
A MULTIAGENT ARCHITECTURE FOR SEMANTIC QUERY ACCESS
TO LEGACY RELATIONAL DATABASES

by

Mohammad Zubayer

B.Sc., International Islamic University Malaysia, 2005

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

MATHEMATICAL, COMPUTER, AND PHYSICAL SCIENCES
(COMPUTER SCIENCE)

UNIVERSITY OF NORTHERN BRITISH COLUMBIA
November 2011

©Mohammad Zubayer, 2011

1+1
Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-87590-2

Our file Notre reference

ISBN: 978-0-494-87590-2

NOTICE:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

Abstract

This thesis proposes a novel approach to accessing information stored in legacy rela

tional databases (RDB), based on Semantic Web and multiagent systems technologies.

It introduces an architectural model of the Semantic Report Generation System (SRGS),

designed to address the rising demand for flexible access to information in decision sup

port systems. SRGS is composed of server Database Subsystems (DBS) and client User

Subsystems (US). In a DBS, an agent interacts with the administrator to build a refer

ence ontology from the RDB schema, which enables semantic queries without modifying

the database. In a US, the decision-making user accesses the system through a simplified

natural language interface, using customized extensions to the reference ontology that

was imported from DBS; an agent helps build the custom ontology, and facilitates query

formulation and report generation. The proposed approach is illustrated by several sce

narios that highlight the key behavioral aspects of accessing information and developing

ontologies.

ii

Contents

1 Introduction 1

2 Background and Related Work 8

2.1 Relational database systems 8

2.1.1 Knowledge representation using RDB model 9

2.1.2 The SQL query language 10

2.2 The Semantic Web 11

2.2.1 Semantic Web technologies 12

2.2.2 Knowledge representation using the RDF model 14

2.2.3 The SPARQL query language 17

2.2.4 Examples of Semantic Web projects 18

2.3 Building ontologies from relational structures 20

2.3.1 Converting relational structure to RDF 20

2.3.2 Upgrading converted structures to full ontologies 26

2.4 Multiagent systems 32

2.4.1 Agent-oriented software engineering 33

2.4.2 Agents and Semantic Web 35

2.4.3 Human-agent interactions 36

iii

CONTENTS iv

3 Semantic Query Access to Legacy Relational Databases using Intelli

gent Middleware 39

4 The Architectural Model 43

4.1 The system requirements 44

4.1.1 The generic system 44

4.1.2 Legacy RDB system 47

4.1.3 The Semantic Report Generation System (SRGS) 49

4.2 The multiagent architecture of SRGS 54

4.2.1 The basic architecture 55

4.2.2 Multiple Users accessing single User Subsystem 63

4.2.3 Multiple User Subsystems to single Database Subsystem 65

4.2.4 Single User Subsystem to multiple Database Subsystems 65

4.2.5 Multiple User Subsystems to multiple Database Subsystems ... 68

4.3 Agent roles 69

4.4 Incorporation of existing system components 72

5 Modeling and Accessing Information in SRGS 75

5.1 Ontology development by software agents 76

5.2 Scenario 1: Accessing information in SRGS 81

5.3 Scenario 2: Developing reference ontology 90

5.4 Scenario 3: Developing custom ontology 98

6 Analysis and Evaluation 102

7 Conclusions and Future Work 106

CONTENTS v

Bibliography 109

A The D2RQ Platform 117

A.l The D2RQ Mapping File 117

A. 2 D2RQ extension 120

List of Tables

2.1 Sample RDB tables 10

2.2 ETL vs on-demand mapping 21

2.3 Performance comparison between Jena2 and D2RQ Platform 23

2.4 The main primitives of OWL 30

vi

List of Figures

2.1 An SQL query 11

2.2 Semantic Web stack layer (Reproduced from Wikipedia Semantic Web entry) 13

2.3 RDF graph showing an instructor's record 16

2.4 A SPARQL query 17

4.1 The actors and high-level use cases of the generic system 45

4.2 Legacy RDB system 48

4.3 Accept request for information and present report 52

4.4 Manage ontology 53

4.5 Single User Subsystem to single Database Subsystem 55

4.6 The User Subsystem 56

4.7 The Database Subsystem 60

4.8 Multiple Users accessing SRGS 64

4.9 Customized User Subsystem for multiple users 65

4.10 Single User Subsystem attached to multiple Database Subsystems 67

4.11 Customized User Subsystem for multiple Database Subsystems 68

4.12 The role of D2RQ Platform in the DBS 74

vii

LIST OF FIGURES viii

5.1 The SNL request for report 82

5.2 The SPARQL script 87

5.3 The SQL query 88

5.4 The SPARQL results 88

5.5 The formatted report 89

5.6 (a) Prefix and RDB details in Mapping File (b) XML namespaces and

ontology header in reference ontology 92

5.7 Class definition in: (a) Mapping File and (b) reference ontology 93

5.8 Subclass definition in reference ontology 94

5.9 Property definition in: (a) Mapping File and (b) reference ontology ... 95

5.10 Class relation definition in: (a) Mapping File and (b) reference ontology . 96

5.11 Class synonym definition in reference ontology 97

5.12 Reference ontology graph 98

5.13 Definition of transfer student in custom ontology 101

A.l D2R Server error 121

A.2 The extension 122

A.3 The D2RQ Platform with the extension 123

A.4 Binary log processing method 124

A.5 Query interception method 125

Chapter 1

Introduction

The importance and impact of computer-based information systems in the progress of hu

man society is well acknowledged in all disciplines. These systems enable users to create,

store, organize, and access large volumes of information. Individuals and organizations

increasingly rely on them for problem solving, decision making, and forecasting. The

requests for information are increasing in complexity and sophistication, while the time

to produce the results is tightening. These trends in using information systems compel

researchers to look for more effective access techniques that meet modern requirements.

Computer-based systems rely on databases for storing information. The relational

database model (Codd, 1970) has been dominant for more than three decades. In or

der to extract the necessary information from relational databases (RDB), non-technical

users require technical assistance of database programmers, report writers, and appli

cation software developers. These support tasks may be time consuming and involve

multiple technical experts, resulting in delays and costs. In order to speed up access and

give users more control, decision support systems rely on data warehousing techniques.

1

CHAPTER 1. INTRODUCTION 2

Those techniques require information to be extracted from operational databases, reor

ganized in terms of facts and dimensions, and stored in data warehouses (Olszak and

Ziemba, 2007). Operational databases are designed to support typical day-to-day oper

ations, whereas data warehouses are designed for analytical processing of large volumes

of information accumulated over time. That approach still relies on human technical

expertise and may require weeks to effect the restructuring of data. Moreover, it requires

accurate foresight as to what information might be needed.

In the meantime, two relevant technologies have developed in the realm of the World

Wide Web and Artificial Intelligence. One is the Semantic Web, which is a web of data

that enables computers to understand the semantics, or meaning, of information on the

Web (Berners-Lee, 1998a). The development of the Semantic Web entails structuring of

information using a set of tools and standards recommended by the World Wide Web

Consortium (W3C). This process requires formal representation of human knowledge in

the form of a hierarchy of ontologies that correspond to knowledge domains at different

levels of abstraction. An ontology is an explicit specification of a conceptualization; a

conceptualization is an abstract, simplified view of the world that is represented for some

purpose (Gruber, 1993). The Semantic Web infrastructure is in an early stage of con

struction; it is developing through numerous current projects.

The other novel technology is based on intelligent software agents and multiagent

software systems. A software agent is a computer program, which is situated in a spe

cific environment, and can act autonomously in that environment in order to meet its

delegated objectives (Wooldridge, 2009). Multiple interacting agents can form a single

CHAPTER 1. INTRODUCTION 3

system, known as a multiagent system (MAS). Agent technology brings together research

results from the last few decades in several disciplines, mainly artificial intelligence, dis

tributed systems, software engineering, economics, psychology, and social sciences. Fol

lowing decades of research, this is becoming a major trend in mainstream computing

and a likely successor to the currently dominant object-oriented software engineering

paradigm (Lind, 2000).

Software agents are expected to assist humans in many tasks, including searching and

reasoning with information in a decision support environment. However, the information

underlying the decision process needs to be organized following Semantic Web structures

such as ontologies. Software agents can reason with information in a knowledge base

once it is organized using ontologies. In reasoning with information stored in a database,

software agents operate on the Closed World Assumption (CWA), which states that the

information in the database is complete, and what is not asserted as true, is false (Russell

and Norvig, 2003).

In this thesis, I explore how a combination of these two technologies can be applied

to overcome some of the issues arising in the context of traditional decision support envi

ronments. I propose a system architecture, Semantic Report Generation System (SRGS),

that relies on Semantic Web tools and software agents to enable effective user access to

information in RDB systems without depending on report writers and database program

mers. In SRGS, direct access to information is achieved by building a layer of semantic

information structures on top of the existing legacy RDB system, and allowing users to

interact with the system using a Simplified Natural Language (SNL). SRGS employs a

CHAPTER 1. INTRODUCTION 4

software agent to help the Database Administrator in building ontologies using the struc

ture of information stored in the RDB system, human domain knowledge, and knowledge

resources on the Semantic Web. SRGS employs another software agent to help the users

create their own layers of ontology by defining user-specific concepts that may not exist

in the reference ontology developed from the RDB. This agent also assists the users in

formulating requests for information.

My research started with the formulation of system requirements followed by an

analysis leading to a preliminary definition of the system architecture, and proceeded to

selective modeling of existing Semantic Web and MAS tools that fit into the architecture

of SRGS. I carried out these two tasks in an iterative manner, in which I identified ex

isting software components that could be integrated, and then refined the architectural

definition so that it could rely on the identified components.

SRGS consists of two subsystems: the Database Subsystem (DBS) and the User Sub

system (US). The DBS facilitates creating, storing, and organizing information while the

US allows accessing this information. The US and DBS can reside on different machines

and communicate through a network. Within each subsystem there is a software agent

that assists the human users in organizing and accessing information. I show three pos

sible configurations of SRGS with regards to the multiplicity of the subsystems: multiple

USs to single DBS, single US to multiple DBSs, and multiple USs to multiple DBSs. I

also show how the multiplicity of users affects the architecture of SRGS. For instance,

when multiple users access the US, some elements in the system are customized to suit

each user's preferences for interacting with the system.

CHAPTER 1. INTRODUCTION 5

In the Database Subsystem (DBS), a software agent named Database Interface Agent

(DBIA) assists a Database Administrator (DBA) in gradually building a reference on

tology from the RDB structure; this is the common core ontology for all users of SRGS.

The software agent possesses the technical know-how of ontology development process.

In addition, the software agent refers to external resources on the Web such as publicly

available libraries of ontologies and online lexical dictionaries, as sources of conceptual,

lcxical. and domain-specific knowledge. Without the Semantic Web in place, the software

agent is limited to its technical knowledge of the ontology development process alone.

Thus, the software agent's role evolves from being a technical assistant to a knowledge

able partner in the ontology development proccss as more doinain-spceific ontological

resources become available with the development of the Semantic Web. The DBS is also

responsible for retrieving the necessary information from the RDB system and presenting

this information to the US in response to the request.

The User Subsystem (US) accepts a user's request for information, asks the DBS

to retrieve the information, and presents it as a formatted report. The user develops

a custom ontology, which complements the reference ontology by defining user-specific

terms with the assistance of a software agent called User Interface Agent (UIA). The

user-system interaction occurs in a simplified natural language. The user formulates

requests for information and introduces new terms in the custom ontology using the

simplified natural language. The ontologies are used to formulate and verify requests for

information, construct semantic queries, and format the extracted information as reports.

CHAPTER 1. INTRODUCTION 6

The feasibility of the proposed approach is then substantiated using three scenarios

illustrating the behavioral aspects of SRGS in accessing information in an RDB system

and developing ontologies from the RDB structure. The scenarios show the interactions

that occur between the agents and the human actors, the actions performed by the agents,

and the tasks executed by the system components. In order to help to develop ontologies,

the agents are equipped with meta-ontological knowledge and the know-how of method

ological steps for guiding the ontology construction process. In addition, agents refer to

external knowledge resources on the Semantic Web. The agents provide the technical

knowledge while the human actors make decisions. The ontology construction process

begins in the Database Subsystem with a rudimentary version of reference ontology gen

erated through automatic conversion of an RDB structure to a Semantic Web structure.

The converted structure, called the base ontology, then serves as a starting point from

which the DBIA, in interaction with the DBA, incrementally develops a full reference

ontology.

The first scenario illustrates how the user of SRGS can request for information us

ing the SNL. It illustrates the specific tasks performed by each system component in

formulating a request for information, retrieving the requested information from the un

derlying database, and presenting it to the user as formatted report. The second scenario

is aimed at showing the interactions between the DBIA and the DBA, and the activities

that occur within the DBS in the process of constructing the reference ontology. Once

the construction completes, the DBS exports a copy of the reference ontology to the

attached US. The third scenario focuses on showing how the user can complement the

reference ontology by defining user-specific concepts in a custom ontology.

CHAPTER 1. INTRODUCTION 7

The remaining chapters of the thesis cover the background and related work (Chap

ter 2), the approach for query access to legacy RDB systems using Semantic Web tools

(Chapter 3), the architectural model (Chapter 4), the behavioral aspects of SRGS (Chap

ter 5), analysis and evaluation (Chapter 6), and conclusions and future work (Chapter

7).

Chapter 2

Background and Related Work

This chapter presents the background and an overview of previous research work in

Relational Database systems (Section 2.1), the Semantic Web (Section 2.2), developing

ontologies from relational structures (Section 2.3), and multiagent systems (Section 2.4).

2.1 Relational database systems

The wealth of data that populates the Web is stored in legacy information systems; they

are socio-technical computer-based systems that were developed in the past using older

or obsolete technology. It may be risky to replace a legacy system, because an orga

nization and its organizational policies can be critically dependent on its structure and

function. Legacy information systems contain immense volumes of data accumulated

over the lifetime of the system (Sommerville, 2004). Common sources of legacy data in

clude relational, hierarchical, network, and object databases; as well as XML documents

and flat files, such as the comma-delimited text files (Ambler, 2003). My study focuses

on accessing information in relational databases, because of their prevalence in present

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

legacy information systems.

A relational database (RDB) is implemented using the relational data model invented

by Codd (1970). It is based on the mathematical term relation, which is represented as

table in the database context. Each relation (table) represents an entity and is made

up of named attributes (columns) of that entity, and each row contains one value per

attribute (Connolly and Begg, 2001). The relational model has been the dominant data

modeling technique because of its track record of scalability, reliability, efficient storage,

and optimized query execution (Sahoo et al., 2009). However, one major limitation of

the relational model is its inability to capture semantic relationships between data units.

In addition, non-technical users of relational databases require technical assistance of

database programmers and database administrators in order to access the necessary in

formation.

The remainder of this section is organized as follows: Knowledge representation us

ing the relational mode is discussed in Subsection 2.1.1, and a language for querying

information in RDB system is presented in 2.1.2.

2.1.1 Knowledge representation using RDB model

In relational data modeling, an entity is represented as a table, and each attribute of the

entity becomes a column in that table. Each row is an instance of the entity and can be

uniquely identified by a primary key. Relationships between entities are represented by

foreign keys. This logical structure of a database is called the database schema (Connolly

and Begg, 2001). Table 2.1 shows a subset of an RDB containing two tables: Depart

CHAPTER 2. BACKGROUND AND RELATED WORK 10

ment and Instructor. Each department is uniquely identified by Department-Name

and each instructor by Instructor JD. An instructor belongs to only one department and

a department can have one to many instructors. Therefore, Department_Name column

is the primary key in the Department table and foreign key in the Instructor table.

This model is for illustrative purpose only, and does not represent any real database.

Table 2.1: Sample RDB tables

Table: Department

Department_Name Building Budget

Comp. Sci. Taylor 100000

Biology Watson 90000

Finance Painter 120000

Table: Instructor

InstructorJD Last_Name Salary Department _N ame

12121 Wu 90000 Finance

45565 Katz 75000 Comp. Sci.

2.1.2 The SQL query language

Structured Query Language (SQL) is the standard language for defining and manipulat

ing data stored in RDB systems (Chamberlin and Boyce, 1974; IBM, 2006). Common

SQL commands include schema creation and modification, data insert, query, update,

and delete. Writing SQL queries requires understanding of the underlying database

CHAPTER 2. BACKGROUND AND RELATED WORK 11

schema, in addition to the knowledge of the SQL itself. Figure 2.1 shows a sample SQL

query that returns all department names and budgets from the table Department.

SELECT Department_Name, Budget

FROM Department;

Figure 2.1: An SQL query

2.2 The Semantic Web

The Semantic Web is a web of data that enables computer systems to understand the se

mantics, or meaning, of information that populates the Web (Berners-Lee, 1998a). This

is in contrast to the current Web which is a web of documents. The objective of the

Semantic Web is driving the evolution of the current web of document into a web of

data in which users can easily find, share and combine information. The Semantic Web

will enable machines to understand the meaning of information, thus allowing machines

to assist human users in finding right information. Currently there are many individ

ual projects underway towards developing Semantic Web infrastructure and applications

using common formats and technologies recommended by the World Wide Web Consor

tium (W3C) (Baker et al., 2009). Many of these applications are intended to eventually

connect with each other and share information between them.

The information underlying the Semantic Web must be organized according to the

meaning of the represented contents. Human knowledge can be represented by organizing

information as ontologies. Ontologies are considered as one of the essential parts of the

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Semantic Web. A university ontology, for instance, would define concepts such as faculty,

student, department, course, project, etc., and how they are related to each other. At the

most basic level of an ontology, concepts are represented as classes, and various attributes

of a concept are represented as properties, and a class can have subclasses representing

concepts that are more specific than the parent class. For example, a student class may

have two subclasses: undergraduate student and graduate student. In addition to clas

sification, one can define relationships between classes in an ontology. Thus, ontologies

provide the structural framework for organizing and reasoning with information within

a particular domain. In addition, upper ontologies, which describe general concepts that

are the same across all knowledge domains, provide the functionality of semantic inter

operability between multiple domain ontologies (Noy and McGuinness, 2001).

In the rest of this section, I briefly review the main technical concepts underlying

the Semantic Web architecture as envisioned in the W3C standards. Subsection 2.2.1

provides the basic definitions. Subsection 2.2.2 describes the knowledge representation

model, and 2.2.3 presents a corresponding query language for retrieving information.

Finally, 2.2.4 outlines three early Semantic Web projects.

2.2.1 Semantic Web technologies

The development of the Semantic Web entails restructuring of information using a set

of languages and standards. The Semantic Web architecture is illustrated in Figure 2.2.

The main components in the Semantic Web stack are Unified Resource Identifier (URI),

Resource Description Framework (RDF), RDF Schema (RDFS), Simple Protocol and

RDF Query Language (SPARQL), and Web Ontology Language (OWL).

CHAPTER 2. BACKGROUND AND RELATED WORK 13

User Interface and Applications

Querying:
SPARQL

Trust

Proof

Unifying Logic

Ontologies:
OWL

Rules:
RIF/SWRL

Taxonomies: RDFS

O
-o

Data interchange: RDF

Syntax: XML

Identifiers: URI Character set: UNICODE

Figure 2.2: Semantic Web stack layer
(Reproduced from Wikipedia Semantic Web entry)

URI provides a mechanism for uniquely identifying each information resource on the

Web. A special type of URI is Unified Resource Locator (URL) which uniquely identifies

the location of a resource, such as a web page, within the World Wide Web (Sauermann

et al., 2008). Internationalized Resource Identifier (IRI) is a generalization of URI that

may contain characters from the Universal Character Set, including Chinese, Japanese

and Korean. RDF is a data modeling language which conceptualizes a data unit as a

resource in terms of its property and property-values. Each resource is uniquely identified

by its URI (Manola and Miller, 2004). RDFS provides the basic primitives such as classes

and properties for structuring RDF resources. SPARQL is a language for querying RDF

data, analogous to the way SQL is used for querying relational data (Prud'hommeaux

and Seaborne, 2007). OWL is a knowledge representation language for authoring on

CHAPTER 2. BACKGROUND AND RELATED WORK 14

tologies. It also facilitates reasoning and inference. OWL is based on RDF and RDFS

(McGuinness and Harmelen, 2004).

