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activation values and changes the aggregated value by its activation function. The 

activation function (also known as output, or transfer function) converts input values 

to output values. Some of the activation functions, as explained in [6], are shown 

below: 

• Identity Function - Linear (Identity) function does not apply any transforma-

tion, which means it is identical to the input. 

(3.1) 

where Ii is the input, and Yi is the output signal. 

• Binary Step - In binary step , output has two states (0 and 1) and these states 

change depending on the threshold value. If the activation value exceeds the 

threshold value (T), the output is 1, otherwise O (shown in equation 3.2). 

(3.2) 

• Sigmoid - The most frequently used sigmoid functions are logistic and hyperbolic 

tangent [6]. Logistic function is defined by the equation (3.3). 

1 
(3.3) Yi = 1 + e-/3 I; 

where /3 is the slope parameter. The range of logistic and tangential functions 

are O to 1 and -1 to 1 respectively. It is continuous and easily differentiable and 

is therefore widely used in the models. 

• Gaussian - Gaussian function is also called radial basis function. It can be 

defined by the following equation: 

12 
- i 

Yi = e 2cr2 (3.4) 

The function value declines when absolute input value increases. 
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3.2.1 Types of Neural Networks 

Neural networks are classified into two types: feed-forward and feed-back [6]. 

Feed-forward is a one-directional neural network, that is, information flows from 

input layer, through hidden layers (if present) , to output layers and not vice-versa. 

A simple feed-forward neural network has already been explained in section 2.2 .2. 

The most common kind of feed-forward networks are perceptron and radial basis. 

Feed-back is a recurrent neural network where information can flow forward and 

backward, which leads to the formation of cycles or loops. The state of the network is 

changing continuously until an equilibrium point is reached , and therefore it exhibits 

dynamic behavior. Once equilibrium is attained , the state of the network will not 

change until the input is changed. This kind of networks can become very complicated 

and are generally used in systems like motion detection and speech recognition. 

Perceptron network has been used in this research to predict network congestion, 

therefore its detailed design structure is discussed here. 

3.2.1.1 Single Layer Perceptron 

Single layer perceptron (SLP) [7] is a simple artificial neural network. The input 

layer sends directly inputs to output layer and there is no hidden layer. The output 

value is binary and it depends on the threshold value. If the sum of the product of 

input value and weight is greater than the threshold value, output is 1, otherwise it 

is 0. When the predicted results do not match with the expected results, it means 

network performance is not satisfactory. To decrease the network error, weights are 

adjusted. Since SLP is based on the linear function, it does not understand simple 

non-linear cases, such as the XOR problem. However, multi-layer perceptron can 

easily analyze XOR problem. 

3.2.1.2 Multi-layer Perceptron 

Multi-layer perceptron's structure is similar to single layer perceptron with one 

or more hidden layers. It is based on the back-propagation [7] learning technique. 
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Back-propagation consists of two phases: 

• Forward Phase - In this phase input values are fed to the output layer, and 

output is computed using sigmoid transfer function. 

• Backward Phase - When the performance of the model is not satisfactory, the 

error is fedback to the network. As a result, network modifies link weights to 

reduce the error rate. The error of the model usually becomes very small after 

repeating the same process for several training cycles. 

3.2.2 Neural Network Training Process 

Training is the most important part of a neural network model. Model's perfor-

mance is directly related to the training process. It is an iterative process that starts 

with the preparation of input data. After preparing input data, neural network type 

(multilayer perceptron or radial basis function network) and structure (hidden layers 

and neurons) are determined. Network training is started after configuring the pa-

rameters such as network type, number of hidden layers, number of neurons, training 

time, and the training cycles. Once the training is completed, the analysis of results 

can guide the user to identify issues with the input data or other neural network 

settings. The complete process is repeated until satisfactory results are obtained (as 

shown in Figure 3.7). 

There are few steps that should be performed before training as shown in Figure 

3. 7. The steps involved in the training process are elaborated in detail in the next 

subsections [7] . 

3.2.2.1 Preparing Input Data 

eural network's performance depends highly on the input data. Ideally, the 

training data should span the complete input range of the network model. If the 

input of the model is not within the range of training set , it may not perform well. 

After deciding the input data and its ranges , data is divided into three sets: training, 
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Figure 3.7: Neural Network Training Process [7] 

testing, and validation. The training set generally consists of 60-70 percent of the 

complete dataset; and testing and validation approximately 15-20 percent each. A 

simple way to create these sets is to randomly divide the complete dataset into three 

sets. The amount of data needed to train the model can never be estimated ahead 

of the training because it depends on the accuracy of the model (if accuracy is low, 

model needs to be trained with more data, otherwise no further training is required 

with additional data). 

Data cleansing or transformation needs to be done before feeding the input to the 

neural network. By doing so , the neural network can easily extract the meaningful 

information from data. Data cleansing/ transformation may include normalization, 

handling missing values in data and other transformations. In normalization, data is 

normalized to fall within a specific range, generally -1 to 1 or O to 1. This is done 

because activation functions in the hidden layers may get saturated (reach a constant 

value) with the large input numbers. The reason for avoiding saturation is because 

the derivative of the activation function is almost O in the saturation region, which 
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substantially slows down the network learning. For example, in multilayer perceptron 

network, sigmoid transfer function gets saturated when the input is large. To handle 

the missing input data, a possible solution is to replace the missing values with the 

average value of that particular variable. 

3.2.2.2 Neural Network Type and Architecture 

The type of neural network (Section 3.2.1) depends on the nature of the problem. 

When the type is determined, network architecture (number of hidden layers and 

neurons) needs to be decided. The complexity of the neural network model depends 

on the number of inputs and the relationships between them. The more complex 

model requires more neurons and hidden layers . 

To determine the number of layers in the network, a conventional way is to begin 

the training with one hidden layer. If the performance is not satisfactory, then two 

hidden layers can be used. The network becomes more complicated and unstable 

when more than two layers are used. 

The number of neurons is determined by the complexity of the problem which 

cannot be defined without training the network. The general way is to commence 

the training with a large number of neurons (randomly selected) and enable early 

stopping ( explained in the following section) feature in the model to avoid over-

fitting. 

3.2.2.3 Neural Network Training and Configuration 

Network training can be started when the input data is prepared and the network 

architecture is chosen. Firstly, weights are initialized for the complete network. Then, 

stopping rules are used to prevent the over-fitting problem (modelling errors rather 

than defining relationships in the data). One way of stopping is to limit the maximum 

amount of time the model needs to be trained . Another possible way is to specify the 

maximum number of training cycles required. 
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3.2.2.4 Analyze Model Performance 

In the training phase, the model is trained with the actual outcome. As training 

continues , the model keeps on adjusting its weight to minimize error. The training and 

actual outcomes are then compared to find the error of the model. The error can be 

computed by analyzing statistical metrics such as R-square, root mean square error, 

and mean absolute percentage error. To analyze the network congestion prediction 

model results , R-square [56] metric is used in this research. R-square, also known as 

coefficient of determination, is a statistical measure which defines the fitness of data 

for a model. The higher the R-square, the better is the prediction model. R-square 

is defined as follows: 

(3.5) 

where Yi is the actual value, fl is the predicted value, and y is the mean of actual 

values. 

The aim is to minimize the error rate, which is attained by iterating the complete 

training process again and again. Once the model results are satisfactory, the network 

is analyzed against the test-sets. The test-sets may not perform sufficiently due to 

the following reasons: 

• Overfitting - There is a possibility that stopping rule is not configured properly. 

• Local Minima - It is possible that network has entered its local minima of the 

error rate. A widely used solution for this problem is to retrain the network by 

random weights. 

• Extrapolating - Extrapolating means test data does not fall in the training data 

sets range. In this situation, model needs to be re-trained by combining the test 

data into trained datasets. 
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3.3 Cloud Computing 

IBM SPSS Modeler 16.0 [57], a data mining and analytic tool, has been used in 

this research to model neural network. In predictive analytics, creating a data model 

is the first phase. The second and important phase is t he deployment of model, which 

enables the decision makers to use the model for real applications [58]. Business users 

need data which is accurate, on-t ime and easy to understand. Hence, t he real-t ime 

scoring engine is needed so that t imely decisions are made and new business rules are 

derived. 

The deployment of predictive model is a complicated task because it can be very 

resource and t ime-consuming. For real-time applications, when results from the pre-

dictive model are delayed, it is of no value because it is possible that when a model 

is deployed business rules are changed. 

