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Abstract
Delivering hands-on practice laboratories for introductory courses on operating sys-

tems is a difficult task. One of the main sources of the difficulty is the sheer size and

complexity of the operating systems software. Consequently, some of the solutions

adopted in the literature to teach operating systems laboratory consider smaller and

simpler systems, generally referred to as instructional operating systems. This work

continues in the same direction and is threefold.

First, it considers the hardware platform that is simpler and popular. Second, it

argues that a minimal operating system is a viable option for delivering laboratories.

Third, it presents a laboratory teaching platform, whereby students build a minimal

operating system for embedded systems. The proposed platform is called MiniOS.

An important aspect of MiniOS is that it is sufficiently supported with additional

technical and pedagogic material. Finally, the effectiveness of the proposed approach

to teach operating systems laboratories is illustrated through the experience of using

it to deliver laboratory projects in the Operating Systems course at the University of

Northern British Columbia.
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Finally, from so little sleeping and so

much reading, his brain dried up and

he went completely out of his mind.

Miguel de Cervantes Saavedra, Don

Quixote.
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A mi madre y a la memoria de mi padre.
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Chapter 1

Introduction

Operating Systems is a central topic in undergraduate computer science curricula.

Comprehension of subsequent computer science courses relies on the proper under-

standing of the operating systems (OS) course. Whilst this is similar to many other

undergraduate courses, what makes the OS course peculiar is the difficulty of deliv-

ering its laboratory assignments. Due to its complexity and scope, OS courses are

delivered in several styles.

Several universities across the world deliver purely theoretical OS courses, and

this is one extreme. Many universities, particularly top western Universities, offer OS

courses with a heavy project component. This is the other extreme, and obviously the

effective way of teaching OS because it gives the opportunity for the students to have

a hands-on experience. The rest offer the OS course in between these two extremes.

In the words of M. Ben-Ari:

“Programming is the fundamental activity of computing. As such it must

be a major component of courses for students of computing. Courses

should not be purely descriptive; instead, they must require students to

construct implementations.” [4]

Nonetheless, delivering labs where students write or modify an operating system
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in a semester is a challenge. Operating systems are typically large, intricate, concur-

rent, low-level pieces of software. Writing one requires dealing with: i) asynchronous

interrupts; ii) direct access to memory and registers; iii) the inner details of the target

computer architecture; iv) the size of the OS itself; and v) the concepts and ideas

behind each of the different OS components. Thus, offering the same kind of practical

exposure present in some other computer science undergraduate courses is, at best,

impractical.

Several approaches for teaching OS laboratories have been proposed in literature.

Given that concurrency and low-level programming (i.e. (i) and (ii) above) are in-

herent to the hardware platform programming model, efforts in the computer science

education community have focused on creating smaller and simpler instructional OS

(i.e. they have focused on (iv), (v), and less on (iii)). Continuing in this direction,

this work takes the small-size philosophy of instructional OS further, and proposes a

minimal system to deliver laboratory assignments. In addition, it attempts to lessen

the difficulties that originate from programming a complex machine (i.e. (iii)). Specif-

ically, it does so without opting for either simulated or emulated hardware, nor hiding

it behind software abstraction. It instead proposes the use of less complex hardware.

Then it combines everything together in a simpler platform called MiniOS, a labora-

tory teaching platform. Lastly, we discuss the effectiveness of the proposed approach

and our experience of using it for the past few years.

Thus far the platform is comprised of the system, a guide to its design and con-

struction, suggested laboratory assignments, and additional didactic material. Fur-

ther, with the purpose of student engagement, wireless capabilities have been added

to the system. Also, the work on quick integration of drivers has gone into the system

as well as the didactic material.
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1.1 Thesis Contributions

• Presentation of a novel approach to teach operating system laboratories

• Implementation of the teaching platform

• Development of supporting materials, expected to be released as a book.

• Testing of the proposed approach in the classrooms

1.2 Thesis Organization

Chapter 2 briefly reviews the literature related to the work presented in this thesis.

