
Parallelism In M ultip le Sequence
A lignm ent

Qiong Bai

B. Sc., Simon Fraser University, 2003

Thesis Submitted In Partial Fulfillment Of

The Requirements For The Degree Of

Master Of Science

in

Mathematical, Computer, and Physical Sciences

(Computer Science)

The University Of Northern British Columbia

February 2006

0 Qiong Bai, 2006

1^1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-28349-3
Our file Notre référence
ISBN: 978-0-494-28349-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Aligning multiple sequences is a daunting task that can be extremely de­

manding on computer power and memory resources. By comparing the ho­

mologues sequences from different species of animals, one can draw inferences

about the evolution of these species from their common ancestors. This thesis

applied shared memory parallel processing techniques to the global alignment

of multiple DNA and protein sequences, as well as gene orders. The multi­

threaded method deployed for multiple DNA and protein sequence alignment

was based on the divide-and-conquer technique, which firstly cut the sequences

into sub-sequences, but it is computational expensive to find the optimal cut

positions. Since speed performance is the focus of this thesis, we did not con­

sider the optimal cut positions in our implementations. Meanwhile, an original

and promising graph-based algorithm with parallel processing properties was

introduced to simplify and speed up the alignment operations for multiple gene

orders.

Contents

A b s tra c t.. ii

C on ten ts .. iii

List of F igures.. vii

List of T a b le s .. viii

Publications from this T h e s i s .. ix

Acknowledgments.. x

1 Introduction 1

1.1 Biological Background for Sequence A nalysis ... 1

1.1.1 Biological S eq u en ce s ... 1

1.1.2 Phylogenetic T r e e s ... 4

1.1.3 Gene O rd ers .. 6

1.2 Why Sequence Analysis ... 7

1.3 Why Parallelizing Multiple A lignm en ts ... 9

1.4 Thesis Organization... 11

2 A lgorithm s and R elated Work 13

2.1 Pairwise Sequence A lignm ents.. 13

2.1.1 Dynamic Programming A lg o rith m s... 14

2.2 Multiple Sequence Alignment .. 16

2.2.1 Exact A lgorithm s.. 17

2.2.2 Divide-and-Conquer A lignm ents.. 18

2.2.3 Progressive A lig n m e n t.. 20

111

2.2.4 Iterative Algorithms .. 23

2.2.5 Parallelized Multiple Sequence Alignment 23

2.3 Multiple Gene Order A lignm ent... 25

2.3.1 Multiple Gene Order Alignments ... 25

2.3.2 Representation of a g e n o m e ... 26

2.3.3 Genome R earran g em en t... 27

2.3.4 Rearrangement Distances .. 28

2.3.5 Algorithms and M eth o d s... 30

2.4 Conclusion.. 34

3 M ultithreaded M ultiple Sequence A lignm ent 35

3.1 Complexity A n a ly s is ... 35

3.2 Evaluations and C om p ariso n s.. 36

3.3 Research P rob lem ... 37

3.4 Approaches and S im ulations.. 38

3.4.1 Single-Tree A lig n m e n t.. 39

3.4.2 Multiple-Tree A lignm ent... 40

3.4.3 Speed P erfo rm ance... 40

3.4.4 Alignment Sensitivity.. 41

3.5 Sensitivity Improvem ents.. 43

3.5.1 Overlapping A lignm ent.. 43

3.5.2 Sliding Windows for Cut Points C alculations............................. 44

3.6 C onclusions ... 45

4 Graph-based Consensus M ultiple G ene Order A lignm ent 46

4.1 Complexity A n a ly s is ... 46

4.2 R a tio n a le for G ra p h T h e o r y ... 47

4.3 The Precedence Graph-Based Consensus A lg o rith m 48

4.3.1 The Minimum Spanning T r e e ... 48

4.3.2 An E xam ple .. 51

IV

4.3.3 Algorithm Form alization... 54

4.4 Parallelism of the A lgorithm ... 58

4.5 Evaluations and C om p ariso n s.. 58

4.5.1 Evaluation without a Reference a l ig n m e n t.................................. 58

4.5.2 Evaluation against a Reference alignm ent..................................... 59

4.6 V alid a tio n ... 60

4.7 Conclusion.. 62

5 D iscussion and Future D irections 63

5.1 C ontribution.. 65

5.2 Future D irec tio n s .. 66

5.2.1 Multiple Sequence A lig n m e n t... 66

5.2.2 Multiple Gene Order A lignm ent... 67

Bibliography 68

List of Figures

1.1 An example of single strand DNA seq u en ces... 2

1.2 A protein example: a goose hemoglobin protein known as “HAGSI” . 2

1.3 A phylogenetic tree for some warbler sp e c ie s ... 4

1.4 A phylogenetic tree built for five a n im a ls .. 6

1.5 The transformation of the mouse gene order into the human gene order

on the X chromosome: only the 6 longest syntency blocks are shown

here ... 8

2.1 Alignment examples of Needleman-Wunsch a lg o rith m 15

2.2 A sample alignment of three seq u en ce s ... 17

2.3 Illustrating the search space with the divide-and-conquer technique . 19

2.4 Demonstrating the 3-step progressive alignment by C lu sta lW 20

2.5 Mouse vs. Human: different X chromosome gene o r d e r 27

2.6 Examples for breakpoints: “-> ” means ascending order; “<-” means

descending order; a single gene can be represented by either “-> ” or

... 29

3.1 Divide-and-conquer te c h n iq u e ... 38

3.2 Details of single-tree alignment .. 40

3.3 D e ta ils of m u ltip le -tre e a l i g n m e n t ... 41

3.4 Speed improvement for single-tree and multiple-tree implementations

in terms of different number of th r e a d s ... 42

VI

3.5 SP-scores for single-tree and multiple-tree implementations with re­

spect to different number of th re a d s ... 43

3.6 Illustrating the sliding window technique for improving alignment ac­

curacy ... 44

4.1 A simple network represented by a weighted graph and an adjacency

m a t r ix ... 49

4.2 A simple network represented by a weighted graph and an adjacency

m a t r ix ... 50

4.3 The minimum spanning tree built from the precedence matrix of se­

quence (a) ... 53

4.4 The minimum spanning tree built from the summarized final prece­

dence matrix .. 54

4.5 Illustrating the steps of the precedence graph-based consensus algo­

rithm for genome sequence a lig n m en t.. 55

4.6 An example showing how to obtain different final alignments by travers­

ing the minimum spanning tree in different o rd e r s 57

VII

List of Tables

1.1 The twenty amino acids found in proteins

V ll l

P ublications from th is Thesis

[1] “Multithreaded Multiple Sequence Alignments” , Joanne Bai, Siamak Rezaei.

The Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th

Annual Conference, Shanghai, China, September 1-4, 2005.

[2] “Multiple Gene Order Alignmen” , Siamak Rezaei, Joanne Bai. The Proceedings

of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference,

Shanghai, China, September 1-4, 2005.

IX

A cknow ledgm ents

I would like to express my gratitude to all those who have given the support to

complete this thesis.

I am greatly indebted to my supervisor, Dr. Siamak Rezaei, for kindly providing

suggestions and encouragement which helped me in all the time of research and writing

of this thesis. His comments have been of greatest help at all times.

My gratitude also goes to my supervision commettee members Dr. Liang Chen

and Dr. Cecilia Alstrom-Rapaport, for their suggestions and encouragement that led

to substantial improvements of this thesis.

I would also like to thank the external examiner Dr. Alan Wagner for reviewing

this thesis and monitoring the work with his valuable suggestions.

I thank the Dean of Graduate Studies Dr. Robert Tait, the secretaries of the

Dean of Graduate Studies Ms. Bethany Haffner and Ms. Trinity Posteraro for having

always been so supportive.

I thank Pruthvi, Kouhyar, Abbie, Jeremy, and Sean for their nice company and

suggestions during my education.

Lastly, but most importantly I am very grateful for the love and support of my

parents Fan Bai and Yufen Chen, who have been always encouraging me to fulfill my

dreams.

Chapter 1

Introduction

The focus of this thesis is the alignment of multiple biological sequences, including

gene sequences (i.e. DNA and RNA), protein sequences, and genome sequences (a

list of ordered gene blocks). In order to distinguish these two levels of sequences,

DNA, RNA and protein sequences will be referred to as normal ‘sequence’, while the

genome sequences will sometimes be referred to as ‘gene orders’ in this thesis.

1.1 B iological Background for Sequence A nalysis

1.1.1 B io log ica l Sequences

DNA (Deoxyribonucleic Acid) is a nucleic acid tha t carries the genetic information

in the cell and is capable of self-replication and synthesis of RNA (Ribonucleic Acid).

DNA consists of two long chains of nucleotides twisted into a double helix and joined

by hydrogen bonds between the complementary bases A and T or C and G. The

sequence of nucleotides determines individual hereditary characteristics. RNA is a

very similar polymer. It is usually a single-stranded chain of alternating phosphate

and ribose units with the bases A, U, G, G bonded to the ribose. The structure and

base sequence of RNA are determinants of protein synthesis and the transmission of

genetic information. Figure 1.1 shows a simple example of DNA sequences.

> A Single S t ra n d D N A S e q u e n c e

A T T T C G T G C A T A T C T G A C G T T A G G A C C A C G T

Figure 1.1; An example of single strand DNA sequences

The fundamental building blocks of life are proteins. Twenty different amino

acids are commonly found in proteins, and each protein has a unique, genetically

defined amino acid sequence. They serve as enzymes, structural elements, hormones,

immunoglobulins, etc., and are involved in oxygen transport, muscle contraction, elec­

tron transport, and other activities throughout the body. One of the most important

concepts in modern biology is tha t the functional properties of proteins is determined

largely by the sequence of the 20 amino acids shown in Table 1.1.1 in the linear

polypeptide chain. Thus, in theory, knowing the sequence of a protein (the order

with which the amino acids occurred) one could infer its function.

W hat determines the order of amino acids in a protein? The central dogma of

Molecular Biology states the relationships between genes and proteins. It describes

that each gene in the DNA molecule carries the information needed to construct one

protein, which, acting as an enzyme, controls one chemical reaction in the cell. The

basic structure of any protein can be described by its sequence of amino acids, and the

shapes those proteins fold up into make them different from one another. However,

in this thesis, other than primary structure, the protein shapes, such as secondary

structure, tertiary structure, and quaternary structure, will not be discussed. Figure

1.2 shows an example of a protein sequence.

> H A G S I h e m o g lo b in alp ha-A cha in - b a r -h e a d e d g o o s e

V L S A A D K T N V K G V F S K IS G H A E E Y G A E T L E R M F T A Y P Q T K T Y F P H F D L Q H G S A Q I K A H G K
K V V A A L V E A V N H ID D IA G A L S K L S D L H A Q K L R V D P V N F K F L G H C F L V V V A IH H P S A L T A E V
HAS LD K F LC A V G T VLT AKYR

Figure 1.2: A protein example: a goose hemoglobin protein known as “HAGSI”

Name Three-letter Code One-letter Code
1 Alanine Ala A
2 Cysteine Cys C
3 Aspartic Acid Asp D
4 Glutamic Acid Glu E
5 Phenylalanine Phe F
6 Glycine Gly G
7 Histidine His H
8 Isoleucine He I
9 Lysine Lys K
10 Leucine Leu L
11 Methionine Met M
12 Asparagine Asn N
13 Proline Pro P
14 Glutamine Gin Q
15 Arginine Arg R
16 Serine Ser S
17 Threonine Thr T
18 Valine Val V
19 Tryptophan Trp W
20 Tyrosine Tyr Y

Table 1.1; The twenty amino acids found in proteins

1.1.2 P h y lo g en etic Trees

Biologists often use the idea of portraying graphically how extant species evolved

to reconstrnct evolutionary trees. “Phylogenetic tree” is a more technical name for

“evolutionary tree” . The sample tree shown in Figure 1.3 ̂ portrays how certain

warblers are related to one another. From this tree one can guess that at one time

there was one general, warbler-like species, and this general species evolved into at

least three different species. Each of these species further diversified into the extant

genera known as Vermivora, Seirus, and Dendroica. These three genera, in turn,

have eventually fragmented into numerous and various species recognizable today.

For example, the genus Dendroica includes more than twenty-five species.

Palm

Y e l lo w -R u m p e d
O r a n g e - C r o w n e d O ven b ird

N o r th e rn
W a te r th ru s h

M agnolia
Nashvil le

Blackpoll

T e n n e s s e e

D e n d ro ic a

V e rm iv o ra Seirus

Figure 1.3; A phylogenetic tree for some warbler species

In the past, biologists working on phylogenetic trees had to find plain evidences or

characteristics to content themselves. The more similar organisms looked, the more

closely related they were assumed to be. T hat’s often really the way it works, but also,

th is ap p ro a c h cou ld lead to som e p re t ty serious e rro rs. N ow adays, new tech n iq u es

have given us a more clear idea of what the real phylogenetic trees should look like.

For instance, with a process known as DNA hybridization, scientists can actually

^adapted from http://w w w .backyardnature.net/evotrees.h tm

http://www.backyardnature.net/evotrees.htm

determine how much genetic material that different species have in common. If a

large portion of the genetic code (i.e. DNA) of two species or two groups of species

is identical, then they are considered to be closely related. Otherwise, if only a small

portion of them is identical, then their relationship is distant.

A phylogenetic tree is constructed with extant species on the leaves (terminal

nodes), and the interior nodes representing hypothesized ancestors. Usually all inte­

rior nodes in such trees are binary. In the context of sequences, the nodes represent

sequences, and the edges (branches) represent mutations, either explicitly or by a

number indicating how many mutations have happened between the end nodes of an

edge. In a tree constructed from protein sequences or DNA sequences, an interior

node can in principle represent the same sequence as a leaf node.

Consider a set of DNA sequences 1, 2, 3, 4, 5.

Sequence 1: C A G G T A

Sequence 2: C A G A C A

Sequence 3: C G G A T G

Sequence 4: T G C G C T

Sequence 5: T G C G C A

The task is to construct a phylogenetic tree and find out which sequences are more

closely related to each other. This is the same as finding the mutations that have

occurred. A distance score will be used to reflect the number of mutations needed

from one sequence to another. For example, transforming sequence 4 into 5 needs

only 1 mutation, which occurs at the last position of sequence 4 and replaces T with

A. Therefore, th e d is ta n c e score between sequence 4 a n d sequence 5 is 1. The smaller

the distance score is, the closer the two sequences are related. Assume that if the

distance score is no less than half of the average sequence length (no less than 3 in

this case), then the two sequences won’t belong to the same subset.

