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Abstract

The recent mountain-pine beetle outbreak in the Central Interior of British Columbia 

is leaving unsalvaged stands with minimal silvicultural treatment, raising questions 

about their ability to regenerate and die implications of this uncertainty to future 

timber supply and habitat values. No system currently exists to predict, on a 

landscape level, which pine stands will have adequate stocking of advance 

regeneration suitable for release upon canopy death. My research takes a ground- 

truthed, landscape-level approach to modelling, predicting, mapping, and 

prioritizing stands for salvage or rehabilitation. The resulting model, derived from 

recursive partitioning of data from 964 sample plots, created a landscape level 

output with a predictive accuracy of 78%. Across the Sub-Boreal Spruce study area,

I estimate that 58% of mature pine-leading stands (approximately 840,000 ha) are 

likely or very likely to be stocked with at least 600 stems/ha of living understory 

trees.
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Chapter One: Introduction

British Columbia's (BC) lodgepole pine (Pinus contorta var. latifolia) forests 

have recently (-1999 to present) suffered from an epidemic of mountain pine beetles 

(Dendroctonus ponderosae), hereafter MPB. Although such infestations are largely a 

natural occurrence, the intensity and spatial extent of the present infestation are 

unprecedented, such that attempts to control the growing pest population have 

failed (Stockdale et al., 2004; Burton, 2010). In 2004, Pedersen (2004, p. 11) noted 

"despite the suppression measures, the epidemic as well as the amount of beetle- 

killed wood continues to increase". The Provincial Aerial Overview Surveys of 

Forest Health have indicated that the current epidemic reached its peak in 2005, and 

although mountain pine beetles continue to attack pine stands throughout the 

province, the outbreak will eventually subside by 2021 (Walton, 2012). In the 

meantime, because pest-management intervention was not sufficient to combat the 

current damage, research interest has largely shifted to guide timber salvage and 

regeneration operations. Social, economic, and operational limitations continue to 

hamper those attempts to salvage the infested area (Stockdale et al., 2004). Those 

constraints have contributed to predictions of a future severe timber shortage 

(Pedersen, 2004; Burton, 2010). Immature pine stands, previously presum ed to be 

immune to pine beetle attack and provide harvestable timber within the next few
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decades, have become susceptible to pine beetle attack at the peak of the outbreak as 

the older stands most susceptible to beetle-induced mortality were overrun with 

beetles and their offspring become increasingly desperate for food (Maclauchlan, 

2006). With most of the mature pine forest killed, and with many of the plantations 

established in the 1970s and 1980s equally compromised or unlikely to reach 

maturity by the time salvage operations are completed, it is expected that BC will 

soon be suffering from an unprecedented timber supply fall-down over the midterm 

of the next 10 to 50 years (Pousette and Hawkins, 2006; Snetsinger, 2011).

Advance regeneration consists of the seedlings, saplings or sprouts that have 

naturally established in a forest understory before any large-scale disturbance, and 

can be found naturally established under some mature lodgepole pine stands 

(Johnson et al., 2003; Burton, 2006). The survival and release of those understory 

trees has been identified as a valuable mechanism to help avoid timber shortages 

created by the MPB infestation (Burton, 2006; Coates, 2006; Greisbauer and Green, 

2006; Pousette and Hawkins, 2006). The presence of advance regeneration decreases 

the need for the use of more aggressive intervention and recovery m ethods to 

regenerate forest stands by forest managers (Greene et al., 1999).

Forest planners are faced with the quandary of deciding which stands of trees 

are unlikely to recover and, therefore, should be harvested and planted to speed
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regeneration and which stands should be left to recover on their own. The lack of 

knowledge regarding the capacity and growth of advance regeneration to respond 

to a disturbance will be a major obstacle for the prediction of future harvests and the 

development of appropriate response efforts (Messier et al., 1999). The ability of 

advance regeneration to respond to a disturbance can be impacted by factors such as 

the composition of species within the affected stand, the particular characteristics 

(e.g., height, age, and diameter) of the trees involved, and the availability of light 

determined by canopy gaps (Mitchell, 2005).

This potentially high variability among stands has limited advance 

regeneration modelling using individual tree and stand models such as SORTIE 

(Hawkins et al., 2012). It is this variability within and among stands that also 

present a challenge to SORTIE's modelling. SORTIE develops an output that is 

derived from complex interactions between light, growth, seed dispersal, and 

mortality—all ecological factors that have a high variability between stands (Sattler,

2009). Coates (2006) suggests that the variability among stands is so great, that 

stands can only be managed on an individual basis. A landscape-level model for 

predicting the distribution of advance regeneration is critical for efficient and 

effective forest planning, particularly in the context of the province's management 

unit objectives to ensure harvested areas in BC are adequately renewed through 

stocking standards (McWilliams, 2009).
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Despite the widespread occurrence of understory regeneration in lodgepole 

pine forests, the question remains as to whether those forests will remain adequately 

stocked upon the death of the overstory. Stocking can be broadly defined through 

current tree metrics (typically volume based) and early stand conditions that are 

used to measure the probability of achieving long-term management goals for that 

stand (Martin et al., 2005; McWilliams, 2009). A fully stocked stand or sample plot is 

one in which all open space is (or is projected to be) occupied by living trees. To 

ensure that BC forests continue to return to their pre-harvested conditions, stocking 

standards have been established to maximize the probability of successful 

regeneration. It is, therefore, both critical and prudent, for forest planners to assess 

stand regeneration at a landscape level. The stocking required to regenerate stands, 

however, is not the same across the landscape (i.e., stands within different 

biogeoclimatic unit and site series require different stocking standards to achieve 

renewal). And in some cases harvested areas do not have timber production as their 

primary objective (set by government and industry planners), and, therefore, have 

different stocking standards to achieve their particular management objectives.

Dhar and Hawkins (2011) identified three critical research-driven purposes 

for advance regeneration assessment: forecasting long-term development (yield) of 

attacked stands, selecting stands for further research, and forecasting impacts on 

ecological attributes. The data to support estimates of stocking in stands following
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MPB are available, but are addressed in several different research projects. There is 

a need to collapse those data sets into a single usable format (perhaps even 

differentiating between predictive and operational) that can be used by industry, 

research entities, and a variety of other stakeholders (Wilford, 2008; Dhar and 

Hawkins, 2011).

The need to understand the patterns of advance regeneration occurrence has 

an operational focus. Current reforestation stocking standards -  designed primarily 

to guide the reforestation of clearcuts -  may need to be revisited by forest planners. 

Designation of preferred and acceptable species, as well as their densities, may need 

to be altered or amended in order to economically utilize post-MPB advance 

regeneration (Lewis, 2005; Greisbauer and Green, 2006). Commercial logging 

strategies may also require adjustment on a stand-by-stand basis to provide 

protection to advance regeneration that may or may not contribute to the midterm 

timber supply. Forest managers require a better understanding of the cost 

implications associated with the retention of advance regeneration versus 'starting 

over' with planting after logging in terms of facilitating important midterm forest 

harvesting opportunities (Dhar and Hawkins, 2011). Consideration m ust also be 

provided to the potential effects of climate change on advance regeneration, and its 

ability to sequester carbon and thereby mitigate some climate change impacts 

(Brown et al., 2012). A more complete assessment of the distribution of advance



regeneration is required to identify the potential for future challenges such as 

vulnerability to pests and diseases. As forests continue to respond to climate 

change, so too do the populations and distributions of numerous insects and fungal 

pathogens that may pose a threat to the regenerating species (Lewis, 2005).

Factors Impacting Advance Regeneration and Stand Recovery

Research on the recovery of stands following a disturbance through advance 

regeneration is limited because the vast majority of studies have chosen to focus 

only upon their early development (Messier et al., 1999). Patterns of understory 

release in forests disrupted by natural disturbance, and the long-term growth, yield 

and habitat value of such forests are unfortunately poorly documented.

Natural disturbances are important ecological processes that drive observed 

patterns in ecosystems. The study of disturbance regimes and the interaction of 

disturbance agents has only recently become a central theme in ecology (Mori, 

2011). Aspects of disturbance ecology that require further inquiry include 

disturbance history, spatiotemporal dynamics, disturbance interactions, 

regeneration response to disturbance, and the application of resistance and 

resilience theory to ecosystem management (Wright et al., 2000).

Ecological disturbances are defined as disruptive changes to an ecological 

system by an external event that makes changes to the resources within the system,
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but does not necessarily result in the destruction of the ecological system itself 

(White and Pickett, 1985; Pickett et al., 1989; Johnson and Miyanishi, 2007; Hughes,

2010). Studies indicate that disturbance impacts are defined by more than just the 

affecting agent (i.e., whether it is insect, fire, wind, or other agents). Pickett et al. 

(1986) state that the bases for understanding of an ecological disturbance are 

threefold: 1) identifying the existing ecological system that may be affected by a 

disturbance; 2) discerning only the changes to the ecological system that are a result 

of a disturbance; and 3) understanding the consequences of the disturbance.

How effective will advance regeneration be in supporting stand recovery 

after disturbance? Stand recovery rates vary through advance regeneration. For 

example, the re-establishment of MPB attacked stands through regeneration can be 

delayed by five to ten years due to species composition before the beetle attack and 

the vigour of overstory trees (Bouchard et al., 2005; Coates, 2006). A more complex 

example of stand recovery after disturbance is the creation of a thinning effect in 

balsam fir (Abies balsamea) stands by spruce budworm  (Choristoneura fumiferana) in 

eastern Canada. The natural regeneration is released post-budworm attack, only to 

be attacked itself 30 or 40 years later -  perpetuating a cycle of favourable conditions 

for subsequent spruce budworm attacks (MacLean and Anderson, 2008). The MPB 

outbreak in BC is having a profound impact on the makeup of the affected stands. 

MPB is not unique as a disturbance agent that just kills the overstory, typically
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serving as a means of releasing the understory regeneration and vegetation; this is 

true of wind storms, other insect outbreaks, and root rot pockets, etc. (Gautreaux, 

1999). Pine-dominated forests have varying amounts of live trees, saplings and 

seedlings remaining after they have been attacked by MPB, which are collectively 

referred to as "secondary stand structure" or "secondary structure" (Coates et al.,

2006).

Whereas forest fire will kill most seedlings and saplings, w indthrow and 

insect infestations typically kill the overstory trees, but not the regeneration, thereby 

facilitating its release (Johnson et al., 2003; Roberts, 2004; Burton, 2008b). Natural 

methods of forest regeneration can be particularly attractive to forest planners when 

stocking is reliable, or economic and operational factors prohibit the large-scale use 

of artificial regeneration strategies. Natural regeneration -  whether by seed or 

through the release of existing seedlings -- offers several advantages to alternative 

approaches. For example, natural regeneration is cost-effective when compared to 

more interventionist reforestation strategies and helps to protect the forest's natural 

diversity (Weetman and Vyse, 1990).

Forest understory species may thrive following bark-beetle attack and this 

will cause a dominant species shift within the stand. The dwarf shrubs 

kinnikinnick (Arctostaphylos uva-ursi) and twinflower (Linnaea borealis) have been 

documented to increase in cover following MPB-induced canopy opening (Williston
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et al., 2006). Other studies indicate that plant species richness (particularly grasses) 

is measurably higher in post-MPB attacked stands and non-tree vegetation can 

represent one to two-thirds of the CO2 uptake contribution in these stands (Stone 

and Wolfe, 1996; Bowler et al., 2012). Therefore, the beetle outbreak may be 

regarded as a stand-releasing event that causes the understory vegetation to assume 

a more dominant position within the stand as it grows to take the place of the lost 

canopy trees (Greene et al., 1999; Burton, 2008a; Lindenmayer et al., 2008). Young 

trees and other vegetation surviving in the understory have a strong potential to 

thrive because of the new availability of resources created by the lost stand 

members (Coates et al., 1994). Stands with a healthy understory may recover from 

MPB attack to yield harvestable timber within a timeframe of 40 to 80 years (Coates 

and Hall, 2005; Coates et al., 2006).

Understory light availability increases in natural canopy gaps (resulting from 

the mortality of one or more mature trees) and after forest harvesting (Palik et al., 

1997; Burgess and Wetzel, 2000; Oguchi et al., 2006; Boucher et al., 2007), and larger 

gaps provide more light than smaller gaps (McGuire et al., 2001; Gray et al., 2002; 

Palik et al., 2003). Large canopy gaps due to dead trees can result in reduced 

evapotranspiration and, therefore, decrease summer groundwater depletion (Helie 

et al., 2005). Light availability is also greater near gap edges than in forest interior 

positions (Matlack, 1993; Heithecker and Halpem, 2007). High light availability is
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associated with greater light-saturated photosynthetic rates (Ellsworth and Reich, 

1992; Bond et al., 1999) so any death or removal of overstoiy trees should promote 

increased growth of advance regeneration (Williams et al., 1999). The new 

availability of increased light that results from the loss of shading crowns leads to 

the stimulation of germination and seedling release in many shade-tolerant trees 

such as Abies spp. (McCarthy, 2001). The adaptability of these shade-tolerant 

species is responsible for their establishment in the understory and further supports 

their recruitment into the canopy of the stand (Messier et al., 1999). As a result, 

some tree species are more likely than others to be found within the advance 

regeneration stratum. For example, shade tolerant species such as the subalpine fir 

and interior white spruce (a natural hybrid of Picea engelmannii and P. glauca, 

common throughout the BC Central Interior) are species commonly found among 

the advance regeneration found in BC's sub-boreal forests (Coates et al., 1994; 

Kneeshaw and Burton, 1997). The distribution of other plant species within a region 

can also impact the success of advance regeneration strategies. For example, the 

presence of aggressive non-tree vegetation can negatively impact the ability of 

advance regeneration to respond to overstory mortality (Bassman et al., 1992; Stone 

and Wolfe, 1996). Knowledge of sapling and seedling growth is also an essential 

element for the formulation of accurate predictions of future stand conditions 

(Wright et al., 2000). The species composition within the understory itself may also
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have an influence on the density of advance regeneration. Advance regeneration is 

generally more abundant when accompanied by a greater diversity of tree species 

within the overstory (Amup, 1996).

Particular characteristics allow some species to respond more positively than 

others after an insect outbreak. For example, the relative availability of shade and 

sunlight has been highlighted as particularly influential for advance regeneration. 

Wright et al. (2000, p. 1528) found "a clear relationship between shade tolerance and 

the magnitude of the effects of past periods of suppression and release on sapling 

growth." Species able to tolerate conditions of low light have a propensity to thrive, 

and possibly adapt to variable light regimes due to changing canopy structure 

within the understory through advance regeneration (Oliver and Larson, 1996; 

Messier et al., 1999; McCarthy, 2001). Understory light may remain relatively 

unchanged for up to five years after a MPB attack because it takes that long for the 

dead foliage to fall and the residual canopy will continue to shade the vegetation in 

the understory (Coates and Hall, 2005). Furthermore, pine snags are another 

enduring source of shade for plants within the understory (Coates and Hall, 2005). 

The shade from these snags and any surviving trees can help to prevent understory 

trees from being out-competed by other vegetation (Lieffers and Stadt, 1994).

