
Multiple Anchor Staged Local Sequence Alignment Algorithm - MASAA

Bharath Govinda Reddy

B.E., Bangalore University, (India) 2001
M.B.A., University of Phoenix, (USA) 2007

Thesis Submitted In Partial Fulfillment Of

The Requirements For The Degree Of

Master Of Science

In

Mathematical, Computer, and Physical Sciences

(Computer Science)

The University Of Northern British Columbia

March 2009

© Bharath Govinda Reddy, 2009

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-48735-8
Our file Notre reference
ISBN: 978-0-494-48735-8

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Technology advancements have helped biologists gather massive amount of biological

data including genomic sequences of various species today. Sequence alignment tech­

niques play a central role in investigating the adaptive significance of organism traits

and revealing evolutionary relations among organisms by comparing these biological

data.

This thesis presents an algorithm to perform pairwise local sequence alignment.

Recent pairwise local sequence alignment algorithms are either slow and sensitive

or fast and less sensitive. Our algorithm is faster and at the same time sensitive.

The algorithm employs suffix tree data structure to accurately identify long common

subsequences in the two given sequences quickly. Regions of high similarity are again

identified between segments of long subsequences already found.

Several measures are taken into consideration to design the algorithm, such that

the output is biologically meaningful. Data sets are carefully chosen and the output

is compared with a well known algorithm, BLASTZ. Experiments conducted demon­

strate that our algorithm performs better than BLASTZ in computation time, while

either preserving or exceeding the accuracy of alignments at times.

1

To my beloved parents

A c k n o w l e d g e m e n t s

It has been my good fortune to come across many fine people who have given

me moral support, companionship, help, and above all their valuable time during the

course of my time at UNBC.

First and foremost, I would like to express my sincere gratitude to my supervisors,

Dr. Waqar Haque and Dr. Alex Aravind for their unconditional help, patience and

guidance. This research work has certainly benefited from their advice, recommen­

dations and suggestions. I would also like to take this opportunity to acknowledge

and thank my graduate supervisory committee member Dr. Iliya Bluskov for his time,

encouraging words and advice during my time at UNBC. I am grateful to my external

examiner, Dr. Stephen Rader from Biochemistry and Molecular Biology department

for his time, advice and suggestions to my thesis.

A special word of gratitude to all my co-workers, group members, friends and

roommates that I have worked with over the years. A special word of gratitude,

finally, to all the members of my research group present and past, Mr. Xiang Cui,

Mr. Jai Prakash, Mr. Jonas Bambi, Mr. Hassan Tahir and Ms. Baldeep. I also take

this opportunity to specially thank Mrs. Alex Aravind for her support and great food

on various occasions.

I am particularly indebted to my parents, my brothers, and my sisters for their

love, unwavering support and encouragement. They have truly backed me all these

years, and without them none of this would have been remotely possible.

Prince George, Bharath Govinda Reddy

March 11, 2009

Contents

Abstract i

Acknowledgements i

List of Figures vi

List of Tables xi

Publications xiii

1 Introduction 1

1.1 Sequence Analysis 4

1.2 Sequence Alignment 5

1.2.1 Pairwise Sequence Alignment 6

1.2.1.1 Characteristics of Pairwise Local Sequence Alignment

Algorithm 7

1.3 Definitions and Terminology 9

1.3.1 Scoring Function 10

1.3.2 Gap Alignment Scoring Function 12

ii

1.3.3 Performance metric 14

1.3.4 Seed and Anchor 15

1.4 Motivation and Contribution 17

2 Related Work 20

2.1 Local Sequence Alignment Algorithms 20

2.1.1 Optimal Local Sequence Alignment Algorithm 21

2.1.2 Heuristic Local Sequence Alignment Algorithms 23

2.1.2.1 FASTA 24

2.1.2.2 Basic Local Alignment Search Tool- BLAST 31

2.1.2.3 BLAT-BLAST like Alignment tool 36

2.1.2.4 BLASTZ 39

2.2 Global Sequence Alignment Algorithms 40

2.2.0.5 PatternHunter 41

2.2.1 Optimal Global Alignment Algorithm 43

2.2.2 Heuristic Global Alignment Algorithm 44

2.2.2.1 Suffix Tree Data structure 44

2.2.2.2 Generalized Suffix Tree (GST) 46

2.2.2.3 Ukkonen Algorithm 47

2.2.2.4 Applications of Suffix Tree 47

2.2.2.5 MUMmer 48

2.2.2.6 GLASS, GLobal Alignment SyStem 54

2.2.2.7 AVID 56

2.2.2.8 LAGAN-Limited Area Global Alignment of Nucleotides 58

iii

3 Mult ip le Anchor Staged Local Sequence Al ignment Algor i thm - M A S A A 64

3.1 Ukkonen Online Suffix tree Algorithm 64

3.2 Contribution 70

3.3 MASAA - Multiple Anchor Staged Alignment Algorithm 71

3.3.1 Finding MMSSs 72

3.3.2 MMSS Anchors Selection 72

3.3.3 Finding Mismatch Seeds 73

3.3.4 Mismatch Seed Anchors Selection 74

3.3.5 Extending Anchors 75

3.3.6 Implementation 76

3.3.7 Complexity of the Algorithm 77

3.3.8 Hypothesis 78

4 Exper imenta l Model , Resu l t s & Analys is 79

4.1 Experimental setup 79

4.1.1 Data sets 79

4.1.2 Performance Metrics 81

4.1.3 Assumptions 82

4.1.4 Considerations 83

4.2 Analysis of Results 83

4.2.1 Baseline configuration 84

4.2.1.1 RANDOM data set 84

4.2.1.2 REAL data set 86

4.2.1.3 ROSETTA data set 88

iv

4.2.1.4 SECOND data set 90

4.2.2 Varying the MMSS Length Parameter 93

4.2.2.1 RANDOM data set 93

4.2.2.2 REAL data set 96

4.2.2.3 ROSETTA data set 98

4.2.2.4 SECOND data set 98

4.2.3 Varying the inter MMSS anchor Length Parameter 102

4.2.3.1 RANDOM data set 103

4.2.3.2 REAL data set 105

4.2.3.3 ROSETTA data set 107

4.2.3.4 SECOND data set 108

4.2.4 Varying the Minimum Distance to Extend Anchors I l l

4.2.4.1 RANDOM data set I l l

4.2.4.2 REAL data set 114

4.2.4.3 ROSETTA data set 115

4.2.4.4 SECOND data set 117

5 Conclusion and Future Direct ions 122

5.1 Future Direction 125

A 126

A.l Percentage of conserved region in SECOND dataset 126

A.2 Statistics for a mutation 130

Bibl iography 131

v

List of Figures

1.1 An example of sequence alignment 5

1.2 Affine gap score-indicating first gap and subsequent gap . . . 13

1.3 Conserved regions in the two sequences 16

1.4 Highly similar regions in the two sequences 16

2.1 Initial scoring matr ix 22

2.2 Matr ix t race back to find the final alignment. Second figure

clarifies the evaluation of entry matrix[4, 2]: it is obtained

from matrix[3, 1], which is why we draw an arrow going from

matrix[4,2] to [3,1] 23

2.3 Perfect match seed from two sequences 24

2.4 Look-up table 25

2.5 Look-up table for seeds of length 4 in sequence Si 26

2.6 Four steps in FASTA algorithm 28

2.7 Directed weighted graphs between seeds 30

2.8 Seeds above a threshold score 32

2.9 BLAST-seeding 33

2.10 Indexing 33

VI

2.11 Extending the seeds 35

2.12 BLAT seed with one mismatch 37

2.13 Indexing in BLAT 37

2.14 Multiple seeds in the same diagonal [18] 38

2.15 Spaced seed model 41

2.16 Example of suffix t ree for GATGAC 45

2.17 Example of generalized suffix t ree for two string, Si and S2 . 46

2.18 Maximal unique match in bo th the sequences 50

2.19 Consistent matches are selected which are in the same order

in bo th the sequences 50

2.20 4 types of algorithms used in the inter M U M region 52

2.21 Tandem repeat in the inter M U M region[l] 53

2.22 Converting a k-mer to a unique character after hashing the

k-mer 54

2.23 Apply SDP on 12 bps on either side of the match 55

2.24 Shows seeds 2 and 3 criss-crossing and seed 6 (in blank) over­

lapping with 5 56

2.25 AVID Algorithm, courtesy: [7] 58

2.26 LAGAN Algorithm [10] 60

vn

2.27 The LAGAN algorithm. (A) A global alignment between two

sequences is a pa th between the top-left and the bottom-right

corner of their alignment matr ix . (B) LAGAN first finds all

local alignments between the two sequences. (C) LAGAN

computes a maximal-scoring ordered subset of the alignments,

the anchors, and puts together a rough global map. (D) LA­

GAN limits the search for an optimal alignment to the area

included in the boxes and around the anchors, and computes

the optimal Needleman-Wunsch alignment limited to tha t area 61

3.1 Suffix t ree for 'MISSISSIPPI ' 65

3.2 Speeding up steps to build the Suffix t ree 67

3.3 Suffix links in the suffix t ree 68

3.4 MMSS's extension 76

4.1 Total alignment t ime on R A N D O M data set with baseline

configuration 85

4.2 Bp coverage on R A N D O M data set with baseline configuration 86

4.3 Total alignment t ime on REAL da ta set with baseline config­

urat ion 87

4.4 Bp coverage on REAL da ta set with baseline configuration . 88

4.5 Longer seeds are given preference over smaller seeds 89

4.6 Alignment score on SECOND da ta set with baseline configu­

ration 90

4.7 Bp coverage on SECOND da ta set with baseline configuration 92

Vl l l

4.8 An example of MASAA alignment for gene ACE 92

4.9 Total alignment t ime on R A N D O M data set by varying MMSS

length 94

4.10 Bp coverage on R A N D O M data set by varying MMSS length 95

4.11 Total alignment t ime on REAL da ta set by varying MMSS

length 96

4.12 Bp coverage on REAL da ta set by varying MMSS length . . 97

4.13 Alignment Score on SECOND da ta set by varying MMSS

length 100

4.14 Bp comparison on SECOND da ta set by varying MMSS lengthlOl

4.15 Total alignment t ime by varying the inter anchor size 103

4.16 Bp coverage by varying the inter anchor length 104

4.17 Total alignment t ime by varying the inter anchor length . . . 105

4.18 Bp coverage by varying the inter anchor length 106

4.19 Alignment score on SECOND da ta set by varying inter MMSS

anchor length 108

4.20 Bp coverage on SECOND data set by varying inter MMSS

anchor length 110

4.21 Total alignment t ime on R A N D O M data set by varying the

minimum distance, 'd ' between MMSS 112

4.22 Bp coverage on R A N D O M data set by varying the minimum

distance, 'd ' between MMSS 113

4.23 Total alignment t ime on REAL data set by varying the min­

imum distance, 'd ' between MMSS 115

ix

4.24 Bp coverage on REAL da ta set by varying the minimum dis­

tance, 'd ' between MMSS 116

4.25 Alignment score on SECOND da ta set by varying the mini­

mum distance, 'd ' between MMSS 118

4.26 Bp coverage on SECOND data set by varying the minimum

distance, 'd ' between MMSS 120

x

List of Tables

1.1 Scoring matr ix 11

1.2 Unitary Scoring matr ix 12

4.1 Exon coverage on ROSETTA da ta set with baseline configu­

ration 89

4.2 Number of genes MASAA's alignment score be t te r than BLASTZ 91

4.3 Number of genes MASAA's bp coverage be t te r than BLASTZ 92

4.4 Exon coverage on ROSETTA da ta set by varying MMSS length 99

4.5 Number of genes MASAA's alignment score be t ter t han BLASTZ 100

4.6 Number of genes MASAA's bp coverage bet ter than BLASTZ 102

4.7 Exon coverage on ROSETTA da ta set when inter anchor length

is 8, 12, 14 and 18 107

4.8 Number of genes MASAA's alignment score be t ter than BLASTZ

by varying inter MMSS anchor length 109

4.9 Number of genes MASAA's bp coverage be t te r t han BLASTZ

by varying inter MMSS anchor length 110

4.10 Exon coverage on ROSETTA da ta set when minimum inter

anchor distance is varied 117

xi

4.11 Number of genes MASAA's alignment score be t te r t han BLASTZ

by varying minimum distance, 'd ' , to extend MMSS's anchor 119

4.12 Number of genes MASAA's bp coverage bet ter than BLASTZ

by varying minimum distance, 'd ' , to extend MMSS's anchor 120

A.l SECOND da ta set genes conserved region in % 126

xn

Publications

• Waqar Haque, Alex A. Aravind and Bharath Reddy; "An Efficient Algorithm

for Local Sequence Alignment", EMBC-IEEE Conference, Personalized Health

care through Technology, Vancouver, August, 2008.

• Waqar Haque, Alex A. Aravind and Bharath Reddy ; "Pairwise Sequence Align­

ment Algorithms A Survey", INTERNATIONAL CONFERENCE on Informa­

tion Science, Technology and Applications (ISTA 2009), Kuwait University,

March, 2009.

• Bharath Reddy, Waqar Haque and Alex A. Aravind; "Enhancing Parallelization

of Sequence Alignment Using MPI", 4 th Northern HPC Spring Conference, held

at UNBC, Prince George, Canada, May, 2006 (oral presentation).

xm

Chapter 1

Introduction

All living creatures can be broadly classified into single cell organisms (for exam­

ple, bacteria) and multi-cell organisms (for example, humans). Cells are the basic

structural and functional units of life or sometimes called the building blocks of life.

Multicellular creatures have many organs like tissue, bone, hair, etc. Cells are re­

sponsible for structure and function of these organs. Cells possess various molecules

in them to perform these functions by chemical reactions. These molecules are typ­

ically proteins. To produce protein molecules, cells need a 'recipe book'. The recipe

book is stored in a molecule called Deoxyribonucleic acid (DNA). Another molecule,

ribonucleic acid (RNA) acts as an intermediary molecule between DNA and proteins.

Proteins are the necessary and vital product of a cell. Proteins are molecules

that are responsible for development of all organism. Most functions in a cell are

accomplished by proteins. For example, many proteins act as enzymes and catalyze

chemical reactions. They carry signals in and out of the cell, and within the cell. They

are also responsible for the transport of molecules [29]. The primary structure of a

1

protein is a linear chain of amino acids. There are twenty amino acids, denoted by A,

R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, and V 1. Protein size is usually

measured in terms of the number of amino acids that comprise it. A typical protein

sequence contains 100-5000 amino acids. Each protein that an organism produces is

encoded in a part of DNA called 'gene'. Humans are believed to have about 20000

different protein coding genes. The number of proteins that can be produced by

humans far exceed the number of genes[29]. The genes and the non-coding sequences

of the DNA where hereditary information is encoded are together called the genome

of that organism.

DNA is a nucleic acid molecule that contains genetic instructions used in the

development and functioning of all living organisms, to create new cells, to determine

which protein to synthesize and the location of synthesis inside the cell. DNA consists

of two long interwoven strands to form a double helix[29]. The chemical composition

of a DNA would be a long polymer of simple units called nucleotides, which are held

together by a backbone made of alternating sugars and phosphate groups. Attached

to each sugar is one of four types of molecules called bases. It is the sequence of these

four bases along the backbone that encodes information. This information is read

using the genetic code, which specifies the sequence of the amino acids to produce

proteins. These bases are adenine (A), guanine (G), cytosine (C) and thymine (T).

In DNA, A, G, C and T bases can only form two different base pairs (bp): A-T and

G-C. The length of a DNA molecules is expressed in these units (bp). The human

1Alaninc{A}, Arginine{R}, Asparagine{N}, Aspartic acid{D}, Cysteine{C}, Glutamic{E},

Glutamine{Q}, Glycine{G}, Histidine{H}, Isoleucinejl}, Leucine{L}, Lysine{K}, Mitheionine{M},

Phenylalanine^}, Proline{P}, Serine{S}, Threonine{T}, Tryptophan{W}, Tyrosine{Y}, Valine{V}

2

genome contains roughly 3 billion bp. An important property of a DNA molecules is

its replication. Before a cell divides, the DNA is unwound into two strands which are

both copied or replicated by the DNA polymerase enzyme[29]. During this process,

errors or mutations may occur. A mutation is a change in the sequence of DNA bases.

When a nucleotide is added to or lost from DNA, the mutation is an insertion or a

deletion, respectively.

RNA is similar to DNA; they both are nucleic acids of nitrogen-containing bases

joined by sugar-phosphate backbone. However structural and functional differences

distinguish RNA from DNA. Structurally, RNA is single-stranded whereas DNA is

double stranded. DNA has Thymine, whereas RNA has Uracil as its base. RNA

nucleotides include sugar ribose, rather than the Deoxyribose that is part of DNA.

Functionally, DNA maintains the protein-encoding information, whereas RNA copies

the information from DNA to enable the cell to synthesize a particular protein. The

four bases of RNA are adenine (A), guanine (G), cytosine (C) and uracil (U).

The DNA contains information needed by the cell to produce all its RNA and

proteins. DNA and RNA molecules are collectively responsible for protein synthesis,

which is a chemical reaction, and is responsible for various functions of the cell.

Proteins are synthesized in two steps. First, RNA 'copy' of a portion of DNA is

synthesized in a process called transcription. In the next step, this RNA sequence is

read and interpreted to synthesize protein in a process called translation[29].

In general, RNA, proteins and DNA molecules can be abstracted as strings of

letters from their respective alphabet set, given below :

• Alphabet set for DNA= { A, C, G, T }

3

• Alphabet set for RNA= { A, C, G, U }

• Alphabet set for Protein= { A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T,

W, Y, V }

1.1 Sequence Analysis

Computational biology involves the use of mathematical and computational tech­

niques to solve biological problems ranging from identification of disease causing genes

to drug development in both animals and plants. As indicated earlier, DNA, RNA

and proteins are the primary components of a cell. Most of the above problems are

studied in terms of analysing DNA, RNA and Protein sequences. Biological applica­

tions of sequence analysis are many, including:

• Identifying genes and predicting their functions in a new sequence.

• Medical applications. For example, sequence analysis is used to understand the

cause and effects of diseases like multiple sclerosis, Alzheimer, etc.

• Identification of gene structures.

• Prediction of protein structures.

• Comparison of homologous sequences to construct an evolutionary tree or molec­

ular phylogenetic tree.

Although, all living organisms have a common origin, which started with the same

DNA sequence, they become distant due to mutations frequently occurring in DNA

sequences. High sequence similarity usually implies strong functional or structural

4

similarity. This observation namely that closely related organisms have a common an­

cestor, exploits a simple biological principle: certain regions of the genome (functional

elements) tend to be conserved more strongly during evolution than other regions

(non-functional). A statistical analysis is shown in Appendix A. Our research focuses

on homology between two sequences, to discover similarity relationships among them.

1.2 Sequence Alignment

Sequence alignment is a way of arranging sequences of DNA, RNA and proteins with

an objective to find regions of 'similarity', which may provide additional information

on the functional, structural, evolutionary and other features of the sequences under

study. Aligned sequences are typically represented in rows, one on top of the other.

For example, given two sequences, ATATAGAGGACACG and ATAGGGGACATGG,

one possible alignment is shown in Figure 1.1. The vertical lines indicate the match.

Regions with many matches between the aligned sequences are called 'similar regions'.

A T A T A G A G G - A C A - C G

I I I ! (I I I I I I
ATAG-GGGACATGG

Figure 1.1: An example of sequence alignment

In some regions, special characters such as '-', also known as indels are added. This

insertion of a special symbol represents a mutation (change) or could be looked at as

deletion from the other sequence's perspective. When one looks from an evolution-

5

ary point of view, this deletion or insertion (change) represents a divergence of one

sequence from the other. From a sequence alignment perspective, a similarity would

be a rough estimate on how conserved a region is during the evolution. Regions that

are perfectly matching represent structural and functional cor relation [3].

