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Abstract

Aligning multiple sequences is a daunting task that can be extremely de­

manding on computer power and memory resources. By comparing the ho­

mologues sequences from different species of animals, one can draw inferences 

about the evolution of these species from their common ancestors. This thesis 

applied shared memory parallel processing techniques to the global alignment 

of multiple DNA and protein sequences, as well as gene orders. The multi­

threaded method deployed for multiple DNA and protein sequence alignment 

was based on the divide-and-conquer technique, which firstly cut the sequences 

into sub-sequences, but it is computational expensive to find the optimal cut 

positions. Since speed performance is the focus of this thesis, we did not con­

sider the optimal cut positions in our implementations. Meanwhile, an original 

and promising graph-based algorithm with parallel processing properties was 

introduced to simplify and speed up the alignment operations for multiple gene 

orders.
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Chapter 1

Introduction

The focus of this thesis is the alignment of multiple biological sequences, including 

gene sequences (i.e. DNA and RNA), protein sequences, and genome sequences (a 

list of ordered gene blocks). In order to distinguish these two levels of sequences, 

DNA, RNA and protein sequences will be referred to as normal ‘sequence’, while the 

genome sequences will sometimes be referred to as ‘gene orders’ in this thesis.

1.1 B iological Background for Sequence A nalysis

1.1.1 B io log ica l Sequences

DNA (Deoxyribonucleic Acid) is a nucleic acid tha t carries the genetic information 

in the cell and is capable of self-replication and synthesis of RNA (Ribonucleic Acid). 

DNA consists of two long chains of nucleotides twisted into a double helix and joined 

by hydrogen bonds between the complementary bases A and T or C and G. The 

sequence of nucleotides determines individual hereditary characteristics. RNA is a 

very similar polymer. It is usually a single-stranded chain of alternating phosphate 

and ribose units with the bases A, U, G, G bonded to the ribose. The structure and 

base sequence of RNA are determinants of protein synthesis and the transmission of 

genetic information. Figure 1.1 shows a simple example of DNA sequences.



> A Single S t ra n d  D N A  S e q u e n c e  

A T T T C G T G C A T A T C T G A C G T T A G G A C C A C G T

Figure 1.1; An example of single strand DNA sequences

The fundamental building blocks of life are proteins. Twenty different amino 

acids are commonly found in proteins, and each protein has a unique, genetically 

defined amino acid sequence. They serve as enzymes, structural elements, hormones, 

immunoglobulins, etc., and are involved in oxygen transport, muscle contraction, elec­

tron transport, and other activities throughout the body. One of the most important 

concepts in modern biology is tha t the functional properties of proteins is determined 

largely by the sequence of the 20 amino acids shown in Table 1.1.1 in the linear 

polypeptide chain. Thus, in theory, knowing the sequence of a protein (the order 

with which the amino acids occurred) one could infer its function.

W hat determines the order of amino acids in a protein? The central dogma of 

Molecular Biology states the relationships between genes and proteins. It describes 

that each gene in the DNA molecule carries the information needed to construct one 

protein, which, acting as an enzyme, controls one chemical reaction in the cell. The 

basic structure of any protein can be described by its sequence of amino acids, and the 

shapes those proteins fold up into make them different from one another. However, 

in this thesis, other than primary structure, the protein shapes, such as secondary 

structure, tertiary structure, and quaternary structure, will not be discussed. Figure

1.2 shows an example of a protein sequence.

> H A G S I  h e m o g lo b in  alp ha-A  cha in  - b a r -h e a d e d  g o o s e

V L S A A D K T N V K G V F S K IS G H A E E Y G A E T L E R M F T A Y P Q T K T Y F P H F D L Q H G S A Q I K A H G K  
K V V A A L V E A V N H ID D IA G A L S K L S D L H A Q K L R V D P V N F K F L G H C F L V V V A IH H P S A L T A E V  
HAS LD K F LC  A V G T  VLT AKYR

Figure 1.2: A protein example: a goose hemoglobin protein known as “HAGSI”



Name Three-letter Code One-letter Code
1 Alanine Ala A
2 Cysteine Cys C
3 Aspartic Acid Asp D
4 Glutamic Acid Glu E
5 Phenylalanine Phe F
6 Glycine Gly G
7 Histidine His H
8 Isoleucine He I
9 Lysine Lys K
10 Leucine Leu L
11 Methionine Met M
12 Asparagine Asn N
13 Proline Pro P
14 Glutamine Gin Q
15 Arginine Arg R
16 Serine Ser S
17 Threonine Thr T
18 Valine Val V
19 Tryptophan Trp W
20 Tyrosine Tyr Y

Table 1.1; The twenty amino acids found in proteins



1.1.2 P h y lo g en etic  Trees

Biologists often use the idea of portraying graphically how extant species evolved 

to reconstrnct evolutionary trees. “Phylogenetic tree” is a more technical name for 

“evolutionary tree” . The sample tree shown in Figure 1.3  ̂ portrays how certain 

warblers are related to one another. From this tree one can guess that at one time 

there was one general, warbler-like species, and this general species evolved into at 

least three different species. Each of these species further diversified into the extant 

genera known as Vermivora, Seirus, and Dendroica. These three genera, in turn, 

have eventually fragmented into numerous and various species recognizable today. 

For example, the genus Dendroica includes more than twenty-five species.

Palm

Y e l lo w -R u m p e d
O r a n g e - C r o w n e d O ven b ird

N o r th e rn
W a te r th ru s h

M agnolia
Nashvil le

Blackpoll

T e n n e s s e e

D e n d ro ic a

V e rm iv o ra Seirus

Figure 1.3; A phylogenetic tree for some warbler species

In the past, biologists working on phylogenetic trees had to find plain evidences or 

characteristics to content themselves. The more similar organisms looked, the more 

closely related they were assumed to be. T hat’s often really the way it works, but also, 

th is  ap p ro a c h  cou ld  lead  to  som e p re t ty  serious e rro rs. N ow adays, new  tech n iq u es  

have given us a more clear idea of what the real phylogenetic trees should look like. 

For instance, with a process known as DNA hybridization, scientists can actually

^adapted from http://w w w .backyardnature.net/evotrees.h tm

http://www.backyardnature.net/evotrees.htm


determine how much genetic material that different species have in common. If a 

large portion of the genetic code (i.e. DNA) of two species or two groups of species 

is identical, then they are considered to be closely related. Otherwise, if only a small 

portion of them is identical, then their relationship is distant.

A phylogenetic tree is constructed with extant species on the leaves (terminal 

nodes), and the interior nodes representing hypothesized ancestors. Usually all inte­

rior nodes in such trees are binary. In the context of sequences, the nodes represent 

sequences, and the edges (branches) represent mutations, either explicitly or by a 

number indicating how many mutations have happened between the end nodes of an 

edge. In a tree constructed from protein sequences or DNA sequences, an interior 

node can in principle represent the same sequence as a leaf node.

Consider a set of DNA sequences 1, 2, 3, 4, 5.

Sequence 1: C A G G T A

Sequence 2: C A G A C A

Sequence 3: C G G A T G

Sequence 4: T G C G C T

Sequence 5: T G C G C A

The task is to construct a phylogenetic tree and find out which sequences are more 

closely related to each other. This is the same as finding the mutations that have 

occurred. A distance score will be used to reflect the number of mutations needed 

from one sequence to another. For example, transforming sequence 4 into 5 needs 

only 1 mutation, which occurs at the last position of sequence 4 and replaces T with 

A. Therefore, th e  d is ta n c e  score between sequence  4 a n d  sequence 5 is 1. The smaller 

the distance score is, the closer the two sequences are related. Assume that if the 

distance score is no less than half of the average sequence length (no less than 3 in 

this case), then the two sequences won’t belong to the same subset.



1. Looking at the first column, it seems that a mutation from C to T, or from T 

to C, has occurred in the past. In the mean time, check the distance scores in 

Figure 1.4 and divide the 5 sequences into two subsets; 1, 2, 3 and 4, 5

2. Looking at the second column in the larger subset 1, 2, 3 there could have 

been a mutation from A to G, or from G to A. Again, check the corresponding 

distance scores and divide it into 2 even smaller subsets: 1, 2 and 3

3. Repeating the same thing for the smaller subset 4, 5 and their distance score 

(which is 1) tells that they are closely related and may not be further divided.

Finally, we end up with a phylogenetic tree shown in Figure 1.4.

0 2 3 5 4

- 0 3 5 4

- - 0 5 5

- - - 0 1

- - - - 0 2 3 4 5

S e q u e n c e  D is ta n c e  Matrix  T h e  C o n s t r u c te d  Phy logene t ic  T ree  

Figure 1.4: A phylogenetic tree built for five animals

1.1.3 G en e O rders

A gene o rd e r refers to  th e  seq u en tia l lo c a tio n  of genes on  a  chrom osom e. A ch ro m o ­

some is defined as a sequence of genes while a genome is defined as a set of chromo­

somes. Genes of an organism are arranged in a linear order in eukaryotes. This linear 

order of genes can be examined to understand the similarity between the genomes of
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two species. A given genome may be transformed or evolved into the genome of a 

different organism by a sequence of elementary rearrangement events acting on the 

genes. Hannenhalli and Pevzner have shown how cabbage gene orders were trans­

formed into turnip gene orders [30] by using an efficient algorithm that performs only 

three rearrangement operations.

In the early 1990s, it was found tha t there are groups of genes in mice that appear 

in the same order as they do in humans. These genes are likely to be present in 

the same order in a common ancestor of human and mice - the ancient mammalian 

genome. The human genome appears just the mouse genome cut into about 300 

large genomic fragments, called syntency blocks, which have been pasted together 

in a different order. Both sequences are just two different shufflings of the ancient 

mammalian genome. For example, chromosome 2 in humans is built from fragments 

that are similar to mouse DNA residing on chromosomes 1, 2, 3, 5, 6, 7, 10, 11, 12, 14 

and 17. Hence, a location of a gene in mice can often lead to clues about the location 

of a related gene in humans.

Every genome rearrangement results in a change of gene ordering, and a series of 

these rearrangements can significantly alter the genomic architecture of a species. The 

study of genome rearrangements involves solving the combinatorial puzzle of finding a 

series of rearrangements tha t transform one genome into another. Figure 1.5 presents 

a rearrangement scenario in which the mouse X chromosome is transformed into the 

human X chromosome. The elementary rearrangement event in this scenario is the 

flipping of a genomic segment, and it is called a reversal or an inversion. Details will 

be introduced in the next chapter.

1.2 Why Sequence Analysis

Sequence analysis is the process of making biological inferences from the known se­

quence of monomers in protein, DNA and RNA polymers. Currently, many worth-



Mouse ( X chrom. )

Human ( X chrom. )

Figure 1.5: The transformation of the mouse gene order into the human gene order 
on the X chromosome: only the 6 longest syntency blocks are shown here

while things can be done with sequence analysis.

Regions of DNA that encode proteins are first transcribed into messenger RNA 

and then translated into protein. By examining the DNA sequence alone we can 

determine the sequence of amino acids that will appear in the final protein. In 

translation, codons of three nucleotides determine which amino acid will be added 

next in the growing protein chain. It is important then to decide which nucleotide 

to start translation, and when to stop, this is called an open reading frame. Every 

region of DNA has six possible reading frames, three in each of the two strands. The 

reading frame tha t is used determines which amino acids will be encoded by a gene. 

Typically only one reading frame is used in translating a gene in eukaryotes, and this 

is often the longest open reading frame. Once the open reading frame is known the 

DNA sequence can be translated into its corresponding amino acid sequence.

Sequence analysis helps to identify a protein’s primary sequence according to the 

corresponding gene sequence. For example, if we need to find out where a protein 

is encoded in a DNA sequence, it is very useful to know what peptides would be 

encoded by all six reading frames.