Although some lodgepole pine seedlings can establish under full canopies, it 

is generally classified as a shade-intolerant species (Bums and Honkala, 1990; Klinka
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et al., 2000). Shade-intolerant spedes tend to be less likely to respond well within 

the cohort of advance regeneration following a disturbance because they have a 

more fixed, less adaptable structure and physiology (Messier et al., 1999). Its status 

as a shade-intolerant spedes, however, does not predude lodgepole pine from being 

found as a natural component of the secondary stand structure surviving an MPB 

outbreak. The presence of lodgepole pine regeneration within a m ature forest can 

be explained by the presence of uneven canopy closure, which permits sunlight to 

reach the light-demanding young pines (McCarthy, 2001). Indeed, in cold dry 

environments where other tree spedes are at a competitive disadvantage, lodgepole 

pine may be the dominant spedes of advance regeneration, and can release to create 

an uneven-aged stand after MPB attack (Axelson et al. 2009).

Finally, there is evidence that natural regeneration may be assisted through 

seed rain recruitment (the deposition of seeds spread by bird, wind, humans, and 

animals) by some spedes (Moles and Drake, 1999), although Burton (2006) found 

inconsistendes in the relationship between regeneration densities and proximity to 

non-pine conifer seed sources. Leadem et al. (1997) state that successful 

regeneration of stands relies on seed production and dispersal, so there m ust be 

some fundamental dependency on the availability of seed from shade-tolerant 

spedes, either within the stand or from nearby on the landscape.
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Forest Management Options

Standard industrial forestry in the form of even-aged management and 

dearcut harvesting promotes the development of simplified stand structures 

through the application of homogeneous treatments across stands at fixed intervals 

that are often shorter than the return intervals of natural disturbances in the same 

region (Coates and Burton, 1997; Palik et al., 2002; Seymour et al., 2002). The loss of 

structural complexity in managed forests presents concerns for conserving 

biodiversity, sustaining key ecosystem functions, and maintaining ecological 

resilience in the face of a changing climate (Franklin et al., 2002; Lindenmayer and 

Franklin, 2002; Palik et al., 2002; Tews and Jeltsch, 2004; Drever et al., 2006). These 

concerns over the ecological consequences of simplified forest structures have 

created interest in developing novel silvicultural systems that promote more natural 

patterns of stand development by emulating the frequency, scale, and severity of 

natural disturbances (Coates and Burton, 1997; Franklin et al., 1997,2002; Palik et al., 

2002; Seymour et al., 2002).

Empirical Models of Species Distribution and Abundance

Ecologists have spent a great deal of time examining the interaction between 

plant species and their micro- and macro-environments. Through the collection and 

examination of environmental data, ecologists attempt to discover patterns that 

assist them in predicting the presence or absence of a particular species, community,
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or ecosystem (e.g., Franklin, 2009). Unfortunately, the environmental variables used 

in predictive models are complex and covarying. Their interaction with each other 

can vary by simply changing where they exist in time or space. For example, even if 

we understand how variables interact with each other, our understanding can 

change when the variables are examined at a slightly higher elevation or on a 

warmer day. This ties a model to a particular geographical context, as the derived 

model may encounter accuracy errors when the geography changes, even if the 

combination of variables remains the same (Guisan et al., 1999). Furthermore, 

environmental variables can be significantly affected by unknown additional 

lurking variables, (such as anthropogenic interferences) or a sophisticated 

interaction of multiple variables. That is, our understanding of the variable 

interaction between variablex+ variabley + variablez can change if an additional

unknown and unseen variableu is present. These limitations are especially

problematic for ecology, where variability and deviations occur in nature as the 

norm, not the exception.

General linear models have traditionally been used by ecologists to describe 

the relationship between causal factors and an observed response (Draper and 

Smith, 1981; Burnham and Anderson, 2002). Yet despite the well documented 

drawbacks of relying on techniques such as stepwise multiple regression, the use of
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these procedures for ecological studies are prevalent (Stephens et al., 2005). Many 

ecologists sacrifice the potential of making erroneous conclusions in the search for 

the most parsimonious model. This is important in datasets that have factor 

interactions too complex for parametric models (Freedman, 1983; Derksen and 

Keselman, 1992). Recent studies have shown that classification trees, or recursive 

partitioning, can be more reliable and accurate than traditional parametric linear 

models (Friedl et al., 1999; Hansen et al., 2000).

Recursive Partitioning and Classification Trees

Classification and regression trees are the statistical application of binary

trees first introduced by Breiman et al. (1984). Classification trees are an intuitive

and easily interpreted type of supervised learning method used in exploring

relationships in data. Further, when the explored relationships in the data take the

form of a decision tree and are then applied to new data to predict new values, the

classification tree becomes a predictive tool (Han et al., 2011). Classification trees

are equipped to deal with continuous and categorical data, missing values, and

outliers (Moisen, 2008). But unlike linear regression models, which identify and

measure the relationship between the response and explanatory variables,

classification trees divide the explanatory variables into homogenous groups

through a series of recursive partitions. Botanists employ dassification-style

decision trees in the form of the routinely used dichotomous keys for the correct

15



identification of a plant by following a tree of if-then statements. Classification trees 

are also prevalent in the fields of medicine and psychology for diagnosis and 

decision making (Ripley, 1996).

In a standard classification tree, the idea is to split the dataset based on 

homogeneity of data. The goal is to achieve pure homogeneous groupings of data 

to 1) describe the systematic structure of the data; and 2) predict unobserved data 

(De'ath and Fabricius, 2000). For example, consider two variables, tree age and tree 

vigour, that predict whether a tree is likely to be attacked by mountain pine beetle 

(1), or not (0). If 90% of the trees that are >80 years old in our training data showed 

signs of beetle attack, we can split the data here and age becomes a top node in the 

tree. Further, if it is discovered that any tree w ith a vigour less than five (ten being 

the healthiest and one being the unhealthiest), is attacked 80% of the time, then 

vigour <5 or >5 would be the second branch in the tree. Graphically it would look 

like the sequence of decisions portrayed in Figure 1.
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ATTACKED
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20%
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A 6F

> 8 0  YEARS

ATTACKED
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WOT ATTACKED

Figure 1. Example of a classification tree illustrating predictor variable splits. Note that the 
first split at age >80 years old is an internal node, i.ev other nodes can branch from this 
node. The next split at vigour >5.0 is a terminal node, signalling the end of the branch.

Classification trees are a useful tool for analyzing data because of their visual 

simplicity. The trees are rules for predicting or explaining the response category 

using hierarchical binary splits of tire explanatory variables. When predicting the 

category of response, classification trees are used as an algorithm to classify new 

data. An observation will follow a path in the tree starting in the top or root node 

and follow its individual splits at the interior or branch nodes, down the path  until 

it reaches a terminal or leaf node where no more splitting occurs (Kim and Yates, 

2003). The criteria used to split the branches to achieve the nodes represent the "if- 

then" model. Classification trees are used to predict membership of cases or objects 

in the classes of a categorical dependent variable from their measurements on one or
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more predictor variables. Classification tree analysis is one of the main techniques 

used in data mining (Hastie et al., 2001).

Each predictor variable is examined to see how well it can divide the node 

into two groups. If the predictor is continuous, a trial split is made between each 

category (every unique value is a 'category') of the variable. The process is repeated 

by moving the split point across all possible division points in the training data until 

the best improvement is found. This split point is saved as the best possible split for 

that predictor variable in this node. The process is then repeated for each of the 

other predictor variables.

A well-recognized advantage of the decision tree representation of a model is 

that the paths through the decision tree can be interpreted as a collection of rules. 

The information associated with the textual rules include a node num ber for 

reference, a decision of 0 or 1 to indicate (in the application considered here) 

whether the plot is stocked or not stocked, the number of training observations and 

the strength or confidence of the decision.

The measurement of predictive accuracy of a variable (i.e., m ean decrease in 

accuracy) is the more meaningful importance indicator (Berk, 2005). The mean 

decrease in accuracy is defined as the normalized difference between classification 

accuracy and the accuracy when the variable values have been randomly permuted.
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Higher mean decrease in accuracy indicates that a variable is more im portant to the 

accuracy of the classification.

The Receive Operating Characteristic (ROC) curve, a diagnostic measure 

(represented by a graphic curve and a numerical score) that plots false positive 

against true positive rates, is generally described as one of the most accurate ways to 

measure the discriminatory power of the resultant classification tree m odel through 

comparison of the relationship between sensitivity (in this case, true positives) and 

specificity (false positives) (Hanley and McNeil, 1982; Beck and Schultz, 1986; Krivec 

and Matjaz, 2011). In other words, specificity of the tree is the probability that one 

more not stocked point added to the analysis will be correctly classified as not 

stocked; and conversely, sensitivity is the probability that one more stocked point 

added to the analysis will be correctly classified as stocked (Feldman and Gross, 

2003). A perfect test (100% sensitive and 100% specific) would score a ROC value of 

1.0. The closer the value is to 1.0 (100%), the better the distinguishing capability of 

the classification tree model. The ROC graphic is a curved line that extends from 

the 45 degree line to the upper left comer; higher model accuracy is associated with 

a sharp distinct curve that approaches the top left comer of the graph (Figure 2).

The ROC curve is essentially the measurement of the trade-off between sensitivity
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Figure 2. Example of a ROC curve illustrating the trade-off between sensitivity and 
specificity. A ROC score of 1.0 is a perfect model fit and 0.5 is a purely random model fit.

and specificity. A perfect model would be able to correctly classify all stocked 

stands as stocked and it would never incorrectly classify a stocked stand as not 

stocked. A perfect model (represented by the red line on the ROC curve in Figure 2) 

would follow the y axis to the top of the graph (zero false positives, i.e., zero 

incorrectly identified) and then follow the x axis along the top of the graph (all true
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positives, i.e., all correctly identified). A random model (represented by the 45 

degree black line in Figure 2) would indicate that every true positive has an equally 

likely false positive. A ROC value of 0.5 (50% sensitive and 50% specific) 

demonstrates no discriminative value and is equivalent to assigning true positives 

with a coin flip (Sherrod, 2006). The strength of the final classified m odel can be 

interpreted by assessing the ROC value, also known as AUC (area under the curve).

Objectives

The objectives of my thesis are t o : 1) devise a predictive model of forest 

understory stocking, based on publicly available digital data with long shelf-life, 

that provides forest managers with a decision model to assist in post-beetle stand 

management planning; and 2) apply the model in a Geographic Information System 

(GIS) to generate a series of colour-themed maps portraying the probability of 

understory stocking in stands dominated by mature lodgepole pine in Sub-Boreal 

Spruce biogeodimatic zone.

Many factors such as proximity to potential non-pine seed sources, 

biogeodimatic subzone, mean annual predpitation, crown dosure, and site 

productivity may im pad advance regeneration and stand recovery in the lodgepole 

pine forests of central British Columbia. Literature suggests that patterns in the 

abundance of advance regeneration are evident, such that the proper use of stand

variables should make a predictive model possible (Kneeshaw and Burton, 1997;
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Kayes and Tinker, 2012). Given the far-reaching geographic spread of MPB-affected 

stands (and the inability of industry to harvest these stands), and the fact that there 

seem to be some consistent trends in the distribution of advance regeneration, it 

seems likely that a relatively accurate landscape-level predictive model could be 

useful (Hawkes et al., 2003). My thesis explores the use of a statistical data-mining 

technique known as recursive partitioning, or Classification and Regression Tree 

Analysis, and its integration with GIS geospatial modelling. The results illustrate 

how the combination of a priori information and recursive partitioning can provide 

an accurate, stable and reliable predictive model of the likely distribution of advance 

regeneration.
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Chapter Two: Methods 

Study Area

The study area was restricted to the dk, dw2, dw3, mc2, mc3, m kl, mw, and 

w kl biogeodimatic ecosystem dassification (BEC) units of the Sub-Boreal Spruce 

(SBS) biogeodimatic zone (Klinka et al, 2000) located in central BC (Figure 3). I 

selected this study area because of the abundance of predominantly even-aged 

mature pine stands. As a consequence of its composition, the study area selected 

was one of the hardest hit MPB-attacked regions in BC (Parkins and MacKendrick,

2007), making it a critical area in which to consider the potential for stand recovery. 

In order to report the results within a forest industry recognized context, the data 

were clipped to 1:250,000 NTS map tiles 93F, 93G, 93J, 93K, and 93L. The 1:250,000 

NTS map tile dataset also allows for logical, effident data storage and organized 

dissemination of the resultant data.

The SBS occurs mostly in the central region of BC and dominates the gently 

rolling Nechako Plateau between the Coast Range and the Cariboo and Rocky 

Mountains (Meidinger et al. 1991). It ranges from valley bottoms to 1300 m 

elevation, receives 400-900 mm of precipitation annually, and has a mean 

temperature range of below 0°C in winter to above 10°C in the summer (Meidinger 

et al. 1991). The SBS zone is characterized by ten subzones and four common site 

assodations: from driest to wettest, these are referred to as the Lodgepole pine -
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Study Area Geographic Extents

Figure 3. Study area as defined by six National Topographic Survey (NTS) 1:250,000 map sheets (cross- 
hatched). Grey or green lines denote forest district boundaries.



Huckleberry—Cladonia plant community, the Hybrid spruce -  Huckleberry -  

Highbush-cranberry plant community, the Hybrid spruce -  Oak fern plant 

community, and the Hybrid spruce -  Devil's club plant community (Meidinger et al. 

1991).

Field Data Collection

I selected my sampled stands through a stratified sampling design/ using 

biogeodimatic subzone as strata (Figure 4) because previous research had indicated 

strong differences among subzones in the abundance of advance regeneration 

(Burton, 2006; Coates et al. 2006). Suitable stands, which I referred to as target 

stands, met the following attribute criteria: stand spedes composition is lodgepole 

pine (coded as PL or PLI in the Province of BC's Vegetation Resource Inventory,

VRI) as the leading spedes with a minimum of 50 percent basal area (as specified 

by VRI attribute: SPEC_CD_1 and SPEC_PCT_1)-, the stand has an average age of 

greater than 60 years, weighted by basal area of the dominant trees for the leading 

spedes (specified by VRI attribute: AGE_1); and the stand is adjacent to a mature 

stand dominated by conifer spedes other than lodgepole pine.

My field sampling was designed to test and calibrate distance-related fadors

affecting the density of advance regeneration in mature stands dominated by

lodgepole pine. In particular, the effects of proximity to potential seed sources from

mapped stands or landscape positions dominated by non-pine trees guided the
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Figure 4. Location of sampled stands (thesis plots) within study area SBS BEC units.



sampling design. Consequently, my sample plots were positioned at 50-m intervals 

at transects extending from potential seed sources (for hybrid white spruce [Picea 

engelmannii x glauca], subalpine fir [Abies lasiocarpa], or Douglas-fir [Pseudotsuga 

menziesii]) into pine stands for distances up to approximately 700 m. The num ber of 

plots per stand typically varied from 5 to 10, depending on the size of die stand 

being sampled. Stands dominated by those non-pine species were identified from 

VRI (forest cover) maps considered current to May 2006 and interpretation of colour 

1:15000 digital orthophotos compiled from 2004.

Utilizing a GIS software package, I isolated VRI stand polygons that met 

suitable target stand criteria. Because a straight transect from the edge of the target 

stand through the target stand was required, I established a transect point of 

commencement (POC) for each target stand through computer on-screen digitizing 

and geographic coordinates (Universal Transverse Mercator Easting (x) and 

Northing (y)) for the POC and coordinates for each subsequent plot 50 m along the 

transect line. I transferred the UTM to a handheld global positioning system (GPS) 

unit. A hardcopy map with UTM coordinates, number of intended plots, transect 

bearing, and target stand attributes was created for every target stand before I left 

for field sampling. This was particularly useful when I encountered target stands 

that had been logged and were no longer useful for data collection. The GPS unit 

helped me locate the target stand POC in the field and establish a proper bearing
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line along the intended transect. Both GPS locations and compass bearings were 

used to ensure the predetermined transect line was being followed. Once the exact 

location of the POC was located in the field, the predetermined bearing into the 

candidate stand was established and data collection plots were collected every 50 m 

until the stand was fully transected.