Sequence alignments are broadly classified into pairwise sequence alignment and

multiple sequence alignment. Pairwise sequence alignment is a fundamental technique

used to find conserved regions in two sequences. Multiple sequence alignments are

traditionally used to find common characteristics and conserved regions in more than

two sequences and also to establish evolutionary linkage among the sequences within

a family. It is also used to search top scoring hits of sequences in a sequence database.

Often, multiple sequence alignment uses pairwise alignment as a component routine.

Work presented in this thesis is focused on pairwise sequence alignment.

1.2.1 Pairwise Sequence Alignment

Pairwise biological sequence alignment is a fundamental problem in bioinformatics.

Pairwise sequence alignment can be further classified into local sequence alignment

and global sequence alignment.

Local sequence alignment finds the best approximate subsequence match within

two given sequences. Local sequence alignments are designed basically to search for

highly similar regions within the two given sequences. For finding similar (biologi­

cally conserved) regions, which may not be preserved in order or orientation, local

sequence alignment is very useful. It is typically used to find similarity between two di­

vergent sequences and for fast database searches for similar sequences. Local sequence

6

alignment usually involves less computation compared to global sequence alignment.

Some of the popular local sequence alignment are Smith-Waterman[27], FASTA[20],

BLAST[2], Gapped BLAST[3], BLAT[18], BLASTZ[26], andPatternHunter[21]. These

are discussed later.

Global sequence alignment is used to find the best alignment of both sequences

in their entirety. Global sequence alignment looks for global mapping between entire

sequences. The objective of global sequence alignment is to exhibit more information

such as order and orientation of the similar regions in two given sequences. Global

sequence alignments are useful where the sequences are from related organisms and

highly likely to satisfy order and orientations of conserved regions in the sequences.

However, because of their high computational cost, global sequence alignments are

mostly used for the alignment of relatively small sequences[7]. Some of the pop­

ular global sequence alignment algorithms are Needleman-Wunch[23], MUMmer[l],

GLASS[6], AVID[7], and LAGAN[11]. These are discussed later.

1.2.1.1 Characterist ics of Pairwise Local Sequence Al ignment Algor i thm

Pairwise local sequence alignment algorithms could be characterized according to

several parameters like, time and space efficiency, sensitivity and other characteristics

including:

• Molecule specific: It is very likely that local alignment algorithm is developed

for either a DNA, RNA or protein sequence.

• Length of the sequences: Certain local sequence alignment algorithms are de­

signed to find alignment only for short sequences. Their efficiency in terms

7

of either speed or memory usage, drops considerably for long sequences[ll].

For example, Smith-Waterman algorithm is very efficient in terms of time and

space for short sequences and not for aligning genomic sequences, which are few

hundred thousand bps in length.

• Measure of accuracy: The objective of local sequence alignment is to find con­

served regions in both sequences, which serve as an evidence of structural and

functional conservation, as well as an evolutionary relation between the two

sequences to biologists. To quantify the similarity, an alignment is associated

with a score, generally known as alignment score. Algorithms which compute

the optimal score alignment are called 'optimal alignment algorithms'. Smith-

Waterman algorithm is the only well known optimal local sequence alignment

algorithm. In order to produce an alignment quicker, 'near optimal alignment'

is sometimes also acceptable.

• Speed of Alignment: Alignment time is one of the important factor considered

in the development of sequence alignment algorithms. From the literature, local

sequence alignment algorithms developed earlier were slow but produced align­

ments which made good biological data[29]. Smith-Waterman algorithm[27] is

an example which produced optimal local alignment but its speed deteriorated

proportionally as the length of the sequences increased. Heuristic algorithms

were developed later to make the alignment process faster and are designed to

generate an approximate alignment rather than an optimal alignment. BLASTZ

is an example of a heuristic algorithm. Majority of the local alignment algo­

rithms developed recently are heuristic algorithms.

8

• Memory Efficiency: Algorithms may or may not be memory efficient. Smith-

Waterman algorithm uses dynamic programming and has a serious disadvantage

in terms of space utilization. Hirschberg[17] developed an algorithm similar to

Smith-Waterman algorithm, that uses a divide-and-conquer approach to reduce

the search space for a two-sequence alignment problem from 0(n2) to O(n).

1.3 Definitions and Terminology

In this section, we introduce several fundamental definitions that are necessary to

understand the algorithms described later.

Definition 1 Let 'L' be a set of characters called alphabet set. A sequence 'S' is an

array of characters from 'L', such that they are all written contiguously from left to

right and occupy a unique position in the sequence 'S'.

Example : If 'S' is ACBCDB, then \S\ =6 and S[3]=B.

Let |S| denote the length of 'S' and S[i] denote the ith character of S. Although

alignment may visually indicate the closeness between the sequences, a quantified

value of the alignment would be more convenient. In order to quantify an alignment, a

scoring function is used. First, scoring function for the alignment of pairs of characters

is defined and then scores of aligned pairs of characters are added to get the sequence

alignment score. In Figure 1.1, if an exact match between two characters scores +2,

and every mismatch or deletion (space) scores -1, then the alignment has a score of,

10.(2)+ 6.(-l)=14.

Based on the relationship between pair of characters in an alignment, the align­

ment score function a can be classified into three types.

9

Definition 2 A character alignment score a is a real valued function on pairs of

characters. The score function a is called:

1. Match alignment score if the characters are the same.

2. Mismatch alignment score if the characters are not indels and also different.

3. Gap alignment score if one character is indel and the other is not.

The value for gap alignment score is usually referred as gap penalty.

Definition 3 Let Si and »% be two sequences of length n. The alignment score p of

S\ and 5*2 is defined,
n

p(S1,S2) = Yl°(Si[i],S2[i])-
i= l

The sequence alignment scoring function p defined above is called sum-of-pair (SP).

1.3.1 Scoring Function

We now discuss some well known scoring functions. The simplest, is the constant

function, where all matches are given the same value and all mismatches are penalized

with a constant value [4]. For any given pair (x, y),

• <r(x, X) = a, a € R+

• CT(X, y) = b, b € R~

• <T(X, -) = <r(x, -) = c, c 6 R~

10

The constant values 'a' and 'b' are usually obtained from a scoring matrix. A scoring

matrix is a nxn matrix2 3 in which each cell contains a score for the corresponding

pair of bases[4]. The constant function described above would result in a matrix where

matches have same value and mismatches have a different value, shown in Table 1.1.

Unitary scoring matrix was used for sequence alignment [4] prior to popular scoring

matrices. A unitary scoring matrix is shown in Table 1.2.

Table 1.1: Scoring matrix

*

A

C

G

T

A

130

-36

-36

-36

C

-36

130

-36

-36

G

-36

-36

130

-36

T

-36

-36

-36

130

PAM (Percentage of Acceptable point Mutations per 108 years) series of matrices [28] [13]

and BLOSUM (BLOcks Substitution Matrix) series of matrices[16]. PAM matrix is

based on mutations observed throughout a global alignment, focused mainly on highly

conserved and highly mutable regions. The Blosum matrices also focuses on highly

conserved regions but only in series of alignments which do not contain gaps. Both,

PAM and BLOSUM matrices use different scores for each pair of bases unlike the

constant function defined above. PAM and BLOSUM differ in the way replacements

are counted, unlike the PAM matrix, the Blosum procedure uses groups of sequences

2In case of DNA, n = 4, the number of unique bases that is composed of
3In case of protein, n = 20

11

Table 1.2: Unitary Scoring matrix

*

A

C

G

T

A

1

0

0

0

C

0

1

0

0

G

0

0

1

0

T

0

0

0

1

within which not all mutations are counted the same[16].

1.3.2 Gap Alignment Scoring Function

The objective of sequence alignment algorithm is to pick an alignment which has the

maximum alignment score. Since gap penalty scoring function contributes to overall

alignment score, the gap alignment score and the number of the gaps in the alignment,

for a scoring matrix selected, would affect the alignment that is finally picked. Hence,

gap alignment scoring function used in the alignment score computation is very im­

portant. There are two types of gap alignment scoring functions namely, constant

gap scoring function and affine gap scoring function. In a typical gap alignment scor­

ing function, the gap penalty score is fixed irrespective of the location in the aligned

sequences. This is called constant of fixed gap penalty score function. In practice,

mutations usually occur as a block of contiguous columns with a gap in the same

sequence. This observation supports the evolutionary model, that is, given 'S and

12

'T, an ancestral sequence, 'U, then there is a probability that a block of contiguous

columns of gaps occurred in course of time, separating 'U from 'S and 'T. In order

to score such events of long contiguous block of gaps, a score 'gap open penalty is

given at the beginning of each gap, and for each subsequent gap in the same block, a

'gap extension penalty is given. Such scoring function, where the penalty is different

for the first and subsequent gaps, is called afHne gap penalty. It can be defined as

follows.

Definition 4 Affine gap score function has two components: open gap penalty 'd'

and gap extension penalty 'e'. Now the affine gap penalty score can be computed as,

d + I x e, where 'I' is the length of the gap.

In Figure 1.2, the rectangular blocks indicate the first gap position and subsequent

gaps are shown in encircled area. Usually, higher penalty is given to first gap and lower

penalty is given to subsequent gaps to encourage single large insertions or deletions [9]

to help identify regions where large mutations have occurred. If a score of +2 is

A G G T

A A G T

C C G

G

T l/T\ A

Figure 1.2: Affine gap score-indicating first gap and subsequent gap

given to a match, -1 for a mismatch, -2 for gap opening penalty and -1 for each

match following the first match, the alignment score would be 2. We next introduce

reference sequence and annotated sequences.

13

Definition 5 A reference sequence is a non-redundant sequence representing genomic

data, and protein information. In other words, it is a comprehensive data representing

the complete sequence information for any given species[25].

Sequences are translated to include conserved regions starting and ending place in

the sequence, different database cross-references for the sequence, and other fea­

tures using a combined approach of collaboration and other input from the scientific

community[25]. A conserved region could be a gene, protein, coding region (part

of sequence responsible for protein production in the cell) or other information. An

annotated sequence is the absolute or complete data gathered or constructed from

different sources. Data includes the starting and ending positions of a gene in a

genome, the exon starting and ending positions, specific protein synthesizing genes,

length of the sequences and other data.

1.3.3 Performance metric

Let S and T be two sequences. The objective is to find an alignment of S and T,

that has the maximum possible score for these two sequences. From the literature,

algorithms vary depending on one or more of the following goals:

1. Space and time efficient.

2. Sensitive. The sensitivity is measured by four different scores:

(a) Percent identity score: representing the percent of the alignment that in­

volves identical base pairs (bp) [29].

14

(b) Total column score (TCS): the number of correctly aligned columns divided

by the number of columns in the reference sequence[l].

(c) Percent similarity score: representing the percent of alignment that in­

volves identical and similar matching aminoacids. This applies to protein

sequence alignments, where similar residues are amino acids that have sim­

ilar physiochemical properties [29].

(d) Maximum alignment score: which is scoring matrix dependent and gap

penalty score function dependent. In alignment scores, there are different

types of scores, depending on what part of the final alignment is taken into

consideration:

i. Total alignment score, that is the alignment of the whole sequence

ii. Score of a filtered region of an alignment, this could be parts of the

alignment which have score above a threshold (according to a suitable

scoring matrix) [7]

iii. Score of the filtered region, this could be a certain select region such

as genes or its total coverage in volume [7].

1.3.4 Seed and Anchor

Consider the sequences Si and S2 as shown in Figure 1.3. In this example, we see

that there are regions in Si which are clearly aligned with regions in S2. These

common regions could be conserved regions that have not changed by evolution in

either sequence.

In Figure 1.3, the conserved region XI is identical to Yl. That is, every character

15

XI X2 A, J

w'j * /V 1 /V

G A. A

A G A A C A T G C G G G

A G G A C A G T G T G (3

_ Y2 "Y3

Figure 1.3: Conserved regions in the two sequences

in XI matches the character in the corresponding position in Y l . Consider Figure

1.4 given below. In Figure 1.4, it is logical to consider that XiXxX2 and YiYxY2 as

Si: A T

s2: G Aj

•T-r j - y J -y <-\

A T A G A A C A

A T A G G A C A i

Yl Y1 Y2

X3

i,j L u u U

G T G T G G
—

Figure 1.4: Highly similar regions in the two sequences

conserved regions with a mutation at either X1 or Y1. If such highly similar regions

could be identified, then they can be aligned with each other easily. Such pair of

highly similar regions are referred to as 'seed' [18] [9] [8]. We formally define a seed

below.

Definit ion 6 X\ and Xi are considered as a seed, if there exists a contiguous region

X2 of m in S2, such that X\ is highly similar(&) to X2.

High similarity between Xi and X2 could be

HS1: A perfect match, every character in Xj matches the character in the correspond-

16

ing position in Yi

HS2: p(Xi,X2) > t, for a given t and positions where base pairs (bps) have to match

(care position) are not fixed.

HS3: Xi matches closely with X2, such that care (and do not care) positions are fixed

unlike the other seeds already mentioned.

HS3:1 k mismatches in do not care positions and m-k matches in care positions

(BLAT seeds) [18].

HS3:2 k mismatches in k do not care positions (Spaced seeds) [21].

HS3:3 The score of p(Xi,X2) in care position of

Xp,Xp+i...Xp+t_i and Yp,Yp + i . . .Yp + s_i > t, for a given t (Vector seeds)[29].

The main goal of heuristic algorithms is to quickly find short regions of similarity

and build the overall alignment around these short regions, commonly called 'seeds'

as defined above. In global sequence alignment, to reduce the computational time,

certain short regions are selected to be part of the final alignment. These short regions

selected are commonly called 'anchors'[29].

1.4 Motivation and Contribution

In sequence comparison, the objective is to find local similar regions in the two se­

quences. Two regions can be either highly conserved or poorly conserved regions of the

sequences. The research in this area of biological sequence comparison[27] [20] [2] [20] [3] [24]

has resulted in both optimal and heuristic algorithms. Optimal algorithm focus to

17

produce the optimal alignment while heuristic algorithms produce near-optimal align­

ment. Optimal algorithms provide local alignments, but face serious constraints in

terms of time required for the comparison procedure [27] or are less sensitive in iden­

tifying important local segments or even generate unrelated fragments, leading to

problems in comparative gene prediction and establishing sequence functions. In this

situation, achieving accurate local-alignment between regions of two long sequences

within a reasonable time, pose a big challenge.

Our study has been inspired by the frequency of use and the application of a very

efficient data structure called suffix tree (refer 2.2.2.1), which is used to find long

similar regions in the two sequences efficiently. However, the suffix tree was used

only for global sequence alignment algorithm and not for local sequence alignment

algorithms because look-up table is faster than actually building the suffix tree and

continues to be frequently used in recent algorithms. Also, 'high similarity region'

defined by Kent [18], which not only adds more sensitivity but also improves the

algorithm speed, has greatly influenced our work.

This thesis presents a new local pairwise sequence alignment algorithm that is not

only fast, but also enables local alignment with a high degree of similarity between

the two given sequences. The purpose is to present a way to improve speed and

sensitivity over BLASTZ[26]. BLASTZ was selected for several reasons. First, it is

the best algorithm among BLAST series of algorithms (BLASTN, BLASTP, BLAST2

and others), both in terms of speed and sensitivity. Second, BLASTZ is commonly

used as a baseline algorithm to compare other algorithms in the literature. Third,

BLASTZ is the only algorithm which is fast and sensitive at the same time. Other

algorithms are either fast or very sensitive but not both. Our algorithm starts by

18

finding all long conserved regions between the two sequences using suffix tree. Suffix

tree is already used in global sequence alignment algorithms such as MUMmer[l] and

AVID[7] to find similar long conserved regions. We employ suffix tree in the first phase

of our local sequence alignment algorithm to find long similar regions of minimum

length 'I'.

In the second phase of our algorithm, 'high similarity regions' defined by[18]

are identified in the segments between long conserved regions found in the first

phase. The advantage of finding 'high similarity regions' is to improve the sen­

sitivity over BLASTZ without compromising computation time significantly. Two

adjacent high similarity regions can be overlapping or crossing. Many algorithms

including MUMmer[l], GLASS[6], AVID[7], and LAGAN[11] omit such overlapping

similar regions. Our algorithm takes into account such conditions to improve sensi­

tivity further. The algorithm's final phase involves extending similar regions already

found to produce the final alignment. For this phase, we propose a new method which

improves the computational time efficiency of our algorithm.

19

Chapter 2

Related Work

This section provides the background required to understand the context, functioning

and contribution of the algorithm presented in this thesis. Our algorithm is inspired

from previous work on local and global sequence alignments. We will review relevant

algorithms, first for local sequence alignment and then for global sequence alignment.

2.1 Local Sequence Alignment Algorithms

Over the past several decades, many algorithms have been proposed for local sequence

alignment. These algorithms fall under two distinct categories; optimal and heuris­

tic. In the following sections, we begin by explaining a popular optimal alignment

algorithm, and later introduce several heuristic algorithms.

20

2.1.1 Opt imal Local Sequence Alignment Algori thm

A popular optimal local sequence alignment algorithm is the Smith-Waterman algo­

rithm. Smith-Waterman algorithm[27] was proposed in 1981 and is based on a tech­

nique called, 'dynamic programming', a term coined by Richard Bellman in 1940's

[14] to describe problem solving, where one needs to find the best decisions one after

another. The idea of dynamic programming is to decompose the problem into smaller

problems and solve each subproblem using the same approach recursively. The sub-

problem solutions are saved and used later to find a solution to the whole problem.

The local sequence alignment algorithm proposed by [27] has a computational time

complexity of O(mn), where ro and n are the lengths of the two sequences.

Let S and T, be two sequences of length m and n, respectively. Let a be character

alignment score function. The dynamic programming algorithm builds up the optimal

score of an alignment between S and T by computing the optimal scores of alignments

between all characters of S and T. Let V(i, j) be the value of the optimal alignment

of strings S[l]... S[i] and T[l]...T[j]. The algorithms finds all optimal values, V(i, j)

with 0 < i < n and 0 < j < m, in increasing order of i and j . Each of the optimal

values could be computed relatively easily provided optimal values for smaller i and

j are computed already. To begin, we need a basis for i=0 and j=0[29],

V(0,0) = 0

V(i,0) = V(i-l, 0) + a{S\%[, -) , for i > 0

V(0,j) = V(0,j-l) + a(-,T[j}),forj>0

V(i, 0) means that if th character of S is to be aligned with null character with T,

they must be matched with an indel. V(0, j) means that if null characters of S are

21

to be aligned with the fh character of T, then they must be matched with an indel.

There are n + 1 characters of S and m + 1 characters of T including zeros in the first

row and column. A sequence scoring table with m + 1 columns and n + 1 rows is

created as shown below (Figure 2.1). The algorithm computes an optimal alignment

s
s2

0

A 1

A 2

A 3

G 4

1 0

0

0

0

0

0

A
1

0

G
2

0

C
3

0

Figure 2.1: Initial scoring matrix

between S[l..iJ and T[l..jJ, recursively using the following formula.