Secondly, sequence analysis can be used to search databases for sequences similar 

to a new sequence. If someone has just determined a sequence of an interesting bit of 

DNA, one of the first questions he is likely to ask himself is “has anybody else seen 

anything like this?” Fortunately, there has been a very successful international effort 

to collect all the sequences people have determined in one place so tha t they can be 

searched.



Thirdly, sequence analysis performs a calculation of sequence alignments for evo­

lutionary inferences and it aids in structural and functional analysis. Although it is 

not possible to completely predict the function or shape (structure) of a protein from 

a sequence, some useful inferences about structure and function can be drawn, by 

comparing the sequence of a protein of unknown structure and function to sequences 

of proteins with known structure and function. Second, the partial analysis done in 

the present will help reach the goal of structure or function prediction in the future. 

Third, by comparing the sequences of equivalent proteins from different species of 

animals (such equivalent proteins are called “homologues”), one can draw inferences 

about the evolution of these species from their common ancestors.

The third application of sequence analysis, sequence alignments, is going to be 

the topic of this thesis, and this includes multiple sequence alignments, and multiple 

gene order alignments.

Comparing sequences, structures, and sequences with structures is the most fun­

damental operation in biological sequence (i.e. DNA, RNA and protein) and structure 

analysis. When a comparison indicates a similarity between two proteins, it can im­

mediately suggest relationships involving structure, function and the evolution of the 

two protein sequences from a common ancestor protein. When one of the proteins is 

well characterized in terms of structure and function, a close connection with a novel 

protein sequence may allow all the hard-earned biological data to be transferred to 

the new protein. The degree of certainty with which this transfer can be made de­

pends on how similar the two sequences are. The two related protein sequences are 

said to be homologous, and the information are transferred by homology.

1.3 W hy Parallelizing M ultiple A lignm ents

Parallel computers are used primarily to speed up computations. A prallel algorithm 

can be significantly faster than the best possible sequential solution. There is a grow­

ing number of applications in sciences, engineering, business, and medicine requiring



computing speeds tha t cannot be delivered by conventional computer. These applica­

tions involve processing huge amount of data, or perform a large number of iterations, 

thus leading to inordinate running times. Parallel computation is the only approaches 

known today that would make these computation feasible.

Research of genome projects generates enormous amounts of information. Re­

searchers want to access this information quickly and easily and also be able to trans­

form this information into other useful information. Researchers also want to access 

cognate information, such as bibliographic or biological information associated with a 

given DNA sequence. Subsequently, there is a demand for increased computer power, 

both in speed and performance, and for enlarged memory capability, rapid networked 

communication, and improved database design.

Multiprocessing or parallel processing in general means the use of more than 

one processor or process in the computer handling of a given task. Multithreaded 

programming is one of the forms for parallel processing. So, what is a thread? Think 

of sewing needles as the CPUs (or Light Weighted Processes) and the threads in a 

program as the fiber. If you had two needles but only one thread, it would take longer 

to finish the job than if you split the thread into two and used both needles at the 

same time. Taking this analogy a little further, if one needle had to sew on a button 

(blocking I/O ), the other needle could continue doing other useful work. If only one 

needle is used there would be some extra hours for the single needle to do other useful 

stuff. Moving to something more concrete, a thread is a sequence of instructions that 

can be executed in parallel with other threads. They are not entire processes, but 

rather lightweight threads of execution. Threads of a program are smaller portions 

of a process running concurrently (or in parallel).

Multiple sequence alignment is a demanding task to automatically generate an ac­

curate alignment. An in-depth knowledge of evolutionary and structural relationships 

within a species family is often lacking or hard to use. General empirical models based 

on mathematically sound principles can be extremely demanding in CPU power and 

memory, and are difficult to apply. For some cases, statistical heuristics have been

10



developed to be able to cope with practical data set size. Therefore, in order to reduce 

the computation time and obtain useful data more efficiently it would be very ideal 

if some parallelism techniques could be applied for multiple sequence analysis.

Similarly, these complexity problems also occur in the computations for multiple 

gene order alignment. For instance, there are two different complexities for gene order 

alignment:

•  For signed reversal and translocation distance, which marks the gene positively 

or negatively, the computation complexity is polynomial.

•  For unsigned reversal distance, which only marks the gene positively, the com­

plexity is much more than polynomial.

Besides, the existing algorithms for gene order alignment, including breakpoint anal­

ysis and reversal distance analysis, lack the parallelism properties for computational 

speedup.

1.4 Thesis O rganization

The rest of the thesis will investigate the following issues:

• Chapter 2: discusses the related work that has been done for multiple sequence 

and genome (gene order) alignments, including literature reviews on alignment 

methods, algorithms, and applications.

• Chapter 3: presents a multithreaded implementation for multiple sequence 

alignments based on the mixed idea of Progressive alignment and Divide-and- 

conquer alignment. Depending on how the guide tree(s) would be applied, two 

d ifferen t ap p ro ach es  a re  im p lem en ted  for checking  th e  im p ro v em en ts  of align­

ment speed and sensitivity.

• Chapter 4: describes a new algorithm with parallelism properties for aligning 

two or more genome sequences, which is based on a precedence graph-based

11



consensus method and able to obtain the ancestor genome sequence. In this 

section, the algorithm formalization and the issues related to alignment result 

evaluation are included.

• Chapter 5: concludes the thesis and talks about the future work that is going 

to be involved.

12



Chapter 2

Algorithm s and R elated Work

In this chapter, algorithms and a broad range of the preceding work in multiple 

sequence and gene order alignment is described. It provides an overview of the earliest 

papers to the most recent development, including the approaches and applications for 

multiple alignment, and the work for parallelized multiple alignment.

Sequence alignments are either global or local. Global alignments find the best 

match over the total length of both sequences. In many cases, however, sequences 

share only a limited region of similarity. This may be a common domain or simply 

a short region of recognizable similarity. This case is dealt with by local alignment. 

Local alignment aims at identifying the best pair of regions, one from each sequence, 

such tha t the optimal alignment of these two regions is the best possible. In this 

thesis, only global alignment will be considered and discussed.

2.1 Pairwise Sequence A lignm ents

A residue is a single unit within a polymer, such as an amino acid within a polypeptide 

or p ro te in . T h is  te rm  reflects th e  fa c t t h a t  su g ars , n u c leo tides, a n d  am in o  acids 

usually lose a few atoms (usually hydrogen and oxygen) when they are polymerised 

into a larger molecule. In making an alignment, a one-to-one correspondence is set 

up between the residues of the two sequences. This has the evolutionary implication
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that at one time the paired residues were the same in an ancestral sequence and have 

diverged through the accumulation of point mutations in their DNA. Point mutation 

(or sometimes called substitution) is not the only process at work and extra residues 

may have been inserted or deleted giving rise to breaks or gaps in the alignment. 

These are referred to as insertions and deletions or, as indels.

For example, one possible alignment between the sequences

S = A G C A C A C A

T = A C A C A C T A

is Al:

A G C A C A C - A

A - C A C A C T A

Or A2:

A G - C A C A C A

A C A C A C T - A

A l contains one insertion and one deletion. A2 needs one insertion, one deletion, 

and two replacements. If we assume tha t the cost for each of these one-bit operations 

(insertion, deletion, replacement) is 1, then the cost of A l is 2, and the cost of A2 is

4. Therefore, A l is a better alignment than A2 as it is cost effective.

2.1 .1  D yn am ic  P rogram m in g A lgorith m s

There are different types of sequence comparison algorithms using dynamic program­

ming and the corresponding parallel formulations. The first algorithm for comparing 

biological sequences using the dynamic programming techniques was introduced by 

Needleman and Wunsch [42] in 1970. The algorithm consists of two parts; the cal­

14



culation of the total score indicating the similarity between the two given sequence, 

and the identification of the alignments tha t leads the score.

Sequence Y:

T G C A

A

X  T  

I  A

A

G

T

-1 -2 -3 -4 -5 -6 -7

-1 \ 0 -1 -2 -3 -4 -5

-2 0 \ 0 -1 -2 -3

-3 -1
\

1 \ 1 0 -1

-4 -2 0 1 2 \ 1 0

-5 -3 -1 1 1 2 \ 2

-6 -4 -2 0 1 1 2

ALIGNMENT I:

Sequence X: A T  -- A A G T 
Sequence Y: A T G C A G T  

Score: I 1 - 1 0  1 I I
Total: 4

ALIGNMENT 2:

Sequence X: A T  A -- A G T 
Sequence Y: A T G C A G T  

Score: 1 1 0 - 1 1  1 1
Total: 4

Figure 2.1: Alignment examples of Needleman-Wunsch algorithm

Considering the two sequences X and Y as shown in 2.1, a similarity matrix can 

be initialized with deceasing values (0, -1, -2, -3, -4, ....) along the first row and the 

first column to parallelize the consecutive gaps( insertions and deletions). The other 

elements of the matrix d[i,j] are calculated and filled by the maximum of the three 

values: d[i-l,j-l], d[i-l,j], and d[i,j-l]. In another words, the value of cell d[i,j] solely 

depends on the values of its 3 adjacent neighbors at the previous row, column and 

diagnose positions. The similarity matrix d[n, m] is built by applying the following 

recurrence equation:

d[i, j] =  max (d[i, j-1] +  gp, d[i-l, j-1] +  ss, d[i-l, j] +  gp)

In this example, gp is -1. ss is 1 if the elements match or 0 otherwise. Since 

global alignment takes into account the entire sequences, the final score will always 

be found in the bottom right hand corner of the matrix. In our example, the final 

score 4 gives us a measure of how similar the two sequences are. Figure 2.1 shows the 

similarity matrix and the two possible alignments. The two arrows going up and left
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represent two optimal paths. Tracing an optimal path backwards leads to an optimal 

alignment for two sequences.

The basic dynamic programming algorithm for making a global alignment is per­

haps the most widely used and important algorithm in bioinformatics. Variations of it 

are used for local alignment and it can be extended to align more than two sequences 

(multiple alignment), such as Smith-Waterman’s Algorithm, Pickett’s Algorithm [42], 

and Wilbur-Lipman’s algorithm [88].

Almost all alignment methods find the best alignment between two sequences 

under some scoring scheme. These scoring schemes can be as simple as '4-1 for a 

match, -1 for a mismatch’. Indeed, many early sequence alignment algorithms were 

described in these terms. However, since a scoring scheme to give the biologically 

best score is wanted, the fact tha t biological molecules have evolutionary histories, 

three-dimensional folded structures, and other features which constrain their primary 

sequence evolution need to be taken into account. Therefore, in addition to the 

mechanics of alignment and comparison algorithms, the scoring system can be very 

complex.

2.2 M ultip le Sequence A lignm ent

A multiple sequence alignment is an alignment of two or more sequences. It is a 

natural extension of two sequence alignment, called pairwise alignment. A simple 

example of multiple sequence alignment is shown in figure 2.2. Sequences may be 

multiply aligned to visualize the effect of evolution across homologues proteins or 

DNAs. Multiple alignment makes it possible to investigate a wide range of important 

biological phenomena like the following:

•  Phylogenetic analysis

• Identification of conserved motifs and domains

•  Structure prediction
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S e q l : V T S I T T C G S N I  G N V K W Y L P G  

S e q 2 : V T S I T T C G S N I  - - V N W Y L P G  

S e q 3 : V S T L L L C V G Y P  - - V E  W E G  - -

Figure 2.2; A sample alignment of three sequences

Depending on the sequences compared and the goal or application, how the com­

parison is performed will be different. For these reasons, there have been many 

different kinds of algorithms and programs written to compare sequences. Consider­

ing the obvious properties of existing multiple alignment algorithms, it is convenient 

to classify them in three main categories [59]: exact, progressive and iterative.

