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Abstract 

This thesis proposes a novel approach to accessing information stored in legacy rela­

tional databases (RDB), based on Semantic Web and multiagent systems technologies. 

It introduces an architectural model of the Semantic Report Generation System (SRGS), 

designed to address the rising demand for flexible access to information in decision sup­

port systems. SRGS is composed of server Database Subsystems (DBS) and client User 

Subsystems (US). In a DBS, an agent interacts with the administrator to build a refer­

ence ontology from the RDB schema, which enables semantic queries without modifying 

the database. In a US, the decision-making user accesses the system through a simplified 

natural language interface, using customized extensions to the reference ontology that 

was imported from DBS; an agent helps build the custom ontology, and facilitates query 

formulation and report generation. The proposed approach is illustrated by several sce­

narios that highlight the key behavioral aspects of accessing information and developing 

ontologies. 
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Chapter 1 

Introduction 

The importance and impact of computer-based information systems in the progress of hu­

man society is well acknowledged in all disciplines. These systems enable users to create, 

store, organize, and access large volumes of information. Individuals and organizations 

increasingly rely on them for problem solving, decision making, and forecasting. The 

requests for information are increasing in complexity and sophistication, while the time 

to produce the results is tightening. These trends in using information systems compel 

researchers to look for more effective access techniques that meet modern requirements. 

Computer-based systems rely on databases for storing information. The relational 

database model (Codd, 1970) has been dominant for more than three decades. In or­

der to extract the necessary information from relational databases (RDB), non-technical 

users require technical assistance of database programmers, report writers, and appli­

cation software developers. These support tasks may be time consuming and involve 

multiple technical experts, resulting in delays and costs. In order to speed up access and 

give users more control, decision support systems rely on data warehousing techniques. 

1 
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Those techniques require information to be extracted from operational databases, reor­

ganized in terms of facts and dimensions, and stored in data warehouses (Olszak and 

Ziemba, 2007). Operational databases are designed to support typical day-to-day oper­

ations, whereas data warehouses are designed for analytical processing of large volumes 

of information accumulated over time. That approach still relies on human technical 

expertise and may require weeks to effect the restructuring of data. Moreover, it requires 

accurate foresight as to what information might be needed. 

In the meantime, two relevant technologies have developed in the realm of the World 

Wide Web and Artificial Intelligence. One is the Semantic Web, which is a web of data 

that enables computers to understand the semantics, or meaning, of information on the 

Web (Berners-Lee, 1998a). The development of the Semantic Web entails structuring of 

information using a set of tools and standards recommended by the World Wide Web 

Consortium (W3C). This process requires formal representation of human knowledge in 

the form of a hierarchy of ontologies that correspond to knowledge domains at different 

levels of abstraction. An ontology is an explicit specification of a conceptualization; a 

conceptualization is an abstract, simplified view of the world that is represented for some 

purpose (Gruber, 1993). The Semantic Web infrastructure is in an early stage of con­

struction; it is developing through numerous current projects. 

The other novel technology is based on intelligent software agents and multiagent 

software systems. A software agent is a computer program, which is situated in a spe­

cific environment, and can act autonomously in that environment in order to meet its 

delegated objectives (Wooldridge, 2009). Multiple interacting agents can form a single 
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system, known as a multiagent system (MAS). Agent technology brings together research 

results from the last few decades in several disciplines, mainly artificial intelligence, dis­

tributed systems, software engineering, economics, psychology, and social sciences. Fol­

lowing decades of research, this is becoming a major trend in mainstream computing 

and a likely successor to the currently dominant object-oriented software engineering 

paradigm (Lind, 2000). 

Software agents are expected to assist humans in many tasks, including searching and 

reasoning with information in a decision support environment. However, the information 

underlying the decision process needs to be organized following Semantic Web structures 

such as ontologies. Software agents can reason with information in a knowledge base 

once it is organized using ontologies. In reasoning with information stored in a database, 

software agents operate on the Closed World Assumption (CWA), which states that the 

information in the database is complete, and what is not asserted as true, is false (Russell 

and Norvig, 2003). 

In this thesis, I explore how a combination of these two technologies can be applied 

to overcome some of the issues arising in the context of traditional decision support envi­

ronments. I propose a system architecture, Semantic Report Generation System (SRGS), 

that relies on Semantic Web tools and software agents to enable effective user access to 

information in RDB systems without depending on report writers and database program­

mers. In SRGS, direct access to information is achieved by building a layer of semantic 

information structures on top of the existing legacy RDB system, and allowing users to 

interact with the system using a Simplified Natural Language (SNL). SRGS employs a 
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software agent to help the Database Administrator in building ontologies using the struc­

ture of information stored in the RDB system, human domain knowledge, and knowledge 

resources on the Semantic Web. SRGS employs another software agent to help the users 

create their own layers of ontology by defining user-specific concepts that may not exist 

in the reference ontology developed from the RDB. This agent also assists the users in 

formulating requests for information. 

My research started with the formulation of system requirements followed by an 

analysis leading to a preliminary definition of the system architecture, and proceeded to 

selective modeling of existing Semantic Web and MAS tools that fit into the architecture 

of SRGS. I carried out these two tasks in an iterative manner, in which I identified ex­

isting software components that could be integrated, and then refined the architectural 

definition so that it could rely on the identified components. 

SRGS consists of two subsystems: the Database Subsystem (DBS) and the User Sub­

system (US). The DBS facilitates creating, storing, and organizing information while the 

US allows accessing this information. The US and DBS can reside on different machines 

and communicate through a network. Within each subsystem there is a software agent 

that assists the human users in organizing and accessing information. I show three pos­

sible configurations of SRGS with regards to the multiplicity of the subsystems: multiple 

USs to single DBS, single US to multiple DBSs, and multiple USs to multiple DBSs. I 

also show how the multiplicity of users affects the architecture of SRGS. For instance, 

when multiple users access the US, some elements in the system are customized to suit 

each user's preferences for interacting with the system. 
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In the Database Subsystem (DBS), a software agent named Database Interface Agent 

(DBIA) assists a Database Administrator (DBA) in gradually building a reference on­

tology from the RDB structure; this is the common core ontology for all users of SRGS. 

The software agent possesses the technical know-how of ontology development process. 

In addition, the software agent refers to external resources on the Web such as publicly 

available libraries of ontologies and online lexical dictionaries, as sources of conceptual, 

lcxical. and domain-specific knowledge. Without the Semantic Web in place, the software 

agent is limited to its technical knowledge of the ontology development process alone. 

Thus, the software agent's role evolves from being a technical assistant to a knowledge­

able partner in the ontology development proccss as more doinain-spceific ontological 

resources become available with the development of the Semantic Web. The DBS is also 

responsible for retrieving the necessary information from the RDB system and presenting 

this information to the US in response to the request. 

The User Subsystem (US) accepts a user's request for information, asks the DBS 

to retrieve the information, and presents it as a formatted report. The user develops 

a custom ontology, which complements the reference ontology by defining user-specific 

terms with the assistance of a software agent called User Interface Agent (UIA). The 

user-system interaction occurs in a simplified natural language. The user formulates 

requests for information and introduces new terms in the custom ontology using the 

simplified natural language. The ontologies are used to formulate and verify requests for 

information, construct semantic queries, and format the extracted information as reports. 
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The feasibility of the proposed approach is then substantiated using three scenarios 

illustrating the behavioral aspects of SRGS in accessing information in an RDB system 

and developing ontologies from the RDB structure. The scenarios show the interactions 

that occur between the agents and the human actors, the actions performed by the agents, 

and the tasks executed by the system components. In order to help to develop ontologies, 

the agents are equipped with meta-ontological knowledge and the know-how of method­

ological steps for guiding the ontology construction process. In addition, agents refer to 

external knowledge resources on the Semantic Web. The agents provide the technical 

knowledge while the human actors make decisions. The ontology construction process 

begins in the Database Subsystem with a rudimentary version of reference ontology gen­

erated through automatic conversion of an RDB structure to a Semantic Web structure. 

The converted structure, called the base ontology, then serves as a starting point from 

which the DBIA, in interaction with the DBA, incrementally develops a full reference 

ontology. 

The first scenario illustrates how the user of SRGS can request for information us­

ing the SNL. It illustrates the specific tasks performed by each system component in 

formulating a request for information, retrieving the requested information from the un­

derlying database, and presenting it to the user as formatted report. The second scenario 

is aimed at showing the interactions between the DBIA and the DBA, and the activities 

that occur within the DBS in the process of constructing the reference ontology. Once 

the construction completes, the DBS exports a copy of the reference ontology to the 

attached US. The third scenario focuses on showing how the user can complement the 

reference ontology by defining user-specific concepts in a custom ontology. 
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The remaining chapters of the thesis cover the background and related work (Chap­

ter 2), the approach for query access to legacy RDB systems using Semantic Web tools 

(Chapter 3), the architectural model (Chapter 4), the behavioral aspects of SRGS (Chap­

ter 5), analysis and evaluation (Chapter 6), and conclusions and future work (Chapter 

7). 



Chapter 2 

Background and Related Work 

This chapter presents the background and an overview of previous research work in 

Relational Database systems (Section 2.1), the Semantic Web (Section 2.2), developing 

ontologies from relational structures (Section 2.3), and multiagent systems (Section 2.4). 

2.1 Relational database systems 

The wealth of data that populates the Web is stored in legacy information systems; they 

are socio-technical computer-based systems that were developed in the past using older 

or obsolete technology. It may be risky to replace a legacy system, because an orga­

nization and its organizational policies can be critically dependent on its structure and 

function. Legacy information systems contain immense volumes of data accumulated 

over the lifetime of the system (Sommerville, 2004). Common sources of legacy data in­

clude relational, hierarchical, network, and object databases; as well as XML documents 

and flat files, such as the comma-delimited text files (Ambler, 2003). My study focuses 

on accessing information in relational databases, because of their prevalence in present 

8 
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legacy information systems. 

A relational database (RDB) is implemented using the relational data model invented 

by Codd (1970). It is based on the mathematical term relation, which is represented as 

table in the database context. Each relation (table) represents an entity and is made 

up of named attributes (columns) of that entity, and each row contains one value per 

attribute (Connolly and Begg, 2001). The relational model has been the dominant data 

modeling technique because of its track record of scalability, reliability, efficient storage, 

and optimized query execution (Sahoo et al., 2009). However, one major limitation of 

the relational model is its inability to capture semantic relationships between data units. 

In addition, non-technical users of relational databases require technical assistance of 

database programmers and database administrators in order to access the necessary in­

formation. 

The remainder of this section is organized as follows: Knowledge representation us­

ing the relational mode is discussed in Subsection 2.1.1, and a language for querying 

information in RDB system is presented in 2.1.2. 

2.1.1 Knowledge representation using RDB model 

In relational data modeling, an entity is represented as a table, and each attribute of the 

entity becomes a column in that table. Each row is an instance of the entity and can be 

uniquely identified by a primary key. Relationships between entities are represented by 

foreign keys. This logical structure of a database is called the database schema (Connolly 

and Begg, 2001). Table 2.1 shows a subset of an RDB containing two tables: Depart­
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ment and Instructor. Each department is uniquely identified by Department-Name 

and each instructor by Instructor JD. An instructor belongs to only one department and 

a department can have one to many instructors. Therefore, Department_Name column 

is the primary key in the Department table and foreign key in the Instructor table. 

This model is for illustrative purpose only, and does not represent any real database. 

Table 2.1: Sample RDB tables 

Table: Department 

Department_Name Building Budget 

Comp. Sci. Taylor 100000 

Biology Watson 90000 

Finance Painter 120000 

Table: Instructor 

InstructorJD Last_Name Salary Department _N ame 

12121 Wu 90000 Finance 

45565 Katz 75000 Comp. Sci. 

2.1.2 The SQL query language 

Structured Query Language (SQL) is the standard language for defining and manipulat­

ing data stored in RDB systems (Chamberlin and Boyce, 1974; IBM, 2006). Common 

SQL commands include schema creation and modification, data insert, query, update, 

and delete. Writing SQL queries requires understanding of the underlying database 
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schema, in addition to the knowledge of the SQL itself. Figure 2.1 shows a sample SQL 

query that returns all department names and budgets from the table Department. 

SELECT Department_Name, Budget 

FROM Department; 

Figure 2.1: An SQL query 

2.2 The Semantic Web 

The Semantic Web is a web of data that enables computer systems to understand the se­

mantics, or meaning, of information that populates the Web (Berners-Lee, 1998a). This 

is in contrast to the current Web which is a web of documents. The objective of the 

Semantic Web is driving the evolution of the current web of document into a web of 

data in which users can easily find, share and combine information. The Semantic Web 

will enable machines to understand the meaning of information, thus allowing machines 

to assist human users in finding right information. Currently there are many individ­

ual projects underway towards developing Semantic Web infrastructure and applications 

using common formats and technologies recommended by the World Wide Web Consor­

tium (W3C) (Baker et al., 2009). Many of these applications are intended to eventually 

connect with each other and share information between them. 

The information underlying the Semantic Web must be organized according to the 

meaning of the represented contents. Human knowledge can be represented by organizing 

information as ontologies. Ontologies are considered as one of the essential parts of the 
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Semantic Web. A university ontology, for instance, would define concepts such as faculty, 

student, department, course, project, etc., and how they are related to each other. At the 

most basic level of an ontology, concepts are represented as classes, and various attributes 

of a concept are represented as properties, and a class can have subclasses representing 

concepts that are more specific than the parent class. For example, a student class may 

have two subclasses: undergraduate student and graduate student. In addition to clas­

sification, one can define relationships between classes in an ontology. Thus, ontologies 

provide the structural framework for organizing and reasoning with information within 

a particular domain. In addition, upper ontologies, which describe general concepts that 

are the same across all knowledge domains, provide the functionality of semantic inter­

operability between multiple domain ontologies (Noy and McGuinness, 2001). 

In the rest of this section, I briefly review the main technical concepts underlying 

the Semantic Web architecture as envisioned in the W3C standards. Subsection 2.2.1 

provides the basic definitions. Subsection 2.2.2 describes the knowledge representation 

model, and 2.2.3 presents a corresponding query language for retrieving information. 

Finally, 2.2.4 outlines three early Semantic Web projects. 

2.2.1 Semantic Web technologies 

The development of the Semantic Web entails restructuring of information using a set 

of languages and standards. The Semantic Web architecture is illustrated in Figure 2.2. 

The main components in the Semantic Web stack are Unified Resource Identifier (URI), 

Resource Description Framework (RDF), RDF Schema (RDFS), Simple Protocol and 

RDF Query Language (SPARQL), and Web Ontology Language (OWL). 
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User Interface and Applications 

Querying: 
SPARQL 

Trust 

Proof 

Unifying Logic 

Ontologies: 
OWL 

Rules: 
RIF/SWRL 

Taxonomies: RDFS 

O 
-o 

Data interchange: RDF 

Syntax: XML 

Identifiers: URI Character set: UNICODE 

Figure 2.2: Semantic Web stack layer 
(Reproduced from Wikipedia Semantic Web entry) 

URI provides a mechanism for uniquely identifying each information resource on the 

Web. A special type of URI is Unified Resource Locator (URL) which uniquely identifies 

the location of a resource, such as a web page, within the World Wide Web (Sauermann 

et al., 2008). Internationalized Resource Identifier (IRI) is a generalization of URI that 

may contain characters from the Universal Character Set, including Chinese, Japanese 

and Korean. RDF is a data modeling language which conceptualizes a data unit as a 

resource in terms of its property and property-values. Each resource is uniquely identified 

by its URI (Manola and Miller, 2004). RDFS provides the basic primitives such as classes 

and properties for structuring RDF resources. SPARQL is a language for querying RDF 

data, analogous to the way SQL is used for querying relational data (Prud'hommeaux 

and Seaborne, 2007). OWL is a knowledge representation language for authoring on­
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tologies. It also facilitates reasoning and inference. OWL is based on RDF and RDFS 

(McGuinness and Harmelen, 2004). 

Discussing in details all the components of the Semantic Web is beyond the scope of 

this chapter. I focus on the components that are relevant to my research objective with 

regards to representing RDB structures in Semantic Web structures. In the following 

subsection, I illustrate how some of these components can be used to represent and 

access information in the Semantic Web compliant format. 

2.2.2 Knowledge representation using the RDF model 

RDF is based on the idea of describing an entity in terms of properties and property-

values. An RDF statement consists of an entity (the subject), a property (the predicate) 

and a property-value (the object). This subject-predicate-object expression, also writ­

ten as (S, P, O) is known as a triple. The complete description of an entity would consists 

of a collection of triples called an RDF graph. The entity's class, which is the table name 

in the relational model, is described by an RDF triple containing the rdf:type predicate, 

rdfrtype is used to state that a resource is an instance of a class. For example, a triple 

of the form: R rdf:type C states that R is an instance of C, and C is an instance of 

rdfs:Class (Brickley and Guha, 2004). RDF mandates that each subject and predicate 

must be URIs; the object can be a URI or an actual value. 

Relational databases can be converted into RDF triples by following the core guide­

lines outlined by Berners-Lee (1998b). He proposed the following direct mappings be­

tween RDB and RDF: 
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• An RDB record (row) is an RDF is an RDF subject 

• The column name of an RDB is an RDF predicate 

• An RDB table cell is an RDF object 

Figure 2.3 shows RDF representation of an instructor's record from the previous 

example of the relational model. The first row from Instructor table can be written as 

"45565 has Last_Name which is Katz". This statement becomes an RDF triple when 

written in the form (S, P, 0), in other words, (45565, Last_Name, Katz). But S and 

P must be in the URI format hence, the URI 

http://localhost:8080/resource/Instructor/45565 is assigned to 45565, and 

http: //localhostvocab/resource/Instructor_Last_Name to Last-Name. 

