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Abstract

Lossless binary image compression is desirable for the enormous amount of images that are 
stored and transmitted in a wide range of applications. In this thesis, we present a new 
efficient algorithm for lossless binary image compression. This algorithm consists of two 
modules: Direct Redundancy Exploitation and Improved Arithmetic Coding. It is referred 

to as the Two Module Based Algorithm (TMBA).

The Direct Redundancy Exploitation module exploits the two-dimensional redundancy 

of an image by removing identical consecutive rows and columns of pixels. Binary reference 
vectors are generated to indicate the exact locations where removals take place so that 
the removed rows and columns of pixels can be recovered in the decoding process. In the 
Improved Arithmetic Coding module, the Markov Model order 2 is applied to the reference 
vectors. A new Static Binary Tree Model is introduced to efficiently model the Reduced 
Blocks which are produced by the Direct Redundancy Exploitation module. The modelling 
processes provide the probability distributions which are then used for arithmetic coding.

The Two Module Based Algorithm has demonstrated excellent compression performance. 

The simulation results showed that the proposed algorithm well outperformed the G3 and 
G4 coding schemes. In addition, the proposed algorithm has also yielded an increase of 

compression performance in comparison to the JBIG1 and JBIG2 standards.
The Two Module Based Algorithm is an efficient method for lossless binary image com

pression. It offers an alternative approach other than the industrial standards. More impor
tantly, it has the comparable or better compression performance than the current industrial 
standards.
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“Imagination is more important than knowledge...” 

— Albert Einstein (1879 - 1955)
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Chapter 1

Introduction

In the last decade we have witnessed an information technology revolution which is still 
under way. The demands for data storage and communication are increasing tremendously. 
While many research efforts have been made to increase the storage capacity and commu
nication bandwidth, many research efforts are also needed for new compression algorithms. 
Lossless binary image compression is desirable for many applications, such as digital li
braries, newspaper archives, map archives, fingerprint database, facsimile, etc.

In this thesis, we introduce a new highly efficient algorithm for lossless binary image 
compression. The proposed algorithm consists of two modules: (1) Direct Redundancy 

Exploitation (DRE); and (2) Improved Arithmetic Coding (IAC), that we will refer to as 
the Two Modules Based Algorithm (TMBA). The DRE module is a novel method which 
exploits the two-dimensional redundancy of an image by removing the identical consecutive 
rows and columns of pixels. Binary reference vectors are generated to indicate the exact 
locations where removals take place so that the removed rows and columns of pixels can be 
recovered accordingly in the decoding process. In the Improved Arithmetic Coding module, 
the Markov Model order 2 is applied to the reference vectors. A new Static Binary Tree 
Model is introduced to efficiently model the Reduced Blocks which are produced by the 

Direct Redundancy Exploitation module. The modelling processes provide the probability 

distributions which are then used for arithmetic coding.

1.1 Thesis Contributions

There are three major contributions in this thesis. Here, a brief discussion will be made of 
each.

1
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CHAPTER 1. INTRODUCTION 2

The first contribution is the development of Direct Redundancy Exploitation module. 

DRE module is a new method to exploit two-dimensional redundancy of an image. It 
substantially reduces the size of a image. It also forms the “stair” property on the resulting 
data which can be modelled and coded efficiently by the aithmetic coder and the new context 
modelling method.

The second contribution is the development of the Static Binary Tree Model. It is 
specially designed to perform the modelling process on the data with “stair” property. The 
statistical information provided by the new modelling process is proven to be reliable in 

increasing the efficiency of arithmetic coding.
The third contribution is that the Two Module Based Algorithm offers us a new alterna

tive method to compress binary images. More importantly, it allows comparable or better 
compression performance than the current standards in compression.

1.2 Thesis Outline

This thesis is organized as follows:
Chapter 1 is the introduction. The contributions and the outline of the thesis are given 

in this chapter.
Chapter 2 discusses the background material of binary images compression. Topics 

include entropy, Huffman Coding, Run Length Coding, Arithmetic Coding and context 
modelling. The definitions and notations used throughout the thesis are also listed in this 
chapter.

In Chapter 3, a new algorithm for binary image compression is proposed. The complete 
algorithm is discussed in detail. The two modules which make up the algorithm are intro
duced sequentially. The compression results of the proposed algorithm are compared with 

G3, G4, JBIG1 and JBIG2 standard compression schemes.
In Chapter 4, we make conclusive remarks on the study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

Background

A digital image can be represented as a matrix where each entry of the matrix represents 
a pixel value. A binary image is a digital image that has only two possible types of pixels, 

black and white, which are represented by l ’s and 0’s respectively. For example, in Figure

2.1 the image of teapot is a binary image, where each cell of the grid is considered as a pixel. 
It can be represented as a 16 x 16 matrix Iteapot in Equation (2.1).

Figure 2.1: Teapot Image

3
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CHAPTER 2. BACKGROUND 4

*  teapot

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 O' 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0

0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(2 . 1)

2.1 Definitions

In this section we introduce some definitions and notations which are being used throughout 

the thesis.

Definition 1: Let I  be a matrix, then:

• I { i , j ) denotes the element in row i and column j  in matrix I.

• I(i : k , j ) denotes the elements from row i to k in column j  in matrix I.

• I(i : k , j  : I) denotes the sub-matrix from row i to k, from column j  to I in matrix I.

• I(i : fc,:) denotes the sub-matrix from row i to k of all columns in matrix I.

• I(i : end,j : end) denotes the sub-matrix from row % to the last row, from column j  
to the last column in matrix I.
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CHAPTER 2. BACKGROUND 5

Definition 2: Let S  =  { X \ ,X 2 , • • ■) be a data sequence, each symbol of which belongs to 
a finite alphabet A  — {ai, a,2 , ■ ■ ■ ,an}. For each ai, aj £ A, then:

• P(a,i) denotes the probability for the occurrences of a* in source S.

• P{a,i\aj) denotes the probability for the occurrences of cq, provided aj is the immedi
ately preceding symbol.

• P(ai\aj ■ ■ ■ ak) denotes the probability for the occurrences of ai, provided aj • • • a*, is 
the immediately preceding symbols sequence.

Definition 3: Compression Ratio is defined as:

. Number of Bits of Original Data — Number of Bits of Compressed Data Compression Ratio = -------------------------_ _ _ _ _ _ _ _ _ _ -------------------------

Definition 4: Compression Rate is the average number of bits required to represent a single 
pixel, which is defined as:

. Number of Bits of Compressed Data
Compression Rate = Number Qf pixdg of Qriginal Data

2.2 Image Compression

Image compression, also known as image coding, is a technique that reduces the amount of 

data to represent a digital image. The ultimate goal of image compression is to minimize 
the required storage space or transmission time for a given channel capacity. To achieve 
that, certain properties of an image, especially statistical properties, are used to exploit the 

redundancy of the image.
Image compression is often referred to its compression algorithm. In fact, two parts 

of a compression algorithm are compression and reconstruction (decompression), as shown 

in Figure 2.2. The compression part, also known as the encoding, takes an input image 
X  and generates a representation X c that requires fewer bits. The reconstruction part, 
also known as the decoding, operates on the compressed representation X c to generate 
the reconstruction image Y. If X  and Y  are identical, we refer to the algorithm as lossless 
compression. If Y  is different from X ,  we refer to it as lossy compression. Lossy compression 
yields higher compression ratios at the price of quality reduction of the reconstructed image. 
This thesis addresses issues in lossless binary images compression.
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CHAPTER 2. BACKGROUND 6

>  001001001
100101000

Y
compressed data

compression reconstruction

original image reconstructed image

Figure 2.2: Compression and Reconstruction

2.3 Entropy

In 1948, Claude E. Shannon [52] formulated Information Theory. He established that there 

is a fundamental limit for lossless data compression. This limit, called entropy [14], is 
denoted by H. The value of H  can be estimated from the information source.

In this section, we introduce zero order entropy and first order entropy. We will discuss 

the different coding schemes and their associated entropies in subsequent sections. Higher 
order entropies are given in Hankersson et al. [16].

2.3 .1  Zero O rder E ntropy

Shannon defined entropy in terms of a discrete random event, known as zero order entropy, 
which is described as follows:

Let S  = (W , X'i- ■ ■ •) be a data sequence, where each entry X  belongs to a finite alphabet 

A  =  ( a i , a-2 , • • •, an}. For each a, £ A, P(di) is the probability1 for the occurrences of ai in 
source S. Here,

P  = {P(a,i)\i = 1, 2, - --,n} (2 .2 )

defines the probability distribution on A.
Thus, the zero order entropy of S  is given by

Ho(S)  =  ^  P(cH) log2 =  - 2 2  P M  log2 P M  (2.3)

1The probability is estimated by the number of times ai appears in source S divided by total number of 
entries of source S
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CHAPTER 2. BACKGROUND 7

Consider the matrix representation of the image I  teapot in Equation (2.1). R eapot i s  a 
binary image in which pixels have two possible values, 0 and 1. Let N(0) and N (  1) denote 

the number of 0’s and l ’s in I  teapot respectively.

P m  _  w (°> n , ) =  J L  ( 2 4 )
' '  « ( 0 ) +  W ( l ) '  JV(0 ) +  J V ( 1)

and,

JV(0) =  184 N (l)  =  72

hence,

P(0) =  0.719, P ( l)  =  0.281 

Now applying Equation (2.3) results in the zero order entropy

n
H(){Reapot)  =  “’ E(aj) log2 P(ftj)

i—1
=  -{P (0 )log2P (0 )+ P ( l) lo g 2P(l)}

=  -{0.719 x log2(0.719) +  0.281 x log2(0.281)}

=  0.857 (2.5)

In this example, nothing more than the probability distribution of each symbol in the 
alphabet was used. The correlations and dependencies between neigbouring pixels were 

disregarded. The correlations and dependencies can be exploited by the Markov Model [15], 
from which first order entropy is derived.