ADAPA (Adapt ive Decision and Predictive Analytics) [58] scoring engine has been 

used in this research for real-t ime scoring. It provides cloud computing capabilit ies 

and open standards, which facilitate quick deployment of the model by integrating 

with data mining platform (SPSS Modeler). ADAPA uses Predictive Model Markup 

Language (PMML) [59] to deploy t he models from data mining tools to cloud . PMML 

offers open standards for the predictive models. It is an XML-based language, which 

represents data mining models, business rules, input data, and data transformations. 
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Figure 3.8: PMML Sample Code 

Figure 3.8 shows a small P MML code fragment of a trained neural network model 
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(the model t rained to predict network congestion) developed in SPSS Modeler. Train-

ing algorithm, function name and activation function used in t he model are repre-

sented in the init ial line of code. The subsequent lines specify network inputs and 

t heir importance values denoting predictive contribution, and the last line denotes 

that 'Future Queue Length' is the predicting field. 

3.3.1 Model Deployment Process 

The steps involved in the deployment of t he model on ADAPA are shown in Figure 

3.9 [58]. These steps are explained as follows: 

Prepare the Model 

Deploy Model on ADAPA 

Verify the Model 

Use the Model 

Figure 3.9: Predictive Model Deployment Process 

1. In this research, t he neural network model is developed in SPSS Modeler. SPSS 

Modeler can export its model in PMML format , which is interpreted by ADAPA. 

Once the model is finalized, it is deployed on ADAPA so that real-t ime scoring 

can be done. 

2. Model is deployed directly by uploading P MML file on the ADAPA console. The 

ADAPA console is an interface that allows user to upload models and rule-sets. 

3. After model deployment , ADAPA results need to be verified. For verification, 

a CSV data file (containing input data) is uploaded on t he ADAPA console. 
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ADAPA processes the file and provides the predicted results in a new file, which 

can be downloaded and analyzed. To verify the ADAPA results, there is a need 

to compare ADAPA results with SPSS Modeler results. If both t he results are 

identical, the model is verified. 

4. Once the model deployment is verified , t he model can be used for scoring. 

One way of scoring is through ADAPA console as explained in the above step. 

Another way is real-t ime scoring through web service. Web service uses XML 

to interpret the data. Data can be easily t ransferred from one application to 

another through SOAP standard [60] . ADAPA web service uses Java Data 

Mining (JDM) standard to process t he models defined in P MML [58] . Web 

service propert ies are configured in Web Service Descript ion Language (WSDL) 

file. WSDL is defined by JDM standard. The detailed explanation of the 

implementation of web service is provided in Chapter 4. 

3.3.2 ADAPA in the Amazon Cloud 

ADAPA is set up and installed on the virtual server in the Amazon Cloud. It 

is called an ADAPA instance . The instance can be launched on demand, and 

terminated whenever required. Each instance has its own secure server with pre-

installed ADAPA. When an instance is init iated on the cloud, it can be accessed from 

any applicat ion through web services. 
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Figure 3.10: ADAPA Control Centre Interface 

Amazon Web Service (AWS) account is required to access ADAPA Control Centre 

(ACC), which handles security and manages ADAPA instances [58]. In terms of 

security, the instance has its own secure server, which does not allow the user to start 
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an instance without its access keys. Instance is only accessible via HTTPS protocol, 

and both ADAPA and web service are password protected. When an instance is 

terminated, the model information and data are permanently deleted. ACC provides 

an interface, which shows the status of different instances as shown in Figure 3.10 

(running, stopped and terminated). There are different types of instances: small, 

large and extra-large (in terms of memory and processing power). An instance can 

be chosen depending on the processing requirement of the model. 
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Chapter 4 

Prediction Model and 

Implementation 

This chapter explains the neural network prediction model developed to predict net-

work congestion. Furthermore, it provides the implementation detail of different 

classes implemented in DRTTPS. These classes briefly explain the generation of the 

trace, integration of ADAPA into DRTTPS, and routing mechanism. 

4.1 Network Congestion Prediction Model 

As defined in Section 1.4, congestion is directly related to the queue length (Equa-

tion 1.1) i.e. when the queue length increases, congestion also increases, resulting in 

a low PTCT (percentage of transactions completed on time). Hence, the predictor 

attribute in this research is queue length. The aim is to predict the queue length 

of each link and reduce the queue length by re-routing the messages . A neural net-

work model is developed to predict queue length of each link. This queue length is 

predicted 100 ticks ahead (the reason to chose 100 ticks is to reduce the overhead of 

prediction module). 
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4.1.1 Determining Inputs of Network Model 

DRTTPS has been used as a test-bed in t his research, hence it is important 

to analyze its primary parameters affecting congestion. To determine the primary 

parameters affecting congestion, numerous experiments are performed with different 

parameters. The parameters with significant impact on congestion are selected as 

t he inputs of neural network. Through experimentation, it was determined that 

the primary parameters affecting congestion are bandwidth, max active transactions, 

update percentage, latency and work-size (as shown in Figure 4.1 , 4.2, 4.3, 4.4 , 4.5) . 

The input range for each parameter is chosen in a way that it shows observable results. 

The aim is to train t he neural network with different types of congestion loads i.e . 

high, medium, low, and no congestion. These loads can be generated by varying 

different parameters in t he simulator. 

Bandwidth affecting PTCT 
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Figure 4. 1: Bandwidth vs PTCT 

Figure 4.1 illustrates t hat bandwidth is a major factor impacting congestion ( con-

gestion is inversely related to PTCT ). A large number of t ransactions are aborted 

54 



when bandwidt h is 5 because of excessive queuing of messages on t he nodes ' links. 

As the bandwidth increases , t he message queues are drastically reduced, and PTCT 

climbs to almost 100 percent wit h a bandwidth of 35. Hence, the bandwidth range 

chosen for neural network t raining is 5-35. 

MAT affecting PTCT 
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Figure 4.2: MAT vs PTCT 

When the max active t ransaction (MAT ) increases , congestion of the system in-

creases (Figure 4.2). This is because, the transactions running concurrent ly in the 

system cause a large number of messages to flow within the network, which in t urn 

lead to queuing up of messages. There is no observable difference beyond MAT 40, 

because it saturates the total number of transaction workload of the system in a 

short duration (total transactional workload is 150). Therefore, t he range of MAT is 

selected as 10-50. 

Effects of update percentage parameter on the system load are shown in Figure 4.3. 

This parameter indicates the percentage of write operations in t ransaction processing. 

Write operations block other transactions because of the transaction's exclusive lock 

on data. Transactions' execut ion time increases because of t he blocking, and hence 
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Figure 4.3: Update vs PTCT 

t ransactions do not complete before their deadline. The chosen range of update 

percentage is 5-50 percent. The input range is not chosen beyond 50 % update rate 

because the linear decline of PTCT (Figure 4.3) is correctly captured by the neural 

model (which is validated in Section 5. 1.2). 

Latency and work-size are t he other two parameters which impact PTCT (Fig-

ure 4.4 and 4.5). Increased latency results in delaying of t he messages to reach the 

destination node. This causes more t ransactions to miss t heir deadlines and reduces 

PTCT . Work-size exhibits a similar t rend. When t he number of pages required by 

a transaction increases , it sends more messages to access the pages, result ing in con-

gestion within t he network. The chosen range for work-size is 2-8 because it shows a 

major variation of PTCT within this range. After work-size 8, PTCT decreases at a 

slower pace. 

Finally, arrival t ime also affects t he congestion of t he system. In DRTTPS , each 

node has a different inter-arrival t ime to reflect real-t ime scenario ( arrival rate scaling). 

Inter-arrival t ime is generated on each node by a random number generator within a 
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Figure 4.4: Latency vs PTCT 
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Figure 4.5: Worksize vs PTCT 

range of 5-300 t icks using Poisson distribut ion. 

T he parameters configured in DRTTPS are shown in Table 4.1. After conducting 

different experiments ( explained above), it is concluded that t he inputs of neural net-
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Table 4.1: Parameters Settings 
Parameter Type Parameter Name Value 

Topology Hypercube 

Number of Nodes 8 
Network 

Bandwidth 5 - 35 

Latency 5 (Poisson Distribution) 

Max Active Transactions 10 - 50 

Disk Count Per Node 20 

Disk Access Time 35 ticks 

Buffer Size 100 

Swap Disk Access Time 35 ticks 

Node Transaction Process Time 5 ticks 

Replication Protocol Full Replication 

Routing Protocol DSP 

Concurrency Control Protocol Greedy Locking all Copies 

Priority Protocol Earliest Deadline First 

Preemption Protocol Higher Priority 

Inter-arrival Time 15 - 300 ticks 

Scale Arrival Rate Enabled 

Slack Time 676 - 2028 
Workload Generator 

Work-size 2 - 8 pages 

Update Percentage 5 - 50 % 
Total Transaction Workload 150 
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work are latency, tick , link, total bandwidth, used bandwidth, queue length, number 

of messages, update percentage, work-size, arrival time and maximum active trans-

actions. Output/ Target is future queue length. 