It categorizes different approaches and presents where our work stands in relation to

the categorization. Chapter 3 traces the origins of the main difficulties in teaching OS

labs in terms of software system, hardware platform, and lack of expertise of students

in OS development. Then it uses them as the basis to propose a new solution called

MiniOS based on minimal software, minimal hardware, and a guide specifying the

construction of the system. Chapter 4 describes the MiniOS and its architecture,

discusses the embedded target platform, and elaborates on the guide. Subsequently,

a set of laboratory assignments together with recommendations of its delivery are

provided. Chapter 5 discusses the evaluation of the final product, and the experience

in using it to deliver the laboratory projects. In the end, in Chapter 6, concluding

remarks of the work and future research directions are given.
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Chapter 2

Related Work

The teaching of OS lab projects can be broadly classified into four approaches: (i)

those where the OS is partially or entirely simulated; (ii) those modifying or extend-

ing a full-fledged operating system, either desktop, mobile, or embedded; (iii) those

where a toy operating system is built from bare metal; and (iv) those modifying or ex-

tending an instructional OS (whether they execute on simulated, emulated, or actual

hardware).

Simulation based approaches are attractive as they capture high-level function-

ality, which can be presented in a visual and intuitive manner. Yet simulations are

unrealistic, thereby limiting the learning experience. Conversely, modifying or extend-

ing a full-fledged operating system, such as GNU/Linux, does provide the experience

of working with a real system. This is, however, at the cost of a steep learning curve,

which results in students having time to modify a limited number of components in

a superficial manner. It is our opinion that these two methods are inadequate, and

we will not consider them further. Our views on production operating systems as

teaching tools comply with those found in literature [1]. Since our approach relates

more with (iii) and (iv), they are described in more detail in the remainder of this

chapter.
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2.1 Building a Toy OS from the ground up

Building a toy OS from the ground up involves students designing their own simple OS.

Out of convenience, a virtual machine (e.g., bochs) is typically used as development

platform; though it is possible, with some assistance, to have students execute their

OS in actual hardware. Examples of instructional operating systems following this

philosophy are the uMPS/Kaya platform[14], the TempOS platform[28], GeekOS[19],

VIREOS[10], Black’s OS [5], and Chadwick’s OS[6]. The building of a toy OS ap-

proach has the following advantages:

• There is no pre-existing OS to assimilate;

• Building the system from the ground up demonstrates how the system fits to-

gether, thereby gaining a holistic view of it;

• Building a own OS gives a gratifying feeling (this we observed from our experi-

ence with the students and also find similar views are reported in [14]).

The disadvantage, on the other hand, is that students need to work directly with

hardware that is intricate and has a steep learning curve. Complex hardware together

with the difficulties of writing an OS from the ground up, leaves no opportunity to

cover more than a few topics in their most rudimentary forms. Consider the case of

Chadwick’s OS, where four out of eleven lessons are dedicated solely to controlling

the screen. The final OS then not only has little resemblance with a production

OS, but is also a tiny toy—in the sense of not being developed enough to have any

practical purpose. Moreover, the lack of device drivers availability is a problem for

both students and instructors. Device drivers constitute a bulk of operating systems

code.
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Writing drivers is a difficult technical task, beyond the skill set of anyone who

is not an experienced kernel developer. Without having proper drivers support, it

is impossible to go ahead with projects, be they lab assignments or final projects.

For instance, in [5], a lab project on user and kernel mode separation was almost

impossible due to the use of BIOS for accessing I/O. Due to such complexity, some

systems such as KayaOS and VIREOS have opted for running on simpler simulated

hardware. Although it does bring the complexity down, it is at the cost of realism.

2.2 Modifying/Extending an Instructional OS

In this approach, students are given the task of manipulating an instructional OS;

namely, adding functionality or modifying the existing one. Unlike production oper-

ating systems, pedagogic ones are more compact. That is, the number of concepts,

amount of code, and technical details that must be comprehended involved in the

latter case are fewer. Examples in this category are: Nachos[8], Pintos[27], PortOS[3],

BabyOS[24], OS/161[18], Topsy[12], among others. There are some advantages to this

approach:

• Their smaller size makes them more approachable than production operating

systems.

• Interaction with hardware is not direct, as interaction occurs with pre-written

lower abstraction layers.

• They (some more, some less) resemble operating systems as built in reality.

On the down side, resembling real operating systems entails complexity. Thus,
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these systems deal with the issue of how much realism must be traded for simplicity.