2.3 .2  F irst O rder E n tropy

In first order entropy, probabilities are dependent on the immediately preceding symbol 
only. The first order entropy is defined as

n n
Hr(S) =  - ^ P ( o j ) ^ P ( f l i |fli )log2 P(ai |flj ) (2.6)

i=i j =i

where P(ai\aj) is the probability of aj provided that a:j is the immediately preceding symbol.
F o r e x a m p le , c o n s id e r  a  b in a r y  im a g e  which has o n ly  two types of pixels, black and white.

We know there are correlations between neighbouring pixels. Therefore the occurrence of a 
white pixel as the next observation depends, to some extent, on whether the current pixel is 
white or black. As a result, we can model the occurrences of pixels as a Markov Chain. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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I’fh >. I

P(w\b)

Figure 2.3: Two-state Markov Model for Binary Images

Figure 2.3, two states Sb and Sw are the states of black and white pixel, respectively, and
either Sb or Sw is the current state. Let P(SW) and P (Sb) be the probabilities P(<+) and
P(b\w), P(w\w), P(w\b) and P(b\b) be the probabilities P{a,i\a,j) in Definition 2. Thus, the 

first order entropy of I  teapot can be as follows:

P(SW) = P ( 0) =  0.719, P(Sb) = P ( 1) =  0.281

and

P{w\w) =  P(0|0) =  0.929, P(b\w) =  P(1|0) =  0.071 

P(w\b) = P(0|1) =  0.181, P(b|6) =  P( l | l )  =  0.819

Applying the definition of the first order entropy in Equation (2.6), we obtain the first 

order entropy of I  teapot-

n n
H i  ( Iteapot) =  —  y  ,  P ((,'i) y  )  P {aj  | f l j )  f o §2 \(l{)

i = 1 j = 1

= —(P(0) [P(0|0)ZOfl2(P(0|0)) +  P(l|0)fo<?2(P(l|0))]

+P(1) [P(0|l)IOff2(P(0 |l)) +  P(l|l)/o<?2(P (l|l))]}

=  -{0.719 x [0.929 x log2{0.929) +  0.071 x log2(0.071)]

+0.281 x [0.181 x log2{0.181) +0.819 x log2(0.819)]}

= 0.458

Compared with the zero order entropy, the first order entropy of 0.458 bits per pixel is about

only a half of 0.857 bits per pixel. This is because the redundancy between the current pixel
and its immediately preceding pixel is modelled.
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CHAPTER 2. BACKGROUND 9

Entropy coding is a data compression approach which exploits the nonuniformity of the 
probability distribution of the data and encodes them using a variable length code. A typical 

example of this approach is the well-known Huffman Coding.

2.4 Huffman Coding

Huffman Coding [21] is one of most common entropy encoding algorithms that is widely used 
for lossless data compression. The main idea behind Huffman Coding is to use the shorter 

codewords to represent the symbols that occur more frequently and longer codewords to 
represent the symbols that occur less frequently. In other words, variable-length code is 
assigned to each symbol based on its probability of occurrence.

If Huffman Coding is directly applied to encode a binary image, no compression will be 
gained. This is because a binary image only consists of two types of pixels, black and white, 
which form an alphabet consisting of two symbols: 0 and 1. Regardless of whether one type 
of pixel occurs more frequently than the other, at least one bit is required to represent each 
type of pixel. But the entropy calculations for a typical binary image demonstrates that 
compression should be expected. One way to achieve this is to group neighbouring pixels 
together so that a larger alphabet may be used, which is explained in this section. Another 

approach is to consider runs of symbols, i.e. Run Length Coding, and will be explored in 

the next section.
Suppose we group four neighbouring pixels together in an image, then we should form a 

larger alphabet A  which consists of a maximum number of 24 possible symbols. By applying 
the grouping on image Iteapot in Equation (2.1), we obtain a larger alphabet A group which 
consists of nine symbols as follows:

Agroup = {0000,1000,0110,0011,1110,0111,0001,1010,1111}

For simplicity, a letter ai is mapped to a symbol in the alphabet A group, and P{at) is 

the probability of occurrence of the symbol ai. This is done for all symbols in A group. The 
probabilities are sorted in descending order as shown in Table 2.1.

One way to generate the Huffman Coding is to build a binary Huffman tree in which all 
external nodes correspond to the symbols. The binary Huffman tree for alphabet A group is 
sh o w n  in  F ig u re  2 .4  a n d  i t  is c o n s t ru c te d  b y  th e  fo llow ing  s tep s:

Step 1. Select the two parentless nodes with the lowest probabilities. Between those two 
nodes, assign 1 to the lower probability and 0 to the other.
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CHAPTER 2. BACKGROUND

Table 2.1: the Initial Alphabet of Nine Symbols

10

Letter Symbol
a i 0000
« 2 1111
<23 1110
<24 0011
05 0111
« 6 1010
(27 1000
0 8 0110
Og 0001

Occurrence -P(cq)
40 0.625
10 0.156
4 0.063
3 0.049
2 0.031
2 0.031
1 0.015
1 0.015
1 0.015

Step 2. Create a new node which is the parent of those two lowest probability nodes. 

Step 3. Assign the new node a probability equal to the sum of its children’s probabilities. 

Step 4. Go to Step 1 until there is only one parentless node left in the tree.

— * - (1. 000)

(0,125)

Figure 2.4: Build the Binary Huffman Tree

Once the Huffman tree is constructed, the codeword for each symbol can be obtained 
by traversing the tree from the root node to the external node corresponding to the symbol. 

Table 2.2 shows the codeword for each symbol in alphabet A group .
Based on the length of each codeword and the number of occurrences of each symbol,
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Table 2.2: the Codeword for Each Symbol

Letter Symbol Occurrence P(Oi) Codewords
ai 0 0 0 0 40 0.625 0

1 1 1 1 1 0 0.156 11

1 1 1 0 4 0.063 1 0 0 0

04 0 0 1 1 3 0.049 1 0 1 0

«5 0 1 1 1 2 0.031 1 0 0 1 0

0 6 1 0 1 0 2 0.031 1 0 0 1 1

07 1 0 0 0 1 0.015 1 0 1 1 1

08 0 1 1 0 1 0.015 1 0 1 1 0 0

09 0 0 0 1 1 0.015 1 0 1 1 0 1

we can calculate the number of bits required to encode Iteapot as follows:

Compressed Iteapot = 1 x 4 0  +  2 x 1 0  +  4 x 4  + 4 x 3  +  2 x 5
+2 x 5  +  l x 5  +  l x 6 + l x 6  

=  125 bits.

Therefore the resulting compression rate is about 125/256 = 0.488 bits/pixel as it should 
be under the bound of the entropy for Huffman Coding. The entropy is calculated as

n

H h u f f m a n i ^ t e a p o t ) =  “  J 2 p (a i ) l ° E 2 P (a i)  (2.7) 
i= 1

and P(a,i) is given in Table 2.1, thus

Hhuffmani.1 teapot) =  -(0.625)(log20.625) -  (0.156)(log20.156) -  (0.063)(log20.063) 
-(0.049)(log2 0.049) -  2(0.031)(log2 0.031) -  3(0.015)(log2 0.015)

=  1.890 bits/symbol 
= 0.472 bis/pixel.

The above calculation confirms that the compression performance of Huffman Coding is 
bounded by its entropy.

The decoding procedure of Huffman Coding is straightforward. For the appearance of 
ea c h  H u ffm a n  c o d e  in  th e  c o m p re sse d  s t r e a m , th e r e  is a  m a tc h in g  sy m b o l. T h e  o r ig in a l 

data sequence can be recovered by replacing each Huffman code with its matching symbol, 
which leads to the reconstruction of the image.
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Huffman Coding has a number of variations, such as Adaptive Huffman Coding [6 ] [29] 
which calculates the frequencies dynamically based on recent actual frequencies of the sym
bols in the source data, Length-limited Huffman Coding [27] which minimizes the weighted 

path length to gain better compression, and others [56] [13] [26].

2.5 Run Length Coding

Run Length Coding (RLC) is widely used in binary image compression as well as in other 

data compression applications. Run Length Coding identifies a sequence with repeated 
symbols, replacing it with a single symbol followed by the number of times the symbol is 
repeated. Run Length Coding is a lossless coding scheme. It is capable of achieving high 
compression performance comparable to Huffman Coding and Arithmetic Coding.

2.5 .1  P r in c ip le  o f  R u n  L en gth  C od in g

There are various approaches to Run Length Coding, however, the principle behind them 

is the same. The principle is to replace the consecutive identical symbols (which is called a 
run) with a single symbol followed by the count number of the consecutive identical symbols. 
For example, given the following data sequence

0000000011000000111100

it can be encoded by Run Length Coding as

08,12,06,14,02,

where the code consists of two part: the first part is the symbol which makes up the run; 
the second part is the count number to specify the number of symbols within the run. In 
this example, the first run is 0’s and there are 8  of them. Therefore, the codeword 08 is used 
to encode the first run. Eventually codeword 08 needs to be converted to binary format. 