1. Looking at the first column, it seems that a mutation from C to T, or from T

to C, has occurred in the past. In the mean time, check the distance scores in

Figure 1.4 and divide the 5 sequences into two subsets; 1, 2, 3 and 4, 5

2. Looking at the second column in the larger subset 1, 2, 3 there could have

been a mutation from A to G, or from G to A. Again, check the corresponding

distance scores and divide it into 2 even smaller subsets: 1, 2 and 3

3. Repeating the same thing for the smaller subset 4, 5 and their distance score

(which is 1) tells that they are closely related and may not be further divided.

Finally, we end up with a phylogenetic tree shown in Figure 1.4.

0 2 3 5 4

- 0 3 5 4

- - 0 5 5

- - - 0 1

- - - - 0 2 3 4 5

S e q u e n c e D is ta n c e Matrix T h e C o n s t r u c te d Phy logene t ic T ree

Figure 1.4: A phylogenetic tree built for five animals

1.1.3 G en e O rders

A gene o rd e r refers to th e seq u en tia l lo c a tio n of genes on a chrom osom e. A ch ro m o ­

some is defined as a sequence of genes while a genome is defined as a set of chromo­

somes. Genes of an organism are arranged in a linear order in eukaryotes. This linear

order of genes can be examined to understand the similarity between the genomes of

6

two species. A given genome may be transformed or evolved into the genome of a

different organism by a sequence of elementary rearrangement events acting on the

genes. Hannenhalli and Pevzner have shown how cabbage gene orders were trans­

formed into turnip gene orders [30] by using an efficient algorithm that performs only

three rearrangement operations.

In the early 1990s, it was found tha t there are groups of genes in mice that appear

in the same order as they do in humans. These genes are likely to be present in

the same order in a common ancestor of human and mice - the ancient mammalian

genome. The human genome appears just the mouse genome cut into about 300

large genomic fragments, called syntency blocks, which have been pasted together

in a different order. Both sequences are just two different shufflings of the ancient

mammalian genome. For example, chromosome 2 in humans is built from fragments

that are similar to mouse DNA residing on chromosomes 1, 2, 3, 5, 6, 7, 10, 11, 12, 14

and 17. Hence, a location of a gene in mice can often lead to clues about the location

of a related gene in humans.

Every genome rearrangement results in a change of gene ordering, and a series of

these rearrangements can significantly alter the genomic architecture of a species. The

study of genome rearrangements involves solving the combinatorial puzzle of finding a

series of rearrangements tha t transform one genome into another. Figure 1.5 presents

a rearrangement scenario in which the mouse X chromosome is transformed into the

human X chromosome. The elementary rearrangement event in this scenario is the

flipping of a genomic segment, and it is called a reversal or an inversion. Details will

be introduced in the next chapter.

1.2 Why Sequence Analysis

Sequence analysis is the process of making biological inferences from the known se­

quence of monomers in protein, DNA and RNA polymers. Currently, many worth-

Mouse (X chrom.)

Human (X chrom.)

Figure 1.5: The transformation of the mouse gene order into the human gene order
on the X chromosome: only the 6 longest syntency blocks are shown here

while things can be done with sequence analysis.

Regions of DNA that encode proteins are first transcribed into messenger RNA

and then translated into protein. By examining the DNA sequence alone we can

determine the sequence of amino acids that will appear in the final protein. In

translation, codons of three nucleotides determine which amino acid will be added

next in the growing protein chain. It is important then to decide which nucleotide

to start translation, and when to stop, this is called an open reading frame. Every

region of DNA has six possible reading frames, three in each of the two strands. The

reading frame tha t is used determines which amino acids will be encoded by a gene.

Typically only one reading frame is used in translating a gene in eukaryotes, and this

is often the longest open reading frame. Once the open reading frame is known the

DNA sequence can be translated into its corresponding amino acid sequence.

Sequence analysis helps to identify a protein’s primary sequence according to the

corresponding gene sequence. For example, if we need to find out where a protein

is encoded in a DNA sequence, it is very useful to know what peptides would be

encoded by all six reading frames.

Secondly, sequence analysis can be used to search databases for sequences similar

to a new sequence. If someone has just determined a sequence of an interesting bit of

DNA, one of the first questions he is likely to ask himself is “has anybody else seen

anything like this?” Fortunately, there has been a very successful international effort

to collect all the sequences people have determined in one place so tha t they can be

searched.

Thirdly, sequence analysis performs a calculation of sequence alignments for evo­

lutionary inferences and it aids in structural and functional analysis. Although it is

not possible to completely predict the function or shape (structure) of a protein from

a sequence, some useful inferences about structure and function can be drawn, by

comparing the sequence of a protein of unknown structure and function to sequences

of proteins with known structure and function. Second, the partial analysis done in

the present will help reach the goal of structure or function prediction in the future.

Third, by comparing the sequences of equivalent proteins from different species of

animals (such equivalent proteins are called “homologues”), one can draw inferences

about the evolution of these species from their common ancestors.

The third application of sequence analysis, sequence alignments, is going to be

the topic of this thesis, and this includes multiple sequence alignments, and multiple

gene order alignments.

Comparing sequences, structures, and sequences with structures is the most fun­

damental operation in biological sequence (i.e. DNA, RNA and protein) and structure

analysis. When a comparison indicates a similarity between two proteins, it can im­

mediately suggest relationships involving structure, function and the evolution of the

two protein sequences from a common ancestor protein. When one of the proteins is

well characterized in terms of structure and function, a close connection with a novel

protein sequence may allow all the hard-earned biological data to be transferred to

the new protein. The degree of certainty with which this transfer can be made de­

pends on how similar the two sequences are. The two related protein sequences are

said to be homologous, and the information are transferred by homology.

1.3 W hy Parallelizing M ultiple A lignm ents

Parallel computers are used primarily to speed up computations. A prallel algorithm

can be significantly faster than the best possible sequential solution. There is a grow­

ing number of applications in sciences, engineering, business, and medicine requiring

computing speeds tha t cannot be delivered by conventional computer. These applica­

tions involve processing huge amount of data, or perform a large number of iterations,

thus leading to inordinate running times. Parallel computation is the only approaches

known today that would make these computation feasible.

Research of genome projects generates enormous amounts of information. Re­

searchers want to access this information quickly and easily and also be able to trans­

form this information into other useful information. Researchers also want to access

cognate information, such as bibliographic or biological information associated with a

given DNA sequence. Subsequently, there is a demand for increased computer power,

both in speed and performance, and for enlarged memory capability, rapid networked

communication, and improved database design.

Multiprocessing or parallel processing in general means the use of more than

one processor or process in the computer handling of a given task. Multithreaded

programming is one of the forms for parallel processing. So, what is a thread? Think

of sewing needles as the CPUs (or Light Weighted Processes) and the threads in a

program as the fiber. If you had two needles but only one thread, it would take longer

to finish the job than if you split the thread into two and used both needles at the

same time. Taking this analogy a little further, if one needle had to sew on a button

(blocking I/O), the other needle could continue doing other useful work. If only one

needle is used there would be some extra hours for the single needle to do other useful

stuff. Moving to something more concrete, a thread is a sequence of instructions that

can be executed in parallel with other threads. They are not entire processes, but

rather lightweight threads of execution. Threads of a program are smaller portions

of a process running concurrently (or in parallel).

Multiple sequence alignment is a demanding task to automatically generate an ac­

curate alignment. An in-depth knowledge of evolutionary and structural relationships

within a species family is often lacking or hard to use. General empirical models based

on mathematically sound principles can be extremely demanding in CPU power and

memory, and are difficult to apply. For some cases, statistical heuristics have been

10

developed to be able to cope with practical data set size. Therefore, in order to reduce

the computation time and obtain useful data more efficiently it would be very ideal

if some parallelism techniques could be applied for multiple sequence analysis.

Similarly, these complexity problems also occur in the computations for multiple

gene order alignment. For instance, there are two different complexities for gene order

alignment:

• For signed reversal and translocation distance, which marks the gene positively

or negatively, the computation complexity is polynomial.

• For unsigned reversal distance, which only marks the gene positively, the com­

plexity is much more than polynomial.

Besides, the existing algorithms for gene order alignment, including breakpoint anal­

ysis and reversal distance analysis, lack the parallelism properties for computational

speedup.

1.4 Thesis O rganization

The rest of the thesis will investigate the following issues:

• Chapter 2: discusses the related work that has been done for multiple sequence

and genome (gene order) alignments, including literature reviews on alignment

methods, algorithms, and applications.

• Chapter 3: presents a multithreaded implementation for multiple sequence

alignments based on the mixed idea of Progressive alignment and Divide-and-

conquer alignment. Depending on how the guide tree(s) would be applied, two

d ifferen t ap p ro ach es a re im p lem en ted for checking th e im p ro v em en ts of align­

ment speed and sensitivity.

• Chapter 4: describes a new algorithm with parallelism properties for aligning

two or more genome sequences, which is based on a precedence graph-based

11

consensus method and able to obtain the ancestor genome sequence. In this

section, the algorithm formalization and the issues related to alignment result

evaluation are included.

• Chapter 5: concludes the thesis and talks about the future work that is going

to be involved.

12

Chapter 2

Algorithm s and R elated Work

In this chapter, algorithms and a broad range of the preceding work in multiple

sequence and gene order alignment is described. It provides an overview of the earliest

papers to the most recent development, including the approaches and applications for

multiple alignment, and the work for parallelized multiple alignment.

Sequence alignments are either global or local. Global alignments find the best

match over the total length of both sequences. In many cases, however, sequences

share only a limited region of similarity. This may be a common domain or simply

a short region of recognizable similarity. This case is dealt with by local alignment.

Local alignment aims at identifying the best pair of regions, one from each sequence,

such tha t the optimal alignment of these two regions is the best possible. In this

thesis, only global alignment will be considered and discussed.

2.1 Pairwise Sequence A lignm ents

A residue is a single unit within a polymer, such as an amino acid within a polypeptide

or p ro te in . T h is te rm reflects th e fa c t t h a t su g ars , n u c leo tides, a n d am in o acids

usually lose a few atoms (usually hydrogen and oxygen) when they are polymerised

into a larger molecule. In making an alignment, a one-to-one correspondence is set

up between the residues of the two sequences. This has the evolutionary implication

13

that at one time the paired residues were the same in an ancestral sequence and have

diverged through the accumulation of point mutations in their DNA. Point mutation

(or sometimes called substitution) is not the only process at work and extra residues

may have been inserted or deleted giving rise to breaks or gaps in the alignment.

These are referred to as insertions and deletions or, as indels.

For example, one possible alignment between the sequences

S = A G C A C A C A

T = A C A C A C T A

is Al:

A G C A C A C - A

A - C A C A C T A

Or A2:

A G - C A C A C A

A C A C A C T - A

A l contains one insertion and one deletion. A2 needs one insertion, one deletion,

and two replacements. If we assume tha t the cost for each of these one-bit operations

(insertion, deletion, replacement) is 1, then the cost of A l is 2, and the cost of A2 is

4. Therefore, A l is a better alignment than A2 as it is cost effective.

2.1 .1 D yn am ic P rogram m in g A lgorith m s

There are different types of sequence comparison algorithms using dynamic program­

ming and the corresponding parallel formulations. The first algorithm for comparing

biological sequences using the dynamic programming techniques was introduced by

Needleman and Wunsch [42] in 1970. The algorithm consists of two parts; the cal­

14

culation of the total score indicating the similarity between the two given sequence,

and the identification of the alignments tha t leads the score.

Sequence Y:

T G C A

A

X T

I A

A

G

T

-1 -2 -3 -4 -5 -6 -7

-1 \ 0 -1 -2 -3 -4 -5

-2 0 \ 0 -1 -2 -3

-3 -1
\

1 \ 1 0 -1

-4 -2 0 1 2 \ 1 0

-5 -3 -1 1 1 2 \ 2

-6 -4 -2 0 1 1 2

ALIGNMENT I:

Sequence X: A T -- A A G T
Sequence Y: A T G C A G T

Score: I 1 - 1 0 1 I I
Total: 4

ALIGNMENT 2:

Sequence X: A T A -- A G T
Sequence Y: A T G C A G T

Score: 1 1 0 - 1 1 1 1
Total: 4

Figure 2.1: Alignment examples of Needleman-Wunsch algorithm

Considering the two sequences X and Y as shown in 2.1, a similarity matrix can

be initialized with deceasing values (0, -1, -2, -3, -4,) along the first row and the

first column to parallelize the consecutive gaps(insertions and deletions). The other

elements of the matrix d[i,j] are calculated and filled by the maximum of the three

values: d[i-l,j-l], d[i-l,j], and d[i,j-l]. In another words, the value of cell d[i,j] solely

depends on the values of its 3 adjacent neighbors at the previous row, column and

diagnose positions. The similarity matrix d[n, m] is built by applying the following

recurrence equation:

d[i, j] = max (d[i, j-1] + gp, d[i-l, j-1] + ss, d[i-l, j] + gp)

In this example, gp is -1. ss is 1 if the elements match or 0 otherwise. Since

global alignment takes into account the entire sequences, the final score will always

be found in the bottom right hand corner of the matrix. In our example, the final

score 4 gives us a measure of how similar the two sequences are. Figure 2.1 shows the

similarity matrix and the two possible alignments. The two arrows going up and left

15

represent two optimal paths. Tracing an optimal path backwards leads to an optimal

alignment for two sequences.

The basic dynamic programming algorithm for making a global alignment is per­

haps the most widely used and important algorithm in bioinformatics. Variations of it

are used for local alignment and it can be extended to align more than two sequences

(multiple alignment), such as Smith-Waterman’s Algorithm, Pickett’s Algorithm [42],

and Wilbur-Lipman’s algorithm [88].

Almost all alignment methods find the best alignment between two sequences

under some scoring scheme. These scoring schemes can be as simple as '4-1 for a

match, -1 for a mismatch’. Indeed, many early sequence alignment algorithms were

described in these terms. However, since a scoring scheme to give the biologically

best score is wanted, the fact tha t biological molecules have evolutionary histories,

three-dimensional folded structures, and other features which constrain their primary

sequence evolution need to be taken into account. Therefore, in addition to the

mechanics of alignment and comparison algorithms, the scoring system can be very

complex.