I established my sample plots by driving a semi-permanent num bered metal 

pigtail stake into the ground (with a unique num ber derived from the sample date, 

transect number, and plot number). A GPS coordinate was collected and recorded 

for the plot center. An overall site description was recorded, including: the percent 

slope gradient (measured with a clinometer), slope aspect (measured by compass in 

degrees), and mesoslope position (Figure 5).

At each plot center, I dug a 50 cm deep soil pit to accurately assess the soil 

texture (the relative proportions of sand, silt, and clay) and the percentage of coarse 

fragments. The soil properties and plot position allowed for identification of both 

soil nutrient regime (amount of essential soil nutrients that are available to the 

vegetation) and soil moisture regime (the average amount of soil w ater annually 

available for evapotranspiration by vegetation).

Using the appropriate BEC unit edatopic grid from field guides site 

identification and interpretation for the Southwest, Southeast, and North Central
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portion of the Prince George Forest Region (DeLong et al., 1993; DeLong, 2003; 

2004), I was able to assign a field-based site series designation for each plot location.

_ i 
0  i
© !

uni

Figure 5. Cross section illustrating site mesoslope positions along a hill.

A cruise plot sweep was conducted at each plot center for basal area

estimates using a prism with a basal area factor (BAF) of 4.0. To supplem ent the

cruise data, a plot-level estimate of the num ber of years since MPB attack was

determined by examining the trees for MPB bore holes, pitch tubes, and vigour. I

established 3.99-m (50 m2) and 5.64-m (100 m2) radius fixed-area sample plots by

attaching a metered tether to the metal pigtail at plot center and flagging the radius.

Dominant plant species within the 3.99-m radius were identified. Through ocular

estimate, the percent cover and average height (cm) of each species were recorded.
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Also within the 3.99 radius sample plot, all seedlings (0 cm -130 cm tall) were 

tallied by species, with their vigour, height (cm), and distance to the nearest 

seedling/sapling recorded. In die 5.64 radius sample plot, all saplings (130 cm tall to 

7.5 cm in diameter as measured at 1.3 m height) were tallied by species, with their 

vigour, diameter at breast height (dbh), and distance to the nearest seedling/sapling 

recorded. The number of tree seedlings (>10cm tall) and saplings at each plot 

represented the amount of advance regeneration. This number was extrapolated to 

estimate the number of stems/ha of advance regeneration per plot. The stems/ha of 

all conifer regeneration >30 cm in height represented the target or response variable 

for much of the classification tree analysis. At each of my plot locations, a camera 

tripod (with built-in level) was placed and levelled at plot center. Digital oblique 

and upward-directed hemispherical ("fisheye") photographs were taken to assist in 

site description and subsequent incoming light/canopy openness studies 

respectively. Finally, three mature trees, that were indicative of the stand's average 

age, were cored using an increment borer. The cores were protected in soda straws, 

and tree rings were counted post-field to estimate approximate stand age.

Additional data used for my thesis included an aggregation of raw field data 

collected from advance regeneration studies in the study area from 1996 to 2007. 

Although the studies may not have had similar objectives or deliverables as my 

thesis, I was able to extract portions of the raw data that were suitable inputs for my
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analysis. In total, I collected data from 162 plots within 37 stands (sampled in 2006 

and 2007). These data were combined with data collected in a similar m anner (i.e., 

along transects from non-pine stands into pine-dominated stands) by P.J. Burton 

and K.D. Coates (Coates et al. 2006), and other analogous plot data designed to 

representatively sample entire pine-leading stands rather than specifically the 

effects of plot distance from a non-pine seed source (e.g., Dhar and Hawkins, 2011). 

In total, 4241 plots were aggregated into a single plot dataset. Although I only 

collected 162 plots in support of this analysis, the study derives its conclusions from 

a 964 plot subset of the aggregated plot dataset. Table 1 lists the source, num ber of 

plots, and BEC units of all data used as inputs for the thesis classification tree model 

development. The 964 plots were selected by a GIS query that isolated only those 

plots within mature pine-leading stands (>50% lodgepole pine by basal area and 

mapped as >60 years old at the time of sampling) within the SBS dk, dw2, dw3, mc2, 

mc3, m kl, mw, and w kl BEC units of 1:250,000 NTS map tiles 93E, 93F, 93G, 93J, 

93K, and 93L.

Post-Field Data Organization

I organized the data from the 964 plot sample data in an ArcGIS (ESRI, 2011) 

file geodatabase. I subsequently used this dataset as the training data for the 

classification tree analysis. A common table attribute (advance regeneration
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stems/ha) was established and populated with field collected data. Classification 

tree analysis requires the variable being predicted to be categorical.

Table 1. Number of advance regeneration plots sampled per BEC unit by data
source.

Source Year
dk dw2 dw3

BEC Unit (SBS) 
mc2 mc3 mkl mw wkl

Total Plots

Brooks 2007 - - 59 - - 54 - 14 127
Burton 2005 8 21 138 5 36 - - - 208
CarrotLake 2006 - - - - 100 - - - 100
Cichowski 2005 5 - - 18 - - - - 23
Coates 2005 38 - - 55 - - - - 93
DeLong 2005 10 - 9 - 6 - - - 25
Fluxnet 2006 - - - - - 9 - - 9
Hawkes 2002 77 - - - - - - - 77
Hawkins 2005 - 23 53 13 - - 3 - 92
NIVMA 1996 - 2001 4 1 - 8 1 4 - - 18
Rakochy 2004 150 - - 42 - - - - 192

Total Plots 292 45 259 141 143 67 3 14 964

As my thesis objective was to build a model that assists in predicting the stocking 

status of stands, it was necessary to convert the advance regeneration stems/ha to a 

Boolean attribute of stocked or not stocked. An important qualification should be 

made with regards to my thesis' use of the attribute "stocked". I applied a 

conservative estimate of stocking, as the data only refers to the stocking of seedlings 

(>10cm tall but less than 130cm tall) and saplings (>130cm tall but less than 7.5 cm 

dbh). My analysis does not take into account germinants (<10 cm tall) or existing 

trees (>7.5 dbh), even though both could be considered important elements of 

advance regeneration. Germinants are not infrequent in the understories of the
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more moist zones of the SBS (Vyse et al., 2009). I also make the assumption that all 

pine trees >7.5 can dbh within the plot will not survive post MPB, and therefore are 

not considered in the stocking calculation. This becomes an important consideration 

when we consider the growing space actually available to the advance regeneration. 

The results are consequently a conservative estimate of stocking and could be better 

identified as "stocked with seedlings and saplings".

I selected a threshold of 600 stems/ha to separate stocked from not stocked 

stands as several studies referring the percentage of plots meeting or exceeding 

minimal stocking standards have used 600 stems/ha as the baseline (Bulmer et al., 

2002; Burton, 2006; Vyse et. al., 2009). 600 stems/ha is widely recognized as the 

minimum well-spaced preferred trees/ha in in stocking guidelines for the 

regeneration of clearcuts (e.g., British Columbia Ministry of Forests 2000), and is 

threshold beneath which stand rehabilitation measures might be undertaken. Based 

on that threshold, I created two new attributes in the geodatabase, nam ed 

alltrees600 and conifers600. The alltrees600 attribute was populated with a 1 if the 

advance regeneration total stems/ha for the sample plot was equal to or greater than 

600 stems/ha and populated with a 0 if the advance regeneration total stems/ha was 

less than 600 stems/ha. This attribute applied to all tree species within the sample 

plot. A second 600 stems/ha attribute, conifer600, was also populated w ith a 1 or 0 

following the same criteria as the alltrees600 attribute, but only counting those
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conifer species in the sample plot. In addition, a third threshold group, MSSpa, was 

established to assign a stocking value of one or zero according to the appropriate 

minimum stocking standard of preferred and acceptable species found in the 

Establishment to Free Growing Guidebook for the Prince George Forest Region 

(British Columbia Ministry of Forests, 2000). Using the Establishment to Free 

Growing Guidebook the MSSpa, I identified criteria for each biogeodimatic unit and 

site series pairing that contained a study plot. The published MSSpa values and 

conditions were used to define the level of stocking against which to assess seedling 

and sapling densities (Appendix 1). MSSpa can be as low as 200 stems/ha to as high 

as 700 stems/ha in the subzone/site series present in my study area (British 

Columbia Ministry of Forests, 2000). Plots that had  less than the prescribed MSSpa 

were considered not stocked and plots that met or exceeded the prescribed MSSpa 

were considered stocked. The "well-spaced" requirement for counting regeneration 

was ignored, as this value (which typically ranges from 1.0 to 2.5 m between 

seedlings) is arbitrary and depends on the silvicultural prescription and growth 

modelling assumptions, while fully mature trees are often observed with stem bases 

growing <1.0 m apart. This simple but conservative measurement of understory 

stocking (designed to be applied under open-growing conditions) was critical to the 

classification tree development and subsequent GIS mapping model.
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Statistical Analyses

Initially, basic descriptive statistics were applied to the data to examine 

patterns in the variables. T-tests, R package t.test (R Core Team, 2012), were 

conducted to examine the contribution of non-conifers to the advance regeneration 

densities. Linear regression models, R package glm (R Core Team, 2012), were 

applied to the data to explore the possibilities of relationships between advance 

regeneration densities and several key variables. The primary objective of building 

a predictive geospatial model of the probability distribution of advance regeneration 

in target pine stands was pursued by developing classification tree models in 

DTREG (Sherrod, 2006) and R (R Core Team, 2012), using a recursive partitioning 

package called rpart (Themeau et al., 2012). The classification-tree m odel required a 

binary response variable (stocked or not stocked) and publicly available explanatory 

variables that currently exist in digital format. Therefore, any data I collected in the 

field that could not be derived from publicly available geospatial data sets (e.g., 

understory plant cover) were not used as a potential explanatory (predictor) 

variable. I determined that data derived from: 1) the Vegetation Resource Inventory 

(VRI, 2006); 2) Predictive Ecosystem Modelling (PEM, 2008); and 3) interpolated 

and elevation adjusted climate data calculated using ClimateBC (Wang et al. 2006) 

were all publicly accessible and contained key potential predictors. The three 

datasets together yielded 54 potential predictors (Table 2). The intention was to find
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the best combination of potential predictors that could be used to create a 

parsimonious predictive model to accurately classify each 1-ha cell section within 

target stands across the study area as stocked (1) or not stocked (0). Additionally, 

each cell would not only be designated as stocked or not stocked, but would also be 

assigned the probability of being stocked or not stocked. A cross validation 

argument cv.tree function was applied to the full tree to minimize the 

misclassification error associated with overfitting of the tree. The cross validation 

pruned back the tree to the optimal number of splits/node pairs. See Appendix 3 for 

a more detailed description of recursive partitioning, tree pruning using cross- 

validation, and variable importance calculation.

Geographical Information System (GIS) Analyses

The second objective of my thesis was to create a geospatial m odel that 

assists in converting the probability of stocking into a geospatial environment. 

Through the use of classification tree modeling, the rules for determining stocked or 

not stocked and the probabilities of stocking were determined. One of the passive 

inputs (included in the model development but not used as a key predictor) into the 

classification tree analysis was the geographic coordinates of the 100 m cells. The 

themed polygons portraying the likely distribution and location of stocked and 

unstocked stands dominated by mature lodgepole pine in Sub-Boreal Spruce
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Table 2. Ecological variables from publicly available geospatial data(evaluated as potential inputs) to the 
probability of stocking classification tree model.

Variable Source Type Variable Source Type
UTM coordinate (easting) GIS 2 Elevation GIS 2
UTM coordinate (northing) GIS 2 Leading Spedes Live Volume per Hectare at 12.5 cm VRI 2
Forest District VRI 1 Leading Spedes Live Volume per Hectare at 17.5 cm VRI 2
Biogeodimatic Subzone/Variant VRI 1 Second Spedes Live Volume per Hectare at 12.5 cm VRI 2
Site Series PEM 1 Second Spedes Live Volume per Hectare at 17.5 cm VRI 2
Soil Moisture Regime VRI 1 Leading Spedes Dead Volume per Hectare at 12.5 cm VRI 2
Soil Nutrient Regime VRI 1 Leading Spedes Dead Volume per Hectare at 17.5 cm VRI 2
Absolute Moisture Regime VRI 1 Mean Annual Temperature C*c 2
Surface Expression VRI 1 Mean Warmest Month Temperature C?c 2
Modifying Process VRI 1 Mean Coldest Month Temperature C*c 2
Mesoslope Position VRI 1 Temperature Difference Between MWMT and MCMT d c 2
Quadratic Diameter at 12.5 cm VRI 2 Mean Annual Predpitation c*c 2
Quadratic Diameter at 17.5 cm VRI 2 Mean Summer (May to Sept.) Predpitation Cbc 2
Crown Closure VRI 2 Annual Heat: Moisture Index C*c 2
Site Index VRI 2 Summer Heat: Moisture Index Cbc 2
Basal Area VRI 2 Degree-Days Below 0°C d c 2

T ree Cover Pattern VRI 1 Degree-Days Above 5°C d c 2
Vertical Complexify VRI 1 Degree-Days Below 18°C & 2
Spedes Composition of Leading Spedes VRI 1 Degree-Days Above 18°C c*c 2
Leading Spedes Percentage VRI 2 Number of Frost-Free Days C*c 2

Spedes Composition for Second Spedes VRI 1 Frost-Free Period & 2
Second Spedes Percentage VRI 2 Predpitation as Snow d* 2
Percent of Pine in Leading Spedes VRI 2 Extreme Minimum Temperature over 30 Years C*c 2
Percent of NonPine in Stand VRI 2 Hargreaves Reference Evaporation d* 2
Ratio of Pine to NonPine in Stand VRI 2 Hargreaves Climatic Moisture Defidt d c 2
Projected Age for Leading Species VRI 2 Distance (m) to Nearest Nonpine Seed Source (SW direction) GIS 2
Prcjeded Height for Leading Spedes VRI 2 Species Composition of Nearest Nonpine Seed Source GIS 1

Data Source: VRI (Vegetation Resource Inventory), PEM (Predictive Ecosystem Mapping), O  (ClimateBQ, GIS (derived 
data using ArcGIS) Data Type: 1 (categorical), 2 (continuous)



biogeodimatic zone. The GIS model incorporates the exported rules from the 

dassification tree to isolate criteria identified in each branch. Each of the terminal 

nodes in the dassification tree could be extracted from the resultant tree 

individually through a series of single programming statements, w ith each properly 

executed statement resulting in a queried output. This, however, would be an 

ineffident use of the final model, as the result would be a series of if-then strings 

that would each have to be applied against test data. By creating a dassification tree 

and the splitting rules that make up  the tree as a model, all the branches leading to 

all the terminal nodes could be applied against test data simultaneously. Because 

the model dataset contained geographical coordinates, the dataset could be 

imported into a GIS. The resultant is a spatially attributed file that identifies the 

variables used in the model, the predicted target value for every 100-m raster cell (as 

stocked or not stocked), the terminal node used for each predicted value, and a 

probability value for the designation of stocked or not stocked for every 100-m 

raster cell. The probability value is the critical attribute that is used in creating the 

predictive colour-theme map. Much like the classification tree output, ArcGIS 

models are components linked together through connectors such as tools, variables, 

and iterators (Allen, 2011). The final model output is an extensible geospatial model 

that can be run within the ArcGIS environment. The model automates the
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geoprocessing tasks that are required to prepare the data for modelling, geospatial 

analysis, and colour-themed mapping.
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Chapter Three: Results

Trends in Advance Regeneration Density

A total of 243 pine-leading stands (containing the 964 plots) were field

sampled. A majority of these plots were located in the SBSdk, SBSdw3, SBSmc2, and

SBSmc3 biogeodimatic units and on 01,03,04, or 05 site series (Table 3).