Discussing in details all the components of the Semantic Web is beyond the scope of

this chapter. I focus on the components that are relevant to my research objective with

regards to representing RDB structures in Semantic Web structures. In the following

subsection, I illustrate how some of these components can be used to represent and

access information in the Semantic Web compliant format.

2.2.2 Knowledge representation using the RDF model

RDF is based on the idea of describing an entity in terms of properties and property-

values. An RDF statement consists of an entity (the subject), a property (the predicate)

and a property-value (the object). This subject-predicate-object expression, also writ

ten as (S, P, O) is known as a triple. The complete description of an entity would consists

of a collection of triples called an RDF graph. The entity's class, which is the table name

in the relational model, is described by an RDF triple containing the rdf:type predicate,

rdfrtype is used to state that a resource is an instance of a class. For example, a triple

of the form: R rdf:type C states that R is an instance of C, and C is an instance of

rdfs:Class (Brickley and Guha, 2004). RDF mandates that each subject and predicate

must be URIs; the object can be a URI or an actual value.

Relational databases can be converted into RDF triples by following the core guide

lines outlined by Berners-Lee (1998b). He proposed the following direct mappings be

tween RDB and RDF:

CHAPTER 2. BACKGROUND AND RELATED WORK 15

• An RDB record (row) is an RDF is an RDF subject

• The column name of an RDB is an RDF predicate

• An RDB table cell is an RDF object

Figure 2.3 shows RDF representation of an instructor's record from the previous

example of the relational model. The first row from Instructor table can be written as

"45565 has Last_Name which is Katz". This statement becomes an RDF triple when

written in the form (S, P, 0), in other words, (45565, Last_Name, Katz). But S and

P must be in the URI format hence, the URI

http://localhost:8080/resource/Instructor/45565 is assigned to 45565, and

http: //localhostvocab/resource/Instructor_Last_Name to Last-Name.

Therefore, the correct triple is

(http://localhost:8080/resource/Instructor/45565,

http://localhostvocab/resource/Instructor_Last_Name, "Katz")

In Figure 2.3, each triple corresponds to a single arc with its beginning node as the sub

ject, arc label as the predicate, and ending node as the object.

RDF refers to a set of URIs as a vocabulary (Manola and Miller, 2004). An organi

zation may define its own vocabulary consisting of the terms it uses in its business. In

our example, such terms can be

http://localhostvocab/resource/Instructor for Instructor, and

http: //localhostvocab/resource/Instructor_Last_Name for Last_Name.

http://localhost:8080/resource/Instructor/45565
http://localhostvocab/resource/Instructor_Last_Name

CHAPTER 2. BACKGROUND AND RELATED WORK 16

http://iocathost:8080/resource/lnstnjctor/45565

rdf:type http;//localhostvocab/resource/lnstructor_Last_Name

htip://localhostvocab/resource/!nstructor
Katz

http://localftostvocab/resource/Department#

http:/Aocalhostvocab/resource/lnstrcutor_Salary

http://iocaihostvocab/resource/Department/Comp._Sc}.

75000

rdf;type

http//localhostvocab/resource/Department_Budget

http://localhostvocab/resource/Department

100000

Figure 2.3: RDF graph showing an instructor's record

An organization might as well take advantage of an external vocabulary instead of defin

ing its own. Friend of a Friend's (FOAF) Vocabulary Specification (Brickley and Miller,

2005) and Dublin Core's Metadata Terms (Powell et al., 2007) are examples of such

vocabularies. In our example of the RDF model, one can use FOAF's

http://xmlns.com/foaf/spec/#term_lastName

instead of using our own

http://localhostvocab/resource/Instructor_Last_Name

to refer to the term Last_name. Constructing RDF statements with URI predicates

instead of character strings offers two main benefits. First, it minimizes the practice of

using different terms to refer to the same thing. For instance, a database designer may use

attribute names such as Family Name or Second Name to refer to someone's last name.

http://iocaihostvocab/resource/Department/Comp._Sc%7d

CHAPTER 2. BACKGROUND AND RELATED WORK 17

In order to avoid the use of multiple attribute names, FOAF's Vocabulary Specification

provides a unique identifier - http://xmlns. com/f oaf/spec/#term_lastName - to refer

to a person's last name. This mechanism forces a designer to use the same URI predicate

for all occurrences of a last name. Second, the use of URIs in RDF triples supports

development and use of shared vocabularies on the Web.

2.2.3 The SPARQL query language

SPARQL (Prud'hommeaux and Seaborne, 2007) is the standard query language for RDF

data. A SPARQL query is made up of a set of triple patterns containing a subject, a

predicate and an object. Each of the subjects, predicates or objects in a query can be

a variable. SPARQL query processor searches for a set of triples that match the triple

patterns specified in a query, binding the variables in the query to the corresponding part

of each triple. Figure 2.4 shows a SPARQL query that returns all department names and

budgets from the table Department.

PREFIX vocab: <http://localhostvocab/resource/>

SELECT ?department_name ?budget

WHERE {

?department a vocab:department.

?department vocab:Department_Department_Name ?department_name.

Tdepartment vocab:Department_Budget ?budget.

>

Figure 2.4: A SPARQL query

SPARQL supports querying semi-structured and ragged data — data in unpredictable

and unreliable structure — and querying disparate data sources in a single query. How

ever, it does not support aggregate and group functions. SPARQL is a very young query

http://xmlns
http://localhostvocab/resource/

CHAPTER 2. BACKGROUND AND RELATED WORK 18

language compared to SQL and is still maturing. There are other alternative query lan

guages such as RDF Data Query Language (RDQL) (Seaborne, 2004) and RDF Query

Language (RQL) (Karvounarakis et al., 2002).

2.2.4 Examples of Semantic Web projects

I discuss three projects that have made significant contributions to the development of

the Semantic Web. However, these projects do not constitute the entire Semantic Web

as depicted in Figure 2.2.

FOAF

One of the earliest implementations of Semantic Web application is the Friend of a

Friend (FOAF) project (Graves et al., 2007). FOAF creates a web of machine-readable

pages that describe people, the links between them and the things that they are inter

ested in. Brickley and Miller (2005) have defined the FOAF vocabulary specification

which include the basic classes of entities such as person, organization, group, document

and the type of links that exist between these entities. FOAF also takes advantage of

Dublin Core (DC) metadata (Powell et al., 2007) for adding semantic annotation to its

entities. FOAF continues to solve several problems of identity management on the Web.

The University of North Carolina at Chapel Hill has applied FOAF approach to model

the structure of its IT department. It is now possible to search staff-related information

in seconds (Graves et al., 2007).

CHAPTER 2. BACKGROUND AND RELATED WORK 19

DBpedia

The traditional Web is based upon the idea of linking documents through hyperlinks.

Semantic Web, on the other hand, is based upon the idea of linking data units. Bizer

(2009) shows that links at a lower level of granularity, i.e. data-level, makes it possible to

crawl the data space, and provide expressive query capabilities, much like how a database

is queried today. Bizer's point is well demonstrated in the DBpedia project (Bizer et al.,

2007), a community effort to extract structured information from Wikipcdia and make

this information accessible in a way users can ask complex questions such as List all sci

entists that were born in the 20th century in Canada. DBpedia knowledge base currently

describes more than 2.6 million entities. It has been linked to other data sources on the

Web which has made it a central interlinking hub for the emerging Web of data (Bizer

et al., 2009).

Kngine

Kngine (ElFadeel and ElFadeel, 2008), known as Web 3.0 search engine, is a semantic

search engine designed to understand the meaning of users' queries and return precise

results. Depending on the nature of the query, Kngine shows results in visual represen

tation such as graph, comparison table, map, and image. For example, searching for '3G

cellphones' returns a list of all 3G network compatible mobile phones along with their

pictures and relevant details. The results can be filtered by selecting one or more proper

ties of 3G cellphones: year of release, brand name, operating system, camera resolution,

and CPU type. Kngine does this by discovering the relationships between the keywords

and concepts, and by linking different types of information together.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

These examples show how the Semantic Web technologies add new dimensions to the

way one can access and use information on the Web. In order to do this at a large scale,

the vast majority of the relational data that powers the Web needs to be exposed to

Semantic Web structures.

2.3 Building ontologies from relational structures

We have seen in Section 2.1 that one of the major limitations of the relational model

is its inability to capture any semantic relationships between data. Section 2.2 shows

that Semantic Web knowledge representation techniques can overcome this limitation.

Data presented in RDF structures includes the semantic relationships; however it does

not capture the domain knowledge that is associated with the data. In order to include

the domain knowledge, an evolution from the converted RDF structure into an ontology

is required. Relevant research with regards to converting relational to RDF structures is

discussed in 2.3.1, and development of full ontologies is discussed in 2.3.2.

2.3.1 Converting relational structure to RDF

There has been a great deal of research on mapping information stored in relational

databases to RDF. Sahoo et al. (2009) list two main approaches in mapping relational

data to RDF: Extract Transform Load (ETL) mapping and on-demand mapping. ETL

process takes relational data as source input and delivers equivalent RDF triples as out

put. On-demand mapping takes a SPARQL query as input, translates it to an equivalent

SQL query, executes the SQL query on relational data, and translates SQL query results

to SPARQL query results (in the form of RDF triples) as output. The strengths and

CHAPTER 2. BACKGROUND AND RELATED WORK 21

weaknesses of both approaches are summarized in Table 2.2 (Sahoo et al., 2009).

Table 2.2: ETL vs on-demand mapping

Strengths Weaknesses

ETL
mapping

On-demand
mapping

1. Faster query execution

2. Reduced arbitrary perfor
mance demand on source
RDB

1. Querying large RDF
dataset may not be as fast
as querying equal amount
of RDB data.

2. SPARQL query results may
not reflect most recent data.

3. Managing duplicate copies
of data in two models.

1. Query results are based on
most recent data values

2. Data retrieval is based on
RDB, and RDB outper
forms RDF for analytic
queries

1. Arbitrary performance de
mand on source RDB may
affect the performance of
legacy information systems

The on-demand mapping is widely preferred method primarily because it allows ac

cess to the most up to date information, and it does not burden one with the task of

maintaining another version of the same information. An example of on-demand mapping

is Virtuoso Universal Server (Erling and Mikhailov, 2007), which converts all primary

keys and foreign keys of an RDB into Internationalized Resource Identifiers (IRIs), and

assigns a predicate IRI to each column, and rdfitype predicate for each row linking it to

CHAPTER 2. BACKGROUND AND RELATED WORK 22

an RDF class IRI corresponding to the table. It then takes each column that is neither

part of primary or foreign key, and creates a triple consisting of the primary key IRI as

subject, the column IRI as predicate, and the column's value as object. This mapping

process allows relational data to be rendered as virtual RDF graphs, and accessed using

SPARQL queries.

A second example of on-demand mapping is SquirrelRDF (Steer, 2009), a prototype

tool that allows SPARQL queries on non-RDF databases such as RDB or Lightweight

Directory Access Protocol (LDAP) servers. It automatically generates a mapping file

that exposes an RDB schema to an RDF view. Gray et al. (2009) note that the auto

matically generated RDF views require manual editing for maintaining their referential

integrity.

There exist tools that provide both ETL and on-demand mapping services. One of

these tools is D2RQ Platform developed by Bizer and Seaborne (2004), which allows

one to either convert an entire RDB into a set of RDF triples, or access an RDB as

virtual and read-only RDF triples. D2RQ Platform consists of two main components:

D2RQ Engine and D2R Server. D2RQ Engine relies on Jena (McBride et al., 2010) and

Sesame (Broekstra et al., 2002), which are frameworks for storing and querying RDF

data. D2RQ Engine works as a plug-in for Jena or Sesame Semantic Web toolkits by

rewriting Jena or Sesame API calls and SPARQL queries to SQL queries using its D2RQ

mapping language. The results of these SQL queries are then transformed into RDF

triples and passed onto the D2R Server for publishing on the Semantic Web.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

D2RQ performance was compared to the performance of Jena2 database back end

using a dataset of 200,000 paper descriptions from the DBLP Computer Science Bib

liography. Jena2, which is a subsystem of Jena, stores RDF triples using a relational

database. Query execution time was measured in milliseconds. The find(s p o) query

was run on both platforms. This query is a minimal SPARQL query used for experimen

tal purpose. The parameter's' represents the subject, 'p' represents the predicate

and 'o' represents the object. The '?' parameter implies any for matching that slot.

For instance, if's' denotes 'books', 'p' denotes 'has authors' and 'o' denotes 'authors

names', find(? ? Tanenbaum) will return all books authored by Tanenbaum. The

results from the performance comparison test by Bizer and Seaborne (2004) are shown

in Table 2.3.

Table 2.3: Performance comparison between Jena2 and D2RQ Platform

find(s p o) query Jena2 D2RQ

1. find (s ? ?) 1.83 ms 0.01 ms

2. find (? p o) 1.94 ms 0.97 ms

3. find (? p ?) 42431 ms 72 ms

4. find (? ? o) 1.72 ms 3.23 ms

As seen in the performance results, D2RQ executes queries much faster than Jena2

implementation. Sequeda et al. (2008), however, notes that in D2RQ approach, map

ping between a relational schema and existing ontology requires one to manually specify

the classes and the hierarchies between classes using an ontology editor. In addition,

CHAPTER 2. BACKGROUND AND RELATED WORK 24

Bizer and Cyganiak (2007) listed a number of limitations of D2RQ platform. It does

not support integration of multiple RDBs or other data source; it does not allow data

manipulation; and it does not provide any inference capability.

SquirrelRDF and D2RQ Platform still remain prototype tools for RDB to RDF map

ping. Gray et al. (2009) prove that these prototypes fail to expose large science archives

stored in relational format. The authors have tested several RDB to RDF mapping tools

including D2RQ and SquirrelRDF for executing queries over a sample of large astronom

ical data set and have come to the conclusion that more research and improvements are

required for SPARQL and RDB to RDF mapping tools for exposing science archive data.

They have tested with 18 standard scientific SQL queries and only 9 of them can be

expressed in SPARQL queries. SPARQL also does not support mathematical functions

such as aggregate and trigonometric functions.

The mapping tools and techniques that have been discussed so far are intended for

converting data from relational structure to RDF structure. Semantic Web researchers

have also attempted to create tools for converting an RDB schema to an ontology. For

instance, Sequeda et al. (2009) created Ultrawrap, an automatic wrapping system that

generates an OWL ontology from RDB schema. The authors, however, doubt whether

the results of a purely syntax driven translation of an RDB schema to OWL can qualify

for a comprehensive ontology. Therefore, they use the term putative ontology to describe

the resulting OWL ontology. The putative ontology works as a basis for the user to write

SPARQL queries. Ultrawrap then natively translates SPARQL queries to SQL queries

and uses an SQL optimizer to execute the SQL queries on the RDB system. It does not

CHAPTER 2. BACKGROUND AND RELATED WORK 25

provide any reasoning capabilities.

Mapping a relational database to an ontology is a challenging task. Cullot et al.

(2007) have developed a prototype tool called DB20WL to create an ontology from a

relational database. Its mapping process classifies RDB tables into three different cases

to determine which ontology structures are to be created from which database compo

nents. Tables in RDB are mapped to OWL classes and sub-classes. RDB table cases

determine whether a table is mapped to an OWL class or sub-class. Then RDB columns

are mapped to OWL properties. Primary key and foreign key relationships are mapped

to object properties in order to preserve their referential integrity. During the mapping

proccss, a mapping file is generated and used to translate ontological queries into SQL

queries and retrieve corresponding instances.

The previous examples mostly show general mapping of relational to RDF structure

regardless of the domain of the data. There has also been research in building tools for

mapping domain-specific data. For example, Byrne (2008) shows a general mechanism for

converting cultural heritage data from relational databases to RDF triples. The author

created a triplestore - specialized database for the storage and retrieval of RDF triples -

named Tether from the Royal Commission on the Ancient and Historical Monuments of

Scotland (RCAHMS) database of around 250,000 historical sites with 1.5 million archives

and bibliographic materials.

CHAPTER 2. BACKGROUND AND RELATED WORK 26

2.3.2 Upgrading converted structures to full ontologies

The previous section discussed techniques for converting relational to RDF structures

from which a list of terms and their properties can be extracted. However, the converted

structures do not capture the inherent knowledge in the data that often resides in a

data dictionary or in the mind of the DBA. In order to capture the domain knowledge,

the converted structures need to be upgraded into full ontologies. Noy and McGuinness

(2001) state that there is no prescribed way or methodology for developing ontologies; the

best solution always depends on the application in mind and the extensions that follow.

The authors recommend the following seven guiding steps in developing an ontology:

Step 1: Determine the domain and scope of the ontology

The development process of an ontology starts with the definition of its domain and

scope. In this step, the developer can ask some basic questions such as: (i) What

is the domain that the ontology will cover? (ii) For what purpose the ontology is

going to be used? (iii) For what types of questions the information in the ontology

should provide answers to? (iv) who will use and maintain the ontology? The

answers to these questions help determine the domain and limit the scope of the

ontology.

Step 2: Consider reusing existing ontologies

The developer should check what others have done and whether it is possible to

refine and extend existing ontologies instead of creating from the scratch. Reusing

ontologies is important because creating an ontology for each application defeats

the purpose of sharing knowledge. There are ontologies that are publicly available

on the Web such as Ontolingua Server (2008) and DAML Ontology Library (2004),

CHAPTER 2. BACKGROUND AND RELATED WORK 27

which can be imported into an ontology development environment.

Step 3: Enumerate important terms in the ontology

Create a list of all terms that one would like to make statements about. The terms

can be formulated by asking some basic questions such as: (i) What are the terms

that would one like to talk about? (ii) What properties do these terms have?

(iii) what would one like to say about these terms? It is important to create a

comprehensive list of all terms.

Step 4-' Define classes and the class hierarchy

There are three approaches in defining a set of classes: a top-down development pro

cess starts with the definition of the most general concepts in the domain followed

by subsequent specialization of the general concepts; a bottom-up development pro

cess starts with the definition of the most specific concepts followed by subsequent

grouping of these concepts into more general concepts; and a combination devel

opment process is a blend of top-down and bottom-up processes which starts with

the definition of more notable concepts and then proceeds with appropriate gener

alization and specialization of the remaining concepts.

Whichever approach is followed, one should start by defining classes. From the

terms listed in Step 3, ones that describe concepts having independent existence are

defined as classes in the ontology. The classes are then organized into a hierarchical

structure. The class hierarchy represents an 'is-a' relation: a class A is a subclass

of B if every instance of A is also an instance of B.

CHAPTER 2. BACKGROUND AND RELATED WORK 28

Step 5: Define the properties of the classes - slots

The properties of a class describe the internal structure of the class. Some of the

terms formulated in Step 3 are defined as classes in Step 4; most of the remaining

terms are then defined as properties of those classes. For a given property, one

must determine which class it describes. Thus properties become slots attached

to their respective classes. All subclasses inherit the slots of its parent class. For

example, if a slot called Last name is added to the class Person, and Student is a

subclass of Person, then Student will inherit the slot Last name.

Step 6: Define the facets of the slots

A slot can have different facets describing the value types, allowable values, cardi

nality, etc. Value types describe what types of values can fill in the slot. Common

value types are string, number, and boolean. Slot cardinality defines what is the

minimum and maximum number of values a slot can have.