2.2 M ultip le Sequence A lignm ent

A multiple sequence alignment is an alignment of two or more sequences. It is a

natural extension of two sequence alignment, called pairwise alignment. A simple

example of multiple sequence alignment is shown in figure 2.2. Sequences may be

multiply aligned to visualize the effect of evolution across homologues proteins or

DNAs. Multiple alignment makes it possible to investigate a wide range of important

biological phenomena like the following:

• Phylogenetic analysis

• Identification of conserved motifs and domains

• Structure prediction

16

S e q l : V T S I T T C G S N I G N V K W Y L P G

S e q 2 : V T S I T T C G S N I - - V N W Y L P G

S e q 3 : V S T L L L C V G Y P - - V E W E G - -

Figure 2.2; A sample alignment of three sequences

Depending on the sequences compared and the goal or application, how the com­

parison is performed will be different. For these reasons, there have been many

different kinds of algorithms and programs written to compare sequences. Consider­

ing the obvious properties of existing multiple alignment algorithms, it is convenient

to classify them in three main categories [59]: exact, progressive and iterative.

2.2.1 E xact A lgorith m s

The simultaneous alignment of all the sequences is called dynamic programming align­

ment or exact algorithm. Exact algorithms are high quality heuristics that deliver an

alignment usually very close to optimality. When solving the computational prob­

lem of multiple sequence alignment, a natural generalization is to expand the two

sequence case. The basic algorithm for the global comparison of two sequences, is to

assign a score. In the multiple sequence case, the issue of scoring becomes a little

more complex.

W ith several sequences, scores are calculated by assigning a score to each column

of the scoring matrix. The sum-of-pairs (or SP measure) is often used to calculate

values for a sequence. The sum-of-pairs function is the sum of pairwise scores of

all pairs of symbols in a given column. A k-dimensional array would be an obvious

solution for dynamic programming for the alignment of k sequences, but a standard

application of dynamic programming for multiple sequences takes exponential time.

Even with time saving measures, a multiple sequence alignment of three sequences

takes O(n^) time. As a result, only 3 or 4 sequences can be realistically used when

implementing a global dynamic programming algorithm.

Carrillo and Lipman [51] recognized a lower bound on the cost of the optimal

17

multiple sequence alignment, and presented an elegant branch-and-bound approach.

They described a technique for reducing the part of the graph (the dynamic program­

ming m atrix)that has to be examined. Only the paths that are contained in a certain

“polytope” around the shortest path are explored by their algorithm.

The MSA program [52] implemented a slightly modified version of the Carrillo and

Lipman’s algorithm. Since the bounds of Carrillo and Lipman were not sufficiently

tight for solving the “real world” multiple sequence alignment instances, Lipman et al.

proposed heuristics to improve bounds. However, the number and length of sequences

that can be aligned is limited because the number of computational steps and the

amount of memory grow exponentially with the number of sequences to be analyzed.

2.2 .2 D iv id e-an d -C on q u er A lign m en ts

In Exact algorithm, the time and space complexity grows exponentially with the

number of sequences (O (m") for equal sequence length m), and for practical solutions

of such computationally expensive problems, generally, two approaches are used;

• One approach attem pts to reduce the running time by using pruning techniques

which still guarantee finding the highest-scoring alignment, but not reducing the

worst-case complexity. Divide-and-Conquer is one example of these approaches.

• The other approach uses heuristics. This means that some ‘rules of thum b’ are

used in the solution, and the best (or correct) solution is not necessarily found.

For some of the heuristic methods it is possible to find an upper bound on the

deviation of the result from the correct one.

Divide and Conquer Alignment [79] [80] is one of the implementations based on

the Carillo and Lipman algorithm to limit computations to a small area in the multi­

dimensional search matrix. The idea of divide-and-conquer is straightforward: DCA

guesses a point in the lattice on the optimal path, splits the sequences at tha t point,

and recurses. On sequence fragments that are short enough, the exact algorithm

18

is invoked. Once all fragments are aligned, they are concatenated to yield an ap­

proximate alignment. By doing this, the search space for each sub-alignment can

be significantly reduced (as shown in Figure 2.3). This method finds the split point

at the middle way of the longest sequence, and then searches the multi-dimensional

matrix for a set of coordinates with minimal score. DCA does not take direct advan­

tage of heuristic procedures for finding the split points, such as using the presence of

strong motifs in subsets of the input sequences. In molecular biology, motif refers to

the conserved smallest group of atoms in a polymer that, when under the influence

of a rotation-translation operator, will assemble the rest of the atoms in the chain.

(a) T h e o r i g i n a l s e a r c h i n g s p a c e ; I

/ 1/4 / / 1/4 /
/4 1 4

/ / / /-wr wr
/ 1/4 / / 1/4 /

1/4

/ / / /
(b) T h e s e a r c h i n g s p a c e a f t e r d v i d e - a n d - c o n q u e r :

(1 / 4 * 1 /4 * 1 /4) * 4 = 1/ 16

0

(c) T h e d i v i d e - a n d - c o n q u e r t e c h n i q u e : T h e o r i g in a l 3 s e q u e n c e s a r e d i v i d e d
in to 2 s e t s o f s u b - s e q u e n c e s . K e e p d i v id i n g in e a c h s u b s e t a n d a l i g n i n g e a c h
i n d iv i d u a l s u b s e t . W h e n all t h e s u b - a l i g n m e n t s a r e o b t a i n e d , a s s e m b l i n g
t h e m t o g e t h e r t o f o r m t h e f i n a l g l o b a l a l i g n m e n t .

Figure 2.3: Illustrating the search space with the divide-and-conquer technique

19

General Dynamic Programming (GDP) [27] is similar to DCA. The major differ­

ence is that DCA only commits to a set of split points without considering the ge­

nomics information hiding behind the sequences, whereas GDP uses local and global

approximate alignments to generate a large number of plausible “anchor points”

aimed at the optimal path through the lattice, and progressively computes the score

moving from one anchor to the next. It has been claimed by Gracy and Sallantin [27]

that DCP successfully aligned up to 18 sequences with results superior to GlustalW

2.2 .3 P rogressive A lign m en t

Among the many strategies implemented for multiple sequence alignment, progres­

sive alignment is the most successful and by far the most widely used. The idea is to

establish an initial order (i.e. a guide tree) for joining the sequences and to follow this

order to gradually build up the alignment. The strategies depend on a progressive

assembly of the multiple alignments where sequences or alignments are added one by

one so tha t never more than two sequences are simultaneously aligned using dynamic

programming. This approach has the great advantage of speed and simplicity com­

bined with reasonable sensitivity, even if it by nature is a heuristic method that does

not guarantee any level of optimization.

The most prominent implementation for this approach is GlustalW [82], which,

together with the window graphic user interface (GUI) version GlustalX [83], belongs

to the Glustal family. Glustal [84] progressive sequence alignment includes following

three steps, which are demonstrated in Figure 2.4;

4 Sequences Guide Tree Iterative Pairwise Alignment

; r : : : : : : :
3 - > (A , A -------------------------- 4

4

Figure 2.4: Demonstrating the 3-step progressive alignment by GlustalW

20

• Step 1: Pairwise Alignment

- Aligns each sequence to each of the other sequences in the set, giving a

similarity score for each comparison. Scores of each sequence pair are

displayed in a similarity score matrix

- The pairwise alignments are done by using dynamic programming (i.e.

Needleman-Wunsch global alignment algorithm).

• Step 2; Guide Tree

- The similarity matrix is transformed into a distance matrix, and is used

by an algorithm (e.g. Neighbor-join algorithm [69] or UPGMA [54] [77]) ̂

to create a Guide Tree. The guide tree here is similar to the concepts

of the phylogenetic tree introduced in Section 1.1.2, which specifies the

relationships between sequences.

• Step 3: Progressive Alignment

- Following the guide tree, the two most similar sequences are aligned, giving

the consensus sequence. Consensus sequence is the sequence that reflects

the most common choice of base or amino acid at each position of a series

of related DNA, RNA or protein sequences. Areas of particularly good

agreement often represent conserved functional domains.

- The next sequence will be repeatedly added and aligned to the existing

new consensus sequence, until the final alignment is achieved.

^UPGMA and Neighbor-join algorithms:
* UPGM A (Unweighted Pair Group M ethod using A rithm etic averages); It works by initially

having all sequences in separate clusters and continuously joining these. The tree is constructed
by considering all initial clusters as leaf nodes in the tree, and each tim e two clusters are joined,
a node is added to the tree as the parent of the two chosen nodes. The clusters to be joined
a re ch o sen as th o se w ith m in im a l p a irw ise d is ta n c e . T h e b ra n c h le n g th s a re se t c o rre sp o n d in g
to the distance between clusters, which is calculated as the average distance between pairs of
sequences in each cluster.

* Neighbor Joining: The m ethod works very much like UPGMA. The main difference is tha t
instead of using pairwise distance, this m ethod subtracts the distance to all other nodes from
the pairwise distance.

21

ClustalW works well in alignment when sequences are closely matched to one

another, or in another words, have many positions in common. However, in cases

where the sequences are far apart from each other when pairwisely aligned, more

errors appear, and these errors are propagated to the tree construction as well as the

final results. Since the pairwise alignments are used in a greedy manner for progres­

sive alignment, the alignments formed during the progression towards the final MSA

cannot be changed any more. Thus, the difficulty with progressive alignment highly

depends upon the initial pairwise sequence alignment. T-Coffee [60] is an alignment

application tha t attempts to mitigate this shortcoming by using information from

other global and local alignments to guide the progressive alignment.

T-Coffee is currently the most reliable MSA method available [49]. The basic

philosophy is tha t instead of looking at pairs of sequences in isolation, this proce­

dure allows information to be included from all other pairwise alignments. Thus the

resulting guide tree makes the sequences to be aligned based on how well aligned

they are with respect to the rest, so that the more confidently aligned sequences are

matched up first and the least confidently aligned last. However, this method suf­

fers from exaggerating the significance of shorter residue segments tha t share high

percentage identity. As a result, although the method is beneficial for anchoring

conserved domains in an alignment of closely related sequences, it has the opposite

effect on outlier sequences tha t are usually misaligned due to the lack of a commonly

conserved segment.

In most of the current top performing progressive alignment methods, such as

Glustal series, DiAlign2 [58], POA [50], Praline [35], and T-Coffee [60], the dynamic

programming (DP) strategy is adopted. The main difference between the available

DP-based progressive methods is the way in which the information of aligned blocks of

sequences is represented. While early methods used consensus sequences to represent

alignment blocks, current methods mostly use a profile formalism to represent the

information in a MSA [76].

22

2 .2 .4 Itera tiv e A lgorith m s

Recent developments in multiple sequence alignment techniques have mainly focused

on sensitive and optimal models to represent MSA information. A class of techniques

that are able to revisit and optimize the MSA is that of iterative multiple alignment

techniques. Pioneered by Hogeweg and Hesper (1984) [36], iterative techniques de­

pend on algorithms able to produce an alignment and to refine it through a series of

cycles or iterations until no more improvements can be made.

Iterative methods for MSA can be deterministic or stochastic, depending on the

strategy used to improve the alignment. Deterministic iterative strategies are the

simplest. They extract sequences one by one from a multiple alignment and realign

them to the remaining sequences [29] [35]. This procedure is terminated when no

more improvement can be made. Stochastic iterative methods include HMM training

[33] [6], simulated annealing [45], and evolutionary computations such as genetic algo­

rithms [28] [90] and evolutionary programming [13]. The main advantage is to allow

for a good conceptual separation between the optimization processes and objective

functions (evaluation criteria). Objective function defines the aim of any optimization

procedure.

PRRP [29], SAM [39], HMMER [23], SAGA [61], and MUSCLE [24] are some of

the recent and less recent available iterative methods for multiple sequence alignment.

Some of these methods are a mixture of progressive and iterative strategies.

2.2 .5 P ara lle lized M u ltip le Sequence A lign m en t

Parallel processing, sometimes called concurrent processing contains two or more

processors that work together to perform a task. Each process is a sequential pro­

gram, namely, a sequence of statements that are executed one after another another.

Whereas a sequential program has a single thread of control, a concurrent program

has multiple threads of control.

The processes in a parallel program work together by communicating with each

23

other. Communication is programmed using shared variables or message passing.

In shared memory model, when shared variables are used, one process writes into a

variable tha t is read by another. In contrast, in message passing model, when message

passing is used, one process sends a message that is receied by another. The focus of

this thesis is on shared memory parallel algorithms.

Parallel algorithms for analyzing DNA and protein sequences are becoming in­

creasingly im portant as sequence data continues to grow. While dynamic program­

ming algorithms make large sequence alignment feasible, the quadratic time require­

ment still makes it a time-consuming process. A natnral approach is to reduce the

time requirement with the use of parallel computers.

Iyengar [5] examined the parallel characteristics of four sequence alignment al­

gorithms. The four algorithms presented were the dynamic programming algorithm

developed by Needleman, Wunsch, and Sellers (the NWS algorithm), Pickett’s algo­

rithm [42], a parallel algorithm using some of Pickett’s ideas, and an algorithm which

uses some of Wilbur and Lipman’s ideas [88] for constructing alignments which are

not always optimal. Iyengar found out tha t the NWS algorithm contains the most

properties to be parallelized but also does more work than any of the other algorithms

which were studied, and Pickett’s algorithm contains the least parallelism properties.

A shared-memory multithreaded parallel version of the Needleman-Wunsch’s Al­

gorithm [42] using dynamic programming for pairwise alignment is presented by Mar­

tins [53], which handles the data dependencies very well and performs as many opera­

tions as possible independently. Another algorithm, Berger-Munson algorithm [8] was

initially parallelized by Ishikawa et al. [40] [41] on a parallel inference machine (PIM)

using a parallel logic programming language KLl. Later, Yap et al. [89] extended

and evaluated this approach on an Intel iPSC/860 parallel computer by applying

speculative computation to the parallelization of the Berger-Munson algorithm, and

achieved a higher speedup and a more scalable implementation.

Algorithms that both retain time optimality and reduce space requirement were

first presented by Edmiston et al. [26] and further developed by Aluru et al on an IBM

24

SP-2 and a Pentium cluster [3]. Assume that n and m are the lengths of the sequences

to be pairwisely aligned. Edmiston et. al. [26] discuss parallel algorithms for sequence

and subsequence alignment tha t achieve linear speedup and can use up to min(m, n)

processors. Lander et. al. [48] discusses an implementation on a shared memory

parallel computer. These algorithms store the entire dynamic programming table.

Huang [38] presented a parallel sequence alignment algorithm which increases the

run-time to O ((m +n)^/p), which is intended for a message-passing architecture with

one-dimensional-array topology. Recently, Rajko et al. [64] claimed having developed

the first space and time optimal parallel algorithm on an IBM xSeries cluster for the

pairwise sequence alignment problem, which requires only O ((m4-n)/p) space and O

(mn/p) time, and is suitable for implementation on parallel computers.