4.1.2 Neural Network Model 

A periodic trace file is generated from the simulator, which contains all the neural 

network inputs. The trace file stores the snapshot of each link at every 100th tick. 

For example, the snapshot of link 6# 2 and 7# 3 at tick 200 is displayed in Figure 

4.6. Trace file depicts that at tick 200, link 6# 2 has received a total of 39 messages 

i.e. 195 message units (it is assumed that each message is of 5 message units), out of 

which 180 message units are queued and 15 are in the link (because total bandwidth 

is 15). Trace file further informs that link 6# 2 will have 175 message units queued 

at tick 300. 

2 200 7#3 15 

Bandwidth Queue length of Messages Update% Worksize Arrival Time MAT Future Queue Length 
15 180 39 

0 
25 
25 

4 
6 

Figure 4.6: Snapshot of links at 200th Tick 

130 30 
30 30 

175 
140 

Various simulations have been run to create different congestion scenarios by vary-

ing parameters like inter-arrival rate , max active transactions, update percentage, 

work-size, and latency. The neural network model is trained with 30 simulation runs 

having different congestion loads. The congestion load of a simulation run is the 

average time taken (in ticks) to clear the queue length. Four ranges of congestion 

load have been created, i.e. negligible, low, medium, and high congestion load (Table 

4.2). These ranges are defined by analyzing the average congestion load of a simu-

lation run. Table 4.3 displays the simulation runs used to train the neural network. 

Training runs have different kinds of congestion loads i.e. negligible, low, medium 

and high. 

The neural network model is developed in SPSS Modeler 16.0 [57] (Figure 4.7). It 
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Table 4.2: Congestion Load Ranges 
Congestion Load Avg. Congestion Range (in Ticks) 

Negligible O - 2.99 

Low 3 - 15.99 

Medium 16 - 30 

High > 30 

Table 4.3: Neural Network Training Simulation Runs 
Max Active Transaction Update (%) Bandwidth Avg Congestion PTCT (%) Congestion Load 

5 25.32 60.7 Medium 
5 

30 1.00 99 Negligible 

10 15.48 70.67 Low 
10 25 

20 3.98 93.43 Low 

5 36.50 53.32 High 
40 

25 2.15 96.18 Negligible 

15 15.26 75.77 Low 
10 

25 3.18 98.44 Low 

10 28.45 52.33 Medium 
20 30 

30 1.82 99 Negligible 

5 57.14 20.84 High 
45 

20 6.81 90.45 Low 

15 15.82 68 Low 
15 

20 7.33 81.48 Low 

20 6.21 77.6 Low 
30 20 

25 3.06 94.24 Low 

5 70.38 9.93 High 
35 

30 1.87 98.69 Negligible 

10 32.79 29.62 High 
10 

15 18.5 46.66 Medium 

5 69.05 7 High 
40 25 

25 3.26 84 Low 

20 7.53 64.83 Medium 
50 

30 2.10 95.53 Negligible 

5 72 7.12 High 
5 

30 1.77 99 Negligible 

20 7.48 80 Low 
50 30 

25 3.82 94 Low 

10 29.54 16.97 Medium 
45 

15 17.57 32.8 Medium 
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has different types of nodes , which are responsible for different kinds of functionalities. 

These nodes are explained as follows: 

lnputData Type FutureQu~ueLength 
is,.t... 
·~t.: 

Figure 4.7: Neural Network Model 

Analysis 

Table 

• InputData node is the excel source node, which imports data from the periodic 

excel trace file. 

• Type node specifies the role (input, target, or both) and format of input fields 

(Figure 4.8). 

• FutureQueueLength is the neural network modelling node, where all the 

network settings are configured. The model parameters settings configured in 

the model are specified in Table 4.4. The type of neural network is Multilayer 

Perceptron with 2 hidden layers. The first hidden layer has 10 neurons and the 

second hidden layer has 5 neurons. Determining the number of hidden layers 

and neurons is an iterative process ( explained in Section 3.2.2.2). The number 

of training cycles which are used to train multilayer perceptron network is 250. 
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Figure 4.8: Type Node 

Overfit prevention set is  50%, which  means  50% of t he total data is separated 

from t he modelling data so t hat t he network does not model errors in t he system. 

Table 4.4: Neural Network Settings 

Neural Network Parameter Value 

Type Multilayer  Perceptron 

Hidden  Layers & Neurons 
Hidden  layer 1: 10 

Hidden  layer 2: 5 

Training Cycles 250 

Overfit Prevent ion set (%) 50 % 

•  When  t he model completes its execution, a model nugget (diamond-shaped) 

is created  (Figure 4. 7). This nugget contains  t he complete model information 

( consisting of rules and equations), which is used for scoring and analysis of t he 

data. Model summary and details can be browsed  by opening this nugget. The 
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summary view shown in Figure 4.9 displays the model summary table and a 

network quality chart. The model summary gives the details regarding network 

architecture and other training parameters. Network quality chart displays the 

final accuracy of the model, which is defined by R-square ( explained in Chapter 

3). The accuracy (R-square) of the neural network model is 92.7%. Various 

other details of the model can be browsed through the nugget, for example -

the nugget shows the predictive importance chart, which helps to identify the 

relative importance of each predictor in the model (Figure 4.10). 

Model Summary 

Target Future Queue Length 

Model Multilayer Perceptron 

Stopping Rule Used Maximum cyc les exceeded 

Hidden Layer 1 Neurons 10 

Hidden Layer 2 Neurons 5 

Worse Better ~1927% 
0% 25% 50% 75% 100% 

Accuracy 

Figure 4.9: Neural Network Model Summary View 

• Finally, in the analysis node, training outcome and actual outcome are analyzed 
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Figure 4.10: Predictive Importance Chart 

0.4 

to find the error of the model. The statistical measure used here is R-square. 

The higher the R-square, the better is the prediction model. 

Determining neural network architecture and other settings is an iterative process. 

After the first training cycle, the results are analyzed through model nugget and 

analysis node. This analysis guided us to identify issues in the network settings and 

helped us to reconfigure the network parameters. This process is repeated again and 

again until satisfactory results are achieved (R-square is above 90%). 

4.2 Implementation 

In this section, the implementation details of different modules are explained. Gen-

erally, simulation tools have underlying assumptions which simplifies the modelling 

and design of the system. To design the Neural Network Prediction-based Routing 

(NNPR) protocol, the following assumptions have been made: 
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• Hardware failures cannot occur. 

• Queue length is infinite. 

• All resources are acquired prior to the start of transaction, which means dead-

locks cannot occur. 

• Once a transaction is committed, it cannot be rolled back. 

Figure 4.11 illustrates the overall architecture of our research work. The modules 

for this framework are discussed in the following sub-sections. 

DRTTPS 

Prediction Module 

Figure 4.11: Architecture 

4.2.1 Prediction Module 

Neural network prediction model is developed in SPSS Modeler [57], which is 

explained in Section 4.1.2. SPSS modeler exports a file in PMML format containing 

the neural network model, which is then uploaded on the ADAPA instance running 

on Amazon cloud (explained in Section 3.3). ADAPA wrapper (in DRTTPS) calls the 
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prediction model through web services and loads the predicted results in the network 

Class. 

4.2.2 Trace module 

Simulation is used to model the dynamic systems and collect statistical results. 

Some simulation tools save the results in a data structure produced at run time, while 

others save results in a trace file. In our case, simulation execution is saved in trace 

files due to neural network training purposes as explained in Section 4.1.2. There 

are two different trace files generated from the execution of a simulation run. The 

first trace file includes the information of all the simulation ticks, wherever the events 

are generated. After completion of each simulation, this file is used to calculate the 

future queue length. Future queue length is the snapshot of link's queue length few 

ticks ahead, for example - if link A has queue length of 10 messages at tick 5, then 

this queue length (10 messages) will be considered as a future queue length at tick 

0, as long as there are no intermediate events between these two ticks. The second 

trace file records the data periodically, for example - the first snapshot of the link 

is saved at 100th simulation tick and next will be saved at 200th simulation tick (if 

snapshot interval is 100 ticks) , and so on. This interval (difference) can be set in the 

simulation set-up. 

Trace module is composed of multiple classes such as Tracer, XLSWriter, Con-

verter, EntryBuffer and PipeEntry (Figure 4.12). Each class is responsible for differ-

ent tasks including preparing trace files, loading trace files and sending the status of 

each link to ADAPA for prediction. Converter class prepares the periodic trace file. 