Step 1: Create instances

In the final step, individual instances of each class are created. This is done by

first, choosing a class; second, creating an individual instance of that class; and

third, filling in the slot values.

The ontology development process should not stop with completing the final step.

Rather it should be an iterative one in which a basic ontology is first created, and then

revised and refined to fill in the missing pieces.

CHAPTER 2. BACKGROUND AND RELATED WORK 29

There are a variety of languages for developing ontologies. RDF Schema (RDFS),

which is an extension of the RDF language, introduces basic ontological primitives such

as class, subclass, domain, range, etc that are used to define concepts and their relation

ships in an ontology. The W3C has adopted OWL (McGuinness and Harmelen, 2004),

which uses RDF and XML syntax and provides Description Logic (DL) based reasoning

support, as the standard ontology language for the Semantic Web. McGuinness and

Harmelen provide a comprehensive list of OWL primitives. The main primitives are

summarized in Table 2.4.

There exist a number tools for developing and managing ontologies. Protege (Hor-

ridge et al., 2009) is an open source ontology editor which allows one to create and export

ontologies into various formats including RDFS and OWL. Fensel et al. (2001) extended

RDFS to Ontology Inference Layer or Ontology Interchange Language (OIL), an ontol

ogy infrastructure which includes the definition of a formal semantics based on DL, an

ontology editor, and inference engines for reasoning capabilities.

Protege and OIL are widely used tools for authoring ontologies from scratch or mod

ifying existing ontologies; however, they do not provide any integrative function to work

with an RDB to RDF mapping tool. TopBraid Composer (TBC) (TopQuadrant Inc.,

2007) provides integrative function for connecting to an RDB through D2RQ Platform.

TBC is an application development framework which provides a comprehensive set of

tools covering the life cycle of semantic application development. TBC's integrative fea

ture allows one to import an RDB structure into TBC as a base ontology and modify

it towards building a more comprehensive ontology. RDB table names are represented

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.4: The main primitives of OWL

30

owhclass: A class is a group of entities that share some common characteristics. Classes
can be organized in a hierarchical order ranging from general to specialized classes. In
class hierarchy, a general class is known as parent class, and a special class is called
subclass.

rdfs:subClassOf \ A specialized class can be defined as a subclass of its parent class. For
example, the class Student can be stated as a subclass of Person. This subclass definition
allows a reasoner to deduce that if an entity is a Student then it is also a Person.

rdfs:property: A Property asserts general facts about the members of classes and specific
facts about individuals. There are two types of properties: datatype property and object
property. Datatype properties are relations between instances of classes and RDF literals
and XML Schema datatypes, whereas Object properties are relations between instances
of two classes.

rdfs:subPropertyOf: Property hierarchies can be created by stating that a property is
a subproperty of another property.

rdfstdomain: A domain of a property limits the individuals to which the property can
be applied. If a property relates an individual to another individual, and the property
has a class as one of its domains, then the individual must belong to the class.

rdfs:range: The range of a property limits the individuals that the property may have
as its value. If a property relates an individual to another individual, and the property
has a class as its range, then the other individual must belong to the range class.

rdfilD. The instances of classes are declared using this primitive.

owl:equivalentClass: Two classes may be stated as equivalent classes if they have the
same instances. Equality can be used to create synonymous classes.

owUequivalentProperty: Two properties may be stated as equivalent properties.
Equality may be used to create synonymous properties.

owl:sameAs: Two instances may be stated to be the same. An instance can be identified
by a number of different names using this primitive.

as classes and column names are represented as datatype properties. Primary key and

foreign key relationships are represented as object properties. One can extend existing

classes with superclasses and subclasses and specify the properties that the subclasses

CHAPTER 2. BACKGROUND AND RELATED WORK 31

inherit from the superclasses. Ontologies created using TBC also can be exported to

RDFS and OWL format.

Ontology language use certain types of logic to support reasoning. A reasoning engine

can infer logical consequences from a set of asserted facts and the inference results vary

depending on which of the two assumptions are in place. The Closed World Assump

tion (CWA) states that "databases (and people) assume that the information provided

is complete, so that ground atomic sentences are not asserted to be true are assumed to

be false" (Russell and Norvig, 2003). For example, assuming that a student database

contains information about all students, if the name 'Adam' is not found in the database,

a reasoning engine will conclude that 'Adam' is not a student. The CWA is often com

plemented by the Unique Name Assumption (UNA) which assumes that names in a

knowledge-base are unique and refer to distinct instances. The Open World Assumption

(OWA), on the other hand, assumes that the descriptions of resources are not confined to

a single knowledge-base or scope (Smith et al., 2004). In other words, from the absence

of a statement alone a reasoner cannot conclude that the statement is false.

OWL is designed with the purpose of defining Web ontologies. The Web is an open

and dynamic environment in which information continues to evolve, and at any point in

time one cannot assume its completeness. Therefore, the OWA is more appropriate while

reasoning with information presented on the Web. Ricca et al. (2009) argue that OWL's

OWA is unsuited for modeling enterprise ontologies because they evolve from relational

databases where both CWA and UNA are mandatory. In addition, the presence of nam

ing conventions in most enterprises can guarantee uniqueness of names which makes the

CHAPTER 2. BACKGROUND AND RELATED WORK 32

UNA relevant. The authors have proposed an ontology representation language called

OntoDLP which extends Answer Set Programming (ASP) with the main features such

as classes, inheritance, relations and axioms that are relevant to ontologies. ASP is a

kind of logic programming with negation as failure that works by translating the logic

program into ground form and then searching for answer sets (Russell and Norvig, 2003).

OntoDLP is used by OntoDLV, a system that facilitates specification and reasoning of

enterprise ontologies.

The mapping tools and techniques that I have presented in subsection 2.3.1, can fully

automate the process of converting relational to RDF structure. Beyond this point, there

is little or no automated assistance for upgrading the converted RDF structures to full

ontologies. The available tools for upgrading RDF structures to ontologies require human

expertise with considerable understanding of the ontology development process.

2.4 Multiagent systems

Wooldridge (2009) defines agent as "a computer system that is situated in some environ

ment, and that is capable of autonomous action in this environment in order to meet its

delegated objectives". Although an agent system may operate alone in an environment

and when necessary interact with its users, in most cases they consist of multiple agents.

These multiagent systems can model complex software systems in which individual agents

interact and collaborate to achieve a common goal or compete to serve their self interests

(Bellifemine et al., 2007). Wooldridge and Jennings (1995) suggest three capabilities of

an intelligent agent:

CHAPTER 2. BACKGROUND AND RELATED WORK 33

1. Reactivity: Intelligent agents are able to perceive their environment, and

respond in a timely fashion to changes that occur in it in order to satisfy

their design objectives.

2. Proactiveness: Intelligent agents are able to exhibit goal-directed behav

ior by taking the initiative in order to satisfy their design objectives.

3. Social Ability: Intelligent agents are capable of interacting with other

agents (and possibly humans) in order to satisfy their design objectives.

In order to achieve these capabilities, agents are modeled with the mental abilities

such as beliefs, desires, and intentions. This is due to the fact that humans use these

concepts as an abstraction mechanism for understanding the properties of a complex

system. Developing machines with such mental qualities was first proposed by Mccarthy

(1979). Shoham (1993) then articulated the idea of programming software systems in

terms of mental states.

The remainder of this section is organized as follows: agent-oriented software engi

neering is discussed in Section 2.4.1; how the Semantic Web relates to agents is presented

in Section 2.4.2; and issues related to agent-human interactions are discussed in Section

2.4.3.

2.4.1 Agent-oriented software engineering

Agent-oriented approach in Software Engineering is a new software paradigm that models

a complex system as a collection of autonomous, proactive, and social agents. Shoham

(1993) first introduced the concept of Agent Oriented Programming (AOP) as a new soft

ware development paradigm which can be viewed as a specialization of Object Oriented

CHAPTER 2. BACKGROUND AND RELATED WORK 34

Programming (OOP). Though both paradigms may appear similar from the theoretical

perspective, they have visible differences. Wooldridge (2009) lists three distinctions be

tween AOP and OOP. First, agents exhibit autonomous behaviors while objects depend

on external invocation. Agents enjoy the freedom to make their own decision whether or

not to perform an action. Second, agents are reactive, proactive, and social, whereas the

object-oriented model has nothing to do with these behaviors. Third, in a multiagent

system, each agent is considered to have its own thread of control whereas in a standard

object-oriented model the system has a single thread of control.

Jennings and Wooldridge (2000) argue why agent-oriented techniques are well-suited

to developing complex software systems. The authors compared agent-oriented tech

niques with the object-oriented approach. In the object-oriented approach, an object

perform its actions only when it is instructed by an external invocation. This approach

may work for smaller application in cooperating and well-controlled environments; how

ever, it is not suited to complex or competitive environments because it gives the control

to execute an action to the client requesting that action and not the action executor.

Thus objects are obedient to one another. Agent-oriented approaches allow the action

executor - the agent - to decide whether or not to perform an action because it is more

intimate with the details of the actions to be performed, therefore, it may know a good

reason for executing or refusing to perform an action. The Object-oriented approach also

fails to provide an adequate set of mechanisms for modeling a complex system that com

prises of inter-related subsystems. Agent-oriented techniques provide problem solving

abstraction for modeling the dependencies and interactions that exist in such complex

systems.

CHAPTER 2. BACKGROUND AND RELATED WORK 35

There are a number of platforms available for developing multiagent systems such as

Jason (Bordini et al., 2007), Jadex (Pokahr et al., 2005), and JADE (Bellifemine et al.,

2007). Jason, which is a Java based platform, uses AgentSpeak agent-oriented program

ming language to program the behavior of individual agents. Jadex is a popular open

source platform for programming intelligent software agents using XML and Java. JADE

is an agent-oriented middleware that provides domain-independent infrastructure for de

veloping multiagent systems. Telecom Italia distributes Jade as open source software

under the terms of the LGPL (Lesser General Public License) Version 2.

2.4.2 Agents and Semantic Web

Berners-Lee et al. (2001) envision a Semantic Web agent that communicates with other

agents to set up a doctor's appointment.

At the doctor's office, Lucy instructed her Semantic Web agent through her

handheld Web browser. The agent promptly retrieved information about

Mom's prescribed treatment from the doctor's agent, looked up several lists

of providers, and checked for the ones in-plan for Mom's insurance within

a 20-mile radius of her home and with a rating of excellent or very good on

trusted rating services. It then began trying to find a match between available

appointment times (supplied by the agents of individual providers through

their Web sites) and Pete's and Lucy's busy schedules. (The emphasized

keywords indicate terms whose semantics, or meaning, were defined for the

agent through the Semantic Web.)

CHAPTER 2. BACKGROUND AND RELATED WORK 36

As information on the Semantic Web is presented with semantic annotations and in

the form on ontologies, agents are able to understand the meaning of this information

and take appropriate actions based on perceived meaning. Thus, the entire Web becomes

part of agents' environment in which agents can proactively search for necessary infor

mation to serve its intended goals. However, realizing Berners-Lee's grandiose vision of

Semantic Web agents has been highly challenging due to the dynamic and heterogeneous

nature of the Semantic Web (Tamma and Payne, 2008). The authors have formulated

some challenges faced by Semantic Web agents. These challenges can be summarized

as follows: discovering resources; determining ontology identity; ontology reconciliation;

dynamic evolution of agent ontologies; describing dialogues and protocols using ontolo

gies; and representing and reasoning with uncertain information.

The W3C in collaboration with Semantic Web researchers continues to develop tools

and standards that may overcome some of the challenges identified by Tamma and Payne.

2.4.3 Human-agent interactions

Human-agent interactions can be regarded as a specialization of human-computer inter

actions. So far, there is no standard language or communication mechanism for humans

to interact with agents. This choice is left with the designer to decide how agents are

instructed and in which format agents report back to the users.

Of particular interest is the issue that when it comes to communicating with oth

ers, humans regard certain values such as speaking manner very highly. Agents, when

interacting with humans should also follow a certain code of communication ethics. Brad-

CHAPTER 2. BACKGROUND AND RELATED WORK 37

shaw et al. (2011) outline a number of characteristics of a good agent with regard to joint

activity in the following maxims:

• A good agent is observable. It makes its pertinent state and intentions

obvious.

• A good agent is attuned to the requirement of progress appraisal. It

enables others to stay informed about the status of its tasks and identifies

any potential trouble spots ahead.

• A good agent is informative and polite. It knows enough about others

and their situations so that it can tailor its messages to be helpful,

opportune, and appropriately presented.

• A good agent knows its limits. It knows when to take the initiative on

its own, and when it needs to wait for outside direction. It respects

policy-based constraints on its behavior, but will consider exceptions

and workarounds when appropriate.

• A good agent is predictable and dependable. It can be counted on to do

its part.

• A good agent is directable at all levels of the sense-plan-act cycle. It

can be retasked in a timely way by a recognized authority whenever

circumstances require.

• A good agent is selective. It helps others focus attention on what is most

important in the current context.

CHAPTER 2. BACKGROUND AND RELATED WORK 38

• A good agent is coordinated. It helps communicate, manage, and de-

conflict dependencies among activities, knowledge, and resources that

are prerequisites to effective task performance and the maintenance of

common ground.

The set of characteristics that makes an agent good or bad is a subjective choice.

What is considered good manners in one culture may not be the case in another culture.

Therefore, a designer should take into account the cultural sensitivity that agents may

experience while engaging with other agents and human users.

Chapter 3

Semantic Query Access to Legacy

Relational Databases using

Intelligent Middleware

In this thesis, I propose and investigate a novel approach to accessing information stored

in legacy relational database (RDB) systems. This approach is motivated by the rising

demand for flexible access to information through user-friendly interfaces for human users

as well as standardized software interfaces for intelligent agents that act on their behalf.

The Semantic Web project envisions a world-wide infrastructure providing such services

through the adoption of associated standards, and the use of tools and ontologies that are

being developed towards realizing the objective of the Semantic Web. In that context,

I explore how an institutional decision support system, based on legacy RDB systems,

could employ a combination of Semantic Web and multiagent systems (MAS) technolo

gies to evolve towards flexible semantic access to information within its own operational

39

CHAPTER 3. SEMANTIC QUERY ACCESS TO LEGACY RELATIONAL
DATABASES USING INTELLIGENT MIDDLEWARE 40

scope.

Legacy RDB systems are typically used for decision support purposes by a limited

number of users with considerable knowledge about the domain of the information stored

in relational databases. The users explain their information requirements to report writ

ers through natural language communication, which refers to domain knowledge that is

not explicitly captured within the database itself. The report writers use their acquired

domain knowledge and technical expertise to translate the users' requests into formal

SQL queries for extracting the necessary information. Thus, the users of legacy RDB

systems always depend on report writers for bridging the gap between domain-level dis

course and RDB query.

Software agents can assist human users in a decision support environment by reasoning

with information underlying the decision process; however, this requires the information

to be structured using ontologies that formally capture the domain knowledge associated

with that information. By developing the necessary ontologies within the system itself,

and by introducing a simplified natural language interface, the proposed approach enables

the user to directly access information without depending on the assistance of human

intermediaries such as report writers. This implies that the structures of the information

stored in RDB systems need to be represented in the form of ontologies. As such, I ex

plore the possibility of converting an RDB schema to ontologies while keeping the RDB

system's original design and functionalities intact. An RDB schema can be converted

to ontologies in two steps: first, transforming the RDB schema to an RDF structure;

and second, upgrading the RDF structure to an ontology. The first step has been fully

CHAPTER 3. SEMANTIC QUERY ACCESS TO LEGACY RELATIONAL
DATABASES USING INTELLIGENT MIDDLEWARE 41

automated by several RDB-to-RDF conversion tools, namely Virtuoso Universal Server,

SquirrelRDF, and the D2RQ Platform. The second step requires human involvement for

manually upgrading the converted structures to ontologies using ontology editors such as

Protege, TopBraid Composer, and OntoDLV.

To overcome some of the issues raised above I propose a system architecture, called

the Semantic Report Generation System (SRGS). In defining the architecture of SRGS,

I focus on the following tasks:

1. Develop a definition of a distributed system architecture that combines Semantic

Web and MAS technologies in an intelligent middleware layer, which supports the

building of ontologies from RDB structures, and provides the user with effective

semantic query access to information in RDB systems.

2. Examine to what extent one can realize such a system architecture using the existing

software systems that have already been developed or envisioned in the context of

the Semantic Web and MAS research.

Tasks one and two are carried out in an iterative manner in which I identify existing

software systems that can be integrated as components in the new system architecture

and then refine the aixhitectural definition so that it can rely on the identified compo

nents.

The proposed system will allow the Database Administrator (DBA) to incrementally

build ontologies from an RDB schema with the assistance of a software agent. The archi

tecture takes advantage of the existing automated process for converting RDB schema

CHAPTER 3. SEMANTIC QUERY ACCESS TO LEGACY RELATIONAL
DATABASES USING INTELLIGENT MIDDLEWARE 42

to RDF structure, and introduces a software agent to assist the DBA in developing a

reference ontology from the RDF structure, human domain knowledge, and knowledge

resources on the Semantic Web. Another software agent assists the user to develop a

custom ontology, which defines user-specific concepts using entries from the reference on

tology. In this approach, the agents interact with human actors throughout the ontology

development process. The agents perform some of the technical tasks while the human

actors make decisions. This role in ontology development adds a new dimension to the

traditional user and DBA profiles. However, this does not require them to become tech

nical experts fully specialized in the ontology development process because the agents

are responsible for executing some of the technical tasks.

The ontologies create a layer of semantic information structures on top of the existing

legacy RDB system that enables semantic queries and allows agents to reason about the

information stored in the RDB. In addition, the system includes a simplified natural

language interface which enables the users to directly communicate their requests for

information stored in the underlying RDB systems without depending on any human

intermediaries. In this process, a software agent assists the users to formulate requests

for information using the simplified natural language.

Chapter 4

The Architectural Model

In defining the architecture of Semantic Report Generation System (SRGS), I begin by

abstracting the aspects of the system that are relevant to my study topic. I am pri

marily interested in the viewpoint of the user who accesses information in an existing

relational database (RDB) system. The structure of the database and its contents are

not controlled by the user. The user is aware that the structure and contents of the

database may evolve over time. However, the requirements that cause such changes to

be made are beyond the scope of my current interest. If the present user can influence

such requirements, those influences occur outside of my model. I assume that the user

has some knowledge about the domain as well as the source of information.

The system requirements are described in Section 4.1; the global architecture of the

system is presented in Section 4.2; agent roles are discussed in Section 4.3; and incorpo

ration of existing Semantic Web and MAS components is discussed in Section 4.4.

43

CHAPTER 4 . THE ARCHITECTURAL MODEL 44

4.1 The system requirements

The system requirements are developed in three steps. Subsection 4.1.1 describes the

requirements for a generic system that represents the basic functionality of user access

to information in an RDB system in a way that is common to its many possible im

plementations. The focus of 4.1.2 is on user-system interaction in legacy RDB system.

Subsection 4.1.3 describes the requirements for user-system interaction for SRGS.

The system requirements are represented in the form of use cases and actors. Rum-

baugh et al. (2004) define use case as a coherent unit of functionality expressed as a

transaction among actors and the system. An actor may be a person, organization or

other external entity that interacts with the system.

4.1.1 The generic system

The actors and high-level use cases of the generic system are shown in Figure 4.1.

The actor of primary interest is the User. The other two actors, the Database Ad

ministrator (DBA) and the Data Entry Operator (DEO), maintain the RDB structure

and content respectively.

The top four use cases of Figure 4.1 capture the generic system functions performed

on behalf of the user, regardless of how these functions are executed. For example, in a

legacy system the user typically performs these functions through a human intermediary

who in turn accesses the computer system. In SRGS, the user performs the same functions

through direct interaction with the computer system.