Because there are only 0’s and l ’s in the data sequence, they are directly employed to specify 
the symbol of the run. 8  is converted to the binary format 111.2 Table 2.3 shows the code 

word for each run of the previous data sequence.
In the above example, we use three bits to represent the length of each run. We know 

that 23 — 8 , therefore, it is only able to code a run with size of eight or less. If the size

2 A run with the length of zero does not exist, as a result binary value 000 is never used. Therefore, we
use binary value 000 to represent decimal value 1, binary value 001 to represent decimal value 2 and so on.
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Table 2.3: the Codeword for Each Run

Orders Runs
Decimal Binary

symbols Codewords symbols Codewords
1 0 0 0 0 0 0 0 0 0 8 0 1 1 1

2 11 1 2 1 0 0 1

3 0 0 0 0 0 0 0 6 0 1 0 1

4 1 1 1 1 1 4 1 0 1 1

5 0 0 0 2 0 0 0 1

of a run is over eight, we need to break it into two or more runs. If the size of a run is 
much less than eight, we still need to encode it with three bits, which in fact should have 

been encoded in less than three bits. Both of the above cases create a significant amount of 
overheads. Techniques have been introduced to solve this problem, which include: adaptive 
coding [20] where the maximum length of a run may vary adaptively; optimum coding [35] 
which finds the optimum fixed run length.

2.5 .2  P rob ab ility  B ased  R u n  L en gth  C od ing

Probability Based Run Length Coding is a combination of Run Length Coding and Huffman 
Coding. It assigns variable length codewords to the runs based on the probability distri
bution. This technique is used in ITU-T3 facsimile compression standards: T.4 (Group 
3) and T .6  (Group 4) [32], which are also referred to as modified Huffman coding (MH) 
and modified modified READ (MMR) [49], MMR has a better compression performance 
than MH, because MMR exploits the two dimensional correlations while MH only exploits 
the one dimensional correlations. Besides MMR, coding schemes such as Block-run Run- 
length Coding [59] and Vector Run-length Coding [57] also make use of the two-dimensional 
correlations to yield high compression performance.

Consider the image Iteapot from Equation (2.1). A raster scan of the image produces 
such a data sequence {000000 • • •}. Table 2.4 shows the probability distribution of each run 

of the data sequence. Huffman Coding is applied so that a unique codeword is assigned to 
each run.

The codeword alone is not adequate to encode a run. A 0  or 1 must be given before

3ITU-T is one of four permanent parts of the International Telecommunications Union. It was also known 
as the Consultative Committee for International Telephone and Telegraph (CCITT)
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Table 2.4: Run Length Probability Distribution for I  teapot

Run Length Occurrences Probabilities Codewords
1 6 6/27 1 0

5 5 5/27 11

7 4 4/27 0 0 0

2 2 2/27 0 0 1 0

9 2 2/27 0 0 1 1

3 1 1/27 0 1 0 0 0

6 1 1/27 0 1 0 0 1

8 1 1/27 0 1 0 1 0

1 0 1 1/27 0 1 0 1 1

11 1 1/27 0 1 1 0 0

12 1 1/27 0 1 1 0 1

56 1 1/27 0 1 1 1 0

69 1 1/27 0 1 1 1 1

the codeword to indicate whether such a run is composed of 0’s or l ’s. Therefore, the total 

number of bits to encode Iteapot is

Compressed Iteapot = ( 6  +  2  x 6 ) +  (5 +  2  x 5) +  (4 +  3 x 4) +  (2  +  4 x 2 ) +  (2  +  4 x 2 )
+(1 +  5 x 1) +  (1 +  5 x 1) +  (1 +  5 x 1) +  (1 +  5 x 1)

+(1 +  5 x 1) +  (1 +  5 x 1) +  (1 +  5 x 1) +  (1 +  5 x 1)
= 117 bits.

Therefore, the resulting compression rate is about 117/256 =  0.457 bits/pixel as it should 
be under the bound of the entropy. The entropy is calculated as

n
H rlc(Iteapot)  =  1  -  P (ri) l o g 2  ^ ( d )  ( 2 . 8 )

1 = 1

where, 1 is the extra bit to specify the symbol of the run, r* is a run and n is the total 
number of r*. Thus,

Hric(Iteapot) = 1 -  (6/27)(log2(6/27)) -  (5/27)(log2(5/27)) -  (4/27)(log2(4/27)) 
-2 (2 /27 )(log2(2/27)) -  8(l/27)(log2(l/27))

=  4.306 bits/run

Because there are total number of 27 runs in the image Iteapot, we expect a minimum 
of 4.306 x 27 =  116.262 bits to encode the entire image. Therefore, we can also state
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Hrlc (Iteapot) follows:

Hric{heapot) =  116.262 bits/256 pixels
=  0.454 bits/pixel

The actual compression rate at 0.457 bits/pixel is bounded by the entropy at 0.454 
bits/pixel. We observe that the compression rate and the entropy are very close. This is 

because both the statistical properties and the one-dimensional correlation of the image 

are well exploited. We say it is a one-dimensional correlation because the data source is 
obtained from raster scan order. Run Length Coding such as Block-run Run-length Coding 

[59], or Vector Run-length Coding [57] makes use of the two-dimensional correlation between 
adjacent lines of pixels, which yields even a higher compression rate.

In the above example, the run length set and its probability distribution is known in 
advance to build the Huffman codewords. In memoryless data source this is not possible. 
Alternative Run Length Coding schemes such as Golomb Coding [12], Rice Coding [45] and 
adaptive truncated run-length coding [55] which use prefabricated codewords to encode the 

runs, also yield excellent compression performance.

2.6 A rithm etic Coding

Arithmetic coding (AC) is one of the most efficient coding schemes in data compression. It is 
adopted in a variety of lossless and lossy compression applications, such as H.264/AVC [30] 
[46], MPEG [11], JPEG2000 [40], JBIG [39], etc. The development of Arithmetic Coding is 
well discussed in Sayood [50].

In comparison to the Huffman Coding and Run Length Coding, Arithmetic Coding 
overcomes the constraint that an input symbol is encoded with a specific codeword. Instead, 
it encodes the entire data sequence into a single decimal number C, 0.0 < C  < 1.0. For 
example, we can choose a decimal number 0.692 • • • to represent the image Iteapot• This is 
possible, because there are infinitely many decimal numbers in the interval [0.0,1.0)4. In 

order to do this, we need to associate the data sequence with a designated decimal number. 

The relationship between the data sequence and the designated decimal number can be 
described by a function which maps the entire data sequence to a unique decimal number 

C. This function is given by

c = fac{S) (2.9)

4[0.0,1.0) is the range between 0.0 and 1.0, in which, 0.0 is included and 1.0 is excluded
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where S  is the data sequence. Function f ac is a one-to-one function.

Since the Arithmetic Coding is adopted in the proposed algorithm, the coding scheme 
will be discussed in detail in Section 3.2.2.

2.6 .1  F in ite  C on tex t M od ellin g

Finite context modelling assigns a probability to a symbol based on the context where the 
symbol resides. A good model will admit useful statistical information which can be utilized 
by Arithemtic Coding to achieve better compression performance.

Figure 2.5: Binary Image I t r a i n

The simplest finite context model is the order 0 model, in which the probability of 

each symbol is independent from any previous symbols. It is calculated by the number of 

occurrences of the symbol divided by the total number of symbols in the data sequence. 

For example, consider image Itrain in Figure 2.5. The size of Itrain is 400 x 700 and the 
total number of pixels is 280,000. The numbers of occurrences of 0 and 1 are 174,995 and 
105,005 respectively. Therefore, the probability distribution of the order 0 model of image 

I t r a i n  i®

p(0) =  L ^ *  0.625 and P ( l)  =  ^  =  0.375.
v '  280,000 v '  280,000

For the order 1 model, the context of a symbol covers its one preceding symbol. The 
probability of a symbol is dependent on its immediately preceding symbol. Likewise, the 
context of the order 2  model covers two preceding symbols; the context of the order n model 
covers n  preceding symbols.
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In image Itrain, there are 174,994 contexts where 0  is the immediately preceding symbol, 

in which, 169, 631 contexts have 0 as the current symbol and 5,363 contexts have 1 as the 
current symbol. There are 105,005 contexts where 1 is the immediately preceding symbol, 

in which, 5,363 contexts have 0 as the current symbol and 99,642 contexts have 1 as the 

current symbol. The order 1 probability distributions of image Itrain is calculated as follows:

P(0|0) =  1 l 9.63] = 0.969, P(1|0) =  =  0.031v 1 1 174994 v 1 '  174994

P (0 |l)  =  ^ - =  0.051, P ( l |l )  =  ^  =0.949  
 ̂ 1 ; 105005 v 1 ; 105005

Table 2.5 shows the compression performance of Arithmetic Coding using order 0 and 

order 1 models. It is observed that the order 1 model produced much better results than 
the order 0 model. It is significantly important to have a favorable model to obtain a high 
compression ratio. As it is stated in [37], “Improvements to the model will yield improved 
compression effectiveness, that is, a decrease in the size of the encoded data” .

Table 2.5: the Compression Results of order 0 and order 1 on Itrain

Itrain (400 X 700) order 0 order 1

compression size(bits) 268220 65390
compression rate(bpp) 0.958 0.234
compression ratio(%) 4.2 76.6

2.6 .2  A d ap tive  M od ellin g

From the previous example, it seems logical that as the order of the model increases, the 
compression ratio ought to improve. In fact, this is not true, because the overhead increases 

as well. The overhead is the probability distributions to be sent from the encoder to the 
decoder.

Table 2.6 shows the possible number of contexts from order 0 to order 10, as well as the 
number of bits required to encode the probability distributions, provided that the probability 
is rounded to three decimal places and encoded in 10 binary bits. It is shown that the number 
of bits required to encode the probability distributions increases exponentially while the 
order of the model increases.
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Table 2.6: the Number of Bits Required to Code the Probability Distributions

orders number of contexts number of bits
order 0 2 ° 10

order 1 2 1 2 0

order 2 2 2 40
order 3 2 3 80
order 4 2 4 160
order 5 2 5 320
order 6 2 6 640
order 7 2 7 1280
order 8 2 8 2560
order 9 2 9 5120
order 1 0 2 10 10240

It is a contradiction that on one hand we want to increase the order of the model to 
obtain more compression; on the other hand we want to keep a relatively small amount 
of bits to encode the probability distributions. Adaptive modelling provides an elegant 
solution. Under adaptive modelling, the encoder does not need to send the probability 
distributions to the decoder. The decoder estimates the probability distributions. Provided 

that the encoder and the decoder follow the same procedures, they should estimate the 

same probabilities. Therefore, all the probabilities are estimated independently during the 
processes of encoding and decoding.