PipeEntry loads the link's parameters at specific tick, and pushes the data into En-

tryBuffer. XLSWriter class fetches the data periodically from the EntryBuffer class 

and records in the trace file. In the next sub-section, the main routines of Tracer 

class are explained. 
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XLS Writer Tracer 
- workbook : SXSSFWorkbook - enablePredictions : boolean 
- sheet : Sheet + XLSWriter : xis 
- rowNumber : int . • Network : networkObject 
- filename : String - PRINT _INTERVAL : int 

+ addRow(String[)) : void 
~ - adapa :LinkedHashMap 

+ writeO: void + addEntry(Pipe, Long) : void - addFutureTickandQueuelength(): void + createPerodicCSV(int) : void 
+ prepareFinalTrace (int) : void 

EntryBuffer + printTrace () : void 

- currentEntries : HashMap 
- printTraceAndClose() :void 

- tick: long ·~ 
+ add( PipeEntry) : void 
+flush : void 

PipeEntry Converter 
- p : Pipe - trace : LinkedHashMap 
- tick : long + rwExcelFile : ReadWriteExcelFile 
- totalBandwidth, usedBandwidth, - difference : int 

queuelength, latency, numMessages, 
sourceTransaction, sourceArrivallime, 

+ loadXlsxO : void sourceUpdatePercentage,sourceWorksize, 
sourceWorkload, maxTransactions: int + prepareFinalTrace O: void 

+ PipeEntry(Pipe, long) : return 

Figure 4.12: Trace Module Class Diagram 

4.2.2.1 Tracer Class 

This class is responsible for storing snapshot of each link at different simulation 

t icks. Simulation 's core classes store the event details in a HashMap data structure. 

After 100 simulation ticks, all the events are written to t he t race file. Each execution 

of DRTTPS generates a large number of events which makes it difficult to store all 

events in the memory and generates an out of heap memory exception. The reason 

for writing the trace file after 100 t icks and clearing up t he events in data-structure is 

because of the memory exception. The tick interval can be set to a number t hat will 

ensure t hat the memory exception doesn't occur. The main functions of this class are 

discussed as follows: 

• createTrace method writes the events into the trace file, and enables the pre-

diction module depending on the selection of a routing protocol. This method 

checks the routing protocol's name and enables the prediction module when 
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TNPR is selected. After 100 simulation ticks, this method loads the predicted 

results in the network class and handles the congestion by updating the routing 

table. A code snippet describing this functionality is shown below: 

private boolean enabl ePr edi ct ion s true ; 

private Simulation simObj ect; 

long tick ; 

private final int PRINT_INTERVAL = 100 ; 

if ( tick - this. lastPrint >= this .PRINT_INTERVAL) 

{ 

} 

this . l ast Print = tick; 

Rou tingProtocol rp = ( Rou tingProtocol) n etworkObj ect. getN odes() . get 

(O) .getAttribute("routing_protocol"); 

if ( e n a bl ePrediction s &.&, (rp. getNameOfProtocol (). e quals ( "NNPR") 

) ) 

{ 

} 

cr eate P erod icCSVA ndPr edict ( (int) last Prin t); 

handl eCo n gest ion (); 

print Tra ce(); 

• createPerodicCSVAndPredict method prepares the data structure which 

holds the periodic trace of each simulation run. It calls the ADAPA web services 

(Section 4.2.3) and loads the predicted results into the network class, so that 

the results are available to each node. Each call loads the predicted results 100 

ticks ahead of the simulation. For example, if a call is made at 100th tick, then 

it will load the results for each link at 200th tick. 

• handleCongestion method is responsible for handling the congestion and 

rerouting the messages along the best path, to improve the performance by 

reducing congestion. It iterates through all the predicted results and enables 

the re-routing on those nodes which have congestion greater than the conges-

tion limit (the congestion limit is set to 0) . It generates an event that executes 
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a routine at that specific tick when congestion started to build, this event in 

turn invokes the re-routing based on the predicted values from ADAPA. The 

event makes a call to invokeReroutingPrediction method with arguments (Pipe 

CongestedPipe, long SimualtionTick, double CongestionValue). In each simu-

lation, another event is generated to call resetRoutingTable, which resets the 

routing table before prediction starts. For example, if current simulation tick 

is 240 then it will reset the routing table at 299th tick ( congestion will be pre-

dicted at 300th tick), and this method resets the current routing table to DSP 's 

routing table. It is reset to DSP because neural network is trained with DSP 

algorithm. Following code shows the logic (all statements are not included to 

avoid complexity): 

// logic to reset the routing tables dep en ding on th e con g es tion . For 

loop iterates over the predicted results using ADAPA and generates 

the even ts ba se d on congestion at different link s {pipes). 

int co n gest ionLimit = O; 

for (Map.Entry< String, LinkedHashMap< String, Double>> entr ySet 

n etwo rkObj ect. get Pr e di cte dValu es (). entryS et ()) 

{ 
String pip e = entr ySet. get Key (); 

LinkedHashMap< String, Double> value entr y Set. get Value(); 

for (Map. Entry< Strin g, Double> entr y Set l value. entr ySet ()) 

{ 
String cl oc k = en trySet l. getKey (); 

Doubl e co n gest io n = entrySet l. get Value(); 

if ( co n gest ion > co n gest ionLimi t) 

{ 

// f ind the object of congested pipe based on the predicted results fr om 

ADAPA 

Pip e co ng ested Pip e = n etwor kObj ect. r et urnPip eWithString (pipe. 

sp lit ("# ") [OJ , pipe. s plit ("# ") [1] ); 
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II find the ti ck when congestion s tart ed buildi ng ba sed on the 

congestion formula (Equation 1 . 1) 

double tickToReroute = Double . parseDouble (cloc k ) - (Math. ce il 

( co n gest ion / n etwor kObj ect. get Pip es() . get (0). 

get Bandwid t h ()) * co n gestedP ip e. get Late n cy()) ; 

II This will generate an even t which will be invoked at s p eci fi c 

simulation tick. 

} 

} 

n etworkO bj ect. getEv entQu eue () . addEvent (new Event ( 

networkObj ect , 11 in vokeRerou tingPrediction 11 ,new Obj ect[] { 

co n gestedP ip e , clock , co n gest ion} , new Time ( ( int ) 

tickToReroute))) ; 

} 

II A reoccurring event at every 99th tick of simu lat ion to reset the 

routing tabl e 

EventQueue eq = n etworkObj ect . getEventQu eue () ; 

if ( ! eq . h as Onl y R ec urrin gEvent s ()) 

{ 

} 

eq.addEvent (new Event(networkObject, 11 resetRoutingTable 11 , new 

Obj ect [] {} , new Time(9 9))); 

4.2.3 Adapa Wrapper 

ADAPA [58] is a predictive scoring tool based on the PMML (Predictive Model 

Markup Language) [59] standard. The user can create the predictive model in SPSS 

Modeler, export it as a PMML file, and upload it to the ADAPA user interface. Once 

the prediction model is uploaded to ADAPA, the model's name is specified in the 

Java code to make web service calls to ADAPA (score the data in real-time) . IBM 

SPSS modeler doesn't provide any API to score the data in real-time and that lead 

us to use ADAPA. 

In ADAPA, the user needs to initiate an instance and generate a default code 

package based on the instance. Each instance has its own settings in different files 
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of SDK. In our experiments, the instance is started and the default source code files 

have been generated and the instance is never terminated. Termination of the instance 

will make those source code files unusable. ADAPA provides a development kit with 

sample programs that allows us to send the data in an acceptable format and obtain 

the predicted values. The primary classes of ADAPA wrapper and their interaction 

are shown in Figure 4.13. There are two main files which hold the information such 

as web service URL, user name and password: 

• adapa.properties holds critical information such as username, password and web 

URL (URL is called to get the predicted values). 

• models. wsdl holds the information about the model parameters. Most of them 

are added by default , but the requesting URL needs to be changed whenever 

an instance is started. 