2.2.1 E xact A lgorith m s

The simultaneous alignment of all the sequences is called dynamic programming align­

ment or exact algorithm. Exact algorithms are high quality heuristics that deliver an 

alignment usually very close to optimality. When solving the computational prob­

lem of multiple sequence alignment, a natural generalization is to expand the two 

sequence case. The basic algorithm for the global comparison of two sequences, is to 

assign a score. In the multiple sequence case, the issue of scoring becomes a little 

more complex.

W ith several sequences, scores are calculated by assigning a score to each column 

of the scoring matrix. The sum-of-pairs (or SP measure) is often used to calculate 

values for a sequence. The sum-of-pairs function is the sum of pairwise scores of 

all pairs of symbols in a given column. A k-dimensional array would be an obvious 

solution for dynamic programming for the alignment of k sequences, but a standard 

application of dynamic programming for multiple sequences takes exponential time. 

Even with time saving measures, a multiple sequence alignment of three sequences 

takes O(n^) time. As a result, only 3 or 4 sequences can be realistically used when 

implementing a global dynamic programming algorithm.

Carrillo and Lipman [51] recognized a lower bound on the cost of the optimal
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multiple sequence alignment, and presented an elegant branch-and-bound approach. 

They described a technique for reducing the part of the graph (the dynamic program­

ming m atrix)that has to be examined. Only the paths that are contained in a certain 

“polytope” around the shortest path are explored by their algorithm.

The MSA program [52] implemented a slightly modified version of the Carrillo and 

Lipman’s algorithm. Since the bounds of Carrillo and Lipman were not sufficiently 

tight for solving the “real world” multiple sequence alignment instances, Lipman et al. 

proposed heuristics to improve bounds. However, the number and length of sequences 

that can be aligned is limited because the number of computational steps and the 

amount of memory grow exponentially with the number of sequences to be analyzed.

2.2 .2  D iv id e-an d -C on q u er A lign m en ts

In Exact algorithm, the time and space complexity grows exponentially with the 

number of sequences (O (m") for equal sequence length m), and for practical solutions 

of such computationally expensive problems, generally, two approaches are used;

• One approach attem pts to reduce the running time by using pruning techniques 

which still guarantee finding the highest-scoring alignment, but not reducing the 

worst-case complexity. Divide-and-Conquer is one example of these approaches.

• The other approach uses heuristics. This means that some ‘rules of thum b’ are 

used in the solution, and the best (or correct) solution is not necessarily found. 

For some of the heuristic methods it is possible to find an upper bound on the 

deviation of the result from the correct one.

Divide and Conquer Alignment [79] [80] is one of the implementations based on 

the Carillo and Lipman algorithm to limit computations to a small area in the multi­

dimensional search matrix. The idea of divide-and-conquer is straightforward: DCA 

guesses a point in the lattice on the optimal path, splits the sequences at tha t point, 

and recurses. On sequence fragments that are short enough, the exact algorithm
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is invoked. Once all fragments are aligned, they are concatenated to yield an ap­

proximate alignment. By doing this, the search space for each sub-alignment can 

be significantly reduced (as shown in Figure 2.3). This method finds the split point 

at the middle way of the longest sequence, and then searches the multi-dimensional 

matrix for a set of coordinates with minimal score. DCA does not take direct advan­

tage of heuristic procedures for finding the split points, such as using the presence of 

strong motifs in subsets of the input sequences. In molecular biology, motif refers to 

the conserved smallest group of atoms in a polymer that, when under the influence 

of a rotation-translation operator, will assemble the rest of the atoms in the chain.

( a )  T h e  o r i g i n a l  s e a r c h i n g  s p a c e ;  I

/ 1/4 / / 1/4 /
/4 1 4

/ / / /-wr wr
/ 1/4 / / 1/4 /

1/4

/ / / /
( b )  T h e  s e a r c h i n g  s p a c e  a f t e r  d v i d e - a n d - c o n q u e r :  

( 1 / 4  * 1 /4  * 1 /4 )  * 4  = 1/ 16

0

( c )  T h e  d i v i d e - a n d - c o n q u e r  t e c h n i q u e :  T h e  o r i g in a l  3  s e q u e n c e s  a r e  d i v i d e d  
in to  2 s e t s  o f  s u b - s e q u e n c e s .  K e e p  d i v id i n g  in e a c h  s u b s e t  a n d  a l i g n i n g  e a c h  
i n d iv i d u a l  s u b s e t .  W h e n  all t h e  s u b - a l i g n m e n t s  a r e  o b t a i n e d ,  a s s e m b l i n g  
t h e m  t o g e t h e r  t o  f o r m  t h e  f i n a l  g l o b a l  a l i g n m e n t .

Figure 2.3: Illustrating the search space with the divide-and-conquer technique
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General Dynamic Programming (GDP) [27] is similar to DCA. The major differ­

ence is that DCA only commits to a set of split points without considering the ge­

nomics information hiding behind the sequences, whereas GDP uses local and global 

approximate alignments to generate a large number of plausible “anchor points” 

aimed at the optimal path through the lattice, and progressively computes the score 

moving from one anchor to the next. It has been claimed by Gracy and Sallantin [27] 

that DCP successfully aligned up to 18 sequences with results superior to GlustalW

2.2 .3  P rogressive  A lign m en t

Among the many strategies implemented for multiple sequence alignment, progres­

sive alignment is the most successful and by far the most widely used. The idea is to 

establish an initial order (i.e. a guide tree) for joining the sequences and to follow this 

order to gradually build up the alignment. The strategies depend on a progressive 

assembly of the multiple alignments where sequences or alignments are added one by 

one so tha t never more than two sequences are simultaneously aligned using dynamic 

programming. This approach has the great advantage of speed and simplicity com­

bined with reasonable sensitivity, even if it by nature is a heuristic method that does 

not guarantee any level of optimization.

The most prominent implementation for this approach is GlustalW [82], which, 

together with the window graphic user interface (GUI) version GlustalX [83], belongs 

to the Glustal family. Glustal [84] progressive sequence alignment includes following 

three steps, which are demonstrated in Figure 2.4;

4 Sequences Guide Tree  Iterative Pairwise Alignment

; r  : : : : : :  :
3 - >  ( A ,  A -------------------------- 4

4

Figure 2.4: Demonstrating the 3-step progressive alignment by GlustalW
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• Step 1: Pairwise Alignment

-  Aligns each sequence to each of the other sequences in the set, giving a 

similarity score for each comparison. Scores of each sequence pair are 

displayed in a similarity score matrix

-  The pairwise alignments are done by using dynamic programming (i.e. 

Needleman-Wunsch global alignment algorithm).

• Step 2; Guide Tree

-  The similarity matrix is transformed into a distance matrix, and is used 

by an algorithm (e.g. Neighbor-join algorithm [69] or UPGMA [54] [77])  ̂

to create a Guide Tree. The guide tree here is similar to the concepts 

of the phylogenetic tree introduced in Section 1.1.2, which specifies the 

relationships between sequences.

•  Step 3: Progressive Alignment

-  Following the guide tree, the two most similar sequences are aligned, giving 

the consensus sequence. Consensus sequence is the sequence that reflects 

the most common choice of base or amino acid at each position of a series 

of related DNA, RNA or protein sequences. Areas of particularly good 

agreement often represent conserved functional domains.

-  The next sequence will be repeatedly added and aligned to the existing 

new consensus sequence, until the final alignment is achieved.

^UPGMA and Neighbor-join algorithms:
* UPGM A (Unweighted Pair Group M ethod using A rithm etic averages); It works by initially 

having all sequences in separate clusters and continuously joining these. The tree is constructed 
by considering all initial clusters as leaf nodes in the tree, and each tim e two clusters are joined, 
a  node is added to  the tree as the parent of the two chosen nodes. The clusters to be joined
a re  ch o sen  as th o se  w ith  m in im a l p a irw ise  d is ta n c e . T h e  b ra n c h  le n g th s  a re  se t c o rre sp o n d in g  
to  the distance between clusters, which is calculated as the average distance between pairs of 
sequences in each cluster.

* Neighbor Joining: The m ethod works very much like UPGMA. The main difference is tha t 
instead of using pairwise distance, this m ethod subtracts the distance to  all other nodes from 
the pairwise distance.
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ClustalW works well in alignment when sequences are closely matched to one 

another, or in another words, have many positions in common. However, in cases 

where the sequences are far apart from each other when pairwisely aligned, more 

errors appear, and these errors are propagated to the tree construction as well as the 

final results. Since the pairwise alignments are used in a greedy manner for progres­

sive alignment, the alignments formed during the progression towards the final MSA 

cannot be changed any more. Thus, the difficulty with progressive alignment highly 

depends upon the initial pairwise sequence alignment. T-Coffee [60] is an alignment 

application tha t attempts to mitigate this shortcoming by using information from 

other global and local alignments to guide the progressive alignment.

T-Coffee is currently the most reliable MSA method available [49]. The basic 

philosophy is tha t instead of looking at pairs of sequences in isolation, this proce­

dure allows information to be included from all other pairwise alignments. Thus the 

resulting guide tree makes the sequences to be aligned based on how well aligned 

they are with respect to the rest, so that the more confidently aligned sequences are 

matched up first and the least confidently aligned last. However, this method suf­

fers from exaggerating the significance of shorter residue segments tha t share high 

percentage identity. As a result, although the method is beneficial for anchoring 

conserved domains in an alignment of closely related sequences, it has the opposite 

effect on outlier sequences tha t are usually misaligned due to the lack of a commonly 

conserved segment.

In most of the current top performing progressive alignment methods, such as 

Glustal series, DiAlign2 [58], POA [50], Praline [35], and T-Coffee [60], the dynamic 

programming (DP) strategy is adopted. The main difference between the available 

DP-based progressive methods is the way in which the information of aligned blocks of 

sequences is represented. While early methods used consensus sequences to represent 

alignment blocks, current methods mostly use a profile formalism to represent the 

information in a MSA [76].
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2 .2 .4  Itera tiv e  A lgorith m s

Recent developments in multiple sequence alignment techniques have mainly focused 

on sensitive and optimal models to represent MSA information. A class of techniques 

that are able to revisit and optimize the MSA is that of iterative multiple alignment 

techniques. Pioneered by Hogeweg and Hesper (1984) [36], iterative techniques de­

pend on algorithms able to produce an alignment and to refine it through a series of 

cycles or iterations until no more improvements can be made.

Iterative methods for MSA can be deterministic or stochastic, depending on the 

strategy used to improve the alignment. Deterministic iterative strategies are the 

simplest. They extract sequences one by one from a multiple alignment and realign 

them to the remaining sequences [29] [35]. This procedure is terminated when no 

more improvement can be made. Stochastic iterative methods include HMM training 

[33] [6], simulated annealing [45], and evolutionary computations such as genetic algo­

rithms [28] [90] and evolutionary programming [13]. The main advantage is to allow 

for a good conceptual separation between the optimization processes and objective 

functions (evaluation criteria). Objective function defines the aim of any optimization 

procedure.

PRRP [29], SAM [39], HMMER [23], SAGA [61], and MUSCLE [24] are some of 

the recent and less recent available iterative methods for multiple sequence alignment. 

Some of these methods are a mixture of progressive and iterative strategies.

2.2 .5  P ara lle lized  M u ltip le  Sequence A lign m en t

Parallel processing, sometimes called concurrent processing contains two or more 

processors that work together to perform a task. Each process is a sequential pro­

gram, namely, a sequence of statements that are executed one after another another. 

Whereas a sequential program has a single thread of control, a concurrent program 

has multiple threads of control.