When the encoder receives a new input symbol, it simply encodes it based on the current 
existing probabilities. After that, the count of the symbol is updated, which leads to the 
update of the probabilities. The updated probabilities are used to encode the next symbol. 
Since the value of the new symbol is known to the encoder before it is encoded, the encoder 
should be able to update the probabilities and encode the new symbol using the updated 

probabilities. However, this is restrictive, because the decoder is unable to carry out the 

exactly same procedure. The decoder cannot update the count of the symbol and its prob
ability without knowing the value of the symbol. Thus, the decoder must first decode the 
sy m b o l b a s e d  o n  th e  c u r r e n t  e x is t in g  p ro b a b il i t ie s  a n d  u p d a te  th e  p ro b a b i l i t ie s  a f te rw a rd s . 

As a result, the encoder must proceed in the same fashion.
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2.6 .3  T h e JB IG  Standards

Arithmetic Coding is the coding scheme recommended by the Joint Bi-level Image Pro
cessing Group (JBIG ) 5 as part of JBIG [23], the international standard for binary image 
compression.

JBIG uses the arithmetic coder: the QM-Coder [43], patented by three organizations: 
IBM, Mitsubishi, and Lucent. The QM-coder uses low precision, rapidly adaptable proba
bility prediction combined with a multiply-less arithmetic coder. The probability prediction 
is intimately tied to the interval calculations necessary for the Arithmetic Coding. The 

probability prediction is based on the previous 1 0  pixels on current and previous lines of 
the pixels. Two different templates used in JBIG are shown in Figure 2.6 and Figure 2.7. 

In both templates ‘C’ is the pixel currently being encoded and the previous 10 pixels of ‘X’ 
are used to build the context. Therefore, there is a total number of 210 =  1024 different 
contexts which leads to 1024 probability distributions. JBIG encodes each pixel using the 

context for that pixel to determine which of the 1024 probability distributions is applied to 
encode the pixel. [54]

X X X
X X X X X
X X c

Figure 2.6: JBIG Context Modelling Template 1

X X X X X X
X X X X c

Figure 2.7: JBIG Context Modelling Template 2

JBIG2 [39] is the latest international standard for binary image compression. It was 
released as the ITU T .8 8  in 2000, and ISO/IEC 14492 in 2001. With the presence of

5JBIG is a joint experts group of the International Standard Organization (ISO), International Elec
trotechnical Commission (IEC), and the Consultative Committee on International Telephone and Telegraph
(CCITT) under the International Telecommunications Union (ITU), which is a part of the United Nations.
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JBIG2, the original JBIG compression scheme is often referred as JBIG1. Unlike JBIG1 
which encodes an image uniformly, the JBIG2 decomposes an image into several regions 
and encodes each region separately with different coding schemes. For example, the symbol 

coding is applied on a text region, the halftone coding is applied on a halftone region. As 
a result, JBIG2 provides a better compression performance over JBIG1. The coder used in 

JBIG2 is the MQ-coder [49], which is technically different from the QM-coder of JBIG1, 
JBIG2 is patented by two organizations: IBM and Mitsubishi.

JBIG2 has another advantage: the capability of lossy, lossless, and lossy-to-lossless com
pression. JBIG2 is the first international standard that provides for lossy compression; the 
existing standards are strictly lossless. [18] Although JBIG1 also supports lossy compres

sion, the lossy image produced by JBIG1 has significantly lower quality than the original 
image. JBIG2 is capable of lossy compression at much higher compression ratios than the 

lossless ratios of the existing standards, with almost no visible degradation of quality. Since 
this thesis addresses lossless binary image compression, all data provided in this thesis are 
based on lossless compression.
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Chapter 3

The Proposed A lgorithm

In this chapter, a new efficient algorithm for lossless binary image compression is presented. 
The new algorithm consists of two modules: (1) Direct Redundancy Exploitation (DRE); 
and (2) Improved Arithmetic Coding (IAC), that we will refer to as the Two Modules Based 
Algorithm (TMBA). The DRE module is a novel method which exploits the two-dimensional 
redundancy of an image by removing the identical consecutive rows and columns of pixels. 
Binary reference vectors are generated to indicate the exact locations where removals take 

place. In the IAC module, the Markov Model of order 2 is adopted to model the reference 
vectors. A new Static Binary Tree Model is introduced to efficiently model the Reduced 

Blocks. Arithmetic coding is applied based on the probability distributions provided by 
these two models. Figure 3.1 shows the overview of the proposed algorithm.

DR E M o d u le  IAC M od u le

B inary
Im age ©

06 C l

C om p ressed
Data

Figure 3.1: The Proposed Two Modules Based Algorithm
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3.1 Direct Redundancy Exploitation (DRE)

The Direct Redundancy Exploitation module is a new method which efficiently exploits the 

two-dimensional redundancy of an image by removing the identical consecutive rows and 

columns of pixels. Binary vectors are generated to indicate the exact locations of the re
moved rows and columns of pixels. These binary vectors are referred to as reference vectors. 
The DRE module comprises three parts: (i) Margin Elimination; (ii) Macro Redundancy 
Exploitaton; (iii) Micro Redundancy Exploitation.

3.1 .1  M argin  E lim in ation

Binary images are most likely to have blank spaces bordering around the objects of the 

images. The blank spaces can be either black or white and they are referred to as margins in 

this thesis. Margin Elimination is the process of cropping out the margins from the original 

image, which results in a smaller image. Therefore, the image is going to be compressed at 

a reduced size, and it leads to a better compression performance.
Consider an input image I  with the size of N  x M. Margin Elimination removes the 

margins on the top, bottom, left and right of the objects. We can find what pixels the 
margins are composed of by finding the first pixel value of the image, 1(1,1). If 7(1,1) =  1, 
we consider the margins are black. If 7(1,1) =  0, we consider the margins are white. 
Therefore, margins are defined as follows:

Top Margin — 7(1 : t — 1,:) (3.1)

where, t is the row coordinate of the first row, from top to bottom, containing one or more 
pixels the values of which are different from the value of the first pixel 7(1,1). For example, 
if 7(1,1) =  0, we need to locate the first row containing 1 or l's , and t is its row coordinate.

Bottom Margin  =  7(6 +  1 : N , :) (3-2)

where b is the row coordinate of the first row, from bottom to top, containing one or more 
pixels the values of which are different from the value of the first pixel 7(1,1).

L e f t  Margin — 7(:, 1 : 1 —1) (3.3)

where I is the column coordinate of the first column, from left to right, containing one or 
more pixels the values of which are different from the value of the first pixel 7(1,1).
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Right Margin  =  /(:, r  +  1 : M) (3.4)

where r  is the column coordinate of the first column, from right to left, containing one or 

more pixels the values of which are different from the value of the first pixel 7(1 ,1 ).
Upon the identification of each margin, Margin Elimination can be carried out by crop

ping the image I  as follows:

Imargins = I(t  '■ b,l : r) (3-5)

where the size of Imargins i s n x m  and n = b — t + l ,m  = r — I + 1. The coordinates: (t, I) 
and (b, r) to specify where the new image Imargins lies must be saved for the reconstruction 
of the original image. Figure 3.2 shows the process of Margin Elimination applied on image

Imotorcycle'

M argin Elim ination

size  = 2 0 0  x  2 0 0  size = 9 9  x  190

Figure 3.2: Margin Elimination on Image I motorcycle

Margin Elimination is the process of removing the margins from an image 7, which 

leads to a new image Imargins• From this step on, Imargins is considered as the image to be 
compressed.

3.1 .2  M acro R ed u n d an cy  E x p lo ita tion

The objective of Macro Redundancy Exploitation is to further reduce the size of the image. 
It exploits the redundant spaces between two neighbouring rows and columns of pixels of 
an image. It removes the rows and columns of pixels which are identical to their immediate 
preceding rows and columns of pixels. The removed rows and columns are referred to as 
macro redundant rows and columns.
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Macro Redundant Rows

Let I  be a binary image, I  = (R\, R 2 , • • •, R n), the size of I  is n x m .  Ri £ {i?i, R 2 , • ■ •, Rn} 
is a row of pixels. The macro redundant row (marr) is defined as R marr> and

marr = {i \ Ri = Ri~i}, 1 < i < n. (3.6)

In words, if row Ri is identical to its above neighbouring row we say Ri is a macro
redundant row. Upon its identification, the macro redundant row is removed. This removal 
process must be reversible in the recontruction process of the original image. In order 

to achieve that, a reference bit is assigned to each row of the image, which leads to the 
construction of the reference vector Vmacro row:

l O  if i £ marr
Vmacro row{P — ^  1  <  *  <  T l  ( 3 - 7 )

I 1 otherwise

If a row is identified as a macro redundant row, 0 is assigned to the reference bit. In 
the reconstruction process of the original image, a removed macro redundant row can be 
recovered by duplicating its immediate preceding row if the value of the reference bit is 0 .