Service (JOK Class} 
I Tracer Module I 

+ Mode: ENUM 

+ getPort(Qname, Class<T> ): <T> 

AdapaModelsService ,. 
+ WSDL_LOCATION : URL Model Execution 
+ SERVICE : QName 

~ : :~l~~:"~~~:;:~1:: + AdapaModelsServicePort QName 
- Attribute 4 : Type 

+ ModelExecution(LinkedHashMap) : void 
+ AdapaModelsServiceO + runO : UnkedHashMap<lnteger, Double> 

+ setAuthenticationParameters() : void 
+ createlnputXmlRecordFinal(): RecorcfType 

I 
ApplyResponse r - record Ust<OutputRecordType> 

FieldType 
Apply Request I XTrustProvider + getRecord(): list<OutputRecordType> -item : list 

- modelName : List<Strlng> - value : String I+ installO: void I - recordype: List<RecordType> - name : String 
- settings : ApplySettingsType -

+ getltemO : List 
+ getSetting : ApplySettings Type + setValue(): void 
+ getRecord(J: List<RecordType> + getValue(): String 

Figure 4.13: ADAPA Wrapper Class Diagram 
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4.2.3.1 ModelExecution Class 

ModelExecution class has four important methods responsible for preparing the 

XML for scoring, authenticating the web requests, processing the web requests, and 

storing the predicted values in a data structure. The object of this class is created 

in the Tracer class which is explained in Section 4.2.2. The tracer class prepares a 

LinkedHashMap with event entries which are sent to the ADAPA scoring engine. It 

passes the LinkedHashMap as an argument to the constructor of the ModelExecution 

class. This way data is available to all the methods in this class. Following are the 

important methods of this class along with their roles : 

• setAuthenticationParameters() reads the adapa.properties file and its content . 

It prepares an object of BindingProvider [61] interface which provides the access 

to the protocol bindings and their associated context objects for request and 

response message processing in web services calls. 

• createlnputXml() method has many arguments such as tick, latency, pipe (link) , 

total bandwidth, used bandwidth, queue length, update percent, worksize, ar-

rival rate and MAT. This method is responsible for preparing the XML, which 

holds all the parameters and their values as shown in Figure 4.14. A call to 

this method prepares an XML record, which holds one row of the trace file data 

( one row of data per link). 

• run() method initiates the web service call. However, before making the call, 

it sets the parameters for user authentication and specifies the model name. 

Then, it prepares the XML for all the records and sends the records in an XML 

format. All the parameters are supplied to the object of ApplyRequest [61] 

and that object is passed to ADAPAModelsService [61] (both the classes are 

provided by the ADAPA team). Object of ADAPAModelsService provides the 

access to the response of web service call with its inbuilt function apply(), which 

accepts the object of Apply Request. The response of web service is a list of values 
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<ns2:applyRequest 
xmlns: ns2 = "http://www. :;e:we:nt 1.s. cow/ adapa/ ws / 1uodE: ls"> 
<modelName>Future Queue Length</modelName > 
<record> 

<field name= "Lexency" value= "S"/> 
<field name= "Tick" value= "100"/> 
<field name = "Pipe" value= "1#0"/> 
<field name = "Total Bandwidth" value= "20"/> 
<f ield name = "Used Bandwidth" valu e = "O"/> 
<field narne= "Queue Length" value= "O"/> 
<field name= "Nurnber c,f l!essa,~res" value = "O" /> 
<f ield name = "Sourc:e Update Percentage" value= "25" /> 
<field narne = "Source lilorksize" value= "O"/> 
<f ield name = "Source Arrival Time" value= "15"/> 
<field name= "Max Active: Transactions" value ="30"/> 

</record> 
<record> 

<f ield name = "Latenc:y" value= "2 " I> 
<field name = "Tic:k" value= "100"/> 
<f ield name= "Pipe" value= "2#0"/> 
<field narne = "Total Bandwidth" value= " 20"/> 
<field name= "Used Bandwidth" value= "20"/> 
<field name = "Que1.1e Length" value= "3.50" /> 
<field name = "Nurriber of Messages" value="74"/> 
<field name ="Source Update Percentage" value= "2.5" /> 
<field name= "Source: hlorksize" value= "O"/> 
<field name = "Sourc:e Arri'.'8.l Time" value="30"/> 
<field narne = "Max Active Transactions" value= "30"/> 

</ record> 
</ ns2:applyRequest> 

Figure 4.14: Input XML Format 

stored in LIST data structure. The details of other related classes and its usage 

is provided in the ADAPA manual [61] and sample codes. 

4.2.4 Routing protocols 

In DRTTPS, three routing protocols (DSP, RIP and NNPR) have been imple-

mented, and the user can select any protocol in the simulation setup. Standard DSP 

algorithm supports static routing i.e. the routes are determined and loaded into a 

node 's data structure and they never change during the simulation execution. How-
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ever in NNPR, this limitation is removed and the powerful feature of predictions has 

been added. The routing tables of the congested nodes are updated based on the 

predicted congestion. The routing protocol (NNPR) has different methods which are 

responsible for different tasks: 

• initialize method prepares the routing table. Unlike DSP; it stores more than 

one path from one node to another node. When the protocol initiates for the 

first time, it behaves like standard DSP, but when the prediction module gener-

ates the predicted results, it starts updating the routing table according to the 

congestion of the network. 

• updateRouting method updates the routing table of the node to the best 

effective paths. This method is triggered (from the Tracer Class) when link's 

congestion is more than the congestion limit. Once routing tables are updated, 

NNPR sends messages to the shortest path. 

• resetRouting method is called by the Tracer class to reset the routing table 

before prediction module is triggered. This method resets the routing table to 

DSP's routing table. 

• reroutePath method returns the best path from source to destination node. It 

accepts two arguments - source node and destination node. It iterates over the 

routing table and finds the path that will deliver the message in the shortest 

duration. The shortest path is determined by calculating the number of ticks 

required to free the queue length. 

4.2.5 Execution Flow 

The sequence diagram of the execution flow of our work is shown in Figure 4.15. 

When transactions are generated by node 's workload generator, they require locks 

on different pages existing on the different nodes. Hence, nodes exchange messages 

amongst themselves to acquire these locks. When the source node needs to send a 
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Figure 4.15: Execut ion Flow 

message to the destination node, source node accesses its rout ing table to get the 

best path to t he destination node. Then, it sends the message to the returned link. 

Pipe class records all the events in a trace file. In t race class, a method prepares 

t he periodic t race to send an XML record to ADAPA scoring engine and gets the 

predicted values . Based on t he predicted congestion, t he rout ing protocol (NNPR) 

updates the rout ing table of all the congested nodes . 

4.3 Summary 

This chapter explained the neural network prediction model developed in SPSS 

Modeler 16.0, and discussed t he selection of inputs and its ranges through experi-

mentation. Finally, t he implementation details of t racer module, ADAPA integration 

and routing protocol were presented, which included a brief explanation of the Tracer 

class , XLSWriter class , Converter class, ModelExecution class, rout ing mechanism, 

and t he execution flow. 
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Chapter 5 

Experiments and Analysis of Results 

This chapter presents the experimental results and analysis of the neural network 

prediction-based routing protocol. The first section demonstrates the accuracy of 

the prediction model for various congestion loads. The second section provides a 

comparison between DSP, RIP, and our proposed Neural Network Prediction-based 

Routing (NNPR) protocol with different parameters, and exhibits that N PR is 

superior in performance. 

5 .1 Prediction Model Testing 

In this research, hypercube network topology is chosen because of its superior 

topological characteristics which includes small diameter ( communication delays are 

less when network's diameter is small), high connectivity, simple routing, and fault 

tolerance [62]. A 3-dimensional (8 nodes) hypercube (Figure 5.1) is used for the 

experiments. Since, links are bi-directional in nature, the total number of links in the 

topology are 24. For example - there are two links between O and 1 (bi-directional), 

link outgoing from Node O and Node 1 is named as Link 0-1 and Link 1-0 respectively. 

Each link may have different congestion load, depending on its attributes (bandwidth 

and latency) and source node 's workload ( each node has different inter-arrival rate). 
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Link 0-1 

6 7 

Figure 5.1: Hyper-Cube Network Topology 

Each link in hypercube network is analyzed to examine the performance of predic-

tion model, but only those links are presented in this chapter, which show observable 

results , trends , cyclic patterns, or fluctuations. The predicted results are analyzed by 

comparing the actual and predicted queue lengths. 

5.1.1 Model testing with non-trained parameters, but within 

the trained input range 

In this set of experiments , accuracy of the neural network model is tested with 

the non-trained parameters, but these parameters lie within the trained input ranges. 

The simulation runs used to test the model are shown in Table 5.1. These runs 

represent different types of congestion load, and therefore they are chosen to test the 

accuracy of neural network model. For better accuracy of the results , each simulation 

is run multiple times and an average of multiple simulation runs is obtained. 