CHAPTER 4• THE ARCHITECTURAL MODEL 45

Manage
System Access

And User Profile

Present Report

Figure 4.1: The actors and high-level use cases of the generic system

Manage System Access and User Profile

System access is based on user authentication, which verifies the user's identity and

specific access rights. The user can also specify a set of preferences contained in

the user profile with regards to the various options available in the user interface.

This general use case includes system help and tutorial assistance.

CHAPTER 4. THE ARCHITECTURAL MODEL 46

Accept Request for Information and Present Report

In this use case, the system accepts request in which the user specifies what in

formation should be retrieved and how it should be presented; the system then

retrieves the information and presents it in the requested format.

Manage Reports

This use case allows the user to save, delete, reformat, and retrieve reports.

Manage Ontology

As the usage of data and the environment evolve there is a need to introduce new

terms and modify some definitions of terms in the ontology. The ontology itself

consists of two components. The first one, which I call the reference ontology, is

incrementally developed from the structure of the RDB. It describes concepts and

the semantic relationships between the concepts in an application domain. The

second component, called the custom ontology describes the conceptual framework

specific to a particular user, that can be directly translated to the reference on

tology. Modifications of the rcferencc ontology occur when the DBA changes the

structure of the database, or when the represented knowledge is updated due to

external factors, such as changes in the organizational policies. Modifications of

the custom ontology mainly occur when the user introduces new concepts and their

relationships that are defined using constructs in the reference ontology.

Maintain RDB data

This use case allows the DEO to insert, delete, and modify data in the RDB system.

CHAPTER 4• THE ARCHITECTURAL MODEL 47

Maintain RDB schema

This use case enables the DBA to modify the structure of the RDB system. When

necessary, the DBA may add, remove, or change RDB tables and the columns

withing the tables.

4.1.2 Legacy RDB system

In a legacy RDB system, some of the functionalities of the generic system shown in Figure

4.1 are performed by the human intermediary report writer on behalf of the user while

the other functionalities are performed by the system. The DBA and the DEO actors

play the same roles as in a generic system, and the use cases are executed in similar ways

by the system. The actors and the high-level use cases of legacy RDB system are shown

in Figure 4.2.

Below I briefly describe the four use cases from the perspective of a legacy RDB

system.

Manage System Access and User Profile

The user delegates access right to the report writer who accesses the system. System

access is based on user authentication, which verifies the report writer's identity,

and authorization. This general use case may include system help and tutorial

assistance.

Accept Request for Information and Present Report

In this use case, the report writer accepts a request, in which the user specifies

what information should be retrieved and how it should be presented; the report

CHAPTER 4. THE ARCHITECTURAL MODEL 48

Legacy RDB System

Maintain

RDB Data

Data Entry Operator

DEO
Q

User System interaction

Query RDB and

Present Results A
User

Report Writer

Maintain

RDB Schema

Database Administrator
DBA

Figure 4.2: Legacy RDB system

writer then queries the RDB to retrieve the information and presents it to the user

in the requested format. If the request is not clear, the report writer engages with

the user to further clarify the request through natural language communication.

Manage Reports

This use case allows the report writer to save, delete, reformat and retrieve reports

on behalf of the user. The user typically receives printed copies of the report.

Manage Ontology

The management of the reference ontology occurs between the report writer and

the DBA; the management of the custom ontology occurs between the user and

the report writer. The ontologies represent knowledge and personal experience of

CHAPTER 4. THE ARCHITECTURAL MODEL 49

the actors informally recorded in electronic and paper-based documents or simply

remembered by the actors. Managing both ontologies involve natural language

communications between the actors. For instance, the report writer informs the

user about modifications of concepts in the reference ontology; the user informs

the report writer about a new concept the user wants to introduce to the custom

ontology.

Maintain RDB data

This use case provides the same services as specified in the generic system.

Maintain RDB schema

This use case provides the same services as specified in the generic system.

This process of negotiation and delegation between the user and the report writer is

often time consuming, resulting in delays and costs.

4.1.3 The Semantic Report Generation System (SRGS)

In SRGS, the user directly interacts with the system that performs the functionalities in

the top four use cases shown in Figure 4.1. The short descriptions of the use cases are

as follows.

Manage System Access and User Profile

System access is based on user authentication, which verifies the user's identity, and

authorization. The user-system communication occurs in an interactive manner.

The user can specify personal preferences for communicating with the system. The

CHAPTER 4• THE ARCHITECTURAL MODEL 50

system helps the user to specify personal preferences and manages them. This

general use case includes system help and tutorial assistance.

Accept Request for Information and Present Report

This use case allows the user to directly communicate report requests to the system.

In the request, the user specifies what information should be retrieved and how it

should be presented. If the user's request is not clear, the system asks the user

to further clarify the request. This clarification process is an interactive one in

which the system ensures that it understands the user's request. The system tries

to mimic the role of the report writer in legacy RDB system. It then retrieves the

information and presents in the requested format.

Manage Reports

This use case allows the user to save, delete, reformat and retrieve reports.

Manage Ontology

In SRGS, the reference ontology formally represents knowledge originating from

the underlying relational database, human actors in the system, and ontological

knowledge available on the Semantic Web. The DBA interacts with the system

in building and maintaining the reference ontology. Thus, the DBA's actor profile

now includes the new role of managing the reference ontology in addition to the

traditional role of managing RDB systems. The custom ontology allows the user

to introduce user-specific concepts and their relationships on top of the reference

ontology. The user now has the additional role of managing the custom ontology.

CHAPTER 4. THE ARCHITECTURAL MODEL 51

Maintain RDB data

This use case provides the same services as specified in the generic system.

Maintain RDB schema

This use case provides the same services as specified in the generic system.

The functions of each high level use case can be further specified by decomposing into

simpler use cases. I discuss decomposition of the following two high-level use cases.

1. Accept Request for Information and Present Report

The decomposition of the Accept Request for Information and Present Report use case

is shown in Figure 4.3. The decomposed uses cases are grouped by their functionalities

into the use cases that directly communicate with the user: the Front End, and the use

cases that communicate with the legacy RDB system: the Back End. The Front End

and the Back End can reside on different machines and communicate through a network.

In general, a Back End can support multiple Front Ends, and a Front End can interact

with multiple Back Ends.

In the Front End, the Accept Request for Information (SNL) and Present Results use

case allows the user to formulate request for information in a Simplified Natural Language

(SNL). The request contains domain-specific terms that specify the information to be re

trieved, and keywords that describe the format for presenting the retrieved information.

Once the request is accepted, the Parse and Interpret SNL Request use case produces

an intermediate representation of the user request, and the Verify Request Ontology use

case ensures that each statement as a whole in the request is semantically correct. If the

CHAPTER 4. THE ARCHITECTURAL MODEL 52

Back End Front End
Parse and Interpret

SNL Request
Convert

SPARQL Script to

„ SQL Queries ,

Verify Request

Ontology Q
f Accept Requests,
for Information (SNL)

\and Present Results'

Accept Request for
Information (SPARQL)
and Present Results ,

Query RDB N

and Present Results,

Generate

SPARQL Script User

Convert SQL Quety-

Results to SPARQL

v Query Results j
Format and Display

Report

Figure 4.3: Accept request for information and present report

SNL request is valid, the Generate SPARQL Script use case creates a SPARQL script

from the intermediate representation of the SNL request. The Front End then sends

the SPARQL script to the Back End for further processing. The Front End receives the

SPARQL results sent from the Back End. The SPARQL results are then formatted as

report and presented by the Format and Display Report use case.

In the Back End, the Accept Request for Information (SPARQL) and Present Results

use case receives the SPARQL script and translates it to equivalent SQL queries by the

functions in the Convert SPARQL Script to SQL Queries use case. The Query RDB

and Present Results use case then executes the SQL queries on the RDB system and

sends the SQL results to the Convert SQL Query Results to SPARQL Query Results use

case, which translates the SQL query results to SPARQL results. The Accept Request for

Information (SPARQL) and Present Results use case sends the SPARQL results to the

CHAPTER 4. THE ARCHITECTURAL MODEL 53

Front End.

2. Manage Ontology

The decomposition of the Manage Ontology use case is shown in Figure 4.4. The use

cases are grouped by their functionalities into use cases that directly communicate with

the user, the Front End; and use cases that communicate with the DBA, the Back End.

Back End Front End
Import

Reference Ontology
Export

Reference Ontology

Initialize

Custom Ontology Maintain

Reference Ontology

Maintain

ROB Schema
Manage Ontology

Update

Custom Ontology
User DBA

Display
Ontology Changes Maintain

Consistency of

leference Ontolog'

Update

Reference Ontology

Figure 4.4: Manage ontology

The Front End initially imports the reference ontology when it connects to the Back

End. While importing the reference ontology, the functions of the Import Reference On

tology use case in the Front End rely on the functions of the Export Reference Ontology

use case in the Back End. The Initialize Custom Ontology use case allows the user to

create a conceptual framework specific to the user. Through the functions in the Update

Custom Ontology use case, the user can modify the definition of user-specific concepts

CHAPTER 4• THE ARCHITECTURAL MODEL 54

in the custom ontology. When the reference ontology is updated in the Back End, the

Maintain Consistency of Reference Ontology use case ensures that the updates are also

applied to the reference ontology in the Front End. The reference ontology updates are

displayed to the user by the Display Ontology Changes use case.

In the Back End, the Export Reference Ontology use case sends a copy of the reference

ontology to the attached Front End. The Maintain RDB Schema use case allows the

DBA to modify the structure of the RDB by changing the RDB schema. When the

DBA changes the RDB schema, the Maintain Reference Ontology use case incorporates

the schema changes into the reference ontology with the help of the Update Reference

Ontology use case.

4.2 The multiagent architecture of SRGS

At the high level, SRGS consists of two subsystems: User Subsystem (US) and Database

Subsystem (DBS). The primary functions of the US include accepting the user's request

for information, presenting reports, and developing the custom ontology. The DBS is

responsible for retrieving information from the legacy RDB system and developing the

reference ontology. In the basic architecture, each subsystem is comprised of an agent

and an environment which contains several software components. The agent perceives

the behaviors of the components in the environment and influences their future actions.

Subsection 4.2.1 describes the basic architecture of the system in which a single user is

connected to the US which is attached to one DBS. Subsection 4.2.2 through 4.2.5 present

three different versions of the system architecture with regards to the multiplicity of users

and the subsystems.

CHAPTER 4. THE ARCHITECTURAL MODEL 55

4.2.1 The basic architecture

The basic architecture is described using a very simple configuration of SRGS. It consists

of a single US and a single DBS, connected through a wide area network, with a single

user accessing the system. This configuration is depicted in Figure 4.5.

User User Interface Environment
(UIE)

User Subsystem (US)

User Interface
Agent (UIA)

WAN

Database Subsystem (DBS)

Database Interface
Agent (DBIA)

Database Interface Environment
(D8IE)

ROB
System

DBA

J°E°
Figure 4.5: Single User Subsystem to single Database Subsystem

The User Subsystem

The architectural structure of the US is shown in Figure 4.6. The User Interface En

vironment (UIE) comprises the components that provide the main subsystem functions.

The primary purpose of the UIE is to execute the routine user requests efficiently, without

the need to engage in reasoning in the sense of artificial intelligence techniques. The UIE

components can be designed and implemented using the conventional Object-Oriented

Software Engineering (OOSE) methodology, with an emphasis on efficient performance.

CHAPTER 4. THE ARCHITECTURAL MODEL 56

The User Interface Agent (UIA) can observe the events in the environment, including

the behavior of individual components, and act on the environment to influence the be

havior of its components. The agent provides the practical reasoning (i. e., deliberation

and planning) capabilities to the subsystem, enabling it to autonomously resolve arising

problems without intervention of human experts. Its presence introduces the qualities

of flexibility, adaptability, tolerancc to variations in user preferences and practices, and

evolution of the subsystem behavior according to changing user requirements. Those

qualities are necessary in order for the system to meet the requirements formulated in

Chapter 3 without additional human assistance.

I
User

User Subsystem (US)

User Interface
Agent (UIA)

Report Manager

SNL Processor SPARQL Generator
Natural Language
Lexical Knowledge

Representation

Ontology Manager

Communication Service,
Access Control & Security

User
Interface

User Interface Environment (UIE)

Figure 4.6: The User Subsystem

User Interface Environment

All the components that communicate with the user and the UIA are grouped into the

UIE. The solid lines represent direct communication that occurs between the user, the

CHAPTER I THE ARCHITECTURAL MODEL 57

components and the UIA. The dashed line represents communication that occurs between

the user and the UIA. The UIE consists of the following main components:

User Interface

The User Interface (UI) enables all communications between the user and the sys

tem. It provides the functionalities with regards to accessing the system as formu

lated in 4.1.3.

SNL Processor

The SNL Processor component enables the user to interact with the system using

the SNL. The user formulates requests for information and modifications to the

custom ontology using SNL statements. The SNL processor generates intermediate

representations from these statements in three steps. First, it performs a lexical

analysis in which it breaks the statements into smaller pieces called tokens, which

are atomic units of the statements such as words and symbols. Second, it performs

a syntax analysis by parsing the token sequence to identify the syntactic structure

of the statements. Third, it performs a semantic analysis by verifying the custom

and reference ontology to ensure that the tokens are positioned according to their

semantic relationships so that each statement as a whole is meaningful. Once suc

cessfully generated, the SNL Processor forwards the intermediate representations

to the relevant component. If the statements concern a request for information,

The SNL Processor forwards the statements regarding what information is to be

extracted to the SPARQL Generator, and the statements for formatting the ex

tracted information to Report Manager. Otherwise, it forwards the statements to

the Ontology Manager.

CHAPTER 4, THE ARCHITECTURAL MODEL 58

SPARQL Generator

The SPARQL Generator constructs a SPARQL script from the intermediate repre

sentation of user requests for information received from the SNL Processor. While

constructing a script, it refers to the Ontology Manager for the RDB-specific names

of terms used in the requests. Once a SPARQL script is generated, the UIA sends

it to the DBS for further processing.

Report Manager

The Report Manager presents requested information in the form of reports. It

receives SPARQL query results from the DBS and formats the results according

to the user's formatting preferences. It communicates with the Ontology Manager

to replace any database-specific name in the report with its primary name if the

database-specific name is not the primary name. The Report Manager allows the

user to view, reformat, save, and delete reports.

Ontology Manager

The Ontology Manager is responsible for maintaining the custom ontology and pro

viding ontological services to the SNL Processor and SPARQL Generator. The cus

tom ontology defines user-specific concepts and their relationships using constructs

from the reference ontology. In order to keep the custom ontology in consistency

with the reference ontology, any update in the reference ontology needs to be re

flected in the custom ontology, if the update affects the definitions of any concepts

in the custom ontology. When there is an update in the reference ontology, the

UIA checks whether this update affects the custom ontology. If it does, the UIA

makes the required changes in the custom ontology. If the update requires simple

CHAPTER 4. THE ARCHITECTURAL MODEL 59

operation such as renaming a reference-ontological construct, the UIA performs

this action without involving the user. If it requires more complex operations, such

as restructuring certain relationships, the UIA engages with the user in the process

of updating the custom ontology.

Natural Language Lexical Knowledge Representation

This component provides the meaning and semantic-relations between natural-

language concepts in both machine processable and human readable format. In

principle, it contains language ontology which can be enhanced by ontological de

velopment by a software agent but doing so would be beyond the scope of this

thesis. The UIA and the SNL Processor communicates with this component to

look up meaning and relationships between natural language terms.

Communication Service, Access Control and Security

This component facilitates communications that occur between the US and the

DBS. User privilege and security features are enforced by this component. Sys

tem access is based on user authentication, which verifies the user's identity and

authorization to access specific resources.

User Interface Agent

The UIA interacts with the user through the UIE. The user formulates requests for infor

mation and develops a custom ontology through the User Interface. The user interacts

with the system using the SNL. The UIA assists the user in the process of formulating

requests for information as well as developing and maintaining a custom ontology. The

UIA invokes different components in the UIE in order to carry out its tasks. It perceives

CHAPTER 4. THE ARCHITECTURAL MODEL 60

the behaviors of the components and through its actions the agent can influence the

behavior of the components.

The Database Subsystem

The architectural structure of the DBS is shown in Figure 4.7. The Database Inter

face Environment (DBIE) comprises the components that provide the main subsystem

functions. The primary purpose of the DBIE is to extract requested information from

the legacy RDB system, without the need to engage in reasoning in the sense of artificial

intelligence techniques. The DBIE components can also be designed and implemented in

the same way as the UIE components.

Database Subsystem (DBS)

Database Interface
Agent (DBIA)

Database Interface Environment (DBIE)

Communication Service,
Access Control & Security

Natural Language
Lexical Knowledge

Representation
Ontology Manager SNl Processor

Translator

SPARQL to SQL Queries
SQL to SPARQL Results

Schema to Base
Ontology Mapper

Schema Monitor |

User ^
Interface

RDB
System

Jr

1 DEO A
Figure 4.7: The Database Subsystem

Database Interface Environment

All the components that communicate with the DBIA, the DBA, and the DEO are

CHAPTER 4. THE ARCHITECTURAL MODEL 61

grouped into the DBIE. The solid lines represent direct communication that occurs be

tween the components. The dashed line represents communication that occurs between

the DBA and the DBIA. The DBIE consists of the following main components:

User Interface

The User Interface (UI) provides an access point in which the DBA interacts with

the DBS. Through the UI the DBA builds and maintains the reference ontology

with the assistance of the DBIA and modifies the structure of the RBD system.

SNL Processor

The SNL Processor component enables the DBA to interact with the system using

SNL statements. The DBA interacts with the DBIA in developing and maintaining

the reference ontology. The DBA enters SNL statements through the User Interface.

The SNL processor then generates an intermediate representation from the DBA's

statements in the same three steps the SNL Processor in the US follows. Once

the intermediate representation is generated, the SNL Processor forwards it to the

DBIA if the interaction concerns developing and maintaining the reference ontology,

or to the RDB system if the interaction concerns managing the database.

Ontology Manager

The Ontology Manager is responsible for the coordination and maintenance of

the reference ontology. The DBS exports a copy of the reference ontology to the

attached US. Thus the reference ontology is replicated in both subsystems. The

Ontology Manager ensures that any modifications to the reference ontology in the

DBS are propagated to the instances of reference ontology in all participating USs.

CHAPTER 4. THE ARCHITECTURAL MODEL 62

Natural Language Lexical Knowledge Representation

This component is identical to Natural Language Lexical Knowledge Representation

in the US. The DBIA communicates with this component while developing and

maintaining the reference ontology.

Translator

The Translator generates SPARQL query results from RDB data in three steps.

First, it converts the SPARQL script to SQL queries; second, it executes the SQL

queries 011 the RDB system and retrieves the SQL query results; and filially it

converts the SQL query results to SPARQL query results. The DBIA then sends

the SPARQL results to the US.

Schema to Base Ontology Mapper

This component automatically generates a base ontology from the underlying RDB

schema. The base ontology represents an RDB table name as a class and the

column names of the corresponding table as properties of the class. It also captures

the relationships between RDB tables. The base ontology serves as a rudimentary

ontology from which the reference ontology is incrementally developed.

Schema Monitor

The Schema Monitor always listens for change in the RDB schema made by the

DBA. When it detects a schema change it notifies the Schema to Base Ontology

Mapper component to reflect the modifications in the reference ontology.

Communication Service, Access Control and Security

This component facilitates all communications between the US and the DBS. By

CHAPTER 4. THE ARCHITECTURAL MODEL 63

enforcing security features it ensures that no unauthorized access occurs in the

RDB systems.