The processes in a parallel program work together by communicating with each
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other. Communication is programmed using shared variables or message passing. 

In shared memory model, when shared variables are used, one process writes into a 

variable tha t is read by another. In contrast, in message passing model, when message 

passing is used, one process sends a message that is receied by another. The focus of 

this thesis is on shared memory parallel algorithms.

Parallel algorithms for analyzing DNA and protein sequences are becoming in­

creasingly im portant as sequence data continues to grow. While dynamic program­

ming algorithms make large sequence alignment feasible, the quadratic time require­

ment still makes it a time-consuming process. A natnral approach is to reduce the 

time requirement with the use of parallel computers.

Iyengar [5] examined the parallel characteristics of four sequence alignment al­

gorithms. The four algorithms presented were the dynamic programming algorithm 

developed by Needleman, Wunsch, and Sellers (the NWS algorithm), Pickett’s algo­

rithm [42], a parallel algorithm using some of Pickett’s ideas, and an algorithm which 

uses some of Wilbur and Lipman’s ideas [88] for constructing alignments which are 

not always optimal. Iyengar found out tha t the NWS algorithm contains the most 

properties to be parallelized but also does more work than any of the other algorithms 

which were studied, and Pickett’s algorithm contains the least parallelism properties.

A shared-memory multithreaded parallel version of the Needleman-Wunsch’s Al­

gorithm [42] using dynamic programming for pairwise alignment is presented by Mar­

tins [53], which handles the data dependencies very well and performs as many opera­

tions as possible independently. Another algorithm, Berger-Munson algorithm [8] was 

initially parallelized by Ishikawa et al. [40] [41] on a parallel inference machine (PIM) 

using a parallel logic programming language KLl. Later, Yap et al. [89] extended 

and evaluated this approach on an Intel iPSC/860 parallel computer by applying 

speculative computation to the parallelization of the Berger-Munson algorithm, and 

achieved a higher speedup and a more scalable implementation.

Algorithms that both retain time optimality and reduce space requirement were 

first presented by Edmiston et al. [26] and further developed by Aluru et al on an IBM
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SP-2 and a Pentium cluster [3]. Assume that n and m are the lengths of the sequences 

to be pairwisely aligned. Edmiston et. al. [26] discuss parallel algorithms for sequence 

and subsequence alignment tha t achieve linear speedup and can use up to min(m, n) 

processors. Lander et. al. [48] discusses an implementation on a shared memory 

parallel computer. These algorithms store the entire dynamic programming table. 

Huang [38] presented a parallel sequence alignment algorithm which increases the 

run-time to O ((m +n)^/p), which is intended for a message-passing architecture with 

one-dimensional-array topology. Recently, Rajko et al. [64] claimed having developed 

the first space and time optimal parallel algorithm on an IBM xSeries cluster for the 

pairwise sequence alignment problem, which requires only O ((m4-n)/p) space and O 

(mn/p) time, and is suitable for implementation on parallel computers.

A widely studied problem tha t is identical to a special case of the sequence align­

ment problem is string editing. Highly parallel algorithms for this problem have been 

developed for the hypercube models of computation [4], [65] using almost quadratic 

number of processors.

The parallel algorithms mentioned above for dynamic programming pairwise align­

ment can be extended to align more than two sequences. At present, several alignment 

tools for multiple sequences are parallelized and have become available online for free 

user access, such as pClustalW [14], Parallel ClustalW on 16 CPUs[55], DiAlign p [75], 

Praline [46], MUSCLE-p [25], and etc. The parallelism applied in these applications 

is not limited to the alignment algorithm itself, but also to the sequence processes.

2.3 M ultiple G ene Order A lignm ent

2.3 .1  M u ltip le  G ene O rder A lign m en ts

Gene order alignment is another form of biological sequence alignment. If one gene 

can be thought as a word, gene order then can be presented as the order of words in 

the sentence. In multiple sequence alignment, the positions of residues are fixed, and 

a set of DNA or protein sequences are compared with each other, whereas in multiple
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gene order alignment, a set of blocks of genes are compared in terms of their orders 

or positions.

The DNA of eukaryotes is subdivided into chromosomes. In prokaryotes, chro­

mosomal DNA is circular, and the entire genome is carried on one chromosome. A 

chromosome has the self-replicating genetic structures of cells containing the cellular 

DNA that bears in its nucleotide sequence, the linear array of genes. Chromosome 

breakage and mistakes in repair, along with a number of other processes, give rise to 

changes in gene order. These have important consequences for the cell, the organ­

ism, the population, and for the evolution of species. Figure 2.5 shows the different 

X-chromosome gene orders for mice and humans. Gene order alignments will help to 

provide following information:

•  Aligned gene orders allow us to speculate the closest common ancestor of the 

genomes.

•  Gene order alignment is useful when faced with “missing link” problem where 

evolutionary intermediates are not known.

• Gene order alignment information could be used across multiple genomes to 

form a phylogenetic tree.

2.3 .2  R ep resen ta tion  o f  a  genom e

A unichromosomal genome can be considered as a sequence of n genes. Let’s denote 

the genes by numbers 1, 2, ..., n, and represent the two signed orientations of gene i 

as i and -i. As such, a genome is represented as a signed permutation of the numbers 

1, 2, ..., n. For example, a unichromosomal genome with n—5 genes is

5 -3 4 2 -1
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Figure 2.5: Mouse vs. Human: different X chromosome gene order

A multichromosomal genome consists of n genes spread over m chromosomes, ft is 

represented as a signed permutation of 1, 2, ..., n, with delimiters inserted between 

the chromosomes. For example, a genome with 12 genes spread over 3 chromosomes 

could be written as

7-2 8 3 ;  

5 9 -6 -1 12 ;

11 4 10 ;

The genome alignment being discussed here is about unichromosomal genome or 

one chromosome of the multichromosomal genome. Currently, neither repeated genes, 

nor the gaps arised from insertion or deletion, are considered.

2.3 .3  G en om e R earrangem en t

The algorithmic study of comparative genomics tries to explain differences in gene 

orders in two or more genomes in terms of a limited number of rearrangement opera­

tions. For unichromosomal genomes, this requires the calculations of an edit distance 

between two linear orders on the same set of objects, representing the ordering of
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homologous genes in two genomes. In the “signed” version of the problem, a plus or 

minus is associated with each gene, representing the direction of transcription.

Genome rearrangement operations considered here include reversal (also referred 

to as inversion), transposition, and translocation [70]. Some other operations also 

exist such as duplication, fusion and fission. Every study of genome rearrangement 

involves solving a combinatorial “puzzle” to find a shortest series of operations that 

transform one genome into another.

• Reversal; the inversion of any number of consecutive terms in the ordered set, 

which also reverses the polarity of each term within the scope of the inversion 

in the case of signed orders.

• Transposition: the movement of a piece of DNA around the chromosome 

(from one gene to another part of the genome), usually through the function of 

a transposable element. Transposition may or may not involve an inversion.

• Translocation: the rearrangement of a chromosome in which a segment is 

moved from one location to another, either within the same chromosome or 

to another chromosome. This is sometimes reciprocal, when one fragment is 

exchanged for another.

2 .3 .4  R earrangem ent D istan ces

Literature often refers to the rearrangement events, reversal and translocation, as the 

genomic sorting problem. The key question is to find the minimum number of steps 

needed to transform genome A to genome B using reversal and translocation.

Breakpoint analysis

Breakpoint analysis [73] tries to minimize the breakpoint distance between two gene 

order sequences. A pair of elements in two permutations forms a breakpoint if they are 

consecutive in one but nonconsecutive in the other sequence, as illustrated in Figure 

2,6. The breakpoint distance between two permutations is the number of breakpoints.
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— ^  ; consecut ive  ascending order 

^  : consecut ive  descending  order

 >  <   —>  <    >  < —   >
0 1 2 *  7 6 5 *  8 *  4 3 *  9 1 0 *  1 3 *  1 1 1 2

i
breakpoint

Figure 2.6: Examples for breakpoints: means ascending order; means
descending order; a single gene can be represented by either or

R eversal D istance

One can also calculate the reversal distance between two genome permutations as 

well. A reversal in a signed permutation is an operation tha t takes an interval in 

a permutation, reverses the order of the numbers, and changes all their signs. For 

example, a reversal R(i, j) applied to the permutation:

P (l), ..., P(i-l), P(i), ..., P(j), P(j+1), ..., P(n)

and gives the following permutation:

P (l), P(i-l), -P(j), -P(i), P(j+1), P(n)

By applying R(4, 8) to the following gene order:

1 2 3 4 5 6 7 8 9  

One will obtain:

1 2  3 - 8 - 7 - 6  -5 -4 9
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The reversal distance for a pair of genomes can be computed in polynomial time, 

but the extension of pairwise alignment to multiple alignment using reversal distance 

has faced computability problems in the past, as a result multiple alignment using 

breakpoint distance has become a dominant technique for gene rearrangement.

GRAPPA[57] and MGR[9] are two applications designed for gene order analysis. 

Moret and his colleagues developed GRAPPA by improving the breakpoint analysis 

technique, while the MGR is based on reversal analysis.

2.3 .5  A lgorith m s and M eth od s

Observations of gene duplication and repetitive sequences are much more common 

among eukaryotes than prokaryotes, while genome rearrangement can be readily ob­

served between both closely-related and divergent organisms of all types. These ad­

ditional evolutionary mechanisms distinguish the genome comparison and alignment 

task from traditional sequence alignment [15].

Comparing long sequences of genomes tends to be a very computationally expen­

sive task, in terms of both time and memory. Traditional algorithms and methods 

for multiple sequence alignment do not scale to genomic size. If these algorithms 

were applied to genomic sequences of over a million bases, they would likely run out 

of memory or run for an unreasonable long time. In the past few years, there have 

been several attem pts to solve these problems. Accordingly, several new methods 

and tools for genome comparison have been developed. However, most of them hold 

several techniques in common. Specifically, the existing tools can be grouped into one 

of two categories: iterative pairwise alignment, or anchor-based multiple alignment.

MLAGAN [12] is the most well-known tool based on iterative pairwise alignment, 

which will be introduced below. The majority of the remaining tools fall into anchor- 

based multiple alignment category, and almost all of these tools share very similar 

algorithmic concepts.

Prom Darling et. al.’s [15] point of view, an anchor-based alignment typically
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proceeds in three steps. First, the aligner identifies a set of local alignments in 

regions of high similarity among the genomes. Next, a subset of the regions identified 

in the first step are selected as alignment anchors, based on whether the tool considers 

them as are part of the correct alignment. Finally, the alignment anchors are used 

to restrict the number of possible alignments considered when performing an (0(n^)) 

gapped alignment using dynamic programming. Many tools assume that the genomes 

are collinear to complete a gapped alignment. Collinear means no significant inversion 

or rearrangement events took place since their divergence.

Pairwise G enom e A lignm ent

Early research into genome alignment focused on scaling traditional pairwise align­

ment methods (0(n^)) to handle much longer genome sequences. Pairwise genome 

alignment tools, such as MUMer [19], GLASS [7], and WABA [44] pioneered the use 

of anchoring to accelerate the alignment process.

MUMer, released in 1999, is the first software program capable of aligning whole 

genomes. It combines a suffix tree, longest increasing subsequence, and Smith- 

Waterman algorithms to align a pair of whole genomes.

LAGAN [10] is another pairwise whole genome alignment tool, which produces a 

global alignment of two genomes in three steps. First, it finds a set of local alignments 

using CHAOS algorithm [10]. Then, it chains an ordered subset of these local align­

ments to form a rough global alignment. Finally, it uses a bounded error dynamic 

programming algorithm to find the best alignment within a certain distance of the 

rough global alignment.