5.1.1.1 Run 1 - High Congestion Load 

First , model is tested with a simulation run depicting high congestion. The param-

eters for this simulation run are shown in Table 5.1. It is a highly congested scenario 

because links ' total bandwidth is very low (5 message units/ ticks). The accuracy i.e. 
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Table 5.1: Neural Network Testing Simulation Runs 
Simulation Update Avg. Congestion Congestion Accuracy (%) 

MAT Bandwidth PTCT (%) 
Run (%) Load Load (R square) 

1 50 10 5 69.6 7.8 High 95.7 

2 50 25 10 27.9 18.1 Medium 95.4 

3 30 35 30 1.5 96.9 Negligible 91.0 

R square (explained in Chapter 4) of the run is 95.7%. Hypercube network has 8 

nodes having different inter-arrival rates, therefore the network links depict different 

congestion loads. To demonstrate the model's performance, only one representative 

link is selected for each load. 

i) Links showing negligible congestion load - In order to exhibit the behavior 

of prediction model for links with no/ negligible congestion loads, the analysis of 

the least congested link (Link 0-2) is presented, for example, the link displays 

almost no congestion in the time-span 1400 to 2000 ticks (Figure 5.2). 
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Figure 5. 2: Analysis of Link 0-2 

1900 2000 

In this t ime-span, the number of queued messages is 0, except at t ick 1800 (5 

messages queued). As seen in the graph , predicted queue length trending is same 

as that of actual queue length. It is noted that the model results are promising 
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(because it can capture outlier) under negligible congestion scenarios , and the 

model accuracy needs to be observed for links having higher congested scenarios. 

ii) Links exhibiting varying congestion loads - In this experiment, links are 

analyzed for longer time-span (around 10,000 ticks) to view the trend and sea-

sonality of the number of queued messages , and it is observed that some links 

have varying number of queued messages (or congestion load). For instance, 

Figure 5.3 shows that Link 1-3 has a cyclic pattern between 300 and 4500 ticks . 

The reason for this pattern is when multiple transactions arrive on a node si-

multaneously, a large number of messages is exchanged between nodes, resulting 

in increased queue length. Further, when transactions start completing, queue 

length eventually reduces. Beyond 4500th tick, queue length reduced drastically 

(lies between 100 and 200 messages approximately). This decline is caused by 

the saturation of transactions workload (transaction workload is 150). Similarly 

in Figure 5.4, the queue length is ini tially high (340 messages at 1500th tick) , 

and eventually decreases to O at 3400th tick, and then further exhibits minor 

fluctuations. 
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Figure 5.3: Analysis of Link 1-3 
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Figure 5.4: Analysis of Link 6-7 

Even though both the links have different t rends and cycles, it is observed in 

both the cases that the predicted queue length has followed the same t rends as 

that of actual queue length. The analysis of these links inferred that the neural 

network model is reliable because it can sense different congestion scenarios in 

the simulation run and predict accordingly. 

iii) Highly congested links - To examine the model's performance under highly 

congested scenarios, the model is analyzed with the links having high congestion 

load. An example of a link experiencing high congestion is Link 4-6. As shown 

in Figure 5.5, the number of messages queued on Link 4-6 fall approximately 

between 1000 and 2000 messages. This denotes that it takes longer (200 to 

400 t icks) to clear the queue, result ing in high congestion. As displayed in t he 

graph, the prediction model has shown very promising results in predicting the 

congestion for highly congested scenarios. For more explicit comparison , the 

snapshot of predicted results for selected 1000 t icks is shown in Table 5.2 . The 

model's correctness for the selected ticks is always above 90% ( out of 10 cases, 6 

have above 95% correctness) . 
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Figure 5.5: Analysis of Link 4-6 

Table 5.2: Prediction Result Snapshot of Link 4-6 
Queue Length Predicted Queue Length Model Correctness (%) 

1005 1094 91. 1 

940 993 94.4 

915 940 97.3 

990 919 92.8 

970 981 98.9 

875 964 89.8 

875 885 98.9 

880 885 99.4 

935 889 95. 1 

920 936 98.3 

5.1.1.2 Run 2 - Medium Congestion Load 

To prove model 's accuracy under medium congestion scenario, the model is studied 

with parameters as shown in Table 5.1. Even though update percentage is increased 
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to 25, simulation run 2 is depicting medium congestion scenario. It is because the 

bandwidth is doubled i.e. total bandwidth is increased from 5 to 10 message unit-

s/ ticks. By increasing the bandwidth, fewer messages are queued which results in 

lower congestion ( as compared to simulation run 1). The average congestion load of 

this simulation run is 27.9. T he accuracy (R-square) of simulation run 2 is 95.4%. 

Similar to simulation run 1, an example scenario of different links experiencing low 

and high congestion loads is presented ( explained below). 

i) Low congested link - T he results for less congested links are presented in 

Figure 5.6 and 5.7. In simulation run 2, Link 5-7 has the lowest congestion load 

because node 5 has the highest inter-arrival rate amongst all nodes. Even though 

there are three links outgoing from node 5 (in hypercube network), link 5-7 has 

the lowest load because it has the lowest latency as compared to the other two 

outgoing links. As shown in Figure 5.6, there are fluctuations in queued number of 

messages , which confirm varying congestion load of the link at different instances. 

Link 2-3 is another example of low congestion load (Figure 5.7). 
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Figure 5.6: Analysis of Link 5-7 
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Figure 5. 7: Analysis of Link 2-3 

As seen in both the links (5-7 and 2-3) , results from our prediction model are 

satisfactory because it can capture the deviations/ outliers presented at different 

instances in the simulation run. One outlier example is displayed in each link 

(displayed through data labels) , and are explained below: 

(a) In Figure 5.6, the highest outlier at tick 8100 has 65 queued messages (0 

messages queued at 8000th tick). Our prediction model captured this outlier 

successfully, and predicted 50 messages at 8100th tick (predicted O messages 

queued at 8000th tick). 

(b) In Figure 5. 7, the highest outlier at tick 200 has 260 queued messages , and 

our prediction model predicted 280 messages , which is quite promising (92 

% accuracy). 

ii) High congested link - In this experiment, the model is tested with the links 

having high congestion load. Since, simulation run 2 has medium congestion 

load, therefore there are very few congested links in the network. An example of 

a congested link is 3-2, which has varying congestion in the time-span as shown 

in Figure 5.8. It has a large number of queued messages in the first 5000 ticks of 

the simulation run (because of transaction workload) , and then eventually drops 
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between O and 200 messages. It is observed that the trends of predicted and 

actual queue lengths are same (Figure 5.8) . 

Link 3-2 
- Queue Length - Predicted Queue Length 

1400 

1200 

"' ~ 1000 
<( 

"' 800 "' ... 
::!! ... 600 
0 
ci z 400 

200 

0 

TICK 

Figure 5.8: Analysis of Link 3-2 

5.1.1.3 Run 3 - Negligible Congestion Load 

Finally, the prediction model is tested with simulations runs having negligible/ no 

congestion load. The parameters of the simulation run are specified in Table 5.1. The 

accuracy (R-square) of the run is 91.0%. In this case, the links have negligible or low 

congestion load, and an example link is presented for each load. 

i) Links showing negligible congestion load - In order to see the model 's 

behavior under minimal congestion, the model was analyzed with the links having 

negligible congestion load. Links 1-5 and 7-5 have O messages in the queue (no 

congestion), and insignificant fluctuations. As seen in both the links (Figure 

5.9 and 5.10), model is able to successfully recognize the links having negligible 

congestion load and determine even the minor fluctuations . The highest outliers 

in Link 1-5 (Figure 5.9) and 7-5 (Figure 5.10) have been successfully recognized 

by the prediction model. Both the outliers are shown in the figures through 
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data-labels, and are discussed below: 
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Figure 5.9: Analysis of Link 1-5 
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Figure 5.10: Analysis of Link 7-5 

(a) At tick 15 ,500, Link 1-5 has 65 queued messages whereas model predicted 45 
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messages (Accuracy - 70 %). Even though the number of queued messages 

(65 messages) is significant ly higher than the mean value (approximately 0), 

the model is still able to predict this spike with reasonable accuracy (70%) . 

(b) At tick 14,600, Link 7-5 has 10 queued messages, and model predicted 8 

messages (Accuracy - 80 %). 

ii) Links exhibiting low congestion load - There are few links exhibiting low 

congestion load ( the majority of the links have negligible congestion load), for 

example - Link 6-2 (Figure 5.11 ). 
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Figure 5.11 : Analysis of Link 6-2 

Even though, Link 6-2 has a large bandwidth (30 message units/ ticks) , this link 

has some congestion load because the inter-arrival rate of transactions on the 

source node is very low, and link has a larger latency as compared to the other 

links. 
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5.1.2 Model testing with parameters outside the input train-

1ng range 

In this section, the prediction model is tested with the simulation runs , where the 

parameters of the simulation runs fall outside the input training ranges. Recalling 

the training ranges from Chapter 4, training range of MAT is 10 to 50 transactions, 

update percentage 5 to 50 %, and bandwidth 5 to 30 message units / ticks. The testing 

simulation runs are shown in Table 5.3, where the values of the parameters fall outside 

the input training ranges . Again, the simulation runs with different congestion loads 

are analyzed; but only one representative link from each simulation run is displayed. 