Therefore, the correct triple is 

(http://localhost:8080/resource/Instructor/45565, 

http://localhostvocab/resource/Instructor_Last_Name, "Katz") 

In Figure 2.3, each triple corresponds to a single arc with its beginning node as the sub­

ject, arc label as the predicate, and ending node as the object. 

RDF refers to a set of URIs as a vocabulary (Manola and Miller, 2004). An organi­

zation may define its own vocabulary consisting of the terms it uses in its business. In 

our example, such terms can be 

http://localhostvocab/resource/Instructor for Instructor, and 

http: //localhostvocab/resource/Instructor_Last_Name for Last_Name. 

http://localhost:8080/resource/Instructor/45565
http://localhostvocab/resource/Instructor_Last_Name
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http://iocathost:8080/resource/lnstnjctor/45565 

rdf:type http;//localhostvocab/resource/lnstructor_Last_Name 

htip://localhostvocab/resource/!nstructor 
Katz 

http://localftostvocab/resource/Department# 

http:/Aocalhostvocab/resource/lnstrcutor_Salary 

http://iocaihostvocab/resource/Department/Comp._Sc}. 

75000 

rdf;type 

http//localhostvocab/resource/Department_Budget 

http://localhostvocab/resource/Department 

100000 

Figure 2.3: RDF graph showing an instructor's record 

An organization might as well take advantage of an external vocabulary instead of defin­

ing its own. Friend of a Friend's (FOAF) Vocabulary Specification (Brickley and Miller, 

2005) and Dublin Core's Metadata Terms (Powell et al., 2007) are examples of such 

vocabularies. In our example of the RDF model, one can use FOAF's 

http://xmlns.com/foaf/spec/#term_lastName 

instead of using our own 

http://localhostvocab/resource/Instructor_Last_Name 

to refer to the term Last_name. Constructing RDF statements with URI predicates 

instead of character strings offers two main benefits. First, it minimizes the practice of 

using different terms to refer to the same thing. For instance, a database designer may use 

attribute names such as Family Name or Second Name to refer to someone's last name. 

http://iocaihostvocab/resource/Department/Comp._Sc%7d
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In order to avoid the use of multiple attribute names, FOAF's Vocabulary Specification 

provides a unique identifier - http://xmlns. com/f oaf/spec/#term_lastName - to refer 

to a person's last name. This mechanism forces a designer to use the same URI predicate 

for all occurrences of a last name. Second, the use of URIs in RDF triples supports 

development and use of shared vocabularies on the Web. 

2.2.3 The SPARQL query language 

SPARQL (Prud'hommeaux and Seaborne, 2007) is the standard query language for RDF 

data. A SPARQL query is made up of a set of triple patterns containing a subject, a 

predicate and an object. Each of the subjects, predicates or objects in a query can be 

a variable. SPARQL query processor searches for a set of triples that match the triple 

patterns specified in a query, binding the variables in the query to the corresponding part 

of each triple. Figure 2.4 shows a SPARQL query that returns all department names and 

budgets from the table Department. 

PREFIX vocab: <http://localhostvocab/resource/> 

SELECT ?department_name ?budget 

WHERE { 

?department a vocab:department. 

?department vocab:Department_Department_Name ?department_name. 

Tdepartment vocab:Department_Budget ?budget. 

> 

Figure 2.4: A SPARQL query 

SPARQL supports querying semi-structured and ragged data — data in unpredictable 

and unreliable structure — and querying disparate data sources in a single query. How­

ever, it does not support aggregate and group functions. SPARQL is a very young query 

http://xmlns
http://localhostvocab/resource/
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language compared to SQL and is still maturing. There are other alternative query lan­

guages such as RDF Data Query Language (RDQL) (Seaborne, 2004) and RDF Query 

Language (RQL) (Karvounarakis et al., 2002). 

2.2.4 Examples of Semantic Web projects 

I discuss three projects that have made significant contributions to the development of 

the Semantic Web. However, these projects do not constitute the entire Semantic Web 

as depicted in Figure 2.2. 

FOAF 

One of the earliest implementations of Semantic Web application is the Friend of a 

Friend (FOAF) project (Graves et al., 2007). FOAF creates a web of machine-readable 

pages that describe people, the links between them and the things that they are inter­

ested in. Brickley and Miller (2005) have defined the FOAF vocabulary specification 

which include the basic classes of entities such as person, organization, group, document 

and the type of links that exist between these entities. FOAF also takes advantage of 

Dublin Core (DC) metadata (Powell et al., 2007) for adding semantic annotation to its 

entities. FOAF continues to solve several problems of identity management on the Web. 

The University of North Carolina at Chapel Hill has applied FOAF approach to model 

the structure of its IT department. It is now possible to search staff-related information 

in seconds (Graves et al., 2007). 
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DBpedia 

The traditional Web is based upon the idea of linking documents through hyperlinks. 

Semantic Web, on the other hand, is based upon the idea of linking data units. Bizer 

(2009) shows that links at a lower level of granularity, i.e. data-level, makes it possible to 

crawl the data space, and provide expressive query capabilities, much like how a database 

is queried today. Bizer's point is well demonstrated in the DBpedia project (Bizer et al., 

2007), a community effort to extract structured information from Wikipcdia and make 

this information accessible in a way users can ask complex questions such as List all sci­

entists that were born in the 20th century in Canada. DBpedia knowledge base currently 

describes more than 2.6 million entities. It has been linked to other data sources on the 

Web which has made it a central interlinking hub for the emerging Web of data (Bizer 

et al., 2009). 

Kngine 

Kngine (ElFadeel and ElFadeel, 2008), known as Web 3.0 search engine, is a semantic 

search engine designed to understand the meaning of users' queries and return precise 

results. Depending on the nature of the query, Kngine shows results in visual represen­

tation such as graph, comparison table, map, and image. For example, searching for '3G 

cellphones' returns a list of all 3G network compatible mobile phones along with their 

pictures and relevant details. The results can be filtered by selecting one or more proper­

ties of 3G cellphones: year of release, brand name, operating system, camera resolution, 

and CPU type. Kngine does this by discovering the relationships between the keywords 

and concepts, and by linking different types of information together. 
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These examples show how the Semantic Web technologies add new dimensions to the 

way one can access and use information on the Web. In order to do this at a large scale, 

the vast majority of the relational data that powers the Web needs to be exposed to 

Semantic Web structures. 

2.3 Building ontologies from relational structures 

We have seen in Section 2.1 that one of the major limitations of the relational model 

is its inability to capture any semantic relationships between data. Section 2.2 shows 

that Semantic Web knowledge representation techniques can overcome this limitation. 

Data presented in RDF structures includes the semantic relationships; however it does 

not capture the domain knowledge that is associated with the data. In order to include 

the domain knowledge, an evolution from the converted RDF structure into an ontology 

is required. Relevant research with regards to converting relational to RDF structures is 

discussed in 2.3.1, and development of full ontologies is discussed in 2.3.2. 

2.3.1 Converting relational structure to RDF 

There has been a great deal of research on mapping information stored in relational 

databases to RDF. Sahoo et al. (2009) list two main approaches in mapping relational 

data to RDF: Extract Transform Load (ETL) mapping and on-demand mapping. ETL 

process takes relational data as source input and delivers equivalent RDF triples as out­

put. On-demand mapping takes a SPARQL query as input, translates it to an equivalent 

SQL query, executes the SQL query on relational data, and translates SQL query results 

to SPARQL query results (in the form of RDF triples) as output. The strengths and 
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weaknesses of both approaches are summarized in Table 2.2 (Sahoo et al., 2009). 

Table 2.2: ETL vs on-demand mapping 

Strengths Weaknesses 

ETL 
mapping 

On-demand 
mapping 

1. Faster query execution 

2. Reduced arbitrary perfor­
mance demand on source 
RDB 

1. Querying large RDF 
dataset may not be as fast 
as querying equal amount 
of RDB data. 

2. SPARQL query results may 
not reflect most recent data. 

3. Managing duplicate copies 
of data in two models. 

1. Query results are based on 
most recent data values 

2. Data retrieval is based on 
RDB, and RDB outper­
forms RDF for analytic 
queries 

1. Arbitrary performance de­
mand on source RDB may 
affect the performance of 
legacy information systems 

The on-demand mapping is widely preferred method primarily because it allows ac­

cess to the most up to date information, and it does not burden one with the task of 

maintaining another version of the same information. An example of on-demand mapping 

is Virtuoso Universal Server (Erling and Mikhailov, 2007), which converts all primary 

keys and foreign keys of an RDB into Internationalized Resource Identifiers (IRIs), and 

assigns a predicate IRI to each column, and rdfitype predicate for each row linking it to 
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an RDF class IRI corresponding to the table. It then takes each column that is neither 

part of primary or foreign key, and creates a triple consisting of the primary key IRI as 

subject, the column IRI as predicate, and the column's value as object. This mapping 

process allows relational data to be rendered as virtual RDF graphs, and accessed using 

SPARQL queries. 

A second example of on-demand mapping is SquirrelRDF (Steer, 2009), a prototype 

tool that allows SPARQL queries on non-RDF databases such as RDB or Lightweight 

Directory Access Protocol (LDAP) servers. It automatically generates a mapping file 

that exposes an RDB schema to an RDF view. Gray et al. (2009) note that the auto­

matically generated RDF views require manual editing for maintaining their referential 

integrity. 

There exist tools that provide both ETL and on-demand mapping services. One of 

these tools is D2RQ Platform developed by Bizer and Seaborne (2004), which allows 

one to either convert an entire RDB into a set of RDF triples, or access an RDB as 

virtual and read-only RDF triples. D2RQ Platform consists of two main components: 

D2RQ Engine and D2R Server. D2RQ Engine relies on Jena (McBride et al., 2010) and 

Sesame (Broekstra et al., 2002), which are frameworks for storing and querying RDF 

data. D2RQ Engine works as a plug-in for Jena or Sesame Semantic Web toolkits by 

rewriting Jena or Sesame API calls and SPARQL queries to SQL queries using its D2RQ 

mapping language. The results of these SQL queries are then transformed into RDF 

triples and passed onto the D2R Server for publishing on the Semantic Web. 
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D2RQ performance was compared to the performance of Jena2 database back end 

using a dataset of 200,000 paper descriptions from the DBLP Computer Science Bib­

liography. Jena2, which is a subsystem of Jena, stores RDF triples using a relational 

database. Query execution time was measured in milliseconds. The find(s p o) query 

was run on both platforms. This query is a minimal SPARQL query used for experimen­

tal purpose. The parameter's' represents the subject, 'p' represents the predicate 

and 'o' represents the object. The '?' parameter implies any for matching that slot. 

For instance, if's' denotes 'books', 'p' denotes 'has authors' and 'o' denotes 'authors 

names', find(? ? Tanenbaum) will return all books authored by Tanenbaum. The 

results from the performance comparison test by Bizer and Seaborne (2004) are shown 

in Table 2.3. 

Table 2.3: Performance comparison between Jena2 and D2RQ Platform 

find(s p o) query Jena2 D2RQ 

1. find (s ? ?) 1.83 ms 0.01 ms 

2. find (? p o) 1.94 ms 0.97 ms 

3. find (? p ?) 42431 ms 72 ms 

4. find (? ? o) 1.72 ms 3.23 ms 

As seen in the performance results, D2RQ executes queries much faster than Jena2 

implementation. Sequeda et al. (2008), however, notes that in D2RQ approach, map­

ping between a relational schema and existing ontology requires one to manually specify 

the classes and the hierarchies between classes using an ontology editor. In addition, 
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Bizer and Cyganiak (2007) listed a number of limitations of D2RQ platform. It does 

not support integration of multiple RDBs or other data source; it does not allow data 

manipulation; and it does not provide any inference capability. 

SquirrelRDF and D2RQ Platform still remain prototype tools for RDB to RDF map­

ping. Gray et al. (2009) prove that these prototypes fail to expose large science archives 

stored in relational format. The authors have tested several RDB to RDF mapping tools 

including D2RQ and SquirrelRDF for executing queries over a sample of large astronom­

ical data set and have come to the conclusion that more research and improvements are 

required for SPARQL and RDB to RDF mapping tools for exposing science archive data. 

They have tested with 18 standard scientific SQL queries and only 9 of them can be 

expressed in SPARQL queries. SPARQL also does not support mathematical functions 

such as aggregate and trigonometric functions. 

The mapping tools and techniques that have been discussed so far are intended for 

converting data from relational structure to RDF structure. Semantic Web researchers 

have also attempted to create tools for converting an RDB schema to an ontology. For 

instance, Sequeda et al. (2009) created Ultrawrap, an automatic wrapping system that 

generates an OWL ontology from RDB schema. The authors, however, doubt whether 

the results of a purely syntax driven translation of an RDB schema to OWL can qualify 

for a comprehensive ontology. Therefore, they use the term putative ontology to describe 

the resulting OWL ontology. The putative ontology works as a basis for the user to write 

SPARQL queries. Ultrawrap then natively translates SPARQL queries to SQL queries 

and uses an SQL optimizer to execute the SQL queries on the RDB system. It does not 
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provide any reasoning capabilities. 

Mapping a relational database to an ontology is a challenging task. Cullot et al. 

(2007) have developed a prototype tool called DB20WL to create an ontology from a 

relational database. Its mapping process classifies RDB tables into three different cases 

to determine which ontology structures are to be created from which database compo­

nents. Tables in RDB are mapped to OWL classes and sub-classes. RDB table cases 

determine whether a table is mapped to an OWL class or sub-class. Then RDB columns 

are mapped to OWL properties. Primary key and foreign key relationships are mapped 

to object properties in order to preserve their referential integrity. During the mapping 

proccss, a mapping file is generated and used to translate ontological queries into SQL 

queries and retrieve corresponding instances. 

The previous examples mostly show general mapping of relational to RDF structure 

regardless of the domain of the data. There has also been research in building tools for 

mapping domain-specific data. For example, Byrne (2008) shows a general mechanism for 

converting cultural heritage data from relational databases to RDF triples. The author 

created a triplestore - specialized database for the storage and retrieval of RDF triples -

named Tether from the Royal Commission on the Ancient and Historical Monuments of 

Scotland (RCAHMS) database of around 250,000 historical sites with 1.5 million archives 

and bibliographic materials. 
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2.3.2 Upgrading converted structures to full ontologies 

The previous section discussed techniques for converting relational to RDF structures 

from which a list of terms and their properties can be extracted. However, the converted 

structures do not capture the inherent knowledge in the data that often resides in a 

data dictionary or in the mind of the DBA. In order to capture the domain knowledge, 

the converted structures need to be upgraded into full ontologies. Noy and McGuinness 

(2001) state that there is no prescribed way or methodology for developing ontologies; the 

best solution always depends on the application in mind and the extensions that follow. 

The authors recommend the following seven guiding steps in developing an ontology: 

Step 1: Determine the domain and scope of the ontology 

The development process of an ontology starts with the definition of its domain and 

scope. In this step, the developer can ask some basic questions such as: (i) What 

is the domain that the ontology will cover? (ii) For what purpose the ontology is 

going to be used? (iii) For what types of questions the information in the ontology 

should provide answers to? (iv) who will use and maintain the ontology? The 

answers to these questions help determine the domain and limit the scope of the 

ontology. 

Step 2: Consider reusing existing ontologies 

The developer should check what others have done and whether it is possible to 

refine and extend existing ontologies instead of creating from the scratch. Reusing 

ontologies is important because creating an ontology for each application defeats 

the purpose of sharing knowledge. There are ontologies that are publicly available 

on the Web such as Ontolingua Server (2008) and DAML Ontology Library (2004), 
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which can be imported into an ontology development environment. 

Step 3: Enumerate important terms in the ontology 

Create a list of all terms that one would like to make statements about. The terms 

can be formulated by asking some basic questions such as: (i) What are the terms 

that would one like to talk about? (ii) What properties do these terms have? 

(iii) what would one like to say about these terms? It is important to create a 

comprehensive list of all terms. 

Step 4-' Define classes and the class hierarchy 

There are three approaches in defining a set of classes: a top-down development pro­

cess starts with the definition of the most general concepts in the domain followed 

by subsequent specialization of the general concepts; a bottom-up development pro­

cess starts with the definition of the most specific concepts followed by subsequent 

grouping of these concepts into more general concepts; and a combination devel­

opment process is a blend of top-down and bottom-up processes which starts with 

the definition of more notable concepts and then proceeds with appropriate gener­

alization and specialization of the remaining concepts. 

Whichever approach is followed, one should start by defining classes. From the 

terms listed in Step 3, ones that describe concepts having independent existence are 

defined as classes in the ontology. The classes are then organized into a hierarchical 

structure. The class hierarchy represents an 'is-a' relation: a class A is a subclass 

of B if every instance of A is also an instance of B. 
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Step 5: Define the properties of the classes - slots 

The properties of a class describe the internal structure of the class. Some of the 

terms formulated in Step 3 are defined as classes in Step 4; most of the remaining 

terms are then defined as properties of those classes. For a given property, one 

must determine which class it describes. Thus properties become slots attached 

to their respective classes. All subclasses inherit the slots of its parent class. For 

example, if a slot called Last name is added to the class Person, and Student is a 

subclass of Person, then Student will inherit the slot Last name. 