Consider, for example, the case of modifying a FAT32 file system. Students ought to

have some understanding of the file format itself, the actual—often non-trivial—code

used to implement it and its interaction with other system modules. On the other

hand, a simpler ad-hoc file format, which lends itself to easier comprehension, is not

a file format used in deployed systems. In other words, there is no single system that

fits both simplicity and realism. Instructors must, therefore, select one that adequate

to their teaching objectives.

Like build-your-own approaches, many instructional systems cannot be used for

any purpose other than instruction; as often they do not run on actual hardware,

or they simply are not developed enough. Those that can are complex systems. A

survey of instructional OSes can be found in [1].

2.3 The Xinu approach

An intermediate approach that fits in the two previous categories is the one behind the

idea of Xinu[9]. Xinu is an instructional OS and is peculiar in that a guide (in the form

of a book) to its design and implementation is available. While its design and inner

workings are detailed, its implementation is also given a rationale and demonstrated

in code. This makes Xinu more self-contained, meaning, that the necessary knowledge

to put the system together is part of the guide. Altogether, the book removes the

mystery surrounding the OS.

Instructors may have options for students to either extend/modify the system or

build it in its entirety. So, the advantages and disadvantages are a mixture of the two
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previous approaches. Importantly, the system developed is not a toy, but a complete

and functional operating system, and for the same reason, it is complex. In fact, it

is intended to be used for advanced courses with a focus on production operating

systems. Consider one of the highlight remarks from the back cover of the Xinu Book

(Lynksys version):

“Designed for advanced undergraduate or graduate courses, the book pre-

pares students for the increased demand for operating system expertise in

industry.”[9]

Similarly, from embedded Xinu’s website:

“A student built operating system puts the student in the trenches of op-

erating system development. The student will become intimately involved

with the inner workings of an operating system.”[32]

Hence, this approach is less suited for any introductory operating systems course.

Further, the guide does not touch on any hardware-related details, leaving to students

and/or instructors the task of filling the considerable gap between the OS guide and

the hardware documentation. One might point out that other operating systems such

as Minix[30], Kaya, TempOS and Topsy also come with a document describing the

system. Yet, none is as self-contained, nor offers the amount of detail as that of Xinu.
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2.4 Summary

This chapter categorized and discussed the different approaches to teaching of oper-

ating systems labs from the literature. It discussed their basis, advantages, disadvan-

tages, and identified those approaches related to our solution: namely, modification of

instructional systems, building of systems from the ground-up, and Xinu’s approach as

an intermediate solution. With this brief review of the related work, we next present

the rationale for our approach.
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Chapter 3

Rationale for MiniOS

A student-built production-like operating system that can run on real hardware is

the ideal realization of the philosophy of teaching with the objective of hands-on

experiential learning. Similar views are expressed in [14] and [18]. Whether the

system of choice is mobile, desktop, embedded, or some other will depend on the

specific instructional objectives of courses. In either case, a dichotomy exists between

the ideal and fitting the workload into one semester. In this chapter, we attempt to

explain this dichotomy and then provide the basis of our solution.

3.1 The issues of building a complex system

There is no need to build a labyrinth when the entire universe is one.

Jorge Luis Borges

Operating systems are complex. Mosley et al [26] point out that complexity has

a direct impact on one’s attempts to understand a system. They also identify the

three main sources of complexity in software: state, flow of control, and code volume.

Given the sizes of modern operating systems, as well as the topic in question (OS

instruction), we focus our attention on code volume.
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In general, larger systems are harder to understand. How much harder? As

expressed by Dijkstra, it is still unclear:

“It has been suggested that there is some kind of law of nature telling

us that the amount of intellectual effort needed grows with the square of

program length. But, thank goodness, no one has been able to prove this

law. [...] As a result I tend to the assumption—up till now not disproved

by experience—that by suitable application of our powers of abstraction,

the intellectual effort needed to conceive or to understand a program need

not grow more than proportional to program length.” [11]

Modern operating system sizes are typically in the order of millions lines of code

(LoC), and it is not surprising to find them in the list of the largest softwares [33].

Consider, for instance, the latest versions of the mobile operating systems Android

and Symbian, or the latest versions of the desktop systems GNU/Linux, Mac OS, and

Windows; all of them are composed of millions of LoC.