Table 5.3: Neural Network Testing Simulation Runs (outside input training ranges) 
Simulation Update Avg. Congestion Congestion Accuracy (%) 

MAT Band width PTCT (%) 
Run (%) Load Load (R-square) 

60 55 15 31.1 24.l High 92.0% 

2 70 80 25 5. 1 64.7 Low 91.4% 

3 70 80 50 0.3 100 Negligible 89.8% 

1. Run 1 - High Congestion Load - In this experiment, high congestion load is 

created by setting up MAT to 60, update percentage 55, and bandwidth 15. All 

the parameters are outside the input training range , except total bandwidth. 

It is because the goal here was to create high congestion scenario, which would 

not have been possible if bandwidth value was selected from outside the input 

training range (when bandwidth value is large, congestion load is very low) . 

The accuracy (R-square) of the simulation run is 92.0%. 

An example of a link with high congestion load is shown in Figure 5.12. The 

predicted results of approximately 2000 ticks is displayed with the data error bar 

for each result. The data error bar represents the deviation of predicted value 

from the actual value. The dark gray bar indicates that the predicted value is 

smaller as compared to the actual value; whereas the white bar means that the 

predicted value is larger than the actual value. The more the prediction error, 
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Figure 5. 12: Analysis of Link 4-6 

the wider (or larger) is the error bar. For example, in the t ime range shown in 

Figure 5.12, the maximum error is at 8100th t ick (hence, the largest error-bar) . 

2. Run 2 - Low Congestion Load - In t his run, the prediction model is tested 

with low congestion load (parameters are specified in Table 5.3), and the ac-

curacy (R-square) of the run is 91.4%. This simulation run has fluctuating 

queue length as shown in Figure 5.13, for example - at tick 1200, the number of 

queued messages is 250 (high congestion load), then drops to 10 messages (low 

congestion load), and climbs to 95 messages (medium congestion load). The 

predicted result fo r the aforement ioned example is 180 messages queued at t ick 

1200 (high congestion load), declines to 28 messages (low congestion load), and 

t hen climbs to 87 messages (m edium congestion load). This indicates t hat our 

prediction model can capture the fluctuating congestion load scenarios in the 

hypercube network. 

3. Run 3 - Negligible Congestion Load - When tested with negligible con-

gestion load, the accuracy (R-square) of the run is 89.8%. The highest outlier 

in the range shown in Figure 5.14 falls at 1900th t ick, and the remaining ticks 

show negligible/ no congestion and are predicted accurately by the model. 
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Figure 5.14: Analysis of Link 2-6 

5.1.3 Summary 

The prediction model is tested with different simulation runs (inside and outside 

training ranges) , and R-square is observed for each simulation run (Figure 5.15). 

From the testing set (set of simulation runs) , it is noted that the maximum accuracy 

of the testing set inside the input training ranges is 95. 7% at high congestion load 

(minimum is 91.0% at negligible congestion load); whereas the maximum accuracy of 

the testing set outside the input training ranges is 92.3% at medium congestion load 

(minimum is 89.8% at negligible congestion load). Since the model is not trained with 
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the testing set outside the input training range, the accuracy has decreased slightly 

in these cases. 
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Figure 5.15: Performance of Prediction Model 

Apart from the simulation runs shown in the above subsections, more simulation 

runs were tested with parameters inside and outside training ranges, and satisfying 

results were achieved. From the analysis of various simulation runs with different 

congestion loads , it is concluded that our prediction model is robust because it can 

sense different congestion scenarios in a link; capture fluctuations ; handle outliers; 

and analyze negligible, low, medium, and high congestion loads. 

5.2 Comparison between DSP, RIP, and NNPR 

In this section, the experiments conducted to compare the performance of NNPR 

(Neural Network Prediction-based Routing) protocol with DSP and RIP protocol 

are presented. The key performance metric used in this thesis is the percentage of 
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transactions completing on t ime (PTCT ). 

Table 5.4: Baseline Experiment Parameters Settings 

Parameter Type Parameter Name Value 

Topology Hypercube 

Number of Nodes 8 
et work 

Bandwid th 20 

Latency 5 (Poisson Distribution) 

Max Active Transactions 30 

Disk Count Per Node 20 

Disk Access T ime 35 Ticks 
Node 

Buffer Size 100 

Swap Disk Access Time 35 Ticks 

Transaction Process Time 5 Ticks 

Inter-arrival Time 15 - 300 Ticks (Poisson) 

Scale Arrival Rate Enabled 

Slack Time 676 - 2028 
Workload Generator 

Work-size 2 - 8 pages (Unifo rm Distribution) 

Update Percentage 25 % 

Total Transaction Workload 150 

In DRTTPS, the congestion load of the system can be varied by many parameters, 

including bandwidth, max active transactions, update percentage, latency, work-size, 

and total transaction workload. In the conducted experiments , the baseline param-

eters were set as shown in Table 5.4, and few parameters are tweaked to change the 

congestion load of the system. NNPR is examined with different simulation runs 

(parameters lying inside and outside the model input training range), and it is ob-

served that it consistently performs better than DSP and RIP protocol for different 

parameters. 
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Why NNPR performs better? The superior performance of NNPR can be 

attributed to model 's prediction of congestion with reliable accuracy (shown in Section 

5.1). When prediction results are accurate, routing mechanism becomes efficient 

because it can now determine the specific tick when congestion will start to build , 

and routing tables are updated at that particular tick. For example, if the model 

predicts 150 queued messages at 200th tick, routing tables are updated , say at 160th 

tick (it is the calculated tick when congestion started to build up). If model predicts 

no congestion, routing tables arc not updated and DSP 's routing table is used by 

default , which reduces the routing overhead. 

Several experiments were conducted to compare the performance of protocols. 

Each experiment varied one specified parameter to create congestion scenarios and 

analyze PTCT. The range of values for the parameter is chosen in such a way that it 

shows significant results within the selected range. The performance of the protocols 

is shown as relative to each other. 

5. 2.1 Impact of Bandwidth 

Bandwidth is a key factor which can impact the congestion in a system. If there is 

not enough bandwidth, messages arc queued; resulting in congestion within the net-

work and thus a low PTCT. The experiment shown in Figure 5.16 uses the baseline 

parameters settings, except bandwidth, which is varied from 5 to 35 message unit-

s/ ticks (bandwidth range). It can be seen that NNPR performs significantly better 

than DSP and RIP for the entire range of selected bandwidth. 

When bandwidth value is between 5 and 20, N PR demonstrates very high per-

formance as compared to DSP and RIP (DSP and RIP perform close to each other). 

With a bandwidth of 5, NNPR demonstrates 40% PTCT gain than DSP (NNPR -

21.5% PTCT and DSP - 15.27% PTCT) . It indicates that when the congestion load 

is high , NNPR's performance is superior, which implies that the protocol is able to 

predict and control the congested system effectively. Within the bandwidth range 

of 10 and 20, NNPR performs 20 to 30% better than the other two protocols . As 
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bandwidth increases beyond 25, there is no congestion load, and all protocols climb 

to 100 % PTCT. 

Next , MAT is increased from 30 to 60 transactions (Figure 5.17). Congestion load 

is high in this case because when more transactions run concurrently in the system, it 

causes more messages to flow within the network , resulting in congestion. Due to high 

congestion load, the performance of all the protocols decreases significantly. However, 

again NPR outperforms DSP and RIP protocols, and consistently performs better 

when bandwidth range is between 5 and 30. For example, when bandwidth is 15, 

N~PR exhibits a 73% PTCT increment as compared to DSP (DSP - 33.8% PTCT 

and NNPR - 58.5% PTCT). All protocols climb to 100% as the bandwidth increases , 

however, in this case the 100% PTCT is achieved at a bandwidth of 35. 
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Figure 5.17: Impact of Bandwidth (MAT - 60) 

As seen in Figure 5.16 and 5.17, RIP and DSP perform very closely to each other. 

RIP analyzes the congestion in the system and periodically updates the routing table 

accordingly, but it is not able to perform better than DSP. Since system's congestion 

load varies frequently, it is possible that the updated paths of the routing table by 

RIP are no longer the best paths. For example - at tick 200, RIP updated the routing 

table indicating that the best path from node 1 to node 3 is 1-> 2-> 3; and further at 

210th tick, link 2-3 becomes highly congested; which means that path 1-> 2-> 3 is no 

longer the best path. The late realization of the congestion scenario causes RIP to 

perform poorly. So, there can be some scenarios where RIP is sending the messages 

to the highly congested links. After extensive experimentation, it is observed that 

RIP performs almost the same as DSP, and thus RIP 's performance is not exhibited 
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in the later experiments. 