Macro Redundant Columns

Likewise, let I  =  (Ci, C2, ••• ,  C m ), and C j £  {Ci, C2, • • •, C m } is a column of pixels. The 
macro redundant column (marc) is defined as C marc, and

marc = { j  \ C j = C j - 1}, 1 < j  < m. (3-8)

In words, if column C j  is identical to its left neighbouring column C .j .. 1 , C } is a macro redun
dant column. The macro redundant column is removed upon its identification. Similarly, 

the reference vector Vmacro column is constructed as follows:

J O  if j  £ marc
Vmacro columnyj) ~  S  I iL j  rn ( 3 . 9 )

I 1 otherwise

Vmacro is the concatenation of Vmacro row and Vm a c r 0  column: nnd Vmocro =  {Vmacro row: 
Vmacro column) will be further processed via the IAC module in later section. Figure 3.3 
shows that the Macro Redundancy Exploitation is applied to the image I  motorcycle- Notice 
that the size of Imotorcycle has been further reduced.
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4 r f e i
Rem ove Macro ....... Remove Macro

size = 9 9 x  190 Redundant Rows size = 97 x  190 Redundant Columns size =  9 7 x 1 7 5

Figure 3.3: Macro Redundancy Elimination on image Imotorcycle

3 .1 .3  M icro R ed u n d an cy  E x p lo ita tion

A reduced binary image is partitioned into a number of blocks in this process. Micro 
Redundancy Exploitation removes those rows and columns which are identical to their 
preceding rows and columns within a partitiioned block of the image. The removed rows and 
columns within the block are referred to as micro redundant rows and columns. This part 
of the algorithm is important because the size of an image is tremendously reduced, yet the 

algorithm produces a “stair” phenomenon which is exploited by the proposed context tree 

modelling as explained Section 3.2.1. Micro redundancy consists of two types of redundant 
spaces: (i) micro redundant rows; (ii) micro redundant columns.

Micro Redundant Rows

Since the micro redundant rows are defined within a block of the image, the image is 
partitioned into a number of regions which are referred to as blocks.

Consider the image Imotorcyde with the size of n x m  in Figure 3.4. It is columnwise 
partitioned into a number of blocks. The size of each block is n x k if m  is divisible by 
k, where 0 < k < m. If m  is not divisible by k, we have a remainder block which is the 

rightmost block of the image. Although the size of the remainder block is different from the 
rest of the blocks, it is treated the same in the subsequent steps. Thus, I  = {By, B 2 , ■ ■ ■, B u) 
and B x G {By, B 2, • • •, Bu}.

Block B x in Figure 3.5 is a composition of a number of rows, Bx =  (7?i, R 2 , • • •, R n) . 
Ri G {Ry, i?2 , ■ • •, R n}, is a row in block B x. The micro redundant row (mirr) is a row 
identical to its above neighbouring row in the block, which is defined as Rmjrr , and

mirr = {i \ Ri — R i - 1 }. (3.10)

For example, in Figure 3.5, Re and R 7  are micro redundant rows, because Rq = Re and
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a
CUffl

B, B, B

Figure 3.4: Columnwise Partitioning on Image Imotorcycle

Ry — R q . The micro redundant rows are removed upon their identification.

R,

Rs
R 6
r 7

Figure 3.5: Block B x size =  n  x k

For decoding purposes, reference vectors are generated to indicate the exact locations of 
micro redundant rows. Hence, there is a reference vector Vx for every corresponding block 

Bx and,

Vrmicro row

0  if i 6  mirr
Vx(i) =  < 1 < i < n  (3.11)

I 1 otherwise

=  (Pl, V2 , ■ ■ ■, Vu) will be further compressed via IAC module in Section 3.2.

M icro Redundant Columns

The resulting bitmap from the previous step is further reduced by eliminating the micro 
redundant columns. The micro redundant columns are those columns which are exactly
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identical or partially identical to their left neighbouring columns within a sub-block.

From the previous step, an image is columnwise partitioned into a number of blocks: 

I  = (Bi, f?2 , ■ • • j Bu)- For every block B x G {Bi, B 2 , ■ ■ ■, Bu}, Bx is further partitioned 
rowwisely into a number of sub-blocks, which is B x = (b\, 62 , • ■ •, bv) and by G {hi, 6 2 , • ■ •, bv}. 
For example, consider B 3  in Figure 3.6, it is partitioned into three sub-blocks, which are 

B 3  ~  (b\,b2 , 63).

Rowwise
Partitioning

B3 Bj

Figure 3.6: Rowwise Partitioning

A sub-block by can be considered as a composition of a number of columns, which is 
by =  (Ci, C2 , • • •, Ck) and Cj G {Ci, C2 , • ■ •, Cfc)}, where k is the number of columns within 
the sub-block by. The micro redundant columns consist of two groups: fu ll  and partial.

A full micro redundant column is a column that is exactly identical to its left neighbour

ing column. It is defined as Cfuu ,

fu ll  = {j  | Cj = C j- i} ,  1 < j  < k .  (3.12)

Consider a sub-block 62 in Figure 3.7. Column Cg is identified as a micro redundant 
column, because Cq — C5 . As C\ is the first column in sub-block 6 2 , it cannot be a 
micro redundant column according to the definition defined in Equation (3.12), 1 < j  < k. 
However C\ may be identical to its left neighbouring column which is located in the left 
n e ig h b o u r in g  su b -b lo c k . T h e re fo re , a n o th e r  d e f in it io n  is n e e d e d  to  m a n a g e  th e  f irs t  c o lu m n  

in every sub-block.

Consider three neighbouring sub-blocks b'y, by, b"y belong to three different blocks Bx \ , 
Bx and Bx+1 in Figure 3.8. The length of C \ , denoted as 1{C\ ), is less than or equal to the
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Sub-block b2

Cj  . . .  CjCg ■ ■ ■

Figure 3.7: Full Micro Redundant Columns

length of C'k, 1{C\) < l(C'k), and each entry of C\ is identical to each entry of C'k in its 
corresponding position, denoted as C\ — C' k{ 1 : l(Ci)). Then C\ is considered as a partial 

micro redundant column and will be removed. This is because, C\ can be fully recovered 
by duplicating the entries of its neighbouring column C'k until it reaches its length. Notice 
that l(C"i) f  l(Ck)), as a result, C"\ is not considered a partial Micro Redundant Column. 
This is because C"\ cannot be fully recovered if it is removed as a partial Micro Redundant 
Column.

B.x-l Br B.x-l

by

w
b"y

m \ W i

■  I l k
I I  I f

Ck C j  C.k C"j

Figure 3.8: Partial Micro Redundant Columns

Therefore, the partial Micro Redundant Column is defined as Cpartiai, 

partial =  1 i f  1{CX) < l{C'k) A C X= C'k( 1 : Z(C'i)) (3.13)
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where, C \  is the first column of a sub-block by in a block B x , C 'k  is the last column of a 
sub-block b 'y in a block B x - \ .

Hence, the micro redundant column (mire) is defined as Cmjrcrntrc

'rntrc (3.14)

A reference vector V y  is generated to indicate the locations of micro redundant columns 

for every corresponding sub-block by .

Vmicro column is the concatenation of all reference vectors Vy of all sub-blocks. The process 
of removing micro redundant columns results in a reduced sub-block, denoted as reduced 
block ( R B ) .

3 .1 .4  Sum m ary and R esu lts  o f th e  D R E  M od u le

The Direct Redundancy Exploitation (DRE) module is a newly proposed method which 
efficiently exploits the two-dimensional redundancy of an image. The DRE comprises three 

parts: (i) Margin Elimination which crops out the blank margins bordering around the 

binary objects; (ii) Macro Redundancy Exploitaton which removes the identical consecutive 
rows and columns of pixels of the whole image; (iii) Micro Redundancy Exploitation which 
removes the identical consecutive rows of pixels within a block as well as the full and partial 
identical consecutive columns of pixels within a sub-block. Reference vectors are generated 
in the process of Macro and Micro Redundancy Exploitation to indicate the locations of 
the removed rows and columns of pixels, which enables the lossless reconstruction of the 
original image.

A binary image is sequentially processed by the three parts of the DRE module which 
results in types of data as shown in Figure 3.9. V)nacro is the concatenation of the reference 

vectors V macro row and V macro column which are generated in the process of Macro Redun
dancy Exploitation. Vmia-o row and Vmicr0 column are the concatenation of the reference 
vectors which are generated in the process of Micro Redundancy Exploitation. Reduced 

Blocks (RB) are the remaining sub-blocks.
T a b le  3.1 sh o w s th e  re s u lts  o f  V m acro, Vmacro row , V,micro colum n> RB a n d  to t a l  n u m b e r  

of bits after DRE module performed on 40 test images. The thumbmails of these test 
images are given in Appendix A. Figure 3.10 shows the distribution of Vm acro, V m iCro row, 

Tm icro column and the Reduced Blocks.

rntrc

1 otherwise
1 <  j  <  k (3.15)
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DRE M odule R esulting Data

Binary
Image

V* num.

y  micro column

Reduced Blocks

Figure 3.9: the Produced Data After DRE Module

From Table 3.1, we observed that the sizes of the test images have been reduced by 
87.62% on average. These Results verify the effectiveness and contribution of the DRE 

module to the TMBA algorithm.

tnacix?
Vmcrx? column

max? mw

Figure 3.10: The Distribution of Vjnacroi ^m ic ro  ro w ? ^m icro  column &n(3 RB