For this reason, the computer science education community has favoured the use

of smaller instructional operating systems. That is, simpler systems in which the main

purpose is to serve as a teaching tool. To put this into perspective, consider the size, in

LoC, of some popular instructional systems: Minix and Xinu, with tens of thousands;

Kaya OS with over 7,000; Pintos with over 5,000; and Nachos with approximately

2,500. Their smaller size enables labs to be carried out in one semester’s time (some

with more difficulty than others).

Instructional systems may or may not have what we consider two important char-

acteristics: namely, being complete and functional. Complete in the sense of imple-

menting the typical components of an OS, and functional in the sense of supporting
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execution of real applications on real hardware (e.g., a teller machine system, a ba-

sic laptop, or a robotic system). Unfortunately, a complete and functional system is

more realistic, and thereby, more complex. For instance, Minix and Xinu are complete

and functional systems; hence, unsuited for undergraduate instruction. From those

remaining, none of them are functional, and their degree of completeness varies—

Nachos being the smallest yet still arguably complete amongst them due to their

philosophy of minimal implementations. Incidentally, we use the term minimal to de-

scribe Nacho’s implementation philosophy: “Our approach was to build the simplest

implementation we could think of for each sub-system” [8].

Accordingly, we argue that, by means of minimal implementations, we can build

a system with further reduced code volume. Moreover, we can use this reduction in

size and complexity as an opportunity to:

a) Cover (i.e. implement) components that are otherwise “out of scope”, and

b) Build a system capable of serving a purpose using actual hardware.

In other words, we make the case for a minimal—yet complete and functional—

instructional operating system. Thus far we have discussed the difficulties of dealing

with OS software. Now, we consider another source of complexity—the target hard-

ware platform.

3.2 The issues of complex hardware

“In order to be creative one must first gain control of the medium. One

cannot even begin to think about organizing a great photograph without having

12



the skills to make it happen.” Gerald J. Susman

Present time computers are intricate pieces of hardware. Manuals detailing the

functionings (from a programmer perspective) of a modern 32- or 64-bit processor

add up to at least a few thousand pages. To that, one must add the documenta-

tion detailing the functioning of the rest of the computer hardware, e.g., interrupt

controller, BIOS/UEFI, timer, real-time clock, and others. For these reasons, writing

non-trivial bare-metal applications (such as operating systems) is a technical, tedious,

error-prone, and laborious task. One ought to know the precise inner workings of the

computer if she hopes to direct it to do anything. Even though OS courses are cus-

tomarily preceded by architecture or organization courses, these inner workings are

often too advanced, and there are too many details to be covered in their entirety.

Additionally, the machine exposes a programming model of asynchronous interrupts.

Concurrent code accessing arbitrary memory and registers is one of the most chal-

lenging code students will encounter during their studies.

Then, how can a student possibly aspire to build an operating system, even a

simple one, in one semester? The answer is simple—they cannot. For this particular

source of complexity, solutions have been proposed in literature. One solution is to

build the system for a hardware simulator or emulator that is simpler to interact

with. This is advocated and demonstrated in Kaya OS, OS/161, VIREOS, PortOS,

and Nachos. For example:

“Simulators are used to eliminate the burden of working on a bare machine,

which, given the time frame of a single term, is outside the scope of an

undergraduate’s ability.”[14]
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A second solution is to abstract away hardware via a software layer. While this

is indirectly followed by any instructional OS not meant to be built from bare metal,

GeekOS explicitly follows this approach:

“Working at the hardware level has two main disadvantages. First, hard-

ware devices can be tricky to program correctly. A more fundamental

problem is that debugging kernel code running on real hardware is diffi-

cult, even for experts. The contribution of our work is to show that both of

these difficulties can be overcome without requiring heroic measures from

students or instructors. We have implemented a tiny OS kernel, called

GeekOS, which provides a sufficient abstraction layer over the hardware

to hide the genuinely difficult details.”[19]

A third solution is to compromise on the level of sophistication of the system, so

as to simplify the technical (hardware) details required to build it. This is put into

practice in Black’s OS and BabyOS, where students build a toy OS from bare metal.

We are of the opinion that exposing the students to real hardware is not only

essential for a holistic understanding of the system, but also increases their engage-

ment. Similar views are expressed by Pfaff et al[27]. Therefore, we consider only the

latter approach to compromising on the level of sophistication. Unfortunately, such

compromise results in a system that does execute in real hardware, but it is far from

being complete and/or functional.