Table 3. Number of regeneration plots sampled in pine-dominated stands on 
different site series in different biogeodimatic subzones.

BEC Unit
Site Series

01 02 03 04 05 06 07 08 09 10 Total
dk 142 71 52 0 21 3 2 0 0 1 292
dw2 16 0 6 13 2 1 2 0 4 1 45
dw3 38 2 27 45 73 39 14 3 16 2 259
mc2 97 21 1 0 13 5 0 0 0 4 141
mc3 20 0 2 114 2 0 5 0 0 0 143
m kl 12 2 16 4 23 9 0 0 1 0 67
mw 1 0 0 2 0 0 0 0 0 0 3
w kl 0 0 7 3 3 1 0 0 0 0 14
Total 326 96 111 181 137 58 23 3 21 8 964

The 964 plots were located on a range of topographic locations. The percentages on 

the site meso-slope cross section (Figure 6) quantify the location of the 964 plots 

according to their topographical locations (as determined by intersection with VRI 

digital data). It should be noted that although site mesoslope position was one of 

the potential predidors, it was a more general topographic descriptor named 

surface expression (VRI, 2006) that became a key predictor variable.
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slope positions. NA represents plots for w hich meso-slope value was not available in  the 
VRI

The distribution of plots reflects the current age class structure of pine forests in the

Northern Interior, with many m apped as being greater than 100 years of age, but

with "old-growth" lodgepole pine and natural stands under 80 years of age much

more difficult to find. The distribution of plots by stand age and BEC subzone is

shown in Table 4. Cross-tabulating plots by site series and age class, a

concentration of sampling in circum-mesic stands 80 to 140 years of age is evident

(Table 5). Note that site series 07,08,09,10 have been binned into a single "moist
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Table 4. Number of regeneration plots sampled in pine-dominated forest cover 
polygons by age classes* and biogeodimatic subzones.

BEC Unit
Nominal Mapped Age Class *

4 5 6 7 8 9 Total
dk 9 63 55 64 101 0 292
dw2 4 4 3 24 10 0 45
dw3 2 103 42 22 90 0 259
mc2 0 2 10 23 104 2 141
mc3 14 5 0 105 18 1 143
m kl 0 32 0 4 31 0 67
mw 0 0 3 0 0 0 3
wkl 0 14 0 0 0 0 14
Total 29 223 113 242 354 3 964

* age class 4 is 61 to 80 years, age class 5 is 81 to 100, age class 6 is 101 to 120, age 
dass 7 is 121 to 140, age class 8 is 141 to 240, and age class 9 is 240+ years.

Table 5. N um ber of regeneration plots sam pled in pine-dom inated stands by age classes* 
and sites series, across all biogeodim atic subzones.

Site Series
Nominal Mapped Age Class *

4 5 6 7 8 9 Total
01 6 28 48 76 166 2 326
02 8 27 8 16 36 1 96
03 3 37 23 17 31 0 111
04 10 22 10 99 40 0 181
05 0 64 9 19 45 0 137
06 1 28 10 5 14 0 58

07,08,09,10 1 17 5 10 22 0 55
Total 29 223 113 242 354 3 964

* age dass 4 is 61 to 80 years, age class 5 is 81 to 100, age class 6 is 101 to 120, age 
dass 7 is 121 to 140, age class 8 is 141 to 240 years, and age dass 9 is 240+ years.
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site" category in order to increase sample size. Across all 964 plots, advance 

regeneration by all species (>10cm tall) averaged a mean density of 1268 stems/ha 

and a median density of 600 stems/ha. This means that one-half of the plots 

sampled had more than 600 stems/ha of advance regeneration (my thesis threshold 

for designating a plot as stocked), and one-half of the plots sampled had less.

A paired-samples t-test was conducted to determine if there was a significant 

difference between the mean densities of advance regeneration when calculations 

included and excluded non-conifer species. I found that there was not a significant 

difference in the mean density between conifers only (mean=1267.87, s.d.=1911.90 

stems/ha) and all species (mean=1289.02, s.d.=1909.36 stems/ha) across the study 

area; t963=4.42, P = 0.08. This result suggests that non-conifer species do not 

significantly influence the mean density of advance regeneration, and by extension, 

the stocking status of the stand.

An examination of advance regeneration across biogeodimatic subzones shows that 

mean densities across all subzones exceed the 600 stems/ha— except in the SBSmw, 

a subzone with only three samples. Comparison of mean and median advance 

regeneration densities across the thesis study area proved to be quite valuable, as 

this comparison indicates; most sub-populations are not normally distributed.

Mean regeneration densities for each BEC unit, age dass, and forest district 

respectively are presented in Tables 6 through 8.
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Table 6. Descriptive statistics for advance regeneration densities (stems/ha) for all sam ple 
plots in each BEC unit. Mean, median, standard  deviation, and interquartile ranges are 
reported.

BEC Unit n Mean s.d 25% Median 75%
dk 287 743 1342 0 200 800

dw2 45 1504 1649 200 1200 1700
dw3 262 1278 1661 200 750 1600
mc2 143 1086 1414 200 600 1400
mc3 143 2120 2992 200 600 3250
m kl 61 2077 2263 400 1200 2700
mw 3 266 115 200 200 300
wkl 20 2035 1571 850 1650 3750

Table 7. Descriptive statistics for advance regeneration densities (stems/ha) for all sam ple 
plots per age class. Mean, median, standard deviation, and interquartile ranges are 
reported.

Age Class n Mean s.d 25% Median 75%
4 29 231 355 0 100 300
5 223 1221 1597 200 600 1700
6 113 1132 1435 200 600 1600
7 242 1399 2082 200 600 1675
8 356 1387 2136 200 600 1613
9 1 2800 na 2800 2800 2800

Table 8. Descriptive statistics for advance regeneration densities (stems/ha) for all sam ple 
plots per forest district. Mean, median, standard deviation, and interquartile ranges are 
reported.

Forest District n Mean s.d 25% Median 75%
Fort St. James 1 1200 na 1200 1200 1200

Nadina 350 746 1283 0 400 1000
Prince George 275 1410 1663 300 900 1750

Quesnel 4 900 621 500 900 1300
Vanderhoof 334 1762 2446 200 750 2375
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Across the entire study area, there was a near equal distribution of stocked and 

not stocked across the 964 sample plots for all three stocking groups (Table 9).

Table 9. Total num ber of stocked and no t stocked sample plots across the study area based 
on three different definitions of acceptable stocking (stocking groups).

Stocked Not Stocked
Stocking G roup

All Tree Species (600 stems/ha) 510 454

Conifer Species only (600 stems/ha) 496 468

M inimum Stocking Standards * 460 504

Based on the sampling within the study area, all but two BEC units (SBSdk 

and mw) are greater than 50% stocked for all stocking groups, and as high as 70% 

stocked in the m kl and w kl BEC units (Figures 7 ,8 ,  and 9). The biogeoclimatic 

unit SBSmw had no stocked plots within the study area. It is worth noting that 

there were only three plots gathered in the mw subzone variant, all collected from 

the same stand.

In an attempt to identify any key variables that may have a direct (positive or

negative) effect on the advance regeneration densities, several potential key

variables were examined through a simple linear regression model. This exercise

was conducted for the purposes of data exploration and description only, searching

for any potential relationships between the advance regeneration
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Figure 7. Proportion of 964 plots in pine-leading forest cover polygons in  the N orthern  
Interior Forest Region that m eet a 600 stem s/ha stocking density threshold (for all tree 
species).
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Figure 8. Proportion of 964 plots in pine-leading forest cover polygons in the N orthern 
Interior Forest Region that meet a 600 stem s/ha stocking density threshold (for conifer 
species).
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Interior Forest Region that m eet a prescribed stocking density threshold (for m inim um  
stocking standards - preferred and acceptable species).

(positive or negative) effect on the advance regeneration densities, several potential 

key variables were examined through a simple linear regression model. This 

exercise was conducted for the purposes of data exploration and description only, 

searching for any potential relationships between the advance regeneration 

stems/ha of each stand and basal area (from VRI), distance to nearest seed source 

(calculated using GIS), live pine volume per ha (VRI), dead pine volume per ha 

(VRI), mean annual precipitation (ClimateBC), mean annual temperature 

(ClimateBC), stand height (VRI), and stand age (VRI). The results of the models, 

presented in Figures 10 through 14, are represented as scatterplots. The exercise did 

not uncover any variables that had a strong (r2 >0.5) linear relationship w ith density 

of advance regeneration. Only distance from nearest seed source yielded a
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statistically significant result (P=0.007). The r2 (0.008), however, indicates that 

distance from nearest seed source explains less than 1% of the variation in advance 

regeneration stems/ha. The resulting linear regression equation for distance from 

nearest seed source is total stems/ha = 1462.0493 - 0.5851 * m  to nearest seed source.
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Figure 10. Scatterplot of advance regeneration density vs. stand basal area (r2 = 0.0002315, 
P = 0.637, F = 0.2228, n  = 964).

48



18000

16000m
*5

14000
a
~  12000 
i

*•2 ioooo  
8 wsbO u 
B3
w u

<

8000 ■ * '  #* #«* • .. •  y •  -0.5851X +1462
L V  • *  *  -  R 2 =  0.0075

200 400 600 800 1000 1200 1400 1600
Distance to Nearest Non-Pine Seed Source (m)

Figure 11. Scatterplot of advance regeneration density vs. distance to the nearest non-pine 
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Figure 12. Scatterplot of advance regeneration density vs. distance to the nearest non-pine 
seed source (r2 = 0.003, P = 0.058, F= 3.596, n  = 964.)
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Classification Tree Analysis

My model derived from the rpart module in R classified the presence/absence 

of advance regeneration stocking with an accuracy of 77% (11 terminal nodes) for 

all-tree stocking, 78% (13 terminal nodes) for conifer-only stocking, and 78% (14 

terminal nodes) for MSSpa stocking. As expected, the identity and order of 

predictors deemed important by the models were similar for each of the three 

stocking groups. The final tree for all three stocking groups had BEC unit, distance 

to nearest non-pine seed source, projected stand age, and basal area as their top four 

important variables. It is also interesting that all three stocking groups utilized the 

categorical variable BEC unit as their initial split, making it the most important 

variable for all three groups. This would appear to indicate that the density of 

advance regeneration is influenced by the broad factors associated with 

biogeoclimatic subzones (i.e., climate, vegetation, soil) and may imply that the 

model is suitable as an overarching landscape-level predictor.

The critical statistical outputs for the final model (Table 10) indicate that in 

all three stocking groups, the resultant final tree was larger than it needed to be (i.e., 

the number of terminal nodes before pruning was overfitting the data) and that a 

simpler tree with fewer terminal nodes could achieve the same (or better) accuracy. 

The numbers of terminal nodes after pruning are the final number of nodes 

associated with the best fitting and most parsimonious classification tree model.
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Table 10. Key statistics describing the classification tree accuracy for the advance 
regeneration prediction model. The classification tree size, accuracy, and evaluation are 
listed for all three stocking groups. MSSpa is the Minimum stocking standard (various 
stems/ha) of preferred and acceptable species, particular to each site series in each BEC unit.

600 stems/ha 600 stems/ha MSSpa
(all tree) conifers)

Number of terminal nodes 24 31 29
(before turning)

Number of terminal nodes 11 14 14
(after pruning)

Number of splits 
(after pruning)

10 13 13

Sensitivity 
(true positive rate)

82.45% 80.85% 71.99%

Specificity 
(false positive rate)

71.33% 74.15% 83.63%.

Misclassification rate 0.2282 0.2241 0.2189

Model accuracy 77.18% 77.59% 78.11%,

ROC score 0.8386 0.8327 0.8528

The red arrows in Figure 15 illustrates the path of a rule from initial split to terminal 

node. The initial split at SUBZVAR (BEC unit) is governed by the rule that the plot 

must be located in SBSdk or SBSmw to follow this branch.
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SU BVAR = dk, mw
YES ^  NO

DISTAN CEnear >= 544

BASAL AREA >=39

SURFACE_EXPRESSION = N,

84% of 44 51% of 150

PROJ_H EIGHT <21

100% of 8

74% of 34 79% of 14

Figure 15. Example of a rule path in the conifer only 600 stems/ha classification tree. The 
tree begins with an initial split of BEC unit and terminates after a split based on surface 
expression. This rule can be found in Table 15 as rule number 10.

The second split at DISTANCEnear (distance to nearest non-pine seed source) is 

governed by a threshold of 544 m to the nearest non-pine seed source. If the nearest 

distance to a non-pine seed source is >544 m, then the rule follows to the left and
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terminates at the dark green node classified as 0, or not stocked. The rule indicates 

that 96 plots are present in the split. The rule stipulates that there are only 96 plots 

that fit both splits (BEC unit and distance to nearest seed source) and that the 

likelihood of those 96 plots being not stocked is 17%. This provides a low 

confidence that BEC unit and distance from nearest non-pine seed source alone are 

good indicators for predicting stocking. If the plot is <544.3 m to the nearest non 

pine seed source, then the rule follows the branch to the right where it encounters a 

split at basal area. If the basal area is <39.34 m2/ha, then the rule follows to the right 

where it encounters its last split of surface expression being either U (undulating) or 

M (rolling). The plot terminates as a stocked node, where 100% of the 8 plots in the 

964 plot dataset that conformed to this set of rules were correctly classified as 

stocked.

The rule in text form reads as follows:

SUBZVAR=dk, or mw 
DISTANCEnear<544.3 m 
BASAL_AREA<39.34 m2/ha
SURFACE_EXPRESSION=M (rolling), or P (undulating)

The fully pruned classification trees (for all three stocking groups) provide 

sets of rules for the prediction of stocked with seedlings and saplings (Figure 16,17, 

18). The trees are interpreted (as per Figure 14) by following the splits in the 

branches — to the left if the split value in the tree is true and to the right if the split
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value in the tree is false, until a terminal node is reached. The number of root-to- 

terminal nodes range from a minimum of two splits to a maximum of 14 splits.

The key to building the classification tree is the identification of the important 

variables used, as they are the only variables used in the resultant rules. The order 

of appearance in the classification tree does not necessarily indicate the strength or 

overall importance of a particular variable. What is more important is the variable's 

overall contribution to the model (i.e., is the model worse without it?)

The important variables for predicting the probability of stocking for all three 

stocking groups remained consistent. Even though the classification model had 

access to an input of 54 equally weighted potential predictors, Table 11 details the 

important variables (and therefore significant ecological factors) selected for each 

classification tree.

Table 11. List of important variables/significant ecological factors involved in the final 
model predicting the probability of stocking. MSSpa is the Minimum stocking standard 
(various stems/ha) of preferred and acceptable species, particular to each site series in each 
BEC unit.

Classification TreeVariable/Ecological Factor
all trees conifers MSSpa

Biogeoclimatic Unit ✓ ✓ ✓
Projected Height for Leading Species ✓ ✓ ✓
Leading Species Dead Volume/ha at 12.5 cm ✓ ✓ ✓
Elevation ✓ ✓
Basal area ✓ ✓ ✓
Projected Age for Leading Species ✓ ✓ ✓
Species Composition of Nearest Non-pine Seed Source ✓ ✓ ✓
Distance (m) to Nearest Non-pine Seed Source (SW direction) ✓ ✓ ✓
Mean Annual Temperature ✓ ✓
Surface Expression ✓ ✓ ✓
Mean Annual Precipitation ✓
Leading Species Live Vohime/ha at 12.5 cm ✓
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The variable importance for each stocking group is based on the m ean decrease in

accuracy. The higher the mean decrease in accuracy, the more important the

variable is for the overall predictive accuracy of the model (Table 12).