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. THE PROPOSED ALGORITHM

Table 3.1: DRE Compression Results on 40 Tested Images

31

Files No. Original Size Pmaaro Vm icro row Vm icro column RB DRE Results
(bits) (bits) (bits) (bits) (bits) (bits)

imageOl 65280 474 7254 2040 13180 22948
image0 2 35328 338 2840 406 2192 5776
image03 99209 588 3916 613 3047 8164
image04 134784 616 8401 738 3563 13318
image05 250560 384 3625 892 4812 9713
image06 137982 720 5967 727 3931 11355
image07 116160 626 10336 1080 6139 18181
image08 414720 618 10123 3214 18964 32919
image09 141456 727 13377 843 4915 19862
image 1 0 689521 1568 26970 1155 8699 38392
image 11 96338 557 9695 2981 18157 31390
imagel2 202320 811 13104 1280 6572 21767
image 13 244400 900 21350 3446 20380 46076
imagel4 187880 737 10440 1250 6972 19399
image 15 26505 300 1170 179 999 2648
image 16 81524 422 4176 708 3553 8859
imagel7 40000 386 4800 1164 6588 12938
imagel8 114000 606 1 0 2 0 0 1498 8841 21145
imagel9 324864 1063 34505 2034 12079 49681
image2 0 30880 329 1955 294 1702 4280
image2 1 264489 1006 16642 1250 6189 25087
image2 2 40000 361 3982 660 3528 8531
image23 96472 588 9380 1132 6110 17210
image24 159576 706 15351 3796 25683 45536
image25 67104 481 7161 1875 11610 21127
image26 91008 494 4632 501 2843 8470
image27 696320 1309 20055 1042 5691 28097
image28 399224 1 0 0 2 21156 2724 16338 41220
image29 80775 546 8476 2630 15681 27333
image30 133408 671 13960 4329 28229 47189
image31 98496 645 10950 1851 10118 23564
image32 414720 1123 37526 8891 57303 104843
image33 102408 612 9114 2266 12687 24679
image34 325120 727 13908 979 5197 20811
image35 544640 1177 21525 1057 5542 29301
image36 157248 750 14306 1414 7484 23954
image37 83600 556 6517 977 5655 13705
image38 142464 630 8618 682 3551 13481
image39 250560 469 6369 921 4917 12676
image40 145920 706 12741 906 5623 19976
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3.2 Improved Arithm etic Coding (IAC)

The resulting data from the Direct Redundancy Exploitation (DRE) module are Vmacro, 
V-micro row> V-micro column and the Reduced Blocks (RB). In this section, we will discuss how 
these resulting data are further compressed by the Improved Arithmetic Coding (IAC) mod
ule. As illustrated in Figure 3.1, the IAC module consists of two parts: context modelling 
and the arithmetic coder.

3.2 .1  C on tex t M od ellin g

Context modelling is extremely important for the arithmetic coder. A good model will 
provide accurate statistical data which favors the arithmetic coder to achieve a high level 

of compression. Context modelling assigns a probability to a symbol based on the context 

where the symbol resides. The context modelling presented in this paper is based on the 
principle: the probability for each encoding symbol is calculated based on the context that 

the symbol resides in. In fact, the context consists of nothing more than the symbols that 
have been encountered.

We use two different context models to encode the resulting data from the DRE module. 
As shown as Figure 3.11, Vmacro, Vmicro row and Vmicro coiumn are modelled by using the 
Markov Model [15] and the Reduced Blocks are modelled by using the new proposed Static 
Binary Tree Model (SBTM).

R esu ltin g  D ata Context Modeling

SBTM

Markov
Model

Reduced Blocks

Reference Vectors

Figure 3.11: The Resulting Data and Two Different Models
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Markov M odel

The Markov Model assigns the probability to a symbol based on the immediate proceeding 

symbols which make up the context. The order of a model refers to the number of immediate 
proceeding symbols within the context. The order 1 model can be characterized by P(X i | 
Xj_i), which is the probability distribution of X, provided that is the immediate
preceding symbol. Thus order 2 can be derived from order 1, which is P(X i \ X ^ i X i ^ ) -  
The high order Markov Model refers to order 3 or above, which can be described as P{Xi \ 
X i- \X i - 2  ■' • X i-k), where k is the number of the order. Figure 3.12 shows the Markov 
Model from order 1 to order 5 on an example stream.

bit stream

order 1 

order 2 

order 3 

order 4 

order S

encoding bit
I

0 0 1 1 0 0 0 1 0 0 0

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

I 1 0 0 0

1 1 0 0 0

1 0 0 0 

1 0  0 0 

1 0  0 0 

1 0 0 0

Figure 3.12: Markov Model Order 1 to Order 5

We implemented the Markov Model from order 1 to order 5 followed by the arithmetic 
coder. Table 3.2 shows the average coding results on the 40 test images. We find that order 

2, 3, 4 and 5 models produce very close results. However, while the order of the model
increments, the computational cost increases exponentially. Therefore, to avoid the high

computational cost, we choose the order 2 model to provide the arithmetic coder with the 
probability distributions. The final compression results on the 40 test images are based on 

modelling the Vmacro, Vmicro row and Vmicro column with the Markov Model order 2. The 
following are the probability distributions of the Markov Model order 2 on the 40 test 

images.

P (0 |0 ) =  0.923, P( 1|0) =  0.077 

P(0|1) =  0.240, P ( l | l ) =  0.760
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Table 3.2: Compression Results Using Different Orders of Models

Model Vmacro Vmicro row Vmicro column
( b i t s ) ( b i t s ) ( b i t s )

original 6 8 3 1 1 6 6 4 1 6 6 1

order 1 3 1 5 4 3 6 3 1 2 6 6

order 2 2 8 5 3 8 8 3 1 2 5 5

order 3 2 7 1 3 7 5 0 1 2 5 8

order 4 2 7 3 3 7 2 8 1 3 2 7

order 5 2 7 5 3 7 0 5 1 3 3 6

Static Binary Tree M odel

We propose a new context model: the Static Binary Tree Model (SBTM). The SBTM is 
presented to model the Reduced Blocks (RB). It is based on the unique property: “stair” 
phenomenon. The “stair” phenonmen is the direct result from Micro Redundancy Exploita
tion. The formation of the “stair” phenomenon is based on two princicples: (1) the identical 
lines of pixels are removed in the image, (2) in a relatively small region (Block) two lines 
of pixels are likely to vary by one pixel if these two lines of pixels are not identical. Con
sider the example in Figure 3.13. After the process of Micro Redundancy Exploitation is 
conducted on the block, the Reduced Block forms the “stair” property.

Figure 3.13: Formation of “stair” Property

As shown in Figure 3.14, the “stair” RB may come with the three possible shapes or the 
combinaion of them. Figure 3.15 shows the four possible orientations of the “stair” RB.
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Cl) (2) (3)

Figure 3.14: Three Possible Shapes

(1) (2) (3) (4)

Figure 3.15: Four Possible Orientations

Note that the SBTM model does not require a perfect “stair” RB like these in Figure 
3.15 to produce favorable statistics. Consider the examples in Figure 3.16, while the SBTM 
is able to properly model most of the pixels in the block, only those pixel marked “X” may 

not be properly modelled, because the model is not designed to handle those special cases.

Figure 3.16: Formation of “stair” Property

Based on the “stair” property, the SBTM model calculates the probability of the current 
encoding bit according to a number of predefined static templates. These templates make 
up the contexts where the encoding bit resides. They are shown in Figure 3.17. There are
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a total number of 20 contexts and they are indexed alphabetically in the Figure.
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Figure 3.17: Predefined Binary Tree Templates

The contexts are represented by binary trees, in which the context is contructed by three 
root pixels and other possible branch pixels. The context selection is made by traversing 
the context tree from the root to the leaf, each time selecting the branch according to the 
corresponding neighbouring pixel value. Each leaf has a pointer to the statistical model 
that is to be used. Each node in the tree represents a single context. The two children of 
a context correspond to the parent context argumented by one pixel. The location of the 
argumented pixel are fixed in a predefined order.

Let us now work through an example to explain how the SBTM works. Suppose the 
pixel marked “C” is the current encoding pixel in Figure 3.18. The values of the three 

root pixels match Template (3). We traverse the context tree according to the value of 
the corresponding neighbouring pixel which is marked “A” in the figure. The value of the 
corresponding pixel is 1, therefore the lower leaf of the tree is selected as the modelling 
context. We stated earlier that each leaf has a pointer to the statistical model. In fact, in 
the implemental level, we maintain two numbers for each context. One is the total number
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of the occurrences of this context, denoted T. The other is the number of the occurrences 

of 0’s in this context, denoted Z. The number of the occurrences of l ’s can be found by 
T  — Z. Since the current encoding pixel (7 =  0, SBTM calculate the probability as follows:

P(C) = §

and send the value of P(C) to the arithmetic coder for encoding. After that, the number of 
the occurrences of the context, T, is incremented by 1. Because the current encoding pixel 
(7 =  0, the number of the occurrences of 0’s is incremented by 1 as well.

The question then arises: since we know the value of the current encoding pixel, why 
not increment the value of T  and Z  first, then provide the arithmetic coder with the new 

probability calculated from the updated values of T  and Z'l We have to make sure the 
encoder and decoder have the same probability. The value of the current pixel is known 

to the encoder. If the frequency of T  and Z  are incremented, we have a new updated 

probability and the encoder uses the new updated probability to encode. In order to decode 
the pixel correctly, the decoder should be provided with the same new updated probability. 
This is not feasbile because the value of the current pixel is unknown to the decoder before 
actually decoding it and the new updated probability cannot be obtained until the current 
pixel is decoded.

Figure 3.18: An Example of SBTM Modelling Process

The following shows the final probability distributions of the 20 contexts when the SBTM 
modelling is performed on the 40 test images.
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P(0|A) =  0.944, 
P(0|C) =  0.233, 
P(0\E) = 0.045, 

P(0|G) =  0.323, 
P(0|J) =  0.315, 
P(0\K) = 0.221, 
P(0|M ) =  0.653, 

P(0|O) =  0.114, 

P(0\Q) =  0.373, 
P(0|S) =  0.652,

P(l|^4) =  0.056, 
P(1|C) =  0.767, 

P (1 |P ) =  0.955, 
P(1|G) =  0.677, 
P (l|7 ) =  0.685, 
P(1\K) = 0.779, 

P (l|A f) =  0.347, 

P (1 |0 ) =  0.886, 
P(1|Q) =  0.627, 

P ( l |5 )  =  0.348,

3.2 .2  A r ith m etic  C oder

P(0|J3) =  0.906, P (1 |P ) =  0.094
P(0|Z?) =  0.727, P (1 |P ) =  0.273

P(0 |F) =  0.099, P (1 |P ) =  0.901
P (0 |P )  =  0.833, P (1 |P )  =  0.167
P(0| J )  =  0.800, P ( l | J )  =  0.200

P(0|L) =  0.721, P (1 |L )=  0.279
P(0|1V) =  0.899, P(1 |A ) =  0.101

P(0 |P) =  0.417, P (1 |P ) =  0.583

P(0 |P) =  0.045, P (1 |P ) =  0.955
P (0 |r)  =  0.951, P ( l | r )  =  0.049

The arithmetic coder is applied after each bit is processed by its context model. In this 
section, we will show how the arithmetic coder works on a specific bit stream. For simplicity, 

order 0 model is used for modelling process during the illustrated coding process.