M ultiple G enom e A lignm ent

When the genomic DNA sequences of closely related organisms became available, 

there was an immediate need for reliable and automatic software to align three or 

more genomic sequences.

MGA ([37], 2002) was the first software tool for multiple genome alignment, which
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is an anchor-based method that uses the same idea as the pairwise genome alignment 

tools (i.e. MUMer). The MGA algorithm works as follows;

• Find a set of exact matches in terms of the calculations of MultiMEMs (Maximal 

Multiple Exact Matches) [37]. A MultiMEM is an exact match that occurs in 

each sequence and cannot be extended in either direction without encountering 

a mismatch.

• The alignment is anchored at different subsets (or matches). Select an optimal 

chain of matches among all matches found.

•  Close the gaps between chained matches using recursive calls.

•  If the remaining gaps are short, hand them over to another sequence alignment 

tool (e.g., ClustalW); If the gaps remained are long, leave them open.

Compared with MUMer 2 [20], the extension of MUMer, which allows alignment 

of multiple genomes and translated protein sequences, MGA presents a significant 

improvement. The MUMer systems identify maximal unique matches and use them 

to anchor the alignments. MGA, however, completely discarded the uniqueness con­

straint, and searches for maximal multiple exact matches instead, which will theo­

retically increase the sensitivity of the alignments. Another improvement tha t MGA 

makes over the MUMer systems is that MGA needs less memory by constructing a 

virtual suffix tree.

Besides MGA and MUMer 2 mentioned above, some other anchor-based multiple 

genome alignment system are also available, such as EMAGEN [21], CHAINER [1][2], 

and M-GCAT [86].

Hohl et al. [37] also pointed out that an alignment of the genomes (gene orders) 

of several organisms makes sense only if the organisms are closely related. Otherwise, 

genome rearrangement should be taken into account. Shuflfle-LAGAN [11] , a variant 

of the LAGAN alignment system, is the first genome comparison method that explic­

itly deals with genome rearrangements during the alignment process. Rather than
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selecting a single collinear set of anchors, Shuffle-LAGAN selects anchors collinear in 

the first sequence with rearrangements permitted in the other sequence. However, 

Shuffle-LAGAN works only for pairwise comparison.

Mauve [16] presented an anchor-based alignment algorithm to address the pres­

ence of significant inversion and rearrangements in a set of genomes to be aligned. 

This algorithm is known as the first multiple alignment tool tha t considers genome 

rearrangement during the alignment process. Mauve’s algorithm can be summarized 

as follows [16]:

• Find local alignment in terms of the calculations of MultiMEMs (Maximal Mul­

tiple Exact Matches) [37].

•  Use the multiMEMs to build a phylogenetic guide tree.

•  Select a subset of the multiMEMs to use as anchors. These anchors are parti­

tioned into collinear groups called LGBs.

•  Perform recursive anchoring to identifying additional alignment anchors within 

and outside each LCB.

• Perform a progressive alignment of each LCB using the guide tree.

Manual cure of a multiple genome alignment on actual genome sequence is too 

costly. Thus there is no ‘gold standard’ alignment to use when assessing the qual­

ity of calculated alignments. Darling et. al. [15] performed several experiments 

using simulated evolution environment to compare the accuracy to Multi-LAGAN, 

Shuffle-LAGAN, and MAVID. These experiments demonstrated that Mauve’s algo­

rithm clearly excels at aligning genomes with rearrangement.

A s m en tio n ed  above, o th e r  th a n  an ch o r-b ased , M L A G A N  [12] is a  tool b ased  

on iterative pairwise alignment. It performs best when aligning and analyzing the 

regions of homogeneity among distinct species, such as human and turkey. However, it 

was not designed to yield the same results when dealing with closely related multiple
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genomes. MLAGAN performs a progressive alignment of the genomes using LAGAN, 

and takes a phylogenetic guide tree together with the sequences as input. Each time, 

by following the input guide tree, LAGAN will select two closest genome sequences 

and produce a pairwise alignment until all the sequences are aligned. MLAGAN 

then gives options to iteratively refine the resulted alignment until no significant 

improvement can be made.

2.4 C onclusion

During the past decades, considerable work for aligning multiple sequences has been 

done, but there is still room for improving alignment speed and sensitivity.

Multiple genome alignment is a large-scaled multiple sequence alignment. Tradi­

tional methods for sequence alignments cannot be applied directly for genome align­

ments. Since 1999, there have been several independent approaches to align multiple 

genomes. However, most of them hold several techniques in common and lack paral­

lelism properties tha t would speed up the aligning process.
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Chapter 3 

M ultithreaded M ultiple Sequence 

Alignm ent

This chapter introduces a multithread approach for aligning multiple sequences. De­

pending on how the guide tree(s) would be applied for progressive alignment, two 

different software programs, a single-tree program and a multiple tree program, have 

been implemented. Their alignment results will be compared at the end to check the 

improvements of alignment speed and sensitivity. To our best knowledge, this is a 

novel approach to consider progressively aligning the same set of multiple sequences 

by building a different number of guide trees.

3.1 C om plexity A nalysis

According to the results of Wang and Jiang [87], the multiple sequence alignment 

problem is NP-complete for a class of scoring matrices used for reality biological 

applications.

P rom  a  c o m p u ta tio n a l p o in t o f view , th e re  a re  severa l w ays to  ad d re ss  th e  lack 

of hard computing power for bioinformatics, especially in multiple sequence and gene 

order alignments. The first is by developing new, faster heuristic algorithms that 

reduce computational space for the most time-consuming tasks. The second is incor­
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porating these algorithms into the ROM of a specialized chip. The third and most 

promising consideration, is parallel computing. In parallel processing, two or more 

microprocessors (or threads) can be used simultaneously to divide and conquer tasks 

that would overwhelm a single, sequential processor. However, parallel computing 

still requires new paradigms in order to harness the additional processing power for 

bioinformatics.

3.2 Evaluations and Com parisons

The most frequently used reference MSA database is BAliBASE (Benchmark Align­

ment database) [85]. It is the only reference database for multiple sequence alignment 

that has been specifically designed for MSA benchmarking. T hat’s why BAliBASE

is so appealing to MSA method developers. As a result, it has been used in many

studies as the standard of tru th  for comparing the performance of new MSA methods 

with older ones. The current version of BAliBASE (version 2.0) [82] contains a total 

of 167 reference alignments placed in eight different categories, which are aimed at 

covering most of the problems alignment engines come up against:

1. Multiple sequence alignments containing equi-distant sequences of various con­

servation levels. Conserved gene is a gene that has remained essentially un­

changed throughout evolution. Conservation of a gene indicates that it is unique 

and essential. There is not an extra copy of that gene with which evolution can 

tinker. Changes in the gene are likely to be lethal.

2. Alignments with a single orphan sequence.

3. Alignments comprising two distant groups of less than 25% sequence identity.

4. Alignments containing long insertions.

5. Alignments containing long deletions.

6. Sequence repeats.
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7. Transmembrane sequences.

8. Domain permutation.

3.3 Research Problem

Progressive alignments (Section 2.2.3) use an approximation of a guide tree between 

the sequences as a guide tree that dictates the alignment order. The progressive 

strategy is appropriate for many alignment problems, but also suffers from greedi­

ness. Errors made in the first alignments during the progressive protocol cannot be 

corrected later as the remaining sequences are added in. Attempts to minimize such 

alignment errors have generally been targeted at global sequence weighting [81], where 

the contributions of individual sequences are weighted during the alignment process. 

However, such global sequence-weighting schemes carry the risk of propagating rather 

than reducing error when used in progressive multiple-alignment strategies [35].

Simultaneous alignments are high quality heuristics tha t deliver an alignment 

usually very close to optimality. Nonetheless, they remain an extremely CPU and 

memory-intensive approach, applicable only to about nine sequences of average length 

of 20 characters for the fastest implementation (DCA). Prom Figure 3.1 one can 

easily notice that the divide-and-conquer technique (Section 2.2.2) actually provides 

a perfect structure for parallel programming, and each sub problem can be computed 

independently. Another major advantage of using the divide-and-conquer technique is 

that extremely long sequences can be also acceptable by a multiple sequence alignment 

program as long as the sequences can be cut into small enough pieces.

Based on the characteristics of both progressive and divide-and-conquer align­

ments, long sequences will first be cut into several sets of sub-sequences, and each 

of these sub-sequences will be aligned progressively and independently by a light- 

weighted process, thread. In some cases, the sequences are extremely long and cannot 

be fed into a simultaneous alignment program even after they are divided into several 

shorter pieces. T hat’s why sometimes progressive alignment will be still considered
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for the sub-sequences alignments.

Sequence X: 

Sequence Y:

Decomposed

xo XI X2 X3

YO Y1 Y2 Y3

XO XI X2 X3

YO Y1 Y2 Y3

f f f  > f  >
PC PI P2 P3

J

Figure 3.1: Divide-and-conquer technique

This multithreaded multiple sequence alignment approach actually combines the 

idea of divide-and-conquer alignment and progressive alignment. In order to check 

the alignment speed and sensitivity, two different alignment programs, depending on 

how the guide tree(s) would be applied, are developed for getting a better sense of 

which approach works better than the other.

3.4 A pproaches and Sim ulations

The single-tree and multiple-tree alignment programs were implemented using shared 

memory Multithreaded Java Programming. There are two concepts for parallel pro­

cessing, namely, processes and threads. A process is a single executable module that 

runs concurrently with other executable modules. For example, in a multi-tasking 

environment tha t supports processes, like Microsoft Windows, a word processor, an 

internet browser are separate processes and can run concnrrently. Processes are sep­

arate executable, loadable modules as opposed to threads which are not loadable.
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Multiple threads of execution may occur within a process. For example, from within 

a database application, a user may start both a spellin check and a time consuming 

sort. In the meantime, a thread can also be a task that runs concurrently with other 

tasks within a single executable file (e.g., within a single MS-DOS EXE file). Unlike 

processes, threads have access to common data through global variables.

Parallelism deployed in the program was based on the divide-and-conquer tech­

nique structure. On one hand it is clear that optimal cut positions exist; on the 

other hand it is clear that it is computational expensive to find them. Since the focus 

of this thesis is speed performance, only trivial idea are used now to determine the 

cut positions in the implementations, such as choosing the middle points recursively 

during each cut.

Since progressive alignment only performs global alignment and match sequences 

over their full lengths, problems with this approach can arise when highly dissimilar 

sequences are compared. Especially when there is a large difference in the lengths of 

the two sequences to be compared, global alignment routines become unwarranted. 

This is because highly similar internal regions may be overshadowed by dissimilar 

regions and the high gap penalties normally are required to achieve proper global 

matching. Moreover, many biological sequences are modular and show shuffled do­

mains, and the repeats of internal sequence can also severely limit the applicability 

of global methods. Therefore, in the simulations, only long sequences with similar 

length and over 40% identical are tested for the single-tree and multiple-tree align­

ment programs.

3.4 .1  S ingle-T ree A lign m en t

Single-tree alignment uses a uniform guide tree built for the full-length sequences 

at the beginning of the alignment. All the sub-alignment processes w ill follow this 

single tree when the sequences are cut into sub-sequences. Details of the single-tree 

alignment are presented in Figure 3.2.

The guide tree for single-tree alignment is built using UPGMA algorithm.

39



G u id e - tree 
D e c o m p o s e  ' N

V

PO P I P2 P3

'------ ' _____ ;

su b  a l ignm en ts

V
C o n c a te n a te

_____________________________________________________________________overa l l  a l ignm en t

Figure 3.2: Details of single-tree alignment

3 .4 .2  M u ltip le-T ree  A lign m en t

As opposed to single-tree alignment, multiple-tree alignment use different guide trees 

for each set of sub-sequences. Sequences will be cut into pieces first, then each set of 

the sub-sequences will build their own guide tree to guide their individual alignments. 