RDB System

The RDB system contains relational data which the user of SRGS is interested in. The

Data Entry Operator (DEO) may insert, delete, or modify data in the RDB system.

SRGS is not affected by such modifications.

Database Interface Agent

The Database Interface Agent (DBIA) communicates with the DBA and the DBIE.

The DBIA is primarily responsible for assisting the DBA in developing and maintaining

the reference ontology. It invokes different components in the DBIE. It perceives the

behaviors of the components and through its actions the agent can influence the behavior

of the components.

4.2.2 Multiple Users accessing single User Subsystem

In this version of the system architecture, several users may access the US which is at

tached to only one DBS. The multiplicity of users affects the architecture in the following

ways:

1. When there are multiple users accessing the US at the same time, a single UIA

is inadequate for attending to all users simultaneously. The preferred solution is

to have an agent serving each user. The UIA can dynamically create an agent or

awaken up an inactive agent from the background, and assign the agent to the

additional user. The architecture of the system is illustrated in Figure 4.8.

CHAPTER 4. THE ARCHITECTURAL MODEL 64

2. Some elements in the UI are customized to each user's preferences for interacting

with SRGS. Some elements that serve common functionalities to all users remain

the same as in the basic configuration of the architecture. The customization of

the UI is depicted in Figure 4.9.

3. A custom ontology needs to be created for each user. The Ontology Manager main

tains a user's custom ontology by defining the terms that the user may introduce

in the custom ontology.

4. The Report Manager maintains each user's history of preferences for report formats.

User Subsystem (US) Database Subsystem (DBS)

Database Interface
Agent (DBIA)

User i

• •

• •
UIA

Database Interface Environment
(OBIE)

ROB
System

User s~

User Interface Environment
(UIE)

V

Figure 4.8: Multiple Users accessing SRGS

The DBS is not affected by this change as the DBIA's tasks remain the same as

in the basic architecture, regardless of the multiplicity of the users or the USs. The

CHAPTER 4. THE ARCHITECTURAL MODEL 65

UIA n

/ \
Usern

f 1 ;

ut.il
l

- H
• I ; User
• j Interface

i-l

h~
1 :

ui„ !

Report Manager Ontology Manager

' Reference Ontology >

| Formatting
Preferences 1

| Formatting
"' Preferences „;

i Custom
I Ontology,

Custom
Ontology „

Figure 4.9: Customized User Subsystem for multiple users

DBIA's workload may increase in which case more resources can be added in the actual

implementation.

4.2.3 Multiple User Subsystems to single Database Subsystem

In this version of the system architecture, multiple USs interact with a single DBS. This

configuration has no effect on the internal design of each US. Implementing this version

of the architecture may require certain hardware configurations which are beyond the

scope of this thesis.

4.2.4 Single User Subsystem to multiple Database Subsystems

In this version of the system architecture, one US is attached to multiple DBSs. The

requirement is that the multiplicity of the DBS is transparent to the user accessing the

CHAPTER 4. THE ARCHITECTURAL MODEL 66

US. This transparency can be achieved in the following manner:

1. I assume that there are n DBSs attached to one US. The SPARQL Generator

decomposes the SPARQL script into up to n SPARQL scripts. The UIA then

sends each SPARQL script to its respective DBS. Once the scripts are processed,

the UIA receives a set of SPARQL results from the DBSs and forwards them to

the Report Manager. Note that the UIA must receive SPARQL query results from

all the DBSs. The Report Manager aggregates the set of SPARQL results into one

resultset. This scenario is illustrated in Figure 4.10.

2. The reference ontology in the UIE is now a union of n reference ontologies, where

n is the number of DBSs. The Ontology Manger updates the reference ontology

whenever the reference ontology in the DBS is changed. The modified US is illus

trated in Figure 4.11.

CHAPTER 4. THE ARCHITECTURAL MODEL 67

WAN User
User Interface Environment

(U1E)

User Subsystem (US)

User Interface
Agent (UIA)

Database Subsystem (DBS) t

Database interface
Agent (DBIA)

Database Interface Environment
(DBIE)

RDB
System

RDB
System

Database Subsystem (DBS)

Database Interface Environment
(DBIE)

Database Interface
Agent (DBIA)

DBA

-9-
j DEO

A
Figure 4.10: Single User Subsystem attached to multiple Database Subsystems

CHAPTER 4. THE ARCHITECTURAL MODEL 68

! is»r Sufc-iysi-wn •:US}

5 ; ' U'fUV: ' : ^ !

Aij-.rt UiA;

U'^r

Comfnunj~~:-!cr Serv ;:s.
Oc*n^vi \ .

Report Manager

SPARQL
Generator

Reference
Ontology,

Reference
Ontology „

Ontology Manager

Figure 4.11: Customized User Subsystem for multiple Database Subsystems

4.2.5 Multiple User Subsystems to multiple Database Subsys

tems

In this version of the system architecture, several users access the US, which is attached

to more than one DBSs. It is a combination of the scenarios discussed in Subsection

4.2.2 and Subsection 4.2.4. Several components in the UIE need to be changed in order

to accommodate the multiplicity of both subsystems. The User Interface is customized

for each user. The Report Manager maintains each user's history of preferences of report

formats. The Ontology Manger maintains a custom ontology for each user. The reference

ontology is a union of n number of ontologies, where n is the number of DBSs.

CHAPTER 4. THE ARCHITECTURAL MODEL 69

4.3 Agent roles

This section provides the specific roles performed by the UIA and the DBIA in SRGS.

User Interface Agent

1. Assistance in SNL dialogue

The UIA assists the user in formulating requests for information and developing a

custom ontology. The user interacts with the system using SNL statements. The

SNL processor generates an intermediate representation from these statements in

three steps. In each step, the SNL processor may produce a warning or an error

when the statements are formulated incorrectly. If the SNL processor produces a

warning, the UIA perceives this warning and reconciles with the SNL Processor

to resolve any arising issues in the statements. If the SNL processor produces an

error, the UIA engages with the user to correct the error in the statements.

2. Searching the Semantic Web

The agent can search the Semantic Web to look for two things. First, it can search

for language ontologies such as WordNet to look up synonyms and hypernyms of

terms. Second, the agent can search for domain ontologies to include terms that

are acceptable in wider context.

3. Development of custom ontology

The UIA assists the user in developing a custom ontology, which describes the

conceptual framework specific to a the user that can be directly translated to the

reference ontology. In order to keep the custom ontology in consistency with the

reference ontology, the UIA ensures that any update in the reference ontology is also

CHAPTER 4. THE ARCHITECTURAL MODEL 70

reflected in the custom ontology if the update affects any definitions of concepts and

their relationships in the custom ontology. The UIA has the technical knowledge of

the ontology development process. In addition, the UIA refers to publicly available

ontological resources on the Semantic Web.

4. Customizing the behavior of User Interface

While assisting the user with SNL dialog, the UIA can observe if the user is typically

making a certain types of choice, and offer this choice first in its next interaction.

This choice can be an explicit one in which the user specifies certain preferences

or an implicit one in which the agent continuously learns by observing the user's

course of actions.

5. Coordination of reference ontologies

There may be multiple reference ontologies if there are multiple DBSs attached to

the US. The UIA needs to resolve any conflicting situations that may arise due to

the presence of multiple reference ontologies in the US. There can be two terms

that are identical across two different ontologies but they may have completely dif

ferent meaning in their respective contexts. While developing the custom ontology,

the user needs to conveniently see these differences. The UIA disambiguates the

terms that are seemingly identical but have different meaning. The UIA does this

by assigning unique tags to the constructs when they are retrieved from different

reference ontologies.

CHAPTER 4. THE ARCHITECTURAL MODEL 71

Database Interface Agent

1. Assistance in SNL dialogue

The DBIA assists the DBA to interact with the system while developing and main

taining the reference ontology. The DBA interacts with the system using SNL

statements. The SNL processor generates an intermediate representation from

these statements in three steps. In each step, the SNL processor may produce

a warning or an error when the statements are formulated incorrectly. If the SNL

processor produces a warning, the DBIA perceives this warning and reconciles with

the SNL Processor to resolve any arising issues in the statements. If the SNL pro

cessor generates an error, the DBIA engages with the DBIA to rectify the error in

the statements.

2. Searching the Semantic Web

The DBIA can search the Web to look for two things. First, it can search for

language ontologies such as WordNet (Miller, 1995) to lookup synonyms and hy-

pernyms of terms. Second, it can search for domain ontologies to include terms

that are acceptable in wider context.

3. Development of reference ontology

The DBIA interacts with the DBA in developing and maintaining a reference ontol

ogy. The Schema to Base Ontology Mapper component analyzes the RDB schema

and generates a Mapping File, which contains RDF models of the RDB schema.

The Mapping File then serves as a base ontology from which the DBA incremen

tally builds a full reference ontology with the assistance of the agent. The DBIA is

CHAPTER 4. THE ARCHITECTURAL MODEL 72

equipped with the technical knowledge of ontology development process. In addi

tion, it refers to ontological resources on the Semantic Web.

4. Customizing the behavior of User Interface

While assisting the DBA with SNL dialogue, the DBIA can observe if the DBA

is typically making a certain types of choice, and offer this choice first in its next

interaction. This choice can be an explicit one in which the DBA specifies certain

preferences or an implicit one in which the agent continuously learn by observing

the DBAs course of actions.

In a multiagent environment, several instances of the same role can be assigned to

multiple agents. It is also possible to assign several instances of different roles to the

same agent. Some of the roles described above are demonstrated in the use case scenarios

presented in Chapter 5.

4.4 Incorporation of existing system components

The proposed architecture relies on existing software tools that have been developed as

results of research in the Semantic Web and MAS. This subsection presents the main Se

mantic Web and MAS tools that can be used as components in the proposed architecture.

The D2RQ Platform (Bizer and Seaborne, 2004) can provide the functionalities of

the Translator, Schema to Base Ontology Mapper, and Schema Monitor components in

SEGS. Its front-end, the D2R Server, accepts SPARQL queries and presents SPARQL

results (RDB triples). The D2RQ Engine is the core of the platform which provides

the conversion service. It analyzes the structure of the RDB and generates a Mapping

CHAPTER 4 . THE ARCHITECTURAL MODEL 73

File which is RDF representation of the RDB schema. In SRGS, the Mapping File is

considered as the base ontology. The Mapping File is further described in A.l. D2RQ

Engine uses the Mapping File to convert RDB data to RDF triples.

The D2RQ Platform is an on-demand mapping tool, which dynamically translates

RDB data to RDF triples instead of completely transforming an RDB to an RDF triple-

store. If a data value in the database is changed, the D2RQ Platform can instantly

display the new value. However, when a column or a table in the RDB is altered or

dropped it does not display the new value. In other words, the D2RQ Platform fails

to detect any change in the RDB schema. In order to overcome this limitation, I have

added an extension to the D2RQ Platform. The extension enables the D2RQ Engine to

detect any RDB schema change and display the modified values. The extension is further

discussed in Appendix A.2. The three DBS components that provide the functions of

the D2RQ Platform are shown in the dashed box in Figure 4.12.

JADE (Bellifemine et al., 2007) is an agent-oriented middleware that provides domain-

independent infrastructure for developing multiagent systems. JADE complies with the

Foundation for Intelligent Physical Agents (FIPA) specifications and includes a set of

tools that supports debugging and deployment tasks. The agent platform can be dis

tributed across multiple computers and the configuration can be controlled via a remote

Graphical User Interface. The configuration can be changed at run-time by creating new

agents.

CHAPTER 4 . THE ARCHITECTURAL MODEL 74

Database Subsystem (DBS)

Database Interface . • • \
Agent (DBIA) hJ

Database Interface Environment (DBIE)

Communication Service,
Access Control & Security

Natural Language
Lexical Knowledge

Representation
Ontology Manager

Translator

SPARGL to SQL Queries
SQL to SPARGL Results

Schema to Base
Ontology Mapper

RDB
System

SNL Processor

Schema Monitor

User <-
Interface

DBA

DEO

Figure 4.12: The role of D2RQ Platform in the DBS

In order for Jade agents to work with the D2RQ Platform, a glue component is

required. Jena (McBride et al., 2010), a Java based framework for extracting data from

RDF triplestore, can function as an interfacing component between Jade and the D2RQ

Platform. A JADE agent uses Jena's SPARQL capabilities for executing a SPARQL

query on the D2RQ Platform.

Chapter 5

Modeling and Accessing Information

in SRGS

In this chapter, I present three scenarios that illustrate the behavior of the proposed

architecture of the Semantic Report Generation System (SRGS). Each scenario demon

strates a specific behavioral aspect of SRGS. The first scenario shows how the user can

access information stored in the RDB system that underlies SRGS. The other two sce

narios show the activities involved in developing the SRGS ontologies from the schema

of the RDB.

In the scenarios, I personalize the actors and the software agents by giving them

human-like names: the user is called Henry, the User Interface Agent (UIA) is called

Alice, the Database Administrator (DBA) is called Helen, and the Database Interface

Agent (DBIA) is called Adam. For consistency, the human actors' names start with the

letter H, and the agents' names start with A. The remainder of this chapter is organized

as follows: agent oriented ontology development is discussed in Section 5.1; a scenario

75

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 76

on accessing information using SRGS is presented in 5.2; a scenario on developing a

reference ontology from an RDB schema is given in 5.3; and a scenario on developing a

custom ontology, which defines user-specific concepts using constructs from the reference

ontology, is shown in 5.4.

5.1 Ontology development by software agents

In this section, I analyze the roles of the SRGS agents as ontology builders. The notion

of ontology development by software agents is not mentioned in the literature I have

reviewed; it is a novel aspect of this approach. In this approach, the agents interact with

human actors throughout the entire ontology development process. The agents perform

some of the technical tasks and make suggestions, while the human actors make decisions.

This human actor role in ontology development adds a new dimension to the traditional

user and DBA profiles. However, this does not require them to become technical experts

fully specialized in the ontology development process because the agents are responsible

for executing some of the technical tasks.

The SRGS agents must have the requisite knowledge of how to build an ontology in

order to fulfill their role as ontology builders. That knowledge itself is formally repre

sented as an ontology (for the ontology-building knowledge domain), to which we refer

as meta-ontology (note that this usage of the term differs from its established meaning

in the realm of philosophy and metaphysics). The meta-ontological knowledge includes

an understanding of the semantics of general ontological notions, such as class and rela

tionship. The agents rely on their meta-ontology to provide technical guidance to their

human partners in the construction of concrete ontologies for the specific knowledge do

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 77

main to which the relational database belongs.

An ontology language is required to formally define classes, properties and relation

ships in the ontology. The Web Ontology Language (OWL) provides the necessary prim

itives for defining concepts and their relationships. OWL has three sublanguages: OWL

Lite, OWL DL, and OWL Full. OWL Lite, which supports a classification hierarchy and

simple constraints, is intended for building ontology from a thesauri or a taxonomy of

terms; OWL DL provides maximum expressiveness with certain restrictions while retain

ing computational completeness and decidability, which means that all conclusions are

guaranteed to be computable in finite time; OWL Full provides maximum expressiveness

and the syntactic freedom of RDF (for instance, a class can be treated as an instance of

another class) but does not guarantee computational completeness, therefore, a reason

ing software may not be able to support complete reasoning for every feature of OWL

Full (McGuinness and Harmelen, 2004). In this thesis, I use OWL DL as I am more

familiar with it, and it provides all the required primitives to develop SRGS ontologies.

Section 2.4 summarizes the main OWL DL primitives. The scenarios presented in the

next sections are accompanied with relevant OWL statements to illustrate how agents

can use these primitives while building an ontology.

OWL is based on the Open World Assumption (OWA). This assumption states that

information presented in a knowledge base is not complete; therefore, when a statement

cannot be directly proved from the asserted facts and rules of inference, the reasoner

cannot infer that thereby the statement is false. OWA is suitable for information pre

sented on the Web because one cannot assume its completeness. On the other hand, an

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 78

information system of an enterprise or a university is considered complete, and reasoning

within it should be based on the Closed World Assumption (CWA). Within SRGS, the

reasoning involving the information stored in the RDB is based on CWA; therefore, any

statement that is not explicitly provable to be true is considered false. (However, the

SRGS agents use OWA when reasoning about information contained in external knowl

edge sources on the Semantic Web.) Using OWL to develop an ontology from an RDB

schema thus presents a contradiction: OWL uses OWA whereas CWA is more appropri

ate for the RDB. There are suggestions (Tao et al., 2010; Horrocks et al., 2005) towards

resolving this issue, but no standard mechanism has been recommended by the W3C.

There is another contradiction concerning the use of OWL for reasoning within SRGS.

The CWA is often complemented by the Unique Name Assumption (UNA), which states

that names in a knowledgebase are unique and refer to distinct instances. OWL does not

make UNA since there can be different names denoting the same instance. However, it

provides several mechanisms to address the issue of non-uniqueness. The common solu

tion is to explicitly state using the "owl:sameAs" primitive that two Uniform Resource

Identifier (URI) references refer to the same instance. The uniqueness of the two URI

references satisfies UNA in an ontology.

In SRGS, there can be multiple names describing the same instance of a given concept.

Among them, a primary name is designated by the human actor as the official name of

the concept instance in the reference ontology; each concept instance derived from the

RDB schema also has a base name, which may or may not be the same as the primary

name. All possible names of the same concept instance are semantically linked to its pri

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 79

mary name. The system tolerates the usage of the other possible names by human actors,

but the agents refer to the primary name when reasoning and interacting with the human

actors. One drawback of OWL when it comes to implementing such a naming convention

is that it does not provide a mechanism to establish a primary name in the ontology. As

OWL continues to mature I believe this is one aspect where further research can be done.

In order to realize the proposed naming convention for SRGS, the following mech

anism is adopted. When defining the name of a concept instance in the ontology the

SRGS agents append to the name a leading tag followed by a period (.) which works as

a separator between the tag and the name. The tags "bn", "pn", and "un" are used for

each base name, primary name, and user-specific name respectively. The leading tag al

lows the SRGS agents to identify the type of the name of a concept instance. The agents

remove the tag from a name before displaying it to the human actors. OWL also does

not support blank space in names. In SRGS, the agents insert a hyphen (-) to replace

any blank space appearing in names entered by the user or retrieved from external lexical

dictionaries. The agents remove the hyphen (-) from a name and insert a blank space

when displaying the name to the user.

In this thesis, I use OWL for illustrative purposes only, and ignore its limitations dis

cussed above. OWL was conceived with the goal of building ontologies for the Semantic

Web. Due to its lack of CWA and UNA, OWL may not be the ideal choice for modeling

ontology developed from an RDB schema. OntoDLP (Ricca et al., 2009), which is based

on Answer Set Programming, is more suitable for representing an RDB schema as on

tology since it complies with both CWA and UNA. I choose OWL as it is the commonly

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 80

known standard ontology language for the Semantic Web. The research question of find

ing or developing an ontology language that is best suited to the requirements of SRGS

is beyond the scope of this thesis.

In SRGS, agents reason with their own meta-ontologies, ontologies developed within

SRGS, and public ontologies on the Semantic Web. The agents adopt the CWA when

reasoning with ontologies that are within the boundary of SRGS, and the OWA when

reasoning with ontological constructs imported from external knowledge resources. A

detailed description on reasoning from imported ontological constructs is given in Ricca

et al. (2009).

The SRGS agents are also equipped with the know-how of specific steps involved in

the ontology construction. In the scenarios that follow, the methodological steps in devel

oping ontology (discussed in Subsection 2.3.2) have been adapted for SRGS. The human

partners make decisions and also need a good understanding of the ontology building

process, but owing to the agent guidance need not have the level of expertise of specialist

ontology developers.