V[i-1, j]+a(S[i-l], -) for i > 0, j > 0

V[i,j] = max\ yfi-1, j-lj + a(S[i], T[jJ) for i,j > 0 (2-1)

V[i, j-lj+a(-, T[j-1]) for i > 0, j > 0

The highest score in the matrix is the optimal score, opt(S, T). During the matrix

computation, arrows indicating how each sub-optimal score V(i, j) is obtained are

saved, see Figure 2.2. On completion of the matrix, a procedure traces back the arrows

from the highest score to the cell containing, (0,0). The alignment is actually built

during this, arrow tracing, stage. Each arrow represents a column in the sequence. A

vertical arrow means, a column of S[i] matching with a space in T, a diagonal arrow

22

A
1

G
2

c
3

A G
1 2

A 1

A 2

A a

G 4

0

Q

0

0

0

0

2
f

2
t

2'

1

0

1

1

1

-̂
4

0

0

Q

0

3

A3

G^
J1-11

1 - M - 4

T
s,
s2

A - - G
A A A G

Figure 2.2: Matrix trace back to find the final alignment. Second figure clarifies

the evaluation of entry matrix[4, 2]: it is obtained from matrix[3, 1], which is

why we draw an arrow going from matrix[4,2j to [3,1]

means, a column of S[i] matching a column of T[j], a horizontal arrow means T[jj

matched with space. Figure 2.2 illustrates an example of a filled matrix with drawn

optimal paths and corresponding alignments. In the above figure, cr(S[iJ, T[j])= 2, if

S[i]=T[j], <j(S[i], T[j])= -1 if S[i], ^ T[j] and a(S[i], T[j])= -1, if S[i] or T[jJ = -.

Smith-Waterman algorithm computes the optimal alignment between two se­

quences S and T of length m and n, respectively, in time and space equal to 0(mn).

As the length of the sequences increase, Smith-Waterman algorithm becomes very

demanding both in terms of time and memory resources. To overcome this, heuristics

algorithms were developed.

2.1.2 Heurist ic Local Sequence Alignment Algori thms

Heuristic algorithms differ from optimal alignments in that they do not find the opti­

mal alignment but find near optimal alignment. Heuristic algorithms are based on an

23

observation and a necessity to improve computational speed over optimal algorithms.

The observation is that, there are seeds in both sequences which have high alignment

score. If these seeds are identified in advance, a local alignment can be built around

them. This brings us to a number of questions. What constitutes a seed? How

are seeds identified? How are seeds chosen from a set of seeds found for the final

alignment? In the following sections, we will examine different heuristic algorithms

in detail and attempt to answer these questions.

2.1.2.1 FASTA

The FASTA standing for FAST-ALL, reflecting that it can be used for both fast pro­

tein comparison and nucleotide comparison was a heuristic algorithm developed by

Lipman and Pearson[20]. Given two sequences, Si and S2, the algorithm starts by

finding perfect match seed of a given length '1' using a look-up table. In order to

understand a perfect match seed, consider an example shown below. In Figure 2.3,

Sj A T A T A G A

S2 G A A T A G G
_

Figure 2.3: Perfect match seed from two sequences

we see that all characters in Xi perfectly match with all characters in X2 at their

respective positions. Such perfectly matching regions, Xi and X2 are called perfect

match seeds.

24

A look-up table is a data structure, usually an array, used widely in heuristic algo­

rithms usually for local sequence alignment problem. Given two sequences Si and S2,

seeds of a given length, 'I', made from character combination of the set T= {Vi, V2,

. . . Vp}, are stored in an array or table shown below in Figure 2.4. The main idea

Positions in S1

0

1

256

V0VoVoVo

VoV„VaVi

V«V0VtV2

p p P p

pi

pi P2

Figure 2.4: Look-up table

of the look-up table is to have seeds occupy unique positions in the array, such that

position of seed in the array is obtained from the value computed using a hashing

function. Let us say, we are hashing seeds of length four in a DNA sequence and each

character from the DNA sequence set, A, C, G, T is hashed individually. Assuming

A=00, C=01, G—10, T = l l is the binary value for each DNA character of a hashing

function, then a seed AAAA would have a binary hash value of 00000000. This value

could be translated to a decimal value zero and used to point to that first position

in the array; similarly, a seed TTTT would have a binary hash value of 11111111,

25

pointing to the 256"1 position in the array. The data recorded at these positions in

the array are the starting positions where seeds are found in sequence one. There

are times when a seed is found multiple times in a sequence; in such cases, all seeds

positions in the sequence are recorded using a linked list for each array element (each

array element is a linked list). When one wants to find the seed position in Sj, valu­

able time is saved by directly going to the location in the array rather than linearly

moving from top to bottom. Once the look-up table is established for Si, we can

linearly move through S2 and find all seeds of length 'I' in Si using look-up table.

The positions of seeds in sequence S2 is known when moving across it. In this way,

we can find seeds in time O(m), where m is the length of S2- An example is shown

in Figure 2.5 for seeds of length 4 and how they are recorded in the look-up table.

Hash Table for seed length of
4 in a DNA sequence

S, - X = ACCATGTACAT

S, - Y = ACGATGTCGTT

ACAT

ACCA

ATGT

CATG

CCAT

TACA

GTAC

TGTA

7 I——|,

0 |—3.

T~T—ZL

H h i
l \—=i_

T~|—-ZL.

1 I—3_

4 I—3_

After vve run through S2 linearly from left to right, we find the only
4-letter seed common in both the sequences is found at at position 3

Figure 2.5: Look-up table for seeds of length 4 in sequence S\

26

The FASTA algorithm was the first heuristic algorithm to employ the concept of

seeds and look-up strategy to find the local sequence alignment [15]. The working of

the FASTA algorithm, can be broken down into following steps.

Step 1. The algorithm starts by identifying perfect match seeds from the two se­

quences using the look-up table[5]. The FASTA achieves much of its speed in this

step.

Step 2. In addition to the lookup table, FASTA uses a 'diagonal' method to find all

diagonal seeds between the two sequences. In other words, FASTA identifies all seeds

along a diagonal path[5]. Since the final alignment for the two sequences is most likely

to be found in the diagonal from the left-hand top corner to right-hand bottom corner,

diagonal path is considered [5]. The diagonal path need not necessarily lie on the main

diagonal. In this diagonal path, there are regions where there are seeds and regions

of mismatches (seeds are absent). FASTA finds all seeds in a diagonal path using the

same look-up table. For two seeds of a given length T in both the sequences, they

are said to be diagonal to each other, if they are separated by exactly the same value

in both sequences [5]. FASTA uses PAM[28] to score these seeds using sum of pairs

scoring function. All seeds are given a positive value and the intermediate regions are

given negative score, and the score decreases with increasing distance. Thus, groups

of seeds with high similarity scores contribute more to the local diagonal score than to

seeds with low similarity scores[5]. In the process, there could be 'n' diagonal seeds,

of which, FASTA saves the 10 best seeds, regardless of whether they are on the same

side or on different diagonals (either left or right).

27

Step 1

1
o
5>
« 5s-

^

|
T

\
\

\

\
\

\

sequence Ss

\

\

\

\

\

\

\
\

\

—».
\

\ \

\

\

\
\

Find similar region of length "k'

a

\

5a a
Or

to

Step 2

Sequence 5;

\

\ V v -
\

\

\ \

\

\ \

\ \
\

Select 10 best similar regions

b

Step 3 and 4

Sequence Sj

StepS

Sequence Si

'Good' diagonals are selected
Use dynamic programming to optimize

the alignment in a narrow hand

Figure 2.6: Four steps in FASTA algorithm

28

Step 3 A diagonal containing seeds is composed of regions of perfect matches and

mismatches in the intermediate seed regions. In this stage, FASTA identifies a diag­

onal which scores the highest value. This single diagonal which has the best score

is calledmiii. Apart from this, other diagonals containing seeds above a threshold

value, 't' are taken into consideration while those below the threshold are discarded.

Step 4 FASTA finds the 'good' diagonal from the diagonals found in the previous

stage. A good diagonal is one which has a score above a threshold[5]. FASTA com­

bines all such diagonals into a single high scoring alignment allowing spaces. This is

done as follows. A directed weighted graph whose vertices are the seeds found in the

previous step is constructed, and the weight in each vertex is calculated. The score is

the combined score of all previous seeds, including the intermediate weighted graphs,

Figure 2.7. FASTA then extends the edge from vertex u represented by seed u to

vertex v, represented by seed v, if seed v starting address is lower than seed u starting

address. Next, it extends an edge from vertex u to vertex v if the seed represented

by v starts at a lower row than where the seed represented by u ends. The problem

of overlapping seeds does not arise at all. The weighted graphs between the seeds is

pictorially shown in Figure 2.7. The maximum weighted graph is then selected and

the best alignment found is marked as 'initn'. As in the previous stage, it discard

alignments which have relatively lower score than initn, say 20 percent lower than

initn.

Step 5 In this step FASTA computes an alternative local alignment score, in ad­

dition to initn[20]. FASTA builds a narrow band of width 'k' centered along the

29

Sequence Sj

Score at Vertex V is the
combined score from seed V

to seed V including the
previous weighted graph

A negative weight to the edge,
which is equal to number of

gaps incurred such that seed "v
follows seed V .

Directed Weighted Graph
!».

Vertex'

Figure 2.7: Directed weighted graphs between seeds

30

initl [20] (high scoring diagonal). The idea behind this is that the optimal alignment

would have initl in the final alignment. FASTA computes an optimal local align­

ment in this band by using Smith-Waterman algorithm assuming that the optimal

alignment lies within this band. FASTA next finds that the best local alignment falls

within the defined band, the local alignment algorithm essentially merges diagonal

runs found in the previous stages to achieve a local alignment which may contain in-

dels. The intuition is that best alignment would lie within this band. The best local

alignment computed is the final local alignment between Si and S2- Although FASTA

is a heuristic algorithm, it was claimed by the authors that the resulting alignment

scores compare well to the optimal alignment, while the FASTA algorithm is much

faster than the optimal dynamic programming alignment algorithm[20].

Limitations: For sequences which are divergent, because the FASTA uses a k-

tuple seed strategy, many smaller regions below fc-tuple will be missed. Also, if the

sequences under consideration have more than one region of homology (two optimal

diagonals), only region around initl is found while the region which contributed to

initn is discarded. The main advantage of FASTA over Smith-Waterman algorithm

is the speed of the alignment process.

2.1.2.2 Basic Local Alignment Search Tool- BLAST

As in FASTA, BLAST[2] uses look-up table to identify seeds, but the rest of the

algorithm is different. The main advantage of BLAST over FASTA is speed. BLAST

considers seeds which have a score above a threshold 't' for protein sequence alignment

and an exact match seed for DNA alignment. Since the algorithm considers seeds

31

of a fixed length, the algorithm does not guarantee the optimal alignment, because

some sequence hits may be missed. We will first define 'seeds above a threshold'.

Definition 7 Given a threshold value 'V and a scoring matrix, Xi and X2 are con­

sidered a seed, if there exists a contiguous region X2 in S2, such that, the alignment

score p of X\ and X2 defined by,
n

P(XUX2) = X>(Xi/i/,x2/t/; > t.
i=0

To illustrate this, consider the example shown in Figure 2.8; Xi is "GSV" (size =

Query word size = 3

Score threshold G S VEDTTGS QSL AALLNKCKTPQGQRL VNQ WIK QPLMD

(r=i3) y~n ///r

6S§QGTCKTYCSAWQAALLGPRLVNLPMQAPLZVVNK

>13 >13

Figure 2.8: Seeds above a threshold score

3), we see one such possible combinations of X2="GSS", when aligned with Xi, their

alignment score exceeds or is equal to threshold value 13. All such combinations of

Xi and X2 can be considered as seeds.

Step 1 BLAST begins by first identifying all seeds (above a threshold) in both the

sequences. The default length of the seed is 3 for protein sequences and 11 for DNA

sequences[2]. BLAST finds seeds for the entire sequence using the sliding window

as shown in Figure 2.9. For each seed in the sequence, set of neighborhood words

which exceed the threshold of 't', is also generated dynamically. A neighborhood

seed is a seed obtaining a score of at least 't' using a selected scoring matrix. There

32

Sliding Window

Sequence'

Seeds of Jength 3

-** MENMOPQFFFLGACTGGATAGAFVDPESGTMEF

MEN

E.NM

NMO

Figure 2.9: BLAST-seeding

could be multiple neighboring seeds for a seed that exceeds a threshold value, 't', (see

Figure 2.10). BLAST uses BLOSUM62[16] and PAM40[13][28] scoring matrices for

proteins and DNA sequences, respectively. Set of neighboring words as well as the

exact matches for the seed are then used to match against the second sequence.

Seed length =3

S2 CTGAFCQWAXFVMNHDEBIPQGVNNLLAALGSQTDTTGVEDLFDAELQTREERPNR

PQG 18
PEG 15
PRV 14
PKG 14
PNG 13
P.HG 13
PMG 13
PSG_J3
PQA"""I2

PQN 12

Neighbourhood Seeds

Threshold T=13

Figure 2.10: Indexing

33

Step 2 After finding seeds, BLAST algorithm extends the seed alignment in both

directions without introducing any gaps. When the alignment is extended on either

side, an alignment score can increase or decrease. When the alignment score after ex­

tension on both sides drops below a predefined threshold 'S\ the extension is stopped.

S is determined empirically by examining a range of scores found by comparing ran­

dom sequences and by choosing a value that is significantly greater than the range of

score considered for random sequences [2]. S is chosen such that the segment has the

highest score. After extending the seed alignment in both directions, if the score is

above a certain threshold, then such seed segment pair is called high scoring segment

pair (HSP). Many such HSP's are included in the final BLAST result. Figure 2.11

shows a seed, 'PQG' and 'PMG', with score 53 (using PAM matrix) which is greater

than the assumed threshold seed score of 50, extended on both sides. The threshold

'S' is assumed to be 49. The length of the extension to the left of the seed is lower

than to the right. The reason of this unequal extension on either side is because, after

3 character alignment extension on both sides of the seed, the score is 49 (Score + 2

for match, mismatch and indels = -2), if extended to the fourth character alignment

position to left and right, the overall score does not change. Since there is a positive

score on the fourth character alignment extension to the right of the seed, extension

is encouraged in this direction thereafter. Once the score falls below 'S' after the

fifth character alignment to the right of seed, extension is stopped.

Step 3 Extend the high scoring pairs by performing restricted dynamic program­

ming locally around HSP. By extending around the HSP, we mean, extending with

gaps, using Smith-Waterman algorithm until the score falls below a threshold. This

34

Un-Gapped Extension

- « - • • - • * * •

L A A L L N G F G T P Q G G P Q N E T L E G

I I 1
AASVLDSYVTPMGG'I'LNFLGAL

2 2 2 2 20 6 2? 2 2 2 2 2

•«• It-

Figure 2.11: Extending the seeds

step was not found in the original BLAST[2] but was added in GappedBLAST[3].

Using the high scoring pairs, BLAST was successful in fast database sequence search­

ing.

Advantages and Disadvantages of BLAST The advantage of BLAST over

FASTA is its speed due to heuristic extension of the seeds. The disadvantages are

that it cannot find seeds smaller than the minimum length 'I' considered for the ex­

act match seed (DNA alignment) and reports only local alignments. It also finds too

many seeds per sequence thus reducing speed (protein alignment) and does not allow

for gaps in sequence. To overcome these disadvantages, BLAST2[3] was developed.

The algorithm was changed by looking at two seeds at a distance 'd' which are then

extended on both sides. The intuition behind this was that two smaller seeds are

more likely than one longer one, therefore it is a more sensitive searching method.

35

2.1.2.3 B L A T - B L A S T like Al ignment tool

In this section, we explain how BLAT[18] aligns two sequences, Si and S2, much faster

than BLAST. The BLAT algorithm is similar to the BLAST and FASTA in that it

first searches for seeds of fixed length ll \ and the final alignment is built around the

seeds found. BLAT differs from BLAST in which sequence of the two sequences is

indexed. BLAT builds an index of "non-overlapping seeds of S2 database sequence and

scans linearly through the Si, whereas BLAST builds an index of Si and then scans

linearly through the database" [18]. When aligning two sequences, the significance of

BLAT is not very prominent. But, when the pairwise alignment solution is used for

database searching, the significance of BLAT indexing is observed primarily because

BLAT builds an index of non-overlapping seeds of S2 database sequence and scans Si

linearly. This implies that all non overlapping seeds from all the database sequences

are preprocessed and only first sequence has to scanned, which saves considerable

time. BLAT authors introduced a new seed which later came to be called as 'BLAT

seed'. BLAT finds both perfect match seeds as well as BLAT seeds, and extends

them in both direction similar to BLAST. After this extension, BLAT stitches them

together to form a larger alignment[18]. In this section, we will explain BLAT seeds

first and then explain the working of the algorithm.

Near Perfect Seeds: Xi and X2 of equal length m are considered as a near perfect

match seed or BLAT seed if there exists a contiguous region X2 in S2 such that

there are only r mismatches and the position where a mismatch is allowed is fixed.

For example, in Figure 2.12, we see a seed with one mismatch allowed in the third

position. If a seed exists in Si and S2 such that the position where mismatch is allowed

36

Sjl A T A

02* — A

A G A G G - A C A - C G

J\ VJ vT VJ VJ i \ \^ Pi. I. VJ \J

1 1 0 1 1 1

Figure 2.12: BLAT seed with one mismatch

is actually a match, then it is also considered as a seed. The seed is characterized by

ones and zeros. Ones represent the position where there should be a match and zero

where a mismatch could be allowed.

Step 1 The BLAT algorithm first searches for perfect match seeds of length 'k',

and considers perfect match seeds which are closer to each other, within a distance

'd'.

Step 2 Indexing is done using the look-up table for S2 unlike Si in BLAST. The

seeds considered for indexing are all non-overlapping seeds. Sequence Si is searched

linearly from left to right considering overlapping seeds.

Sequence S, ACGTTAAGAAATAT TAAT
Non-overlapping seeds

Sequence S2 A 0 T T A A C G T A G C A G € G A T T A T T T A T A T Overlapping seeds

Figure 2.13: Indexing in BLAT

37

Step 3 BLAT now searches for near perfect match seed defined above in both the

sequences. These near perfect match seeds are again recorded by using a look-up

table. When multiple seeds are within a distance 'd', they are extended to form a

single seed [18].

Step 4 All seeds found in step 1 and step 3 are extended into high scoring segment

pairs (HSPs), very similar to the HSPs found in the BLAST.

Sequence S|

Figure 2.14: Multiple seeds in the same diagonal [18]

Step 5 Stitching the HSP's is similar to the band created around the best diagonal

discussed in FASTA algorithm with the only difference being there is no band in

BLAT. In order to stitch the seeds, two adjoining seeds should be within a distance

'd'. BLAT later considers the best HSP and reports the alignment.

From a database searching problem point of view, the main contribution of BLAT

38

is its speed in searching. Indexing the database rather than the query sequence as in

BLAST is the primary reason for the relatively high speed of BLAT.

Limitations: As in previous algorithms, BLAT is also limited in the sense that it

cannot find small homologous regions because of the small seed length considered.

2.1.2.4 BLASTZ

BLASTZ[26] is the fastest algorithm in the BLAST series. In this section, we describe

the working of the algorithm.

Step 1 In order to speed up the algorithm, all repeats in the sequences are removed.

A repeat is a substring of same length repeated along the length of the sequence. The

reason is that this algorithm primarily concentrates on aligning two long homologous

DNA sequences as there are more likely to have more regions which match in both

the sequences. Such regions are masked or ignored.

Step 2 Looks for all pairs of identical seed of length 'k', except for at most one

transition. A transition is shift from one character to other. For example, in DNA

sequences, transition from A-G, G-A, C-T or T-C. The earlier version of BLASTZ

used a perfect matched seed of length 12. The look-up table is used to record the

matches in both the sequences.

Step 3 Each seed is extended in both direction without gaps. The extension is

stopped when the score drops below some threshold X, for example, X=3000. All the

segments after the gapped alignment which score above, say 5000, are retained. Let

39

us call all such segments as 'zones'.

Step 4 For the regions between the zones aligned by the preceding steps, BLASTZ

repeats these steps using a more sensitive seeding procedure (e.g., 7-mer exact matches)

and lower score thresholds, say 2000 for gap free threshold and 2000 for gapped ex­

tension.