The classification tree branches are translated into textual paths that can be

interpreted as a collection of rules (Tables 13-15). They are listed in the order of

their strength, i.e., highest probability in predicting the target variable (stocked or

not stocked). For example: there are 11 textual rules for the stocking group all tree

species (listed in Table 13). The two strongest and highest probability rules are:

Predictive Rule (Rank 1) probability = 1.00 
biogeoclimatic unit = dk, or mw 
distance to the nearest non-pine seed source <557 m 
stand basal area <39 m2/ha
surface expression = M (rolling), or P (undulating)

Following the tree in Figure 16, the above predictive rule terminates at node 23. The 

probability of 1.00 relates to the node text 1:100% of 8. The 1 indicates that the rule 

results in the prediction of a stocked cell. The 100% of 8 indicate that 8 of the 964 

plots remain in the predictive solution at this point of the tree. And of the 

remaining 8 plots, all 8 plots are both actually stocked and predicted to be stocked, 

resulting in a 100% prediction or 1.00 probability. This set of rules has the highest 

confidence for predictive power on test plots. The rule set with the second strongest 

predictive power terminates at node 29 in Figure 16. The following path through 

the classification tree (represented by textual rules below) indicates that 13 of the
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Table 12. Classification tree variable importance (in order of importance) for each stocking 
group. Order of importance is determined by the mean decrease accuracy value; a higher 
mean decrease accuracy values indicate a more important variable for prediction.

all tree species stocking group

Variable Importance MeanDecreaseAcccuracy

1 Biogeoclimatic Unit 1.01
2 Distance (m) to Nearest Non-pine Seed Source (SW direction) 0.93
3 Projected Age for Leading Species 0.93
4 Leading Species Dead Volume per Hectare at 12.5 cm 0.91
5 Basal area 0.86
6 Projected Height for Leading Species 0.86
7 Mean Annual Temperature 0.85
8 Species Composition of Nearest Non-pine Seed Source 0.83
9 Elevation 0.81
10 Surface Expression 0.44

conifer only stocking group

Variable Importance MeanDecreaseAcccuracy

1 Biogeoclimatic Unit 1.02
2 Distance (m) to Nearest Non-pine Seed Source (SW direction) 0.90
3 Leading Species Dead Volume per Hectare a t 12.5 cm 0.90
4 Projected Age for Leading Species 0.89
5 Basal area 0.88
6 Projected Height for Leading Species 0.87
7 Species Composition of Nearest Non-pine Seed Source 0.87
8 Mean Annual Temperature 0.86
9 Elevation 0.84
10 Surface Expression 0.54

MSSpa stocking group

Variable Importance MeanDecreaseAcccuracy

1 Biogeoclimatic Unit 1.04
2 Leading Species Dead Volume per Hectare at 12.5 cm 1.01
3 Projected Age for Leading Species 0.96
4 Basal area 0.95
5 Distance (m) to Nearest Non-pine Seed Source (SW direction) 0.92
6 Projected Height for Leading Species 0.92
7 Leading Species Live Volume per Hectare at 12.5 cm 0.91
8 Mean Annual Precipitation 0.88
9 Species Composition of Nearest Non-pine Seed Source 0.88
10 Surface Expression 0.59
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Table 13. Translation of classification tree model for predicting the probability of stocking
in all tree species 600 stems/ha stocking threshold into textual rules.

600 stems Ata (all trees)

stocked not stocked
1 allsp600“ l prob=1.00 6 allsp600=0 prob=0.37

S UBZV AR=dk,m w SUBZV AR-dw2,dw3,mc2,mc3,mkl ,wkl
DJSTANCEnear< 557.4 PROJ_AGE_l>=77.5
BASAL_AREA< 38.78 DEAD_VOL_PER_HA_SPPl_125< 4233
SUKFACE_EXPRESSION=M,P SPECIES_CD_lnear-AT,EF,SW,SX

2 allsp600*1 prob-O.85 7 allsp600=0 prob-0.31
SUBZV AR=dw2,dw3,mc2,mc3,mkl,wkl S UBZVAR*dk,mw
PROJ_AGE_l>-77.5 DIST ANCEnear< 557.4
DEAD_VOL_PER_HA_SPPl_125< 42.33 BASAL_AREA< 38.78
SPEOES_CD_lnear*SSB 

3 allsp600*l prob-0.75

SURFACEJEXFRESS!ON=N,U 
PROJ_HEIGHT_l< 2135

SUBZV AR-dk,mw 8 alls p600*0 prob=0.21
DISTANCEnear< 557.4 SUBZV AR*dw2/dw3,mc2,mc3,mkl,wkl
BAS AL_AREA< 38.78 FROJ_AGE_l>-77.5
SURFACE_EXFRESSION*N,U DEAD_VOL_PER_HA_SPP1.125>=42.33
PROJ_HEIGHT_l>=21.35 

4 allsp600=l prob=0.69

MAT>*4.05 
Elevation< 722.5

SUBZV AR-dw2,dw3,mc2,mc3,mkl,wkl 9 alls p600=0 prob=0.20
PROJ_AGE_l»77.5 SUBZV AR=dk,mw
DEAD_VOL_PER_HA_SFPl_125>-4233 DISTANCEnear< 557.4
MAT>=4.05
Elevation>=722.5

BASAL_AREA>*38.78

10 allsp600=0 prob=0.17
5 allsp600*l prob=0.68 SUBZV AR=dk,mw

S UBZVAR=dw2,d w3,mc2,mc3,mkl, wkl 
PROJ_AGE_l >*77.5

DISTANCEnear>=557.4

DEAD_VOL_PER_HA_SPPl_125>=42.33 11 allsp600-0 prob=0.06
MAT< 4.05 SUBZV AR=dw2,dw3,mc2,mc3,mkl ,wkl 

PROJ_AGE_l< 77.5
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Table 14. Translation of classification tree model for predicting the probability of stocking
in conifer-only 600 stems/ha stocking threshold into textual rules.

600 stems/ha (conifers only)

___________________stocked_________
1 conifer600=l prob=1.00 

SUBZV AR=dk,mw 
DBTANCEneaK 544.3 
BAS AL_AREA< 39.34 
SURFACE_EXPRESSION=M,P

2 conifer600=l prob=0.90
SUBZV AR*dw2,dw3,mc2,mc3,mkl ,wkl 
PROJ_AGE_l>-77.5
DEAD_VOL_PER_HA_SPPl_125>-42.33 
MAT< 4.05
SPECIES_CD_lneai=AT,EP,FD,FDtS,SX 
PROJ_HHGHT_l< 19.25

3 conifer600-l prob-0.85
SUBZV AR=dw2,dw3,mc2,mc3,mkl,wkl 
PROJ_AGE_l >-77 3
DEAD_VOL_PER_HA_SPPl_125< 42.33 
SPEQES_CD_lnear=S,SB

4 conifer600=l prob=0.79 
SUBZV AR=dk,mw 
DISTANCEnear< 5443 
BASAL_AREA< 39.34 
SURFACE_EXPRESSKDN=N,U 
PROJ_HEIGHT_l >=21.35

5 conifer600”l prob-0.74
SUBZV AR=dw2,dw3,mc2,mc3,mkl ,wkl 
PROJ_AGE_l>-77.5
DEAD_V OL_PER_HA_SPPl _125>=42.3 3 
MAT< 4.05
SPEOES_CD_lnear=BLSB,SW,SXW

6 conifer600=l prob=0.69
SUBZV AR=dw2,dw3,mc2,mc3,mkl ,wkl 
PROJ_AGE_l>-77.5
DEAD_VOL_PER_HA_SPPl_125>-42.33
MAT>=4.05
Elevation>=722.5

7 conifer600=l prob=0.63
SUBZV AR=dw2,dw3,mc2,mc3,mkl,wkl 
PROJ_AGE_l >=77.5
DEAD_VOL_PER_HA_SPPl_125>=42.33 
MAT< 4.05
SPECIES_CD_lnear“AT,EP>FD/FDkS,SX 
PROJ_HEKj HT_1 >=19.25 
DBTANCEneaK 182.4

___________________not stocked________
8 conifer600=0 prob=0.40

SUBZV AR-dw2,dw3,mc2,mc3,mkl ,wkl 
PROJ_AGE_l>=77.5
DEAD_VOL_PER_HA_SPPl_125>=42.33 
MAT< 4.05
SPECIES_CD_lnear=AT,EP,FD,FDI,S,SX 
FROJ_HElGHT_l>=19.25 
DBTANCEnear>-l 82.4

9 conifer600=0 prob=0.36
SUBZV AR=dw2,dw3,mc2,mc3,mkl ,wkl 
PROJ_ AGE_1 >-77 3
DEAD_VOL_PER_HA_SPPl_125< 42.33 
SPECIES_CD_lnear-AT,EP5W,SX

10 conifer600=0 prob-0.26 
SUBZV AR=dk,mw 
DBTANCEneaK 544.3 
BAS AL_AREA< 39.34 
SURFACE_EXPRESS!ON=N,U 
PROJ_HEIGHT_l< 21.35

11 conifer600-0 prob=0 21
SUBZV AR=dw2,dw3,mc2,mc3,mkl ,wkl 
FROJ_AGE_l>=77.5
DEAD_VOL_PER_HA_SPPl_l 25>«42.33
MAT>-4.05
Elevation< 722.5

12 conifer600-0 prob=0.17 
SUBZV AR=dk,mw 
DBTANCEnear>-544.3

13 conifer600=0 prob=0.16 
SUBZV AR=dk,mw 
DBTANCEneaK 5443 
BASAL_AREA>-39.34

14 conifer600”0 prob-0.06
SUBZV AR“dw2,dw3,mc2,mc3,mkl ,wkl 
PROJ_AGE_l< 77.5
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Table 15. Translation of classification tree model for predicting the probability of stocking
in all minimum stocking standards stocking threshold into textual rules.

MSSpa (preferred and acceptable)

stocked not stocked
1 MSSpa-l prob-1.00 8 M5Spa=0 prob-0.30

SUBZV AR=dk,mw SUBZV AR-dw2,dw3,mc2,mc3,mkl, wkl
BASAL_AREA< 38.78 FROJ_AGE_l >-79.5
DBT ANCEnear< 557.4 DEAD_VOL_PER_HA_SPPl_125< 42.33
SURFACE_EXPRESSION=M,P SFECIES_CD_lnear-AT,SW,SX

2 MSSpa-l prob-0.78 9 MSSpa-0 prob-0.24
SUBZV AR=dk,mw SUBZV AR=dw2,dw3,mc2,mc3,mkl, wkl
BAS AL_AREA< 38.78 PROJ_AGE_l>-79.5
DIST ANCEnear< 557.4 DEAD_VOL_PER_HA_SPPl_l 25>-42.33
SURFACE_EXPRESSION-N,U SUBZV AR-dw3,mc2
MAP>=510 DEAD_VOL_PER_HA_SPPl_l 25>-l 42.8

UV E_V OL_PER_HA_S PP1 _125>=72.22
3 MSSpa-l prob-0.75 S PECIES_CD_ 1 near-AT,S ,SB,S X

SUBZV AR=dw2,dw3,mc2,mc3,mkl,wkl
PROJ_AGE_l>»79.5 10 MSSpa-0 prob-0.21
DEAD_VOL_PER_HA_SPPl_125< 42.33 SUBZV AR=dk,mw
SPECIES_CD_lnear=EP,S,SB BAS AL_AREA< 38.78

DISTANCEnear< 557.4
4 MiSpa-1 prob-0.71 SURFACE_EXFRESSION=N,U

SUBZV AR-dw2,dw3,mc2,mc3,mkl,wkl MAP< 510
PROJ_AGE_l>=79.5
DEAD_VOL_PER_HA_SFPl_125>=42.33 11 MSSpa-0 prob-0.16
SUBZV AR-dw2,mc3,mkl,wkl SUBZV AR=dk,mw

BASAL_AREA< 38.78
5 MSSpa-l prob-0.68 DIST ANCEnear>=557.4

SUBZV AR=dw2,dw3,mc2,mc3,mkl ,wkl
PROJ_AGE_l>-79.5 12 MSSpa-0 prob=0.12
DEAD_VOL_PER_HA_SPPl_125>-42.33 SUBZV AR=dw2,dw3,mc2,mc3,mkl, wkl
SUBZV AR=dw3,mc2 PROJ_AGE_l>=79.5
DEAD_VOL_PER_HA_SPPl_125< 142.8 DEAD_VOL_PER_HA_SPPl_125>-42.33

SUBZV AR-dw3,mc2
6 MSSpa-l prob-0.59 DEAD_VOL_PER_HA_SPPl_125>=142.8

SUBZV AR=dw2,dw3,mc2,mc3,mkl, wkl UVEJVOL_PER_HA_SFPl_125>=72.22
PROJ_AGE_l>-79S SPECIES_CD_lnear-EP,FD,SW
DEAD_V OL_PER_HA_SPPl _ 125>=42.33 PROJ_HEIGHT_l < 24.75
SUBZV AR=dw3,mc2
DEAD_VOL_PER_HA_SPPl_125>-142.8 13 MSSpa=0 prob=0.12
LTV E_ V OL_PER_HA_S PP1 _125>=72.22 SUBZV AR-dk,mw
SPECIES_CD_lnear-EP,FD,SW BASAL_AREA>=38.78
FROJ_HEIGHT_l>=24.75

14 MSSpa-0 prob=0.05
7 MSSpa-l prob-0.58 SUB2TVAR-dw2,dw3,mc2,mc3,mkl,wkl

SUBZV AR-dw2,dw3,mc2,mc3,mkl, wkl PROJ_AGE_l< 79.5
PROJ_AGE_l >-79.5
DEAD_VOL_PER_HA_SPPl_125>=42.33
SUBZV AR-dw3,mc2
DEAD_VOL_PER_UA_SPPl_125>-142.8
UVE_VOL_PER_HA_SPPl_125< 7222
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964 plots remaining in the predictive solution at this point of die tree are correct

with 85% prediction or 0.85 probability.

Predictive Rule (Rank 2) probability = 0.85 
biogeoclimatic unit = dw2, dw3, mc2, mc3, m kl, or w kl 
stand age >78 yrs
stand estimated dead volume <42 m3/ha
species of the nearest non-pine seed source = Spruce

The ROC evaluations for all three stocking groups indicate that my predictive 

model is a useful application, as all the ROC scores are above 0.83 (0.5-0.7 are 

considered low accuracy, 0.7-0.9 are considered useful, and ROC values > 0.9 

indicate high accuracy) (Manel et al., 2001). The area under the ROC curve (AUC) 

represents the probability that the model will rank a randomly chosen positive 

instance (true positive) higher than a randomly chosen negative one (false positive). 

The AUC scores are 84%, 83%, and 85% for all tree species, conifers only, and 

MSSpa respectively (Figures 19,20, and 21).

Applying the Classification Tree in  a GIS M odel

Maps illustrating the probability of stocking were generated for each of the 

three stocking groups per 1:250,000 map tile. A full series of maps, depicting the 

probability of stocking themed by five probability classes, for the 1:250,000 map tiles 

covering the study area are presented in Appendix 2.
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ROC for allsp600 = 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

Figure 19. ROC curve chart illustrating the accuracy of the classification tree model (all tree 
species 600 stems/ha threshold) through area under curve (AUC) statistic.