Figure 3.3 shows the details of multiple-tree alignment.

The guide tree for multiple-tree alignment is also built using UPGMA algorithm.

3 .4 .3  Sp eed  P erform ance

One of the major advantages of multithreaded programming is program speedup with 

respect to time efficiency, because each thread processes a different piece of the same 

job simultaneously and independently. However, this is obviously the case for the 

multiple-tree alignment program, but not quite true for the single-tree alignment 

(Figure 3.4), which does not gain any speed improvement after some point. The 

reason is tha t in single-tree implementation, no m atter how many threads are used, 

every time a single guide tree for the full length sequences are built at the start 

of alignment for all the sub-alignments done by different threads. It appears that
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Figure 3.3: Details of multiple-tree alignment

building the uniformed alignment guide tree becomes the hot spot (the most time- 

consuming part) for all alignment procedures in the single-tree approach.

The figure also shows tha t the multiple-tree alignment program achieves seven 

times faster than the sequential program where one thread was used. We also note 

that the multithreaded multiple-tree algorithm is faster than the multithreaded single­

tree algorithm. In other words, using the same number of threads, the multiple-tree 

approach performs faster and uses less memory.

3 .4 .4  A lign m en t S en sitiv ity

There are several publicly available databases which have benchmark alignments. 

A widely used one is BAliBase by Julie Thompson et al (Section 3.2). BAliBASE 

provides a module (BaliScore) tha t defines two scores. SP (Sum-of-Pair) score is 

the ratio of the number of correctly aligned pairs of positions in the test (predicted) 

alignment to the number of aligned pairs in the reference (structurally informed) 

alignment. TC (Total-Column) score is the ratio of the number of correctly aligned
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Figure 3.4: Speed improvement for single-tree and multiple-tree implementations in 
terms of different number of threads

columns in the test alignment to the number of aligned columns in the reference 

alignment. Both SP and TC scores range from 1.0 for perfect agreement to 0.0 for 

no agreement. The designers of BAliBASE recommend SP score as the best quality 

score for Refsl, 2 and 3, TC score as the best score for Refs4 and Refs5 [81].

Currently, the tests were done mainly based on Refs2, thus the following Figure 

3.5 inflects the average SP scores calculated by BAliScore in terms of the number of 

threads used by the single-tree and multiple-tree alignment programs. It turns out 

that the quality of alignments drops down for both approaches when the number of 

threads increases, as unwanted gaps are inserted at the start or the end positions of 

the sub-alignments; This thus brings more gaps in the final full-length alignments 

and infects the values of SP scores.
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Figure 3.5: SP-scores for single-tree and multiple-tree implementations with respect 
to different number of threads

3.5 Sensitiv ity  Im provem ents

3.5 .1  O verlapping A lign m en t

This approach is considered to reduce the number of unwanted gaps introduced at 

the start or the end positions of the sub-alignments when multiple threads are used. 

In this approach, cut points are actually extended half length of the original sub se­

quence. Assume the length of original sub-sequence is t. The real length participating 

in the alignment is t 4- (t/2), where the (t/2) part overlaps the first half of its next 

neighbor. However, at the reassembling stage, those (t/2) overlapping parts will be

ignored and only the first t  characters in each subsequence will be extracted to build

the final full le n g th  a lignm en t.
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3.5 .2  S lid ing W in d ow s for C ut P o in ts  C alcu la tion s

When divide-and-conquer technique is applied for sequence alignment, finding an 

effective and efficient algorithm to calculate the cut positions for sequences is always 

a big issue. The basic idea of sliding window tha t we come up for cut position 

calculation is explained below.

Assume we have two sequences SI, 82, and N number of threads are going to be 

used for their alignment.

•  Firstly, cut SI evenly in terms of the number of threads, and mark the first cut 

position with 0. Then, mark the positions left to 0 with -1, -2, , -(S l/N )/2 ; and 

mark the positions right to 0 with -fl, -f-2, , -|-(Sl/N )/2

• Secondly, in S2 mark the same position with the same number as that in SI 

accordingly

•  For simplicity purpose, we assume that SI has sliding window of size 2, and an 

optimal cut position for S2 will reside within 1 left or right shifts of position 

0, the sliding windows for the first cut position of both sequences will look like 

below (Figure 3.6):

S I :

-1 +1

S2:

-2 -1 +1 +2

Figure 3.6: Illustrating the sliding window technique for improving alignment accu­
racy

The cut position of S2 will be computed in terms of the m a x im u m  score of the 

following alignments:

Score(O) =  align [ Sl(-l,-t-l), S2(-l,-l-l)]
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Score(-1) =  align [ Sl(-1,+1), S2(-2,-l)]

Score(+l) =  align [ Sl(-1,+1), S2(+l,+2)]

For example, if max =  score(+l), then the first cut point of S2 will be in between 

cells +1 and +2.

Therefore, for general cases, if multiple sequences have similar length S and N 

number of threads will be used for the alignments, then the size of the sliding windows 

(thresholds) for all sequences will be less or equal than S/N, with half of the sliding 

cells being negatively marked and the other half positively marked. The maximum 

score calculated to get the cut position for next sequence upon the previous one 

will then be computed among score(O), score(-l), ..., score(-S/2N), score(+l), ..., 

score(+S/2N), depending on the sliding window size of its previous sequence.

3.6 C onclusions

The same set of multiple sequences can be progressively aligned either by a single guide 

tree or multiple guide trees. The multiple-tree and single-tree alignment programs 

presented in this thesis are coming from the idea of combining the use of divide-and- 

conquer technique with the progressive alignment. Multiple-tree alignment seems 

having a better speedup performance than single tree alignment. The results also 

show that in terms of the number of threads used, using two threads has the best 

performance, which retains the similar accuracy as using one thread but accelerate 

the alignment by saving half of the time. However, neither the single tree program 

nor the multiple tree program shows very satisfying sensitivity results as the number 

of threads increases.
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Chapter 4 

Graph-based Consensus M nltiple  

Gene Order Alignm ent

Multiple gene order alignment, sometimes called multiple genome alignment, is a 

larger-scaled multiple sequence alignment. In the last chapter, a multithreaded ver­

sion for sequence alignment, to accelerate the alignment processing was introduced. 

This chapter will focus on the parallel processing techniques for multiple genome 

alignment. Previous approaches for gene-order analysis were largely based on break­

point analysis or gene rearrangements, and lack parallelism properties. As a result, 

a novel algorithm for alignment of genome sequences based on a graph-based con­

sensus method is described in this chapter. This algorithm can be applied to align 

two or more gene order sequences, obtain the ancestor gene order sequence, and be 

implemented in parallel, to further increase its computation speed.

4.1 C om plexity A nalysis

In  m u ltip le  g en e-o rd e r a lig n m en t, one e d it o p e ra tio n  consists  o f th e  inversion , o r 

reversal, of any number of consecutive terms in the ordered set. In the case of signed 

orders, the operation also reverses the polarity of each term within the scope of the 

inversion. The calculation of the distance for unsigned genomes with inversions only
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is NP-hard; for signed problem it is of polynomial complexity. For multi-chromosome 

genomes, another important edit operation is reciprocal translocation, representing 

the exchange of terminal fragments between two chromosomes. Some formulations 

of the distance problem for translocation are of polynomial complexity, and some are 

of NP-hardness. For the algorithm proposed here, the inversion operation is only 

considered for a single genome sequence.

4.2 R ationale for Graph Theory

Conceived by Euler, Cayley, and Hamilton, graph theory flourished in the twenties 

century to become a critical component of discrete mathematics. In the 1950s, Sey­

mour Benzer applied graph theory to show that genes are linear [43]. When the 

Human Genome Project started, DNA sequencing was a routine but time-consuming 

and hard-to-automate procedure. In 1988 four groups of biologists independently and 

simultaneously suggested a different sequencing technique called Sequencing by Hy­

bridization, abbreviated as SBH. SBH as a Hamiltonian Path Problem, and SBH as 

an Eulerian Path Problem lead to the graph algorithms for sequence reconstruction. 

Similarly, in this chapter, a graph algorithm for multiple gene order alignment will 

be introduced.

As mentioned at the beginning of this chapter, previous approaches to gene-order 

analysis were largely based on break-point analysis or gene rearrangements, and lack 

of parallelism properties. The algorithm that is going to be proposed here introduces 

a potentially simpler approach for multiple alignment of gene orders based on a notion 

of precedence. The algorithm can also be implemented in parallel to further increase 

its speed.

The original idea of this algorithm came from the mathematical and computational 

linguistics [71] [67]. In this view, “gene order” can be compared with “canonical word 

order” for linguistic sequences [34]. The approach presented here is an extension of 

an earlier work for calculating the canonical word order based on word order and
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precedence constraints [66].

4.3 The Precedence G raph-Based C onsensus A l­

gorithm

In the following an alternative algorithm is presented for aligning multiple genome 

sequences and constructing consensus sequences. Similarly to the other graph based 

approaches, a graph will be constructed over sequence fragments representing the data 

set. However, this is a different algorithm that does not explicitly try to calculate 

sequence alignments or overlaps. Instead, the graph will be traversed greedily, and 

a path will be tried to pursue through the graph so that each branch followed is as 

consistent with the previous one as possible. The goal of this alignment heuristic are 

to allow for more efficient gene order alignments that can accommodate for inversions, 

translocations, deletions, and insertions in the evolutionary process between ancestor 

and successor organisms. The precedence based gene order alignment algorithm pre­

sented here have a time complexity of 0 (d  * n^)) where d is the number of genomes 

being aligned and n is the number of gene blocks contained in the genomes.

4.3 .1  T h e M in im u m  Sp ann ing  Tree

A weighted graph, also known as a network is a graph whose lines are weighted. The 

meaning of the weights depends on the application. For example, an airline might use 

a weighted graph to represent the routes between cities that it serves. In this example, 

the vertices represent the cities and the edges represent a route between two cities. 

The weight of the edge could represent the flight distance or the price of the flight 

between the two cities. The weight information, in this case, can be stored as the 

intersection value in an adjacency matrix. The representation of a simple network in 

adjacency matrix is shown in Figure 4.1.

A spanning tree is a tree tha t contains all of the vertices in the graph. The network
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0 6 3 0 0 0

6 0 2 5 0 0

3 2 0 3 4 0

0 5 3 0 2 3

0 0 4 2 0 5

0 0 0 3 5 0

Figure 4.1: A simple network represented by a weighted graph and an adjacency 
matrix

shown in Figure 4.1 is also a spanning tree of the adjacency matrix.

Interesting algorithms, such as Kruskal’s algorithm [47] and Prim ’s algorithm [63], 

derive the m inim um  spanning tree of a weighted graph such tha t the sum of its 

weights are guaranteed to be minimal. If the weights in the graph are unique, then 

there will be only one minimum spanning tree. Otherwise, there may be one or 

more minimum spanning trees. To create a minimum spanning tree in a strongly 

connected network, that is, in a weighted graph in which there is a path between 

any two vertices, the edges for the minimum spanning tree are chosen so that the 

following properties exist:

1. Every vertex is included.

2. The total edge weight of the spanning tree is the minimum possible that includes 

a path between any two vertices.

Figure 4.2 demonstrates how the spanning tree shown in Figure 4.1 is developed 

into a minimum spanning tree.

Similarly, in multiple gene order alignment, a precedence matrix is built for each
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genome sequence. The intersection values interpret the relative positions of different 

genes tha t reside in the same genome, the details of which is described in the next 

section.