In SRGS, an agent in interaction with a human partner builds a reference ontology

from an RDB schema. In this process, the D2RQ Platform analyzes the RDB schema and

generates a Mapping File, which contains serialized RDF models of the RDB schema.

It is written in the D2RQ mapping language — a declarative language for describing

the relation between an ontology and an RDB schema. The Mapping File serves as a

base ontology from which the agent, in interaction with the human partner incrementally

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 81

builds a full reference ontology following the adapted know-how of ontology development

steps.

The agent has the capability to understand the syntax of the Mapping File. It ex

tracts the names of classes and properties from the Mapping File, and uses them to define

the corresponding base classes and properties in the reference ontology. It then interacts

with the human partner to extend the ontology with more general classes, and to intro

duce the properties with meaningful names. The agent also extracts from the Mapping

File the relations between classes, and with the help of the human partner defines the

corresponding class-relations in the reference ontology. Every concept in the reference

ontology must ultimately be reducible to the concepts of the base ontology; otherwise,

high-level queries using reference ontology may not be translatable to SQL queries. The

Mapping File is further elaborated in Appendix A.l

A custom ontology is developed using relevant constructs from the reference ontology.

In this process, another agent assists the user to introduce user-specific concepts in the

custom ontology.

5.2 Scenario 1: Accessing information in SRGS

This scenario shows how the user (Henry) can request for information stored in the RDB

through the User Subsystem (US). The starting assumption is that the US has a copy of

the reference ontology, which is consistent with the reference ontology in the DBS. The

US also has a custom ontology, which defines user specific concepts using constructs in

the reference ontology. Both ontologies are used in processing Henry's request.

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 82

Henry formulates a request for report in the Simplified Natural Language (SNL) and

submits it through the User Interface (UI). An example of the SNL request is shown in

Figure 5.1.

Generate list of students that registered for Fall 2011.

Include in the list student ID, first name, last name, date of

Format report using format-k with title: Registered Students;

subtitle: Date: today's date; sort list alphabetically by Last

Figure 5.1: The SNL request for report

Some assumptions are made about the SNL request. There are three categories of

words in the request. The first category consists of control structure of the language based

on simplified English; the second category consists of commands that specify invocation

of actions by system components; and the third category comprises the words that have

technical meaning in the custom and reference ontologies. In all three categories user has

the flexibility of defining custom terms. In this scenario, we only consider the translation

of custom ontology terms. A request has three statements. The first statement tells what

information is to be retrieved; the second statement gives additional details as to what

specific information is to be included in the report; and the third statement describes

how the information is to be formatted.

The SNL Processor generates an intermediate representation of the request in three

steps. In the first step, it performs lexical analysis in which it breaks the SNL text into

small pieces called tokens, which are atomic units of the request, such as words and sym

bols. In the second step, the SNL Processor performs syntactic analysis to ensure that

birth, CGPA.

Name.

CHAPTER 5, MODELING AND ACCESSING INFORMATION IN SRGS 83

the grammar of the SNL text is correct. In the third step, it does semantic analysis to

verify the semantic correctness of the statements according to the custom and reference

ontologies. During this step, it recognizes the actions and verifies whether all parameters

that are needed for these actions are present. It also creates intermediate representation

where every ontological term is brought to the base name.

In each of these three steps, the SNL processor may produce a warning or an error.

For example, in lexical analysis, the SNL processor searches the custom and reference

ontology to determine whether a word has a technical meaning if it is found in the on

tologies. A word may be found to have both general meaning in the SNL Processor's

vocabulary, as well as technical meaning according to the ontologies. The SNL Processor

flags this word as a warning. The User Interface Agent (Alice) perceives this warning and

reconciles with the SNL Processor. In such case, the technical meaning takes precedence

over the general meaning. For example, the words First and Name both have general

meaning in English, but together First Name is found as a property of the class Student

in the reference ontology, therefore, First Name has a technical meaning. Alice does not

display this warning to Henry. She instructs the SNL Processor to accept First Name as

a technical term instead of general words.

The SNL processor also flags an error when a word has neither general nor technical

meaning. Alice perceives such error messages and analyzes them by consulting a lexical

dictionary. Using the word in the error message, Alice searches the lexical dictionary

for matching words and displays them to Henry with an explanation that a word in the

request does not have any general or technical meaning. Henry selects the proper word

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 84

and Alice passes the word to the SNL Processor.

For the request in Figure 5.1, the SNL Processor finds matching constructs for each

word except registered. It produces the following error message: 'registered' not found in

the ontology. Alice perceives this error message and using the word registered searches

the lexical dictionary for synonyms. Alice compares every found words with the primary

or user-specific names of ontology constructs and if a match is found, asks Henry for

approval. If no match is found, Alice displays the primary and user-specific names of

classes that have the property name StudentID and uses the selected name for further

processing. In this example, Registration is the class name that is presented to Henry by

Alice and approved by Henry.

The SNL Processor checks whether each technical word is a base name in the refer

ence ontology. Otherwise, it retrieves the corresponding base name from the reference

ontology and substitutes the technical word with the corresponding base name in the

generated intermediate representation. For instance, the SNL Processor finds DOB is

the base name for Date of Birth in the reference ontology, hence it replaces Date of Birth

with DOB in the intermediate representation. It also determines what type of construct

(i.e. class, property, etc.) a technical word is in the ontologies and marks the word with

its construct type. This later helps the SPARQL Generator in constructing the SPARQL

script.

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 85

The SNL Processor processes its own command words such as Generate, Include,

and Format, as well as the parameters that are associated with these commands. Af

ter processing these commands, the SNL Processor forwards the first two statements to

SPARQL Generator and the third statement to Report Manager. The first statement

specifies the criteria for extracting information from the database, and the second state

ment gives additional details as to what specific information is to be included in the

report. The SPARQL Generator uses these two statements to construct the SPARQL

script. The third statement states in which way the extracted information has to be

formatted. The Report manager uses the third statement in formatting the extracted

information as report.

The SPARQL Generator distinguishes the technical words in the first statement into

two categories: basic-technical-words set with words appearing before the keyword that

and conditional-technical-words set with words that follow. This distinction later helps

the generator in constructing the script.

The SPARQL Generator constructs a SPARQL script from the commands and pa

rameters received from the SNL Processor. The script may be created with more than one

SPARQL queries. In this scenario, I show one SPARQL query. A SPARQL query is made

up of three components: PREFIX declaration, SELECT clause, and WHERE clause. The

generator gets the base URI base="http://localhost:2020/vocab/resource/" from

the reference ontology header and includes in the query as a PREFIX. In the prefix

declaration, it replaces the equals symbol (=) with a colon (:), and the quotes with an

opening (<) and closing (>) tag.

http://localhost:2020/vocab/resource/

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 86

It then constructs the body of the query consisting of a SELECT clause and a WHERE

clause. The SELECT clause identifies the variables to appear in the query results. In the

SELECT clause, variables are taken from the technical words appearing in the second

statement of the SNL request. The generator appends a leading "?" symbol to each base

name to make it a variable. In the example SPARQL query shown in Figure 5.2, the

variables in the SELECT clause are ?StudentID, ?FirstName, ?LastName, ?DOB, and

?CGPA.

In the WHERE clause, a number of triple patterns are constructed. A triple pattern

consists of a subject, a predicate, and an object. The subject is a variable created by

appending the "?" symbol to the class name from the basic-technical-words set. The pred

icate is a technical word written in the URI format (PREFIX :Class_Property), which

is constructed in the following two steps: First, The SPARQL Generator concatenates a

class name and a property name with an underscore symbol (_) in between them. The

class name comes from the basic-technical-words set and the property name comes from

the SELECT clause. Second, it concatenates the prefix (base) and the previously cre

ated segment (Class_Property) with a colon symbol (:) in between them. The object

variable is constructed using the property name. Following this method the generator

constructs a triple pattern for each variable appearing in the SELECT clause.

The generator then constructs a triple pattern for each property name from conditional-

technical-words set. This time it uses the words from the conditional-technical-words set

to create the variables. These two groups of triple patterns are then linked with a third

triple pattern whose predicate has the property StudentID, which is a common prop

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 87

erty between the class in the basic-technical-words set and the class in the conditional-

technical-words set. The SPARQL script in Figure 5.2 is constructed from the example

SNL request. Once the SPARQL script is constructed, the Communication Service, Ac

cess Control k. Security (CSACS) sends it to the destination DBS.

PREFIX base: <http://localhost:2020/base/resource/>

SELECT 'StudentID ?FirstName ?LastName ?D0B? ?CGPA

WHERE {

'student a vocab:Student.

?registration a vocab:Registration.

?student base:Student_StudentID ?studentID.

?student base:Student_FirstName ?FirstName.

?student base:Student_LastName ?LastName.

?student base:Student_D0B ?D0B.

?student base:Student_CGPA ?CGPA.

?registration base:Registration_StudentID ?student.

?registration base:Registration_Semester "Fall".

?registration base:Registration_Year "2011".

>

Figure 5.2: The SPARQL script

The CSACS in the DBS receives the SPARQL script. By verifying credentials of the

sender, it ensures that no unauthorized access occurs to the RDB system. It then passes

the SPARQL script to the Translator component, which decomposes the script into one

or more SPARQL queries. The D2RQ Engine within the Translator generates equivalent

SQL queries by rewriting the SPARQL queries to RDB-specifie SQL queries. The SQL

query shown in Figure 5.3 is generated from the SPARQL query in Figure 5.2.

http://localhost:2020/base/resource/

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 88

SELECT Student.StudentID, Student.FirstName,

Student.LastName, Student.DOB, Student.CGPA

FROM Student, Registration

WHERE Student.StudentID = Registration.StudentID

AND Registration.Semester = 'Fall'

AND Registration.Year = '2009'

Figure 5.3: The SQL query

D2RQ query engine executes the SQL queries on the RDB system and retrieves SQL

results. The Translator then converts the retrieved results from SQL format to SPARQL

format. Note that the SQL results and the SPARQL results are the same specific infor

mation retrieved from the database. For compatibility reason the Translator converts the

retrieved results from SQL to SPARQL format. Once the SPARQL results are generated,

the CSACS sends them to the US. A subset of the generated SPARQL results is shown

in Figure 5.4.

StudentID FirstName LastName DOB CGPA

98988 Shen Ming 1988-12-22 3.25

44553 Phill Cody 1990-05-10 3.7

98765 Emily Brandt 1978-10-29 2.85

70665 Jie Zhang 1990-08-26 3.4

76543 Lisa Brown 1992-06-01 3.7

19991 Shankar Pat el 1986-02-17 3.65

70557 Amanda Snow 1989-01-17 3.1

76653 Tom Anderson 1984-03-20 3.5

Figure 5.4: The SPARQL results

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 89

The Report Manager in the US receives the SPARQL results from the DBS. It then

formats the results according to the formatting instructions provided in the request by

Henry. It adds the report title Registered Students and the subtitle Date for the report

generation date. A user selected template (format-k) is used for displaying the report. It

also sorts the SPARQL results alphabetically by LastName. The Report Manager refers

to the Ontology Manager to replace any base name with its primary name or uscr-specific

name. It then displays the formatted report to Henry. The report generated from the

SPARQL results is shown in Figure 5.5.

Registered Students
Date: September 15, 2011

Student ID First Name LastName Date Of Birth C6PA
76653 Tom Anderson 1984-03-20 3.5

98765 Emily Brandt 1978-10-29 2.85

76543 Lisa Brown 1992-06-01 3.7

44553 Phill Cody 1990-05-10 3.7

98988 Shen Ming 1988-12-22 3.25

19991 Shankar Patel 1986-02-17 3.65

70557 Amanda Snow 1989-01-17 3.1

70665 Jie Zhang 1990-08-26 3.4

Figure 5.5: The formatted report

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 90

5.3 Scenario 2: Developing reference ontology

This scenario presents the specific steps involved, and the interactions that occur be

tween the Database Interface Agent (Adam) and the Database Administrator (Helen),

in developing a reference ontology from an RDB schema. The steps are presented in

the following order: determining ontology domain and scope, defining classes and class

hierarchies, defining properties of classes, and defining relations between classes.

The construction of the reference ontology begins with determining its domain name

that accurately reflects its scope. Adam extracts the name of the database from the

Mapping File and displays to Helen, asking whether it represents the domain of the ap

plication. Helen approves either by accepting the displayed name or entering a different

name. Adam then defines the approved name as the domain of the reference ontology.

In general there can be several relevant names to describe the ontology domain, but in

this case we show one.

Once the ontology domain name has been established, Adam uses it to search for

publicly available ontologies in the same domain on the Semantic Web. For example,

if the application domain is university, Adam searches for university ontology on the

Semantic Web. With Helen's approval Adam may include the URI reference link to such

an ontology in the reference ontology header. This allows the agent to later selectively

import certain constructs from the external university ontology with Helen's approval.

Similarly, Helen can specify other relevant domain for which external knowledge bases

may be helpful; for instance, importing an external ontology of calendar structures or

time zones may be preferable to developing one's own. In the context of developed Se

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 91

mantic Web, review of external ontologies can play a significant role in constructing one's

own reference ontology. In the current scenario this process is illustrated only through

the use of the external ontology of the English language (such as WordNet (Miller, 1995)).

Once the domain is determined, Adam asks Helen to provide any general comments

about the ontology being developed and includes them in the reference ontology. Adam

also extracts the prefix statements from the Mapping File (Figure 5.6a) and defines them

as Extensible Markup Language (XML) namespaces above the reference ontology header

(Figure 5.6b). Using the prefix vocab: <http://localhost :2020/vocab/resource/

>, Adam defines the base namespace xmlns:base = "http://localhost:2020/vocab/

resource/", which provides a means to unambiguously identify constructs in the refer

ence ontology from constructs in an imported ontology (which come with their own base

namespace prefix). The remaining namespace definitions enable writing names in shorter

forms, such as rdf instead of http://www.w3.org/1999/02/22-rdf-syntax-ns#.

The class names and their synonyms are defined next. The set of class names is

formed in two steps: first, the names of base classes are extracted from the base ontology

represented by the Mapping File; second, the names of higher level classes are intro

duced in interaction between Adam and Helen. In the first step, Adam extracts base

class definition entries, such as map: Student a d2rq: ClassMap;, from the Mapping File

and defines corresponding classes in the reference ontology. Since the base class names

are RDB table names, they may not always be sufficiently descriptive for user level com

munication. Therefore, Adam presents each base class to Helen, who can respond in

three ways. First, she may decide that the base class name can adequately serve as the

http://www.w3.org/1999/02/22-rdf-syntax-ns%23

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 92

<rdf:RDF

©prefix vocab: <http://localhost:2020/vocab/resource/>.

©prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

©prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

©prefix xsd: <http://www.w3.Org/2001/XMLSchema#>.

xmlns:base » "http://localhost:2020/vocab/resource/M

xmlns:rdf » "http://www.w3.Org/1999/02/22-rdf-syntax-ns#"

xmlas:rdfs • "http://www.w3.Org/2000/01/rdf-schema#"

xmlns:xsd = "http://www.w3.Org/2001/XMLSchema#"

<owl:Ontology rdf:about«"UniversityH>

<rdfs:comment>

map:database a d2rq:Database;

d2rq:jdbcDriver "com.mysql.jdbc.Driver";

d2rq:jdbcDSN "jdbc:mysql://localhost/University";

Reference ontology developed from

the university RDB schema

</rdfs:comment>

<©vl:versiocInfo> VI.1 2011/09/15 </owl:versionInfo>

<owl:imports rdf:resource*""/>

<rdfs:label> University Ontology </rdfs:label>

</owl:0ntology>

(a) D2RQ Mapping (b) OWL

Figure 5.6: (a) Prefix and RDB details in Mapping File (b) XML namespaces and
ontology header in reference ontology

primary class name and approve it as such; second, Helen may provide an alternative

primary name and approve it immediately; third, Helen may provide a tentative choice of

primary name, asking Adam to conduct an external synonym search, and decide which

primary name to approve after reviewing the synonym choices. (At this point Helen

does not have the option of introducing other synonyms for the class name, even though

class name synonyms in the reference ontology are allowed their use is restricted to the

maintenance of backward compatibility between ontology versions.) Figure 5.7 illustrates

the definition of the class Department in (a) the Mapping File and in (b) the reference

ontology.

http://localhost:2020/vocab/resource/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.Org/2001/XMLSchema%23
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23
http://www.w3.Org/2000/01/rdf-schema%23
http://www.w3.Org/2001/XMLSchema%23

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 93

map:Department a d2rq:ClassMap; <owl:Class rdf:ID="bn.Department"/>

(a) D2RQ Mapping (b) OWL

Figure 5.7: Class definition in: (a) Mapping File and (b) reference ontology

Once the base classes are defined, Adam and Helen define the more general classes.

The superclasses can be defined in four ways. First, Helen identifies several existing

classes that can be generalized into a new superclass; she provides the primary name

for the superclass and Adam creates it. Second, Helen identifies the existing classes and

provides a tentative primary name for the superclass; Adam then searches for synonyms

of that name in external lexical ontologies, and Helen approves the new class names after

reviewing the choices. Third, Helen identifies the existing classes and asks Adam to sug

gest possible superclass names; Adam searches for hypernyms of each existing class name

and reports to Helen the intersection of the hypernym sets resulting from the searches;

Helen then approves the primary name of the new superclass after reviewing the choices.

Fourth, Adam finds the hypernym set of each existing class, forms all possible inter

sections, and reports to Helen each nonempty intersection; in each case, Helen decides

whether a new superclass is needed and, if so, approves its primary name after reviewing

the choices.

For example, for the classes Student and Faculty Member Adam finds the common

hypernym Person and creates a new class Person as well as subclass relationships between

Student and Person, and between Faculty Member and Person with Helen's approval.

The OWL definition of the hierarchical relationship between Student and Person is shown

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 94

in Figure 5.8.

<owl:Class rdf:ID="Person">

<owl:Class rdf:ID="pn.Student">

<rdfs:subClassOf>

<owl:Class rdf:ID="#Person"/>

</rdfs:subClassOf>

</owl:Class>

Figure 5.8: Subclass definition in reference ontology

The properties of the base classes are defined next. Property definition starts from the

base classes and proceeds to their superclasses. For each base class defined, Adam extracts

the property definition entries, such as map: Student_FirstName a d2rq: PropertyBridge;,

from the Mapping File and defines corresponding base properties of their respective base

class. Since the base property names are RDB column names, they may not always be

sufficiently descriptive for user level communication. Therefore, Adam presents each base

property name to Helen, who can respond in the same three possible ways as described

in the case of defining base class names, and the rest of the process is the same. The

Mapping File fragment for the properties FirstName, LastName, and DOB is shown in

Figure 5.9a; and the OWL definitions of these properties and a meaningful name for

DOB is shown in Figure 5.9b.