A widely studied problem tha t is identical to a special case of the sequence align­

ment problem is string editing. Highly parallel algorithms for this problem have been

developed for the hypercube models of computation [4], [65] using almost quadratic

number of processors.

The parallel algorithms mentioned above for dynamic programming pairwise align­

ment can be extended to align more than two sequences. At present, several alignment

tools for multiple sequences are parallelized and have become available online for free

user access, such as pClustalW [14], Parallel ClustalW on 16 CPUs[55], DiAlign p [75],

Praline [46], MUSCLE-p [25], and etc. The parallelism applied in these applications

is not limited to the alignment algorithm itself, but also to the sequence processes.

2.3 M ultiple G ene Order A lignm ent

2.3 .1 M u ltip le G ene O rder A lign m en ts

Gene order alignment is another form of biological sequence alignment. If one gene

can be thought as a word, gene order then can be presented as the order of words in

the sentence. In multiple sequence alignment, the positions of residues are fixed, and

a set of DNA or protein sequences are compared with each other, whereas in multiple

25

gene order alignment, a set of blocks of genes are compared in terms of their orders

or positions.

The DNA of eukaryotes is subdivided into chromosomes. In prokaryotes, chro­

mosomal DNA is circular, and the entire genome is carried on one chromosome. A

chromosome has the self-replicating genetic structures of cells containing the cellular

DNA that bears in its nucleotide sequence, the linear array of genes. Chromosome

breakage and mistakes in repair, along with a number of other processes, give rise to

changes in gene order. These have important consequences for the cell, the organ­

ism, the population, and for the evolution of species. Figure 2.5 shows the different

X-chromosome gene orders for mice and humans. Gene order alignments will help to

provide following information:

• Aligned gene orders allow us to speculate the closest common ancestor of the

genomes.

• Gene order alignment is useful when faced with “missing link” problem where

evolutionary intermediates are not known.

• Gene order alignment information could be used across multiple genomes to

form a phylogenetic tree.

2.3 .2 R ep resen ta tion o f a genom e

A unichromosomal genome can be considered as a sequence of n genes. Let’s denote

the genes by numbers 1, 2, ..., n, and represent the two signed orientations of gene i

as i and -i. As such, a genome is represented as a signed permutation of the numbers

1, 2, ..., n. For example, a unichromosomal genome with n—5 genes is

5 -3 4 2 -1

26

3 5

3 2

3 2

1 2

2 4

5 4

1 4

3 4

M o u se

5 H um an

Figure 2.5: Mouse vs. Human: different X chromosome gene order

A multichromosomal genome consists of n genes spread over m chromosomes, ft is

represented as a signed permutation of 1, 2, ..., n, with delimiters inserted between

the chromosomes. For example, a genome with 12 genes spread over 3 chromosomes

could be written as

7-2 8 3 ;

5 9 -6 -1 12 ;

11 4 10 ;

The genome alignment being discussed here is about unichromosomal genome or

one chromosome of the multichromosomal genome. Currently, neither repeated genes,

nor the gaps arised from insertion or deletion, are considered.

2.3 .3 G en om e R earrangem en t

The algorithmic study of comparative genomics tries to explain differences in gene

orders in two or more genomes in terms of a limited number of rearrangement opera­

tions. For unichromosomal genomes, this requires the calculations of an edit distance

between two linear orders on the same set of objects, representing the ordering of

27

homologous genes in two genomes. In the “signed” version of the problem, a plus or

minus is associated with each gene, representing the direction of transcription.

Genome rearrangement operations considered here include reversal (also referred

to as inversion), transposition, and translocation [70]. Some other operations also

exist such as duplication, fusion and fission. Every study of genome rearrangement

involves solving a combinatorial “puzzle” to find a shortest series of operations that

transform one genome into another.

• Reversal; the inversion of any number of consecutive terms in the ordered set,

which also reverses the polarity of each term within the scope of the inversion

in the case of signed orders.

• Transposition: the movement of a piece of DNA around the chromosome

(from one gene to another part of the genome), usually through the function of

a transposable element. Transposition may or may not involve an inversion.

• Translocation: the rearrangement of a chromosome in which a segment is

moved from one location to another, either within the same chromosome or

to another chromosome. This is sometimes reciprocal, when one fragment is

exchanged for another.

2 .3 .4 R earrangem ent D istan ces

Literature often refers to the rearrangement events, reversal and translocation, as the

genomic sorting problem. The key question is to find the minimum number of steps

needed to transform genome A to genome B using reversal and translocation.

Breakpoint analysis

Breakpoint analysis [73] tries to minimize the breakpoint distance between two gene

order sequences. A pair of elements in two permutations forms a breakpoint if they are

consecutive in one but nonconsecutive in the other sequence, as illustrated in Figure

2,6. The breakpoint distance between two permutations is the number of breakpoints.

28

— ^ ; consecut ive ascending order

^ : consecut ive descending order

 > < —> < > < — >
0 1 2 * 7 6 5 * 8 * 4 3 * 9 1 0 * 1 3 * 1 1 1 2

i
breakpoint

Figure 2.6: Examples for breakpoints: means ascending order; means
descending order; a single gene can be represented by either or

R eversal D istance

One can also calculate the reversal distance between two genome permutations as

well. A reversal in a signed permutation is an operation tha t takes an interval in

a permutation, reverses the order of the numbers, and changes all their signs. For

example, a reversal R(i, j) applied to the permutation:

P (l), ..., P(i-l), P(i), ..., P(j), P(j+1), ..., P(n)

and gives the following permutation:

P (l), P(i-l), -P(j), -P(i), P(j+1), P(n)

By applying R(4, 8) to the following gene order:

1 2 3 4 5 6 7 8 9

One will obtain:

1 2 3 - 8 - 7 - 6 -5 -4 9

29

The reversal distance for a pair of genomes can be computed in polynomial time,

but the extension of pairwise alignment to multiple alignment using reversal distance

has faced computability problems in the past, as a result multiple alignment using

breakpoint distance has become a dominant technique for gene rearrangement.

GRAPPA[57] and MGR[9] are two applications designed for gene order analysis.

Moret and his colleagues developed GRAPPA by improving the breakpoint analysis

technique, while the MGR is based on reversal analysis.

2.3 .5 A lgorith m s and M eth od s

Observations of gene duplication and repetitive sequences are much more common

among eukaryotes than prokaryotes, while genome rearrangement can be readily ob­

served between both closely-related and divergent organisms of all types. These ad­

ditional evolutionary mechanisms distinguish the genome comparison and alignment

task from traditional sequence alignment [15].

Comparing long sequences of genomes tends to be a very computationally expen­

sive task, in terms of both time and memory. Traditional algorithms and methods

for multiple sequence alignment do not scale to genomic size. If these algorithms

were applied to genomic sequences of over a million bases, they would likely run out

of memory or run for an unreasonable long time. In the past few years, there have

been several attem pts to solve these problems. Accordingly, several new methods

and tools for genome comparison have been developed. However, most of them hold

several techniques in common. Specifically, the existing tools can be grouped into one

of two categories: iterative pairwise alignment, or anchor-based multiple alignment.

MLAGAN [12] is the most well-known tool based on iterative pairwise alignment,

which will be introduced below. The majority of the remaining tools fall into anchor-

based multiple alignment category, and almost all of these tools share very similar

algorithmic concepts.

Prom Darling et. al.’s [15] point of view, an anchor-based alignment typically

30

proceeds in three steps. First, the aligner identifies a set of local alignments in

regions of high similarity among the genomes. Next, a subset of the regions identified

in the first step are selected as alignment anchors, based on whether the tool considers

them as are part of the correct alignment. Finally, the alignment anchors are used

to restrict the number of possible alignments considered when performing an (0(n^))

gapped alignment using dynamic programming. Many tools assume that the genomes

are collinear to complete a gapped alignment. Collinear means no significant inversion

or rearrangement events took place since their divergence.

Pairwise G enom e A lignm ent

Early research into genome alignment focused on scaling traditional pairwise align­

ment methods (0(n^)) to handle much longer genome sequences. Pairwise genome

alignment tools, such as MUMer [19], GLASS [7], and WABA [44] pioneered the use

of anchoring to accelerate the alignment process.

MUMer, released in 1999, is the first software program capable of aligning whole

genomes. It combines a suffix tree, longest increasing subsequence, and Smith-

Waterman algorithms to align a pair of whole genomes.

LAGAN [10] is another pairwise whole genome alignment tool, which produces a

global alignment of two genomes in three steps. First, it finds a set of local alignments

using CHAOS algorithm [10]. Then, it chains an ordered subset of these local align­

ments to form a rough global alignment. Finally, it uses a bounded error dynamic

programming algorithm to find the best alignment within a certain distance of the

rough global alignment.

M ultiple G enom e A lignm ent

When the genomic DNA sequences of closely related organisms became available,

there was an immediate need for reliable and automatic software to align three or

more genomic sequences.

MGA ([37], 2002) was the first software tool for multiple genome alignment, which

31

is an anchor-based method that uses the same idea as the pairwise genome alignment

tools (i.e. MUMer). The MGA algorithm works as follows;

• Find a set of exact matches in terms of the calculations of MultiMEMs (Maximal

Multiple Exact Matches) [37]. A MultiMEM is an exact match that occurs in

each sequence and cannot be extended in either direction without encountering

a mismatch.

• The alignment is anchored at different subsets (or matches). Select an optimal

chain of matches among all matches found.

• Close the gaps between chained matches using recursive calls.

• If the remaining gaps are short, hand them over to another sequence alignment

tool (e.g., ClustalW); If the gaps remained are long, leave them open.

Compared with MUMer 2 [20], the extension of MUMer, which allows alignment

of multiple genomes and translated protein sequences, MGA presents a significant

improvement. The MUMer systems identify maximal unique matches and use them

to anchor the alignments. MGA, however, completely discarded the uniqueness con­

straint, and searches for maximal multiple exact matches instead, which will theo­

retically increase the sensitivity of the alignments. Another improvement tha t MGA

makes over the MUMer systems is that MGA needs less memory by constructing a

virtual suffix tree.

Besides MGA and MUMer 2 mentioned above, some other anchor-based multiple

genome alignment system are also available, such as EMAGEN [21], CHAINER [1][2],

and M-GCAT [86].

Hohl et al. [37] also pointed out that an alignment of the genomes (gene orders)

of several organisms makes sense only if the organisms are closely related. Otherwise,

genome rearrangement should be taken into account. Shuflfle-LAGAN [11] , a variant

of the LAGAN alignment system, is the first genome comparison method that explic­

itly deals with genome rearrangements during the alignment process. Rather than

32

selecting a single collinear set of anchors, Shuffle-LAGAN selects anchors collinear in

the first sequence with rearrangements permitted in the other sequence. However,

Shuffle-LAGAN works only for pairwise comparison.

Mauve [16] presented an anchor-based alignment algorithm to address the pres­

ence of significant inversion and rearrangements in a set of genomes to be aligned.

This algorithm is known as the first multiple alignment tool tha t considers genome

rearrangement during the alignment process. Mauve’s algorithm can be summarized

as follows [16]:

• Find local alignment in terms of the calculations of MultiMEMs (Maximal Mul­

tiple Exact Matches) [37].

• Use the multiMEMs to build a phylogenetic guide tree.

• Select a subset of the multiMEMs to use as anchors. These anchors are parti­

tioned into collinear groups called LGBs.

• Perform recursive anchoring to identifying additional alignment anchors within

and outside each LCB.

• Perform a progressive alignment of each LCB using the guide tree.

Manual cure of a multiple genome alignment on actual genome sequence is too

costly. Thus there is no ‘gold standard’ alignment to use when assessing the qual­

ity of calculated alignments. Darling et. al. [15] performed several experiments

using simulated evolution environment to compare the accuracy to Multi-LAGAN,

Shuffle-LAGAN, and MAVID. These experiments demonstrated that Mauve’s algo­

rithm clearly excels at aligning genomes with rearrangement.

A s m en tio n ed above, o th e r th a n an ch o r-b ased , M L A G A N [12] is a tool b ased

on iterative pairwise alignment. It performs best when aligning and analyzing the

regions of homogeneity among distinct species, such as human and turkey. However, it

was not designed to yield the same results when dealing with closely related multiple

33

genomes. MLAGAN performs a progressive alignment of the genomes using LAGAN,

and takes a phylogenetic guide tree together with the sequences as input. Each time,

by following the input guide tree, LAGAN will select two closest genome sequences

and produce a pairwise alignment until all the sequences are aligned. MLAGAN

then gives options to iteratively refine the resulted alignment until no significant

improvement can be made.

2.4 C onclusion

During the past decades, considerable work for aligning multiple sequences has been

done, but there is still room for improving alignment speed and sensitivity.

Multiple genome alignment is a large-scaled multiple sequence alignment. Tradi­

tional methods for sequence alignments cannot be applied directly for genome align­

ments. Since 1999, there have been several independent approaches to align multiple

genomes. However, most of them hold several techniques in common and lack paral­

lelism properties tha t would speed up the aligning process.

34

Chapter 3

M ultithreaded M ultiple Sequence

Alignm ent

This chapter introduces a multithread approach for aligning multiple sequences. De­

pending on how the guide tree(s) would be applied for progressive alignment, two

different software programs, a single-tree program and a multiple tree program, have

been implemented. Their alignment results will be compared at the end to check the

improvements of alignment speed and sensitivity. To our best knowledge, this is a

novel approach to consider progressively aligning the same set of multiple sequences

by building a different number of guide trees.

3.1 C om plexity A nalysis

According to the results of Wang and Jiang [87], the multiple sequence alignment

problem is NP-complete for a class of scoring matrices used for reality biological

applications.

P rom a c o m p u ta tio n a l p o in t o f view , th e re a re severa l w ays to ad d re ss th e lack

of hard computing power for bioinformatics, especially in multiple sequence and gene

order alignments. The first is by developing new, faster heuristic algorithms that

reduce computational space for the most time-consuming tasks. The second is incor­

35

porating these algorithms into the ROM of a specialized chip. The third and most

promising consideration, is parallel computing. In parallel processing, two or more

microprocessors (or threads) can be used simultaneously to divide and conquer tasks

that would overwhelm a single, sequential processor. However, parallel computing

still requires new paradigms in order to harness the additional processing power for

bioinformatics.