Encoding

Arithmetic Coding overcomes the constraint that an input symbol is encoded with a specific 

codeword. Instead, it encodes the entire data sequence into a single decimal number C, 
0.0 < C < 1.0. For example, we can choose a decimal number 0.692 • • • to represent an 
image. This is possible because there are infinitely many decimal numbers in the interval 
[0.0,1.0)1. In order to do this, we need to associate the data sequence with a designated
decimal number. The relationship between the data sequence and the designated decimal
number can be described by a function which maps the entire data sequence to a unique 
decimal number C. This function is given by

C = fac(S) (3.16)

where S  is the data sequence. Function f ac is a one-to-one function, and can be described by 
the encoding algorithm in Program 3.1, in which, E O F  is the end of file, the upper Bound 
is

kai
upper Bound(a,i) = (3.17)

2 =  1

1[0.0,1.0) is the range between 0.0 and 1.0, in which, 0.0 is included and 1.0 is excluded
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low = 0.00; 
high = 1.0;
LOOP if not EOF

at = next input symbol; 
range = high - low; 
high = low +  range x upperBound(Gq); 
low = low +  range x lowerBound(«j) ; 

end of LOOP 
output low;

Program 3.1: AC Encoder

and the lowerBound is
feuj-l

lowerBound(ai) = ^  Pm^*) (3.18)
i=1

where is the probability of under model M, a ;  G A  and A = {ai,a,2 , • • • ,an} is
the finite alphabet of the data sequence S. kai is the index number of a* in alphabet A, 

1 <  fcai <  n.

Consider the following data sequence to be encoded by Arithmetic Coding.

S  = {0 1 0 0 0 0 1 0 0  0}

Thus, the alphabet of S  is A  =  {a i,a 2 } =  {0,1} and the probability distribution is the 
following, provided that the order 0 model M  is applied.

PM{0) =  0.80 PM(1) =  0.20

and

fco =  1 k\ — 2

Therefore, the upperBound and lowerBound of 0 and 1 can be obtained by applying Equa

tions (3.17) and (3.18).

k o  1

upperBound( 0) =  E Pm(«i) =  =  0.80 (3.19)
7=1 7=1

jfco-1 1 - 1

lowerBound( 0) =  £  PM{di) -  £  PM(0i) =  0.00 (3.20)
7=1 7 =  1
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and

k \  2

upperBound( 1) =  ^-P m (< f) =  ^ -P m  (a*) =  1-00
?—1 i—1

f c i - 1  2 - 1

lowerBound( 1) =  ^  Pm ^ i) ~  PM(ai) =  0.80
i —1 i = l

(3.21)

(3.22)

Thus, we can consider symbol 0 owns the interval [0.0, 0.8) and symbol 1 owns the interval 

[0.8,1.0). This is graphically presented in Figure 3.19.

1.0

0.8
|  Symbol 1 owns the interval [0.8. 1.0).

i- Symbol 0 owns the interval [0.0, 0.8).

0.0 -1 '

Figure 3.19: Interval of Symbol 0 and 1

Initially, high and low are assigned to value 1.0 and 0.0, vmtten as [0.0,1.0). To encode
the first symbol 0 of the data sequence S,

range = high — low = 1.0 — 0.0 =  1.0

high =  low +  range x upperBound(0)
=  0 +  1.0 x 0.8 

=  0.8

low =  low + range x lowerBound(0)

=  0 +  1.0 x 0.0 
=  0.0

During the process of encoding the first symbol, high and low are updated, [0.0,0.8). 
When the encoder goes on to next iteration, the calculation will be based on the updated 

values. The next coding symbol is 1,
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range =  high — low = 0.8 — 0.0 =  0.8

high =  low +  range x upperBound( 1)
=  0 +  0 . 8 x 1 0  
=  0.80

low = low +  range x lowerBound( 1)

=  0 +  0.8 x 0.8 
=  0.64

The value of high and low are again updated, [0.64,0.80). This process of updating the 
values of high and low continues until EOF. The first four iterations of this process are 
described graphically in Figure 3.20.

input
symbol

1.0 0.8 0.8 0.768 0.7424

0.8 0.64- 0.7424-0.768-

0.00.0 0.64 0.64 0.64

Figure 3.20: the Encoding Process of Arithmetic Coding

Notice that the appearance of each input symbol restricts the updated value high and 
low to a subinterval that is disjoint from any other subinterval that may have been generated 
using this process. For example, by the time the encoder received the third symbol 0, the 
u p d a te d  h i g h  a n d  lo w  h a s  b e e n  re s t r ic te d  to  su b in te rv a l [0 .6 4 ,0 .7 6 8 ). If th e  th i r d  sy m b o l 

had been 1 instead of 0, the subinterval would be [0.768,0.8), which is disjoint from the 

subinterval [0.64,0.768). Even if the two sequences are identical from this point on, the 
interval for the two sequences will always be disjoint. This always guarantees that there is
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a unique interval for the encoding data sequence. This is why we say function C = f ac(S) 
in Equation (3.16) is one-to-one.

Table 3.3 shows the values of high and low after each iteration. The final values of high 
and low is [0.6924288,0.6991396864). In fact, we can choose any number C, 0.6924288 < 

C < 0.6991396864, to encode the data sequence. For simplicity, the low is chosen, therefore 

0.6924288 is the final unique number to encode the data sequence 0100001000. It seems that 

no compression is really gained. This is because the length of the example data sequence is 
very limited and Arithmetic Coding needs a fair data sequence to demonstrate its elegancy.

Table 3.3: the Updated Values of Each Iteration of the Encoding Process

input symbol range low high
start 0.0 1.0

0 1.0 0.0 0.8
1 0.8 0.64 0.8
0 0.16 0.64 0.768
0 0.128 0.64 0.7424
0 0.1024 0.64 0.72192
0 0.08192 0.64 0.705536
1 0.065536 0.6924288 0.705536
0 0.0131072 0.6924288 0.70291456
0 0.01048576 0.6924288 0.700817408
0 0.008388608 0.6924288 0.6991396864

Decoding

The decoding process is to recover the original data sequence. Given the encoding algorithm, 
it is relatively easy to see how the decoding process will operate. The encoded number 
0.6924288 is given to recover the original data sequence 0100001000. The first symbol of the 
original data sequence can be found by finding which symbol owns the interval in which the 
encoded number falls. Since the number 0.6924288 falls in [0.0,0.8), the first symbol must 

be 0. Because the first symbol is decoded, its effect needs to be removed from the number 
0.6924288 in order to decode the next symbol. Since we know the high and low values of 
previously decoded symbol 0, we can remove the effect by reversing this part of the encoding 
process. First, we subtract the low value 0.0 from 0.6924288, resulting in 0.6924288. Then 
we divide it by its range 0.8. This produces the number 0.865536. Now we need to find
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which interval the number 0.865536 falls in. It is obvious the number 0.865536 falls between 

[0.8,1.0), therefore the second symbol is 1. This process will be repeated until all symbols 
are successfully decoded.2 The decoding algorithm is given in Program 3.2. Table 3.4 shows 

the decoding process of each symbol of the data sequence 0100001000.

C = encoded number;
LOOP until all symbols are decoded

find the symbol whose interval straddles the encoded number; 
output the symbol; 
range = high — low;
C = (C-low)/range;

end of LOOP

Program 3.2: AC Decoder

Table 3.4: the Decoding Process of Each Symbol

Encoded Number output symbol lowerBound upperBound range
0.6924288 0 0.0 0.8 0.8
0.865536 1 0.8 1.0 0.2
0.32768 0 0.0 0.8 0.8
0.4096 0 0.0 0.8 0.8
0.512 0 0.0 0.8 0.8
0.64 0 0.0 0.8 0.8
0.8 1 0.8 1.0 0.2
0 0 0.0 0.8 0.8
0 0 0.0 0.8 0.8
0 0 0.0 0.8 0.8

From this example we can see that the length of the encoded decimal number C  increases 
while the encoding is progressing. It will eventually reach the length limit of float numbers 
supported by the operating system. Therefore, it seems completely impractical to implement 
the Arithmetic Coding. But in fact, Arithmetic Coding can be implemented using the 
standard 16 bits or 32 bits integer arithmetics by using the incremental transmission scheme

[50].

2Provided the decoder has the knowledge of the length of the data sequence
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3 .2 .3  Sum m ary and R esu lts  o f th e  IA C  M od u le

The Improved Arithmetic Coding Module further compress the data resulting from the DRE 

module. The Markov Model order 2 is applied on the reference vectors: V macTo, V m icro row 

and Vmicro colum n■ A new Static Binary Tree Model is proposed in the IAC Module to 
efficiently model the Reduced Blocks. The arithmetic Coder is applied to each bit based 
on the probability provided by the modelling process. Table 3.6 shows a before and after 

comparison of the IAC module. On the average, the IAC module reduced the sizes of 

reference vectors and Reduced Blocks by 63.3% and 38.4% respectively on the test images.