Step 5 BLASTZ finally adjusts the sequence positioning such that all masked seg­

ments could now also be included in the final alignment.

Limitations Although BLASTZ uses transitions seeds, the length of the seed be­

ing 12 is too long to find small regions of homology in divergent sequences. Hence

BLASTZ fairs well with naturally evolving sequences but fairs relatively poorly with

divergent sequences. Due to the seed length being 12, and only one transitions al­

lowed in the entire seed length, BLASTZ finds too many seeds, and thus spends most

of the time in calculating HSP's.

2.2 Global Sequence Alignment Algorithms

In this section, we will explain some of the global pairwise sequence alignment algo­

rithms. We begin this section by explaining the optimal global sequence alignment al­

gorithm, Needleman-Wunsch algorithm[23] and later explain popular heuristic global

alignment algorithms.

40

2.2.0.5 PatternHunter

PatternHunter[21] introduces the concept of spaced seed to further improve the sen­

sitivity and speed. PatternHunter uses a combination of different data structures

including priority queues, a variation of data structure called red-black tree, queues,

and hash tables to achieve its speed[9]. In this section, we first describe 'spaced seed'

and later explain the working of the algorithm.

Definition 8 X\ and X2 of equal length m are considered as a spaced seed, if there

exist a contiguous region X2 in S2, such that there are minimum number of mismatches

and the position where mismatches are allowed need NOT be fixed.

(11 10 1 1 0 0 10 10 0 1 1 0 1 1 1 , 12)

Figure 2.15: Spaced seed model

Figure 2.15 shows a spaced seed of length 19. The seed is represented by ones and

zeros, ones representing the position where there should be a match and zeros where

mismatches could be allowed. The last number 12 represents the seeds weight (number

of ones in the seed). The difference between the BLAT seeds and Spaced seeds is that,

in BLAT seeds, the mismatch position is fixed whereas in Spaced seed, the mismatch

position is not fixed.

Step 1 The first step in this stage is building an index of the first sequence by

moving the spaced seed window over the sequence from left to right, very similar to

BLAST-sliding window. Using the look-up table, the first position where the model

41

fits in the second sequence is recorded as a hit. Subsequent hits or positions where

the model fits is recorded in another table, 'hit table'[21]. For each hit, hits along its

diagonal are considered and hits which are overlapping or to the right are ignored.

Step 2 The hits are extended to the right and left until the score of the segment falls

below a threshold value 't'. This stage is very similar to the BLAST algorithm already

described earlier. All such segment pairs, which have a score above the threshold

value 't' are considered as High Scoring Segments Pair (HSP). The position of the

last segment pair which reached the minimum threshold value 't' is stored, so that

future HSP below it could be ignored.

Step 3 In this stage HSP's found in the previous stage are extended to the left.

Before they are extended to the left, all the HSP's are diagonally sorted using a

variation of red-black tree. Seeds of a smaller model 1101 in a limited length T from

the left of the HSP are also stored along with other HSPs. "HSP's are inserted in

the tree once an optimal gapped alignment to its left is found, and retired from the

tree once newly generated HSP's are too far beyond its right end point to make use

of it" [26]. This stage resembles the FASTA stage where many hits along the diagonal

are found. The next step in this stage is to find the best diagonal. In order to

connect the intermediate HSP's region with the HSP, a cost is computed using the

affine gap penalty for the whole intermediate region. However, sometimes, two HSP's

are diagonally overlapping, then the cost calculated is the affine gap penalty plus cost

of shrinking the HSP in size to make a perfect fit[26] with the other HSP. In other

words, overlapping HSP's are shrunk to make the best fit. This process is repeated to

42

find the best HSP. In the end, the algorithm computes the optimal partial alignment

score.

PatternHunter was implemented in JAVA, making it platform independent. In

2003, PatternHunter2 was introduced[19]. The objective of PatternHunter2 was to

achieve 100 percent sensitivity and yet be faster than BLAST. PatternHunter2 uses

multiple seed design or model instead of only one as in PatternHunter. In "two-hit

mode, a gapped extension is performed only if two nearby hits are found on the same

diagonal" [26]. Also, PatternHunter2 uses multiple hash tables for each of the seed

considered.

The algorithm works better than the algorithms discussed earlier in terms of

sensitivity. The speed of the algorithm is not better than BLAST as it is implemented

in JAVA and incurs memory problems for long sequences.

2.2.1 Optimal Global Alignment Algorithm

Needleman-Wunsch algorithm[23] computes the optimal scores of alignments between

all characters of sequences S and T similar to the Smith-Waterman algorithm using

the same formula 2.1. Initially an empty matrix with first row and first column

filled with zeros is constructed. The algorithm computes an optimal alignment be­

tween S[l..i] and T[l..j], recursively. On completion of the matrix, the last row and

last column cell of the matrix will have the optimal score, opt(S, T). Using a simi­

lar trace back procedure used in Smith-Waterman algorithm, the final alignment is

constructed.

43

Disadvantages: Needleman-Wunsch algorithm suffers from the same disadvan­

tages as Smith-Waterman algorithm.

2.2.2 Heuristic Global Alignment Algorithm

Needleman-Wunsch algorithm is very slow and memory inefficient when comparing

long sequences. To overcome these shortfalls, many heuristic algorithm have been pro­

posed. Majority of the global sequence alignment algorithms explained in this section

use a data structure called 'suffix tree'. We first explain suffix tree, its advantages

and its application before moving into global sequence alignment algorithms.

2.2.2.1 Suffix Tree Data structure

Suffix tree is a data structure that represents the "internal structure of a string in

a comprehensive manner" [15]. The exact matching problem can be solved in linear

time O(n), where n is the length of the string. Weiner[31] developed the first linear

time suffix tree back in 1973. McCreight improved the Weiner's algorithm to achieve

better space-complexity[22]. After two decades, Ukkonen built a linear time suffix-

tree construction algorithm that incorporated all the benefits of McCrieghts algorithm

and also offered a simpler implementation [30].

Definition 9 A suffix tree r for an m-character string S is a rooted tree with exactly

m leaves numbered 1 to m. Each internal node, other than the root, has at least two

children and each edge is labeled with a non-empty substring of S. No two edges out

of a node can have edge labels beginning with the same character[15]. The key feature

of the suffix tree is that for any leaf i, the concatenation of the edge-labels on the path

44

from the root to leaf i exactly spells out the suffix of S that starts at position i, that

is, it spells out S[i..mJ.

Figure 2.16: Example of suffix tree for GATGAC

Label The label of a path from the root that ends at a node is the concatenation,

in order, of the substrings labeling the edges of that path. The path-label of a node

is the label of the path from the root to that node[15].

String Depth For any node 'i' in a suffix tree, the string-depth of 'i' is the number

of characters in i's label.

Split A path that ends in the middle of an edge (u, v) splits that label on (u, v) at

a designated point. A new node is introduced at the location of split[15].

45

2.2.2.2 Generalized Suffix Tree (GST)

Definition 10 A generalized suffix tree is a suffix tree that combines the suffixes of

a set of strings Si, S2 .., Sn.

A generalized suffix tree can be constructed quickly for n strings. First, build the

suffix tree for the first sequence, then starting at the root match the second sequence

against a path in the tree until a mismatch occurs. At that point add the remaining

characters of the suffix of second sequence to the suffix tree built for the first sequence.

Let us take two strings Si = GATGA and S2 = TATGTA. In figure 2.17, a leaf's

A
Alar 2 > ® — - * "

G H ^

'* Q 4 u o;:: p

H
S » i

i' '* P* S! ^ * w

Figure 2.17: Example of generalized suffix tree for two string, S\ and S%

label consists of two numbers. The first number represents the string number and the

second number is the starting position of the suffix in that string.

46

2.2.2.3 Ukkonen Algor i thm

Ukkonen's[30] linear time suffix tree construction algorithm brought many advantages

over previous algorithms. The algorithm used suffix links to speed the building of

the tree and is memory efficient. Our algorithm uses Ukkonen linear time suffix tree

building technique. A detailed explanation of the Ukkonen algorithm is provided in

the next chapter where we explain our algorithm.

Uniqueness in Ukkonen algorithm

• The algorithm begins at the root of the tree and constructs Ii (the implicit

suffix tree for just the first character) using the normal extension rules, that is,

moving from left to right.

• The constructed suffix tree only has suffix links in the internal nodes of the tree

(to save space).

2.2.2.4 Appl icat ions of Suffix Tree

The two popular applications of suffix tree are; solving longest common substring

problem of two strings and all maximal repeats problem in a single sequence. We

define these two applications below.

Definit ion 11 Given two strings Si and S2, the longest common substring is a sub­

string that appears in both Si and S2, and has the largest possible length.

A generalized suffix tree (GST) is built for the two strings to obtain the largest

common substring.

47

Definit ion 12 A maximal repeat in a string S is a triple (i, j , I) such that S contains

a repeat of length I starting at positions i and j , and this repeat cannot be extended

further to the left or right.

These repeats can occur either adjacent to each other (Tandem repeats) or apart,

anywhere in the sequence. A GST can be used to find all maximal repeats in linear

time. We now describe the working of some popular heuristic algorithms.

2.2.2.5 M U M m e r

MUMmer stands for Maximal Unique Match-mer. A maximal unique match is a

longest match that is found once in both the sequences. MUMmer was the first

global alignment algorithm to align two long genomes. All previous algorithms could

align genes and protein ranging up to few thousands in length [1], but either ran out of

memory or were unacceptably slower when aligning genomic sequences. In addition,

previous work on global alignment concentrated mainly to observe insertions, deletion

and point mutations (change at a particular position in the sequences), but were not

designed to look at large scale changes such as tandem repeats and large scale reversal.

If there exists a substring SSi = ' A C G T , then a reversal of SSi is SVi - 'TGCA'.

MUMmer makes use of suffix tree, longest increasing subsequence (LIS) and Smith-

Waterman alignment for computation time and memory efficiency. A term 'SNP',

meaning, a subsequence which appears in both the sequences but with a difference of

only one base introduced. The algorithm has the following features:

1. Identify SNP's.

2. Identify regions of DNA where the two genomes differed by more than one SNP.

48

3. Identify regions where large segments of DNA were inserted in one genome.

4. Identify repeats, which are usually substring duplication.

5. Identify tandem repeats, substring repeats which had different number of copies

in the genomes.

The working of the algorithm is as follows:

Step 1 Given two sequences, a suffix tree is built for the two sequences. Every

unique matching sequence is then represented by an internal tree node with exactly

two child nodes, whose child nodes are leaf nodes from different sequences. Finding

maximal unique match will take one traversal from the root to all leaf nodes, or can

be found in O(n), where n is the length of the match. A maximal unique match is

pictorially shown in Figure 2.18. The length of unique match MUMmer considerd is

at least half of the length of the longest MUM found. For homologous regions, MUM

is half the length of the longest MUM and for heterogeneous sequences, the length

is varied. The rationale behind MUM being at least half the length of the longest is

to remove small 'noisy' matches (less than half) and to avoid potential fewer MUMs

(more than half).

Step 2 Sort matches by their start locations in the first sequence from the suffix

tree and extract the set of maximal unique matches (MUM) that occur in the same

order in both sequences using a variation of the LIS (Longest-Increasing-Subsequence)

algorithm[15]. This variation of the algorithm takes into account the lengths of the

MUMs and allows them to overlap. It runs in 0(K log K) time, where K is the

number of MUMs. This step is pictorially shown in Figure 2.19.

49

Genome A: tcgatcGACGATCGCAGTAGGATGGATAAGCATAAcgact
Genome B: geattoGACGATCGCAGTAGGATGGATAAGCATAAfcca

Genome A

Genome B m

MUM-mer

Figure 2.18: Maximal unique match in both the sequences

Genome A

Genome B

1

Genome A

Genome B HIH
1

Figure 2.19: Consistent matches are selected which are in the same order in

both the sequences

50

Step 3 Generate Smith-Waterman alignments for all the regions between the MUMs.

Once a global MUMmer is found, an overall global alignment is established. In these

regions, MUMmer uses several algorithms for closing the local gaps and completing

the final alignment. "A gap is defined as an interruption in the MUM-alignment

which falls into one of four classes: (i) an SNP interruption, (ii) an insertion, (iii) a

highly polymorphic region or (iv) a repeat" [1]. All four classes are pictorially shown

in Figure 2.20. SNP: SNPs are found in two ways in the MUM alignment. In the

simplest case, SNP is surrounded by MUMs. In some cases, however, an SNP is ad­

jacent to sequences that are not unique. In such cases, the adjacent sequence and the

SNP is captured and processed by the repeat processing procedure described below.

Insertions/ Deletions : Insertions are regions that appear in one sequence but does

not appear in the other. These are large gaps in the alignment in one sequence and not

in the other. The insertions or deletions are done without the use of Smith-Waterman

algorithm or any other algorithm. Insertion are of two types, transpositions, that is,

sub-sequence is deleted in one region of the sequence and inserted in other region

of the sequence and simple insertions which appear in only one sequence. Simple

insertions could be due to simple deleting, or other evolutionary process.

Polymorphic regions : Regions in between MUMs that do not align, but still should

be aligned in the whole genome alignment. If such regions are small, MUMmer uses

optimal algorithm to align such regions.

Repeats : MUMmer does not display substring repeats as the alignment is based on

unique matches only. However, authors observed that repeat sequences were adjacent

to unique sequence, and the MUM on either end of a tandem repeat extended into the

repeat itself[1]. For example, Figure 2.21 shows there are two tandem repeats after

51

1: SNIP: exactly one base differs (ind icated by arrow) between the two
sequences

Genome A cgatgcatcgatcgatttatataggatatat

Genome B cgatgcatcgatagatttatataggatatat

2: Insertion: A sequence that occurs in sequence but not in the other

Genome A c g a t g c a t c t a g g a t a t a t

Genome B c g a t g c a t c a g a t 11 a g g a t a t a t

3; Highly polymorphic region: Many mutations in a short region

Genome A c g a t g c a c c g a . c a t a g g . a t a t a t

GenomeB c g a t g c a a c a g a g g t a g g a t a t a t
* A A * A i

4: Repeat sequence: Note the first copy of the repeat is imperfect
indicated by the arrow

Genome A CG A T G C ACCG A a c t g a C G A T G C A C C G A

GenomeB C G A T G C A T C G A a t g a c C G A T G C A C C G A

Repeat Match

Figure 2.20: 4 types of algorithms used in the inter MUM region

52

the MUM: (i) uniqueAAGGAAGG and (ii) AAGGAAGGsequence are overlapping

and are repeats. Four gaps could appear anywhere between positions 6 and 14 in the

alignment. MUMmer always inserts the gaps in the rightmost position. The MUM in

the final alignment would indicate that MUM (i) occupies positions 0...13, and MUM

(ii) occupies positions 10...25 in Genome A. The fact that these two intervals overlap

indicates a tandem repeat.

Genome A unique A AGGA AGG A AGGsequence

GenomeB uniqueAAGGAAGG sequence

0 10 20

Figure 2.21: Tandem repeat in the inter MUM regionflj

Step 4 Output the alignment, including all the matches in the MUM alignment as

well as the detailed alignments of regions that do not match exactly.

Limitations MUMmer is heavily dependent on the unique matches it finds in the

first step; if very few MUMs are found, the algorithm performs poorly. The require­

ment that two inputs sequences being homologous indicates that the algorithm is not

flexible. In case of heterogeneous sequences, differing more than 30 percent, even if

the minimum length of the MUM is reduced to 20 percent of the longest MUM, the in­

ter MUM would more likely be aligned using Smith-Waterman algorithm, drastically

increasing the computation time.

53

2.2.2.6 GLASS, GLobal Alignment SyStem

GLASS[6] was developed to align hundreds of kilobases of genomic sequence. It was

primarily developed to overcome the limitations of standard dynamic programming

(SDP) methods which had their running time scale in proportion to 0(nm) (where

n and m are the lengths of the genomic sequences compared) and were not sensi­

tive to finding short regions of good alignment between much longer regions of poor

alignment. This program uses a hashing technique and computes a global alignment

recursively by finding long segments that match exactly and whose flanking regions

have high similarity. The working of the algorithm is as follows:

Step 1 Find all common K-mers of length 'K' that appear in both sequences.

Step 2 Use a hash technique, map each matching K-mer to a unique character and

convert these matches in both sequences into strings of characters. The alphabets of

these characters must be different from that of the letters in the other sequences. Let

us say a symbol % such as inserted for a match in DNA sequences made of characters

A, C, G, T. An example is shown in Figure 2.22.

Genome A: GGATTTGGATATCTGATCTTGAGGATAGGGATA

Genome B: CCATTTGGATATTCTCTATTGAGGATAGGGCCC

Genome A : G G % C T G A T C # A T A

Genome B : C C % T C T C T A # C C C

Figure 2.22: Converting a k-mer to a unique character after hashing the k-mer

54

Step 3 Apply the standard dynamic programming algorithm to the short flanking

regions (12 bps) on both ends of each matching K-mer and compute two scores. Each

K-mer receives a score equal to the sum of these two scores. This step is pictorially

represented in Figure 2.23.

Score A + B

* 1 *
SDP score 'A' of the 12flanking SDP score 'B' of the 12flanking

bp bp
• " * * > • i ' - * * •

Genome A : GGATGACGTAGG%GGGATCGTAGGCTTGAGTGGGATGG

Genome B : CTAGGGGCCGTA%TTTTGACCCCCCCGATGCTATTATAT

"* • M •

Figure 2.23: Apply SDP on 12 bps on either side of the match

Step 4 Take only 'consistent' K-mers whose score exceeds a threshold T. Two K-

mers are inconsistent if they are overlapping or criss-crossing.

Step 5 Recursively aligns the intervening regions using a smaller value of K. The

value of K is 20, 15, 12, 9, 8, 7, 6 and 5. The value of K is decided empirically. Once

recursive procedure is performed, GLASS "extend all pairs of aligned segments by

short local alignments to the left and right by SDP" [6]. Finally, align the remaining

(usually short) unaligned regions using SDP.

Limitations GLASS recursively align the two sequences hence, it is slower than

MUMmer. However, as it considers short K-mers, it is more sensitive than MUMmer.

55

1 2 3 4
Genome A — • s| i-W " Ĉgjf ^ ^ w ^ W ^ i i w ^ ^

Genome B i U^T-K- ...A L". -,f k̂ *fê -. I M B J F ^ I » » ^ H^ssa^r

6 4 5

Genome A

Genome B i i

1 2 4 5

Figure 2.24: Shows seeds 2 and 3 criss-crossing and seed 6 (in blank) overlap­

ping with 5

GLASS neglects K-mers of size shorter than what is considered in the algorithm.

The removal of overlapping and crossing seeds makes the algorithm less efficient for

detecting trans-positions and reverse seeds.

2.2.2.7 AVID

AVID[7] attempts to balance both speed and sensitivity when aligning very long

sequences. To achieve better computational efficiency, it uses suffix tree and considers

overlapping anchors. To improve sensitivity, it uses a variant of Smith-Waterman

algorithm, in the inter anchor region. The algorithm works as follows:

Step 1 The algorithm starts by concatenating two sequences by placing a special

character N between them. A maximal repeat substring is a longest substring which

is repeated in both the sequences. A maximal repeat in this string that crosses the

56

boundary between the two sequences represents a maximal match between the two

sequences. All such maximal repeats are found by browsing all nodes in the suffix

tree only once. Thus, time taken is O(n), where n is the length of the concatenated

string.

Step 2 AVID removes matches that are less than half the length of the longest match

found. AVID then sorts the matches by length with consistent matches appearing

first.

Step 3 A variant of the Smith-Waterman algorithm is used to select anchors from

the matches found in the previous stage. Every match is evaluated based on its length

and alignment scores of its two flanking regions (10 bp on each side). This is similar

to the idea first employed in the GLASS algorithm.