3.2 Evaluations and Com parisons

The most frequently used reference MSA database is BAliBASE (Benchmark Align­

ment database) [85]. It is the only reference database for multiple sequence alignment

that has been specifically designed for MSA benchmarking. T hat’s why BAliBASE

is so appealing to MSA method developers. As a result, it has been used in many

studies as the standard of tru th for comparing the performance of new MSA methods

with older ones. The current version of BAliBASE (version 2.0) [82] contains a total

of 167 reference alignments placed in eight different categories, which are aimed at

covering most of the problems alignment engines come up against:

1. Multiple sequence alignments containing equi-distant sequences of various con­

servation levels. Conserved gene is a gene that has remained essentially un­

changed throughout evolution. Conservation of a gene indicates that it is unique

and essential. There is not an extra copy of that gene with which evolution can

tinker. Changes in the gene are likely to be lethal.

2. Alignments with a single orphan sequence.

3. Alignments comprising two distant groups of less than 25% sequence identity.

4. Alignments containing long insertions.

5. Alignments containing long deletions.

6. Sequence repeats.

36

7. Transmembrane sequences.

8. Domain permutation.

3.3 Research Problem

Progressive alignments (Section 2.2.3) use an approximation of a guide tree between

the sequences as a guide tree that dictates the alignment order. The progressive

strategy is appropriate for many alignment problems, but also suffers from greedi­

ness. Errors made in the first alignments during the progressive protocol cannot be

corrected later as the remaining sequences are added in. Attempts to minimize such

alignment errors have generally been targeted at global sequence weighting [81], where

the contributions of individual sequences are weighted during the alignment process.

However, such global sequence-weighting schemes carry the risk of propagating rather

than reducing error when used in progressive multiple-alignment strategies [35].

Simultaneous alignments are high quality heuristics tha t deliver an alignment

usually very close to optimality. Nonetheless, they remain an extremely CPU and

memory-intensive approach, applicable only to about nine sequences of average length

of 20 characters for the fastest implementation (DCA). Prom Figure 3.1 one can

easily notice that the divide-and-conquer technique (Section 2.2.2) actually provides

a perfect structure for parallel programming, and each sub problem can be computed

independently. Another major advantage of using the divide-and-conquer technique is

that extremely long sequences can be also acceptable by a multiple sequence alignment

program as long as the sequences can be cut into small enough pieces.

Based on the characteristics of both progressive and divide-and-conquer align­

ments, long sequences will first be cut into several sets of sub-sequences, and each

of these sub-sequences will be aligned progressively and independently by a light-

weighted process, thread. In some cases, the sequences are extremely long and cannot

be fed into a simultaneous alignment program even after they are divided into several

shorter pieces. T hat’s why sometimes progressive alignment will be still considered

37

for the sub-sequences alignments.

Sequence X:

Sequence Y:

Decomposed

xo XI X2 X3

YO Y1 Y2 Y3

XO XI X2 X3

YO Y1 Y2 Y3

f f f > f >
PC PI P2 P3

J

Figure 3.1: Divide-and-conquer technique

This multithreaded multiple sequence alignment approach actually combines the

idea of divide-and-conquer alignment and progressive alignment. In order to check

the alignment speed and sensitivity, two different alignment programs, depending on

how the guide tree(s) would be applied, are developed for getting a better sense of

which approach works better than the other.

3.4 A pproaches and Sim ulations

The single-tree and multiple-tree alignment programs were implemented using shared

memory Multithreaded Java Programming. There are two concepts for parallel pro­

cessing, namely, processes and threads. A process is a single executable module that

runs concurrently with other executable modules. For example, in a multi-tasking

environment tha t supports processes, like Microsoft Windows, a word processor, an

internet browser are separate processes and can run concnrrently. Processes are sep­

arate executable, loadable modules as opposed to threads which are not loadable.

38

Multiple threads of execution may occur within a process. For example, from within

a database application, a user may start both a spellin check and a time consuming

sort. In the meantime, a thread can also be a task that runs concurrently with other

tasks within a single executable file (e.g., within a single MS-DOS EXE file). Unlike

processes, threads have access to common data through global variables.

Parallelism deployed in the program was based on the divide-and-conquer tech­

nique structure. On one hand it is clear that optimal cut positions exist; on the

other hand it is clear that it is computational expensive to find them. Since the focus

of this thesis is speed performance, only trivial idea are used now to determine the

cut positions in the implementations, such as choosing the middle points recursively

during each cut.

Since progressive alignment only performs global alignment and match sequences

over their full lengths, problems with this approach can arise when highly dissimilar

sequences are compared. Especially when there is a large difference in the lengths of

the two sequences to be compared, global alignment routines become unwarranted.

This is because highly similar internal regions may be overshadowed by dissimilar

regions and the high gap penalties normally are required to achieve proper global

matching. Moreover, many biological sequences are modular and show shuffled do­

mains, and the repeats of internal sequence can also severely limit the applicability

of global methods. Therefore, in the simulations, only long sequences with similar

length and over 40% identical are tested for the single-tree and multiple-tree align­

ment programs.

3.4 .1 S ingle-T ree A lign m en t

Single-tree alignment uses a uniform guide tree built for the full-length sequences

at the beginning of the alignment. All the sub-alignment processes w ill follow this

single tree when the sequences are cut into sub-sequences. Details of the single-tree

alignment are presented in Figure 3.2.

The guide tree for single-tree alignment is built using UPGMA algorithm.

39

G u id e - tree
D e c o m p o s e ' N

V

PO P I P2 P3

'------ ' _____ ;

su b a l ignm en ts

V
C o n c a te n a te

___overa l l a l ignm en t

Figure 3.2: Details of single-tree alignment

3 .4 .2 M u ltip le-T ree A lign m en t

As opposed to single-tree alignment, multiple-tree alignment use different guide trees

for each set of sub-sequences. Sequences will be cut into pieces first, then each set of

the sub-sequences will build their own guide tree to guide their individual alignments.

Figure 3.3 shows the details of multiple-tree alignment.

The guide tree for multiple-tree alignment is also built using UPGMA algorithm.

3 .4 .3 Sp eed P erform ance

One of the major advantages of multithreaded programming is program speedup with

respect to time efficiency, because each thread processes a different piece of the same

job simultaneously and independently. However, this is obviously the case for the

multiple-tree alignment program, but not quite true for the single-tree alignment

(Figure 3.4), which does not gain any speed improvement after some point. The

reason is tha t in single-tree implementation, no m atter how many threads are used,

every time a single guide tree for the full length sequences are built at the start

of alignment for all the sub-alignments done by different threads. It appears that

40

V
Decompose

'X

PO PI P2 P3

C o n c a te n a te

su b a l ignm en ts

V
overa ll a l ignm ent

Figure 3.3: Details of multiple-tree alignment

building the uniformed alignment guide tree becomes the hot spot (the most time-

consuming part) for all alignment procedures in the single-tree approach.

The figure also shows tha t the multiple-tree alignment program achieves seven

times faster than the sequential program where one thread was used. We also note

that the multithreaded multiple-tree algorithm is faster than the multithreaded single­

tree algorithm. In other words, using the same number of threads, the multiple-tree

approach performs faster and uses less memory.

3 .4 .4 A lign m en t S en sitiv ity

There are several publicly available databases which have benchmark alignments.

A widely used one is BAliBase by Julie Thompson et al (Section 3.2). BAliBASE

provides a module (BaliScore) tha t defines two scores. SP (Sum-of-Pair) score is

the ratio of the number of correctly aligned pairs of positions in the test (predicted)

alignment to the number of aligned pairs in the reference (structurally informed)

alignment. TC (Total-Column) score is the ratio of the number of correctly aligned

41

Speedup with Respect to Number of
Threads

1600
1400
1200

lo
E 1000

0) 800
E 600F

400
200

0
1 3 4 5 6 7 8 9 10

Number of Threads

-A— Multiple tree alignment — Single tree alignment

Figure 3.4: Speed improvement for single-tree and multiple-tree implementations in
terms of different number of threads

columns in the test alignment to the number of aligned columns in the reference

alignment. Both SP and TC scores range from 1.0 for perfect agreement to 0.0 for

no agreement. The designers of BAliBASE recommend SP score as the best quality

score for Refsl, 2 and 3, TC score as the best score for Refs4 and Refs5 [81].

Currently, the tests were done mainly based on Refs2, thus the following Figure

3.5 inflects the average SP scores calculated by BAliScore in terms of the number of

threads used by the single-tree and multiple-tree alignment programs. It turns out

that the quality of alignments drops down for both approaches when the number of

threads increases, as unwanted gaps are inserted at the start or the end positions of

the sub-alignments; This thus brings more gaps in the final full-length alignments

and infects the values of SP scores.

42

SP-Scores with Respect to the
Number of Threads

1
0.9
0.8
0.7

£ 0.6
8(/) 0.5
D. 0.4m 0.3

0.2
0.1

0
1 2 3 4 5

Num b^ of Threads
■ Multiple tree alignment — Single tree alignment

Figure 3.5: SP-scores for single-tree and multiple-tree implementations with respect
to different number of threads

3.5 Sensitiv ity Im provem ents

3.5 .1 O verlapping A lign m en t

This approach is considered to reduce the number of unwanted gaps introduced at

the start or the end positions of the sub-alignments when multiple threads are used.

In this approach, cut points are actually extended half length of the original sub se­

quence. Assume the length of original sub-sequence is t. The real length participating

in the alignment is t 4- (t/2), where the (t/2) part overlaps the first half of its next

neighbor. However, at the reassembling stage, those (t/2) overlapping parts will be

ignored and only the first t characters in each subsequence will be extracted to build

the final full le n g th a lignm en t.

43

3.5 .2 S lid ing W in d ow s for C ut P o in ts C alcu la tion s

When divide-and-conquer technique is applied for sequence alignment, finding an

effective and efficient algorithm to calculate the cut positions for sequences is always

a big issue. The basic idea of sliding window tha t we come up for cut position

calculation is explained below.

Assume we have two sequences SI, 82, and N number of threads are going to be

used for their alignment.

• Firstly, cut SI evenly in terms of the number of threads, and mark the first cut

position with 0. Then, mark the positions left to 0 with -1, -2, , -(S l/N)/2 ; and

mark the positions right to 0 with -fl, -f-2, , -|-(Sl/N)/2

• Secondly, in S2 mark the same position with the same number as that in SI

accordingly

• For simplicity purpose, we assume that SI has sliding window of size 2, and an

optimal cut position for S2 will reside within 1 left or right shifts of position

0, the sliding windows for the first cut position of both sequences will look like

below (Figure 3.6):

S I :

-1 +1

S2:

-2 -1 +1 +2

Figure 3.6: Illustrating the sliding window technique for improving alignment accu­
racy

The cut position of S2 will be computed in terms of the m a x im u m score of the

following alignments:

Score(O) = align [Sl(-l,-t-l), S2(-l,-l-l)]

44

Score(-1) = align [Sl(-1,+1), S2(-2,-l)]

Score(+l) = align [Sl(-1,+1), S2(+l,+2)]

For example, if max = score(+l), then the first cut point of S2 will be in between

cells +1 and +2.

Therefore, for general cases, if multiple sequences have similar length S and N

number of threads will be used for the alignments, then the size of the sliding windows

(thresholds) for all sequences will be less or equal than S/N, with half of the sliding

cells being negatively marked and the other half positively marked. The maximum

score calculated to get the cut position for next sequence upon the previous one

will then be computed among score(O), score(-l), ..., score(-S/2N), score(+l), ...,

score(+S/2N), depending on the sliding window size of its previous sequence.

3.6 C onclusions

The same set of multiple sequences can be progressively aligned either by a single guide

tree or multiple guide trees. The multiple-tree and single-tree alignment programs

presented in this thesis are coming from the idea of combining the use of divide-and-

conquer technique with the progressive alignment. Multiple-tree alignment seems

having a better speedup performance than single tree alignment. The results also

show that in terms of the number of threads used, using two threads has the best

performance, which retains the similar accuracy as using one thread but accelerate

the alignment by saving half of the time. However, neither the single tree program

nor the multiple tree program shows very satisfying sensitivity results as the number

of threads increases.

45

Chapter 4

Graph-based Consensus M nltiple

Gene Order Alignm ent

Multiple gene order alignment, sometimes called multiple genome alignment, is a

larger-scaled multiple sequence alignment. In the last chapter, a multithreaded ver­

sion for sequence alignment, to accelerate the alignment processing was introduced.

This chapter will focus on the parallel processing techniques for multiple genome

alignment. Previous approaches for gene-order analysis were largely based on break­

point analysis or gene rearrangements, and lack parallelism properties. As a result,

a novel algorithm for alignment of genome sequences based on a graph-based con­

sensus method is described in this chapter. This algorithm can be applied to align

two or more gene order sequences, obtain the ancestor gene order sequence, and be

implemented in parallel, to further increase its computation speed.

4.1 C om plexity A nalysis

In m u ltip le g en e-o rd e r a lig n m en t, one e d it o p e ra tio n consists o f th e inversion , o r

reversal, of any number of consecutive terms in the ordered set. In the case of signed

orders, the operation also reverses the polarity of each term within the scope of the

inversion. The calculation of the distance for unsigned genomes with inversions only

46

is NP-hard; for signed problem it is of polynomial complexity. For multi-chromosome

genomes, another important edit operation is reciprocal translocation, representing

the exchange of terminal fragments between two chromosomes. Some formulations

of the distance problem for translocation are of polynomial complexity, and some are

of NP-hardness. For the algorithm proposed here, the inversion operation is only

considered for a single genome sequence.

4.2 R ationale for Graph Theory

Conceived by Euler, Cayley, and Hamilton, graph theory flourished in the twenties

century to become a critical component of discrete mathematics. In the 1950s, Sey­

mour Benzer applied graph theory to show that genes are linear [43]. When the

Human Genome Project started, DNA sequencing was a routine but time-consuming

and hard-to-automate procedure. In 1988 four groups of biologists independently and

simultaneously suggested a different sequencing technique called Sequencing by Hy­

bridization, abbreviated as SBH. SBH as a Hamiltonian Path Problem, and SBH as

an Eulerian Path Problem lead to the graph algorithms for sequence reconstruction.

Similarly, in this chapter, a graph algorithm for multiple gene order alignment will

be introduced.

As mentioned at the beginning of this chapter, previous approaches to gene-order

analysis were largely based on break-point analysis or gene rearrangements, and lack

of parallelism properties. The algorithm that is going to be proposed here introduces

a potentially simpler approach for multiple alignment of gene orders based on a notion

of precedence. The algorithm can also be implemented in parallel to further increase

its speed.

The original idea of this algorithm came from the mathematical and computational

linguistics [71] [67]. In this view, “gene order” can be compared with “canonical word

order” for linguistic sequences [34]. The approach presented here is an extension of

an earlier work for calculating the canonical word order based on word order and

47

precedence constraints [66].