5.2.2 Impact of Page Update Rate 

Page update rate decides the percentage of write operations in a transaction ex-

ecution. Write operations block other transactions because of the exclusive lock on 

data. This blocking causes delay in transaction's execution, resulting in low PTCT. 

A page update rate of 0% implies that the transaction contains read operations only. 
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Figure 5.18: Impact of Page Update Rate (Bandwidth - 15) 

Two experiments are conducted to see the impact of page update rate on PTCT. 

The parameters of both the experiments are based on the baseline parameter setting, 

except bandwidth, which is varied to create high and low congestion scenarios. In 
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the first experiment, the bandwidth value is chosen as 15 which indicates medium or 

low congestion (depending on the page update percentage value). 

DSP and NNPR have maximum PTCT at 0% update because of no blocking of 

transactions (Figure 5.18). When page update rate is increased, the congestion load 

of the system rises and eventually becomes tremendous at 100% update, that is, when 

all operations in a transaction require a write to the database. NNPR consistently 

performs better than DSP, with approximately 25%, 38%, and 50% PTCT gain within 

the range of O to 20, 40 to 60, and 80 to 100 update percentage, respectively. 
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Figure 5.19: Impact of Page Update Rate (Bandwidth - 5) 

In the second experiment, the bandwidth value is reduced to 5, which produces 

high congestion load in the system (Figure 5.19). As expected, the performance of 
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DSP and NNPR degrade. However, even in the highly congested scenario, NNPR 

continues to outperform DSP by 31 to 90% (demonstrates approx. 5% more PTCT). 

5.2.3 Impact of MAT 

Max Active Transactions (MAT) indicates the number of transactions running 

concurrently on a node. \i\Then more transactions run simultaneously on a node, 

more messages are exchanged within the network, resulting in congestion. In this 

section, the impact of MAT on PTCT is studied. The range of MAT is varied from 

10 to 70, as there are no noticeable results outside of this range. 
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Figure 5.20: Impact of MAT 
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Figure 5.20 demonstrates that the performance of both DSP and RIP decreases 

when MAT increases. When MAT is varied from 10 to 20 transactions , the perfor-
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mance of both the protocols is not impacted largely, i.e. DSP is reduced from 89.5 to 

87.9 % and NNPR degrades from 92.8 to 92.2 %. It is because bandwidth is abundant 

(20 message units) to handle the queuing of the messages. However, beyond a MAT 

of 20, there is a transitioning from low to high congestion load, and bandwidth is no 

longer enough to handle the queued messages , resulting in low PTCT. During this 

period, DSP degrades rapidly and NNPR consistently outperforms it by 20 to 43% 

( on an average of 20% more PTCT). 

5.2.4 Impact of Latency 

Latency is the time taken by a message to travel from source to destination node. 

High latency network connections suffer long delays, causing more transactions to 

miss their deadlines , and therefore a low PTCT. In this section, the impact of latency 

on the congestion load of the system (and hence PTCT) is studied. For neural network 

training/ testing, latency is always chosen as 5, with Poisson distribution across the 

links. However, to study the impact of latency, the same latency is chosen for all 

links. The chosen range for latency is 2 to 12 ticks. 

As shown in Figure 5.21 , both DSP and NNPR demonstrate 100% PTCT at 2 

ticks of latency. When latency is increased to 4 ticks, there is a huge decline of 

PTCT for both the protocols, i.e 30.7% (NNPR) and 42.2% (DSP). It is because, at 

latency 4, messages are experiencing more delays as compared to latency 2. During 

this period, NNPR demonstrated 20% PTCT increment (11.5% more PTCT) than 

DSP. When latency is increased further , PTCT for both the protocols consistently 

declines as there is a transitioning from low to medium, and then high congested load 

systems. However, NNPR continues to exhibit better performance than DSP by 30 

to 141% (representing on an average of 12% more PTCT). 

5.2.5 Impact of Work-size 

Work-size depicts the number of pages accessed by a transaction. When more 

pages are required by a transaction for its execution, more messages are exchanged 
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Figure 5.21: Impact of Latency 

within the network, which causes congestion. In this experiment, the impact of work-

size is studied. The range of work-size is chosen from 2 to 12 pages. 

In Figure 5.22, it is observed that there is a steep linear decrease in PTCT within 

the range of 4 to 10 pages (for both protocols). During this period, NNPR shows 5 

to 19% PTCT gain than DSP. Beyond 10 pages, there is a small decline of PTCT for 

both the protocols, i.e. 3.7% (NNPR) and 4.4% (DSP). 

5.2.6 Summary 

• In each experiment, NNPR is tested with the simulation runs having parameters 

outside the model's input training range , for example - Figure 5.17 has MAT 

60 (input training range of MAT is 10 to 50 transactions), Figure 5.18 has page 
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Figure 5.22: Impact of Worksize 

update range from 0% to 100% (input training range is 5 to 50%), and Figure 

5.22 has work-size range from 2 to 12 pages (input training range is 2 to 8 

pages). Despite that , NNPR outperformed DSP and RIP for each congestion 

scenario. DSP and RIP perform very close to each other. 

• Increasing bandwidth from 5 to 35 message units improved the performance of 

all the routing protocols sharply. 

• A change in page update rate from 0% to 100%, MAT 10 to 70 transactions, 

Latency 2 to 12 ticks, and work-size from 2 to 12 pages decreased the perfor-

mance of all the routing protocols. However, NNPR consistently outperforms 

both DSP and RIP. 
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Chapter 6 

Conclusion and Future Work 

Congestion problem has increased because of increased network demand. Congestion 

results in queuing within the network, packet loss and increased delays. It should be 

controlled to increase the system throughput and quality of service. There are many 

congestion control approaches such as controlling the arrival rate of packets in the 

network, throttling the source , routing techniques, etc developed by the researchers 

over many years. However, these techniques focus on controlling congestion after it 

has already happened. With an increased demand for high performance networks , 

there is a need to increase the network's throughput and quality of service. Hence, it 

is important to analyze the historical data and predict future congestion, so that the 

efficient controlling techniques can be applied. 

We have proposed a protocol (NNPR) to predict as well as control the network 

traffic in distributed real time environment using distributed real time transaction 

processing simulator (DRTTPS) as a test-bed. For predictions, multi-step neural 

network technique is used, which predicts congestion in future (1 step ahead - 100 

ticks) . Neural network is fed with the inputs such as latency; tick ; pipe ; total band-

width ; used bandwidth; queue length ; no. of messages; worksize; page update rate ; 

MAT; arrival rate. All these input values are recorded periodically after 100 ticks. 

Output of neural network is queue length, 1 step (100 ticks) ahead. Queued messages 
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cause larger delays and dropping of messages , leading to congestion. The network 

congestion of a link is defined with the following formula: 

. I L~o sizei l Congestion1 = I 'BWi x Li (6.1) 

where sizei is the size of queued message i, BW is the bandwidth of a link and L is 

the latency of a link. 

Neural network prediction model is developed in SPSS Modeler [57] (explained in 

Section 4.1.2). Model is trained in an off-line mode with data obtained from simula-

tion runs by varying different parameters in the simulator. For real time predictions, 

ADAPA is used. SPSS modeler exports a file in PMML format containing the neu-

ral network model, and then the file is uploaded on the ADAPA instance running 

on Amazon cloud (explained in Section 3.3). ADAPA wrapper (in DRTTPS) calls 

the prediction model through web services and predicts the data in real-time. After 

predicting the network traffic, the predicted congested link's messages is re-routed to 

other links. To compare the proposed work with other techniques, two routing pro-

tocols are implemented - DSP and Routing Information Protocol (RIP). The main 

metric used to analyze the performance of our protocol is the percentage of transac-

tions which complete before their deadline. 

6.1 Future Work 

This research can be extended in several ways as indicated below: 

• Our prediction model is trained with three dimensional hypercube topology. 

However, the model can be trained and tested with different network topologies 

by varying number of nodes. 

• In prediction module, queue length is predicted 100 ticks ahead. Prediction 

accuracy of the model can be compared and analyzed by varying this prediction 

step, for example - analyze the behavior of the model when predicted 50 or 150 
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ticks ahead. 

• The test-bed of this research DRTTPS is not designed to handle fault tolerance 

(for example, failure of link or node). Therefore, it will be interesting to see 

NNPR's performance in such a environment. 
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