Step 4 From the anchors in the previous stage, AVID picks only those anchors

which score above a threshold.

Step 5 AVID determines whether each match is entirely between two sets of an­

chors. Shorter matches removed in step 2 and repeat matches in step 4 are considered

at this stage. Smaller inter-anchor regions are realigned using the anchor selection

step recursively.

Step 6 For short regions, AVID uses the Needleman-Wunsch algorithm to get the

final global alignment. The above 6 steps are shown in Figure 2.25.

57

Bef«» Atestuog

„ *

Figure 2.25: AVID Algorithm, courtesy: [7]

Limitat ions AVID is not sensitive when aligning distantly related sequences. This

is partially due to the heavy dependence on maximal repeat substring. In case of

divergent sequences, not many maximal repeat substrings are found, which makes the

alignment bank on the local sequence alignment step in the inter anchor region for

the final alignment. This in turn would be computationally expensive if two anchors

are relatively closer or would be less sensitive, when two anchors are far away.

2.2.2.8 L A G A N - L i m i t e d Area Global Al ignment of Nuc leot ides

LAGAN[10] is more sensitive than previous pair-wise global sequence alignment al­

gorithms discussed in this thesis. LAGAN is an efficient and reliable pairwise aligner

that is suitable for genomic comparison of distantly related organisms. LAGAN does

that by finding small regions of local similarity first and then chaining them to pro­

duce the overall global alignment. The algorithm works as follows:

58

Step 1 CHAOS algorithm[ll] is used to generate local alignments between the

two sequences. The advantage of using CHAOS algorithm is that "it finds local

alignments using multiple short inexact words instead of the longer exact words" [11]

used by MUMmer, GLASS and AVID, Figure 2.27b. "Given a maximum distance d

and maximum range s, two local alignments or anchor x and y in the two sequences,

can be chained together if the indices of x (starting address) in both sequences are

higher than the indices of y, and x and y are 'near' each other" [11] with 'near' defined

by both a distance and a gap criteria as shown in Figure 2.26. The chaining is a global

alignment between x and y. "The final score of a chain is the total number of matching

bp in it. The default parameters used by CHAOS are words of length 10, a distance

and gap criteria of 20 and 5 bp respectively" [11].

Step 2 Construct rough global map by maximizing the weight of a consistent chain

of local alignments using the LIS algorithm which is also used by MUMmer, Fig­

ure 2.27c. A local alignment is chained to the previous one that produces the highest

scoring chain among all chains that end with this alignment. Apply first two steps

recursively between every pair of anchors that are separated by more bases than a

threshold.

Step 3 Compute the optimal Needleman-Wunsch global alignment within the range

V from the anchors, to get the final alignment (Figure 2.27d).

Limitat ions LAGAN uses local sequence alignment to first find seeds of length 'k'

using CHAOS algorithm and in the next step uses optimal global alignment to fill

the inter seed regions; these two steps together are computationally expensive when

59

2xgap
cutoff distance

cutoff

Search
box

location
in query

Range of
search

Figure 2.26: LAGAN Algorithm [10]

60

\

\

\

\

Fig: a

\
\

\ x

\ xX

\

\

\

\

- \ x

\

\

\

\

Fig: b

Fig: c Fig: d

Figure 2.27: The LAGAN algorithm. (A) A global alignment between two

sequences is a path between the top-left and the bottom-right corner of their

alignment matrix. (B) LAGAN first finds all local alignments between the two

sequences. (C) LAGAN computes a maximal-scoring ordered subset of the

alignments, the anchors, and puts together a rough global map. (D) LAGAN

limits the search for an optimal alignment to the area included in the boxes and

around the anchors, and computes the optimal Needleman-Wunsch alignment

limited to that area

61

compared to MUMmer or AVID. However, the sensitivity of this algorithm is good

when compared to MUMmer, AVID or GLASS as it picks short subsequences and

later stitches them for the final alignment.

S u m m a r y Prom the literature, we see local alignments algorithms first find regions

of similarity (seeds or anchors), expand the seeds on both sides to get a substantial

bigger similar region (high scoring pairs or HSP's) and then stitch these HSP's using

either a variant of optimal algorithm or other heuristic algorithm to get the final

alignment. Also, Hash table is the primary data structure used for seed searching for

all local sequence alignment algorithms. Different seeds (BLAT, spaced seed, perfect

match seed and seeds above a threshold) are proposed for local sequence alignment

algorithms. Many local sequence alignment algorithms are not designed for pair

wise sequence alignment but for searching similar database sequences. Considering

speed to be the main objective of many local sequence alignment algorithms, the

type of seed considered for the algorithm is one of the main contributor for varying

sensitivity while the rest of the algorithm is quite common to most local sequence

alignment algorithms.

Global sequence alignment algorithms on the other hand follow a similar technique

as local sequence alignment algorithm in that, all global alignment algorithms start

by first searching similar regions or seeds but some seeds are later selected to be part

of the final alignment: anchors. These global alignment algorithms have used suffix

trees wisely to improve their computational time. Recent algorithms use suffix tree to

search similar regions, out of these regions some are selected as anchors, and the inter

anchor regions are aligned using dynamic programming algorithm or other methods.

62

Some algorithms using the above technique are AVID, MUMmer and GLASS. LAGAN

on the other hand local alignment between the two sequences. These local alignments

are treated as seeds and the inter seed regions are stitched to get the final alignment.

In the next chapter, we explain our proposed algorithm for pairwise local sequence

alignment.

63

Chapter 3

Multiple Anchor Staged Local

Sequence Alignment Algorithm -

MASAA

In this chapter, we explain in detail our proposed algorithm. Ukkonen online suffix

tree construction algorithm[30], forms the first initial step of our algorithm. We begin

this section by explaining the Ukkonen suffix tree building algorithm.

3.1 Ukkonen Online Suffix tree Algorithm

To aid the understanding of our proposed algorithm, we first present some terminology

related to suffix trees. Let S[0..N] be the string indexed by the tree T. The leaf node

corresponding to the i-th suffix, S[i..Nj, is represented as 4- An internal node, v, has

an associated length L(v), which is the sum of edge lengths on the path from root

64

to v. We represent by a(v), the string at v to represent the substring S[l..i + L(v)]

where \ is any leaf under v. The suffix tree for an example, S — MISSISSIPPI is

shown in Figure 3.1. The numbers at the bottom of leaf nodes represent the start of

the suffix S[i..N] that they represent. From definition 12, we know that a suffix tree

(1) l3J (2 j

Figure 3.1: Suffix tree for 'MISSISSIPPI'

T for an m-character string S is a rooted tree with exactly m leaves numbered 1 to

m. The suffix tree is constructed incrementally by scanning the string from left to

65

right, one character at a time. That is, suffix tree is built in m phases, one for each

character. At the end of phase i, we will have tree 7$, which is the tree representing

the prefix SfL.iJ. In each phase i, we have i extensions, one for each character in the

current prefix. At the end of extension j , we will have ensured that S[j..iJ is in the

tree Tj. There are four possible ways to extend S[j..i] with character i+1.

1. S[j..i] ends at a leaf. Add the character i+1 to the end of the leaf edge.

2. There is a path through S[j..i], but no match for the i+1 character. Split the

edge and create a new node if necessary, then add a new leaf with character

i+1.

3. There is already a path through S[j..i+1].

4. Do nothing.

The algorithm can be viewed to consist of two phases, Locate phase and Extension

phase, for each character in the sequence.

Definition 13 "Let aa denote an arbitrary string, where a denotes a single character

and a denotes a (possibly empty) substring. For an internal node v with path-label

aa, if there is another node sl(v) with path-label a, then a pointer from v to s(v) is

called a suffix link. A suffix link sl(v) — w exists for every node v in the suffix tree

such that if o~(v) = aa, then a(w) — a, where a is a single character of the alphabet

and a is a substring (possibly null) of the string. Note that sl(v) is defined for every

node in the suffix tree. And, more importantly, sl(.) - the entire set of suffix links,

forms a tree rooted at the root of T, with the depth of any node v in this sl(.) tree

being L(v)"[15].

66

Fig: a Q - i ss i s s i pp i A) pp »0

\ S j ;« -6- P P I o

Fig:b Q - s s i s s i p p i •7»0«_1V' 0

/

-»- *•
P P I D

Fig:c

o ,ss »o '** o—ppi >p
*=s[1] len=3 *=s[4J len=4 / *=s[7] len=4

mississippi t

Figure 3.2: Speeding up steps to build the Suffix tree

67

The suffix tree for S — MISSISSIPPI with dashed edges between internal nodes

representing suffix links is shown in Figure 3.3. In order to be fast and memory

efficient, Ukkonen algorithm employs the following:

Figure 3.3: Suffix links in the suffix tree

Step 1: The tree is augmented with additional edges, called suffix links, that provide

shortcuts to move across the tree quickly. These suffix links play a crucial role

68

in reducing the running time of the algorithm.

Step 2: Skip/Count Trick as it is called: instead of stepping through each character, we

know that we can just jump, as long as the tree has common substrings. In other

words, there are two branches having common substrings at different places, one

can jump from one branch to the other branch, as shown in Figure 3.2b.

Step 3: Edge-Label Compression, since we have a copy of the string, we do not need to

store copies of the substrings for each edge as shown in Figure 3.2c.

Step 4: A match is a 'show stopper', meaning, If we find a match to our next character,

we do not have to do anything as the substring now is already part of the built

tree.

Step 5: Once a leaf, always a leaf. We do not need to update each leaf, since it will

always be the end of the current string [15].

A pseudo code for the Ukkonen algorithm is shown below[15].

• input S[0.. m] : string to be indexed

• I0 - Implicit suffix tree for S[0 . . . 0]

• for i — 0 to m do

- for j — 0 to i + 1 do

* LOCATE PHASE

* Locate (3 — S[j . . . ij in k

* EXTENSION PHASE

69

* if (3 ends at a leaf then

k+i, add Si+i to k

else

(3 ends at an internal node, or the middle of the edge

• if from the end of j3 there is no path labeled S[i + 1] then

• i j+ i , split edge in 7j and add a new leaf else

• Ii+\< hi fi already exists in /,

• end if

* end if

- end for

• end for

3.2 Contribution

All the pairwise alignment algorithms discussed in the previous chapter essentially

use either some form of seeds (for example, repeat match, unique match, contiguous

seed, spaced seed, vector seed, etc.) or maximum match subsequences (MMSS) as

the base for the alignment. Although these two approaches (seed based and MMSS

based) seems to be similar, they are not the same. A seed could be an MMSS, but

the converse need not be true. It is quite possible that a seed based approach could

fail to extract an MMSS as a seed in the alignment. For example, the underlying

MMSS, shown below, is not found using BLAST alignment algorithm.

70

AAATACATACTTAGGCTCAAAACGCACTGTTTAATAAAA

GTTAGGCCCCTGTTTAATTAGGCTCCCCCCCGGGGGGCC

Based on our observation and from the literature, we feel that MMSSs are more

likely to be conserved regions and therefore must appear in the final alignment.

Among the global sequence alignment algorithms, AVID uses the MMSS as its

base elements for alignment. However, no local sequence alignment algorithm uses

the longest common substring (LCSS) as its base element for alignment. It is our

objective to use MMSSs as the primary base element and, in the regions between

MMSSs, use BLAT seed[18] as the secondary base elements for the alignment. In this

way, local sequence alignment can be strengthened to detect even weakly conserved

regions. This is the main motivation for our local sequence alignment algorithm.

3.3 MAS A A - Multiple Anchor Staged Alignment

Algorithm

The objective of local alignment algorithm is to find similar subregions of significant

sizes within given two sequences and align them. Among the similar subsequences, a

subset is identified and anchored for possible extensions. Some of these anchors are

expected to be a part of the final alignment. Once a set of subsequences are anchored,

then the anchors of size greater than a threshold value are extended to form the final

alignment.

Subsequences are identified and anchored in two rounds. In the first round, all

71

the MMSSs of size greater than or equal to a threshold value are identified and then

a subset of them are anchored. This process is relatively fast and that improves the

overall computational time of the algorithm. To improve sensitivity, in the second

round, mismatch seeds are identified and a subset of them are anchored.

The algorithm is implemented in five logical steps: (i) finding MMSSs; (ii) selecting

MMSS anchors; (hi) finding mismatch seeds; (iv) selecting mismatch seed anchors;

and (v) extending anchors. We elaborate these five steps below.

3.3.1 Finding MMSSs

To find MMSSs, we use a suffix tree similar to the one used in AVID[7]. Initially,

two strings are concatenated by placing a character N in between them. Now, the

problem of finding all matching substrings between two sequences is transformed into

a problem of finding maximal repeated substrings in the concatenated string. Such

maximal repeated substrings (i.e., MMSS of original strings) of lengths greater than

or equal to a threshold value 5 are found using suffix tree of the concatenated string.

For the current implementation, we have fixed S = | , where I is the length of the

longest MMSS. 5 — | , strikes a balance between short 'noisy' MMSS's (5 < |) and

long MMSSs (5 > |) [7].

3.3.2 MMSS Anchors Selection

In this step, the algorithm starts selecting anchors from the MMSS set formed in the

previous step. The algorithm uses a simple technique to select such anchors. Let

us label the MMSS's as M1,M2,...Mn, starting from left to right. The algorithm

72

starts with the first pair (Mi,M<z). If there is no crossing and overlapping, M\ is

included in the anchor set and (M2, M3) is selected as the next pair to be examined.

Otherwise, the pair (M\,M2) is ignored and (M3, M4) is selected as the next pair to

be examined. The process continues, from left to right, until the last pair (Mn_i, Mn)

is examined. This simpler technique is relatively faster and seems to capture most

important MMSS anchors.

3.3.3 Finding Mismatch Seeds

Once MMSS anchors are selected, the focus shifts to the inter MMSS anchor regions.

For an initial value of k, we find all matching fc-mers in this region. The match is

denned by a BLAT seed[18], with k = 12, tolerating 4 mismatches. The mismatches

is set at 4 as it increases the number of the anchors found. This process serves two

purposes:

1. The matches which were lost in the MMSSs anchor selection step due to over­

lapping and crossing are found again as seeds, and

2. The mismatch seeds can find smaller regions of similarity.

A mismatch seed is found in two steps.

1. Find smaller seeds of size up to k

2. Extend each of them on both sides to become k sized mismatch seed if the size

of the seed is less than k

Consider the following example region between two MMSS anchors.

73

MMSSu ...GGGCCTACTTAGCGCTAAAACGCAAAAA.. .MMSS™

AfMgg)i...GTTATACTTAGCTCCCAAAACGCCTTAGG...MMggoo

In this example, TACTTAGC and TACTTAGC is a match in the region between

two MMSS anchors. They are extended to form CCTACTTAGCGC and TATACT-

TAGCTC mismatch seed pair. Similarly, other mismatch seeds are found in the

remaining part of the current inter MMSS anchor region, for example, AAAACGC.

The same process is repeated for all other inter MMSS anchor regions.

3.3.4 Mismatch Seed Anchors Selection

In the literature, many algorithms use different heuristics to choose a subset of

matches to anchor. We identify anchors from non-overlapping, overlapping, non-

crossing, and crossing matches. Identifying anchors from non-overlapping and non-

crossing matching is relatively straightforward. To identify anchors from overlapping

and crossing matches, we use the heuristic of "closeness". In overlapping mismatches,

if the length of the overlaps on both matches is same then they are merged into a sin­

gle non overlapping match and therefore included as an anchor. Crossing mismatches

brings us four cases.

Case 1: When crossing mismatches are at different distance and have same

number of matching bps, mismatch seed closer to each other is selected.

Case 2: When crossing mismatches are at same distance and have same number

of matching bps, either one is selected. We choose the left most seed in sequence

one.

74

Case 3: When crossing mismatches are at same distance and have different num­

ber of matching bps, mismatch seed with maximum matching bps is selected.

Case 4: When crossing mismatches are at different distance and have different

number of matching bps, mismatch seed with maximum matches is selected.

Eventually, all selected anchors are ordered from left to right.

3 . 3 . 5 E x t e n d i n g A n c h o r s

The MMSSs anchors found in step 3.3.2 form part of the final alignment. These

anchors are extended on both sides without any involvement of Smith-Waterman

algorithm. The extension starts with the longest MMSS. The mismatch anchors on

both sides of this MMSS anchor facilitate the extension process. The extension is

done as follows. If the neighboring MMSS anchor is within the distance d bp, then it

is extended up to the neighboring MMSS. Otherwise, it is extended up to d bp. This

is done on both sides. Then the next longest MMSS is chosen and extended. The

algorithm terminates when all MMSS are extended. A pictorial representation of this

stage is shown in Figure 3.4 where extension starts from MMSS (i). The algorithm

ensures that longest common substring or the longest MMSS will be a part of the

final alignment. BLAT seeds and the MMSS are determined linearly from left to right

in both the sequences. BLAT seeds with 4 mismatches are used, primarily to remove

the assumption that amino acid substitutions at neighboring sites are uncorrelated

to a degree. BLAT seed consideration in-between MMSS regions imposes additional

computation but captures information that could increase remote homology detection.

However, our algorithm is not designed to catch homologies which are very distant

75

CD

0
O

Distance 'd ' > threshold, Not
\ extended from MMSS (i-1)

Distance 'd ' < threshold, extend

MMSS (i - i) \ * * t 0 M S S S O " 1) f r Q m M M S S W

MMSS (i) " \ Distance 'd ' < threshold, extend
*s^ to MSSS (i+1) from MMSS (i)

MMSS (i+1) \
Distance vd" < threshold,

extended from MMSS (i+1)

Sequence 2

Figure 3.4: MMSS's extension

to each other in terms of their position in the sequences. When two crossing seeds

are considered in both the sequences, nearest seeds are chosen, as there is a greater

probability that the mutation occurs at a relatively same region in both the sequences.

3.3.6 Implementation

The algorithm was implemented in C language. C was primarily chosen for speed

over other languages like JAVA. JAVA due to the inherent virtual machine, could

bring down the computation efficiency in terms of speed. We next explain the imple­

mentation of our algorithm.

Consider two sequences, SI = TATAA and S2 = AACGA. The objective is to

align these two sequences. A special character A is added to the first sequence and

76

the two sequences are then concatenated. SI = TATAAAAACGA. We then build

online suffix tree to the concatenated string and find longest matching substrings or

maximal match substring (MMSS). This is done by finding internal nodes which have

at least two children, one child branch's substring having A and other without A.

We then pick the starting address of the two respective branches and add them to

a list. The structure of the node is built in a way that it holds the starting address

and ending address of edge. Both the addresses are the indexes with respect to the

sequence SI, that is, the concatenated string. Once the MMSS's are found, they are

sorted according to MMSS position in the first sequence, that is, from left to right.

For example, if MMSS1 position in the sequence is x, then the next MMSS2 position

in sequence would be y, where y>x. The sorting algorithm used is quicksort. The

inter anchor regions are scanned linearly from left to right to find smaller anchors.

The final alignment is then recorded after all smaller anchors are found.

The main component of the algorithm is the Ukkonen suffix tree, which is fast and

memory efficient. In the next section, we will review the complexity of the algorithm.

3.3.7 Complexity of the Algorithm

In the first stage of the algorithm, where only MMSS's are found by reaching all

nodes once, the time complexity is O(n). Next, all MMSSs are sorted using quicksort

algorithm which has an average time complexity of O (n log n), where n is the number

of MMSSs found. In the next stage, we find smaller anchors in the inter MMSS region.

This stage is computationally expensive, as overlapping and criss-crossing anchors are

first identified, removed if necessary and sorted using quick sort algorithm. We find

77

all linearly increasing anchors in both sequences, very similar to longest increasing

subsequence problem (LIS), which has a time complexity of O (n log n) [15]. We

then move to the last stage of extension, the time complexity of this stage is O (n),

where n is the number of MMSSs. So the time complexity of our algorithm is O (n

log n).