4.3 The Precedence G raph-Based C onsensus A l­

gorithm

In the following an alternative algorithm is presented for aligning multiple genome

sequences and constructing consensus sequences. Similarly to the other graph based

approaches, a graph will be constructed over sequence fragments representing the data

set. However, this is a different algorithm that does not explicitly try to calculate

sequence alignments or overlaps. Instead, the graph will be traversed greedily, and

a path will be tried to pursue through the graph so that each branch followed is as

consistent with the previous one as possible. The goal of this alignment heuristic are

to allow for more efficient gene order alignments that can accommodate for inversions,

translocations, deletions, and insertions in the evolutionary process between ancestor

and successor organisms. The precedence based gene order alignment algorithm pre­

sented here have a time complexity of 0 (d * n^)) where d is the number of genomes

being aligned and n is the number of gene blocks contained in the genomes.

4.3 .1 T h e M in im u m Sp ann ing Tree

A weighted graph, also known as a network is a graph whose lines are weighted. The

meaning of the weights depends on the application. For example, an airline might use

a weighted graph to represent the routes between cities that it serves. In this example,

the vertices represent the cities and the edges represent a route between two cities.

The weight of the edge could represent the flight distance or the price of the flight

between the two cities. The weight information, in this case, can be stored as the

intersection value in an adjacency matrix. The representation of a simple network in

adjacency matrix is shown in Figure 4.1.

A spanning tree is a tree tha t contains all of the vertices in the graph. The network

48

0 6 3 0 0 0

6 0 2 5 0 0

3 2 0 3 4 0

0 5 3 0 2 3

0 0 4 2 0 5

0 0 0 3 5 0

Figure 4.1: A simple network represented by a weighted graph and an adjacency
matrix

shown in Figure 4.1 is also a spanning tree of the adjacency matrix.

Interesting algorithms, such as Kruskal’s algorithm [47] and Prim ’s algorithm [63],

derive the m inim um spanning tree of a weighted graph such tha t the sum of its

weights are guaranteed to be minimal. If the weights in the graph are unique, then

there will be only one minimum spanning tree. Otherwise, there may be one or

more minimum spanning trees. To create a minimum spanning tree in a strongly

connected network, that is, in a weighted graph in which there is a path between

any two vertices, the edges for the minimum spanning tree are chosen so that the

following properties exist:

1. Every vertex is included.

2. The total edge weight of the spanning tree is the minimum possible that includes

a path between any two vertices.

Figure 4.2 demonstrates how the spanning tree shown in Figure 4.1 is developed

into a minimum spanning tree.

Similarly, in multiple gene order alignment, a precedence matrix is built for each

49

genome sequence. The intersection values interpret the relative positions of different

genes tha t reside in the same genome, the details of which is described in the next

section.

T h e original sp a n n in g tree

0
(a) I n se r t f i rs t ver tex (b) I n s e r t e g d e AC

(d) In se r t e d g e CD

(c) I n s e r t e d g e BC

(e) In se r t e d g e D E

(f) I n s e r t e d g e D F
(g) T h e final m in im um s p a n n in g tree

Figure 4.2; A simple network represented by a weighted graph and an adjacency
matrix

50

4 .3 .2 A n E xam ple

This algorithm is based on precedence distance and contrasts with breakpoint or re­

versal distances. Consider the following three gene sequences:

a) 1 4 6 7 5 3 2

b) 1 4 6 5 7 2 3

c) 1 4 5 7 6 2 3

A gene order alignment of these sequences would like to be obtained. For this

purpose a precedence matrix for each sequence is calculated. For the first sequence

(a), its precedence matrix is:

1 4 6 7 5 3 2

1 0 -1 -2 -3 -4 -5 -6

4 1 0 -1 -2 -3 -4 -5

6 2 1 0 -1 -2 -3 -4

7 3 2 1 0 -1 -2 -3

5 4 3 2 1 0 -1 -2

3 5 4 3 2 1 0 -1

2 6 5 4 3 2 1 0

In the matrix, each cell (i, j) has a corresponding value n, which specifies the

distance between genes i and j in the same genome, and is distinguished by positive

direction and negative direction. Positive n specifies gene i (the row list) recedes n

positions from gene j (the column list) ; negative n specifies gene i precedes gene j by

n positions; 0 simply shows gene i and gene j are the same.

The precedence matrix for the genome (b) is displayed as following:

51

1 4 6 5 7 2 3

1 0 -1 -2 -3 -4 -5 -6

4 1 0 -1 -2 -3 -4 -5

6 2 1 0 -1 -2 -3 -4

5 3 2 1 0 -1 -2 -3

7 4 3 2 1 0 -1 -2

2 5 4 3 2 1 0 -1

3 6 5 4 3 2 1 0

Similarly, one can compute the precedence matrix for the third sequence (c)

1 4 5 7 6 2 3

1 0 -1 -2 -3 -4 -5 -6

4 1 0 -1 -2 -3 -4 -5

5 2 1 0 -1 -2 -3 -4

7 3 2 1 0 -1 -2 -3

6 4 3 2 1 0 -1 -2

2 5 4 3 2 1 0 -1

3 6 5 4 3 2 1 0

Next, these three matrices are merged by adding corresponding values of (i, j)

together to obtain the summarized matrix that results in the final alignment. For

example, to calculate the value for cell (4,5) for the final matrix, which is in fact the

distance between gene 4 and gene 5, the values of correspondent cell (4,5) in the three

matrices are added up, i.e. (-3)+ (-2) + (-1). The value corresponding to cell (4,5)

will then be -6.

The finally merged matrix is shown as following:

52

1 2 3 4 5 6 7

1 0 -16 -17 -3 -9 -8 -10

2 16 0 -1 -13 7 8 6

3 17 1 0 14 8 9 7

4 3 -13 -14 0 -6 -5 -7

5 9 -7 -8 6 0 1 -1

6 8 -8 -9 5 -1 0 -2

7 10 -6 -7 7 1 2 0

Number 0 in the matrix does not necessarily represent two identical genes i and j

now, as the addition operation is involved. Moreover, the resulted matrix is diagonally

symmetric, thus only half of it needs to be calculated and the calculation for the other

half is about copying the symmetric value and in the meantime, flipping the negative

or positive sign accordingly. The merged matrix gives a precedence matrix from

aligning the three sequences. If the aligned sequence can be reconstructed from this

matrix, then the resulted multiple alignment for the three sequences will thus be

obtained.

Figure 4.3; The minimum spanning tree built from the precedence matrix of sequence
(a)

53

Taking a look at the precedence matrix corresponding to sequence (a), one can

realize tha t traversing the vertices of the m inim um spanning tree for this matrix

will be 1,4,6,7,5,3,2 which represents exactly the original sequence (a) (Figure 4.3).

The same thing happens for sequence (b) and (c) as well. In the ideal case, a directed

graph is constructed, where each gene or gene block is a vertex, and edges represent

distances between genes and gene blocks. A correct assembly of the original sequence

is then constructed through this graph by pre-order traversing the minimum spanning

tree of a precedence matrix of a genome sequence.

When coming to find out the consensus or ancestor of these three sequences, the

same minimum tree traversal technique applies: calculating the minimum spanning

tree for the final merged matrix, then the pre-order traversal of this tree will give the

final aligned consensus sequence, or called the ancestor sequence for all (Figure 4.4).

The consensus sequence of sequence (a), (b), and (c) is: 1 4 6 5 7 2 3

Figure 4.4: The minimum spanning tree built from the summarized final precedence
matrix

4 .3 .3 A lgorith m F orm alization

Sequence alignment and gene order alignment consist of different operations. Se­

quence alignment is about aligning individual characters, and thus insertion and dele­

54

tion are involved. Gene order alignment cares more about gene order arrangement

than words matching, and does not allow any change or modification applied to the

current genes themselves. Another key difference between sequence comparison and

gene order comparison is that in the former, gaps are introduced as required, whereas

in the latter, the rearrangement of gene orders does not allow the insertion of gaps.

Figure 4.5 shows the flow of the algorithm.

SI S2 S3 S4

Sum

M inim al Span n in g T re e

J ^ ^ ra v e rs e

C o n s e n s u s G e n o m e S e q u e n c e

Figure 4.5; Illustrating the steps of the precedence graph-based consensus algorithm
for genome sequence alignment

Based on a summarized precedence matrix for a set of genome sequences, a con­

sensus genome sequence is constructed by building a minimum spanning tree through

the matrix. The tree is traversed, trying to follow edges so tha t the vertices along

the path are consistent with a subset of the genes at corresponding positions of the

55

sequences.

The algorithm takes as parameters all the genome sequences to be aligned. They

will be used to build their own precedence matrix respectively. Assume there are n

genome sequences, then n precedence matrix will be built accordingly for each of the

sequences.

Building the final consensus matrix, the algorithm starts out by filling the first

row and first column of the matrix with the union set of the genes appeared in all

the sequences in sorted ascending order. The rest of the cells of the matrix will then

be filled with the summarized value from the corresponding cells of the sequence

matrices.

Then, the algorithm constructs a minimum spanning tree for the summarized ma­

trix. Each time it picks the edge(s) in positive or negative direction with the possible

minimum abstract value. By pre-order traversing the tree, a consensus sequence will

be obtained, which is also the final alignment for all the sequences. Note tha t a

slightly different final aligned sequence will be obtained depending on whether the

tree is traversed in an increasing or decreasing order for each vertex of sub trees from

right to left. Figure 4.6 shows an example for different final alignments obtained by

different traversal orders.

Many algorithms and methods that have been widely used for current multiple

genome sequence alignment. However, problems like repeated genes in the same

sequence, different sequence containing different kinds of genes, and different sequence

with different number of genes, are not considered in most of the current genome

alignment software, such as GRIMM [92].

The graph-based consensus algorithm, a completely different approach from the

existent anchor-based genome alignment algorithms and methods, can be used to

align unsigned multiple genomes with some or all of the following properties:

• Genomes contain repeated genes

56

T ra v e r s in g the a b o v e t ree in d e c re a s in g p re -o rd e r , obtain:
1, 4, 6, 7, 9, 8, 5, 3, 2, 10

In s te a d , t r a c e r s in g it in in creas ing p re -o rd e r , obtain:
1, 4, 6, 7, 8, 3, 2, 10, 5, 9

Figure 4.6: An example showing how to obtain different final alignments by traversing
the minimum spanning tree in different orders

• Genomes are of different length

• Genomes consist of different kinds of genes

However, at this stage, the algorithm is at its early stage of evolution, and does

not give any suggestions for aligning signed genome sequences. For example, the two

orientations i and -i of gene i are treated as two completely different genes regardless

of the fact that one is the reversal of the other. Besides, the algorithm now does not

automatically change the sign of gene -i or i during the alignment. Gene -i and i will

retain their original signs throughont the alignment process.

57

4.4 Parallelism of th e A lgorithm

The graph-based algorithm for multiple gene order alignment is straightforward, sim­

ple and easy to perform, and contains four steps:

1. Calculate an initial precedence matrix for each individual genome sequence.

2. Summarize the individual matrices and get the final matrix for consensus se­

quence.

3. Build a minimum spanning tree in terms of the final matrix.

4. Traverse the minimum spanning tree to get the consensus sequence.

The step tha t can be performed in parallel is the first step where the initial

precedence matrix calculation for each genome sequence is independent of each other.

This step would become the most time-consuming part of the algorithm if the number

of genome sequences is fairly large and the computation is performed sequentially. In

another words, simultaneously calculating the initial precedence matrices for all the

sequences will tremendously reduce the computation time and increase the speed.

4.5 Evaluations and Com parisons

To the best of our knowledge, there is not yet a standard reference database used

as benchmark for multiple gene order (or genome) alignment. But there are still

ways available for evaluating the sensitivity or accuracy of an alignment generated by

certain algorithms or software.

4.5 .1 E va lu ation w ith o u t a R eferen ce a lignm ent

W ithont a correct alignment of the multiple genomes, an alignment calculated by any

algorithm or method cannot be evaluated for accuracy. In fact, no manually generated

multiple alignment benchmark data sets account for genome-scale evolutionary events

58

such as inversion, rearrangement, and horizontal transfer. Despite the lack of correct

alignments, the alignment accuracy can be estimated by modeling evolution and

aligning simulated data sets.

The inferential power yielded by evaluating alignment accuracy using simulated

evolution is only as strong as the degree to which the simulation faithfully represents

the actual evolutionary processes that governed the history of the genomes under

study. In order to be able to evaluate a genome alignment, at lease a simplistic model

of genome evolution needs to be constructed, which captures the major types, pat­

terns, and frequencies of events in the history of the related genomes. Building such

a genome evolution model involves many complex elements, such as a rooted phylo­

genetic tree, an ancestral sequence, evolved sequences, regions conserved throughout

the simulated evolution. To effectively represent genome evolution, the simulation

must include nucleotide substitutions and indels (insertion and deletion) in addition

to genome-scale events such as horizontal transfer, inversion, and rearrangement.

4.5 .2 E va lu ation aga in st a R eferen ce a lignm ent

Due to the complexity involved in evaluating genomes without a reference alignment,

current evaluations are mostly done with a reference alignment based on what is

available. There are two main schemes for comparing a proposed multiple genome

alignment to a reference multiple genome alignment: the gene score and the sum-of-

pairs score (different to the SP score mentioned in the previous section).

It is well known tha t pairwise alignment optimize residue exchange scores and gap

penalties. Extending the pairwise sequence scores to get a single score for a multiple

alignment would be an obvious way of scoring multiple alignments. This is referred

to as the Sum -of-Pairs (SP) score for alignment, which is used widely by multiple

sequence a lig n m en t. T h e sum-of-pairs (S P) is a com m on scoring schem e, w here th e

score of each pair of sequences of the multiple alignment is added up to form the

overall score. The higher the SP-score is, the better the multiple alignment is. For

example, assume there are 4 sequences SI, S2, S3, S4. The sum-of-pairs score of the

59

alignment for all the 4 sequences is:

SP(S1, S2, S3, 84) = score(Sl, 82) + score(Sl, S3) +score(Sl, S4) + score(S2,

S3) + score (S2, S4) + score(S3, S4)

The gene score of a multiple genome alignment (MGA) is calculated by comparing

the alignment genes of the proposed MGA with those in the corresponding reference

MGA, and only those identical ones will be taken as correct ones. This is a more

salient measure than the sum-of-pairs scores, where over all observed aligned gene

pairs in a reference MGA, the fraction of those observed in the corresponding target

MGA is compiled. Whereas, a single misaligned sequence can zero the gene score,

the SP score only gradually goes down with more misaligned sequences. Note that

the SP scoring system here involves two MGAs, and is therefore different than the

previously mentioned SP scoring system for a single MGA without a reference.