ROC for conifer600 = 1

F as t Positive Rate

Figure 20. ROC curve chart illustrating the accuracy of the classification tree model 
(conifer-only threshold) through area under curve (AUC) statistic.
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ROC for MSSds = 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rats

Figure 21. ROC curve chart illustrating the accuracy of the classification tree model 
(minimum stocking standard threshold) through area under curve (AUC) statistic.

The probability of stocking tables indicate that approximately 63% of the 

study area (when measured by a stocking threshold of 600 stems/ha for all tree 

species) is likely to very likely stocked; approximately 60% of the study area (when 

stocking is measured by a 600 stems/ha threshold for conifers only) is likely to very 

likely stocked; and approximately 44% of the study area (when stocking is 

measured by MSSpa) is likely to very likely stocked (Tables 16, 17, and 18). 

Translated into area, this means that the study area (comprised of 1.4 million ha of 

mature pine stands) can be expected to have up to 616,000 ha of stocked w ith 

seedlings and saplings (measured by MSSpa), 833,000 ha of stocked w ith seedlings 

and saplings (measured by 600 stems/ha all tree species), or 878,000 ha of stocked 

with seedlings and saplings (measured by600 stems/ha conifers only).
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Table 16. Probability (as a percentage) of being stocked for each BEC unit derived from the
classification tree rule set for conifer only 600 stems/ha stocking threshold.

BEC unit

Probability of Being Stocked (as percentage)

Mature 
Pine (ha)

0-20 
Very Likely 
Not Stocked

20.1-40 
Likely 

Not Stocked

40.1-60 
As Likely 

Stocked As Not

60.1-80
Likely

Stocked

80.1-100 
Very Likely 

Stocked

SBSdk all trees 40 16 0 5 39
SBSdk conifers 282539 40 18 0 5 37
SBSdkMSSpa 46 14 6 21 12

SBSdw2 all trees 18 15 7 36 23
SBSdw2 conifers 80876 17 13 0 49 21
SBSdw2 MSSpa 36 13 10 21 20

SBSdw3 all trees 15 15 9 32 29
SBSdw3 conifers 291425 15 13 0 47 25
SBSdw3 MSSpa 32 17 7 22 22

SBSmc2 all trees 16 15 11 27 31
SBSmc2 conifers 479996 26 11 0 37 27
SBSmc2 MSSpa 34 10 9 21 26

SBSmc3 all trees 15 7 9 31 38
SBSmc3 conifers 77284 41 5 0 26 28
SBSmc3 MSSpa 39 11 12 16 22

SBSmkl all trees 14 6 5 37 38
SBSmkl conifers 259730 14 11 0 37 38
SBSmkl MSSpa 31 13 3 15 38

SBSmw all trees 71 13 0 3 13
SBSmw conifers 5283 70 17 0 3 9
SBSmw MSSpa 92 0 0 6 2

SBSwkl all trees 18 3 8 28 44
SBSwkl conifers 22014 14 12 0 36 38
SBSwkl MSSpa 23 29 1 29 17

Study Area all trees 20 13 7 26 33
Study Area conifers 1499147 25 12 0 33 30
Study Area MSSpa 36 13 7 20 24
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Table 17. Probability (as a percentage) of being stocked for each 1:250,000 NTS maptile
derived from the classification tree rule set for conifer only 600 stems/ha stocking threshold.

NTS 1:250,000 
Maptfle

Probability of Being Stocked (as percentage)

Mature 
Pine (ha)

0-20 
Very Likely 
Not Stocked

20.1-40 
Likely 

Not Stocked

40.1-60 
As Likely 

Stocked As Not

60.1-80
Likely

Stocked

80.1-100 
Very Likely 

Stocked
93E all trees 20 16 11 27 27
93E conifers 161479 35 11 0 34 20
93E MSSpa 33 11 9 12 36

93F all trees 29 14 4 19 34
93F conifers 360025 38 13 0 16 33
93F MSSpa 41 9 10 24 16

93G all trees 21 14 7 33 25
93G conifers 220916 16 15 0 48 20
93G MSSpa 35 13 8 24 20

93J all trees 13 9 6 35 36
93J conifers 278669 14 12 0 38 36
93J MSSpa 29 18 4 13 36

93K aH trees 16 14 9 26 35
93K conifers 305215 20 10 0 36 34
93K MSSpa 36 11 6 26 20

93L an trees 20 13 8 17 42
93L conifers 172843 23 15 0 34 29
93L MSSpa 39 16 5 16 24
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Table 18. Probability (as a percentage) of being stocked for each forest district derived from
the classification tree rule set for conifer only 600 stems/ha stocking threshold.

Forest District
Probability of being stocked (as percentage)

Mature 
Pine (ha)

0-20 
very likely 
not stocked

20.1-40 
likely 

not stocked

40.1-60 
as likely 

stocked as not

60.1-80
likely

stocked

80.1-100 
very likely 

stocked
Skeena Stikine all trees 34 3 14 13 37
Skeena Stikine conifers 21505 23 6 0 33 38
Skeena Stikine MSSpa 28 18 3 34 18

Mackenzie all trees 6 23 9 21 41
Mackenzi conifers 6769 9 11 0 48 32
Mackenzi MSSpa 11 12 1 63 14

Fort St. James all trees 13 5 6 38 38
Fort St. James conifers 219378 16 10 0 40 33
Fort St. James MSSpa 40 8 4 20 29

Nadina all trees 26 14 7 20 33
Nadina conifers 554084 33 13 0 27 27
Nadina MSSpa 42 12 7 17 22

Prince George all trees 19 8 6 36 30
Prince George conifers 285404 14 13 0 44 29
Prince George MSSpa 31 16 3 17 33

Vanderhoof all trees 17 20 7 21 34
Vanderhoof conifers 376145 26 13 0 28 33
Vanderhoof MSSpa 30 13 12 27 18

Quesnel all trees 10 19 18 16 37
Quesnel conifers 22746 39 13 0 31 17
Quesnel MSSpa 38 19 15 5 23

North Island-Central Coast all trees 9 18 40 18 14
North Island-Central Coast conifers 13115 47 5 0 30 19
North Island-Central Coast MSSpa 28 1 24 23 23
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It is important to note that although study plots were located in the Skeena Stakine, 

Mackenzie, and North Island -  Central Coast forest districts, only a fraction of these three 

forest districts intersected with the study area of interest (Figure 22). Caution should be 

used when drawing any conclusions involving the probability of stocking within a forest 

district context.

Mackenzie
_(0.6%)_

Figure 22. Map illustrating the proportion of forest districts that are within the study area 
(NTS 1:250,000 93E,F,G,J,K,L).

Figure 23 is an example of a 1:250,000 map predicting the probability of 

MSSpa stocking in mature pine-leading stands for map tile NTS 93G. The five 

colours in the legend correspond to a likelihood of stocking (red=0-20%, orange=20- 

40%, yellow=40-60%, light green=60-80%, and dark green=80-100%). This m ap and 

those in Appendix 2 also have a shaded relief in the background for elevation 

context, major lakes (blue polygons), and major roads (symbolized by black lines).
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Predicted Locations and Stocking Probability of Advance R egeneration Under
M ature Pine S tands in Central British Columbia

f f Utit

93G
Probability of 
being Stocked

0-20% 

20-40% 

140-60%

I  60-80% 

80-100%

600 stems/ha 
conifers only

0 5 10 20 km
1 . . ■ i____ i

Figure 23. Colour themed map depicting probability of being stocked for conifer only 
600 stems/ha stocking threshold within NTS 1:250,000 map tile 93G.



Once the classification tree results are in a geospatial environment, specific 

probability of stocking percentages can be displayed in isolation of the remaining 

probability classes and can be provided spatial context. By placing large areas of 

"very likely" and "very unlikely" stocking in a spatial context, the data can be used 

as a GIS layer for more sophisticated analysis regarding forest management. For 

example, Figure 24 shows the isolation of areas that have a >80% probability of 

stocking. These isolated areas can be easily identified as cells that are very likely to 

recover naturally without intervention. Conversely, large areas can also be 

identified as priorities for salvage or rehabilitation operations. Figure 25 shows that 

by isolating areas that have a <20% probability of stocking, areas that may require 

rehabilitation (including planting) can be targeted. The isolated areas can be 

combined with datasets such as proximity to mill sites to determine economic 

viability. Further, they may be targeted for rehabilitation, i.e., treatment to knock 

down and pile trees, grinding them for pellet fuels or other bioenergy (depending 

on markets) or burned, and then planted. The large contiguous areas classified as 

very likely stocked (green pixels in Figure 24) become an important GIS layer with 

regards to coordinating logging activity. Perhaps these stands could be allocated as 

no logging or rehabilitation zones. It is recommended that these stands be 

identified for natural (unaided) recovery. They may be important as a mid-term 

supply of timber, or for habitat value.



Predicted Locations and Stocking Probability of Advance Regeneration U nder
M ature Pine S tands in Central British Columbia

93G
Probability of 
being Stocked

80- 100%

>600 stems/ha 
conifers only

Jt £

MJ?* ***
0 5 10 20 km

Figure 24. Spatial extent of probability of stocking for map tile NTS 93G. Green areas 
denote >80% probability of stocking (conifers-only).



Predicted Locations and Stocking Probability of Advance Regeneration U nder
M ature Pine S tands in Central British Columbia
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Figure 25. Spatial extent of probability for map tile NTS 93G. Red areas denote <20% 
probability of stocking (conifer-only).



Chapter Four: Discussion and Recommendations

The main objective of my thesis was to develop a model predicting the

distribution of advance regeneration using publicly available data. Many of the

initial inputs to my model have been explored for their predictive strength in

previous studies. The resultant model was applied within a study area (NTS

1:250,000 93E, F, G, J, K, L map tiles) and probability maps were constructed

(Appendix 2). As per the Establishment to Free Growing Guidebook (BC Ministry

of Forests, 2000), MSSpa criteria and thresholds vary with BEC unit and site series.

These conclusions are consistent with several current advance regeneration

publications such as Vyse et al. (2009) who found that more than half of all plots

surveyed in lodgepole pine stands in the Kamloops Timber Supply Area exceeded a

threshold of 600 stems/ha. This is echoed in a study by Nigh et al. (2008), which

states that over half the stands sampled in the Montane Spruce zone of southern

British Columbia had enough advance regeneration (>1000 stems/ha) to form new

stands of adequate density. Another study reports 44% to 98% stands contained

sufficient stems after MPB attack to be considered stocked (Hawkins et al., 2012). A

survey of pre-harvest industrial records has indicated that the percentage of pine

stands with a greater than 600 stems/ha are highest in the moist cool (mk) subzone

followed by the moist cold (me) subzone, and then by the dry warm (dw) and dry

cool (dk) subzones of the SBS (Burton, 2006). Studies also suggest that SBSdk is
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unlikely to provide a significant contribution to the mid-term timber supply; in 

contrast, the SBSdw and SBSmc are thought to be contributors to both the mid- and 

long-term supplies (Hawkins and Rakochy, 2007). The overall distribution and 

probability of stocking predicted here aligns well with these conclusions. A closer 

examination of the resultant data (tabular and spatial) provides evidence to this 

claim. The SBSmk had the largest likely/very likely stocked probability (as high as 

75% for the all trees stocking group) for all BEC units. The results also support the 

assessment by Hawkins and Rakochy (2007) that SBSdw and SBS me will likely be 

the largest contributor to mid- and long-term timber supplies. In the conifer only 

stocking group, SBSdw has a 71.2% likely/very likely stocked probability (-208,000 

ha) and SBSmc2 and SBSmc3 have a 63.3% (-304,000 ha) and 53.8% (-42,000 ha) 

likely/very likely stocked probability, respectively. The total area associated with 

these probabilities is -  554,000 ha of potential advanced regeneration >600 stems/ha 

or roughly one-third of the existing total ha of the study area.

A closer examination of the colour-themed maps reveals the utility of 

translating the tree/text based rules into a geospatial output. The maps present the 

probability of stocking in five coloured classes, and because the scale of the m ap is 

known, an ocular estimate of the area of contiguous areas or distance between 

proximal areas for any of the probability classes can be made. For example, large 

areas of likely/very likely stocked polygons that are interrupted by smaller areas
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very unlikely to be stocked (Figure 26) can be identified and subsequently visited 

and assessed using ground-based advance regeneration grid sampling.

Probability of Stocking
■ B o-20%

20-40% 
d ]  40-60%

60-80%
Î Heo-100%

Figure 26. A portion of the mapped final model that illustrates the intersection of large very 
likely stocked areas (green pixels) with very unlikely stocked cells (red pixels).

The results generated from the classification tree model also support the 

preliminary results in Hawkins and Rakochy (2007), where it is reported that there 

was measurably less regeneration in the SBSdk and SBSdw2 than in the SBSdw3 and 

SBSmc. My classification tree model shows that the predicted probability of the 

MSSpa group being stocked in SBSdk (12%) is close to half of the probability in
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SBSdw (25%) and SBSmc (22%). Vyse et al. (2009) also state that the m ean density of 

stems increased with moisture and elevation, both critical elements in determining 

the biogeoclimatic subzone of a site. This generalization is further supported by my 

findings, as mean annual precipitation and BEC unit are defined as important 

variables in the resulting predictor model. The resultant model indicated that the 

following variables are key predictors in modelling stocking status: BEC unit, 

distance to the nearest non-pine seed source in a southwest direction, projected age 

of the leading species, basal area, leading species of dead volume per hectare at 12.5 

cm, surface expression, spedes composition of the nearest non-pine seeds source, 

mean annual temperature, mean annual precipitation, projected height of the 

leading spedes, and elevation. The key variables selected through recursive 

partitioning are consistent with other study condusions, specifically w ith regards to 

overstory height (Griesbauer and Green, 2006), overstory mortality (leading spedes 

dead volume; Lewis, 2011), basal area (Coates and Sachs, 2012; Nigh et al., 2008), 

distance to nearest seed sources (LePage et al., 2000; Kaufmann et al., 2008), and 

moisture (predpitation; Kayes and Tinker, 2012).

Application to Forest M anagement

A landscape-level planning tool is useful for several different aspects of forest

planning and management. At the provindal level, this study's model can assist in

the implementation of the Forests for Tomorrow Current Reforestation and Timber
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Supply Mitigation Strategic Plan 2011-2015 (Ministry of Forests, Lands, and Natural 

Resource Operations, 2011) by providing critical data to meet several goals.

First and foremost, the resultant of my model (hardcopy maps and textual 

rule sets) can assist forest managers in the establishment of new and up-to-date 

assessments of potential timber supply. Tools such as this can play a part in helping 

estimate the new baseline that will be used for forecasting and planning. The need 

for current information is echoed in a June 8,2012, memo from the Inventory 

Section, Forest Analysis and Inventory Branch: Approach of the inventory program in 

2012-13 to improve inventory information in MPB-affected management units (Ministry of 

Forests, 2012). The working memo states that the provincial inventory program  is 

placing a high priority on improving information related MPB-affected areas. The 

memo specifically states that the advance regeneration in the understory is critical to 

mid-term timber supply and that the assessment of stocking under these MPB- 

affected stands is important. The model developed here can play a large role in 

assisting inventory personnel "short-list" stands that may potentially have this 

critical mid-term timber supply. The scale of the output is not necessarily fine 

enough to generate reliable determinations of stand-level stocking, but it is highly 

useful for directing field validation programs. On a landscape level, the resultant 

stocking data can be used for more general land-use and resource management
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plans. By examining the data, areas of sporadic distribution, large anomalies, and 

"salt and pepper" occurrences can be identified (Figure 27).