Yet, we argue that by targeting a simpler real hardware platform, we can decrease

the technical knowledge required to build an instructional system; then, use that as

an opportunity to build a complete and functional system. In other words, we make
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the case for a minimal—yet complete and functional—instructional operating system

for a minimal hardware platform.

Instructional OSes achieve simplicity by trading the capabilities of full-fledged real

systems. Next, we elaborate on it.

3.3 A minimal instructional OS for a minimal plat-

form

If realism must be traded for simpler minimal implementations, the question that

follows is, where is the ideal trade-off point between one and another? This is a difficult

question, and it is (directly or indirectly) explored in each and all of the different

instructional operating system proposals. For instance, Holland et al elaborate:

“For teaching, a certain amount of realism is desirable. Too much real-

ism, however, becomes both too complicated and, sometimes, realistically

painful. [...] [R]eal OSes are immensely large and complicated, and are

full of complexities and constructs for coping with real-world issues that

have little instructional value.”[18]

Liu et al also elaborate:

“In the process of using BabyOS, we found that it is really difficult to make

tradeoff between realism and simplicity. A certain amount of realism is

desirable, otherwise BabyOS feels like an unreal OS. Too much realism,
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however, becomes too complicated and, student would fail to finish their

projects.”[24]

Even though we do not know where the ideal trade-off point resides, it is our

intention to explore it by implementing a minimal instructional OS for a minimal

hardware platform, which we call MiniOS.

Real being impractical, we focus on the minutiæ that can preserve “relevant real-

ism” in trade of “less relevant realism” (as far as undergraduate instruction goes). In

particular, MiniOS is complete and functional. It is targeted for a real hardware plat-

form; and it follows the design, layout, and mechanisms of real systems. Meanwhile,

fault tolerance, robustness, efficiency, reliability, sophistication, and other attributes

in deployed systems are not considered.

To put it bluntly, whilst MiniOS should not be deployed as part of an aircraft

computer or an X-ray device, it is perfectly suitable for less important applications,

such as a gardening system, or an unsophisticated robot—and such system, we believe,

is well suited for instruction.

Thus far we have used the term real hardware generically, now it is time to specify

a target platform.

3.3.1 A minimal embedded hardware platform

We use the term minimal hardware to refer to those computers with the least amount

of sophistication still capable of hosting an OS. For the sake of exploration, we have

selected what we consider to be one of the smallest among them; more specifically, a
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32-bit ARM low-end embedded platform. This choice is partly arbitrary and partly

influenced by ARM’s popularity in the mobile and embedded systems industries.

It is worth noting that the term embedded does not imply simplicity. While there

exists basic 8-bit microcontroller (MCU)-based embedded computers (e.g. a coffee

maker’s computer), there too exists sophisticated 64-bit microprocessor (MPU)-based

embedded computers (e.g. an industrial robot’s computer).

Despite the fact that some instructional systems, such as Minix, Xinu, and BabyOS

are targeted for (or have been ported to) embedded platforms, they differ from our

philosophy of minimal hardware. In fact, to our knowledge, there is not an existing

instructional OS with similar views on hardware.

It is also important to clarify that MiniOS is not intended to be an embedded

production OS. Like desktop systems, embedded production OSes are complex. They

tend to be plagued with intricacies that make them adequate for deployment in life-

critical applications such as aircraft and military. A representative sample, and in

the smaller side of the size espectrum, is FreeRTOS [25], which, intended for low-end

embedded platforms, has over 9,000 LoC [29].

A low-end embedded OS may seem as an over simplification, and naturally one

raises the question of whether such a simple system has any instructional value outside

the embedded systems realm.

3.3.2 A low-end embedded OS as a teaching tool

The purpose of MiniOS is not to serve as a tool for teaching embedded systems, but to

serve as a tool for teaching general principles that apply to operating systems. In fact,
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MiniOS is not well suited for teaching labs in embedded systems, as embedded-specific

details are deliberately overlooked. With few exceptions where it is impossible, it is

emphasized how they contrast with general purpose computers. Consider, for instance,

the case of a MCU-based low-end embedded platform (a Von Neumann architecture)

with Flash as program memory; it must be brought to the students’ attention that

general purpose systems do not, customarily, have non-volatile program memory in

their address space. Thus a boot-loader for a MCU will be different than one for, say,

a desktop computer.