T h e  original sp a n n in g  tree

0
(a) I n se r t  f i rs t  ver tex (b)  I n s e r t  e g d e  AC

(d) In se r t  e d g e  CD

(c )  I n s e r t  e d g e  BC

(e)  In se r t  e d g e  D E

(f)  I n s e r t  e d g e  D F
(g) T h e  final  m in im um  s p a n n in g  tree

Figure 4.2; A simple network represented by a weighted graph and an adjacency 
matrix

50



4 .3 .2  A n  E xam ple

This algorithm is based on precedence distance and contrasts with breakpoint or re­

versal distances. Consider the following three gene sequences:

a) 1 4 6 7 5 3 2

b) 1 4 6 5 7 2 3

c) 1 4 5 7 6 2 3

A gene order alignment of these sequences would like to be obtained. For this 

purpose a precedence matrix for each sequence is calculated. For the first sequence 

(a), its precedence matrix is:

1 4 6 7 5 3 2

1 0 -1 -2 -3 -4 -5 -6

4 1 0 -1 -2 -3 -4 -5

6 2 1 0 -1 -2 -3 -4

7 3 2 1 0 -1 -2 -3

5 4 3 2 1 0 -1 -2

3 5 4 3 2 1 0 -1

2 6 5 4 3 2 1 0

In the matrix, each cell (i, j) has a corresponding value n, which specifies the 

distance between genes i and j in the same genome, and is distinguished by positive 

direction and negative direction. Positive n specifies gene i (the row list) recedes n 

positions from gene j (the column list) ; negative n specifies gene i precedes gene j by 

n positions; 0 simply shows gene i and gene j are the same.

The precedence matrix for the genome (b) is displayed as following:
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1 4 6 5 7 2 3

1 0 -1 -2 -3 -4 -5 -6

4 1 0 -1 -2 -3 -4 -5

6 2 1 0 -1 -2 -3 -4

5 3 2 1 0 -1 -2 -3

7 4 3 2 1 0 -1 -2

2 5 4 3 2 1 0 -1

3 6 5 4 3 2 1 0

Similarly, one can compute the precedence matrix for the third sequence (c)

1 4 5 7 6 2 3

1 0 -1 -2 -3 -4 -5 -6

4 1 0 -1 -2 -3 -4 -5

5 2 1 0 -1 -2 -3 -4

7 3 2 1 0 -1 -2 -3

6 4 3 2 1 0 -1 -2

2 5 4 3 2 1 0 -1

3 6 5 4 3 2 1 0

Next, these three matrices are merged by adding corresponding values of (i, j) 

together to obtain the summarized matrix that results in the final alignment. For 

example, to calculate the value for cell (4,5) for the final matrix, which is in fact the 

distance between gene 4 and gene 5, the values of correspondent cell (4,5) in the three 

matrices are added up, i.e. (-3)+ (-2) +  (-1). The value corresponding to cell (4,5) 

will then be -6.

The finally merged matrix is shown as following:
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1 2 3 4 5 6 7

1 0 -16 -17 -3 -9 -8 -10

2 16 0 -1 -13 7 8 6

3 17 1 0 14 8 9 7

4 3 -13 -14 0 -6 -5 -7

5 9 -7 -8 6 0 1 -1

6 8 -8 -9 5 -1 0 -2

7 10 -6 -7 7 1 2 0

Number 0 in the matrix does not necessarily represent two identical genes i and j 

now, as the addition operation is involved. Moreover, the resulted matrix is diagonally 

symmetric, thus only half of it needs to be calculated and the calculation for the other 

half is about copying the symmetric value and in the meantime, flipping the negative 

or positive sign accordingly. The merged matrix gives a precedence matrix from 

aligning the three sequences. If the aligned sequence can be reconstructed from this 

matrix, then the resulted multiple alignment for the three sequences will thus be 

obtained.

Figure 4.3; The minimum spanning tree built from the precedence matrix of sequence
(a)
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Taking a look at the precedence matrix corresponding to sequence (a), one can 

realize tha t traversing the vertices of the m inim um  spanning tree for this matrix 

will be 1,4,6,7,5,3,2 which represents exactly the original sequence (a) (Figure 4.3). 

The same thing happens for sequence (b) and (c) as well. In the ideal case, a directed 

graph is constructed, where each gene or gene block is a vertex, and edges represent 

distances between genes and gene blocks. A correct assembly of the original sequence 

is then constructed through this graph by pre-order traversing the minimum spanning 

tree of a precedence matrix of a genome sequence.

When coming to find out the consensus or ancestor of these three sequences, the 

same minimum tree traversal technique applies: calculating the minimum spanning 

tree for the final merged matrix, then the pre-order traversal of this tree will give the 

final aligned consensus sequence, or called the ancestor sequence for all (Figure 4.4).

The consensus sequence of sequence (a), (b), and (c) is: 1 4 6 5 7 2 3

Figure 4.4: The minimum spanning tree built from the summarized final precedence 
matrix

4 .3 .3  A lgorith m  F orm alization

Sequence alignment and gene order alignment consist of different operations. Se­

quence alignment is about aligning individual characters, and thus insertion and dele­
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tion are involved. Gene order alignment cares more about gene order arrangement 

than words matching, and does not allow any change or modification applied to the 

current genes themselves. Another key difference between sequence comparison and 

gene order comparison is that in the former, gaps are introduced as required, whereas 

in the latter, the rearrangement of gene orders does not allow the insertion of gaps. 

Figure 4.5 shows the flow of the algorithm.

SI S2 S3 S4

Sum

M inim al  Span n in g  T re e

J ^ ^ ra v e rs e

C o n s e n s u s  G e n o m e  S e q u e n c e

Figure 4.5; Illustrating the steps of the precedence graph-based consensus algorithm 
for genome sequence alignment

Based on a summarized precedence matrix for a set of genome sequences, a con­

sensus genome sequence is constructed by building a minimum spanning tree through 

the matrix. The tree is traversed, trying to follow edges so tha t the vertices along 

the path are consistent with a subset of the genes at corresponding positions of the
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sequences.

The algorithm takes as parameters all the genome sequences to be aligned. They 

will be used to build their own precedence matrix respectively. Assume there are n 

genome sequences, then n precedence matrix will be built accordingly for each of the 

sequences.

Building the final consensus matrix, the algorithm starts out by filling the first 

row and first column of the matrix with the union set of the genes appeared in all 

the sequences in sorted ascending order. The rest of the cells of the matrix will then 

be filled with the summarized value from the corresponding cells of the sequence 

matrices.

Then, the algorithm constructs a minimum spanning tree for the summarized ma­

trix. Each time it picks the edge(s) in positive or negative direction with the possible 

minimum abstract value. By pre-order traversing the tree, a consensus sequence will 

be obtained, which is also the final alignment for all the sequences. Note tha t a 

slightly different final aligned sequence will be obtained depending on whether the 

tree is traversed in an increasing or decreasing order for each vertex of sub trees from 

right to left. Figure 4.6 shows an example for different final alignments obtained by 

different traversal orders.

Many algorithms and methods that have been widely used for current multiple 

genome sequence alignment. However, problems like repeated genes in the same 

sequence, different sequence containing different kinds of genes, and different sequence 

with different number of genes, are not considered in most of the current genome 

alignment software, such as GRIMM [92].

The graph-based consensus algorithm, a completely different approach from the 

existent anchor-based genome alignment algorithms and methods, can be used to 

align unsigned multiple genomes with some or all of the following properties:

•  Genomes contain repeated genes
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T ra v e r s in g  the a b o v e  t ree  in d e c re a s in g  p re -o rd e r ,  obtain: 
1, 4, 6, 7, 9, 8, 5, 3, 2, 10

In s te a d ,  t r a c e r s in g  it in in creas ing  p re -o rd e r ,  obtain:
1, 4, 6, 7, 8, 3, 2, 10, 5, 9

Figure 4.6: An example showing how to obtain different final alignments by traversing 
the minimum spanning tree in different orders

• Genomes are of different length

•  Genomes consist of different kinds of genes

However, at this stage, the algorithm is at its early stage of evolution, and does 

not give any suggestions for aligning signed genome sequences. For example, the two 

orientations i and -i of gene i are treated as two completely different genes regardless 

of the fact that one is the reversal of the other. Besides, the algorithm now does not 

automatically change the sign of gene -i or i during the alignment. Gene -i and i will 

retain their original signs throughont the alignment process.
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4.4 Parallelism  of th e A lgorithm

The graph-based algorithm for multiple gene order alignment is straightforward, sim­

ple and easy to perform, and contains four steps:

1. Calculate an initial precedence matrix for each individual genome sequence.

2. Summarize the individual matrices and get the final matrix for consensus se­

quence.

3. Build a minimum spanning tree in terms of the final matrix.

4. Traverse the minimum spanning tree to get the consensus sequence.

The step tha t can be performed in parallel is the first step where the initial 

precedence matrix calculation for each genome sequence is independent of each other. 

This step would become the most time-consuming part of the algorithm if the number 

of genome sequences is fairly large and the computation is performed sequentially. In 

another words, simultaneously calculating the initial precedence matrices for all the 

sequences will tremendously reduce the computation time and increase the speed.

4.5 Evaluations and Com parisons

To the best of our knowledge, there is not yet a standard reference database used 

as benchmark for multiple gene order (or genome) alignment. But there are still 

ways available for evaluating the sensitivity or accuracy of an alignment generated by 

certain algorithms or software.

4.5 .1  E va lu ation  w ith o u t a R eferen ce a lignm ent

W ithont a correct alignment of the multiple genomes, an alignment calculated by any 

algorithm or method cannot be evaluated for accuracy. In fact, no manually generated 

multiple alignment benchmark data sets account for genome-scale evolutionary events
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such as inversion, rearrangement, and horizontal transfer. Despite the lack of correct 

alignments, the alignment accuracy can be estimated by modeling evolution and 

aligning simulated data sets.

The inferential power yielded by evaluating alignment accuracy using simulated 

evolution is only as strong as the degree to which the simulation faithfully represents 

the actual evolutionary processes that governed the history of the genomes under 

study. In order to be able to evaluate a genome alignment, at lease a simplistic model 

of genome evolution needs to be constructed, which captures the major types, pat­

terns, and frequencies of events in the history of the related genomes. Building such 

a genome evolution model involves many complex elements, such as a rooted phylo­

genetic tree, an ancestral sequence, evolved sequences, regions conserved throughout 

the simulated evolution. To effectively represent genome evolution, the simulation 

must include nucleotide substitutions and indels (insertion and deletion) in addition 

to genome-scale events such as horizontal transfer, inversion, and rearrangement.

4.5 .2  E va lu ation  aga in st a R eferen ce a lignm ent

Due to the complexity involved in evaluating genomes without a reference alignment, 

current evaluations are mostly done with a reference alignment based on what is 

available. There are two main schemes for comparing a proposed multiple genome 

alignment to a reference multiple genome alignment: the gene score and the sum-of- 

pairs score (different to the SP score mentioned in the previous section).

It is well known tha t pairwise alignment optimize residue exchange scores and gap 

penalties. Extending the pairwise sequence scores to get a single score for a multiple 

alignment would be an obvious way of scoring multiple alignments. This is referred 

to as the Sum -of-Pairs (SP) score for alignment, which is used widely by multiple 

sequence a lig n m en t. T h e  sum-of-pairs (S P ) is a  com m on scoring  schem e, w here  th e  

score of each pair of sequences of the multiple alignment is added up to form the 

overall score. The higher the SP-score is, the better the multiple alignment is. For 

example, assume there are 4 sequences SI, S2, S3, S4. The sum-of-pairs score of the
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alignment for all the 4 sequences is:

SP(S1, S2, S3, 84) =  score(Sl, 82) +  score(Sl, S3) +score(Sl, S4) +  score(S2, 

S3) +  score (S2, S4) +  score(S3, S4)

The gene score of a multiple genome alignment (MGA) is calculated by comparing 

the alignment genes of the proposed MGA with those in the corresponding reference 

MGA, and only those identical ones will be taken as correct ones. This is a more 

salient measure than the sum-of-pairs scores, where over all observed aligned gene 

pairs in a reference MGA, the fraction of those observed in the corresponding target 

MGA is compiled. Whereas, a single misaligned sequence can zero the gene score, 

the SP score only gradually goes down with more misaligned sequences. Note that 

the SP scoring system here involves two MGAs, and is therefore different than the 

previously mentioned SP scoring system for a single MGA without a reference.