Step 6: Define the facets of the slots 

A slot can have different facets describing the value types, allowable values, cardi­

nality, etc. Value types describe what types of values can fill in the slot. Common 

value types are string, number, and boolean. Slot cardinality defines what is the 

minimum and maximum number of values a slot can have. 

Step 1: Create instances 

In the final step, individual instances of each class are created. This is done by 

first, choosing a class; second, creating an individual instance of that class; and 

third, filling in the slot values. 

The ontology development process should not stop with completing the final step. 

Rather it should be an iterative one in which a basic ontology is first created, and then 

revised and refined to fill in the missing pieces. 
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There are a variety of languages for developing ontologies. RDF Schema (RDFS), 

which is an extension of the RDF language, introduces basic ontological primitives such 

as class, subclass, domain, range, etc that are used to define concepts and their relation­

ships in an ontology. The W3C has adopted OWL (McGuinness and Harmelen, 2004), 

which uses RDF and XML syntax and provides Description Logic (DL) based reasoning 

support, as the standard ontology language for the Semantic Web. McGuinness and 

Harmelen provide a comprehensive list of OWL primitives. The main primitives are 

summarized in Table 2.4. 

There exist a number tools for developing and managing ontologies. Protege (Hor-

ridge et al., 2009) is an open source ontology editor which allows one to create and export 

ontologies into various formats including RDFS and OWL. Fensel et al. (2001) extended 

RDFS to Ontology Inference Layer or Ontology Interchange Language (OIL), an ontol­

ogy infrastructure which includes the definition of a formal semantics based on DL, an 

ontology editor, and inference engines for reasoning capabilities. 

Protege and OIL are widely used tools for authoring ontologies from scratch or mod­

ifying existing ontologies; however, they do not provide any integrative function to work 

with an RDB to RDF mapping tool. TopBraid Composer (TBC) (TopQuadrant Inc., 

2007) provides integrative function for connecting to an RDB through D2RQ Platform. 

TBC is an application development framework which provides a comprehensive set of 

tools covering the life cycle of semantic application development. TBC's integrative fea­

ture allows one to import an RDB structure into TBC as a base ontology and modify 

it towards building a more comprehensive ontology. RDB table names are represented 
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Table 2.4: The main primitives of OWL 
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owhclass: A class is a group of entities that share some common characteristics. Classes 
can be organized in a hierarchical order ranging from general to specialized classes. In 
class hierarchy, a general class is known as parent class, and a special class is called 
subclass. 

rdfs:subClassOf \ A specialized class can be defined as a subclass of its parent class. For 
example, the class Student can be stated as a subclass of Person. This subclass definition 
allows a reasoner to deduce that if an entity is a Student then it is also a Person. 

rdfs:property: A Property asserts general facts about the members of classes and specific 
facts about individuals. There are two types of properties: datatype property and object 
property. Datatype properties are relations between instances of classes and RDF literals 
and XML Schema datatypes, whereas Object properties are relations between instances 
of two classes. 

rdfs:subPropertyOf: Property hierarchies can be created by stating that a property is 
a subproperty of another property. 

rdfstdomain: A domain of a property limits the individuals to which the property can 
be applied. If a property relates an individual to another individual, and the property 
has a class as one of its domains, then the individual must belong to the class. 

rdfs:range: The range of a property limits the individuals that the property may have 
as its value. If a property relates an individual to another individual, and the property 
has a class as its range, then the other individual must belong to the range class. 

rdfilD. The instances of classes are declared using this primitive. 

owl:equivalentClass: Two classes may be stated as equivalent classes if they have the 
same instances. Equality can be used to create synonymous classes. 

owUequivalentProperty: Two properties may be stated as equivalent properties. 
Equality may be used to create synonymous properties. 

owl:sameAs: Two instances may be stated to be the same. An instance can be identified 
by a number of different names using this primitive. 

as classes and column names are represented as datatype properties. Primary key and 

foreign key relationships are represented as object properties. One can extend existing 

classes with superclasses and subclasses and specify the properties that the subclasses 
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inherit from the superclasses. Ontologies created using TBC also can be exported to 

RDFS and OWL format. 

Ontology language use certain types of logic to support reasoning. A reasoning engine 

can infer logical consequences from a set of asserted facts and the inference results vary 

depending on which of the two assumptions are in place. The Closed World Assump­

tion (CWA) states that "databases (and people) assume that the information provided 

is complete, so that ground atomic sentences are not asserted to be true are assumed to 

be false" (Russell and Norvig, 2003). For example, assuming that a student database 

contains information about all students, if the name 'Adam' is not found in the database, 

a reasoning engine will conclude that 'Adam' is not a student. The CWA is often com­

plemented by the Unique Name Assumption (UNA) which assumes that names in a 

knowledge-base are unique and refer to distinct instances. The Open World Assumption 

(OWA), on the other hand, assumes that the descriptions of resources are not confined to 

a single knowledge-base or scope (Smith et al., 2004). In other words, from the absence 

of a statement alone a reasoner cannot conclude that the statement is false. 

OWL is designed with the purpose of defining Web ontologies. The Web is an open 

and dynamic environment in which information continues to evolve, and at any point in 

time one cannot assume its completeness. Therefore, the OWA is more appropriate while 

reasoning with information presented on the Web. Ricca et al. (2009) argue that OWL's 

OWA is unsuited for modeling enterprise ontologies because they evolve from relational 

databases where both CWA and UNA are mandatory. In addition, the presence of nam­

ing conventions in most enterprises can guarantee uniqueness of names which makes the 
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UNA relevant. The authors have proposed an ontology representation language called 

OntoDLP which extends Answer Set Programming (ASP) with the main features such 

as classes, inheritance, relations and axioms that are relevant to ontologies. ASP is a 

kind of logic programming with negation as failure that works by translating the logic 

program into ground form and then searching for answer sets (Russell and Norvig, 2003). 

OntoDLP is used by OntoDLV, a system that facilitates specification and reasoning of 

enterprise ontologies. 

The mapping tools and techniques that I have presented in subsection 2.3.1, can fully 

automate the process of converting relational to RDF structure. Beyond this point, there 

is little or no automated assistance for upgrading the converted RDF structures to full 

ontologies. The available tools for upgrading RDF structures to ontologies require human 

expertise with considerable understanding of the ontology development process. 

2.4 Multiagent systems 

Wooldridge (2009) defines agent as "a computer system that is situated in some environ­

ment, and that is capable of autonomous action in this environment in order to meet its 

delegated objectives". Although an agent system may operate alone in an environment 

and when necessary interact with its users, in most cases they consist of multiple agents. 

These multiagent systems can model complex software systems in which individual agents 

interact and collaborate to achieve a common goal or compete to serve their self interests 

(Bellifemine et al., 2007). Wooldridge and Jennings (1995) suggest three capabilities of 

an intelligent agent: 
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1. Reactivity: Intelligent agents are able to perceive their environment, and 

respond in a timely fashion to changes that occur in it in order to satisfy 

their design objectives. 

2. Proactiveness: Intelligent agents are able to exhibit goal-directed behav­

ior by taking the initiative in order to satisfy their design objectives. 

3. Social Ability: Intelligent agents are capable of interacting with other 

agents (and possibly humans) in order to satisfy their design objectives. 

In order to achieve these capabilities, agents are modeled with the mental abilities 

such as beliefs, desires, and intentions. This is due to the fact that humans use these 

concepts as an abstraction mechanism for understanding the properties of a complex 

system. Developing machines with such mental qualities was first proposed by Mccarthy 

(1979). Shoham (1993) then articulated the idea of programming software systems in 

terms of mental states. 

The remainder of this section is organized as follows: agent-oriented software engi­

neering is discussed in Section 2.4.1; how the Semantic Web relates to agents is presented 

in Section 2.4.2; and issues related to agent-human interactions are discussed in Section 

2.4.3. 

2.4.1 Agent-oriented software engineering 

Agent-oriented approach in Software Engineering is a new software paradigm that models 

a complex system as a collection of autonomous, proactive, and social agents. Shoham 

(1993) first introduced the concept of Agent Oriented Programming (AOP) as a new soft­

ware development paradigm which can be viewed as a specialization of Object Oriented 
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Programming (OOP). Though both paradigms may appear similar from the theoretical 

perspective, they have visible differences. Wooldridge (2009) lists three distinctions be­

tween AOP and OOP. First, agents exhibit autonomous behaviors while objects depend 

on external invocation. Agents enjoy the freedom to make their own decision whether or 

not to perform an action. Second, agents are reactive, proactive, and social, whereas the 

object-oriented model has nothing to do with these behaviors. Third, in a multiagent 

system, each agent is considered to have its own thread of control whereas in a standard 

object-oriented model the system has a single thread of control. 

Jennings and Wooldridge (2000) argue why agent-oriented techniques are well-suited 

to developing complex software systems. The authors compared agent-oriented tech­

niques with the object-oriented approach. In the object-oriented approach, an object 

perform its actions only when it is instructed by an external invocation. This approach 

may work for smaller application in cooperating and well-controlled environments; how­

ever, it is not suited to complex or competitive environments because it gives the control 

to execute an action to the client requesting that action and not the action executor. 

Thus objects are obedient to one another. Agent-oriented approaches allow the action 

executor - the agent - to decide whether or not to perform an action because it is more 

intimate with the details of the actions to be performed, therefore, it may know a good 

reason for executing or refusing to perform an action. The Object-oriented approach also 

fails to provide an adequate set of mechanisms for modeling a complex system that com­

prises of inter-related subsystems. Agent-oriented techniques provide problem solving 

abstraction for modeling the dependencies and interactions that exist in such complex 

systems. 
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There are a number of platforms available for developing multiagent systems such as 

Jason (Bordini et al., 2007), Jadex (Pokahr et al., 2005), and JADE (Bellifemine et al., 

2007). Jason, which is a Java based platform, uses AgentSpeak agent-oriented program­

ming language to program the behavior of individual agents. Jadex is a popular open 

source platform for programming intelligent software agents using XML and Java. JADE 

is an agent-oriented middleware that provides domain-independent infrastructure for de­

veloping multiagent systems. Telecom Italia distributes Jade as open source software 

under the terms of the LGPL (Lesser General Public License) Version 2. 

2.4.2 Agents and Semantic Web 

Berners-Lee et al. (2001) envision a Semantic Web agent that communicates with other 

agents to set up a doctor's appointment. 

At the doctor's office, Lucy instructed her Semantic Web agent through her 

handheld Web browser. The agent promptly retrieved information about 

Mom's prescribed treatment from the doctor's agent, looked up several lists 

of providers, and checked for the ones in-plan for Mom's insurance within 

a 20-mile radius of her home and with a rating of excellent or very good on 

trusted rating services. It then began trying to find a match between available 

appointment times (supplied by the agents of individual providers through 

their Web sites) and Pete's and Lucy's busy schedules. (The emphasized 

keywords indicate terms whose semantics, or meaning, were defined for the 

agent through the Semantic Web.) 
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As information on the Semantic Web is presented with semantic annotations and in 

the form on ontologies, agents are able to understand the meaning of this information 

and take appropriate actions based on perceived meaning. Thus, the entire Web becomes 

part of agents' environment in which agents can proactively search for necessary infor­

mation to serve its intended goals. However, realizing Berners-Lee's grandiose vision of 

Semantic Web agents has been highly challenging due to the dynamic and heterogeneous 

nature of the Semantic Web (Tamma and Payne, 2008). The authors have formulated 

some challenges faced by Semantic Web agents. These challenges can be summarized 

as follows: discovering resources; determining ontology identity; ontology reconciliation; 

dynamic evolution of agent ontologies; describing dialogues and protocols using ontolo­

gies; and representing and reasoning with uncertain information. 

The W3C in collaboration with Semantic Web researchers continues to develop tools 

and standards that may overcome some of the challenges identified by Tamma and Payne. 

2.4.3 Human-agent interactions 

Human-agent interactions can be regarded as a specialization of human-computer inter­

actions. So far, there is no standard language or communication mechanism for humans 

to interact with agents. This choice is left with the designer to decide how agents are 

instructed and in which format agents report back to the users. 

Of particular interest is the issue that when it comes to communicating with oth­

ers, humans regard certain values such as speaking manner very highly. Agents, when 

interacting with humans should also follow a certain code of communication ethics. Brad-
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shaw et al. (2011) outline a number of characteristics of a good agent with regard to joint 

activity in the following maxims: 

• A good agent is observable. It makes its pertinent state and intentions 

obvious. 

• A good agent is attuned to the requirement of progress appraisal. It 

enables others to stay informed about the status of its tasks and identifies 

any potential trouble spots ahead. 

• A good agent is informative and polite. It knows enough about others 

and their situations so that it can tailor its messages to be helpful, 

opportune, and appropriately presented. 

• A good agent knows its limits. It knows when to take the initiative on 

its own, and when it needs to wait for outside direction. It respects 

policy-based constraints on its behavior, but will consider exceptions 

and workarounds when appropriate. 

• A good agent is predictable and dependable. It can be counted on to do 

its part. 

• A good agent is directable at all levels of the sense-plan-act cycle. It 

can be retasked in a timely way by a recognized authority whenever 

circumstances require. 

• A good agent is selective. It helps others focus attention on what is most 

important in the current context. 



CHAPTER 2. BACKGROUND AND RELATED WORK 38 

• A good agent is coordinated. It helps communicate, manage, and de-

conflict dependencies among activities, knowledge, and resources that 

are prerequisites to effective task performance and the maintenance of 

common ground. 

The set of characteristics that makes an agent good or bad is a subjective choice. 

What is considered good manners in one culture may not be the case in another culture. 

Therefore, a designer should take into account the cultural sensitivity that agents may 

experience while engaging with other agents and human users. 



Chapter 3 

Semantic Query Access to Legacy 

Relational Databases using 

Intelligent Middleware 

In this thesis, I propose and investigate a novel approach to accessing information stored 

in legacy relational database (RDB) systems. This approach is motivated by the rising 

demand for flexible access to information through user-friendly interfaces for human users 

as well as standardized software interfaces for intelligent agents that act on their behalf. 

The Semantic Web project envisions a world-wide infrastructure providing such services 

through the adoption of associated standards, and the use of tools and ontologies that are 

being developed towards realizing the objective of the Semantic Web. In that context, 

I explore how an institutional decision support system, based on legacy RDB systems, 

could employ a combination of Semantic Web and multiagent systems (MAS) technolo­

gies to evolve towards flexible semantic access to information within its own operational 

39 
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scope. 

Legacy RDB systems are typically used for decision support purposes by a limited 

number of users with considerable knowledge about the domain of the information stored 

in relational databases. The users explain their information requirements to report writ­

ers through natural language communication, which refers to domain knowledge that is 

not explicitly captured within the database itself. The report writers use their acquired 

domain knowledge and technical expertise to translate the users' requests into formal 

SQL queries for extracting the necessary information. Thus, the users of legacy RDB 

systems always depend on report writers for bridging the gap between domain-level dis­

course and RDB query. 

Software agents can assist human users in a decision support environment by reasoning 

with information underlying the decision process; however, this requires the information 

to be structured using ontologies that formally capture the domain knowledge associated 

with that information. By developing the necessary ontologies within the system itself, 

and by introducing a simplified natural language interface, the proposed approach enables 

the user to directly access information without depending on the assistance of human 

intermediaries such as report writers. This implies that the structures of the information 

stored in RDB systems need to be represented in the form of ontologies. As such, I ex­

plore the possibility of converting an RDB schema to ontologies while keeping the RDB 

system's original design and functionalities intact. An RDB schema can be converted 

to ontologies in two steps: first, transforming the RDB schema to an RDF structure; 

and second, upgrading the RDF structure to an ontology. The first step has been fully 
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automated by several RDB-to-RDF conversion tools, namely Virtuoso Universal Server, 

SquirrelRDF, and the D2RQ Platform. The second step requires human involvement for 

manually upgrading the converted structures to ontologies using ontology editors such as 

Protege, TopBraid Composer, and OntoDLV. 

To overcome some of the issues raised above I propose a system architecture, called 

the Semantic Report Generation System (SRGS). In defining the architecture of SRGS, 

I focus on the following tasks: 

1. Develop a definition of a distributed system architecture that combines Semantic 

Web and MAS technologies in an intelligent middleware layer, which supports the 

building of ontologies from RDB structures, and provides the user with effective 

semantic query access to information in RDB systems. 

2. Examine to what extent one can realize such a system architecture using the existing 

software systems that have already been developed or envisioned in the context of 

the Semantic Web and MAS research. 

Tasks one and two are carried out in an iterative manner in which I identify existing 

software systems that can be integrated as components in the new system architecture 

and then refine the aixhitectural definition so that it can rely on the identified compo­

nents. 

The proposed system will allow the Database Administrator (DBA) to incrementally 

build ontologies from an RDB schema with the assistance of a software agent. The archi­

tecture takes advantage of the existing automated process for converting RDB schema 
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to RDF structure, and introduces a software agent to assist the DBA in developing a 

reference ontology from the RDF structure, human domain knowledge, and knowledge 

resources on the Semantic Web. Another software agent assists the user to develop a 

custom ontology, which defines user-specific concepts using entries from the reference on­

tology. In this approach, the agents interact with human actors throughout the ontology 

development process. The agents perform some of the technical tasks while the human 

actors make decisions. This role in ontology development adds a new dimension to the 

traditional user and DBA profiles. However, this does not require them to become tech­

nical experts fully specialized in the ontology development process because the agents 

are responsible for executing some of the technical tasks. 