Fortunately, the similarities are greater than the differences, and this is why we

believe a simpler low-end embedded system can be used as a teaching tool. That is,

for a course with no intention of preparing students for real-world OS development

(whether embedded, desktop, or other).

One important benefit of working with MCU-based embedded platforms is the

availability of device drivers. Hardware manufacturers typically release open source

bare metal middle-ware (mostly drivers) to be used on their platforms.

Finally, we argue that, recently, there has been a switch from traditional desktop

systems to mobile and embedded systems (e.g. internet of things and wireless sensor

networks). An embedded instructional system with wireless capabilities can be a tool

for introducing students to the latter. A similar argument is expressed by Atkin and

Sirer[3].

An equally important aspect of MiniOS is its guide. It covers building the system

from nothing, and it is described in the following section.
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3.4 From the ground-up: a guide to MiniOS design

“The devil is in the details.”

Popular Saying

MiniOS is intended to be built from the ground up, on bare metal. For this, a guide

to its design is primary. In a comprehensive and thorough manner the guide must—

step by step—detail the construction of the system from nothing. All the technical

details dealing with the hardware, the compiler, as well as OS concepts and their spe-

cific implementations should be covered, including details such as exceptions, memory

mapped IO, linking of relocatable code, calling conventions, memory segmentation,

and context switching.

Other instructional systems also advocate for the use of a guide or manual [19, 12,

14, 28, 10, 30, 27, 8]; some with more details and code than others. None, however,

go to the amount of detail (instruction) that we consider necessary for building an

OS from the ground up. (XINU is the exception; the amount of instruction offered as

written material in [9] is near to what we advocate for.)

Guzdials [16] argues that the amount of instruction matters when teaching com-

puter science to beginners. In particular, “putting introductory students in the posi-

tion of discovery information for themselves is a bad idea.” Although this argument is

given in the context of introductory programming (100 level courses), the instruction

in question (operating systems and computer architecture/organization) is introduc-

tory, as both systems programming and programming at such low-level of abstraction

are substantially different from what students have encountered in preceding courses.
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From experience we have noticed that, at this introductory stage, most students

lack the experience, the patience, and the right approach to meticulously construct and

debug low-level systems’ code. Moreover, they are faced with programming patterns

and tricks specific to the machine’s programming model. While many of these patterns

are simple and of common use, it can be difficult to re-invent them if one has never

encountered them before; in contrast with higher-level programming, bugs manifest

differently (typically the CPU faults and does nothing) in low level. Code is highly

dependent on a great number of machine-specific details, all of which must be set

correctly, and access to raw memory requires precise knowledge of its organization

and how instructions access it. Moreover, it is practically impossible for students to

obtain all of the required details for OS construction from the thousands of pages

included in the documentation, for they are not at the level of understanding the

technicalities. The end result is that students are prone to get hopelessly stuck.

Consequently, we consider that a guide demonstrating how to build the system

from the ground-up: as well as specifying, in a comprehensive manner, the technical

details relevant to OS writing is a necessity for the delivery of OS labs.

3.5 Summary

This section elaborated on the origins of the difficulties behind teaching operating

systems labs. It explained the complexity that students must undergo when dealing

with the software system, the hardware platform, and a branch of computer science

for which they lack skills. From this we derived the foundation of our solution, which

is based on minimality principles. With this background, we now proceed to describe

our proposed system called MiniOS.
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Chapter 4

MiniOS—Proposed OS instructional

platform

The proposed OS instructional platform consists of the system, the target hardware,

and its construction guide. This chapter describes them and gives a set of suggested

laboratory projects, as well as recommendations for their delivery.

4.1 The system

First we present the high level architecture of the system, and then describe the

different parts that constitute the system.

4.1.1 Architecture

From an architectural point of view it is unclear the parts that must be included

in a presumably minimal, complete, and functional operating system. It cannot be

composed of too many parts (layers or modules) as to become complex, nor it should

have too few as to be incomplete or non-functional. Our approach on this is to

incorporate components typically found in production systems, and offer the choice
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of what components make it into the system. Specifically, the system is built as a

set of loosely coupled modules categorized in base modules and optional modules, as

shown in Figure 4.1.

Figure 4.1: Architecture

As their names suggest, base modules form the foundation of the system and must

be implemented, whereas optional modules add specific functionality that may or may

not be integrated in the system. This configuration gives lab instructors and students

the flexibility to start with a minimal base and add modules to accommodate to their

instructional objectives. Complying with the minimality principle, the system has as

few lines of code and as few components as possible.