3.3.8 Hypothesis

MASAA would not only be faster for long sequences but would also be as sensitive

as BLASTZ on sequences which have varying homology similarity.

78

Chapter 4

Experimental Model, Results &

Analysis

We present the performance of MASAA and compare the results with BLASTZ which

is the most recent version of the most popular and widely used pairwise sequence align­

ment algorithm, BLAST. This chapter describes the experimental setup, assumptions,

results and analysis.

4.1 Experimental setup

4.1.1 Data sets

We compare MASAA and BLASTZ with four different data sets. The first data set

is called 'ROSETTA' data set which consists of a set of 117 sequences of human

and mouse genes. The second data set is a subset of 'Homophila' data set[12]. The

'Homophila' data set is a database consisting of more than 700 human disease caus-

79

ing genes and corresponding fruit fly genes cognates called 'Homophila'. The term

'cognate' implies that there is a functional similarity between genes, but not neces­

sarily the homology similarity. 'Homophila' data set does not show the percentage

of homology similarity or conserved region present between the human and fruit fly

gene but presents only the gene name. In order to find the percentage of homol­

ogy, we first aligned 400 sequences taken randomly from 'Homophila' data set using

a global sequence algorithm, 'LAGAN'. For experimental purposes, 67 genes were

selected from this data set as the remaining sequences had the homology similar to

ROSETTA dataset. Genes which had a homology similarity close to the first data set

were excluded. Genes in the second data set have conserved region ranging from 0 to

70 percent. Second data set sequences with different percentage of conserved region

is shown in table A.l of the Appendix. Genes in the first da ta set have conserved

region ranging from 85 to 96 percent.

Due to the size of the SECOND data set, we show only a few human and fruit

fly gene alignment comparison in this chapter. The third data set, consists of twenty

gene sequences from human, mouse, pig and horse, whose length range from 120,000

to 800,000 bp's sourced from NCBI website[25]. Twenty sequences were sourced

mainly to match the range of the randomly generated sequences. Finally, we have the

fourth data set consisting of randomly generated sequences ranging from 100,000 bp's

to nearly half a million bps in length. Randomly generated sequences were created

because of the difficulty of finding uniformly increasing real sequences. Combining

all data sets, we have a total of 350 sequences. For reasons of simplicity first, second,

third and fourth data set are referred as ROSETTA, SECOND, REAL and RANDOM

data set, respectively, in this chapter.

80

4.1.2 Performance Metrics

For our experiments, we consider four performance metrics, they are:

• Time (in seconds), total time taken to the alignment

• Exon coverage, the percentage of exon covered in the final alignment

• Alignment score, the total alignment score of the alignment

• Bp coverage, Is the total number of bps aligned in the final alignment

We use different performance metrics for different data sets. Exon coverage is used

for ROSETTA data set for two reasons: (l)This commonly used metric is used in the

literature as it determines the ability of the algorithm to detect and align conserved

regions [7] and (2) ROSETTA data set is also the only data set which contains gene

sequences with exon annotation. Alignment score and bp coverage are used for SEC­

OND data set. This is because, exon is absent in either human or fruit fly or both of

the human-fruit fly sequence pair for some genes making exon coverage irrelevant. For

REAL and RANDOM data set, time and bp coverage are used. The alignment score

is not used for these data sets because alignment score is used to show the degree of

evolutionary closeness and is not a good fit for randomly generated sequences. The

main objective of the experiments on RANDOM data set is to observe time taken

to complete the alignment using MASAA and BLASTZ. RANDOM dataset contains

sequences whose length are increasing linearly from 100000 to half a million with an

interval of 2000 bps. Since randomly generated sequences do not clearly show the

practical effectiveness of the algorithm, we later used REAL data set whose sequence

length are in the same range as that of RANDOM data set.

81

4.1.3 Assumptions

For experimental purposes, we have made several assumptions as described below:

• The MMSS anchors selected are 'good' when aligning two real sequences, Si

and S2- We call an anchor good if either the beginning position or the ending

position associates two related positions of the alignments. The two related

positions could be starting and ending position of exon region, untranslated

region, complete gene or others. All anchors that are not good are called bad

anchors. Bad anchors can result in serious errors or drop in MASAA sensitivity.

• There is at least one MMSS between the sequences, Si and S2 under study.

The longest MMSS found is a part of the final alignment and is always a good

anchor.

• We are also interested in the overall accuracy of the alignment algorithm. Align­

ments are scored by sum of pairs described earlier and accuracies given by the

number of columns that are correct (bp coverage). We consider a column to be

correct if pair from both sequence at a given position i, j in Si and S2 match in

a region. This region could be again, exon region, untranslated region, whole

gene, whole sequence in some cases and others. For RANDOM and REAL data

set we consider the whole sequence. This condition might look too strict when

aligning short real sequences, as there are often short substrings and MASAA

might miss these substrings. Since we use long real and random sequences, we

feel this sensitive criterion is reasonable.

• We believe that mutations (changes in the child sequences from the parent se-

82

quence) in the sequences would have occurred at different places in the sequence

as a long stretch rather than short stretches or single mutations. Block insertion

and deletion are assumed to be true from the literature.

4.1.4 Considerations

• When aligning sequences Si and S2, both the sequences are of similar length.

The reason is, if the difference between two sequence length is large, then the

chances of finding many MMSSs are low. For example, if Si and S2, are 10,000

and 1,000 bp in length respectively, there could be only one MMSS of length 400

and other MMSS's might be very small to be considered. In this condition, the

algorithm would end up with only one large MMSS. In order to minimize this

condition, sequences which are more or less of the same length are considered.

• In the sequence, there could be substrings which are repeatedly found at differ­

ent places along the length of the sequence. These substrings are called, 'repeat

strings'. In the literature, we found many algorithms which removed these sub­

strings to enhance the speed of their respective algorithm. In our case, for both

BLASTZ and MASAA, we have not removed or masked any repeat substrings.

Thus, the reported time reflects the actual time taken for the alignment.

4.2 Analysis of Results

Experimental results are collected for four performance metrics described in 4.1.2.

We investigate these four performance metrics by: (1) varying the size of MMSS, (2)

varying the size of the inter MMSS anchor, and (3) varying the minimum distance of

83

the MMSS to be considered for the final alignment. Results obtained by varying these

parameters are averaged over 10 simulation runs. The gene number in the horizontal

axis in the experimental graphs correspond to the gene number in the data set shown

in appendix A. For baseline configuration, the default parameters chosen are: (1) The

length of MMSS considered in the first stage of the algorithm is fixed at 50 percent

of the longest MMSS found, (2) The length of the inter MMSS anchors considered is

12 with 4 mismatches and (3) The minimum distance 5, between MMSS in the final

stage is kept at 10000 bp.

4.2.1 Baseline configuration

4.2.1.1 RANDOM data set

Experiment 1 (Total alignment time with baseline configuration): In this exper­

iment, we observe the time taken to align sequences from RANDOM data set by

MASAA and BLASTZ. The results are summarized in Figure 4.1.

Observation 1: We found that MASAA consistently outperformed BLASTZ for

long sequences because while BLASTZ spends more time finding the high scoring

segment pairs, MASAA quickly finds MMSSs and inter MMSS anchor seeds using

the suffix tree. MASAA spends most of its time in finding inter MMSS anchors,

and criss-crossing and overlapping seeds in the inter MMSS region. BLASTZ spends

additional time in identifying and expanding high scoring segment pairs. From the

experimental results, it is clear that MASAA's overall time is lower than BLASTZ.

84

S3 •

30 •

2 5 •

en

d 20 • c
CJ

•S 15 •

5

10 •

5 •

0 -

^^^^^ —x
—

S^ - - ' ' ' — BLASTZ

S.*'''* MASAA

" "

Length of the sequences

Figure 4 .1 : Total alignment time on RANDOM data set with baseline configu­

ration

E x p e r i m e n t 2 (Bp coverage with baseline configuration): This experiment shows

the trend in the bp coverage using sequences from RANDOM data set. The bp

coverage for MASAA and BLASTZ is the cumulative bp's of all the HSPs found in

the alignment. The results are shown in Figure 4.2.

O b s e r v a t i o n 2: Figure 4.2 shows that , as the length of the sequence increases,

MASAA has better bp coverage, which can be attributed to many MMSS's and inter

anchors identified by MASAA. BLASTZ bp coverage is at 100 percent as we are com­

paring BLASTZ bp coverage with MASAA. MASAA also considers overlapping and

criss-crossing anchors in the region between the inter MMSS anchors, thus increasing

the overall bp coverage.

85

108

106

104

102

100

98

96

94

92

90

--MASAA

— BLASTZ

Length of the sequences

Figure 4.2: Up coverage on RANDOM data set with baseline configuration

4.2.1.2 REAL data set

Experiment 3 (Total alignment time with baseline configuration): In this experi­

ment, we observe the time taken to align long sequences by MASAA and BLASTZ.

The results are summarized in Figure 4.3.

Observation 3: For real sequences, we observe the same trend as randomly gener­

ated sequences in experiment one. Figure 4.3 shows the time gap between MASAA

and BLASTZ on real sequences gets higher as the length of the sequence increases.

This is because MASAA spends little time in selecting the MMSS anchors thus es­

tablishing itself the range within which the final local alignment could be produced.

However, BLASTZ spends considerable amount of time in detecting and expanding

high scoring segment pairs. Also, real sequences with high homology similarity con-

86

Length of sequence 1 and sequence 2

Figure 4.3: Total alignment time on REAL data set with baseline configuration

tributes to MASAA's poor performance as it is more likely that BLASTZ detects

many high scoring pairs which do not contribute to the final alignment.

Experiment 4 (Bp coverage with baseline configuration) This experiment shows

the bp coverage using sequences from REAL data set. The results are shown in

Figure 4.4.

Observation 4: Figure 4.4 shows that the MASAA bp coverage is much better

than BLASTZ when the length of the sequences increases. We attribute this behavior

to two factors: (1) in case of real sequences, the chances of finding MMSS and inter

MMSS anchors are more because the sequences have greater homology similarity, (2)

as a result, in the last phase of our algorithm, chances of more MMSS being considered

for final alignment increases. In case of small sequences, the MMSS and inter MMSS

87

N
H
CZ3

< -)
« -*-» H
*
M l

er
a

> o

• Q
« H

o

140 -

120 -

100

80

60

40

20 -

0
*n
cs
oo
\D

en
" O
•=3 "

r-
<o

TT
oo
*n
0 0

0G
OO
i n
o ON

r-«
CO
<n 0 0

'—' 00
oo
p -
cs
O
cs

-tf
«n
CS ô
o
(N

CS
e'­
en
o CS

ON
00

o CS
CS

r-
r-T f
CS
cs CS

T

ON
m
o o
o <N

0 0
en
ON
r-
cs CM

CS
o
en
en CS

O
ô ON

rn
cs

•—I

oo
ô

o
cs
^o
ON
cs
TJ-
CS

cs
cs
cs
\D
o
en
o
en
»n
ô ON

CS

^.mw^..,-

r-
3
O
CS
en
o
o
o
o
cs en

o
8
o
Tl-
m
r-
-3-
vo
o CM
ro

™~™v

VO

o
T
* t
CO

o
o
o
o ^f
ro

~ o

8
o
vo
m

8
O
o
»n
en

o
8
O
r-
en
O
O
O
O
^D
en

• •

V

O

8
O
CO

m
o
o
o
o
r-
en

cs
en
cs
un ON
en
o
o
o
o CO
en

BLASTZ

MASAA

^™™^™w™™r««**u*^

Ĥ m o
-3" ** ON

o ô cs o *-< vo
in - t >n
Tf u-i ^o
-H O O
o o o r- o o ON O O
CS CO O
t ^ 00

Length of sequence 1 and sequence 2

Figure 4.4: Bp coverage on REAL data set with baseline configuration

region are also small. In the small inter MMSS region, MASAA removes unnecessary

overlapping and criss-crossing anchors reducing the overall inter MMSS anchor set

size. Hence, bp coverage is low for smaller sequences.

4.2.1.3 ROSETTA data set

Experiment 5 (Exon coverage with baseline configuration): To test the sensitivity

of our algorithm, we used ROSETTA data set[6]. The results are shown in Table4.1.

The table shows the percentage of ROSETTA sequences which covered different per­

centages of exon region.

Observation 5: Table4.1 shows that BLASTZ is good for aligning naturally evolv­

ing sequences because BLASTZ was designed for homologous sequences. BLASTZ

Table 4.1: Exon coverage on ROSETTA data set with baseline configuration

Aligner 100 exon 90 exon 70 exon

BLASTZ 94 97 98

MASAA 94 94 96

picks substrings effectively along the length of the sequences easily using the spaced

seed design explained earlier. There are two reasons why BLASTZ is not able to

outperform in case of homologous sequences; (1) 'wrong' seeds are considered in the

inter MMSS region because many seeds whose position in both sequences are more

or less the same, are eliminated as they are criss-crossing or overlapping with longer

seeds, see Figure 4.5, and (2) the first and the last MMSS's are not extended to left

and right as BLASTZ does on high scoring pairs.

Seeds which are placed, close to
each other in both sequences

Figure 4.5: Longer seeds are given preference over smaller seeds

89

4.2.1.4 S E C O N D data set

Since SECOND data set contains sequence set which have smaller percentage of con­

served region, exon coverage as a performance metric is not relevant. Thus, alignment

score and maximum bp coverage are used as the performance metric.

Exper iment 6 (Alignment score with baseline configuration): In this experiment,

we observe the alignment score for BLASTZ and MASAA. To observe the alignment

score, we used the scoring matrix used in BLASTZ. The experimental observation is

shown in Figure 4.6 and Table 4.2.

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0 -i I . I I
10 16

Gene Number

• MASAA

22 23 24

Figure 4.6: Alignment score on SECOND data set with baseline configuration

90

Table 4.2: Number of genes MASAA's alignment score better than BLASTZ

Aligner No of genes

BLASTZ 8

MASAA 59

Observation 6: Figure 4.6 shows MASAA performing better than BLASTZ for

majority of the genes (10/13) in its default parameter configuration. The observation

also infers that suffix based maximal match substring design as the base for our

algorithm suits well than a look-up table based seed design algorithm for aligning

sequences which have a homology similarity in the range of 0 to 70 percent. Table 4.2

shows the number of genes each aligner is outperforming the other, MASAA clearly

is outperforming BLASTZ for the reasons outlined earlier.

Experiment 7 (Bp coverage with baseline configuration) In this experiment, we

are interested in observing the bp coverage on SECOND data set. The observations

are shown in Figure 4.7 and Table 4.3. An example of MASAA alignment for a gene

ACE is shown in Figure 4.8.

Observation 7: Figure 4.7 and Table 4.3 shows MASAA performing better than

BLASTZ. We attribute this bp coverage to MMSS and, more importantly, the anchors

found in between the MMSSs. MASAA considers both overlapping and criss-crossing

anchors seeds in the regions between MMSS's. As a result, many inter MMSS anchors

are still considered after unnecessary anchors are eliminated, which in turn contributes

91

3000

2500

1500

1000

500 1

22 23

Gene Number

•BLASTZ

"MASAA

Figure 4.7: Bp coverage on SECOND data set with baseline configuration

Table 4.3: Number of genes MASAA's bp coverage better than BLASTZ

Aligner No of genes

BLASTZ

MASAA 59

The FinaLAlignmentScore for the alignment is 3289

The FinaLBpScore for the alignment is 73
The length of the two sequences are 3eql:262 and Seq2: 261
The range is: sequence 1= 7-145, sequence 2: 3-249time = 8

Results: String is not a a substring.

dyn-wifi-121-66:suffixtreeFolder bharathreddy$ §

Figure 4.8: An example of MASAA alignment for gene ACE

92

to the overall bp coverage.

Conclusion: In this section, we compared BLASTZ and MASAA in its baseline

configuration. From the experiments, we conclude that as the length of the se­

quences increases, MASAA is faster and sensitive than BLASTZ . For ROSETTA

set, MASAA is comparable to BLASTZ. For the SECOND data set, MASAA out­

performed BLASTZ.

4.2.2 Varying the MMSS Length Parameter

One of the most important parameter in our algorithm is the length of the MMSS.

The length of the MMSS is critical because, if the length of MMSS considered is

of a smaller percentage than the longest found in the suffix tree, there would be

many MMSSs. This results in many inter MMSS anchors and would in turn be

computational expensive. In the following experiments, we vary the MMSS length

and observe variations in terms of sensitivity and speed.

4.2.2.1 RANDOM data set

Experiment 8 (Total alignment time by varying MMSS length): In this experi­

ment, we vary MMSS anchor length from 35% to 60% of the longest MMSS found in

the tree for randomly generated sequences. The observations are shown in Figure 4.9.

Observation 8: Figure 4.9 shows MASAA's performance increases as the length of

the MMSS increases from 50% to 60% of the longest MMSS in the tree, however, the

93

o
O O O O O O O O C J O

Length of the sequences

Figure 4.9: Total alignment time on RANDOM data set by varying MMSS

length

speed decreases as the percentage is reduced from 50% to 35% of the longest MMSS

in the tree. The reason for this trend is that, when the MMSS is shorter than the

longest found in the suffix tree, many MMSS are found. There are many inter MMSS

anchors regions now, and more seeds are found in the inter anchor region, this directly

increases the computational time of the algorithm.

Experiment 9 (Bp coverage comparison by varying MMSS length): In this ex­

periment, we want to observe bp coverage when the MMSS length is varied. The

experimental observation is shown in Figure 4.10.

Observation 9: Figure 4.10 shows that when MMSS length is lower than 60, the

bp coverage exceeds that of BLASTZ. When the MMSS length is 60% of the longest

94

96

i\%6uz\ SS1/VJW Butfidva flq ?as v$vp MOQNVH uo ^6vu9aoD dQ 'Qj'f a.inSi£

somonbas aqj jo qjSu^i

0 0 W 0 \ O ^ W M O \ O ^ M t O 0 \ o 5 o o o o o o o o o o o o o o o
O Q O O O O O O O O O O O O O o o o o o o o o o o o o o o o

00 to (^ O -U 00 o o o o o o o o o o o o o o o o o o

4 S 8

09-VVSVW. . _
Z1SV1H

ss-vvsvw
os-vvsvw™™.
srvvsvw-..
Of-VVSVW

se-vvsvw...

Si

S6 5?
Si
ITS

n

03

soi r
H
N

SIT

MMSS found in the tree, MASAA fails to have better bp coverage than BLASTZ.

The reason is that, there are not many MMSS's found. When MMSS length is lower

than 60% of the longest MMSS found, MASAA bp coverage exceeds BLASTZ bp

coverage for longer sequences.

4.2.2.2 REAL data set

Experiment 10 (Total alignment time by varying MMSS length): In this experi­

ment, we vary MMSS length from 35% to 60% of the longest MMSS found in the tree

for real sequences. The observations are shown in Figure 4.11.

1

85 i

65

45

25

"MASAA-35

"BLASTZ

• MASAA-40

-MASAA-45

• MASAA-50

-MASAA-55

•MASAA-60

<n oo cs
r-. \Ti \D
oo oo o _ _ _ . .

^~> *$ o> o^ r*l m
!N • * >D

O o o o
r - < ^ H r ^ r ^ (N o i r < i c s c s c o m m c o m m m

oo n oo

Length of sequencel , sequence!

Figure 4.11: Total alignment time on REAL data set by varying MMSS length

96

Observation 10: Figure 4.11 shows that when the MMSS length is shorter than

45% of the longest found in the tree, the time taken by MASAA is larger than

BLASTZ. The numbers in the horizontal axis of the graph are the actual length of

two sequences. For percentages greater than 45, the time taken by MASAA is less

than BLASTZ. When MMSS length is 35 or 40 most of the MMSS's in the tree will be

included. Hence, the time taken is larger than when the MMSS length is set higher.