Once the properties of the base classes are defined, Adam and Helen next define the

properties of the superclasses. The properties of the superclasses can be defined in two

ways. First, Adam conducts a property name comparison to see if there are identical

property names among all the subclasses of each superclass, and if there are identical

property names He takes the primary names of these properties and defines them as prop-

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 95

map:Student_FirstName a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Student;

d2rq:property vocab:Student.FirstName;

d2rq:propertyDefinitionLabel "Student FirstName";

d2rq:column "Student.FirstName";

map:Student.LastName a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Student;

d2rq:property vocab:Student.LastName;

d2rq:propertyDefinitionLabel "Student LastName";

d2rq:column "Student.LastName";

map:Student_DOB a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Student;

d2rq:property vocab:Student.DQB;

d2rq:propertyDefinitionLabel "Student DOB";

d2rq:column "Student.DOB";

(a) D2R.Q Mapping

<owl:DatatypeProperty rdf:ID="bn.FirstName">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="bn.LastName">

<rdfs:domain rdf:resource="#Person" />

<rdfs:range rdf:resource*"fcxsd;string"/>

</ovl:DatatypeProperty>

Cowl:DatatypeProperty rdf:ID*"bn.DGB">

<rdfs:domain rdf:resource«"#Person" />

<rdf s:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="pn.Date-Of-Birth">

</owl:sameAs rdf:resource="#bn.DQB"/>

</owl:DatatypeProperty>

(b) OWL

Figure 5.9: Property definition in: (a) Mapping File and (b) reference ontology

erties of the superclass. Second, For each superclass, Adam displays the subclasses along

with their properties, asking Helen to specify if there are properties common among the

base classes. These common properties may have different primary names even though

they refer to the same property of their respective class. Helen may respond in two ways

to resolve this name conflict. She may suggest one of the property name to be defined

as property of the superclass, or she may suggest a new name representing the common

properties. Adam defines the suggested names as properties of the superclass. He then

removes the primary names of the common properties from the subclasses because they

inherit these properties from their superclass. However, the base property names remain

attached to the subclasses. For example, Person is a parent class of both Student and

Faculty Member. The properties FirstName, LastName, and DOB are common between

the subclasses Student and Faculty Member; therefore, the primary names of these prop-

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 96

erties are moved up the hierarchy and defined as properties of the parent class Person.

Finally, the relations between classes are defined. In the Mapping File, a relation

between RDB tables is represented by the word join followed by the base class names

separated by a directed arrow symbol (=>). Adam extracts the base class names appearing

in each relation from the Mapping File and creates a graphical picture showing each pair

of base classes. Adam displays the graphical picture to Helen, asking her to provide a

name for each relation. Adam then defines each relation name as an ObjectProperty with

the corresponding base class names as the domain and range. (This domain, defined in

Section 2.4, differs from domain as an area of knowledge.) For example, Helen provides

the word Offers to describe the relation between Department and Course. The Mapping

File fragment of this relation is shown in Figure 5.10a, and the OWL definition is shown

in Figure 5.10b.

Figure 5.10: Class relation definition in: (a) Mapping File and (b) reference ontology

The synonyms of names are allowed only for the maintenance of backward compat

ibility between ontology version. For example, a new policy in the university requires

Program to be called Department. As a result,, Helen instructs Adam to define a new class

name Department and designate it as the primary name instead of Program. However,

map:Course_DepartmentName a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Course;

d2rq:property vocab:Course_DepartmentName;

d2rq:refersToClassMap map:Department;

d2rq:join "Course.DepartmentName

=> Department.DepartmentName";

<ovl:ObjectProperty rdf:about="Offers">

<rdfs:domain rdf:resource="#pn.Department">

Crdfs:range rdf:resource="#pn.Course">

</owl:ObjectProperty>

(a) D2RQ Mapping (b) OWL

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 97

the name Program may still be referred to by the users; therefore, Helen asks Adam to

define Program as a synonym of the new primary name Department. The OWL definition

of the synonym Program is shown in Figure 5.11.

<owl:Class rdf:ID="Program">

<owlrequivalentClass rdf:resource="#pn.Department"/>

</owl:Class>

Figure 5.11: Class synonym definition in reference ontology

In the next step, Adam creates a graphical representation of the entire reference on

tology and displays to Helen for final approval. A fragment of a university reference

ontology illustrating the examples in this scenario is shown in Figure 5.12. Browsing and

editing of the reference ontology is facilitated with an ontology editor such as Protege.

By looking at the global picture of the reference ontology Helen may approve or suggest

modifications. If Helen approves, Adam completes the construction of the reference on

tology and saves it in the Ontology Manager. Otherwise Helen suggests modifications by

editing the ontology graph. Adam follows relevant steps to apply the suggested modifi

cations and completes the construction of the reference ontology.

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 98

University Ontology

LastName
FifstName

syn~> Family-Name

prop

C^^^uidling

(^"^Budget

Program

prop - -

rop~-»\ DOB / syn >(^Date-Of-Birth^)

Name

syn
V

prop

prop \

•prop\\ Major

^^partroent-Name^^

^^epartmeniT^)

Has

StudentID

Student

CGPA

Enrolls >
Offers

Course

'prop"

CRN ^

Relationships

-is_a- - - • Generalization

—prop • Property

• —ret • Relation

syn • Synonym

Constructs

:*. Class

Property

Relation

c
c.

Primary Class Name

Primary Property Name

Primary Relation Name

Figure 5.12: Reference ontology graph

5.4 Scenario 3: Developing custom ontology

This scenario shows the processes involved, and the interactions that occur between the

user (Henry) and the User Interface Agent (Alice), in developing a custom ontology using

the constructs from the reference ontology.

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 99

Henry formulates a request for report using the Simplified Natural Language (SNL)

and submits it through the User Interface. While processing the request, the SNL Pro

cessor performs lexical, syntactic, and semantic analysis, and recognizes the actions that

need to be performed and invokes those actions in the appropriate system components.

In the case of a query if the request successfully passes through all of the analysis stages,

the SNL Processor forwards the statements specifying what information is to be retrieved

to the SPARQL Generator, and the statements describing how the retrieved information

is to be formatted to the Report Manager.

Assuming that Henry uses a new term called "transfer student" in the request, during

semantic analysis the Ontology Manager cannot find the term in the custom or reference

ontology; therefore, it posts the following error message in the User Interface Environ

ment (UIE): New term "transfer student" does not exist. Upon perceiving this error, Alice

engages in a conversation with Henry to clarify the request. Alice displays the following

message to Henry: The term "transfer student" is not found in the ontologies; Please

define "transfer student". In response, Henry enters the following definition: Transfer

student is a student who has transferred credits from previous institution.

Alice verifies Henry's definition using the ontologies in the next step. Alice extracts

the words from the definition and temporarily stores in a word set of new-term-set. Us

ing the name of each element in new-term-set, Alice searches for matching constructs in

the reference ontology. For "transfer student", assuming Alice finds the class construct

Student and the property construct Transferred Credits and displays them to Henry.

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 100

If Henry approves the displayed constructs, he also specifies any restriction associated

with any of the constructs. In this scenario, Henry approves the class construct Student,

and the property construct Transferred Credits with a restriction that its value cannot

be empty. Alice then defines Transfer Student as a subclass of the class Student and

Transferred Credits as its property with the restriction that it must have a value (of type

number). Note that the class Student is in the reference ontology; Alice uses the Uni

fied Resource Identifier (URI) of Student as a reference link from the custom ontology.

The OWL statements for defining Transfer Student in the custom ontology is shown in

Figure 5.13. Alice replaces the blank space in Transfer Student with a hyphen (-) and

appends the leading tag "un" followed by a period (.) to denote that Transfer Student

is a user-specific name.

If Henry rejects the displayed constructs, Alice asks him to enter a different definition

for "transfer student" and follows identical steps in defining the new term.

Once the new term is defined, Ontology Manager creates a graphical representation

of the custom ontology and Alice displays it to Henry for final approval. By looking at

the global picture of the custom ontology Henry may approve or suggest modifications.

If Henry approves, Alice saves it in the Ontology Manger. Otherwise, he suggests mod

ifications by editing the graphical ontology graph. Alice follows relevant steps to apply

the suggested modifications in the custom ontology.

CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 101

<owl:Class rdf:ID="un.Transfer-Student">

<rdf s:subClassOf>

<owl:Class rdf:ID="#pn.Student"/>

<rdf s:subClassOf >

</owl:Class>

<owl:DatatypeProperty rdf:ID="pn.Transferred-Credits">

<rdfs:domain rdf:resource="un.Transfer-Student" />

<rdfs:range

rdf:resource="&xsd;number"/>

</owl:DatatypeProperty>

<owl:Restriction>

<owl:onProperty rdf:resource="#pn.Transferred-Credits" />

<owl:hasValue rdf:datatype="&xsd;number" />

</owl:Restriction>

Figure 5.13: Definition of transfer student in custom ontology

In this chapter, I have presented a number of scenarios to demonstrate the behavioral

aspects of SRGS. The scenarios have been developed to show how the architecture of

SRGS supports the activities involved in accessing information stored in the RDB system

and developing ontologies from the RDB schema. In the next chapter, I analyze my work

with regards to the main objectives of this thesis.

Chapter 6

Analysis and Evaluation

The main objective of this thesis has been the definition of a system architecture, Seman

tic Report Generation System (SRGS), that allows developing ontologies from a legacy

RDB schema, and accessing information stored in the legacy RDB system. In this chap

ter, I analyze and evaluate the proposed architecture with respect to these objectives.

The definition of the architectural model presented in chapter 4 begins with a set of

system requirements represented as use case diagrams. The system requirements have

been carefully developed to guide me in abstracting the aspects of the system that are

relevant to my study topic. The basic configuration of the architecture includes a User

Subsystem (US) and a Database Subsystem (DBS), each comprised of a software agent

and an environment. The software agents assist their human partners in building on

tologies and accessing information stored in an RDB system. The environments contain

system components designed to provide the functionalities stipulated in the system re

quirements. The US and the DBS can reside on different machines and communicate

through a network.

102

CHAPTER 6. ANALYSIS AND EVALUATION 103

The basic architecture of SRGS is complete, yet scalable in several aspects. Multiple

USs can interact with a single DBS, and multiple DBSs can be attached to a single US. In

the US, more instances of the software agent can be created in the event of multiple users

accessing the system simultaneously. The presence of multiple agents allows customized

assistance for each user's unique requirements in terms of user system interaction and

system behavior.

SRGS allows development of ontologies from an RDB structure. In the DBS, the con

struction of a reference ontology begins with a rudimentary version of reference ontology

generated through automatic conversion of the RDB structure to a Semantic Web struc

ture. The converted structure then serves as a starting point from which the Database

Interface Agent (DBIA) in interaction with the Database Administrator (DBA) incre

mentally develops a full reference ontology. In the US, the User Interface Agent (UIA)

assists the user in developing a custom ontology, which defines user-specific concepts

using constructs from the reference ontology. Thus, SRGS features a novel approach in

which software agents assist human partners in developing ontologies.

The agents are equipped with the requisite knowledge of how to build an ontology

which includes an understanding of the semantics of general ontological notions, such as

class and relationship. In addition, the agents refer to external knowledge resources pub

licly available on the Semantic Web. The human partners only make decisions and need

a good understanding of the ontology building process but owing to the agent assistance

need not to have the level of expertise of specialist ontology developers.

CHAPTER 6. ANALYSIS AND EVALUATION 104

The quality of ontologies developed in SRGS depends on two main factors. Though

the human partners are not required to become technical experts fully specialized in the

ontology development process, their level of understanding of the ontology development

process can influence the quality of ontologies to a certain degree. Unintended and acci

dental errors committed by human partners can be identified and resolved by the agents.

However, poor decisions owing to lack of understanding of the ontology development

process may result in misrepresentation of knowledge.

The other factor influencing ontology quality is the availability of knowledge resources

on the Semantic Web. The agents rely on external knowledge resources, such as lexical

dictionaries and libraries of ontologies, on the Semantic Web. The Semantic Web is in its

early stage of development, as such these knowledge resources are yet to be realized at

large scale. The more such resources are available for agents to exploit the more refined

and comprehensive ontologies can be developed.

In Chapter 5, I introduce three scenarios to illustrate the main behavioral aspects of

SRGS. The first scenario illustrates how the user of SRGS can access information stored

in an RDB using a Simplified Natural Language; the second scenario shows the interac

tions between the DBIA and the DBA, and the activities that occur within the DBS in

the process of developing a reference ontology; and the third scenario demonstrates how

the user can complement the reference ontology by introducing user-specific concepts in

a custom ontology.

CHAPTER 6. ANALYSIS AND EVALUATION 105

The above analysis suggests that it is possible to combine Semantic Web technologies

and MAS approach to create a system architecture for accessing information stored in the

RDB system without relying on human intermediaries, and for developing ontologies from

an RDB schema. However, these observations remain to be further confirmed through

studies involving implementation and experimentation of SRGS.

Chapter 7

Conclusions and Future Work

This thesis proposes and investigates a novel approach to modeling and accessing infor

mation stored in legacy RDB systems. The preliminary research has included a review

of literature in several areas: legacy RDB systems and their use in decision support; the

Semantic Web project and its presently available technology; converting relational data

to Semantic Web structures; and multiagent systems (MAS). Those preliminary studies

led to several observations. The first observation was that the increasing demands in

decision support systems that rely on legacy RDB systems compelled researches to look

for more effective techniques that meet modern requirements.

The second observation from the study of the Semantic Web was that information

stored in legacy RDB systems can be represented using Semantic Web structures and

searched by semantic queries in the SPARQL language; moreover, this can be done on

demand, without any modifications of the RDB itself; however high-level semantic in

teractions between the user and the system require a domain knowledge ontology that

is more developed than the rudimentary ontology represented by the RDB schema. The

106

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 107

third observation was that MAS technology holds the promise of development of in

telligent decision support systems, with software agents that understand the nature of

decision processes; however, this requires that the knowledge underlying the decisions be

formally represented as an ontology. The final observation was that the agents themselves

can be equipped with a meta-ontology and assist the human partner in the building of

domain ontology, which in turn will enable both semantic queries and agent reasoning.

These observations have led to the main line of research in this thesis, namely the defini

tion of an architectural model of the Semantic Report Generation System (SRGS) that

combines Semantic Web and MAS technologies.

The first step towards defining the architectural model was to formulate a set of sys

tem requirements in the form of use cases. These use cases then led to the preliminary

definition of the global architecture of SRGS. At the high level, SRGS is comprised of

client User Subsystems (US) and server Database Subsystems (DBS). A US consists of a

User Interface Environment and a User Interface Agent (UIA). It facilitates user access,

processing of users' requests for information, and developing and maintaining custom

ontologies. The DBS consists of a Database Interface Environment, a Database Interface

Agent (DBIA), and the legacy RDB system. It facilitates developing and maintaining a

reference ontology, and retrieving information from the RDB system. The US and DBS

can reside on different machines and communicate through a network. Multiple users

can simultaneously access the US which can interact with multiple DBSs. Multiple USs

can interact with a single or multiple DBSs.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 108

The behavioral aspects of the architecture were then demonstrated through the devel

opment of three characteristics scenarios. One scenario shows how the user can directly

access information stored in an RDB system through a semantic query, without requiring

technical assistance of database programmers and report writers. The other two scenar

ios illustrate the intelligent assistance of software agents and the specific tasks executed

by system components in developing ontologies from the RDB schema.

The analysis of the scenarios suggests that SRGS has met the objective of defining a

system architecture that capitalizes on Semantic Web and MAS technologies to create a

layer of Semantic Web structures on top of a legacy RDB system in order to facilitate

access to information stored in the underlying RDB system. This has been achieved

through an innovative combination of Semantic Web and MAS technologies in which

agents assist in ontology development.

The next step in the current line of research concerns the possibility of implementing

an SRGS prototype that can be used for practical verification of the presented architec

ture. There are several other issues that can be further researched in order to advance

the proposed approach. The software agents can be trained to be able to make more

independent decisions and further reduce human involvement in the development of on

tologies. The specific steps involved in ontology mediation with regard to importing

constructs from external ontologies need to be further studied and elaborated.

Bibliography

S. Ambler. Agile Database Techniques: Effective Strategies for the Agile Software Devel

oper. John Wiley & Sons, Inc., New York, NY, USA, 2003.

T. Baker, T. Heath, N. Noy, R. Swick, and I. Herman. Semantic Web Case Studies and

Use Cases, 2009. Retrieved June 18, 2011 from http://www.w3.org/2001/sw/sweo/

public/UseCases/.

F. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent Systems with JADE.

John Wiley h Sons, Inc., Wiltshire, UK, 2007.

T. Berners-Lee. Semantic Web Road Map. W3C Design Issues Architectural and

Philosophical Points, 1998a. Retrieved May 03, 2010 from http://www.w3.org/

Designlssues/Semantic.html.

T. Berners-Lee. Relational Databases on the Semantic Web. WSC Design Issues, 1998b.

URL http://www.w3.org/Designlssues/RDB-RDF.html.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web: A new form of Web

content that is meaningful to computers will unleash a revolution of new possibilities.

Scientific American, 285(5) :28—37, 2001.

109

http://www.w3.org/Designlssues/RDB-RDF.html

BIBLIOGRAPHY 110

C. Bizer. The Emerging Web of Linked Data. IEEE Intelligent Systems, 24:87-92, 2009.

C. Bizer and R. Cyganiak. D2RQ - Lessons Learned. Position paper for the W3C

Workshop on RDF Access to Relational Databases, Cambridge, USA, 2007.

C. Bizer and A. Seaborne. D2RQ-Treating non-RDF Databases as Virtual RDF Graphs.

In Proceedings of the 3rd International Semantic Web Conference (ISWC2004), Hi

roshima, Japan, 2004.

C. Bizer, R. Cyganiak, S. Auer, G. Kobilarov, and J. Lehmann. DBpedia - Querying

Wikipedia like a Database. In Developers Track at 16th International World Wide

Web Conference (WWW2007), Banff, Canada, 2007.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.

DBpedia - A crystallization point for the Web of Data. Web Semantics: Science,

Services and Agents on the World Wide Web, 7(3):154-165, September 2009.

R.H. Bordini, M. Wooldridge, and J.F. Hiibner. Programming Multi-Agent Systems in

AgentSpeak using Jason. John Wiley & Sons, 2007.

J.M. Bradshaw, P. Feltovich, and J. Matthew. Human-Agent Interaction. In Guy Boy,

editor, Handbook of Human-Machine Interaction, pages 283 - 302. Ashgate, 2011.

D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.

Technical report, W3C, 2004. Retrieved October 06, 2010 from http://www.w3.org/

TR/2004/REC-rdf-schema-20040210/.

D. Brickley and L. Miller. Friend of a Friend Vocabulary Specification, 2005. Retrieved

August 28, 2010 from http://xmlns.com/foaf/spec/.

http://xmlns.com/foaf/spec/

BIBLIOGRAPHY 111

J. Broekstra, A. Kampman, and F.V. Harmelen. Sesame: A Generic Architecture for

Storing and Querying RDF and RDF Schema. In Proceedings of the 1st International

Semantic Web Conference, pages 54-68, Sardinia, Italy, 2002.

K. Byrne. Having Triplets - Holding Cultural Data as RDF. In M Larson, K Fernie,

J Oomen, and J Cigarran, editors, Proceedings of the ECDL 2008 Workshop on In

formation Access to Cultural Heritage, volume 1, pages 978-90, Aarhus, Denmark,

2008.

D.D. Chamberlin and R.F. Boyce. SEQUEL: A structured English query language. In

Proceedings of the 1974 ACM SIGFIDET Workshop on Data Description, Access and

Control, pages 249-264, Ann Arbor, Michigan, 1974.

E.F. Codd. A Relational Model of Data for Large Shared Data Banks. Commun. ACM,

13(6):377-387, 1970.

T. Connolly and C. Begg. Database Systems: A Practical Approach to Design, Imple

mentation, and Management. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2001.

X. Cullot, R. Ghawi, and K. Yetongnon. DB20WL : A Tool for Automatic Database-

to-Ontology Mapping. In M. Ceci, D. Malerba, L. Tanca, M. Ceci, D. Malerba, and

L. Tanca, editors, Proceedings of the 15th Italian Symposium on Advanced Database

Systems (SEBD 2007), pages 491-494, Torre Canne, Italy, 2007.

DAML Ontology Library, 2004. Retrieved June 20, 2011 from http://www.daml.org/

ontologies/ontologies.html.

BIBLIOGRAPHY 112
«

H.A.A. ElFadeel and A.A.A. ElFadeel. Kngine, 2008. Retrieved January 10, 2011 from

http://www.kngine.com/.