3.3 Simulation Results

The proposed Two Module Based Algorithm (TMBA) has been tested on 40 images of 
different size and content. These test images are displayed as thumbnails in Appendix A. 

The simulation results of the proposed algorithm are compared with four industrial standard 
coding schemes: G3, G4, JBIG1 and JBIG2. The compression results in bits are shown in 

Table 3.7 and the compression ratios are shown in Table 3.8.

The TMBA algorithm has improved the compression ratio by about 62% and 30% in 
comparison to the G3 and G4 standards, on average. It outperforms G3 and G4 on all test 
images. The TMBA algorithm has also yielded a slight increase of compression performance 
in comparison to the JBIG1 and JBIG2 standards. On 30 out of 40 test images, TMBA 
outperforms JBIG1. On 26 out of 40 test images TMBA outperforms JBIG2. The average 
compression rate (bit/pixel) of each scheme is shown in Table 3.5

Table 3.5: The Average Compression Rate on 40 Tested Images

G3 G4 JBIG1 JBIG2 TMBA
0.1533 0.0830 0.0592 0.0583 0.0581
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______ Table 3.6: IAC Compression Results on 40 Tested Images

Files Name

Reference Vectors Reduced Blocks

Beofre (bits) After (bits) Before (bits) After (bits)
imageOl 9768 4610 13180 10505
image02 3584 1610 2192 1115
image03 5117 2440 3047 1375
image04 9755 3430 3563 1605
image05 4901 2610 4812 2685
image06 7424 3000 3931 1665
image07 12042 4020 6139 2335
image08 13955 8130 18964 16275
image09 14947 3260 4915 1665
imagelO 29693 3730 8699 1245
image 11 13233 7640 18157 11575
image 12 15195 5010 6572 3525
image 13 25696 11130 20380 15335
image 14 12427 4660 6972 3225
image 15 1649 810 999 475
image 16 5306 2310 3553 1645
image 17 6350 3710 6588 3355
image 18 12304 3930 8841 5635
image 19 37602 6070 12079 5715
image20 2578 1190 1702 915
image21 18898 5550 6189 2695
image22 5003 2410 3528 1835
image23 11100 4340 6110 2845
image24 19853 9850 25683 17285
image25 9517 4470 11610 8685
image26 5627 2210 2843 1185
image27 22406 4870 5691 2085
image28 24882 9560 16338 7865
image29 11652 7060 15681 11995
image30 18960 10030 28229 21365
image31 13446 5900 10118 5895
image32 47540 22220 57303 43735
image33 11992 7220 12687 7835
image 34 15614 3750 5197 2355
image35 23759 4790 5542 2235
image36 16470 5080 7484 3365
image37 8050 3500 5655 2905
image38 9930 3070 3551 1645
image39 7759 3270 4917 2045
image40 14353 3370 5623 1645
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Table 3.7: Compression Results in Bits on 40 Tested Images

46

Files No. Original G3 G4 JBIG1 JBIG2 TMBA
imageOl 65280 26048 19488 15176 15064 15115
image02 35328 10512 4528 4728 4712 2725
image03 99209 19200 7168 5112 5096 3815
image04 134784 21600 8400 6208 6184 5035
image05 250560 19232 10112 6496 6376 5295
image06 137982 21888 8832 5680 5624 4665
image07 116160 22464 8768 6624 6512 6375
image08 414720 50160 34352 21616 23008 24405
image09 141456 22160 7920 5720 5336 4925
imagelO 689521 45152 20544 6696 6216 4975
imagell 96338 31936 22080 17088 16408 19215
image 12 202320 29856 12208 8648 8616 8535
imagel3 244400 60608 34800 26944 25800 26465
imagel4 187880 26000 11184 8088 8072 7885
imagel5 26505 7488 3104 3664 3640 1285
image 16 81524 14176 6256 5080 5064 3935
image 17 40000 15360 8272 7592 7568 7065
imagel8 114000 23664 13616 9760 9384 9565
imagel9 324864 34576 17584 10400 10744 11785
image20 30880 8384 3744 4208 4120 2105
image21 264489 29344 12992 7704 7640 8245
image22 40000 11712 5552 5424 5208 4245
image23 96472 21872 9104 7336 7328 7185
image24 159576 46256 34992 25240 27152 27135
image25 67104 22688 16528 13160 14144 13168
image26 91008 15888 5792 5024 4888 3395
image27 696320 56288 19776 7536 6992 6955
image28 399224 54016 25280 15360 15168 17425
image29 80775 32496 21360 18088 19920 19055
image30 133408 52080 39968 31832 29640 31395
image31 98496 21200 13888 10640 10616 11795
image32 414720 102208 81424 62208 58728 65955
image33 102408 26464 17376 15032 13896 15056
image34 325120 26704 11936 6312 6104 6112
image35 544640 45120 16768 7744 7312 7025
image36 157248 23200 11456 7944 7784 8445
image37 83600 20064 8192 7200 6984 6405
image38 142464 21824 8240 5864 5792 4715
image39 250560 20496 9840 6080 5928 5315
image40 145920 24256 8144 5872 5440 5015
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Table 3.8: Compression Ratio on 40 Tested Images

47

Files No. G3 G4 JBIG1 JBIG2 TMBA
imageOl 60.10% 70.15% 76.75% 76.92% 76.85%
image02 70.24% 87.18% 86.62% 86.66% 92.29%
image03 80.65% 92.77% 94.85% 94.86% 96.15%
image04 83.97% 93.77% 95.39% 95.41% 96.26%
image05 92.32% 95.96% 97.41% 97.46% 97.89%
image06 84.14% 93.60% 95.88% 95.92% 96.62%
image07 80.66% 92.45% 94.30% 94.39% 94.51%
image08 87.91% 91.72% 94.79% 94.45% 94.12%
image09 84.33% 94.40% 95.96% 96.23% 96.52%
imagelO 93.45% 97.02% 99.03% 99.10% 99.28%
image 11 66.85% 77.08% 82.26% 82.97% 80.05%
image 12 85.24% 93.97% 95.73% 95.74% 95.78%
imagel3 75.20% 85.76% 88.98% 89.44% 89.17%
image 14 86.16% 94.05% 95.70% 95.70% 95.80%
imagel5 71.75% 88.29% 86.18% 86.27% 95.15%
imagel6 82.61% 92.33% 93.77% 93.79% 95.17%
image 17 61.60% 79.32% 81.02% 81.08% 82.34%
imagel8 79.24% 88.06% 91.44% 91.77% 91.61%
image 19 89.36% 94.59% 96.80% 96.69% 96.37%
image20 72.85% 87.88% 86.37% 86.66% 93.18%
image21 88.91% 95.09% 97.09% 97.11% 96.88%
image22 70.72% 86.12% 86.44% 86.98% 89.39%
image23 77.33% 90.56% 92.40% 92.40% 92.55%
image24 71.01% 78.07% 84.18% 82.98% 83.00%
image25 66.19% 75.37% 80.39% 78.92% 80.38%
image26 82.54% 93.64% 94.48% 94.63% 96.27%
image27 91.92% 97.16% 98.92% 99.00% 99.00%
image28 86.47% 93.67% 96.15% 96.20% 95.64%
image29 59.77% 73.56% 77.61% 75.34% 76.41%
image30 60.96% 70.04% 76.14% 77.78% 76.47%
image31 78.48% 85.90% 89.20% 89.22% 88.02%
image32 75.35% 80.37% 85.00% 85.84% 84.10%
image33 74.16% 83.03% 85.32% 86.43% 85.30%
image34 91.79% 96.33% 98.06% 98.12% 98.12%
image35 91.72% 96.92% 98.58% 98.66% 98.71%
image36 85.25% 92.71% 94.95% 95.05% 94.63%
image37 76.00% 90.20% 91.39% 91.65% 92.34%
image38 84.68% 94.22% 95.88% 95.93% 96.69%
image39 91.82% 96.07% 97.57% 97.63% 97.88%
image40 83.38% 94.42% 95.98% 96.27% 96.56%
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Chapter 4

Conclusion

In this thesis, we have studied various current existing coding techniques and standards for 
lossless binary image compression. We have proposed a new highly efficient algorithm: the 
Two Modules Based Algorithm.

The proposed algorithm consists of two modules: (1) Direct Redundancy Exploitation 
(DRE); and (2) Improved Arithmetic Coding (IAC). The Direct Redundancy Exploitation 

module is a reliable and efficient method to exploits the two-dimensional redundancy of an 

images. It removes the identical consecutive rows and columns of pixels within the image 
and the partitioned blocks of the image. The empirical results show that this method alone 
has yielded an average of 87.62% compression ratio on the tested images. The Improved 
Arithmetic Coding module is the coding scheme to further compress the data resulting from 
the DRE module. Markov Model order 2 was chosen for the modelling of the reference vec
tors. A new context modelling method: the Static Binary Tree Model, has been introduced 
to model the Reduced Blocks. The design of the new model is based on the “stair” prop
erty which is the result of Direct Redundancy Exploitation. The Static Binary Tree Model 
effectively provides the favorable statistic information for arithmetic coding. At the end, 
the arithmetic coding is adopted for high compression performance. The simulation results 
show that the Improved Arithmetic Coding module further compressed the reference vectors 
and the Reduced Blocks by 63% and 38% respectively.

The simulation results show that the proposed algorithm has improved the compression 

ratio by about 62% and 30% in comparison to the G3 and G4 standards respectively. The 
proposed algorithm has also yielded an increase of compression performance in comparison 
to the JBIG1 and JBIG2 standards.

The Two Module Based Algorithm is a reliable and efficient method for lossless binary

48
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image compression. It provides an alternative method for lossless binary image compression. 
More importantly, the algorithm has demonstrated excellent compression performance which 

is comparable or better than the current industrial standards.
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Appendix A 

Test Images
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