As for the reference alignment, currently, there are quite a few multiple genome

alignment software that is available online or free for downloading, such as Mauve

[94], MGA [95], M-GGAT [96], GRIMM [92], GHAINER [91], and MALGEN(2.0)

[93].

4.6 V alidation

As mentioned above, the evaluation of multiple gene order (genome) alignment could

be done with or without a reference alignment. Due to the complexity of evaluation

without a reference alignment, most of the contemporary validations are done with a

reference alignment. Since this algorithm is at its early stage of evolution and does

not automatically change the signs of the genes, or in another words, does not con­

sider the self-reversal of the genes, genes will retain their original signs throughout the

alignment process. As a result, it would not be very ideal to evaluate the accuracy of

the graph-based consensus algorithm using any reference alignments tha t are gener-

60

ated by various anchor-based algorithms that have taken the genes’ self-reversal into

consideration. Some heuristics and modifications need to be applied to this algorithm

to automatically take genes’ self-reversal into consideration, and thus make it more

reasonable to be compared with any other reference alignments.

Fortunately, based on this work Pringle et al. [62] extended the graph-based

approach proposed in this thesis and developed a more advanced precedence graph-

based consensus approach and parallelized it utilizing the Message Passing Interface

System. In order to accommodate for the self-reversal, insertion and deletion cases,

a presence matrix has been added to our approach, which basically keeps track of

the number of contributions that have been made to a particular gene pair distance.

Pringle et al. also took weight distances into consideration by applying a weight

function to the cells of precedence matrix based on the count and the distance sum of a

particular gene pair, and penalizing precedence cells tha t do not have full participation

from all gene orders being aligned.

In the evaluation of [62], two metrics were considered, the timing of the program

and accuracy of the results it produces. The program was timed and the accuracy

of a particular gene order arrangement was determine from the average percentage

displacement between genes in the gene alignment and gene in the proper result. As

well, the presence or absence of genes was considered between the final and alignment

in the accuracy tests.

Pringle et al. shows that there is a linear relation between the timing of the utility

and the number of genomes being considered by our proposed graph-based method.

In the mean time, there is a polynomial relation between the size of the genomes and

the program timing which is what was expected from the time complexity analysis.

Pringle et al. also showed that the accuracy of the results obtained by our proposed

approach seemed to remain constant when switching between the original precedence

system, the weighted system and the weighted penalty system. The accuracy of the

results seems to indicate that our graph-based approach can handle deletions and

inversions quite well.

61

4.7 C onclusion

Precedence gene order alignment is a promising approach to genome alignment that

offers a below exponential solutions to the problem. The research in multiple sequence

analysis can be compared to the developments in the study of canonical word order in

linguistics [34] [66]. The multiple gene order analysis can be compared with a level of

analysis in linguistics where the focus is on diachronic change in structure and syntax

rather than lexicon. The precedence graph-based consensus algorithm for calculating

a multiple alignment for gene orders is a linguistically motivated approach in the

area of multiple genome alignment, which is completely different from the existing

anchor-based alignment algorithms and methods. The core of the algorithm is that

pre-order traversing the minimum spanning tree of a precedence matrix of a genome

sequence constructs the original sequence. The advantage of this method is partly

efficiency, since it computes the final alignment by computing a minimum spanning

tree from a two-dimensional matrix and finding a path through the minimum spanning

tree, which is computable in n^ time, while computing the final alignment from the

anchored-based approaches for the unsigned genome, the complexity is more than

polynomial. However, This original method of precedence calculation is valid in the

cases of translocation and reversal mutations between gene orders and a common

ancestor but in the case of deletions or insertions it can cause a false minimal edge

in the precedence matrix which could have ill effects on the result of the alignment.

62

Chapter 5

D iscussion and Future D irections

This thesis focused on improving the computational speed of the multiple biologi­

cal sequence alignment, including aligning characters (for DNA, RNA and protein

sequences) and aligning gene orders (for genome sequences) in computational molec­

ular biology. Some issues related to multiple alignment accuracy and evaluation were

also introduced and discussed.

Sequence alignment deals with comparing different DNA or different protein se­

quences. This is done by writing one on top of the other padding them with spaces

(“indel” , for insertion or deletion) to achieve identical length. In DNA, the crite­

rion to distinguish among the many possibilities of this arrangement is the number

of unequal letters ending up on top of each other minus the number of spaces that

were introduced. For protein sequence comparison the pairs of matched letters are

weighted and the adjacent spaces are summarized into blocks which receive a penalty.

Alignments may be performed on a pairwise basis, across multiple sequences or

they can involve the alignment of a sequence to a previously aligned set of sequences

(sometimes called a profile). The information exhibited by a multiple sequence align­

m en t allow s th e d e d u c tio n of p u ta t iv e s t ru c tu ra l a n d fu n c tio n a l features. Through

a reliable multiple sequence alignment of a set of homologous sequences, the evolu­

tionary pathway, corresponding to mutations as well as insertions and deletions of

sequence fragments, can often be traced under the model of divergent evolution.

63

Based on the mixed idea of Progressive alignment and Divide-and-conquer align­

ment, two different multithreaded multiple sequence alignment programs, depending

on how the guide tree(s) would be applied, were implemented for checking the im­

provements of alignment speed and sensitivity. The single-tree alignment built a

uniform guide tree for the full-length sequences at the beginning, which were used by

all the sub-alignments as the guide tree. In the multiple-tree alignment, sequences

were firstly cut into pieces and these sub-sequences built their own guide trees to guide

their individual alignments. Multiple-tree alignment seemed having a better speedup

performance than the single tree alignment, but neither of them, at this stage, showed

ideal sensitivity results as the number of threads increases. Therefore, some heuristic

methods for fixing the cut points were suggested for future improvement, such as

overlapping alignment and sliding window alignment.

Gene order alignment is a larger-scale sequence alignment. The key difference be­

tween gene order analysis and sequence analysis is that sequence analysis is at the gene

level (i.e. individual character mutations), and gene order analysis is at the chromo­

some or genome level (i.e. gene order mutations). High-throughput DNA sequencing

technology has enabled researchers to rapidly determine the genome sequences of a

wide variety of organisms, laying the fonndation for comparative genomics [15]. Gene

order analysis, sometimes called Genome sequence analysis, help scientists make sense

of diverse elements in the genome, understanding how they are organized within the

genome of each species, and characterizing the changes in genome organization dur­

ing evolution. Comparative genomics plays an important role in making inferences

and gathering information specific to the evolution of a species or genetics diseases.

It provides insights to important tasks such as identifying regions of homogeneity or

regions of genetic anomalies. The research in multiple gene rearrangement has been

the basis for development of algorithms for multiple gene order alignment [22].

There are similar complexity problems with multiple gene order alignment (or

referred as multiple genome alignment) algorithms. Besides, the existing anchor-

based gene order alignment algorithms and methods lack the parallelism properties for

64

computational speedup. As a result, a precedence graph-based consensus algorithm

was formalized for aligning two or more genome sequences, which is very original,

and was able to efficiently obtain the ancestor genome sequence for multiple genome

sequences. The algorithm argues for a potentially simpler approach for multiple gene

order alignment based on a notion of precedence derived from the canonical word

order studies in linguistics. This algorithm also possesses the parallelism properties

to be implemented in parallel for further speed improvement. However, at the current

stage, this algorithm does not consider the self-reversal of genes during the alignment

process, and thus some improvement and extension of this work needs to be done in

the future.

5.1 C ontribution

In this thesis, two levels of parallelism are considered for multiple biological sequence

alignments to accelerate the alignment processes: one is at the sequence level (aligning

the characters in a DNA, RNA or protein sequence), the other one is at the gene

order level (aligning the gene orders for a genome sequence). To the best of our

knowledge, it is a novel algorithm to progressively align the same set of multiple

sequences in parallel by building different number of phylogenetic guide trees. In the

meantime, the precedence based gene order alignment approach is a promising first

step in non-exponential gene order approaches. Its timing was shown to have a cubic

time complexity and the approach overall was shown to have a high to moderate

accuracy range. Other than anchor-based algorithms and methods, it is the first time

that a graph algorithm was developed for multiple genome (gene order) alignment.

Briefly, the contribution can be summarized as the following:

• Sequence level: multithreaded techniques together with different tree-building

techniques was deployed specifically for the multiple alignment of extremely

long sequences. It turns out tha t the multiple-tree alignment program achieves

seven times faster than the sequential program where one thread was used.

65

• Gene order level: opposed to the existing complex anchor-based algorithms and

methods for handling gene order alignments that lack parallelism properties

and cannot handle gene insertion, deletion, and duplications, a simpler and

novice precedence graph-based consensus algorithm tha t can be parallelized is

formalized to speed up the alignment process, which is also able to handle gene

insertion, deletion, and duplications.

5.2 Future D irections

5.2.1 M u ltip le Sequence A lign m en t

The multiple-tree and single-tree alignment implementations described in this thesis

presented ideal efficiency improvement for multiple sequence alignment. The opti­

mal multi-threaded approach is with two threads, where the alignment sensitivity

is retained and the speed is increased by saving half of the alignment time. How­

ever, neither of the multiple-tree implementation nor the single-tree implementation

shows very satisfying sensitivity results as the number of threads increases. There­

fore, improving their computation efficiency and in the meantime maintaining their

sensitivity performance is still an issue. The Following three ways could be considered

and investigated in the future.

1. Firstly, some more effective calculations should be found and performed to

decide the cut points.

2. Secondly, weights could be considered and given to the sequences: down weight­

ing the sequences that are very similar to other ones in the data set and up

weighting the most divergent sequences. The weights could be calculated di­

rectly from the branch lengths in the initial guide tree and the guide tree guides

all the subsequent alignments.

3. Thirdly, affine gap penalties and varying substitution matrices may be applied

dynamically in the progressive alignment.

66

5.2 .2 M u ltip le G ene O rder A lign m en t

The original method proposed in this thesis for determining precedence simply uses

the sum of relative positions of gene pairs across all gene orders to determine that

gene orders precedence value in the final precedence matrix. Though Pringle et al.

[62] has made a considerate contribution to it, there is still a lot of room for improving

its performance, such as:

1. Modifying the algorithm and making it be able to consider the self-reversal of

genes during alignment process. Some heuristics may be applied.

2. Clarifying the ways for minimum spanning tree traversal: whether increasing

pre-order traversal or decreasing pre-order traversal gives a better result.

3. Evaluating its alignment results against the reference alignments generated by

other approaches.

4. Developing a parallelized version of this algorithm for arbitrary number of

genome sequences and making it publicly available.

5. Currently this metric does not handle insertions that well so future implemen­

tations may better utilize the presence matrix to increase its overall accuracy

in the case of insertion mutations.

67

Bibliography

[1] M. I. Abouelhoda, and E. Ohlebusch. A Local Chaining Algorithm and

its Applications in Comparative Genomics. Proceedings of the 3rd Work­

shop on Algorithms in Bioinformatics, 2812:1-16, 2003.

[2] M. I. Abonelhoda, and E. Ohlebusch. CHAINER: Software for Compar­

ing Genomes. In 12th International Conference on Intelligent Systems

for Molecular Biology/3rd European Conference on Computational Bi-

obgy

[3] S. Alum , N. Futamura and K. Mehrotra. Parallel Biological Sequence

Comparison Using Prefix Computations. J. Parallel and Distributed

Computing, 63(3):264-272, 2003.

[4] A. Apostolico , M. J. Atallah , L. L. Larmore and S. MacFaddin. Efficient

Parallel Algorithms for String Editing and Related Problems. SIAM J.

Computing, 19(5):968-988, 1990.

[5] Arun K. Iyengar, Parallel Characteristics of Sequence Alignment Algo­

rithms, In the Proceedings of the ACM/IEEE conference on Supercom­

puting, Pp. 304-313, Reno, United States, 1989.

[6] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A. McClure. Hidden

Markov models of biological primary sequence information. Proc. Nat.

Acad. Sci. 91:1059-1063, 1994.

68

[7] S. Batzoglou, L. Pachter, J. P. Mesirov, B. Berger and E. S. Lander. Hu­

man and Mouse Gene Structure: Comparative Analysis and Application

to Exon Prediction. Genome Research, 10:950-958, 2000.

[8] M. P. Berger and P.J. Munson. A Novel Randomized Iteration Strategy

for Aligning Multiple Protein Sequences. Computer Applications in the

Biosciences, 7:479-484, 1991.

[9] G. Bourque and P. A. Pevzner, Genome-Scale Evolution : Reconstruct­

ing Gene Orders in the Ancestral Species, Genome Res. 12(l):26-36, Jan

2002 .

[10] M. Brudno, and B. Morgenstern. Fast and sensitive alignmetn of large

genomic sequences. Lecture notes in Computer Science. 138-147, 2002.

[11] M. Brudno, S. Malde, A. Poliakov, C. B. Do, and et. al. Global

alignment: finding rearrangements during alignment. Bioinformatics,

19(1):154-162, 2003.

[12] M. Brudno, C. B. Do, and G. Cooper. Langan and nulti-lagan: Efficient

tools for large-scale multiple alignment of genomic DNA. Genome Res.

13:721-731, 2003.

[13] L. Cai, D. Juedes and E. Liakhovitch. Evolutionary Computation Tech­

niques for mutiple sequence alignment. Congress on evolutionary com-

putation 2000, 829-835, 2000.

[14] J. Cheetham, F. Dehne, S. Pitre, A. Rau-Chaplin, and P. J. Taillon.

Parallel CLUSTAL W For PC Clusters. International Conference on

Computational Sciences and Its Applications, 2003.

[15] A. E. Darling, B. Man, M. Craven, and N. T. Perna. Multiple alignment

of rearranged genomes. Proceedings of the 2004 IEEE Computational

Systems Bioinformatics Comference (CSB 2004), 748-749, 2004.

69

[16] A. E. Darling, B. Mau, F. R. Blattner, and N. T. Perna. Mauve: multiple

alignment of conserved genomic sequence with rearrangements. Genome

Research, 14:1394-1403, 2004.

[17] David Sankoff. Historical linguistics as a stochastic process. PhD thesis,

McGill University, 1969

[18] David Sankoff, Mathematical developments in lexicostatistical theory. In

T. A. Sebeok (Ed.), Gurrent trends in linguistics 11: Diachronic, areal

and typological linguistics, 93-112. The Hague: Mouton.