Probability of Stocking

|HM 0-20%
I H xmok
I 140-60%
meo-ao%

80-100%

Figure 27. Landscape view of mapped model output. Blue circles indicate large anomalies 
that are easily identified at a broad scale.

The tabular results from exercising the classification tree have generated 

important information about how many hectares of likely/very likely to be stocked 

there are within a defined area. They are, however, limited in their explanatory 

power, as there is a distinct difference in knowing how m any hectares of >80% (very 

likely to be stocked) probability of stocking and where these very likely to be
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stocked areas are on the landscape. Importing the tabular stocking information into 

a GIS allowed me to spatially locate how the five stocking classes are distributed 

across the landscape. The ability to spatially locate each of the probability of 

stocking classes enhances the decision making power of my decision model.

Consider the following example, where a forest manager wants to 

understand the advance regeneration attributes of a particular management area 

(Figure 28). Knowing the total hectares of the management area (65180 ha) and total 

hectares of mature pine within the management area (29815 ha), the forest manager 

is now in a position to estimate the number of hectares of mature pine that could 

possibly have advance regeneration. According to the areas reported, the am ount of 

advance regeneration cannot exceed 45% of the management area (or ~ 29,000 ha) as 

there are only 29,000 ha of mature pine within the area. Assume further that a 

classification tree model has been used to calculate the probabilities of stocking as 

per the following: 1) 4858 ha are very unlikely to be stocked; 2) 3210 ha are unlikely 

to be stocked; 3) 0 ha are as equally likely to be stocked as not stocked; 4) 10280 ha 

are likely to be stocked; 5) 11467 ha are very likely to be stocked.

The detailed information regarding areas of stocking likelihood provides the 

forest manager with valuable information regarding the amount of potential
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Figure 28. Example of a management area of interest in which a forest manager would like to calculate the 
amount of advance regeneration under mature pine forest stands by using a probability of stocking model. The 
grey polygons indicate mature pine forest stands.



advance regeneration in the management area. W ithout spatial context, however, 

the planner can only know the probability of stocking with regards to advance 

regeneration. An assumption regarding the spatial distribution of the likely or 

unlikely stocked areas cannot be made with the information in hand, i.e., the 

manager can only know how much stocking is in the management area but not if 

the stocking is restricted to one particular area or widely dispersed throughout the 

area. By providing a geospatial context to the probability information, a m uch 

clearer and complete picture is provided with regards to stocking (Figure 29). 

Patterns of large contiguous areas of very unlikely and likely stocking become 

evident. Large patches can be quickly identified and used to supplement landscape 

level plans. This information can be used as a landscape level planning tool for 

activities such as annual allowable cut (AAC) allocation, post-MPB management 

planning, and even identification of mid- and long-term timber supply stands 

suitable for future research projects. In a VRI newsletter, Martin (2012) identifies 

one of the goals for inventory information is to know more about stocking by 

gathering information regarding small trees under a dead overstory. The primary 

goal of the BC Government's "Forest for Tomorrow" program, namely to improve 

the mid- and long-term timber supply and establish resilient forest ecosystems, 

specifies the need to focus on restoration and reforestation through the 

identification of sites which have had the greatest negative impact on the mid- and
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mm 0-20% 
mm 20-40%

[ 140-60%

m  60-80%

■ ■  80-100%

Figure 29. Example of a BEC area of interest in which a forest manager would like to calculate the probability of 
stocking. Probability of stocking is depicted in the five coloured classes. Spatial patterns of stocking are evident 
when viewing data in a geospatial context



long-term timber supplies. To effectively mitigate mid-term timber supply 

shortfalls, it is imperative to have an overarching plan that helps differentiate 

between stands that have sufficient advance regeneration (and therefore represent 

the mid-term supply) and stands that will not be contributing to the mid- to long

term timber supply. Stands that do not have sufficient advance regeneration can be 

identified through the use of a landscape level model and then targeted for 

harvesting and subsequent replanting. Alternatively, a working knowledge of the 

percent of mature pine without adequate advance regeneration may be useful for 

old forest retention in the quest for biodiversity conservation and preservation of 

critical wildlife habitat. Large areas of mature pine that are classified as very 

unlikely to be stocked pose no benefit to the mid- and long-term timber supply. 

These areas can be prioritized for logging efforts; effectively removing post-MPB 

stands from the inventory without removing any potential mid- and long-term 

timber represented as advance regeneration, especially large areas classified as very 

unlikely to be stocked (Figure 30). Roads (red lines with black borders in Figure 30) 

and existing cutblocks (thick black lines) are added to the maps to provide context 

for accessibility. The red pixels represent areas very unlikely to be stocked areas.

Goal three in "Forest for Tomorrow's" strategic plan is to develop and implement 

innovative approaches to reforesting forests damaged by catastrophic disturbance. 

One of the strategies to achieve this is to engage stakeholders in the development of
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a strategic and tactical plan. Whether the stakeholders are the Province, the 

licensees / stewards of the forest, non-traditional users of the forest, or the public, 

strategic plans must begin with the most current and accurate knowledge possible. 

The predictive model can help provide a region-wide overview of where the highest 

potential for mid- and long-term timber supply is located. A GIS-ready dataset of 

this scale can be used as an informative base layer for refining existing land use 

plans.

Probability of Stocking

H  0-20%

H I  20-40%
1....... 1 40-60%

H I  60-80%
■ ■  80-100%

Figure 30. A portion of the final model map that illustrates the location of large, very 
unlikely to be stocked mature pine areas (red pixels). These areas can be targeted for large 
scale logging and silviculture programs.
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Griesbauer and Green (2006) identify two potentially dangerous and 

expensive scenarios associated with the perceived need to tend advance 

regeneration: supplementing advance regeneration through planting of unstocked 

patches and the requirement for thinning of overstocked understories. Both present 

a potential danger in the form of falling MPB-killed snags and would require the 

removal of snags for safety reasons. For the planting scenario, Griesbauer and 

Green (2006) suggest restricting planting only to highly productive sites that have 

little advance regeneration. The predictive model outputs can be used as a GIS 

overlay to help forest managers find the intersection between highly productive 

sites (site index layer) and probability of stocking (generated by the classification 

tree model). This model may help to economically identify areas that could have 

regeneration augmented through planting. Conversely, stands predicted to be 

stocked on highly productive sites may also be identified and flagged for field 

inspection.

Assessment of the Modelling Approach

R (R Core Team, 2012), DTREG (Sherrod, 2006), and ArcGIS (ESRI, 2011)

were used to establish an intuitive workflow to create fully attributed feature classes

using publicly available digital data input. The resulting feature classes have correct

projection and coordinate systems, are topologically clean, fully attributed, and are

GIS-ready for input as a working dataset. The working parts of the model are
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extensive yet invisible to the user. The users cannot add more tools or explanatory 

variables to the model without building a new model, as this would jeopardize the 

integrity of the classification tree solution. To create a stocked / not stocked m ap for 

another study area or for pine stands that do not fit the mature pine criteria, the 

models would have to be recreated and re-run in both R and ArcGIS.

This working model is interpolative, in that its training data were sparsely 

distributed and it cannot make predictions with regards to advance regeneration 

stocking beyond the limits of data used to create the model. In the case of my 

model, the limitations lie more in the organization and definition of variables, rather 

than quantitative maximum and minimum values.

It would be misleading to claim that the model developed in this study is 

unique. Other software packages have been used to predict natural regeneration 

under mountain pine beetle attacked stands, most notably SORTIE and 

PROGNOSIS80 (Smith, 1990; Ferguson and Carlson, 1993; Ribbens, 1994; Sattler, 

2009). The distinction, however, is not in the intended application of the model but 

rather the scale and ownership of the model input variables and the ultimate utility 

of the model output. Although those are mechanistic simulation models, and the 

work reported here resulted in an empirical statistical model, perhaps the key 

distinction is the emphasis on the ability to map predicted stocking across a broad
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region. My study input data are derived solely from publicly available geospatial 

data that can be downloaded from provincial online repositories or requested from 

BC government agencies such as British Columbia's Land and Resource Data 

Warehouse (LRDW) and its Integrated Land Management Bureau (ILMB). Most 

forest planners and managers with access to the internet or an internal data 

warehouse have access to my model's inputs. The model does not require 

additional field data collection on the part of the analyst.

SORTIE, a spatially explicit, mixed species forest dynamics simulator, relies 

heavily on the complex field-based measurements of light transmitted through 

forest canopies and gaps (Canham et al., 1999). PROGNOSIS80, a growth and yield 

model, is fueled by tree counts within a stand and dbh measurements for each tree 

and requires one record of data per tree in the input .txt files.

Although PROGNOSIS80 and SORTIE-ND modelling may be superior in 

their ecological portrayal of the mechanisms of stand development, they require 

considerable detail for input data that limits their application to case study 

simulations in a few representative stand types. LeMay et al. (2002) used 

PROGNOSIS 80 to examine the natural regeneration beneath complex stands in the 

Interior Douglas-Fir biogeoclimatic zone in the Nelson, Kamloops, and Cariboo 

Forest Regions. Their final report states that PROGNOSIS80 is best suited for
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models with a ground-based inventory. Similarly, the data needed to feed a 

SORTIE-ND and PROGNOSIS80 hybrid model for predicting natural regeneration in 

MPB-attacked stands in central and southeastern BC necessitated the collection of 

ground-based measurements such as individual tree dbh, total tree height, height to 

live crown, maximum crown diameter, and ratio of live crown to tree height (Sattler, 

2009).

In contrast, the landscape-level geospatial approach developed here can be 

applied across a large range of geographic variability and forest stand types with a 

simple probability of occurrence output. The model uses coarsely collected 

variables for its input (a majority derived from Vegetation Resource Inventory GIS 

files), and consequently sacrifices individual stand anomalies for a broad-brush 

overview of all stands within a study area of interest. This empirical model does not 

simulate or otherwise address specific understory dynamics (e.g., in terms of 

growth release, competition among trees or with brush). The ultimate intention of 

the model is to create the most parsimonious algorithm derived from the most 

publicly available data. The more complicated the model becomes, the more limited 

its function.

The process of creating predictive models for the field of ecology is highly 

contentious. At times, models are built with good intentions only to fall into disuse,
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or worse, misuse (Bunnell, 1989). There are multiple ways to look at modelling 

ecological processes, and therefore there are multiple ways to build a model. The 

inherent strength of my decision tree model is that it accommodates the possibility 

of multiple models by creating multi-branches of rules that all represent a possible 

predictive algorithm, with each branch assigned a probability of accuracy. A single 

regression model could provide a single parsimonious equation that draws from the 

most significant variables as they apply to the dataset used to create the model.

This, however, "locks" the model into a coefficient + variablei + variable2 + variablen 

format, resulting in a single equation to fit the snapshot of data used to build it.

With a static list of key predictor variables (and coefficients associated w ith these 

variables) the model weakens when key variables are missing from subsequent 

datasets. Through concepts such as surrogate splitters, the decision tree model can 

adapt to missing input data and can result in many rule sets with many 

combinations of contingency that result in a stand, or indeed parts of a forest stand, 

being stocked with advance regeneration or not. The forest response to MPB or 

other canopy disturbances is complex, and therefore cannot be easily modeled with 

a simple catch-all equation. Many stands sharing the same characteristics may 

respond differently to disturbance. A model that allows for combinations of 

contingency provides a more multi-faceted approach to predicting the probability of 

stocking.
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With each statistical method used to create models, come multiple 

assumptions, limitations, and biases. The temptation to explore more complex 

interactions between variables, and therefore create more complex models is fueled 

by the ease of data accessibility and increased computing power. The more complex 

the model, the more difficult it becomes to evaluate (Bunnell, 1989; Kimmins, 2005). 

Just because a complex model can be built, doesn't necessarily mean it should be 

built.

It is important to recognize that even the most inappropriate and unrelated 

variables thrown together into a modelling process may result in a predictive 

algorithm. Like parametric models, the addition of variables (overfitting) tends to 

increase the model fit. Variables, however, that have little connection to each other 

or the ecological process that they are trying to model tend to create a "snapshot" 

model. A model that fits only the dataset from which it was derived therefore 

defeats the predictive purpose of the model. The reliance on predictor variables that 

were derived from static snapshot datasets run into problems when validation is 

required and in most cases the model misfires (Thompson, 1995; Graham, 2001; 

Knapp and Sawilowsky, 2001). The variables used in the development of my model 

were based on known or hypothesized ecological mechanisms and results from 

preliminary studies.
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A second consideration in developing predictive models is the tem ptation to 

prioritize all the variables determined from a purely a priori approach. This is best 

described by Thompson's basketball team paradox. Thompson (1995) suggests that 

modelling is similar to a basketball team picking the best player first, the second- 

best player second (in the context of the first player's strengths and weaknesses), 

etc.. This is in direct contrast to the "all possible players'" approach used in 

constructing a second team, where the five players that play together best as a team 

are selected. This leaves the distinct possibility that the second team may have a 

roster that does not include one of the first team players. He goes further to state 

that the "best team," although possibly comprised of weaker players, may still be 

stronger as a team, than one made of all-stars selected through a purely linear 

process (Thompson, 1995). It was important in the development of this study's 

model that all combinations of variables were tested to ensure that the "best team" 

was selected. This can be illustrated in my thesis by examining the potential key 

variable distance from nearest non-pine seed source. The r2 value of density of 

advance regeneration when plotted against distance to seed source was only 0.0064, 

(P = 0.007, n  = 964). This means that as a single variable considered alone, distance 

to seed source explains less than 1% of the variance in regeneration density. Yet it 

was one of the top five important variables, i.e., factor where a split in the decision 

tree occurred, for all three stocking groups (and one of the top two for conifer only
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and all trees, second only to BEC unit in both cases). When taken into account with 

other predictors, the strength of distance to seed source increases and its importance 

as a primary splitter in the decision tree becomes evident.

The goal of predictive ecological models should be intuitiveness, parsimony 

and extensibility, namely the ability to add on or modify the model without 

breaking what is already there. The final key important variables included in my 

study's model are ecologically sound and publicly available data that form an 

intuitive parsimonious model that has both explanatory and predictive value.

This study began with two main objectives: to create an accurate predictive 

model of understory stocking probability in mature pine-leading stands for forest 

planners to use in mid- to long-term planning initiatives, and to create cartographic 

and tabular output portraying the results of the predictive model. The first objective 

was accomplished by collecting advance regeneration data in the summers of 2006 

and 2007 and combining it with collaborator data to produce an extensive, geo

referenced data library. The second objective was achieved by creating a recursively 

partitioned classification tree model using R rpart. The model input variables were 

limited to readily and publicly available data sources. The final model was 

composed of data from the Vegetation Resource Inventory, ClimateBC, and the 

biogeoclimatic ecosystem classification system The resulting model achieved a 

78% accuracy in correctly predicting stocked and non-stocked locations in mature

94



pine-leading SBS forests. For the final objective, the predictive model generated 

using the R package rpart was applied against a study area by creating a geospatial 

model in ArcGIS 10. The geospatial model partitions the data into the following 

probability of being stocked classes: 0-20%, 20-40%, 40-60%, 60-80%, and 80-100%. 

Area statistics were gathered for each membership class and a large-format colour 

themed map was generated to display the results for each NTS 1:250,000 m ap tile. 