O. Erling and I. Mikhailov. Mapping Relational Data to RDF in Virtuoso, 2007. Re

trieved September 20, 2010 from http://virtuoso.openlinksw.com/whitepapers/

relational°/020rdf7020views7„20mapping. html.

D Fensel, F.V. Harmelen, I. Horrocks, D.L. McGuinness, and P.F. Patel-Schneider. OIL:

An Ontology Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16(2):

38-45, 2001.

M. Graves, A. Constabaris, and D. Brickley. FOAF : Connecting People on the Semantic

Web. Cataloging and Classification Quarterly, 43(3):191-202, 2007.

A.J.G. Gray, N. Gray, and I. Ounis. Can RDB2RDF Tools Feasibly Expose Large Science

Archives for Data Integration? In Proceedings of the 6th Annual European Semantic

Web Conference (ESWC2009), pages 491-505, Heraklion, Greece, June 2009.

T.R. Gruber. A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2): 199-220, 1993.

M. Horridge, N. Drummond, S Jupp, G. Moulton, and R. Stevens. A Practical Guide

to Building Ontologies Using Protege 4 and CO-ODE Tools. Editioin 1.2, 2009. The

University of Manchester, Manchester, UK.

I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler. Semantic Web Architecture:

Stack or Two Towers? In Proceedings of the 3rd International Workshop on Principles

and Practice of Semantic Web Reasoning, pages 37-41, Dagstuhl Castle, Germany,

2005.

http://www.kngine.com/

BIBLIOGRAPHY 113

IBM. Structured Query Language (SQL), 2006. Retrieved March 22,

2011 from http://publib.boulder.ibm.com/infocenter/db21uw/v9/index.jsp?

topic=/com.ibm.db2.udb.admin.doc/doc/c0004100.htm.

N.R. Jennings and M. Wooldridge. Agent-Oriented Software Engineering. Artificial

Intelligence, 117:277-296, 2000.

G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Seholl. RQL:

A Declarative Query Language for RDF. In Proceedings of the 11th International

Conference on World Wide Web (WWW 02), pages 592-603, New York, NY, USA,

2002.

J. Lind. Issues in Agent-Oriented Software Engineering. In Proceedings of the 1st Inter

national Workshop on Agent-Oriented Software Engineering, pages 45-58, Limerick,

Ireland, 2000.

F. Manola and E. Miller. RDF Primer. Technical report, W3C, 2004. Retrieved May 14,

2010 from http://www.w3.org/TR/rdf-primer/.

B. McBride, D. Boothby, and C. Dollin. An Introduction to RDF and the Jena RDF

API, 2010. Retrieved June 20, 2011 from http://openjena.org/tutorial/RDF_API/

index.html.

J. Mccarthy. Ascribing Mental Qualities to Machines. In M. Ringle, editor, Philosophical

Perspectives in Artificial Intelligence, pages 161-195. Humanities Press, 1979.

D.L. McGuinness and F.V. Harmelen. OWL Web Ontology Language Overview. Techni

cal report, W3C, 2004. Retrieved September 25, 2010 from http://ia.ucpel.tche.

br/~lpalazzo/Aulas/TEWS/arq/OWL-Qverview.pdf.

http://publib.boulder.ibm.com/infocenter/db21uw/v9/index.jsp
http://www.w3.org/TR/rdf-primer/
http://ia.ucpel.tche

BIBLIOGRAPHY 114

G.A. Miller. WordNet: A Lexical Database for English. Communications of the ACM,

38:39-41, 1995.

N. Noy and D.L. McGuinness. Ontology Development 101: A Guide to Creating Your

First Ontology. Technical Report KSL-01-05, Knowledge Systems, AI Laboratory,

Stanford University, 2001.

C.M. Olszak and E. Ziemba. Approach to Building and Implementing Business Intel

ligence Systems. Interdisciplinary Journal of Information, Knowledge, and Manage

ment, 2, 2007.

Ontolingua Server, 2008. Retrieved June 20, 2011 from http://www.ksl.Stanford,

edu/software/ontolingua/.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI Reasoning Engine. In R. Bor-

dini, M. Dastani, J. Dix, and A.E.F. Seghrouchni, editors, Multi-Agent Programming,

pages 149-174. Springer Science & Business Media Inc., 2005.

A. Powell, M. Nilsson, A. Naeve, P. Johnston, and T. Baker. Dublin Core Metadata

Initiative - Abstract Model, 2007. White Paper Retrieved August 31, 2010 from http:

//dublincore.org/documents/abstract-model.

E. Prud'hommeaux and A. Seaborne. SPARQL Query Language for RDF (Working

Draft). Technical report, W3C, 2007. Retrieved August 30, 2010 from http://www.

w3.org/TR/cooluris/.

F. Ricca, L. Gallucci, R. Schindlauer, T. Dell'Armi, G. Grasso, and N. Leone. OntoDLV:

An ASP-based System for Enterprise Ontologies. Journal of Logic and Computation,

19:643-670, 2009.

http://www.ksl.Stanford
http://www

BIBLIOGRAPHY 115

J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference Manual.

Pearson Higher Education, 2nd edition, 2004.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, New

Jersey, USA, second edition, 2003.

S.S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau, Jr., S. Auer, J. Sequeda,

and A. Ezzat. A Survey of Current Approaches for Mapping of Relational Databases

to RDF. 2009. Retrieved July 10, 2010 from http://www.w3.org/2005/Incubator/

rdb2rdf/RDB2RDF_SurveyReport.pdf.

L. Sauermann, R. Cyganiak, D. Ayers, and M. Volkel. Cool URIs for the Semantic Web,

2008. Retrieved April 29, 2010 from http://www.dfki.uni-kl.de/~{}sauermann/

2006/11/cooluris/.

A. Seaborne. RDQL - A Query Language for RDF (Member Submission). Technical re

port, W3C, 2004. Retrieved August 30, 2010 from http://www.w3.org/Submission/

2004/SUBM-RDQL-20040109/.

J.F. Sequeda, S. Tirmizi, and D. Miranker. A Bootstrapping Architecture for Integration

of Relational Databases to the Semantic Web. In Proceedings of the 7th International

Semantic Web Conference (ISWC2008), Karlsruhe, Germany, October 2008.

J.F. Sequeda, R. Depena, and D. Miranker. Ultrawrap: Using SQL Views for RDB2RDF.

In Proceedings of the 8th International Semantic Web Conference (ISWC2009% Wash

ington, DC, USA, 2009.

Y. Shoham. Agent Oriented Programming. Artificial Intelligence, 60:51-92, March 1993.

BIBLIOGRAPHY 116

M. K. Smith, C. Welty, and D.L. Mcguinness. Owl web ontology language guide, 2004.

Retrieved June 27, 2011 from http://www.w3.org/TR/owl-guide/.

I. Sommerville. Software Engineering. Pearson/Addison Wesley, USA, 2004.

D. Steer. SquirrelRDF, 2009. Retrieved September 05, 2010 from http://jena.

sourceforge.net/SquirrelRDF/.

V. Tamma and T.R. Payne. Is a Semantic Web Agent a Knowledge-Savvy Agent? IEEE

Intelligent Systems, 23:82-85, 2008.

J. Tao, E. Sirin, J. Bao, and D.L McGuinness. Integrity constraints in owl. In Proceedings

of the 24th Conference on Artificial Intelligence(AAAI 2010), Atlanta, GA, USA, 2010.

TopQuadrant Inc. TopBraid Composer 2007: Getting Started Guide Version 2.0,

2007. Retrieved June 16, 2011 from http://www.topquadrant.com/docs/marcom/

TBC-Getting-Started-Guide.pdf.

M. Wooldridge. An Introduction to Multiagent Systems. Wiley, Glasgow, UK, 2nd edition,

2009.

M. Wooldridge and N.R. Jennings. Intelligent Agents: Theory and Practice. Knowledge

Engineering Review, 10(2):115—152, 1995.

http://www.w3.org/TR/owl-guide/
http://jena

Appendix A

The D2RQ Platform

The D2RQ Mapping File is explained in A.l, and the proposed extension to the D2RQ

Platform is described in A.2.

A.l The D2RQ Mapping File

The Mapping File contains the RDF representation of an RDB schema. Its file for

mat is W3C standard format Notation 3 (N3), which is a compact alternative to the

RDF syntax, intended for human readability and designed to optimize expression of data

and logic in the same language. The Mapping File can be generated by running the

generate-mapping script available in the D2RQ Platform software package. When this

script is run, the D2RQ Engine analyzes the schema of the database and creates an RDF

representation of the schema. The D2RQ Platform then uses the Mapping File every

time it translates RDB data to RDF triples. An excerpt of the Mapping File generated

from an RDB called university is given below.

117

APPENDIX A. THE D2RQ PLATFORM

©prefix map: <file:/home/rdb2rdf/d2r-server-0.7/university.n3#> .

©prefix vocab: <http://localhost:2020/vocab/resource/> .

©prefix rdf: <http://www.w3.Org/1999/02/22-rdf-syntax-ns#> .

©prefix rdfs: <http://www.w3.Org/2000/01/rdf-schema#> .

©prefix xsd: <http://www.w3.org/200l/XMLSchema#> .

©prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#>

©prefix jdbc: <http://d2rq.org/terms/jdbc/> .

map:database a d2rq:Database;

d2rq:jdbcDriver "com.mysql.jdbc.Driver";

d2rq:jdbcDSN "jdbc:mysql://localhost/university";

d2rq:username "root";

d2rq:password "123456";

jdbc:autoReconnect "true";

jdbc:zeroDateTimeBehavior "convertToNull";

Table Course

map:Course a d2rq:ClassMap;

d2rq:datastorage map:database;

d2rq:uriPattern "Course/@@Course.CRNlurlify©©";

d2rq:class vocab:Course;

d2rq:classDefinitionLabel "Course";

map:Course_CRN a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Course;

d2rq:property vocab:Course_CRN;

d2rq:propertyDefinitionLabel "Course CRN";

d2rq:column "Course.CRN";

map:Course_Title a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Course;

d2rq:property vocab:Course_Title;

d2rq:propertyDefinitionLabel "Course Title";

d2rq:column "Course.Title";

map:Course_DepartmentName a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Course;

d2rq:property vocab:Course_DepartmentName;

d2rq: refer sToCl as sMap map .-Department;

http://localhost:2020/vocab/resource/
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23
http://www.w3.Org/2000/01/rdf-schema%23
http://www.w3.org/200l/XMLSchema%23
http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1%23
http://d2rq.org/terms/jdbc/

APPENDIX A. THE D2RQ PLATFORM 119

d2rq:join "Course.DepartmentName => Department.DepartmentName";

Table Department

map:Department a d2rq:ClassMap;

d2rq:datastorage map:database;

d2rq:uriPattern "Department/©©Department.DepartmentName|urlify@@";

d2rq:class vocab:Department;

d2rq:classDefinitionLabel "Department";

map:Department.DepartmentName a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Department;

d2rq:property vocab:Department_DepartmentName;

d2rq:propertyDefinitionLabel "Department DepartmentName";

d2rq:column "Department.DepartmentName";

map:Department_Building a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:Department;

d2rq:property vocab:Department_Building,

d2rq:propertyDefinitionLabel "Department Building";

d2rq:column "Department.Building";

The Mapping File begins with the declaration of a number of prefixes for the com

mon Unified Resource Identifiers (URI). Of particular interest is the base URI: <http:

//localhost:2020/vocab/resource/>, which establishes a vocabulary namespace for

the constructs in the Mapping File. When each vocabulary is given a namespace, the

ambiguity between identically named elements across multiple vocabularies can be re

solved.

The d2rq: Database tag specifies the JDBC connection to the database and the login

credentials for accessing the database. The d2rq:ClassMap tag represents an RDB table

as class, and d2rq:PropertyBridge represents an RDB column as property. A relation

APPENDIX A. THE D2RQ PLATFORM 120

ship between two EDB tables is specified by the d2rq: join tag. For example, the tag

d2rq:join "Course.Department_Name => Department.Department_Name" defines the

relation between the Course and Department tables, i.e., department offers course.

A.2 D2RQ extension

I installed the D2RQ Platform and tested it against a small database named university.

I ran flnd(s p o) SPARQL query, and the D2R Server displayed correct results. While

the server was running, I changed a data value in a table and D2R server showed the new

value in real time. This proved that the D2RQ Platform provides on-demand Relational

Database (RDB) to Resource Description Framework (RDF) mapping. However, my test

revealed a flaw in the platform. It failed to detect any changes that were made to the

database schema. For instance, when I added a new column to the a table and populated

it with new data, find(s p o) query results did not include the newly added column and

its values. When I dropped or renamed a column the D2R Server gave the following

error:

Unknown column 'Department.Budget' in 'field list': SELECT DIS

TINCT 'Department'.'Budget', 'Department'.'Department-Name'

FROM 'Department' (E0)

In this case, I dropped the Budget column from the Department table. Creating or

dropping a table resulted in similar errors. Moreover, I encountered the error message

shown in Figure A.l when I stopped the D2R Server and tried to launch again.

APPENDIX A. THE D2RQ PLATFORM 121

Fi le Ed i t V iew Termina l He lp

rg .Kor tbay . Iog .St f4 jLog

20:02:15 INFO log : : je t ty -6 .1 .18
20:02:15 INFO log : : NO JSP Suppor t for , d id not f ind org .apache . jasper .serv le t .JspServ

le t
20:02:16 INFO D2RServer : : us ing por t 8688
20 :02:16 INFO D2RServer : : us ing conf ig f i l e : f i le : /home/mohai r , mad/ rdb2rdf /d2r -server -0 . 7 /cours

e schedule mapping ,n3

20 :02:16 ERROR log : : Fa i led s tar tup of context org .n -Qr tbay . je t ty .webapp .WebAppContext<568
2406{ ,webapp}

de . fuber l in .wiwiss .d2 rq .D2RQExcept ion: Column (^Depar tment .Budget .® not found in database !E0)

a t de . fuber l in .wiwiss ,d2rq .dbschema.DatabaseSchemalnspector .co lu isnType (OatabaseSchef fa lnspector . jav
a : 96)

a t de . fuber lm.wiwiss .d2rq .sq l .ConnectedOB.co lunnType(ConnectedDB.)ava:317)

a t de . fuber l in .wiwiss .42rq .pap. MappmgSAt t r ibuteTypeVal idator .va l ida te (Happing . java:173)
a t de . fuber l in .wiwiss ,d2rq .map.Mapping .va l idate (Mapping . java:96)

a t de . fuber l in .wiwiss .d2rq .GraphD2RQ.< in i t> (GraphD2RQ. java:85)
a t de . fuber l in .wiwiss .d2rq .GraphD2R0.< in i t> (GraphD2RQ. java: 74)

a t de . fuber l in .wiwiss .d2rq .ModelD2RQ.< in i t> (HodelD2RQ. java:61)
a t de . fuber l in .wiwiss .d2rs .AutcReloadableDataset . in i tD2RQDatasetGraph(AutoReloadableDataset . java:8

0!
at de . fuber l in .wiwiss .d2rs .AutoReloadableDataset . forceReload(AutoReloadableDataset . java;54)
a t de . fuber l in .wiwiss .d2rs .D2RServer .s tar t (D2RServer . java:225)

a t de . fuber l in .wiwiss .d2rs .Webappln i t I i s tener .context In i t ia l i zed(Webappln i tL is tener . java:37)
a t org .uor tbay . je t ty .handler .ContextHandler .s tar tContext (ContextHandler . java:540)
a t org .mor tbay . je t ty .serv le t .Context .s tar tContext {Context . java:135)
a t org .mor tbay . je t ty .webapp.WebAppContext .s tar tContext (WebAppContext . java:1220)
a t org .mor tbay . je t ty .handler .ContextHandler .doStar t (ContextHandler . java:510)
a t org .mor tbay . je t ty .webapp. 'WebAppContext .doStar t (WebAppContext . java:448)

a t org . isor tbay . co i r -ponent .Abst ractL i feCyc le . s tar t (Abst ractL i feCyc le . java: 39)

a t org .mor tbay . je t ty .handler .HandlerWrapper .doStar t (HandlerWrapper . java:130)

a t org .mor tbay . je t ty .Server .doStar t (Server . java:222)
a t org .mor tbay .component .Abst ractL i feCyc le ,s tar t (Abst ractL i feCyc le . java:39)

a t de . fuber l in .wiwiss .d2rs .Je t ty launcber .s tar t !Je t ty launcher . java:64)

a t d2r .server .s tar tServer !server . java:86)
a t d2r . server , mam (server , java: 57)

120:02:16 INFO log : : Star ted SocketConnector t fO.0 .0 .0 :8080

[Except ion in thread "main" java . lang .Nul lPo in terExcept ion
a t de . fuber l in .wiwiss ,<12rs .Jet tyLauncher .s tar t {Je t tyLauncher . java:68)

a t d2r .server .s tar tServer (server . java:86)
a t d2r .server ,main(server . java:57)

Figure A.l: D2R Server error

After I had replaced the old Mapping File with a new version, I was able to launch

the D2R Server. I also noticed my schema changes appeared in find(s p o) query re

sults. Therefore, I came to the conclusion that in order to achieve real time consistency

between RDB data and SPARQL query results, the Mapping File needs to be recreated

whenever the RDB schema is modified. In order to automate this process I have added

an extension to the D2RQ Platform. The conceptual picture of the proposed extension

APPENDIX A. THE D2RQ PLATFORM 122

is shown in Figure A.2; and the processes in mapping RDB data to RDF triples with the

extension in place are illustrated in Figure A.3.

Yes / Has \
RDB Schema
\Changed?/

Extension

1b: Reads RDB
Schema

D2RQ Engine
RDB

RDBS -> RDFS

Figure A.2: The extension

APPENDIX A. THE D2RQ PLATFORM 123

Console

User Interface ;

SPARQL Endpoint
{D2R Server)

3a : SQL Resul t
RDBS RDFS

D2RQ Engine

Uses Maping RDB
2c: SQL Query

, ' Has
• RDB Schema ; Extei

Cal l
genera temapping Yes

Figure A.3: The D2RQ Platform with the extension

The extension can be implemented using one of the following two methods

Binary log processing

MySQL generates binary log files that record every transaction occurring in the

databases. A log file can be associated to a database, and MySQL updates the log

file every time a query is executed on that database. My proposed extension analyzes

the log file contents to find out whether the most recent transaction has modified the

APPENDIX A. THE D2RQ PLATFORM 124

database schema. I take the most recently executed query from the log file and run it

through a string tokenizer to search for CREATE, ALTER or DROP string, because a

query with one of these SQL statements is the one that modifies the database schema.

When a match is found, the D2RQ Platform is invoked to update the Mapping File. This

process is illustrated in figure A.4.

Binary
Log

Listen for
Change

- Has Binary 1

UogChang«J?-

Yes

Convert
Binary to Text

file

No

MySQL
Database

New_Log OW_Log \

Find
difference

Log
Difference

Search string:
CREATE.
ALTER or

DROP

Copy New_log
to Ofd_Log

' Match
. found? - ** Mapping File

Yes

Update

Figure A.4: Binary log processing method

A PPENDIX A. THE D2R Q PL A TFORM 125

Query interception

MySQL Proxy is a free and open source application that can intercept all queries

and responses between a MySQL client and server. The extension uses MySQL Proxy to

intercept all incoming queries, it then chccks whether a query has the string CREATE,

ALTER or DELETE in it. If the extension finds a match it invokes the D2RQ Platform

to update the Mapping File. This method is illustrated in Figure A.5.

MySQL Server

a a:

Listen for
CREATE,
ALTER or

DROP
statement

Result

Match Found ?

Yes

> wpuat<3
Mapping File

Update

Client
MySQL Proxy No

Figure A.5: Query interception method