[19] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White and

S. L. Salzberg. Alignment of Whole Genomes. Nucleic Acids Research

27:2369-2376, 1999.

[20] A. L. Delcher, A. Phillippy, J. Carlton and S. L. Salzberg. Fast Algo­

rithms for largescale genome alignment and comparison. Nucleic Acids

Research 30:2478-2483, 2002.

[21] J. S. Deogun, J. Yang, and F. Ma. EMEGEN: an efficient approach to

multiple whole genome alignment. The 2nd Asia Pacific Bioinformatics

Conference (APBG2004), Dunedin, New Zealand. Conferences in Re­

search and Practice in Information Technology, 29:113-121, 2004.

[22] T. Dobzhansky and A. Sturtevant, Inversions in the chromosomes of

Drosophila pseudoobscura. Genetics 23:28-64, 1938.

[23] S. R. Eddy. Multiple alignment using hidden Markov models. Third

international conference on intelligent systems for molecular biology

(IS M B). C am b rid g e E n g lan d : M enlo P a rk CA: A A A I P re ss (1995).

[24] R. C. Edgar. MUSCLE: a multiple sequence alignment method with

reduced time and space complexity. BMC Bioinformatics, 5: 113, 2004.

70

[25] R. C. Edgar. MUSCLE; multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Research 32(5):1792-97, 2004.

[26] E.W. Edmiston, N.G. Core, J.H. Saltz and R.M. Smith, Parallel process­

ing of biological sequence comparison algorithms. International Journal

of Parallel Programming, 17(3), Pp. 259-275, 1988.

[27] Jenome Gracy and Jean Sallantin. Multiple sequence alignment us­

ing anchor points through generalized dynamic programming. Proceed­

ings of Genome Informatics Workshop 1994. Universal Academic Press,

Tokyo, 1994.

[28] R. R. Gonzalez. Multiple protein sequence comparison by genetic algo­

rithms, SPIE-98, 1999.

[29] O. Gotoh. Significant improvement in accuracy of multiple protein se­

quence alignments by iterative rehnements as assessed by reference to

structured alignments. J. Mol. Biol., 264:823-838, 1996.

[30] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip (poly­

nomial algorithm for sorting signed permutations by reversals). In Proc.

27th Annual ACM Symposium on the Theory of Computing, (a): 178-

189,1995.

[31] S. Hannenhalli and P. Pevzner. Transforming men into mice (applica­

tions of comparative physical maps in molecular evolution). The pro­

ceedings of the 7th annual AVM-SIAM symposium on discrete algo­

rithms, Philadelphia: SIAM, 304-313, 1996.

[32] S. H an n en h a lli a n d P. P evzner. To cut, o r n o t to c u t (p o ly n o m ia l a l­

gorithm for sorting signed permutations by reversals). In Proc. 27th

Annual ACM Symposium on the Theory of Computing, (a):178-189,

1995.

71

[33] D. Haussier, A. Krogh, I. S. Mian, and K. Sander. Protein modeling

using hidden markov models: analysis of globins. Proceedings for the

26th Hawaii International Conference on Systems Sciences. Wailea HI

U.S.A.: Los Alamitos CA: IEEE Computer Society Press, 1993.

[34] J. Hawkins. A Performance Theory of Order and Constituency, Cam­

bridge University Press, 1994.

[35] J. Heringa. Two strategies for sequence comparison: profile-preprocessed

and secondary structure-induced multiple alignment. Comput. Chem.,

23(3-4):341-64, 1999.

[36] P. Hogeweg, B. Hesper. The alignment of sets of sequences and the con­

struction of phyletic trees: an integrated method. J Mol Evoh, 20(2):175-

86,1984.

[37] M. Hohl, S. Kurtz, and E. Ohlebusch. Efficient Multiple Genome Align­

ment. Proceedings of the Tenth International Conference on Intelligent

Systems for Molecular Biology, Bioinformatics, 18(S1):S312-S320, 2002.

[38] X. Huang, A space-efficient parallel sequence comparison algorithm for

a message passing multiprocessor, International Journal of Parallel Pro­

gramming, 18(3), Pp 223-239, 1989.

[39] R. Hughey, A. Krogh. Hidden Markov models for sequence analysis:

extension and analysis of the basic method. Computer Applications in

Biological Science, 12:95-107, 1996.

[40] M. Ishikawa, M. Hoshida, M. Hirosawa, T. Toya, O. Kentaro, and K.

N itta . P ro te in S equence A nalysis P ro g ram : M u ltip le S equence Align­

ment by Parallel Iterative Aligner. Demonstrations In t’l Conf. Fifth

Generation Computer Systems, Tokyo, 57-62, 1992.

72

[41] M. Ishikawa, M. Hoshida, M. Hirosawa, T. Toya, O. Kentaro, and K.

Nitta. Protein Sequence Analysis Program by Parallel Inference Ma­

chine. Proc. In t’l Conf. Fifth Generation Computer Systems, Tokyo,

294-299, 1992.

[42] James W. Fickett, Fast Optimal Alignment, Nucl. Acids Res. 12(1) :175-

179,1984.

[43] N. C. Jones and P. Pevzner, An Introduction to Bioinformatics Algo­

rithms, MIT Press, 2004.

[44] W. J. Kent and A. M. Zahler. Conservation, Regulation, Synteny, and

Introns in a Large-scale C. briggsae-C. elegans Genomic Alignment.

Genome Research 10:1115-1125, 2000.

[45] J. Kim, S. Pramanik and M. J. Chung. Multiple sequence alignment

using simulated annealing. Comp. Applic. Biosci., 10:419-426, 1994

[46] J. Kleinjung, N. Douglas, J. Heringa. Parallelized multiple alignment.

Bioinformatics, 18:1270-1271, 2002.

[47] J. B. Kruskal. On the shortest spanning subtree and the traveling sales­

man problem. In: Proceedings of the American Mathematical Society,

7:4850, 1956.

[48] E. Lander, J.P. Mesirov and W. Taylor, Protein sequence comparison

on a data parallel computer. In the Proceedings of the International

Conference on Parallel Processing , Pp.257-263, 1998.

[49] T. Lassmann, E. L. Sonnhammer. Quality assessment of multiple align­

ment programs. FEBS Lett., 529(l):126-30, 2002.

[50] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment

using partial order graphs. Bioinformatics, 18(3):452-64, 2002.

73

[51] H. Carrillo and D. J. Lipman. The multiple sequence alignment problem

in biology. SIAM J. Appl. Math., 48(5):1073-1082, 1988.

[52] D. Lipman, S. Altschul, and J. Kececioglu. A tool for multiple sequence

alignment. In Proc. Natl. Acad. Sci. U.S.A., 86:4412-4415, 1989.

[53] W. S. Martins, et al. A Multithreaded Parallel Implementation of a Dy­

namic Programming Algorithm for Sequence Comparison. Pacific Sym­

posium on Biocomputing, 6:311-322, 2001.

[54] C. Michener and R. Sokal. A quantitative approach to a problem in

classification. Evolution, 11:130-162, 1957.

[55] D. Mikhailov, H. Cofer, and R. Gomperts. Performance Optimization

of Clustal W: Parallel Clustal W, HT Clustal and MULTICLUSTAL:

SCR, 2001.

[56] M. Monwar, and S. Rezaei. Parallelized Multiple Biological Sequence

Alignment with MPI: The Divide-and-Conquer Approach. To appear in

the proceedings of the IMECS 2006 Conference, Hong Kong, June, 2006.

[57] B. M.E. Moret, D.A. Bader, T. Warnow, S.K. Wyman, and M. Yan.

GRAPPA: a high-performance computational tool for phylogeny recon­

struction from gene-order data. Botany 2001, Albuquerque, NM, August

12-16, 2001.

[58] B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment

approach to multiple sequence alignment. Bioinformatics, 15(3):211-8,

1999.

[59] C. Notredame. Recent progress in multiple sequence alignment: a sur­

vey. Pharmacogenomics, 3:131-144, 2002

74

[60] C. Notredame, D. Higgins, J. Heringa. T-CofFee: A novel method for

multiple sequence alignments. Journal of Molecular Biology, 302:205-

217, 2000

[61] C. Notredame, D. Higgins. SAGA: sequence alignment by genetic algo­

rithm. Nucleic Acids Res., 24:1515-1524, 1996.

[62] R. Pringle, and S. Rezaei. Precedence Based Multiple Gene Order Align­

ment. To appear in UNBC working papers in Bioinformatics, 2006.

[63] R. C. Prim. Shortest connection networks and some generalisations. In:

Bell System Technical Journal, 36:1389-1401, 1957.

[64] S. Raj ko and S. Alum. Space and Time Optimal Parallel Sequence

Alignments. IEEE transactions on parallel and distributed systems,

15(12):1070-1081, 2004.

[65] S. Ranka and S. Sahni. String Editing on an SIMD Hypercube Multi­

computer. J. Parallel and Distributed Computing, 9:411-418, 1990.

[66] S. Rezaei. Fuzzy Word Order Constraints. Constraints vs. Preferences

workshop, Poznan, Poland, 1999.

[67] S. Rezaei. Linguistic and Computational Analysis of Word Order and

Scrambling in Persian, PhD thesis, Edinburgh University, Feb. 1999.

[68] S. Rezaei, and M. Monwar. Divide and Conquer Algorithm for ClustalW-

MPI. To appear in the proceedings of the IEEE Canadian Conference

on Electrical and Computer Engineering, Ottawa, May, 2006.

[69] N. Saitou, and M. Nei. The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Molecular Biology Evol, 4(4):406-425,

1987.

75

[70] D. Sankoff and M. Blanchette. Multiple genome rearrangement and

breakpoint phylogeny. Journal of Computational Biology, (5)555-570,

1998.

[71] D. Sankoff. Historical linguistics as a stochastic process. PhD thesis,

McGill University, 1969.

[72] D. Sankoff. Mathematical developments in lexicostatistical theory. In T.

A. Sebeok (Ed.), Current trends in linguistics 11: Diachronic, areal and

typological linguistics, 93-112. The Hague: Mouton.

[73] D. Sankoff and M. Blanchette, Multiple genome rearrangement, RE-

COMB, 1998.

[74] D. Sankoff, Genome rearrangement with gene families. Bioinformatics,

15:909-917, 1999.

[75] M. Schmollinger, K. Nieselt, M. Kaufmann, and B. Morgenstern. Di-

align P: fast pair-wise and multiple sequence alignment using parallel

processors. BMC Bioinformatics, 5:128-135, 2004.

[76] V. A. Simossis, J. Kleinjung and J. Heringa. Homology-extended se­

quence alignment. Nucleic Acids Research, 33(3):816-824, 2005.

[77] P. Sneath and R. Sokal. Numerical Taxonomy. Freeman, San Francisco,

1973.

[78] Stjepan Rajko, Space and Time Optimal Parallel Sequence Alignments,

In the Proceedings of the International Conference on Parallel Process-

ing (ICPP'03), 2003.

[79] Jens Stoye. Multiple sequence alignment with the divide-and-conquer

method. Gene, 211:GC45-GC56, 1998.

76

[80] J. Stoye, S. W. Perry, and A. Dress. Improving the divide-and-conquer

approach to sum-of-pairs multiple sequence alignment. Appl. Math.

Lett., 10(2):67-73, 1997.

[81] J. Thompson, F. Plewniak, et al. BAliBASE: A Comprehensive

comparison of multiple alignment programs. Nucleic Acids Research,

27(13):2682-2690, 1999.

[82] J. D. Thompson., D. G. Higgins, and T. J. Gibson. CLUSTAL W:

improving the sensitivity of progressive multiple sequence alignment

through sequence weighting, positions-specific gap penalties and weight

matrix choice. Nucleic Acids Research, 22:4673-4680, 1994.

[83] J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G.

Higgins. The ClustalX windows interface: flexible strategies for multi­

ple sequence alignment aided by quality analysis tools. Nucleic Acids

Research, 24:4876-4882, 1997.

[84] D. G. Higgins, J. D. Thompson and T. J. Gibson. Using CLUSTAL for

multiple sequence alignments. Methods EnzimoL, 266:237-244, 1996.

[85] J. Thompson, F. Plewniak, et al. BAliBASE (version 2.0): A bench­

mark alignment database, including enhancements for repeats, trans­

membrane sequences and circular permutations, http://www-igbmc.u-

strasbg.fr/Biolnfo/BAliBASE2/, 2003.

[86] T. Treangen, and X. Messeguer. M-GCAT: multiple genome compari­

son and alignment tool. The 5th Annual Spanish Bioinformatics Con-

ference(JBI 2004), 30-33, 2004.

[87] L. Wang, and T. Jiang. On the complexity of multiple sequence align­

ment. J. Comp. Biol. l(4):337-348, 1994.

77

http://www-igbmc.u-

[88] W. Wilbur and D. Lipman, Rapid similarity searches of nucleic acid and

protein data banks, Proc. Nat. Acad. Sci. USA, 726-730, 1983.

[89] T. K. Yap, O. Frieder, and R. L. Martino. Parallel computation in bio­

logical sequence analysis. IEEE transactions on parallel and distributed

systems, 9(3);283-293, 1998.

[90] C. Zhang and A. K. Womg. A genetic algorithm for multiple molecular

sequence alignment, compt. Appl. Biosci., 13:561-581, 1997

[91] CHAINER: Software for Comparative Ge­

nomics. http://theorie.informatik.uni-ulm.de/Personen/mibrahim/chainer.html

[92] GRIMM: Genome Rearrangement Algorithms.

http://www.google.ca/firefox?client=hrefox-ar&:ls=org.mozilla:en-

US:ofRcial

[93] MALGEN: Multiple ALignment of GENomes.

http://alggen.lsi.upc.es/recerca/align/intro-align.html

[94] Mauve: Multiple Genome Alignment,

http: / / gel.ahabs.wisc.edu/mauve/

[95] MGA: Multiple Genome Aligner. http://bibiserv.techfak.uni-

bielefeld.de / mga/

[96] M-GGAT: Multiple Genome Comparison and Alignment Tool.

http://alggen.lsi.upc.es/recerca/align/m gcat/intro-m gcat.htm l

78

http://theorie.informatik.uni-ulm.de/Personen/mibrahim/chainer.html
http://www.google.ca/firefox?client=hrefox-ar&:ls=org.mozilla:en-
http://alggen.lsi.upc.es/recerca/align/intro-align.html
http://bibiserv.techfak.uni-
http://alggen.lsi.upc.es/recerca/align/mgcat/intro-mgcat.html