The ontologies create a layer of semantic information structures on top of the existing 

legacy RDB system that enables semantic queries and allows agents to reason about the 

information stored in the RDB. In addition, the system includes a simplified natural 

language interface which enables the users to directly communicate their requests for 

information stored in the underlying RDB systems without depending on any human 

intermediaries. In this process, a software agent assists the users to formulate requests 

for information using the simplified natural language. 



Chapter 4 

The Architectural Model 

In defining the architecture of Semantic Report Generation System (SRGS), I begin by 

abstracting the aspects of the system that are relevant to my study topic. I am pri­

marily interested in the viewpoint of the user who accesses information in an existing 

relational database (RDB) system. The structure of the database and its contents are 

not controlled by the user. The user is aware that the structure and contents of the 

database may evolve over time. However, the requirements that cause such changes to 

be made are beyond the scope of my current interest. If the present user can influence 

such requirements, those influences occur outside of my model. I assume that the user 

has some knowledge about the domain as well as the source of information. 

The system requirements are described in Section 4.1; the global architecture of the 

system is presented in Section 4.2; agent roles are discussed in Section 4.3; and incorpo­

ration of existing Semantic Web and MAS components is discussed in Section 4.4. 
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4.1 The system requirements 

The system requirements are developed in three steps. Subsection 4.1.1 describes the 

requirements for a generic system that represents the basic functionality of user access 

to information in an RDB system in a way that is common to its many possible im­

plementations. The focus of 4.1.2 is on user-system interaction in legacy RDB system. 

Subsection 4.1.3 describes the requirements for user-system interaction for SRGS. 

The system requirements are represented in the form of use cases and actors. Rum-

baugh et al. (2004) define use case as a coherent unit of functionality expressed as a 

transaction among actors and the system. An actor may be a person, organization or 

other external entity that interacts with the system. 

4.1.1 The generic system 

The actors and high-level use cases of the generic system are shown in Figure 4.1. 

The actor of primary interest is the User. The other two actors, the Database Ad­

ministrator (DBA) and the Data Entry Operator (DEO), maintain the RDB structure 

and content respectively. 

The top four use cases of Figure 4.1 capture the generic system functions performed 

on behalf of the user, regardless of how these functions are executed. For example, in a 

legacy system the user typically performs these functions through a human intermediary 

who in turn accesses the computer system. In SRGS, the user performs the same functions 

through direct interaction with the computer system. 
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Manage 
System Access 

And User Profile 

Present Report 

Figure 4.1: The actors and high-level use cases of the generic system 

Manage System Access and User Profile 

System access is based on user authentication, which verifies the user's identity and 

specific access rights. The user can also specify a set of preferences contained in 

the user profile with regards to the various options available in the user interface. 

This general use case includes system help and tutorial assistance. 



CHAPTER 4. THE ARCHITECTURAL MODEL 46 

Accept Request for Information and Present Report 

In this use case, the system accepts request in which the user specifies what in­

formation should be retrieved and how it should be presented; the system then 

retrieves the information and presents it in the requested format. 

Manage Reports 

This use case allows the user to save, delete, reformat, and retrieve reports. 

Manage Ontology 

As the usage of data and the environment evolve there is a need to introduce new 

terms and modify some definitions of terms in the ontology. The ontology itself 

consists of two components. The first one, which I call the reference ontology, is 

incrementally developed from the structure of the RDB. It describes concepts and 

the semantic relationships between the concepts in an application domain. The 

second component, called the custom ontology describes the conceptual framework 

specific to a particular user, that can be directly translated to the reference on­

tology. Modifications of the rcferencc ontology occur when the DBA changes the 

structure of the database, or when the represented knowledge is updated due to 

external factors, such as changes in the organizational policies. Modifications of 

the custom ontology mainly occur when the user introduces new concepts and their 

relationships that are defined using constructs in the reference ontology. 

Maintain RDB data 

This use case allows the DEO to insert, delete, and modify data in the RDB system. 
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Maintain RDB schema 

This use case enables the DBA to modify the structure of the RDB system. When 

necessary, the DBA may add, remove, or change RDB tables and the columns 

withing the tables. 

4.1.2 Legacy RDB system 

In a legacy RDB system, some of the functionalities of the generic system shown in Figure 

4.1 are performed by the human intermediary report writer on behalf of the user while 

the other functionalities are performed by the system. The DBA and the DEO actors 

play the same roles as in a generic system, and the use cases are executed in similar ways 

by the system. The actors and the high-level use cases of legacy RDB system are shown 

in Figure 4.2. 

Below I briefly describe the four use cases from the perspective of a legacy RDB 

system. 

Manage System Access and User Profile 

The user delegates access right to the report writer who accesses the system. System 

access is based on user authentication, which verifies the report writer's identity, 

and authorization. This general use case may include system help and tutorial 

assistance. 

Accept Request for Information and Present Report 

In this use case, the report writer accepts a request, in which the user specifies 

what information should be retrieved and how it should be presented; the report 
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Figure 4.2: Legacy RDB system 

writer then queries the RDB to retrieve the information and presents it to the user 

in the requested format. If the request is not clear, the report writer engages with 

the user to further clarify the request through natural language communication. 

Manage Reports 

This use case allows the report writer to save, delete, reformat and retrieve reports 

on behalf of the user. The user typically receives printed copies of the report. 

Manage Ontology 

The management of the reference ontology occurs between the report writer and 

the DBA; the management of the custom ontology occurs between the user and 

the report writer. The ontologies represent knowledge and personal experience of 



CHAPTER 4. THE ARCHITECTURAL MODEL 49 

the actors informally recorded in electronic and paper-based documents or simply 

remembered by the actors. Managing both ontologies involve natural language 

communications between the actors. For instance, the report writer informs the 

user about modifications of concepts in the reference ontology; the user informs 

the report writer about a new concept the user wants to introduce to the custom 

ontology. 

Maintain RDB data 

This use case provides the same services as specified in the generic system. 

Maintain RDB schema 

This use case provides the same services as specified in the generic system. 

This process of negotiation and delegation between the user and the report writer is 

often time consuming, resulting in delays and costs. 

4.1.3 The Semantic Report Generation System (SRGS) 

In SRGS, the user directly interacts with the system that performs the functionalities in 

the top four use cases shown in Figure 4.1. The short descriptions of the use cases are 

as follows. 

Manage System Access and User Profile 

System access is based on user authentication, which verifies the user's identity, and 

authorization. The user-system communication occurs in an interactive manner. 

The user can specify personal preferences for communicating with the system. The 
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system helps the user to specify personal preferences and manages them. This 

general use case includes system help and tutorial assistance. 

Accept Request for Information and Present Report 

This use case allows the user to directly communicate report requests to the system. 

In the request, the user specifies what information should be retrieved and how it 

should be presented. If the user's request is not clear, the system asks the user 

to further clarify the request. This clarification process is an interactive one in 

which the system ensures that it understands the user's request. The system tries 

to mimic the role of the report writer in legacy RDB system. It then retrieves the 

information and presents in the requested format. 

Manage Reports 

This use case allows the user to save, delete, reformat and retrieve reports. 

Manage Ontology 

In SRGS, the reference ontology formally represents knowledge originating from 

the underlying relational database, human actors in the system, and ontological 

knowledge available on the Semantic Web. The DBA interacts with the system 

in building and maintaining the reference ontology. Thus, the DBA's actor profile 

now includes the new role of managing the reference ontology in addition to the 

traditional role of managing RDB systems. The custom ontology allows the user 

to introduce user-specific concepts and their relationships on top of the reference 

ontology. The user now has the additional role of managing the custom ontology. 
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Maintain RDB data 

This use case provides the same services as specified in the generic system. 

Maintain RDB schema 

This use case provides the same services as specified in the generic system. 

The functions of each high level use case can be further specified by decomposing into 

simpler use cases. I discuss decomposition of the following two high-level use cases. 

1. Accept Request for Information and Present Report 

The decomposition of the Accept Request for Information and Present Report use case 

is shown in Figure 4.3. The decomposed uses cases are grouped by their functionalities 

into the use cases that directly communicate with the user: the Front End, and the use 

cases that communicate with the legacy RDB system: the Back End. The Front End 

and the Back End can reside on different machines and communicate through a network. 

In general, a Back End can support multiple Front Ends, and a Front End can interact 

with multiple Back Ends. 

In the Front End, the Accept Request for Information (SNL) and Present Results use 

case allows the user to formulate request for information in a Simplified Natural Language 

(SNL). The request contains domain-specific terms that specify the information to be re­

trieved, and keywords that describe the format for presenting the retrieved information. 

Once the request is accepted, the Parse and Interpret SNL Request use case produces 

an intermediate representation of the user request, and the Verify Request Ontology use 

case ensures that each statement as a whole in the request is semantically correct. If the 
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Figure 4.3: Accept request for information and present report 

SNL request is valid, the Generate SPARQL Script use case creates a SPARQL script 

from the intermediate representation of the SNL request. The Front End then sends 

the SPARQL script to the Back End for further processing. The Front End receives the 

SPARQL results sent from the Back End. The SPARQL results are then formatted as 

report and presented by the Format and Display Report use case. 

In the Back End, the Accept Request for Information (SPARQL) and Present Results 

use case receives the SPARQL script and translates it to equivalent SQL queries by the 

functions in the Convert SPARQL Script to SQL Queries use case. The Query RDB 

and Present Results use case then executes the SQL queries on the RDB system and 

sends the SQL results to the Convert SQL Query Results to SPARQL Query Results use 

case, which translates the SQL query results to SPARQL results. The Accept Request for 

Information (SPARQL) and Present Results use case sends the SPARQL results to the 
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Front End. 

2. Manage Ontology 

The decomposition of the Manage Ontology use case is shown in Figure 4.4. The use 

cases are grouped by their functionalities into use cases that directly communicate with 

the user, the Front End; and use cases that communicate with the DBA, the Back End. 

Back End Front End 
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Custom Ontology Maintain 
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Maintain 

ROB Schema 
Manage Ontology 

Update 

Custom Ontology 
User DBA 

Display 
Ontology Changes Maintain 

Consistency of 

leference Ontolog' 

Update 

Reference Ontology 

Figure 4.4: Manage ontology 

The Front End initially imports the reference ontology when it connects to the Back 

End. While importing the reference ontology, the functions of the Import Reference On­

tology use case in the Front End rely on the functions of the Export Reference Ontology 

use case in the Back End. The Initialize Custom Ontology use case allows the user to 

create a conceptual framework specific to the user. Through the functions in the Update 

Custom Ontology use case, the user can modify the definition of user-specific concepts 
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in the custom ontology. When the reference ontology is updated in the Back End, the 

Maintain Consistency of Reference Ontology use case ensures that the updates are also 

applied to the reference ontology in the Front End. The reference ontology updates are 

displayed to the user by the Display Ontology Changes use case. 

In the Back End, the Export Reference Ontology use case sends a copy of the reference 

ontology to the attached Front End. The Maintain RDB Schema use case allows the 

DBA to modify the structure of the RDB by changing the RDB schema. When the 

DBA changes the RDB schema, the Maintain Reference Ontology use case incorporates 

the schema changes into the reference ontology with the help of the Update Reference 

Ontology use case. 

4.2 The multiagent architecture of SRGS 

At the high level, SRGS consists of two subsystems: User Subsystem (US) and Database 

Subsystem (DBS). The primary functions of the US include accepting the user's request 

for information, presenting reports, and developing the custom ontology. The DBS is 

responsible for retrieving information from the legacy RDB system and developing the 

reference ontology. In the basic architecture, each subsystem is comprised of an agent 

and an environment which contains several software components. The agent perceives 

the behaviors of the components in the environment and influences their future actions. 

Subsection 4.2.1 describes the basic architecture of the system in which a single user is 

connected to the US which is attached to one DBS. Subsection 4.2.2 through 4.2.5 present 

three different versions of the system architecture with regards to the multiplicity of users 

and the subsystems. 
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4.2.1 The basic architecture 

The basic architecture is described using a very simple configuration of SRGS. It consists 

of a single US and a single DBS, connected through a wide area network, with a single 

user accessing the system. This configuration is depicted in Figure 4.5. 

User User Interface Environment 
(UIE) 

User Subsystem (US) 

User Interface 
Agent (UIA) 

WAN 

Database Subsystem (DBS) 

Database Interface 
Agent (DBIA) 

Database Interface Environment 
(D8IE) 

ROB 
System 

DBA 

J°E° 
Figure 4.5: Single User Subsystem to single Database Subsystem 

The User Subsystem 

The architectural structure of the US is shown in Figure 4.6. The User Interface En­

vironment (UIE) comprises the components that provide the main subsystem functions. 

The primary purpose of the UIE is to execute the routine user requests efficiently, without 

the need to engage in reasoning in the sense of artificial intelligence techniques. The UIE 

components can be designed and implemented using the conventional Object-Oriented 

Software Engineering (OOSE) methodology, with an emphasis on efficient performance. 
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The User Interface Agent (UIA) can observe the events in the environment, including 

the behavior of individual components, and act on the environment to influence the be­

havior of its components. The agent provides the practical reasoning (i. e., deliberation 

and planning) capabilities to the subsystem, enabling it to autonomously resolve arising 

problems without intervention of human experts. Its presence introduces the qualities 

of flexibility, adaptability, tolerancc to variations in user preferences and practices, and 

evolution of the subsystem behavior according to changing user requirements. Those 

qualities are necessary in order for the system to meet the requirements formulated in 

Chapter 3 without additional human assistance. 
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User Interface Environment (UIE) 

Figure 4.6: The User Subsystem 

User Interface Environment 

All the components that communicate with the user and the UIA are grouped into the 

UIE. The solid lines represent direct communication that occurs between the user, the 
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components and the UIA. The dashed line represents communication that occurs between 

the user and the UIA. The UIE consists of the following main components: 

User Interface 

The User Interface (UI) enables all communications between the user and the sys­

tem. It provides the functionalities with regards to accessing the system as formu­

lated in 4.1.3. 

SNL Processor 

The SNL Processor component enables the user to interact with the system using 

the SNL. The user formulates requests for information and modifications to the 

custom ontology using SNL statements. The SNL processor generates intermediate 

representations from these statements in three steps. First, it performs a lexical 

analysis in which it breaks the statements into smaller pieces called tokens, which 

are atomic units of the statements such as words and symbols. Second, it performs 

a syntax analysis by parsing the token sequence to identify the syntactic structure 

of the statements. Third, it performs a semantic analysis by verifying the custom 

and reference ontology to ensure that the tokens are positioned according to their 

semantic relationships so that each statement as a whole is meaningful. Once suc­

cessfully generated, the SNL Processor forwards the intermediate representations 

to the relevant component. If the statements concern a request for information, 

The SNL Processor forwards the statements regarding what information is to be 

extracted to the SPARQL Generator, and the statements for formatting the ex­

tracted information to Report Manager. Otherwise, it forwards the statements to 

the Ontology Manager. 
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SPARQL Generator 

The SPARQL Generator constructs a SPARQL script from the intermediate repre­

sentation of user requests for information received from the SNL Processor. While 

constructing a script, it refers to the Ontology Manager for the RDB-specific names 

of terms used in the requests. Once a SPARQL script is generated, the UIA sends 

it to the DBS for further processing. 

Report Manager 

The Report Manager presents requested information in the form of reports. It 

receives SPARQL query results from the DBS and formats the results according 

to the user's formatting preferences. It communicates with the Ontology Manager 

to replace any database-specific name in the report with its primary name if the 

database-specific name is not the primary name. The Report Manager allows the 

user to view, reformat, save, and delete reports. 

Ontology Manager 

The Ontology Manager is responsible for maintaining the custom ontology and pro­

viding ontological services to the SNL Processor and SPARQL Generator. The cus­

tom ontology defines user-specific concepts and their relationships using constructs 

from the reference ontology. In order to keep the custom ontology in consistency 

with the reference ontology, any update in the reference ontology needs to be re­

flected in the custom ontology, if the update affects the definitions of any concepts 

in the custom ontology. When there is an update in the reference ontology, the 

UIA checks whether this update affects the custom ontology. If it does, the UIA 

makes the required changes in the custom ontology. If the update requires simple 
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operation such as renaming a reference-ontological construct, the UIA performs 

this action without involving the user. If it requires more complex operations, such 

as restructuring certain relationships, the UIA engages with the user in the process 

of updating the custom ontology. 

Natural Language Lexical Knowledge Representation 

This component provides the meaning and semantic-relations between natural-

language concepts in both machine processable and human readable format. In 

principle, it contains language ontology which can be enhanced by ontological de­

velopment by a software agent but doing so would be beyond the scope of this 

thesis. The UIA and the SNL Processor communicates with this component to 

look up meaning and relationships between natural language terms. 

Communication Service, Access Control and Security 

This component facilitates communications that occur between the US and the 

DBS. User privilege and security features are enforced by this component. Sys­

tem access is based on user authentication, which verifies the user's identity and 

authorization to access specific resources. 