As for the reference alignment, currently, there are quite a few multiple genome 

alignment software that is available online or free for downloading, such as Mauve

[94], MGA [95], M-GGAT [96], GRIMM [92], GHAINER [91], and MALGEN(2.0)

[93].

4.6 V alidation

As mentioned above, the evaluation of multiple gene order (genome) alignment could 

be done with or without a reference alignment. Due to the complexity of evaluation 

without a reference alignment, most of the contemporary validations are done with a 

reference alignment. Since this algorithm is at its early stage of evolution and does 

not automatically change the signs of the genes, or in another words, does not con­

sider the self-reversal of the genes, genes will retain their original signs throughout the 

alignment process. As a result, it would not be very ideal to evaluate the accuracy of 

the graph-based consensus algorithm using any reference alignments tha t are gener-
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ated by various anchor-based algorithms that have taken the genes’ self-reversal into 

consideration. Some heuristics and modifications need to be applied to this algorithm 

to automatically take genes’ self-reversal into consideration, and thus make it more 

reasonable to be compared with any other reference alignments.

Fortunately, based on this work Pringle et al. [62] extended the graph-based 

approach proposed in this thesis and developed a more advanced precedence graph- 

based consensus approach and parallelized it utilizing the Message Passing Interface 

System. In order to accommodate for the self-reversal, insertion and deletion cases, 

a presence matrix has been added to our approach, which basically keeps track of 

the number of contributions that have been made to a particular gene pair distance. 

Pringle et al. also took weight distances into consideration by applying a weight 

function to the cells of precedence matrix based on the count and the distance sum of a 

particular gene pair, and penalizing precedence cells tha t do not have full participation 

from all gene orders being aligned.

In the evaluation of [62], two metrics were considered, the timing of the program 

and accuracy of the results it produces. The program was timed and the accuracy 

of a particular gene order arrangement was determine from the average percentage 

displacement between genes in the gene alignment and gene in the proper result. As 

well, the presence or absence of genes was considered between the final and alignment 

in the accuracy tests.

Pringle et al. shows that there is a linear relation between the timing of the utility 

and the number of genomes being considered by our proposed graph-based method. 

In the mean time, there is a polynomial relation between the size of the genomes and 

the program timing which is what was expected from the time complexity analysis.

Pringle et al. also showed that the accuracy of the results obtained by our proposed 

approach seemed to remain constant when switching between the original precedence 

system, the weighted system and the weighted penalty system. The accuracy of the 

results seems to indicate that our graph-based approach can handle deletions and 

inversions quite well.
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4.7 C onclusion

Precedence gene order alignment is a promising approach to genome alignment that 

offers a below exponential solutions to the problem. The research in multiple sequence 

analysis can be compared to the developments in the study of canonical word order in 

linguistics [34] [66]. The multiple gene order analysis can be compared with a level of 

analysis in linguistics where the focus is on diachronic change in structure and syntax 

rather than lexicon. The precedence graph-based consensus algorithm for calculating 

a multiple alignment for gene orders is a linguistically motivated approach in the 

area of multiple genome alignment, which is completely different from the existing 

anchor-based alignment algorithms and methods. The core of the algorithm is that 

pre-order traversing the minimum spanning tree of a precedence matrix of a genome 

sequence constructs the original sequence. The advantage of this method is partly 

efficiency, since it computes the final alignment by computing a minimum spanning 

tree from a two-dimensional matrix and finding a path through the minimum spanning 

tree, which is computable in n^ time, while computing the final alignment from the 

anchored-based approaches for the unsigned genome, the complexity is more than 

polynomial. However, This original method of precedence calculation is valid in the 

cases of translocation and reversal mutations between gene orders and a common 

ancestor but in the case of deletions or insertions it can cause a false minimal edge 

in the precedence matrix which could have ill effects on the result of the alignment.
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Chapter 5

D iscussion and Future D irections

This thesis focused on improving the computational speed of the multiple biologi­

cal sequence alignment, including aligning characters (for DNA, RNA and protein 

sequences) and aligning gene orders (for genome sequences) in computational molec­

ular biology. Some issues related to multiple alignment accuracy and evaluation were 

also introduced and discussed.

Sequence alignment deals with comparing different DNA or different protein se­

quences. This is done by writing one on top of the other padding them with spaces 

( “indel” , for insertion or deletion) to achieve identical length. In DNA, the crite­

rion to distinguish among the many possibilities of this arrangement is the number 

of unequal letters ending up on top of each other minus the number of spaces that 

were introduced. For protein sequence comparison the pairs of matched letters are 

weighted and the adjacent spaces are summarized into blocks which receive a penalty.

Alignments may be performed on a pairwise basis, across multiple sequences or 

they can involve the alignment of a sequence to a previously aligned set of sequences 

(sometimes called a profile). The information exhibited by a multiple sequence align­

m en t allow s th e  d e d u c tio n  of p u ta t iv e  s t ru c tu ra l  a n d  fu n c tio n a l features. Through 

a reliable multiple sequence alignment of a set of homologous sequences, the evolu­

tionary pathway, corresponding to mutations as well as insertions and deletions of 

sequence fragments, can often be traced under the model of divergent evolution.

63



Based on the mixed idea of Progressive alignment and Divide-and-conquer align­

ment, two different multithreaded multiple sequence alignment programs, depending 

on how the guide tree(s) would be applied, were implemented for checking the im­

provements of alignment speed and sensitivity. The single-tree alignment built a 

uniform guide tree for the full-length sequences at the beginning, which were used by 

all the sub-alignments as the guide tree. In the multiple-tree alignment, sequences 

were firstly cut into pieces and these sub-sequences built their own guide trees to guide 

their individual alignments. Multiple-tree alignment seemed having a better speedup 

performance than the single tree alignment, but neither of them, at this stage, showed 

ideal sensitivity results as the number of threads increases. Therefore, some heuristic 

methods for fixing the cut points were suggested for future improvement, such as 

overlapping alignment and sliding window alignment.

Gene order alignment is a larger-scale sequence alignment. The key difference be­

tween gene order analysis and sequence analysis is that sequence analysis is at the gene 

level (i.e. individual character mutations), and gene order analysis is at the chromo­

some or genome level (i.e. gene order mutations). High-throughput DNA sequencing 

technology has enabled researchers to rapidly determine the genome sequences of a 

wide variety of organisms, laying the fonndation for comparative genomics [15]. Gene 

order analysis, sometimes called Genome sequence analysis, help scientists make sense 

of diverse elements in the genome, understanding how they are organized within the 

genome of each species, and characterizing the changes in genome organization dur­

ing evolution. Comparative genomics plays an important role in making inferences 

and gathering information specific to the evolution of a species or genetics diseases. 

It provides insights to important tasks such as identifying regions of homogeneity or 

regions of genetic anomalies. The research in multiple gene rearrangement has been 

the basis for development of algorithms for multiple gene order alignment [22].

There are similar complexity problems with multiple gene order alignment (or 

referred as multiple genome alignment) algorithms. Besides, the existing anchor- 

based gene order alignment algorithms and methods lack the parallelism properties for
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computational speedup. As a result, a precedence graph-based consensus algorithm 

was formalized for aligning two or more genome sequences, which is very original, 

and was able to efficiently obtain the ancestor genome sequence for multiple genome 

sequences. The algorithm argues for a potentially simpler approach for multiple gene 

order alignment based on a notion of precedence derived from the canonical word 

order studies in linguistics. This algorithm also possesses the parallelism properties 

to be implemented in parallel for further speed improvement. However, at the current 

stage, this algorithm does not consider the self-reversal of genes during the alignment 

process, and thus some improvement and extension of this work needs to be done in 

the future.

5.1 C ontribution

In this thesis, two levels of parallelism are considered for multiple biological sequence 

alignments to accelerate the alignment processes: one is at the sequence level (aligning 

the characters in a DNA, RNA or protein sequence), the other one is at the gene 

order level (aligning the gene orders for a genome sequence). To the best of our 

knowledge, it is a novel algorithm to progressively align the same set of multiple 

sequences in parallel by building different number of phylogenetic guide trees. In the 

meantime, the precedence based gene order alignment approach is a promising first 

step in non-exponential gene order approaches. Its timing was shown to have a cubic 

time complexity and the approach overall was shown to have a high to moderate 

accuracy range. Other than anchor-based algorithms and methods, it is the first time 

that a graph algorithm was developed for multiple genome (gene order) alignment. 

Briefly, the contribution can be summarized as the following:

• Sequence level: multithreaded techniques together with different tree-building 

techniques was deployed specifically for the multiple alignment of extremely 

long sequences. It turns out tha t the multiple-tree alignment program achieves 

seven times faster than the sequential program where one thread was used.
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• Gene order level: opposed to the existing complex anchor-based algorithms and 

methods for handling gene order alignments that lack parallelism properties 

and cannot handle gene insertion, deletion, and duplications, a simpler and 

novice precedence graph-based consensus algorithm tha t can be parallelized is 

formalized to speed up the alignment process, which is also able to handle gene 

insertion, deletion, and duplications.

5.2 Future D irections

5.2.1 M u ltip le  Sequence A lign m en t

The multiple-tree and single-tree alignment implementations described in this thesis 

presented ideal efficiency improvement for multiple sequence alignment. The opti­

mal multi-threaded approach is with two threads, where the alignment sensitivity 

is retained and the speed is increased by saving half of the alignment time. How­

ever, neither of the multiple-tree implementation nor the single-tree implementation 

shows very satisfying sensitivity results as the number of threads increases. There­

fore, improving their computation efficiency and in the meantime maintaining their 

sensitivity performance is still an issue. The Following three ways could be considered 

and investigated in the future.

1. Firstly, some more effective calculations should be found and performed to 

decide the cut points.

2. Secondly, weights could be considered and given to the sequences: down weight­

ing the sequences that are very similar to other ones in the data set and up 

weighting the most divergent sequences. The weights could be calculated di­

rectly from the branch lengths in the initial guide tree and the guide tree guides 

all the subsequent alignments.

3. Thirdly, affine gap penalties and varying substitution matrices may be applied 

dynamically in the progressive alignment.
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5.2 .2  M u ltip le  G ene O rder A lign m en t

The original method proposed in this thesis for determining precedence simply uses 

the sum of relative positions of gene pairs across all gene orders to determine that 

gene orders precedence value in the final precedence matrix. Though Pringle et al.

[62] has made a considerate contribution to it, there is still a lot of room for improving 

its performance, such as:

1. Modifying the algorithm and making it be able to consider the self-reversal of 

genes during alignment process. Some heuristics may be applied.

2. Clarifying the ways for minimum spanning tree traversal: whether increasing 

pre-order traversal or decreasing pre-order traversal gives a better result.

3. Evaluating its alignment results against the reference alignments generated by 

other approaches.

4. Developing a parallelized version of this algorithm for arbitrary number of 

genome sequences and making it publicly available.

5. Currently this metric does not handle insertions that well so future implemen­

tations may better utilize the presence matrix to increase its overall accuracy 

in the case of insertion mutations.
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