Experiment 11 (Bp coverage by varying MMSS length): In this experiment, we

want to observe the bp coverage when the MMSS length is varied for real sequences.

The experimental observations is shown in Figure 4.12.

. *** * ^ , * *** s ""* ° *** * * * X #?

Length of sequence 1, sequence 2

Figure 4.12: Bp coverage on REAL data set by varying MMSS length

97

Observation 11: Figure 4.12 shows that MASAA is able to perform better than

BLASTZ when MMSS length is varied from 35% to 55% of the longest MMSS found

in the tree. When the MMSS length is 60%, MASAA fails to have a better coverage

as there are fewer MMSS found. Similarly, when the MMSS length is of a smaller

percentage to that of the longest MMSS found in the tree, MASAA is able to perform

better than BLASTZ in terms of bp coverage becuase they are many MMSS found.

4.2.2.3 ROSETTA data set

Experiment 12 (Exon coverage by varying MMSS length from 35 to 60% of the

longest MMSS): In this experiment, we vary the MMSS length from 35 percent to 60

percent and observe variations in terms of sensitivity and speed. The experimental

observations are shown in Table 4.4.

Observation 12: From the Table 4.4, it is clear that the performance gradually

increases as the length of the MMSS is reduced. We also observe that lowering the

length of the MMSS to 35% of the longest MMSS is acceptable as many MMSS

anchors are now considered for final alignment. We conclude that reducing the size

of MMSS anchor does have a direct impact on the sensitivity of the algorithm.

4.2.2.4 SECOND data set

In this section, we vary the length of the MMSS and observe the sensitivity on SEC­

OND data set.

Experiment 13 (Alignment Score by varying MMSS length): In this experiment,

we vary the length of the MMSS from 35 to 60 percent of the longest MMSS found and

98

Table 4.4: Exon coverage on ROSETTA data set by varying MMSS length

Aligner 100 exon 90 exon 70 exon

BLASTZ 94 97 98

MASAA-35% 95 97 94

MASAA-40% 94 95 96

MASAA-45% 94 95 96

MASAA-50% 94 94 96

MASAA-55% 94 94 96

MASAA-60% 92 97 94

observe the alignment score on SECOND data set. The experimental observations is

shown in the Figure 4.13 and Table 4.5.

Observation 13: Figure 4.13 and Table 4.5 shows that as the length of the MMSS

decreases, the alignment score varies but the score is still higher than BLASTZ. We

also observe that for few genes, as we increase the MMSS length threshold to 60%,

the alignment score drops. The exact reason for this drop is difficult to predict.

There could be many reasons for this low alignment score, some of them could be,

smaller MMSSs, smaller inter MMSS anchors, MMSS's distributed far away from

each other, and many overlapping and criss-crossing anchors eliminated in the inter

MMSS regions.

99

Figure 4.13: Alignment Score on SECOND data set by varying MMSS length

Table 4.5: Number of genes MASAA's alignment score better than BLASTZ

Aligner No of genes

MASAA-%35 of MMSS 65

MASAA-%40 of MMSS 64

MASAA-%45 of MMSS 61

MASAA-%50 of MMSS 59

MASAA-%55 of MMSS 55

MASAA-%60 of MMSS 44

100

Experiment 14 (Bp coverage by varying MMSS length): In this experiment, we

vary the length of the MMSS from 35 to 60 percent of the longest MMSS found

in the tree and observe the bp coverage. The experimental observation is shown in

Figure 4.14 and Table 4.6.

27

Gene number

Figure 4.14: Bp comparison on SECOND data set by varying MMSS length

Observation 14: Figure 4.14 and Table 4.6 shows that, as the length of the MMSS

is varied, the bp coverage is unpredictable. This is due to two reasons: (1) The

number of MMSSs found varies when the length of MMSS parameter is changed (2)

The number of inter MMSS anchors also varies when the MMSS parameter is varied.

If the MMSS and inter MMSS anchors are more, we see better bp coverage.

101

Table 4.6: Number of genes MASAA's bp coverage better than BLASTZ

Aligner No of genes

MASAA-%35 of MMSS 66

MASAA-%40 of MMSS 63

MASAA-%45 of MMSS 61

MASAA-%50 of MMSS 59

MASAA-%55 of MMSS 56

MASAA-%60 of MMSS 42

4.2.3 Varying the inter MMSS anchor Length Parameter

The inter anchor region plays an important role in the sensitivity of our algorithm.

The length of the inter MMSS anchor is critical because it can affect the speed and

sensitivity of MASAA. In the following experiments, we vary the inter MMSS anchor

length and observe any variations in terms of sensitivity and speed. First we look at

RANDOM data set.

Conclusion: In this section, we compared BLASTZ and MASAA by varying the

length of MMSS. From the experiments, we conclude that as the length of the MMSS

increases, MASAA is faster and less sensitive than BLASTZ . If the length of MMSS

is lowered then MASAA is slower but it sensitive than BLASTZ. We conclude by

saying that, the length of the MMSS considered in the initial stage of the algorithm

102

is vital in determining the speed and sensitivity of the algorithm.

4.2.3.1 R A N D O M data set

Exper iment 15 (Total alignment time by varying inter MMSS anchor length): In

this experiment, we vary inter MMSS anchor length from 8 to 18 bp for randomly

generated sequences. The observations are shown pictorially in Figure 4.15.

Length of the sequences

Figure 4.15: Total alignment time by varying the inter anchor size

Observation 15: Figure 4.15 shows that , when the inter MMSS length is 8 bp, the

MASAA performs poorly than BLASTZ. When the MMSS length is 12, 14 and 18

bp in length, MASAA performs better than BLASTZ. When the inter anchor size is

low, the number of anchors selected are many as the length of the sequence increases.

As a result, MASAA would be slower than BLASTZ.

103

Experiment 16 (Bp coverage by varying inter MMSS anchor length): In this ex­

periment, we vary inter MMSS anchor length from 8 to 18 bp for real sequences and

observe the percentage of bp coverage. The experimental observations are shown in

Figure 4.16.

115

S no
<
P3

S 100

o

95 -

90 -

85 -

80

• • • -MASAA-8
MASAA-12

— MASAA-14
BLASTZ

— *MASAA-18

. . . • •

» „ „ - . — - * ™ - " « " " " " • * " *

. . • •

^ K H J S ^ ! S s w s * w « w ^

„„«:,<»*•""" **"**""

smr? mttm
o
M M M) O ' t 0 I l P H O O M - 0 0 M I O O i - 0 0 r H 0 O t M M « O " t l » (N
o c s c ^ ' ^ » ^ o i ^ - 0 \ 0 (S f ^ ^ - ^ o c ^ - o \ 0 ' — m ^ - ^ o t ^ - o o o ^ H r ^ r ^ - i n r -

Length of the sequence

Figure 4.16: Bp coverage by varying the inter anchor length

Observation 16: Figure 4.16 shows that when the inter MMSS anchor length is 12

and 14, the bp coverage is very close to each other. However, when the inter MMSS

length is 8, the bp coverage is better because there are many seeds found in the

inter MMSS anchor. Similarly when the inter MMSS anchor is 18, there is more bp

coverage than BLASTZ even when the sequence length is increased to approximately

half a million. The reason is that the number of seeds found in the inter MMSS region

104

are fewer with the inter anchor length of 18.

4.2.3.2 REAL data set

Experiment 17 (Total alignment time by varying inter MMSS anchor): In this

experiment, we vary inter MMSS anchor length from 8 to 18 bp for real sequences.

The experimental observations are shown in Figure 4.17.

!
.5

I

180

160

100

60 1

40

MASAA-8

——"BLASTZ

-MASAA-12

•MASAA-14

"MASAA-18

Length of the sequences

Figure 4.17: Total alignment time by varying the inter anchor length

Observation 17: Figure 4.17 shows that when the length of the inter MMSS an­

chor is 12 and 14, there is no significant difference in the time taken by the two

algorithms. When the inter MMSS anchor is 8 and 18, we see a significant difference

in the time taken by MASAA. When the inter MMSS anchor is 8 bp, the number

105

of inter MMSS anchors found are many and MASAA spends more time in identify­

ing, selecting anchors from overlapping and criss-crossing anchors. Hence MASAA is

slower than BLASTZ for inter MMSS anchor.

Experiment 18 (Bp coverage by varying inter MMSS anchor): In this experiment,

we vary inter MMSS anchor length from 8 to 18 bp for real sequences and observe the

percentage of bp coverage. The experimental observations are shown in Figure 4.18.

135

& 125

". 115

*

MASAA-8

—" — MASAA-12

• • • -MASAA-14

BLASTZ

•MASAA-18

Si."*"

Figure 4.18: Bp coverage by varying the inter anchor length

Observation 18: Figure 4.18 shows that when the inter MMSS anchor length is 8

and 12, the bp coverage is close to each other until the length of the sequence is less

than a million. When the inter MMSS anchor is 18, the bp coverage remains inferior

to BLASTZ due to smaller number of anchors being picked at this phase of MASAA.

We conclude that inter MMSS anchor length should be less than 18.

106

4.2.3.3 ROSETTA data set

Experiment 19 (Exon coverage by varying inter MMSS anchor length): In this

experiment, we consider ROSETTA data set and observe the percentage of exon

coverage in the final alignment. The experimental observations are shown in the

Table 4.7.

Table 4.7: Exon coverage on ROSETTA data set when inter anchor length is

8, 12, 14 and 18

Aligner

BLASTZ

MASAA-8

MASAA-12

100 exon

94

95

94

90 exon

97

97

94

70 exon

98

98

96

MASAA-14 94 94 96

MASAA-18 91 87 97

Observation 19: We observe that for lower inter MMSS anchors, sensitivity does

increase. We also observe that larger the inter anchor region, lower the exon coverage.

This is due to variation in the number of the inter MMSS anchors picked by MASAA.

107

4.2.3.4 SECOND data set

In the following experiments, we vary the inter MMSS anchor length and observe

variations in terms of sensitivity and speed on SECOND data set.

Experiment 20 (Alignment score by varying inter MMSS anchor length): In this

experiment, we vary inter MMSS anchor length from 8 to 18 bp in length and observe

alignment score of the final alignment. The experimental results are shown in the

Figure 4.19 and Table 4.8.

90000

80000

70000

| 60000
u

*j 50000

I 40000 -
wo
* 30000

20000

10000 -

0

4 I 1 1
6 8

Gene Number

J*
10

•BLASTZ

BMASAA-8

•MASAA-12

QMASAA-14

"MASAA-18

II
16

Figure 4.19: Alignment score on SECOND data set by varying inter MMSS

anchor length

Observation 20: Figure 4.19 and Table 4.8 shows that, as the length of the inter

MMSS anchor length is reduced, sensitivity increases. We also observe that, as the

108

Table 4.8: Number of genes MASAA's alignment score better than BLASTZ by

varying inter MMSS anchor length

Aligner No of genes

MASAA-%8 bp 64

MASAA-%12 bp 59

MASAA-%14 bp 50

MASAA-%18 bp 45

inter MMSS anchor decreases, the alignment score increases and as the inter MMSS

anchor length increases, the alignment score decreases. This is due to two reasons;

(1) when the inter MMSS anchor length increases, the sensitivity decreases as many

overlapping, criss-crossing seeds found close to each other are canceled out by the

algorithm described in chapter three or there are now fewer anchors and (2) when

the inter anchor length decreases, the sensitivity increases, as there are many inter

MMSS anchors which can cover the entire range between the MMSS's.

Exper iment 21 (Bp coverage by varying inter MMSS anchor length): In this ex­

periment, we vary inter MMSS anchor length from 8 to 18 bp in length and observe bp

coverage of the final alignment. The experimental results are shown in the Figure 4.20

and Table 4.9.

109

•BLASTZ

•MASAA-8

• MASAA-12

-MASAA-14

"MASAA-18

11 II
_ I • I I

4 8 10 22
Gene Number

Figure 4.20: Bp coverage on SECOND data set by varying inter MMSS anchor

length

Table 4.9: Number of genes MASAA's bp coverage better than BLASTZ by

varying inter MMSS anchor length

Aligner No of genes

MASAA-%8 bp 63

MASAA-%12 bp 59

MASAA-%14 bp 52

MASAA-%18 bp 45

110

12,000

10,000

8,000 1

c
33

4,000

2,000

Observation 21: Figure 4.20 and Table 4.9 shows the same phenomenon as in

alignment score for the bp coverage. We observe as the length of the inter MMSS an­

chor decreases the bp coverage increases. The Table 4.9 clearly shows theat MASAA

outperforming BLASTZ. This indicates that smaller seeds can align more bps than

larger anchors.

Conclusion: In this section, we compared BLASTZ and MASAA by varying the in­

ter MMSS anchor length. From the experiments, we conclude that as the inter MMSS

anchor increases, MASAA is faster and less sensitive than BLASTZ . If the length of

inter MMSS anchor is lowered then MASAA is slower but sensitive than BLASTZ.

We conclude by saying that , the length of the inter MMSS anchor considered in the

algorithm is vital in determining the speed and sensitivity of the algorithm.

4.2.4 Varying the Minimum Distance to Extend Anchors

The minimum distance, 'd', to extend anchors, also plays an important role in the

sensitivity of our algorithm. We compare BLASTZ with MASAA by varying the

minimum distance, 'd', in the following experiments.

4.2.4.1 R A N D O M data se t

Exper iment 22 (Total alignment time by varying minimum distance, 'd', to extend

MMSS's anchor): In this experiment, we observe any variations in speed on ROSETTA

data set. The observations are shown in Figure 4.21.

I l l

o o o o o o o o o g
oNn"i«r-o\ON(fi ^ ^H -̂« _̂, ^H ^H — (s N rJ

o o o o g o o o o g o o o o g o o
Tt vo r~ ov i_ . . ,., .. _ . — - r ^ - , .

Sequence length

Figure 4.21: Total alignment time on RANDOM data set by varying the mini­

mum distance, 'd' between MMSS

112

Observation 22: Figure 4.21 shows that when minimum distance between MMSS,

'd', is increased, the algorithm is slower than what it is when 'd' is decreased. The

reason is when the distance 'd' is large, majority of the MMSS anchors are extended,

as a result, time is spent on the inter MMSS anchors and the anchors in between

these inter MMSS anchors.

Experiment 23 (Bp coverage by varying minimum distance, 'd', to extend MMSS's

anchor): In this experiment, we vary minimum distance, 'd', to extend MMSS anchors

for randomly generated sequences and observe the percentage of bp coverage with

respect to BLASTZ. The observations are shown in Figure 4.22.

120

115
N
H
<
«
• 4 - *

h

%> 95
TO

i 90

110

105

100

a.

$

85

80

75

70

•MASAA-20000
• MAS AA-10000
•BLASTZ
"MASAA-5000
• MASAA-1000

„»«•'

O
o ©
o o o g o o o o g o o o o Q o o o o g o o o o o o o o o o o o

Sequence Length

$

Figure 4.22: Bp coverage on RANDOM data set by varying the minimum

tance, ld' between MMSS

113

Observation 23: Figure 4.22 shows that when the minimum distance between

MMSS anchors is 5000 and 1000, the bp coverage is lower than BLASTZ. This is

because of fewer MMSS anchors left after MASAA removes unnecessary MMSS an­

chors in the first stage of the algorithm. Out of the anchors selected for the second

stage of the algorithm, there are only a few anchors which are within 5000 and 1000

bp from the longest MMSS in the last stage of the algorithm. Fewer MMSS anchors

mean fewer inter MMSS anchors, hence we see a low bp coverage. On the contrary,

when the minimum distance, 'd' is large, there are many MMSSs selected by MASAA

and we see the bp coverage better than BLASTZ.

4.2.4.2 REAL data set

Experiment 24 (Total alignment time by varying minimum distance, 'd', to extend

MMSS's anchor): In this experiment, we vary minimum distance, 'd', to extend MMSS

anchors for real sequences. The observations are shown in Figure 4.23.

Observation 24: Figure 4.23 shows that when the minimum distance 'd' between

MMSS anchors is large, the time taken to align the sequences is also large. When the

'd' is 1000, we see an irregular, fluctuating line. This is mainly due to the absence of

MMSS within 1000 bp from the previous largest MMSS during the extension phase

of MASAA.

Experiment 25 (Bp coverage by varying minimum distance, 'd', to extend MMSS's

anchor): In this experiment, we vary minimum distance, 'd', to extend MMSS anchors

for randomly generated sequences and observe the percentage of bp coverage. The

114

140 -

120 -

100

-MASAA-20000
-BLASTZ
" MAS AA-10000

— MASAA-5000
• " • MAS AA-1000

en oo oo tN
^C OO 00 t~~
^ i n h H C\ C\ N V I

O
O
O

Q\ N N

O
O
O
O

o
o
o

(N c - > c * - > m c * > < n m m

—i o
<=> S
r-~ o
o o
c-1 oo

Length of the sequences

Figure 4.23: Total alignment time on REAL data set by varying the minimum

distance, 'd' between MMSS

observations are shown in Figure 4.24.

Observation 25: Figure 4.24 shows that bp coverage increases as the minimum

distance 'd' is larger. When the minimum distance, 'd' is 1000, we see a curve which

is fluctuating. This is due to fewer MMSS seeds in the final phase of the algorithm,

resulting in poor bp coverage.