User Interface Agent 

The UIA interacts with the user through the UIE. The user formulates requests for infor­

mation and develops a custom ontology through the User Interface. The user interacts 

with the system using the SNL. The UIA assists the user in the process of formulating 

requests for information as well as developing and maintaining a custom ontology. The 

UIA invokes different components in the UIE in order to carry out its tasks. It perceives 
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the behaviors of the components and through its actions the agent can influence the 

behavior of the components. 

The Database Subsystem 

The architectural structure of the DBS is shown in Figure 4.7. The Database Inter­

face Environment (DBIE) comprises the components that provide the main subsystem 

functions. The primary purpose of the DBIE is to extract requested information from 

the legacy RDB system, without the need to engage in reasoning in the sense of artificial 

intelligence techniques. The DBIE components can also be designed and implemented in 

the same way as the UIE components. 
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Figure 4.7: The Database Subsystem 

Database Interface Environment 

All the components that communicate with the DBIA, the DBA, and the DEO are 
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grouped into the DBIE. The solid lines represent direct communication that occurs be­

tween the components. The dashed line represents communication that occurs between 

the DBA and the DBIA. The DBIE consists of the following main components: 

User Interface 

The User Interface (UI) provides an access point in which the DBA interacts with 

the DBS. Through the UI the DBA builds and maintains the reference ontology 

with the assistance of the DBIA and modifies the structure of the RBD system. 

SNL Processor 

The SNL Processor component enables the DBA to interact with the system using 

SNL statements. The DBA interacts with the DBIA in developing and maintaining 

the reference ontology. The DBA enters SNL statements through the User Interface. 

The SNL processor then generates an intermediate representation from the DBA's 

statements in the same three steps the SNL Processor in the US follows. Once 

the intermediate representation is generated, the SNL Processor forwards it to the 

DBIA if the interaction concerns developing and maintaining the reference ontology, 

or to the RDB system if the interaction concerns managing the database. 

Ontology Manager 

The Ontology Manager is responsible for the coordination and maintenance of 

the reference ontology. The DBS exports a copy of the reference ontology to the 

attached US. Thus the reference ontology is replicated in both subsystems. The 

Ontology Manager ensures that any modifications to the reference ontology in the 

DBS are propagated to the instances of reference ontology in all participating USs. 
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Natural Language Lexical Knowledge Representation 

This component is identical to Natural Language Lexical Knowledge Representation 

in the US. The DBIA communicates with this component while developing and 

maintaining the reference ontology. 

Translator 

The Translator generates SPARQL query results from RDB data in three steps. 

First, it converts the SPARQL script to SQL queries; second, it executes the SQL 

queries 011 the RDB system and retrieves the SQL query results; and filially it 

converts the SQL query results to SPARQL query results. The DBIA then sends 

the SPARQL results to the US. 

Schema to Base Ontology Mapper 

This component automatically generates a base ontology from the underlying RDB 

schema. The base ontology represents an RDB table name as a class and the 

column names of the corresponding table as properties of the class. It also captures 

the relationships between RDB tables. The base ontology serves as a rudimentary 

ontology from which the reference ontology is incrementally developed. 

Schema Monitor 

The Schema Monitor always listens for change in the RDB schema made by the 

DBA. When it detects a schema change it notifies the Schema to Base Ontology 

Mapper component to reflect the modifications in the reference ontology. 

Communication Service, Access Control and Security 

This component facilitates all communications between the US and the DBS. By 
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enforcing security features it ensures that no unauthorized access occurs in the 

RDB systems. 

RDB System 

The RDB system contains relational data which the user of SRGS is interested in. The 

Data Entry Operator (DEO) may insert, delete, or modify data in the RDB system. 

SRGS is not affected by such modifications. 

Database Interface Agent 

The Database Interface Agent (DBIA) communicates with the DBA and the DBIE. 

The DBIA is primarily responsible for assisting the DBA in developing and maintaining 

the reference ontology. It invokes different components in the DBIE. It perceives the 

behaviors of the components and through its actions the agent can influence the behavior 

of the components. 

4.2.2 Multiple Users accessing single User Subsystem 

In this version of the system architecture, several users may access the US which is at­

tached to only one DBS. The multiplicity of users affects the architecture in the following 

ways: 

1. When there are multiple users accessing the US at the same time, a single UIA 

is inadequate for attending to all users simultaneously. The preferred solution is 

to have an agent serving each user. The UIA can dynamically create an agent or 

awaken up an inactive agent from the background, and assign the agent to the 

additional user. The architecture of the system is illustrated in Figure 4.8. 
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2. Some elements in the UI are customized to each user's preferences for interacting 

with SRGS. Some elements that serve common functionalities to all users remain 

the same as in the basic configuration of the architecture. The customization of 

the UI is depicted in Figure 4.9. 

3. A custom ontology needs to be created for each user. The Ontology Manager main­

tains a user's custom ontology by defining the terms that the user may introduce 

in the custom ontology. 

4. The Report Manager maintains each user's history of preferences for report formats. 

User Subsystem (US) Database Subsystem (DBS) 

Database Interface 
Agent (DBIA) 

User i 

• • 

• • 
UIA 

Database Interface Environment 
(OBIE) 

ROB 
System 

User s~ 

User Interface Environment 
(UIE) 

V 

Figure 4.8: Multiple Users accessing SRGS 

The DBS is not affected by this change as the DBIA's tasks remain the same as 

in the basic architecture, regardless of the multiplicity of the users or the USs. The 
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Figure 4.9: Customized User Subsystem for multiple users 

DBIA's workload may increase in which case more resources can be added in the actual 

implementation. 

4.2.3 Multiple User Subsystems to single Database Subsystem 

In this version of the system architecture, multiple USs interact with a single DBS. This 

configuration has no effect on the internal design of each US. Implementing this version 

of the architecture may require certain hardware configurations which are beyond the 

scope of this thesis. 

4.2.4 Single User Subsystem to multiple Database Subsystems 

In this version of the system architecture, one US is attached to multiple DBSs. The 

requirement is that the multiplicity of the DBS is transparent to the user accessing the 
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US. This transparency can be achieved in the following manner: 

1. I assume that there are n DBSs attached to one US. The SPARQL Generator 

decomposes the SPARQL script into up to n SPARQL scripts. The UIA then 

sends each SPARQL script to its respective DBS. Once the scripts are processed, 

the UIA receives a set of SPARQL results from the DBSs and forwards them to 

the Report Manager. Note that the UIA must receive SPARQL query results from 

all the DBSs. The Report Manager aggregates the set of SPARQL results into one 

resultset. This scenario is illustrated in Figure 4.10. 

2. The reference ontology in the UIE is now a union of n reference ontologies, where 

n is the number of DBSs. The Ontology Manger updates the reference ontology 

whenever the reference ontology in the DBS is changed. The modified US is illus­

trated in Figure 4.11. 
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Figure 4.11: Customized User Subsystem for multiple Database Subsystems 

4.2.5 Multiple User Subsystems to multiple Database Subsys­

tems 

In this version of the system architecture, several users access the US, which is attached 

to more than one DBSs. It is a combination of the scenarios discussed in Subsection 

4.2.2 and Subsection 4.2.4. Several components in the UIE need to be changed in order 

to accommodate the multiplicity of both subsystems. The User Interface is customized 

for each user. The Report Manager maintains each user's history of preferences of report 

formats. The Ontology Manger maintains a custom ontology for each user. The reference 

ontology is a union of n number of ontologies, where n is the number of DBSs. 
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4.3 Agent roles 

This section provides the specific roles performed by the UIA and the DBIA in SRGS. 

User Interface Agent 

1. Assistance in SNL dialogue 

The UIA assists the user in formulating requests for information and developing a 

custom ontology. The user interacts with the system using SNL statements. The 

SNL processor generates an intermediate representation from these statements in 

three steps. In each step, the SNL processor may produce a warning or an error 

when the statements are formulated incorrectly. If the SNL processor produces a 

warning, the UIA perceives this warning and reconciles with the SNL Processor 

to resolve any arising issues in the statements. If the SNL processor produces an 

error, the UIA engages with the user to correct the error in the statements. 

2. Searching the Semantic Web 

The agent can search the Semantic Web to look for two things. First, it can search 

for language ontologies such as WordNet to look up synonyms and hypernyms of 

terms. Second, the agent can search for domain ontologies to include terms that 

are acceptable in wider context. 

3. Development of custom ontology 

The UIA assists the user in developing a custom ontology, which describes the 

conceptual framework specific to a the user that can be directly translated to the 

reference ontology. In order to keep the custom ontology in consistency with the 

reference ontology, the UIA ensures that any update in the reference ontology is also 
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reflected in the custom ontology if the update affects any definitions of concepts and 

their relationships in the custom ontology. The UIA has the technical knowledge of 

the ontology development process. In addition, the UIA refers to publicly available 

ontological resources on the Semantic Web. 

4. Customizing the behavior of User Interface 

While assisting the user with SNL dialog, the UIA can observe if the user is typically 

making a certain types of choice, and offer this choice first in its next interaction. 

This choice can be an explicit one in which the user specifies certain preferences 

or an implicit one in which the agent continuously learns by observing the user's 

course of actions. 

5. Coordination of reference ontologies 

There may be multiple reference ontologies if there are multiple DBSs attached to 

the US. The UIA needs to resolve any conflicting situations that may arise due to 

the presence of multiple reference ontologies in the US. There can be two terms 

that are identical across two different ontologies but they may have completely dif­

ferent meaning in their respective contexts. While developing the custom ontology, 

the user needs to conveniently see these differences. The UIA disambiguates the 

terms that are seemingly identical but have different meaning. The UIA does this 

by assigning unique tags to the constructs when they are retrieved from different 

reference ontologies. 
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Database Interface Agent 

1. Assistance in SNL dialogue 

The DBIA assists the DBA to interact with the system while developing and main­

taining the reference ontology. The DBA interacts with the system using SNL 

statements. The SNL processor generates an intermediate representation from 

these statements in three steps. In each step, the SNL processor may produce 

a warning or an error when the statements are formulated incorrectly. If the SNL 

processor produces a warning, the DBIA perceives this warning and reconciles with 

the SNL Processor to resolve any arising issues in the statements. If the SNL pro­

cessor generates an error, the DBIA engages with the DBIA to rectify the error in 

the statements. 

2. Searching the Semantic Web 

The DBIA can search the Web to look for two things. First, it can search for 

language ontologies such as WordNet (Miller, 1995) to lookup synonyms and hy-

pernyms of terms. Second, it can search for domain ontologies to include terms 

that are acceptable in wider context. 

3. Development of reference ontology 

The DBIA interacts with the DBA in developing and maintaining a reference ontol­

ogy. The Schema to Base Ontology Mapper component analyzes the RDB schema 

and generates a Mapping File, which contains RDF models of the RDB schema. 

The Mapping File then serves as a base ontology from which the DBA incremen­

tally builds a full reference ontology with the assistance of the agent. The DBIA is 
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equipped with the technical knowledge of ontology development process. In addi­

tion, it refers to ontological resources on the Semantic Web. 

4. Customizing the behavior of User Interface 

While assisting the DBA with SNL dialogue, the DBIA can observe if the DBA 

is typically making a certain types of choice, and offer this choice first in its next 

interaction. This choice can be an explicit one in which the DBA specifies certain 

preferences or an implicit one in which the agent continuously learn by observing 

the DBAs course of actions. 

In a multiagent environment, several instances of the same role can be assigned to 

multiple agents. It is also possible to assign several instances of different roles to the 

same agent. Some of the roles described above are demonstrated in the use case scenarios 

presented in Chapter 5. 

4.4 Incorporation of existing system components 

The proposed architecture relies on existing software tools that have been developed as 

results of research in the Semantic Web and MAS. This subsection presents the main Se­

mantic Web and MAS tools that can be used as components in the proposed architecture. 

The D2RQ Platform (Bizer and Seaborne, 2004) can provide the functionalities of 

the Translator, Schema to Base Ontology Mapper, and Schema Monitor components in 

SEGS. Its front-end, the D2R Server, accepts SPARQL queries and presents SPARQL 

results (RDB triples). The D2RQ Engine is the core of the platform which provides 

the conversion service. It analyzes the structure of the RDB and generates a Mapping 
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File which is RDF representation of the RDB schema. In SRGS, the Mapping File is 

considered as the base ontology. The Mapping File is further described in A.l. D2RQ 

Engine uses the Mapping File to convert RDB data to RDF triples. 

The D2RQ Platform is an on-demand mapping tool, which dynamically translates 

RDB data to RDF triples instead of completely transforming an RDB to an RDF triple-

store. If a data value in the database is changed, the D2RQ Platform can instantly 

display the new value. However, when a column or a table in the RDB is altered or 

dropped it does not display the new value. In other words, the D2RQ Platform fails 

to detect any change in the RDB schema. In order to overcome this limitation, I have 

added an extension to the D2RQ Platform. The extension enables the D2RQ Engine to 

detect any RDB schema change and display the modified values. The extension is further 

discussed in Appendix A.2. The three DBS components that provide the functions of 

the D2RQ Platform are shown in the dashed box in Figure 4.12. 

JADE (Bellifemine et al., 2007) is an agent-oriented middleware that provides domain-

independent infrastructure for developing multiagent systems. JADE complies with the 

Foundation for Intelligent Physical Agents (FIPA) specifications and includes a set of 

tools that supports debugging and deployment tasks. The agent platform can be dis­

tributed across multiple computers and the configuration can be controlled via a remote 

Graphical User Interface. The configuration can be changed at run-time by creating new 

agents. 
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Figure 4.12: The role of D2RQ Platform in the DBS 

In order for Jade agents to work with the D2RQ Platform, a glue component is 

required. Jena (McBride et al., 2010), a Java based framework for extracting data from 

RDF triplestore, can function as an interfacing component between Jade and the D2RQ 

Platform. A JADE agent uses Jena's SPARQL capabilities for executing a SPARQL 

query on the D2RQ Platform. 



Chapter 5 

Modeling and Accessing Information 

in SRGS 

In this chapter, I present three scenarios that illustrate the behavior of the proposed 

architecture of the Semantic Report Generation System (SRGS). Each scenario demon­

strates a specific behavioral aspect of SRGS. The first scenario shows how the user can 

access information stored in the RDB system that underlies SRGS. The other two sce­

narios show the activities involved in developing the SRGS ontologies from the schema 

of the RDB. 

In the scenarios, I personalize the actors and the software agents by giving them 

human-like names: the user is called Henry, the User Interface Agent (UIA) is called 

Alice, the Database Administrator (DBA) is called Helen, and the Database Interface 

Agent (DBIA) is called Adam. For consistency, the human actors' names start with the 

letter H, and the agents' names start with A. The remainder of this chapter is organized 

as follows: agent oriented ontology development is discussed in Section 5.1; a scenario 

75 
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on accessing information using SRGS is presented in 5.2; a scenario on developing a 

reference ontology from an RDB schema is given in 5.3; and a scenario on developing a 

custom ontology, which defines user-specific concepts using constructs from the reference 

ontology, is shown in 5.4. 

5.1 Ontology development by software agents 

In this section, I analyze the roles of the SRGS agents as ontology builders. The notion 

of ontology development by software agents is not mentioned in the literature I have 

reviewed; it is a novel aspect of this approach. In this approach, the agents interact with 

human actors throughout the entire ontology development process. The agents perform 

some of the technical tasks and make suggestions, while the human actors make decisions. 

This human actor role in ontology development adds a new dimension to the traditional 

user and DBA profiles. However, this does not require them to become technical experts 

fully specialized in the ontology development process because the agents are responsible 

for executing some of the technical tasks. 

The SRGS agents must have the requisite knowledge of how to build an ontology in 

order to fulfill their role as ontology builders. That knowledge itself is formally repre­

sented as an ontology (for the ontology-building knowledge domain), to which we refer 

as meta-ontology (note that this usage of the term differs from its established meaning 

in the realm of philosophy and metaphysics). The meta-ontological knowledge includes 

an understanding of the semantics of general ontological notions, such as class and rela­

tionship. The agents rely on their meta-ontology to provide technical guidance to their 

human partners in the construction of concrete ontologies for the specific knowledge do­



CHAPTER 5. MODELING AND ACCESSING INFORMATION IN SRGS 77 

main to which the relational database belongs. 

An ontology language is required to formally define classes, properties and relation­

ships in the ontology. The Web Ontology Language (OWL) provides the necessary prim­

itives for defining concepts and their relationships. OWL has three sublanguages: OWL 

Lite, OWL DL, and OWL Full. OWL Lite, which supports a classification hierarchy and 

simple constraints, is intended for building ontology from a thesauri or a taxonomy of 

terms; OWL DL provides maximum expressiveness with certain restrictions while retain­

ing computational completeness and decidability, which means that all conclusions are 

guaranteed to be computable in finite time; OWL Full provides maximum expressiveness 

and the syntactic freedom of RDF (for instance, a class can be treated as an instance of 

another class) but does not guarantee computational completeness, therefore, a reason­

ing software may not be able to support complete reasoning for every feature of OWL 

Full (McGuinness and Harmelen, 2004). In this thesis, I use OWL DL as I am more 

familiar with it, and it provides all the required primitives to develop SRGS ontologies. 

Section 2.4 summarizes the main OWL DL primitives. The scenarios presented in the 

next sections are accompanied with relevant OWL statements to illustrate how agents 

can use these primitives while building an ontology. 