From a design perspective, we classify the modules into two types: primary and

secondary. Primary modules represent an identifiable OS component: hardware ab-
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straction layer (HAL), fault manager, memory protection, file system, scheduler, IO

manager, network stack, system calls interface, IO event dispatcher, minilib, thread

synchronizer, and command-line interface (CLI). Secondary components offer some ab-

straction or functionality but do not represent an OS components: context switcher,

disk abstraction, network interfaces, app loader, IO, CPU, and interrupts. Every

component is mapped to a source file of the same name. There are as many C or

assembly files as there are components in the architecture.

From a software engineering perspective, a modular architecture has additional

benefits. First, it improves modifiability of the system. It allows students to add or

remove modules with little or no modification of others. Second, it improves local

reasoning, hence aiding our main objective of making the system easier to compre-

hend. Such design is typically achieved with support from a programming language.

However, since the system is written in C and assembly, we rely merely on disci-

pline. Particularly, we strongly advise students to keep state confined to the scope

of a module, and let module interaction occur only via interfaces; practices, which

we demonstrate throughout the construction guide. It is worth noting that, although

instructional systems are more or less designed in this manner, often modules end up

keeping global state used by other modules. More importantly, we want to make it

explicit that these software engineering practices are essential for our purpose.

An important aspect of MiniOS architecture is that, unlike production systems,

device drivers are in direct contact with hardware. This means, the system is built

on top of them, instead of them being part of the system itself. Although some

instructional systems follow this design for simplicity purposes, we do it explicitly to

support integration of open source third-party firmware that is often only available as

bare-metal. With this small design choice, MiniOS benefits from available code that
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are from chip vendors and/or embedded systems enthusiasts. With this higher level

description, next we will describe the individual components.

4.1.2 Components description

We start with the base modules.

• HAL: This is the lowest layer of the system and it is responsible for provid-

ing sensible machine-independent abstractions to upper layers. Particularly, it

implements three abstractions: CPU, interrupts, and IO.

• System: System is central to the rest of the modules, and is in control of all

the system-related tasks, such as system initialization and kernel panics. Ad-

ditionally, it offers implementations of various data structures to aid in the

development of the kernel.

• Application loader: This module is responsible for the loading of applications

from the SD Card. It is used for either automatic loading of pre-defined ap-

plications after OS initialization, or in the presence of the CLI, for executing

applications by name.

• System call interface: After configuring the CPU to run in user mode, the system

calls interface serves as the only gateway to the system. Invocation of system

calls is via software interrupts.

• Minilib: This small library module sits in between applications and system calls.

Minilib’s purpose is to:

– Wrap up system calls and presents user applications with a more intelligible

interface.
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– Provide support for buffered IO operations in the presence of the IO man-

ager.

Now we describe optional modules.

• Fault manager: It is a small module whose only task is to raise kernel panics on

the occurrence of CPU faults (e.g. div by zero fault).

• Memory protection module: This module protects kernel code and data from

code running in user mode. It restricts applications from accessing specific parts

of memory, generating a segmentation fault if boundaries are violated.

• Thread synchronizer: Albeit part of minilib, thread synchronizer is a module

on its own. It contains implementations of thread synchronization mechanisms:

lock, semaphore, monitor, and barrier synchronizations.

• Scheduler: The scheduler is a limited, but functional, priority-based pre-emptive

thread scheduler. It supports a fixed number of threads with fixed stack sizes.

While termination for a given thread is supported, freeing of its memory is not

(mainly to avoid handling complex memory details). Threads can yield, can

signal other threads, and can sleep. For portability, platform-dependent code

for context switch is part a context-switcher, and not the scheduler itself.

• File system: A functional operating system must have a file system to start

with. MiniOS uses a part of FatFS [7] as file system. FatFS is a small FAT file

system for resource-constrained devices.

• CLI: The command-line interface is a shell whereby applications can access a

small number of kernel services. Some commands are, for example, ls, cd, cat,

and netstat; minimal versions of GNU/Linux’s commands with the same name.
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• Network: As for networking capabilities, the network stack supports a very

simple, inefficient, but functional network protocol over IEEE 802.15.4. Namely,

it uses a flooding algorithm to form a network of ad-hoc connected devices. To

avoid dependencies, the network stack purposefully overpasses the IO manager

and handles its own buffers and radio interrupts.