The variables used in the most parsimonious predictive model are consistent with 

those reported as ecologically important in a number of similar studies (e.g., 

Ferguson, 1984; Murphy et al., 1998; Sattler, 2009; Coates et al., 2009).

With BC's interior timber supply compromised by one of the largest 

disturbances in history, forest managers and planners are implementing strategies 

to help understand the mid- and long-term implications. These implications reach 

further than timber supply and will directly impact wildlife, carbon storage, 

hydrology, and tourism (Coates et al., 2009). Most of these strategies require 

current and accurate knowledge of the forest land base in the wake of the m ountain 

pine beetle outbreak. The need for inventory data, not only what is in the canopy 

but also what is beneath it, is obvious. Hopefully, the provincial government is 

paying close attention to new inventories, or their proxy in the form of modelling 

output, before it proceeds with new harvesting, rehabilitation, and silviculture 

regulations.
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Chapter Five: Conclusions

The results of my thesis show that one way to predict the presence or absence 

of advance regeneration beneath mature pine stands in BC's northern interior is to 

create a model that works w ith the complex scenarios supportive of understory 

development, rather than trying to simplify them. The response of m ature pine to 

the MPB events of the last decade is complicated, and therefore requires a multiple 

model approach to prediction. The classification decision tree developed in this 

thesis provides a multiple branch model that proved to be 78% accurate in 

predicting whether a stand was stocked or not with seedlings and saplings (>600 

stems/ha). Further, a geospatial link between the predictive model and GIS 

provides an enhanced understanding of the prediction, assisting forest managers to 

discover spatial patterns and the clustering or dispersion of seedling and sapling 

stocking at a landscape level.

The work presented in my thesis contributes to the ongoing effort to better

understand British Columbia's forests post-MPB. Several studies have examined

the key variables involved in predicting advance regeneration at a stand level. The

model developed in this thesis fills a gap in knowledge w ith regards to

understanding the likely distribution of understory stocking at a landscape level.

An accurate broad-brush tool is necessary in assisting w ith broad-brush

management strategies. My predictive model is built to help forest managers make
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decisions at the landscape level. Although my model output generates a resultant 

probability of stocked pixels at a 100m size, it is the patterns of aggregated pixels 

that contain the information and not the single pixels themselves. The results of this 

thesis also contribute to the scientific community with the introduction of recursive 

partition analysis for stocking presence evaluation. Although not a new technique, 

it is presented here as a viable alternative to the more traditional step-wise 

regression statistical techniques. A second contribution, and an area for future 

research, is the integration of recursive partitioning and GIS. By providing 

geospatial awareness to predicted stocking probabilities across a landscape-wide 

area of interest, patterns previously unseen at a local scale may now emerge and 

potentially drive new research.

By using the outputs of my model, forest planners may also have the 

information needed to augment silviculture strategies such as variable-retention 

harvesting. Variable-retention harvest systems have been developed as one m ethod 

for creating more natural stand structures, particularly in forest types that rarely 

experience stand-replacing natural disturbances such as severe forest fires. Variable 

retention harvest systems retain living and dead structural elements of the pre

harvest stand to restore structural complexity in managed forestlands (Franklin et 

al., 1997). The relative novelty of formal variable-retention harvest systems, 

however, leaves many questions about their impacts on stand development
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unanswered. Simple questions such as how different patterns of overstory retention 

influence the development of regeneration and growth in residual trees cannot be 

readily answered for most forest types (Gordon, 1973). More importantly, we have 

only anecdotal evidence gathered from studies of tree responses to natural 

disturbances or more traditional management practices to link regeneration and 

residual tree dynamics following variable retention harvesting to the underlying 

physiological mechanisms that drive these responses. Overstory density reductions 

and canopy gap formation alter resource availability, which should impact tree 

physiological performance and growth. The planning of salvage logging operations 

after MPB, whether by clearcut or variable-retention harvesting, is further 

complicated by the presence of tree species other than lodgepole pine within the 

impacted stands. A significant percentage of the pine stands contain other 

coniferous tree species in both the overstory and the understory (Coates et al., 2009). 

Incomplete forest inventories, coupled with the widespread use of unsuitable 

growth and yield models, appear insufficient to account for these stand and 

understory variations. Therefore, there exists a need to develop strategies for 

information gathering to augment these models and to subsequently aid in the 

strategic planning of salvage and regeneration responses. My model's ability to 

predict the probability of stocking can aid in the adoption of forestry techniques 

such as variable-retention.



The model's efficiency and efficacy, however, could be significantly 

supplemented with a broader geographic (i.e., biogeoclimatic) range of input data 

and the addition of several unused variables, such as prevailing w ind speed and 

direction. The predictive model is interpolative and therefore can only be used to 

predict within the limits of the input data. In this study's case, only plot data from 

the SBS dk, dw2, dw3, mc2, mc3, m kl, mw, and w kl were used to develop the 

model. Further study incorporating a more diverse sample of biogeoclimatic zones 

(or perhaps using temperature and precipitation relationships to extrapolate the 

equivalence of subzones not sampled) is suggested to enhance the model from a 

central British Columbia based model to a province-wide model. Although climate 

data were selected by the model construction algorithm, wind direction and speed 

data were not considered in this model iteration. Wind data can be generated in a 

GIS environment; I did not, however, have access to a landscape level w ind dataset 

at the time of this study. Research has indicated that prevailing w ind direction and 

speeds clearly play a role in the recruitment of seeds that contribute to the advance 

regeneration (Smidt and Blinn, 1995; Pardy, 1997; Wieland et al., 2011). In addition 

to the availability and favourability of substrate, abundance and proximity to seed 

sources (such as parent trees) are considered to be key variables in advance 

regeneration (Astrup et al., 2008). Given that a majority of the mature pine 

understories sampled in my study area were populated w ith species other than
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pine, advance regeneration establishment m ust have been aided by some form of 

seed recruitment mechanism such as wind. Incorporating the wind data into the 

existing model as an extensible component seems to be a logical extension to this 

project.

This study's predictive model provides forest planners with a unique 

perspective on advance regeneration inventory. By looking at the landscape as a 

series of predicted probabilities, detailed inventory work and the continuation of 

stand-level advance regeneration studies can be focused. Finally, by combining 

what is known about understories from stand-level advance regeneration studies 

with a landscape level probability model, forest planners can provide legislators and 

the public with varying scales of management plans and proactive forest health 

mitigation strategies.
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Appendix 1

The attached table are the published MSSpa values and conditions that were used to 
define the level of stocking against which to assess seedling and sampling densities. 
Minimum Stocking Standards (MSSpa) for preferred and acceptable species 
(BC Ministry of Forests, 2000)

BEC U n it
SiteS eries TSSpa M SSpa M SSp

SBSdk 1 1200 700 600
SBSdk 2 1000 500 400
SBSdk 3 1200 700 600
SBSdk 5 1.200 700 600
SBSdk 6 1200 700 600
SBSdk 7 1000 500 400
SBSdw2 1 1200 700 600
SBSdw2 6 1200 700 600
SBSdw2 8 1200 700 600
SBSdw2 9 1200 700 600
SBSdw3 1 1200 700 600
SBSdw3 3 1200 700 600
SBSdw3 4 1200 700 600
SBSdw3 5 1200 700 600
SBSdw3 6 1200 700 600
SBSdw3 7 1200 700 600
SBSdw3 8 1200 700 600
SBSdw3 9 1000 500 400
SBSdw3 10 400 200 200
SBSm c2 1 1200 700 600
SBSm c2 3 1200 700 600
SBSmc2 5 1200 700 600
SBSmc2 6 1200 700 600
SBSmc2 10 1000 500 400
SBSmc3 1 1200 700 600
SBSmc3 4 1200 700 600
SBSmc3 5 1200 700 600
SBSm c3 7 1200 700 600
S B Sm kl 3 1200 700 600
S B Sm kl 5 1200 700 600
SBSm w 1 1200 700 600
SB Sw kl 5 1200 700 600
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Appendix 2

Colour themed maps depicting probability of being stocked within NTS 1:250K 
map tiles 93E,F,G,J,K,L

The following maps are colour-themed maps built from the classification tree m odel 
rules presented in this thesis. This is a full series of probability of stocking maps for 
all three stocking groups: 1) >600 stems/ha conifer only; 2) >600 stems/ha all tree 
species; and 3) MSSpa (minimum stocking standards for preferred and acceptable 
species).
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Appendix 3

Classification Tree Analysis: Recursive Partitioning, Cross Validation, and 
Variable Importance

For classification trees built with a categorical target variable, the 

determination of what category to assign a node is more complex: it is the category 

that minimizes the misdassification cost for the observations in the node. In the 

simplest case, every row that is misdassified has a cost of 1 and every row that is 

correctly dassified has a cost of 0.

A problematic issue in recursive partitioning is the decision of how large to 

build the tree (Breiman et al., 1994; Khoshgoftaar and Allen, 2001). Too large a tree 

means excessive branches, which in turn, m ean excessive nodes. This represents an 

over-fitting of the model. If two trees provide equivalent predictive accuracy, the 

simpler tree is preferred because it is less sensitive to outliers and spurious 

observations, easier to understand, and faster to use for making predictions. Limits 

must be placed on the size of the resultant tree. Without limits, a tree could be built 

so large that there is terminal node for every case in the original dataset. In addition 

to it being computationally expensive, this situation would represent a solution that 

would be too difficult to interpret and it would have no applicability to new cases, 

i.e., the model would be over-fit. Pre-pruning of the tree can occur by simply
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providing limits to the classification routine. The analyst can either delimit the 

number of observations necessary for a node split or program the maximum 

number of branch levels allowed to be calculated. Both methods will artificially 

stop the classification splitting before the tree becomes too large.

Generally, the classification is provided a generous berth and stops when 

there are no more statistically significant splits to be made, (i.e., maximum purity of 

nodes is achieved). This strategy usually results in a larger tree than necessary with 

over-fitting. A tree with maximum nodes will result in the best fit model for the 

dataset. This, however, is not necessarily the best model for all datasets. There is a 

decision cost associated with producing an overfitted model, necessitating the 

identification of the optimal sized tree that will best fit subsequent datasets. 

Parametric models use penalization strategies such as Akaike Information Criterion 

(AIC) model fit measurements to ensure parsimony is achieved. In fire case of 

nonparametric modelling, a widely accepted method of model fit is tree pruning 

(Strobl, 2009). Through the use of v-fold cross validation -  one pruning m ethod— 

the resultant can be pruned back to an optimal tree size (Dhurandhar and Dobra, 

2008). Cross validation is widely used statistical strategy to evaluate or compare 

learning algorithms or decision tree models through a generalization error. The role 

of the v-fold cross validation is to separate the data into a test group and a 

validation group (folds). These groups, however, are created in such a manner that
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each point is 'crossed-over' between being a test point and validation point, 

ensuring that every data point is evaluated (Refaeilzadeh et al., 2009). This m ethod 

differs from the hold-out method, where data isolated as a validation set are never 

evaluated. In v-fold cross validation, the working dataset is separated into v equal 

parts (10 equal parts in the case of 10 v-fold). A test classification tree is built w ith v 

- 1  held back for validation. The training data are run and the test data are run as 

an independent check against the training data for accuracy. The results of both are 

compared and then stored as the initial test. The process of splitting off the first v-1 

test data against training data is automatically conducted nine more times (in the 

case of 10 v-fold), each time with a new independent validation dataset. Once the 

process has been run 10 times, the classification error rate calculated for each of the 

ten test runs are averaged together to provide a generalization error or cross- 

validation cost (Dhurandhar and Dobra, 2008). The tree size that produces the 

minimum cross validation cost is pruned to the number of nodes matching the size 

that produces the minimum cross validation cost. The literature does not indicate 

that using more than ten folds improves the accuracy of the generalized error 

Backward pruning requires significantly more calculations than forward pruning, 

but the tree sizes are much more optimally calculated (Sherrod, 2006).

When the target variable and the predictor variables are categorical (and both 

are multivariate, i.e., more than two categories), this creates a more mathematically
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complex process. To perform an exhaustive search, the classifier m ust evaluate a 

potential split for every possible combination of categories of the predictor variable. 

The number of splits is equal to 2(k'h -l where k is the number of categories of the 

predictor variable. For example, if there are 5 categories, 15 splits are tried; if there 

are 10 categories, 511 splits are tried; if there are 16 categories, 32,767 splits are tried; 

if there are 32 categories, 2,147,483,647 splits are tried. Because of this exponential 

growth, the computation time to do an exhaustive search becomes prohibitive when 

there are more than about 12 predictor categories (Sherrod, P.H. DTREG Predictive 

Modeling Software, personal communication, March 10,2011).

If the target variable is binary and has only two possible categories, as is the 

case for a stocked or non-stocked condition as posed in my thesis, the exhaustive 

search is conducted with efficiency. The ideal split would divide a group into two 

nodes in such a way that all of the observations in the left node are the same (have 

the same value as the target variable) and all of the observations in the right node 

are the same -  but different from the left node. This is referred to as purity. If such a 

split can be found, then you can exactly and perfectly classify all of the observations 

by using just that split, and no further splits are necessary or useful. Such a perfect 

split is possible only if the observations in the node being split have only two 

possible values of the target variable.
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Unfortunately, perfect splits do not occur often in nature, so it is necessary to 

evaluate and compare the quality of imperfect splits. Various criteria have been 

proposed for evaluating splits, but they all have the same basic goal, which is to 

favour homogeneity within each right/left node and heterogeneity between the 

right/left nodes. The heterogeneity, or dispersion, of target categories within a node 

is called the "node impurity". The goal of splitting is to produce nodes with 

minimum impurity.

The impurity of every node is calculated by examining the distribution of 

categories of the target variable for the rows in the group. A "pure" node, where all 

rows have the same value of the target variable, has an impurity value of 0 (zero). 

When a potential split is evaluated, the weighted average of the impurities of the 

two nodes is subtracted from the impurity of the node from which they were split. 

This reduction in impurity is called the improvement of the split. The split w ith the 

greatest improvement is the one used. Improvement values for splits are shown in 

the node information that is part of the generated report.

Variable importance is the relative importance that each variable plays in the 

splitting of the tree into nodes, both as primary or surrogate splitters. A surrogate 

splitter is an imputation technique that is employed when rows of the dataset have 

missing values. If a variable is called on as a primary splitter in the building of a 

tree and it has missing data, the developed surrogate will take its place and conduct
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the split as it was developed in the initial tree building (Acuna and Rodriquez,

2004). It is important to note that a variable's importance is not m easured solely by 

how early it enters the tree to act as a splitter. A strong surrogate splitter may be 

more "important" to the classification model even though it enters the tree later 

than a weaker primary splitter (Lewis, 2000; Sherrod, 2006). The loss of an 

important variable in the decision model will likely weaken the model as a whole. 

Variable importance can also act as a recruiter for subsequent analysis, as it is clear 

that a variable with a higher variable importance score is likely a significant 

predictor of the response variable (Breiman, 2001). The variable that contributes the 

highest improvement measure (i.e., the variable that has the greatest effect on error 

rate increase) achieves a score of 100 (Banerjee et al., 2008). The measures are based 

on the number of times a variable is selected for splitting, weighted by the squared 

improvement to the model as a result of each split, and averaged over all trees 

(Friedman and Meulman, 2003; Strobl et al., 2007). The relative influence (or 

contribution) of each variable is scaled so that the sum adds to 100, w ith higher 

numbers indicating stronger influence on the response (Elith et al., 2008). The 

remaining contributing predictor variables are scored relative to the most important 

variable. Importance, however, may refer to how important a variable is to the 

overall goodness of model fit, or it may refer to how important the variable is to the 

model's predictive ability.