OWL is based on the Open World Assumption (OWA). This assumption states that 

information presented in a knowledge base is not complete; therefore, when a statement 

cannot be directly proved from the asserted facts and rules of inference, the reasoner 

cannot infer that thereby the statement is false. OWA is suitable for information pre­

sented on the Web because one cannot assume its completeness. On the other hand, an 
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information system of an enterprise or a university is considered complete, and reasoning 

within it should be based on the Closed World Assumption (CWA). Within SRGS, the 

reasoning involving the information stored in the RDB is based on CWA; therefore, any 

statement that is not explicitly provable to be true is considered false. (However, the 

SRGS agents use OWA when reasoning about information contained in external knowl­

edge sources on the Semantic Web.) Using OWL to develop an ontology from an RDB 

schema thus presents a contradiction: OWL uses OWA whereas CWA is more appropri­

ate for the RDB. There are suggestions (Tao et al., 2010; Horrocks et al., 2005) towards 

resolving this issue, but no standard mechanism has been recommended by the W3C. 

There is another contradiction concerning the use of OWL for reasoning within SRGS. 

The CWA is often complemented by the Unique Name Assumption (UNA), which states 

that names in a knowledgebase are unique and refer to distinct instances. OWL does not 

make UNA since there can be different names denoting the same instance. However, it 

provides several mechanisms to address the issue of non-uniqueness. The common solu­

tion is to explicitly state using the "owl:sameAs" primitive that two Uniform Resource 

Identifier (URI) references refer to the same instance. The uniqueness of the two URI 

references satisfies UNA in an ontology. 

In SRGS, there can be multiple names describing the same instance of a given concept. 

Among them, a primary name is designated by the human actor as the official name of 

the concept instance in the reference ontology; each concept instance derived from the 

RDB schema also has a base name, which may or may not be the same as the primary 

name. All possible names of the same concept instance are semantically linked to its pri­
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mary name. The system tolerates the usage of the other possible names by human actors, 

but the agents refer to the primary name when reasoning and interacting with the human 

actors. One drawback of OWL when it comes to implementing such a naming convention 

is that it does not provide a mechanism to establish a primary name in the ontology. As 

OWL continues to mature I believe this is one aspect where further research can be done. 

In order to realize the proposed naming convention for SRGS, the following mech­

anism is adopted. When defining the name of a concept instance in the ontology the 

SRGS agents append to the name a leading tag followed by a period (.) which works as 

a separator between the tag and the name. The tags "bn", "pn", and "un" are used for 

each base name, primary name, and user-specific name respectively. The leading tag al­

lows the SRGS agents to identify the type of the name of a concept instance. The agents 

remove the tag from a name before displaying it to the human actors. OWL also does 

not support blank space in names. In SRGS, the agents insert a hyphen (-) to replace 

any blank space appearing in names entered by the user or retrieved from external lexical 

dictionaries. The agents remove the hyphen (-) from a name and insert a blank space 

when displaying the name to the user. 

In this thesis, I use OWL for illustrative purposes only, and ignore its limitations dis­

cussed above. OWL was conceived with the goal of building ontologies for the Semantic 

Web. Due to its lack of CWA and UNA, OWL may not be the ideal choice for modeling 

ontology developed from an RDB schema. OntoDLP (Ricca et al., 2009), which is based 

on Answer Set Programming, is more suitable for representing an RDB schema as on­

tology since it complies with both CWA and UNA. I choose OWL as it is the commonly 
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known standard ontology language for the Semantic Web. The research question of find­

ing or developing an ontology language that is best suited to the requirements of SRGS 

is beyond the scope of this thesis. 

In SRGS, agents reason with their own meta-ontologies, ontologies developed within 

SRGS, and public ontologies on the Semantic Web. The agents adopt the CWA when 

reasoning with ontologies that are within the boundary of SRGS, and the OWA when 

reasoning with ontological constructs imported from external knowledge resources. A 

detailed description on reasoning from imported ontological constructs is given in Ricca 

et al. (2009). 

The SRGS agents are also equipped with the know-how of specific steps involved in 

the ontology construction. In the scenarios that follow, the methodological steps in devel­

oping ontology (discussed in Subsection 2.3.2) have been adapted for SRGS. The human 

partners make decisions and also need a good understanding of the ontology building 

process, but owing to the agent guidance need not have the level of expertise of specialist 

ontology developers. 

In SRGS, an agent in interaction with a human partner builds a reference ontology 

from an RDB schema. In this process, the D2RQ Platform analyzes the RDB schema and 

generates a Mapping File, which contains serialized RDF models of the RDB schema. 

It is written in the D2RQ mapping language — a declarative language for describing 

the relation between an ontology and an RDB schema. The Mapping File serves as a 

base ontology from which the agent, in interaction with the human partner incrementally 
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builds a full reference ontology following the adapted know-how of ontology development 

steps. 

The agent has the capability to understand the syntax of the Mapping File. It ex­

tracts the names of classes and properties from the Mapping File, and uses them to define 

the corresponding base classes and properties in the reference ontology. It then interacts 

with the human partner to extend the ontology with more general classes, and to intro­

duce the properties with meaningful names. The agent also extracts from the Mapping 

File the relations between classes, and with the help of the human partner defines the 

corresponding class-relations in the reference ontology. Every concept in the reference 

ontology must ultimately be reducible to the concepts of the base ontology; otherwise, 

high-level queries using reference ontology may not be translatable to SQL queries. The 

Mapping File is further elaborated in Appendix A.l 

A custom ontology is developed using relevant constructs from the reference ontology. 

In this process, another agent assists the user to introduce user-specific concepts in the 

custom ontology. 

5.2 Scenario 1: Accessing information in SRGS 

This scenario shows how the user (Henry) can request for information stored in the RDB 

through the User Subsystem (US). The starting assumption is that the US has a copy of 

the reference ontology, which is consistent with the reference ontology in the DBS. The 

US also has a custom ontology, which defines user specific concepts using constructs in 

the reference ontology. Both ontologies are used in processing Henry's request. 
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Henry formulates a request for report in the Simplified Natural Language (SNL) and 

submits it through the User Interface (UI). An example of the SNL request is shown in 

Figure 5.1. 

Generate list of students that registered for Fall 2011. 

Include in the list student ID, first name, last name, date of 

Format report using format-k with title: Registered Students; 

subtitle: Date: today's date; sort list alphabetically by Last 

Figure 5.1: The SNL request for report 

Some assumptions are made about the SNL request. There are three categories of 

words in the request. The first category consists of control structure of the language based 

on simplified English; the second category consists of commands that specify invocation 

of actions by system components; and the third category comprises the words that have 

technical meaning in the custom and reference ontologies. In all three categories user has 

the flexibility of defining custom terms. In this scenario, we only consider the translation 

of custom ontology terms. A request has three statements. The first statement tells what 

information is to be retrieved; the second statement gives additional details as to what 

specific information is to be included in the report; and the third statement describes 

how the information is to be formatted. 

The SNL Processor generates an intermediate representation of the request in three 

steps. In the first step, it performs lexical analysis in which it breaks the SNL text into 

small pieces called tokens, which are atomic units of the request, such as words and sym­

bols. In the second step, the SNL Processor performs syntactic analysis to ensure that 

birth, CGPA. 

Name. 
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the grammar of the SNL text is correct. In the third step, it does semantic analysis to 

verify the semantic correctness of the statements according to the custom and reference 

ontologies. During this step, it recognizes the actions and verifies whether all parameters 

that are needed for these actions are present. It also creates intermediate representation 

where every ontological term is brought to the base name. 

In each of these three steps, the SNL processor may produce a warning or an error. 

For example, in lexical analysis, the SNL processor searches the custom and reference 

ontology to determine whether a word has a technical meaning if it is found in the on­

tologies. A word may be found to have both general meaning in the SNL Processor's 

vocabulary, as well as technical meaning according to the ontologies. The SNL Processor 

flags this word as a warning. The User Interface Agent (Alice) perceives this warning and 

reconciles with the SNL Processor. In such case, the technical meaning takes precedence 

over the general meaning. For example, the words First and Name both have general 

meaning in English, but together First Name is found as a property of the class Student 

in the reference ontology, therefore, First Name has a technical meaning. Alice does not 

display this warning to Henry. She instructs the SNL Processor to accept First Name as 

a technical term instead of general words. 

The SNL processor also flags an error when a word has neither general nor technical 

meaning. Alice perceives such error messages and analyzes them by consulting a lexical 

dictionary. Using the word in the error message, Alice searches the lexical dictionary 

for matching words and displays them to Henry with an explanation that a word in the 

request does not have any general or technical meaning. Henry selects the proper word 
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and Alice passes the word to the SNL Processor. 

For the request in Figure 5.1, the SNL Processor finds matching constructs for each 

word except registered. It produces the following error message: 'registered' not found in 

the ontology. Alice perceives this error message and using the word registered searches 

the lexical dictionary for synonyms. Alice compares every found words with the primary 

or user-specific names of ontology constructs and if a match is found, asks Henry for 

approval. If no match is found, Alice displays the primary and user-specific names of 

classes that have the property name StudentID and uses the selected name for further 

processing. In this example, Registration is the class name that is presented to Henry by 

Alice and approved by Henry. 

The SNL Processor checks whether each technical word is a base name in the refer­

ence ontology. Otherwise, it retrieves the corresponding base name from the reference 

ontology and substitutes the technical word with the corresponding base name in the 

generated intermediate representation. For instance, the SNL Processor finds DOB is 

the base name for Date of Birth in the reference ontology, hence it replaces Date of Birth 

with DOB in the intermediate representation. It also determines what type of construct 

(i.e. class, property, etc.) a technical word is in the ontologies and marks the word with 

its construct type. This later helps the SPARQL Generator in constructing the SPARQL 

script. 
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The SNL Processor processes its own command words such as Generate, Include, 

and Format, as well as the parameters that are associated with these commands. Af­

ter processing these commands, the SNL Processor forwards the first two statements to 

SPARQL Generator and the third statement to Report Manager. The first statement 

specifies the criteria for extracting information from the database, and the second state­

ment gives additional details as to what specific information is to be included in the 

report. The SPARQL Generator uses these two statements to construct the SPARQL 

script. The third statement states in which way the extracted information has to be 

formatted. The Report manager uses the third statement in formatting the extracted 

information as report. 

The SPARQL Generator distinguishes the technical words in the first statement into 

two categories: basic-technical-words set with words appearing before the keyword that 

and conditional-technical-words set with words that follow. This distinction later helps 

the generator in constructing the script. 

The SPARQL Generator constructs a SPARQL script from the commands and pa­

rameters received from the SNL Processor. The script may be created with more than one 

SPARQL queries. In this scenario, I show one SPARQL query. A SPARQL query is made 

up of three components: PREFIX declaration, SELECT clause, and WHERE clause. The 

generator gets the base URI base="http://localhost:2020/vocab/resource/" from 

the reference ontology header and includes in the query as a PREFIX. In the prefix 

declaration, it replaces the equals symbol (=) with a colon (:), and the quotes with an 

opening (<) and closing (>) tag. 

http://localhost:2020/vocab/resource/
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It then constructs the body of the query consisting of a SELECT clause and a WHERE 

clause. The SELECT clause identifies the variables to appear in the query results. In the 

SELECT clause, variables are taken from the technical words appearing in the second 

statement of the SNL request. The generator appends a leading "?" symbol to each base 

name to make it a variable. In the example SPARQL query shown in Figure 5.2, the 

variables in the SELECT clause are ?StudentID, ?FirstName, ?LastName, ?DOB, and 

?CGPA. 

In the WHERE clause, a number of triple patterns are constructed. A triple pattern 

consists of a subject, a predicate, and an object. The subject is a variable created by 

appending the "?" symbol to the class name from the basic-technical-words set. The pred­

icate is a technical word written in the URI format (PREFIX :Class_Property), which 

is constructed in the following two steps: First, The SPARQL Generator concatenates a 

class name and a property name with an underscore symbol (_) in between them. The 

class name comes from the basic-technical-words set and the property name comes from 

the SELECT clause. Second, it concatenates the prefix (base) and the previously cre­

ated segment (Class_Property) with a colon symbol (:) in between them. The object 

variable is constructed using the property name. Following this method the generator 

constructs a triple pattern for each variable appearing in the SELECT clause. 

The generator then constructs a triple pattern for each property name from conditional-

technical-words set. This time it uses the words from the conditional-technical-words set 

to create the variables. These two groups of triple patterns are then linked with a third 

triple pattern whose predicate has the property StudentID, which is a common prop­
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erty between the class in the basic-technical-words set and the class in the conditional-

technical-words set. The SPARQL script in Figure 5.2 is constructed from the example 

SNL request. Once the SPARQL script is constructed, the Communication Service, Ac­

cess Control k. Security (CSACS) sends it to the destination DBS. 

PREFIX base: <http://localhost:2020/base/resource/> 

SELECT 'StudentID ?FirstName ?LastName ?D0B? ?CGPA 

WHERE { 

'student a vocab:Student. 

?registration a vocab:Registration. 

?student base:Student_StudentID ?studentID. 

?student base:Student_FirstName ?FirstName. 

?student base:Student_LastName ?LastName. 

?student base:Student_D0B ?D0B. 

?student base:Student_CGPA ?CGPA. 

?registration base:Registration_StudentID ?student. 

?registration base:Registration_Semester "Fall". 

?registration base:Registration_Year "2011". 

> 

Figure 5.2: The SPARQL script 

The CSACS in the DBS receives the SPARQL script. By verifying credentials of the 

sender, it ensures that no unauthorized access occurs to the RDB system. It then passes 

the SPARQL script to the Translator component, which decomposes the script into one 

or more SPARQL queries. The D2RQ Engine within the Translator generates equivalent 

SQL queries by rewriting the SPARQL queries to RDB-specifie SQL queries. The SQL 

query shown in Figure 5.3 is generated from the SPARQL query in Figure 5.2. 

http://localhost:2020/base/resource/
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SELECT Student.StudentID, Student.FirstName, 

Student.LastName, Student.DOB, Student.CGPA 

FROM Student, Registration 

WHERE Student.StudentID = Registration.StudentID 

AND Registration.Semester = 'Fall' 

AND Registration.Year = '2009' 

Figure 5.3: The SQL query 

D2RQ query engine executes the SQL queries on the RDB system and retrieves SQL 

results. The Translator then converts the retrieved results from SQL format to SPARQL 

format. Note that the SQL results and the SPARQL results are the same specific infor­

mation retrieved from the database. For compatibility reason the Translator converts the 

retrieved results from SQL to SPARQL format. Once the SPARQL results are generated, 

the CSACS sends them to the US. A subset of the generated SPARQL results is shown 

in Figure 5.4. 

StudentID FirstName LastName DOB CGPA 

98988 Shen Ming 1988-12-22 3.25 

44553 Phill Cody 1990-05-10 3.7 

98765 Emily Brandt 1978-10-29 2.85 

70665 Jie Zhang 1990-08-26 3.4 

76543 Lisa Brown 1992-06-01 3.7 

19991 Shankar Pat el 1986-02-17 3.65 

70557 Amanda Snow 1989-01-17 3.1 

76653 Tom Anderson 1984-03-20 3.5 

Figure 5.4: The SPARQL results 
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The Report Manager in the US receives the SPARQL results from the DBS. It then 

formats the results according to the formatting instructions provided in the request by 

Henry. It adds the report title Registered Students and the subtitle Date for the report 

generation date. A user selected template (format-k) is used for displaying the report. It 

also sorts the SPARQL results alphabetically by LastName. The Report Manager refers 

to the Ontology Manager to replace any base name with its primary name or uscr-specific 

name. It then displays the formatted report to Henry. The report generated from the 

SPARQL results is shown in Figure 5.5. 

Registered Students 
Date: September 15, 2011 

Student ID First Name LastName Date Of Birth C6PA 
76653 Tom Anderson 1984-03-20 3.5 

98765 Emily Brandt 1978-10-29 2.85 

76543 Lisa Brown 1992-06-01 3.7 

44553 Phill Cody 1990-05-10 3.7 

98988 Shen Ming 1988-12-22 3.25 

19991 Shankar Patel 1986-02-17 3.65 

70557 Amanda Snow 1989-01-17 3.1 

70665 Jie Zhang 1990-08-26 3.4 

Figure 5.5: The formatted report 
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5.3 Scenario 2: Developing reference ontology 

This scenario presents the specific steps involved, and the interactions that occur be­

tween the Database Interface Agent (Adam) and the Database Administrator (Helen), 

in developing a reference ontology from an RDB schema. The steps are presented in 

the following order: determining ontology domain and scope, defining classes and class 

hierarchies, defining properties of classes, and defining relations between classes. 

The construction of the reference ontology begins with determining its domain name 

that accurately reflects its scope. Adam extracts the name of the database from the 

Mapping File and displays to Helen, asking whether it represents the domain of the ap­

plication. Helen approves either by accepting the displayed name or entering a different 

name. Adam then defines the approved name as the domain of the reference ontology. 

In general there can be several relevant names to describe the ontology domain, but in 

this case we show one. 

Once the ontology domain name has been established, Adam uses it to search for 

publicly available ontologies in the same domain on the Semantic Web. For example, 

if the application domain is university, Adam searches for university ontology on the 

Semantic Web. With Helen's approval Adam may include the URI reference link to such 

an ontology in the reference ontology header. This allows the agent to later selectively 

import certain constructs from the external university ontology with Helen's approval. 