4.2.4.3 ROSETTA data set

Experiment 26 (Exon coverage by varying minimum distance, 'd', to extend

MMSS's anchor): In this experiment, we consider ROSETTA data set of 117 se­

quences and observe the percentage of exon coverage in the final alignment. The

experimental observations are shown in Table 4.10. The numbers next to MASAA in

the Table 4.10 refers to the bp distance within which MASAA searches for another

115

SI
H

<
CO

on

bp
 c
ov
er
s

IS

150 •

140 -

130

120 •

no •
100 -

90 •

80 -

70 -

60 -

50 -

— — MASAA-20000
MASAA-10000

——MASAA-5000
BLASTZ
MASAA-1000

^ ^ ^ . — — - ^

„ - — — " " " " " "

?'""'"-"-r'""'-""Y"""""'T"""""r"" '""T - T
Tl Tf h ^f Oi 0 \
CN oo t-< in oo to
t-H \n oo CN ^- o
CO —< V) ^O O O
\ 0 OO 00 O CN ©
*—' ^ >-H CN cN <N

co oo oo cs r̂ oo
\o co oo r» t*- <m
rt vn f- *H ^t C\
r- o cs m <N r-
VO O N O © CM <N
*-< i-H CN CN CN CN

a f t * W S " 5 ' * 8

23
36
02

23
19
60
,
 20
67
81

24
12
96
,


~~~~~~* 

30
62
22
 

29
65
30
,
 32
06
47
 

32
00
00
,
 

™<™™r™ <j~ ~^ 

34
00
00
 

34
40
26
 

36
00
00
 

32
06
47
,
 

34
00
00
,
 

35
00
00
,
 

Sequence Length 

37
00
00
 

36
00
00
,
 

us**4*** 

38
00
00
 

37
00
00
,
 39
52
32
 

38
00
00
,
 

****« 

45
00
41
 

42
97
01
,
 54
16
15
 

48
00
00
,
 

• ' 

™~™""n 

65
62
90
 

80
00
00
,
 

Figure 4.24: Bp coverage on REAL data set by varying the minimum distance, 

'd' between MMSS 

116 



MMSS in the last stage. 

Table 4.10: Exon coverage on ROSETTA data set when minimum inter anchor 

distance is varied 

Aligner 100 exon 90 exon 70 exon 

BLASTZ 94 97 98 

MASAA-20000 97 97 98 

MAS A A-10000 94 94 96 

MASAA-5000 81 87 94 

MASAA-1000 68 61 82 

Observation 26: From the Table 4.10, it is clear that the performance gradually 

increases as the length of the minimum distance 'd' is increased. We also observe that 

lowering to minimum length 'd' makes the algorithm perform poorly versus BLASTZ. 

This is due to smaller number of MMSS within the distance 'd' which in turn imply, 

smaller number of inter anchor and mismatch seeds. 

4.2.4.4 SECOND data set 

In the following experiments, we vary the minimum MMSS anchor distance, 'd' and 

observe variations in terms of sensitivity on SECOND data set. 

117 



Exper iment 27 (Alignment score by varying minimum distance, 'd', to extend 

MMSS's anchor): In this experiment, we observe score of the final alignment. The 

experimental results are shown in Figure 4.25 and Table 4.11. 

2 
8 
1 

A
lig

m
 

50000 -• 

45000 • 

40000 • 

35000 

30000 

25000 

20000 

15000 • 

10000 • 

5000 • 

0 • 

• 

in 

•BLASTZ 

•d=20000 

•d=10000 

•d=5000 

°d=1000 

1 
Sal I 

Gene Number 

|KiX4 

83 

Figure 4.25: Alignment score on SECOND data set by varying the minimum 

distance, 'd' between MMSS 

Observation 27: Figure 4.25 and Table 4.11 shows that when the minimum dis­

tance, 'd', is increased from 10000 bp to 20000 bp, the alignment score increases. This 

is due to many MMSS anchors present and within minimum distance. Large number 

of MMSS anchors would also increase inter MMSS anchors, which in turn increases 

the alignment score. When the minimum distance, 'd' is decreased from 5000 to 

1000, the alignment score drops down because of fewer MMSS's present within the 

minimum distance. With fewer MMSS within the minimum distance, MASAA would 

118 



Table 4.11: Number of genes MASAA's alignment score better than BLASTZ 

by varying minimum distance, 'd', to extend MMSS's anchor 

Aligner No of genes 

MASAA-%20000 bp 66 

MASAA-%10000 bp 59 

MASAA-%5000 bp 50 

MASAA-%1000 bp 39 

stop expanding from the largest MMSS as described in chapter three. This means 

fewer inter MMSS anchors, which in turn decreases alignment score. 

Experiment 28 (Bp coverage by varying minimum distance, 'd', to extend MMSS's 

anchor) In this experiment, we observe bp coverage of the final alignment. The 

experimental results are shown in the Figure 4.26 and Table 4.12. 

Observation 28: Figure 4.26 and Table 4.12 shows the bp coverage is better when 

the minimum distance 'd' between MMSS anchors is high. When the minimum dis­

tance between MMSS anchors is 1000, MASAA performs poorly. This is again due 

to fewer MMSS anchors within 1000 bp range. 

Conclusion: In this section, we compared BLASTZ and MASAA by varying the 

varying minimum distance, 'd', to extend MMSS's anchor. From the experiments, we 

conclude that when the minimum distance, 'd', to extend MMSS's anchor is increased, 

119 



3500 

< 3000 

> 2500 

H 2000 
t/3 

" 1500 

3 1000 
9 

O. 
« 500 

•BLASTZ "d=20000 

= d=10000 "d=5000 

Ed=1000 

10 

Gene Number 

22 

Figure 4.26: Bp coverage on SECOND data set by varying the minimum dis­

tance, 'd' between MMSS 

Table 4.12: Number of genes MASAA's bp coverage better than BLASTZ by 

varying minimum distance, 'd', to extend MMSS's anchor 

Aligner No of genes 

MASAA-%20000 bp 66 

MASAA-%10000 bp 59 

MASAA-%5000 bp 52 

MASAA-%1000 bp 41 

120 



MASAA is slower and more sensitive than BLASTZ . If the minimum distance, 'd', 

to extend MMSS's anchor is lowered then MASAA is faster but less sensitive than 

BLASTZ. We conclude by saying that, the minimum distance, 'd', to extend MMSS's 

anchor considered in the algorithm is vital in determining the speed and sensitivity 

of the algorithm. 

121 



Chapter 5 

Conclusion and Future Directions 

Bioinformatics has lately become an active research area. There are many appli­

cations to be realized from the research in this field. Pairwise sequence alignment 

is a fundamental problem in bioinformatics and forms a vital step in solving other 

bioinformatics problems such as multiple sequence alignment, predicting ancestral se­

quence from two sequences and many others. Pairwise sequence alignment algorithms 

are of two types: local sequence alignment and global sequence alignment algorithms. 

Local sequence alignment algorithms focus on identifying a subregion which is most 

similar in both the sequences. Global sequence alignment algorithms concentrate on 

the whole sequence to detect regions of similarity. A considerable attention has been 

paid to solve pairwise sequence alignment problem lately, and various approaches have 

been proposed to solve both global and local pairwise sequence alignment problem. 

Most of the algorithms developed lately are heuristic to overcome the disadvan­

tages of optimal algorithms. Heuristic local sequence alignment algorithms use look­

up table and a seed model to quickly ascertain a subregion of similarity while scanning 

122 



the sequence from left to right. These subregions are then expanded both sides until 

the score of the subregion falls below a threshold. The process is completed when the 

best subregion is found. Depending on the sequence being scanned of the two and on 

the seed model used, the proposed algorithms differ. 

Most heuristic global sequence alignment algorithms use suffix tree and anchors 

to align both the sequences. Certain variations in the data structure and anchor com­

position has given rise to many algorithms. The basic idea for both local and global 

alignment algorithms remain the same. First quickly identify regions of similarity and 

expand on these region to either find a subregion which aligns best with the other 

sequence (local sequence alignment algorithm) or use a collection of these subregions 

to align the whole sequence (global sequence alignment algorithm). 

Both heuristic local and global sequence alignment algorithms fall into three cat­

egories: (1) fast algorithms, (2) sensitive algorithms, and (3) fast and sensitive algo­

rithms. Our objective was to come up with a fast and yet sensitive heuristic local 

sequence alignment algorithm. From the literature we found that most of the lo­

cal sequence alignment algorithms do not capture shorter subregions in their final 

alignment. This is because, they use longer seeds (subregion) to align sequences. As 

a result when aligning sequences of very low homology similarity, most algorithms 

would not align the sequences efficiently. We further investigated the causes for this 

short falls in BLASTZ which is the latest version of the popular algorithm BLAST. 

On the other hand, most global sequence alignment algorithms lately have used 

suffix tree data structure to quickly align long sequences. The suffix tree data struc­

ture is capable of capturing short and long common subregions quickly. From our 

initial observation, we found that long common subregions were a part of the final 

123 



alignment of most algorithms and this is the basis for our proposed algorithm. To 

overcome local sequence alignment algorithm shortcomings and take advantage of 

suffix tree, we propose Multiple Anchor Staged Alignment Algorithm - MASAA in 

this thesis. 

MASAA borrows suffix tree and anchors from global sequence alignment algo­

rithms and a seed model from local sequence alignment algorithms. MASAA quickly 

finds long subregions (maximal match substring-MMSS's). Further, it finds anchors 

in the regions between the MMSS's. Later, it finds small seeds between these anchors 

to finally align the two given sequences. MASAA is designed such that longer subre­

gions are not lost in the final alignment and takes into consideration both overlapping 

and criss-crossing anchors and seeds. MASAA is not only faster than BLASTZ but 

outperforms BLASTZ in terms of sensitivity. To test the speed on longer sequences, 

we had two set of sequences, one which were randomly generated and the other which 

is a set created from the sequences taken from the Gene Bank. In order to test the 

sensitivity of the algorithm, we had two data sets, first data set was ROSETTA data 

set, which was the standard set used in the literature and second data set was a set 

of sequences from Human, Fruit fly, Fish, Worm, Fungi, and Bacteria. 

From the simulations, we observed that for very long sequences, our algorithm, 

MASAA, performs better than BLASTZ in terms of speed. Also, as the length 

of the sequences increased, the bp (base pair) coverage of MASAA is better than 

BLASTZ. For small sequences, we did not find any significant differences in terms of 

speed. In terms of sensitivity, on ROSETTA data set, BLASTZ performed slightly 

better than MASAA. However, on sequences which had lower homology similarity 

than ROSETTA data set, MASAA outperformed BLASTZ. This clearly shows that 

124 



MASAA is comparable to BLASTZ for sequence which have high homology similarity 

and outperforms BLASTZ when the homology similarity is between 0 and 70 percent. 

MASAA's performance in terms of speed is closely related to the suffix tree and 

sensitivity, due to MMSS's, inter MMSS anchor and inter anchor seed design. 

5.1 Future Direction 

There are many directions in which the work proposed in this thesis can be expanded 

further. These include, 

• The pairwise sequence alignment can be further extended to solve multiple 

sequence alignment. 

• There are many variations of our current anchor model than can be explored. 

For example, the number of mismatches and a new seed model can be incorpo­

rated to improve sensitivity. 

• An interesting step further is to solve the problem of global sequence alignment 

and expand further into protein sequence alignment. 

125 



Appendix A 

A. l Percentage of conserved region in SECOND 

dataset 

The '? ' in the table below indicates that there is no gene existing for that organism. 

All the genes are referred in numerical terms, that is first gene as ' 1 ' , second gene as 

'2' and so on in the main chapters of this thesis. Fish, worm and fungi genes were 

collected for theoretical purposes and experiments in this thesis were conducted for 

fruit fly genes only. 

Table A . l : SECOND data set genes conserved region in % 

Number 

1 

2 

3 

4 

Genes 

ABCD1;ALD 

ABL1 

ACE 

ACOX 

Fruit fly 

0 

74 

0 

0 

Fish 

70 

? 

0 

74.1 

Worm 

? 

70.2 

? 

? 

Fungi 

? 

? 

0 

0 

Continued on next page 

126 



Table A. l - continued from previous page 

Number 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Genes 

ACTN3 

ADCAD2 

AGL-GDE 

AHCY 

AMPD-AMP 

ANk2 

ARA 

ATP7A-GRK 

ATR 

BRIC 

CAR 

CAT 

CBP 

CCO 

CCT 

DAR 

DRP1 

ERCC2 

ERCC3, 

Extl 

Fruit fly 

0 

0 

0 

69.7 

0 

73 

0 

0 

0 

0 

0 

72.4 

0 

0 

73.6 

0 

0 

79.1 

72.9 

70 

Fish 

78 

78.7 

73 

77.6 

73.1 

72 

? 

73.8 

73.3 

0 

71 

75.1 

73.1 

84 

76.2 

? 

69.9 

74.6 

77 

0 

Contin 

Worm 

? 

? 

0 

? 

? 

? 

? 

? 

? 

0 

? 

0 

0 

0 

72.5 

? 

0 

70 

? 

0 

ued on ne 

Fungi 

? 

? 

0 

? 

0 

0 

0 

0 

71.6 

74.4 

? 

0 

? 

0 

70.8 

? 

0 

69.9 

70.5 

0 

xt page 

127 



Table A. l - continued from previous page 

Number 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

Genes 

EXT2 

FH,FHC 

G6PD 

GBE 

GCE 

GCLC 

GPI 

GS1 

HERG;LQT2 

HL1 

HMG-CoA 

HSP67B 

HTT-OCD1 

INSR 

IVD 

KIF1B 

KIF5A 

LAMB2 

MSH2 

MCM6 

Fruit fly 

74 

0 

75 

0 

69 

77 

75.6 

0 

73.1 

0 

0 

0 

74.9 

76.3 

71.1 

74.7 

72.1 

0 

0 

72.1 

Fish 

75.6 

0 

? 

? 

? 

74 

74.6 

? 

71 

? 

? 

72.4 

0 

? 

73.2 

75.2 

77.4 

? 

72.8 

75.5 

Contin 

Worm 

? 

? 

? 

? 

? 

? 

70.4 

? 

77 

? 

0 

0 

? 

? 

72.9 

71.2 

? 

? 

71.8 

75.5 

ued on ne 

Fungi 

? 

? 

? 

? 

? 

? 

0 

? 

? 

? 

? 

0 

? 

? 

74.5 

0 

? 

? 

75.3 

73.6 

xt page 

128 



Table A . l - continued from previous page 

Number 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

Genes 

MTM1 

MYH9 

NAT1 

NF1 

NOS2A 

NPC 

OPA1 

P300 

PC 

PHK 

POMT2 

POR 

PTD 

SCAD; AC AD 

SCP2 

SDH2 

SEC 

SLO 

SMC3 

SRC 

Fruit fly 

0 

76.7 

0 

70.5 

0 

0 

0 

0 

73 

0 

75.9 

0 

0 

0 

0 

0 

73.2 

73.1 

71.3 

77.1 

Fish 

73.3 

77.6 

? 

? 

73.2 

? 

0 

? 

74.5 

? 

76.3 

72.7 

71.9 

0 

75.5 

? 

66.9 

0 

76.3 

75.3 

Contin 

Worm 

0 

? 

? 

0 

0 

? 

? 

0 

? 

? 

? 

? 

0 

0 

? 

? 

72.4 

0 

70.3 

71.9 

ued on ne 

Fungi 

0 

? 

0 

0 

0 

? 

0 

? 

? 

? 

? 

? 

? 

0 

0 

0 

65.5 

? 

72.2 

? 

xt page 

129 



Table A. l - continued from previous page 

Number 

65 

66 

67 

Genes 

SUR 

RDP 

RDX 

Fruit fly 

0 

0 

0 

Fish 

75 

73.3 

74.1 

Worm 

0 

? 

? 

Fungi 

0 

0 

? 

A.2 Statistics for a mutat ion 

Assume that there are mutations happening for 109 years. If there are 1018 organisms 

then, in 109 years, if there is 1 replication every hour for every day all year. 

= 109 years xlreplication/hrx24hr/dayx365days/yr 

= 109 years x 104replications/year 

= 1013 replications. 

If there are 1018 organisms, then 1013xl013 = 1031 organismic replications 

If there are 109 bp/organism — 1040 bp-replications. 

Assuming the fidelity to be 10~3, then there are 1037 mutations, that is 1013 sequences. 

If a DNA strand is 300 nt (nick translation), then there are 4300 sequences, that is 

approximately 10150 mutations. 

130 



Bibliography 

[1] S. K. A. L. Delcher et al. Alignment of whole genomes. Nucl. Acids. Res., 

27(11) :2369-2376, 1999. 

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local 

alignment search tool. J Mol Biol, 215(3):403-410, October 1990. 

[3] S. F. Altschul, T. L. Madden, A. A. Schfferl, J. Zhang, Z. Zhang, W. Miller, and 

D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database 

search programs. Nucleic Acids Res, 25(17):3389-3402, September 1997. 

[4] Anonymous. Sequence analysis: Which scoring method should i use?, July 2007. 

http://www.psc.edu/research/biomed/homologous/scoring_primer.html. 

[5] Anonymous. 2can support portal - bioinformatics-fasta similarity search - intro­

duction, 2008. http://www.ebi.ac.uk/2can/tutorials/nucleotide/fasta.html. 

[6] S. Batzoglou, L. Pachter, J. Mesirov, B. Berger, and E. S. Lander. Human and 

mouse gene structure: comparative analysis and application to exon prediction. 

In RECOMB '00: Proceedings of the fourth annual international conference on 

Computational molecular biology, pages 46-53, New York, NY, USA, 2000. ACM. 

131 

http://www.psc.edu/research/biomed/homologous/scoring_primer.html
http://www.ebi.ac.uk/2can/tutorials/nucleotide/fasta.html


[7] N. Bray, I. Dubchak, and L. Pachter. Avid: A global alignment program. Genome 

Res., 13(1):97-102, January 2003. 

[8] B. Brejova, D. G. Brown, and T. Vinar. Vector seeds: an extension to spaced 

seeds. Journal of Computer and System Sciences, 70(3):364—-380, 2005. Early 

version appeared in WABI 2003. 

[9] D. G. Brown. A survey of seeding for sequence alignments. In I. Mandoiu and 

A. Zelikovsky, editors, Bioinformatics Algorithms: Techniques and Applications. 

J. Wiley and Sons, 2007. To appear. 

[10] M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, E. D. Green, 

A. Sidow, and S. a. Batzoglou. Lagan and multi-lagan: efficient tools for large-

scale multiple alignment of genomic dna. Genome Res, 13(4):721-731, April 

2003. 

[11] M. Brudno and B. Morgenstern. Fast and sensitive alignment of large genomic 

sequences. Proc IEEE Comput Soc Bioinform Conf, 1:138-147, 2002. 

[12] S. Chien, L. T. Reiter, E. Bier, and M. Gribskov. Homophila: human disease 

gene cognates in drosophila. Nucleic Acids Res, 30(1):149-151, January 2002. 

[13] O. B. Dayhoff M, Schwartz R. A model of evolutionary change in proteins, in 

dayhoff, m. o. (ed.), atlas of protein sequence structure. Natl. Biomedical Res., 

vol. 5, suppl. 3(l):345-352, 1978. 

[14] S. Dreyfus. Richard bellman on the birth of dynamic programming. Oper. Res., 

50(1):48-51, 2002. 

132 



[15] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science 

and Computational Biology. Cambridge University Press, January 1997. 

[16] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein 

blocks. Proc Natl Acad Sci U S A., 89(22):10915-9, 1992. 

[17] D. S. Hirschberg. A linear space algorithm for computing maximal common 

subsequences. Commun. ACM, 18(6):341-343, 1975. 

[18] W. J. Kent. Blat-the blast-like alignment tool. Genome Res, 12(4):656-664, 

April 2002. 

[19] M. Li, B. Ma, D. Kisman, and J. Tromp. Patternhunter II: highly sensitive and 

fast homology search. J Bioinform Comput Biol, 2:417-439, 2004. 

[20] D. J. Lipman and W. R. Pearson. Rapid and Sensitive Protein Similarity 

Searches. Science, 227:1435-1441, Mar. 1985. 

[21] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homology 

search. Bioinformatics, 18:440-445, 2002. 

[22] E. M. McCreight. A space-economical suffix tree construction algorithm. J. 

ACM, 23(2):262-272, 1976. 

[23] S. B. Needleman and C. D. Wunsch. A general method applicable to the search 

for similarities in the amino acid sequence of two proteins. Journal of Molecular 

Biology, 48(3):443-453, March 1970. 

[24] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence com­

parison. Proc Natl Acad Sci USA, 85(8):2444-2448, April 1988. 

133 



[25] K. D. Pruitt, T. Tatusova, and D. R. Maglott. Ncbi reference sequences (refseq): 

a curated non-redundant sequence database of genomes, transcripts and proteins. 

Nucleic Acids Res, 35(Database issue), January 2007. 

[26] S. Schwartz, J. W. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, 

D. Haussler, and W. Miller. Human-mouse alignments with blastz. Genome 

Res, 13(1):103-107, 2003. 

[27] T. F. Smith and M. S. Waterman. Identification of common molecular subse­

quences. Journal of Molecular Biology, 147:195-197, 1981. 

[28] D. J. States, W. Gish, and S. F. Altschul. Improved sensitivity of nucleic acid 

database search using application-specific scoring matrices. Methods: A compan­

ion to Methods in Enzymology, 3(l):66-70, 1991. 

[29] M. Tompa. Lecture notes on biological sequence analysis, January 

2009. www.informatik.um-kiel.de/fileadmin/arbeitsgruppen/technical_cs/Files-

Jan/TompaJecture_notes.pdf. 

[30] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 

1995. 

[31] P. Weiner. Linear pattern matching algorithms. In SWAT '73: Proceedings of 

the 14th Annual Symposium on Switching and Automata Theory (swat 1973), 

pages 1-11, Washington, DC, USA, 1973. IEEE Computer Society. 

134 

http://www.informatik.um-kiel.de/fileadmin/arbeitsgruppen/technical_cs/Files-