Similarly, Helen can specify other relevant domain for which external knowledge bases 

may be helpful; for instance, importing an external ontology of calendar structures or 

time zones may be preferable to developing one's own. In the context of developed Se­
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mantic Web, review of external ontologies can play a significant role in constructing one's 

own reference ontology. In the current scenario this process is illustrated only through 

the use of the external ontology of the English language (such as WordNet (Miller, 1995)). 

Once the domain is determined, Adam asks Helen to provide any general comments 

about the ontology being developed and includes them in the reference ontology. Adam 

also extracts the prefix statements from the Mapping File (Figure 5.6a) and defines them 

as Extensible Markup Language (XML) namespaces above the reference ontology header 

(Figure 5.6b). Using the prefix vocab: <http://localhost :2020/vocab/resource/ 

>, Adam defines the base namespace xmlns:base = "http://localhost:2020/vocab/ 

resource/", which provides a means to unambiguously identify constructs in the refer­

ence ontology from constructs in an imported ontology (which come with their own base 

namespace prefix). The remaining namespace definitions enable writing names in shorter 

forms, such as rdf instead of http://www.w3.org/1999/02/22-rdf-syntax-ns#. 

The class names and their synonyms are defined next. The set of class names is 

formed in two steps: first, the names of base classes are extracted from the base ontology 

represented by the Mapping File; second, the names of higher level classes are intro­

duced in interaction between Adam and Helen. In the first step, Adam extracts base 

class definition entries, such as map: Student a d2rq: ClassMap;, from the Mapping File 

and defines corresponding classes in the reference ontology. Since the base class names 

are RDB table names, they may not always be sufficiently descriptive for user level com­

munication. Therefore, Adam presents each base class to Helen, who can respond in 

three ways. First, she may decide that the base class name can adequately serve as the 

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
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<rdf:RDF 

©prefix vocab: <http://localhost:2020/vocab/resource/>. 

©prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>. 

©prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>. 

©prefix xsd: <http://www.w3.Org/2001/XMLSchema#>. 

xmlns:base » "http://localhost:2020/vocab/resource/M 

xmlns:rdf » "http://www.w3.Org/1999/02/22-rdf-syntax-ns#" 

xmlas:rdfs • "http://www.w3.Org/2000/01/rdf-schema#" 

xmlns:xsd = "http://www.w3.Org/2001/XMLSchema#" 

<owl:Ontology rdf:about«"UniversityH> 

<rdfs:comment> 

map:database a d2rq:Database; 

d2rq:jdbcDriver "com.mysql.jdbc.Driver"; 

d2rq:jdbcDSN "jdbc:mysql://localhost/University"; 

Reference ontology developed from 

the university RDB schema 

</rdfs:comment> 

<©vl:versiocInfo> VI.1 2011/09/15 </owl:versionInfo> 

<owl:imports rdf:resource*""/> 

<rdfs:label> University Ontology </rdfs:label> 

</owl:0ntology> 

(a) D2RQ Mapping (b) OWL 

Figure 5.6: (a) Prefix and RDB details in Mapping File (b) XML namespaces and 
ontology header in reference ontology 

primary class name and approve it as such; second, Helen may provide an alternative 

primary name and approve it immediately; third, Helen may provide a tentative choice of 

primary name, asking Adam to conduct an external synonym search, and decide which 

primary name to approve after reviewing the synonym choices. (At this point Helen 

does not have the option of introducing other synonyms for the class name, even though 

class name synonyms in the reference ontology are allowed their use is restricted to the 

maintenance of backward compatibility between ontology versions.) Figure 5.7 illustrates 

the definition of the class Department in (a) the Mapping File and in (b) the reference 

ontology. 

http://localhost:2020/vocab/resource/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2000/01/rdf-schema%23
http://www.w3.Org/2001/XMLSchema%23
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23
http://www.w3.Org/2000/01/rdf-schema%23
http://www.w3.Org/2001/XMLSchema%23
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map:Department a d2rq:ClassMap; <owl:Class rdf:ID="bn.Department"/> 

(a) D2RQ Mapping (b) OWL 

Figure 5.7: Class definition in: (a) Mapping File and (b) reference ontology 

Once the base classes are defined, Adam and Helen define the more general classes. 

The superclasses can be defined in four ways. First, Helen identifies several existing 

classes that can be generalized into a new superclass; she provides the primary name 

for the superclass and Adam creates it. Second, Helen identifies the existing classes and 

provides a tentative primary name for the superclass; Adam then searches for synonyms 

of that name in external lexical ontologies, and Helen approves the new class names after 

reviewing the choices. Third, Helen identifies the existing classes and asks Adam to sug­

gest possible superclass names; Adam searches for hypernyms of each existing class name 

and reports to Helen the intersection of the hypernym sets resulting from the searches; 

Helen then approves the primary name of the new superclass after reviewing the choices. 

Fourth, Adam finds the hypernym set of each existing class, forms all possible inter­

sections, and reports to Helen each nonempty intersection; in each case, Helen decides 

whether a new superclass is needed and, if so, approves its primary name after reviewing 

the choices. 

For example, for the classes Student and Faculty Member Adam finds the common 

hypernym Person and creates a new class Person as well as subclass relationships between 

Student and Person, and between Faculty Member and Person with Helen's approval. 

The OWL definition of the hierarchical relationship between Student and Person is shown 
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in Figure 5.8. 

<owl:Class rdf:ID="Person"> 

<owl:Class rdf:ID="pn.Student"> 

<rdfs:subClassOf> 

<owl:Class rdf:ID="#Person"/> 

</rdfs:subClassOf> 

</owl:Class> 

Figure 5.8: Subclass definition in reference ontology 

The properties of the base classes are defined next. Property definition starts from the 

base classes and proceeds to their superclasses. For each base class defined, Adam extracts 

the property definition entries, such as map: Student_FirstName a d2rq: PropertyBridge;, 

from the Mapping File and defines corresponding base properties of their respective base 

class. Since the base property names are RDB column names, they may not always be 

sufficiently descriptive for user level communication. Therefore, Adam presents each base 

property name to Helen, who can respond in the same three possible ways as described 

in the case of defining base class names, and the rest of the process is the same. The 

Mapping File fragment for the properties FirstName, LastName, and DOB is shown in 

Figure 5.9a; and the OWL definitions of these properties and a meaningful name for 

DOB is shown in Figure 5.9b. 

Once the properties of the base classes are defined, Adam and Helen next define the 

properties of the superclasses. The properties of the superclasses can be defined in two 

ways. First, Adam conducts a property name comparison to see if there are identical 

property names among all the subclasses of each superclass, and if there are identical 

property names He takes the primary names of these properties and defines them as prop-
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map:Student_FirstName a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Student; 

d2rq:property vocab:Student.FirstName; 

d2rq:propertyDefinitionLabel "Student FirstName"; 

d2rq:column "Student.FirstName"; 

map:Student.LastName a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Student; 

d2rq:property vocab:Student.LastName; 

d2rq:propertyDefinitionLabel "Student LastName"; 

d2rq:column "Student.LastName"; 

map:Student_DOB a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Student; 

d2rq:property vocab:Student.DQB; 

d2rq:propertyDefinitionLabel "Student DOB"; 

d2rq:column "Student.DOB"; 

(a) D2R.Q Mapping 

<owl:DatatypeProperty rdf:ID="bn.FirstName"> 

<rdfs:domain rdf:resource="#Person" /> 

<rdfs:range rdf:resource="&xsd;string"/> 

</owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:ID="bn.LastName"> 

<rdfs:domain rdf:resource="#Person" /> 

<rdfs:range rdf:resource*"fcxsd;string"/> 

</ovl:DatatypeProperty> 

Cowl:DatatypeProperty rdf:ID*"bn.DGB"> 

<rdfs:domain rdf:resource«"#Person" /> 

<rdf s:range rdf:resource="&xsd;string"/> 

</owl:DatatypeProperty> 

<owl:DatatypeProperty rdf:ID="pn.Date-Of-Birth"> 

</owl:sameAs rdf:resource="#bn.DQB"/> 

</owl:DatatypeProperty> 

(b) OWL 

Figure 5.9: Property definition in: (a) Mapping File and (b) reference ontology 

erties of the superclass. Second, For each superclass, Adam displays the subclasses along 

with their properties, asking Helen to specify if there are properties common among the 

base classes. These common properties may have different primary names even though 

they refer to the same property of their respective class. Helen may respond in two ways 

to resolve this name conflict. She may suggest one of the property name to be defined 

as property of the superclass, or she may suggest a new name representing the common 

properties. Adam defines the suggested names as properties of the superclass. He then 

removes the primary names of the common properties from the subclasses because they 

inherit these properties from their superclass. However, the base property names remain 

attached to the subclasses. For example, Person is a parent class of both Student and 

Faculty Member. The properties FirstName, LastName, and DOB are common between 

the subclasses Student and Faculty Member; therefore, the primary names of these prop-
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erties are moved up the hierarchy and defined as properties of the parent class Person. 

Finally, the relations between classes are defined. In the Mapping File, a relation 

between RDB tables is represented by the word join followed by the base class names 

separated by a directed arrow symbol (=>). Adam extracts the base class names appearing 

in each relation from the Mapping File and creates a graphical picture showing each pair 

of base classes. Adam displays the graphical picture to Helen, asking her to provide a 

name for each relation. Adam then defines each relation name as an ObjectProperty with 

the corresponding base class names as the domain and range. (This domain, defined in 

Section 2.4, differs from domain as an area of knowledge.) For example, Helen provides 

the word Offers to describe the relation between Department and Course. The Mapping 

File fragment of this relation is shown in Figure 5.10a, and the OWL definition is shown 

in Figure 5.10b. 

Figure 5.10: Class relation definition in: (a) Mapping File and (b) reference ontology 

The synonyms of names are allowed only for the maintenance of backward compat­

ibility between ontology version. For example, a new policy in the university requires 

Program to be called Department. As a result,, Helen instructs Adam to define a new class 

name Department and designate it as the primary name instead of Program. However, 

map:Course_DepartmentName a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Course; 

d2rq:property vocab:Course_DepartmentName; 

d2rq:refersToClassMap map:Department; 

d2rq:join "Course.DepartmentName 

=> Department.DepartmentName"; 

<ovl:ObjectProperty rdf:about="Offers"> 

<rdfs:domain rdf:resource="#pn.Department"> 

Crdfs:range rdf:resource="#pn.Course"> 

</owl:ObjectProperty> 

(a) D2RQ Mapping (b) OWL 
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the name Program may still be referred to by the users; therefore, Helen asks Adam to 

define Program as a synonym of the new primary name Department. The OWL definition 

of the synonym Program is shown in Figure 5.11. 

<owl:Class rdf:ID="Program"> 

<owlrequivalentClass rdf:resource="#pn.Department"/> 

</owl:Class> 

Figure 5.11: Class synonym definition in reference ontology 

In the next step, Adam creates a graphical representation of the entire reference on­

tology and displays to Helen for final approval. A fragment of a university reference 

ontology illustrating the examples in this scenario is shown in Figure 5.12. Browsing and 

editing of the reference ontology is facilitated with an ontology editor such as Protege. 

By looking at the global picture of the reference ontology Helen may approve or suggest 

modifications. If Helen approves, Adam completes the construction of the reference on­

tology and saves it in the Ontology Manager. Otherwise Helen suggests modifications by 

editing the ontology graph. Adam follows relevant steps to apply the suggested modifi­

cations and completes the construction of the reference ontology. 
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Figure 5.12: Reference ontology graph 

5.4 Scenario 3: Developing custom ontology 

This scenario shows the processes involved, and the interactions that occur between the 

user (Henry) and the User Interface Agent (Alice), in developing a custom ontology using 

the constructs from the reference ontology. 
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Henry formulates a request for report using the Simplified Natural Language (SNL) 

and submits it through the User Interface. While processing the request, the SNL Pro­

cessor performs lexical, syntactic, and semantic analysis, and recognizes the actions that 

need to be performed and invokes those actions in the appropriate system components. 

In the case of a query if the request successfully passes through all of the analysis stages, 

the SNL Processor forwards the statements specifying what information is to be retrieved 

to the SPARQL Generator, and the statements describing how the retrieved information 

is to be formatted to the Report Manager. 

Assuming that Henry uses a new term called "transfer student" in the request, during 

semantic analysis the Ontology Manager cannot find the term in the custom or reference 

ontology; therefore, it posts the following error message in the User Interface Environ­

ment (UIE): New term "transfer student" does not exist. Upon perceiving this error, Alice 

engages in a conversation with Henry to clarify the request. Alice displays the following 

message to Henry: The term "transfer student" is not found in the ontologies; Please 

define "transfer student". In response, Henry enters the following definition: Transfer 

student is a student who has transferred credits from previous institution. 

Alice verifies Henry's definition using the ontologies in the next step. Alice extracts 

the words from the definition and temporarily stores in a word set of new-term-set. Us­

ing the name of each element in new-term-set, Alice searches for matching constructs in 

the reference ontology. For "transfer student", assuming Alice finds the class construct 

Student and the property construct Transferred Credits and displays them to Henry. 
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If Henry approves the displayed constructs, he also specifies any restriction associated 

with any of the constructs. In this scenario, Henry approves the class construct Student, 

and the property construct Transferred Credits with a restriction that its value cannot 

be empty. Alice then defines Transfer Student as a subclass of the class Student and 

Transferred Credits as its property with the restriction that it must have a value (of type 

number). Note that the class Student is in the reference ontology; Alice uses the Uni­

fied Resource Identifier (URI) of Student as a reference link from the custom ontology. 

The OWL statements for defining Transfer Student in the custom ontology is shown in 

Figure 5.13. Alice replaces the blank space in Transfer Student with a hyphen (-) and 

appends the leading tag "un" followed by a period (.) to denote that Transfer Student 

is a user-specific name. 

If Henry rejects the displayed constructs, Alice asks him to enter a different definition 

for "transfer student" and follows identical steps in defining the new term. 

Once the new term is defined, Ontology Manager creates a graphical representation 

of the custom ontology and Alice displays it to Henry for final approval. By looking at 

the global picture of the custom ontology Henry may approve or suggest modifications. 

If Henry approves, Alice saves it in the Ontology Manger. Otherwise, he suggests mod­

ifications by editing the graphical ontology graph. Alice follows relevant steps to apply 

the suggested modifications in the custom ontology. 
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<owl:Class rdf:ID="un.Transfer-Student"> 

<rdf s:subClassOf> 

<owl:Class rdf:ID="#pn.Student"/> 

<rdf s:subClassOf > 

</owl:Class> 

<owl:DatatypeProperty rdf:ID="pn.Transferred-Credits"> 

<rdfs:domain rdf:resource="un.Transfer-Student" /> 

<rdfs:range 

rdf:resource="&xsd;number"/> 

</owl:DatatypeProperty> 

<owl:Restriction> 

<owl:onProperty rdf:resource="#pn.Transferred-Credits" /> 

<owl:hasValue rdf:datatype="&xsd;number" /> 

</owl:Restriction> 

Figure 5.13: Definition of transfer student in custom ontology 

In this chapter, I have presented a number of scenarios to demonstrate the behavioral 

aspects of SRGS. The scenarios have been developed to show how the architecture of 

SRGS supports the activities involved in accessing information stored in the RDB system 

and developing ontologies from the RDB schema. In the next chapter, I analyze my work 

with regards to the main objectives of this thesis. 



Chapter 6 

Analysis and Evaluation 

The main objective of this thesis has been the definition of a system architecture, Seman­

tic Report Generation System (SRGS), that allows developing ontologies from a legacy 

RDB schema, and accessing information stored in the legacy RDB system. In this chap­

ter, I analyze and evaluate the proposed architecture with respect to these objectives. 

The definition of the architectural model presented in chapter 4 begins with a set of 

system requirements represented as use case diagrams. The system requirements have 

been carefully developed to guide me in abstracting the aspects of the system that are 

relevant to my study topic. The basic configuration of the architecture includes a User 

Subsystem (US) and a Database Subsystem (DBS), each comprised of a software agent 

and an environment. The software agents assist their human partners in building on­

tologies and accessing information stored in an RDB system. The environments contain 

system components designed to provide the functionalities stipulated in the system re­

quirements. The US and the DBS can reside on different machines and communicate 

through a network. 

102 
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The basic architecture of SRGS is complete, yet scalable in several aspects. Multiple 

USs can interact with a single DBS, and multiple DBSs can be attached to a single US. In 

the US, more instances of the software agent can be created in the event of multiple users 

accessing the system simultaneously. The presence of multiple agents allows customized 

assistance for each user's unique requirements in terms of user system interaction and 

system behavior. 

SRGS allows development of ontologies from an RDB structure. In the DBS, the con­

struction of a reference ontology begins with a rudimentary version of reference ontology 

generated through automatic conversion of the RDB structure to a Semantic Web struc­

ture. The converted structure then serves as a starting point from which the Database 

Interface Agent (DBIA) in interaction with the Database Administrator (DBA) incre­

mentally develops a full reference ontology. In the US, the User Interface Agent (UIA) 

assists the user in developing a custom ontology, which defines user-specific concepts 

using constructs from the reference ontology. Thus, SRGS features a novel approach in 

which software agents assist human partners in developing ontologies. 

The agents are equipped with the requisite knowledge of how to build an ontology 

which includes an understanding of the semantics of general ontological notions, such as 

class and relationship. In addition, the agents refer to external knowledge resources pub­

licly available on the Semantic Web. The human partners only make decisions and need 

a good understanding of the ontology building process but owing to the agent assistance 

need not to have the level of expertise of specialist ontology developers. 
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The quality of ontologies developed in SRGS depends on two main factors. Though 

the human partners are not required to become technical experts fully specialized in the 

ontology development process, their level of understanding of the ontology development 

process can influence the quality of ontologies to a certain degree. Unintended and acci­

dental errors committed by human partners can be identified and resolved by the agents. 

However, poor decisions owing to lack of understanding of the ontology development 

process may result in misrepresentation of knowledge. 

The other factor influencing ontology quality is the availability of knowledge resources 

on the Semantic Web. The agents rely on external knowledge resources, such as lexical 

dictionaries and libraries of ontologies, on the Semantic Web. The Semantic Web is in its 

early stage of development, as such these knowledge resources are yet to be realized at 

large scale. The more such resources are available for agents to exploit the more refined 

and comprehensive ontologies can be developed. 

In Chapter 5, I introduce three scenarios to illustrate the main behavioral aspects of 

SRGS. The first scenario illustrates how the user of SRGS can access information stored 

in an RDB using a Simplified Natural Language; the second scenario shows the interac­

tions between the DBIA and the DBA, and the activities that occur within the DBS in 

the process of developing a reference ontology; and the third scenario demonstrates how 

the user can complement the reference ontology by introducing user-specific concepts in 

a custom ontology. 
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The above analysis suggests that it is possible to combine Semantic Web technologies 

and MAS approach to create a system architecture for accessing information stored in the 

RDB system without relying on human intermediaries, and for developing ontologies from 

an RDB schema. However, these observations remain to be further confirmed through 

studies involving implementation and experimentation of SRGS. 



Chapter 7 

Conclusions and Future Work 

This thesis proposes and investigates a novel approach to modeling and accessing infor­

mation stored in legacy RDB systems. The preliminary research has included a review 

of literature in several areas: legacy RDB systems and their use in decision support; the 

Semantic Web project and its presently available technology; converting relational data 

to Semantic Web structures; and multiagent systems (MAS). Those preliminary studies 

led to several observations. The first observation was that the increasing demands in 

decision support systems that rely on legacy RDB systems compelled researches to look 

for more effective techniques that meet modern requirements. 

The second observation from the study of the Semantic Web was that information 

stored in legacy RDB systems can be represented using Semantic Web structures and 

searched by semantic queries in the SPARQL language; moreover, this can be done on 

demand, without any modifications of the RDB itself; however high-level semantic in­

teractions between the user and the system require a domain knowledge ontology that 

is more developed than the rudimentary ontology represented by the RDB schema. The 
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third observation was that MAS technology holds the promise of development of in­

telligent decision support systems, with software agents that understand the nature of 

decision processes; however, this requires that the knowledge underlying the decisions be 

formally represented as an ontology. The final observation was that the agents themselves 

can be equipped with a meta-ontology and assist the human partner in the building of 

domain ontology, which in turn will enable both semantic queries and agent reasoning. 

These observations have led to the main line of research in this thesis, namely the defini­

tion of an architectural model of the Semantic Report Generation System (SRGS) that 

combines Semantic Web and MAS technologies. 

The first step towards defining the architectural model was to formulate a set of sys­

tem requirements in the form of use cases. These use cases then led to the preliminary 

definition of the global architecture of SRGS. At the high level, SRGS is comprised of 

client User Subsystems (US) and server Database Subsystems (DBS). A US consists of a 

User Interface Environment and a User Interface Agent (UIA). It facilitates user access, 

processing of users' requests for information, and developing and maintaining custom 

ontologies. The DBS consists of a Database Interface Environment, a Database Interface 

Agent (DBIA), and the legacy RDB system. It facilitates developing and maintaining a 

reference ontology, and retrieving information from the RDB system. The US and DBS 

can reside on different machines and communicate through a network. Multiple users 

can simultaneously access the US which can interact with multiple DBSs. Multiple USs 

can interact with a single or multiple DBSs. 
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The behavioral aspects of the architecture were then demonstrated through the devel­

opment of three characteristics scenarios. One scenario shows how the user can directly 

access information stored in an RDB system through a semantic query, without requiring 

technical assistance of database programmers and report writers. The other two scenar­

ios illustrate the intelligent assistance of software agents and the specific tasks executed 

by system components in developing ontologies from the RDB schema. 

The analysis of the scenarios suggests that SRGS has met the objective of defining a 

system architecture that capitalizes on Semantic Web and MAS technologies to create a 

layer of Semantic Web structures on top of a legacy RDB system in order to facilitate 

access to information stored in the underlying RDB system. This has been achieved 

through an innovative combination of Semantic Web and MAS technologies in which 

agents assist in ontology development. 

The next step in the current line of research concerns the possibility of implementing 

an SRGS prototype that can be used for practical verification of the presented architec­

ture. There are several other issues that can be further researched in order to advance 

the proposed approach. The software agents can be trained to be able to make more 

independent decisions and further reduce human involvement in the development of on­

tologies. The specific steps involved in ontology mediation with regard to importing 

constructs from external ontologies need to be further studied and elaborated. 
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Appendix A 

The D2RQ Platform 

The D2RQ Mapping File is explained in A.l, and the proposed extension to the D2RQ 

Platform is described in A.2. 

A.l The D2RQ Mapping File 

The Mapping File contains the RDF representation of an RDB schema. Its file for­

mat is W3C standard format Notation 3 (N3), which is a compact alternative to the 

RDF syntax, intended for human readability and designed to optimize expression of data 

and logic in the same language. The Mapping File can be generated by running the 

generate-mapping script available in the D2RQ Platform software package. When this 

script is run, the D2RQ Engine analyzes the schema of the database and creates an RDF 

representation of the schema. The D2RQ Platform then uses the Mapping File every 

time it translates RDB data to RDF triples. An excerpt of the Mapping File generated 

from an RDB called university is given below. 
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©prefix map: <file:/home/rdb2rdf/d2r-server-0.7/university.n3#> . 

©prefix vocab: <http://localhost:2020/vocab/resource/> . 

©prefix rdf: <http://www.w3.Org/1999/02/22-rdf-syntax-ns#> . 

©prefix rdfs: <http://www.w3.Org/2000/01/rdf-schema#> . 

©prefix xsd: <http://www.w3.org/200l/XMLSchema#> . 

©prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> 

©prefix jdbc: <http://d2rq.org/terms/jdbc/> . 

map:database a d2rq:Database; 

d2rq:jdbcDriver "com.mysql.jdbc.Driver"; 

d2rq:jdbcDSN "jdbc:mysql://localhost/university"; 

d2rq:username "root"; 

d2rq:password "123456"; 

jdbc:autoReconnect "true"; 

jdbc:zeroDateTimeBehavior "convertToNull"; 

# Table Course 

map:Course a d2rq:ClassMap; 

d2rq:datastorage map:database; 

d2rq:uriPattern "Course/@@Course.CRNlurlify©©"; 

d2rq:class vocab:Course; 

d2rq:classDefinitionLabel "Course"; 

map:Course_CRN a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Course; 

d2rq:property vocab:Course_CRN; 

d2rq:propertyDefinitionLabel "Course CRN"; 

d2rq:column "Course.CRN"; 

map:Course_Title a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Course; 

d2rq:property vocab:Course_Title; 

d2rq:propertyDefinitionLabel "Course Title"; 

d2rq:column "Course.Title"; 

map:Course_DepartmentName a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Course; 

d2rq:property vocab:Course_DepartmentName; 

d2rq: refer sToCl as sMap map .-Department; 

http://localhost:2020/vocab/resource/
http://www.w3.Org/1999/02/22-rdf-syntax-ns%23
http://www.w3.Org/2000/01/rdf-schema%23
http://www.w3.org/200l/XMLSchema%23
http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1%23
http://d2rq.org/terms/jdbc/
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d2rq:join "Course.DepartmentName => Department.DepartmentName"; 

# Table Department 

map:Department a d2rq:ClassMap; 

d2rq:datastorage map:database; 

d2rq:uriPattern "Department/©©Department.DepartmentName|urlify@@"; 

d2rq:class vocab:Department; 

d2rq:classDefinitionLabel "Department"; 

map:Department.DepartmentName a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Department; 

d2rq:property vocab:Department_DepartmentName; 

d2rq:propertyDefinitionLabel "Department DepartmentName"; 

d2rq:column "Department.DepartmentName"; 

map:Department_Building a d2rq:PropertyBridge; 

d2rq:belongsToClassMap map:Department; 

d2rq:property vocab:Department_Building, 

d2rq:propertyDefinitionLabel "Department Building"; 

d2rq:column "Department.Building"; 

The Mapping File begins with the declaration of a number of prefixes for the com­

mon Unified Resource Identifiers (URI). Of particular interest is the base URI: <http: 

//localhost:2020/vocab/resource/>, which establishes a vocabulary namespace for 

the constructs in the Mapping File. When each vocabulary is given a namespace, the 

ambiguity between identically named elements across multiple vocabularies can be re­

solved. 

The d2rq: Database tag specifies the JDBC connection to the database and the login 

credentials for accessing the database. The d2rq:ClassMap tag represents an RDB table 

as class, and d2rq:PropertyBridge represents an RDB column as property. A relation­
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ship between two EDB tables is specified by the d2rq: join tag. For example, the tag 

d2rq:join "Course.Department_Name => Department.Department_Name" defines the 

relation between the Course and Department tables, i.e., department offers course. 

A.2 D2RQ extension 

I installed the D2RQ Platform and tested it against a small database named university. 

I ran flnd(s p o) SPARQL query, and the D2R Server displayed correct results. While 

the server was running, I changed a data value in a table and D2R server showed the new 

value in real time. This proved that the D2RQ Platform provides on-demand Relational 

Database (RDB) to Resource Description Framework (RDF) mapping. However, my test 

revealed a flaw in the platform. It failed to detect any changes that were made to the 

database schema. For instance, when I added a new column to the a table and populated 

it with new data, find(s p o) query results did not include the newly added column and 

its values. When I dropped or renamed a column the D2R Server gave the following 

error: 

Unknown column 'Department.Budget' in 'field list': SELECT DIS­

TINCT 'Department'.'Budget', 'Department'.'Department-Name' 

FROM 'Department' (E0) 

In this case, I dropped the Budget column from the Department table. Creating or 

dropping a table resulted in similar errors. Moreover, I encountered the error message 

shown in Figure A.l when I stopped the D2R Server and tried to launch again. 
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Fi le  Ed i t  V iew Termina l  He lp  

rg .Kor tbay . Iog .St f4 jLog 

20:02:15  INFO log  : :  je t ty -6 .1 .18  
20:02:15  INFO log  : :  NO JSP Suppor t  for  ,  d id  not  f ind  org .apache . jasper .serv le t .JspServ  

le t  
20:02:16  INFO D2RServer  : :  us ing  por t  8688  
20 :02:16  INFO D2RServer  : :  us ing  conf ig  f i l e :  f i le : /home/mohai r ,  mad/  rdb2rdf /d2r -server -0 .  7 /cours  

e  schedule  mapping ,n3  

20 :02:16  ERROR log  : :  Fa i led  s tar tup  of  context  org .n -Qr tbay . je t ty .webapp .WebAppContext<568  
2406{ ,webapp}  

de . fuber l in .wiwiss .d2  rq .D2RQExcept ion:  Column (^Depar tment .Budget .®  not  found in  database  !E0)  

a t  de . fuber l in .wiwiss ,d2rq .dbschema.DatabaseSchemalnspector .co lu isnType (OatabaseSchef fa lnspector . jav  
a :  96 )  

a t  de . fuber lm.wiwiss .d2rq .sq l .ConnectedOB.co lunnType(ConnectedDB. )ava:317)  

a t  de . fuber l in .wiwiss .42rq .pap.  MappmgSAt  t r ibuteTypeVal idator .va l ida te (Happing . java:173)  
a t  de . fuber l in .wiwiss ,d2rq .map.Mapping .va l idate (Mapping . java:96)  

a t  de . fuber l in .wiwiss .d2rq .GraphD2RQ.< in i t> (GraphD2RQ. java:85)  
a t  de . fuber l in .wiwiss .d2rq .GraphD2R0.< in i t> (GraphD2RQ.  java:  74 )  

a t  de . fuber l in .wiwiss .d2rq .ModelD2RQ.< in i t> (HodelD2RQ. java:61)  
a t  de . fuber l in .wiwiss .d2rs .AutcReloadableDataset . in i tD2RQDatasetGraph(AutoReloadableDataset . java:8  

0!  
at  de . fuber l in .wiwiss .d2rs .AutoReloadableDataset . forceReload(AutoReloadableDataset . java;54)  
a t  de . fuber l in .wiwiss .d2rs .D2RServer .s tar t (D2RServer . java:225)  

a t  de . fuber l in .wiwiss .d2rs .Webappln i t I  i s tener .context  In i t ia l i zed(Webappln i tL is tener . java:37)  
a t  org .uor tbay . je t ty .handler .ContextHandler .s tar tContext (ContextHandler . java:540)  
a t  org .mor tbay . je t ty .serv le t .Context .s tar tContext {Context . java:135)  
a t  org .mor tbay . je t ty .webapp.WebAppContext .s tar tContext (WebAppContext . java:1220)  
a t  org .mor tbay . je t ty .handler .ContextHandler .doStar t (ContextHandler . java:510)  
a t  org .mor tbay . je t ty .webapp. 'WebAppContext .doStar t (WebAppContext . java:448)  

a t  org . isor tbay .  co i r -ponent  .Abst ractL i feCyc le .  s tar t  (Abst ractL i feCyc le .  java:  39 )  

a t  org .mor tbay . je t ty .handler .HandlerWrapper .doStar t (HandlerWrapper . java:130)  

a t  org .mor tbay . je t ty .Server .doStar t (Server . java:222)  
a t  org .mor tbay .component .Abst ractL i feCyc le ,s tar t (Abst ractL i feCyc le .  java:39)  

a t  de . fuber l in .wiwiss .d2rs .Je t ty launcber .s tar t !Je t ty launcher . java:64)  

a t  d2r .server .s tar tServer !server . java:86)  
a t  d2r .  server ,  mam (server ,  java:  57 )  

120:02:16  INFO log  : :  Star ted  SocketConnector t fO.0 .0 .0 :8080  

[Except ion  in  thread  "main"  java . lang .Nul lPo in terExcept ion  
a t  de . fuber l in .wiwiss ,<12rs .Jet tyLauncher .s tar t {Je t tyLauncher . java:68)  

a t  d2r .server .s tar tServer (server . java:86)  
a t  d2r .server ,main(server . java:57)  

Figure A.l: D2R Server error 

After I had replaced the old Mapping File with a new version, I was able to launch 

the D2R Server. I also noticed my schema changes appeared in find(s p o) query re­

sults. Therefore, I came to the conclusion that in order to achieve real time consistency 

between RDB data and SPARQL query results, the Mapping File needs to be recreated 

whenever the RDB schema is modified. In order to automate this process I have added 

an extension to the D2RQ Platform. The conceptual picture of the proposed extension 



APPENDIX A. THE D2RQ PLATFORM 122 

is shown in Figure A.2; and the processes in mapping RDB data to RDF triples with the 

extension in place are illustrated in Figure A.3. 

Yes / Has \ 
RDB Schema 
\Changed?/ 

Extension 

1b:  Reads  RDB 
Schema 

D2RQ Engine 
RDB 

RDBS -> RDFS 

Figure A.2: The extension 
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Console  

User Interface ; 

SPARQL Endpoint 
{D2R Server )  

3a :  SQL Resul t  
RDBS RDFS 

D2RQ Engine  

Uses  Maping  RDB 
2c:  SQL Query  

, ' Has 
• RDB Schema ; Extei 

Cal l  
genera temapping  Yes  

Figure A.3: The D2RQ Platform with the extension 

The extension can be implemented using one of the following two methods 

Binary log processing 

MySQL generates binary log files that record every transaction occurring in the 

databases. A log file can be associated to a database, and MySQL updates the log 

file every time a query is executed on that database. My proposed extension analyzes 

the log file contents to find out whether the most recent transaction has modified the 
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database schema. I take the most recently executed query from the log file and run it 

through a string tokenizer to search for CREATE, ALTER or DROP string, because a 

query with one of these SQL statements is the one that modifies the database schema. 

When a match is found, the D2RQ Platform is invoked to update the Mapping File. This 

process is illustrated in figure A.4. 

Binary 
Log 

Listen for 
Change 

- Has Binary 1 

UogChang«J?-

Yes 

Convert 
Binary to Text 

file 

No 

MySQL 
Database 

New_Log OW_Log \ 

Find 
difference 

Log 
Difference 

Search string: 
CREATE. 
ALTER or 

DROP 

Copy New_log  
to  Ofd_Log 

' Match 
. found? - ** Mapping File 

Yes 

Update 

Figure A.4: Binary log processing method 
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Query interception 

MySQL Proxy is a free and open source application that can intercept all queries 

and responses between a MySQL client and server. The extension uses MySQL Proxy to 

intercept all incoming queries, it then chccks whether a query has the string CREATE, 

ALTER or DELETE in it. If the extension finds a match it invokes the D2RQ Platform 

to update the Mapping File. This method is illustrated in Figure A.5. 

MySQL Server 

a a: 

Listen for 
CREATE, 
ALTER or 

DROP 
statement 

Result 

Match Found ? 

Yes 

> wpuat<3  
Mapping File 

Update 

Client 
MySQL Proxy No 

Figure A.5: Query interception method 