• IO manager: The IO manager controls access of I/O devices. When interrupt-

based devices notify the system of available data, it is responsible for:

– Placing the incoming data in an intermediate buffer accessible to both

minilib and the IO event dispatcher.

– Notifying the scheduler of new incoming IO data.

• IO event dispatcher: The IO event dispatcher enhances the system with IO

events. Whenever the scheduler is notified of new incoming IO data, the event

dispatcher runs and executes the corresponding user-level event handler. Unlike

other modules that can be implemented on top of base modules, the IO event

dispatcher requires the scheduler and the IO manager to be part of the system.

For a more concrete idea, consider the sample program in Listing 4.1.
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Listing 4.1: Sample MiniOS application

#include " m i n i l i b / thread . h "
#include " m i n i l i b / o l ed . h "
#include " m i n i l i b /network . h "
#include " m i n i l i b / s en so r s . h "
#include " m i n i l i b / l ed . h "
#include " m i n i l i b / i o e v e n t s . h "

void sa lute_thread ( void∗ params ) {

thread_set_pr io r i ty ( ( uint32_t ) params ) ;

while ( t rue ) {
// p r in t s a l u t e to USB
usb_write ( " Hola , soy %s \n" , thread_get_current ( ) ) ;
thread_sleep ( 200 ) ;

}
}

//Layer−2 frame r e c e i v e d event handler
IOEvent net_frame_received ( NetFrame∗ frame ) {

// echo
net_mac_send ( frame ) ;

}

int main ( ) {
// Create s a l u t e threads
thread_create ( sa lute_thread , " Mariana " , 128 , THREAD_PRTY_MIN ) ;
thread_create ( sa lute_thread , " Cafe " , 128 , THREAD_PRTY_MIN ) ;

uint32_t s t a t e = 1 ;

while ( t rue ) {
// p r in t s enso r in fo rmat ion to OLED
oled_write ( " Light l e v e l (%%) : %d \n" ,

l i ght_read ( L ightSca l e1to100 ) ) ;
o led_write ( " Temperature (C) : %d \n" , temp_read ( ) ) ;

// b l i nk LED0
led_set ( Led0 , s t a t e++ % 2 == 0 ? LedOn : LedOff ) ;

thread_sleep ( 500 ) ;
}

}

This program is composed of four threads, one of which is main. Two of them

print their name approximately five times a second over a CDC USB connection;
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one waits for an incoming network message and echoes it back to the same

sender; and main prints sensor information on the OLED screen and blinks an

LED approximately every half second.

An operating system works closely with a specific hardware. The following section

discusses the target hardware platform.

4.2 The target hardware platform

Among all the different available ARM processor cores on the market, the Cortex-M

series are those with the least sophistications that still offer support for operating

systems. Among them, we have opted for the Cortex-M4, which was the most so-

phisticated in the Cortex-M series at the time MiniOS was initially conceived. Some

of these OS-supporting features are software interrupts, memory protection, different

CPU modes (kernel and user), separate user and kernel stacks. In fact, the only miss-

ing feature to fully support a conventional OS, capable of executing applications, is a

memory management unit (MMU).

Cortex-M cores are only available in micro-controller units (MCUs), and because

a MCU by itself is of no use, a MCU prototyping (evaluation) board must be used.

Although it is possible to carry out labs with tailor-made hardware, an off-the-shelf

board has its advantages. First, there are available device drivers from manufacturers.

Second, these boards typically integrate an on-board chip debugger and programmer,

thereby eliminating the need of an expensive JTAG emulator that does the same.

Third, they can be purchased by anyone interested in taking or delivering the course.

Lastly, being official boards, they integrate seamlessly with manufacturers’ develop-
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ment tools.

A variety of MCU prototyping boards exist in the market from different vendors.

Based partly on its low cost, and partly in nothing in particular (as they all are

quite similar), we have selected the Atmel SAM4S Xplained Pro Starter Kit. Its main

board runs at 120 Mhz, and together with its three expansion boards integrate enough

peripherals for laboratory projects. They include a small OLED screen, buttons,

LEDs, a light sensor, a temperature sensor, a microSD card slot (and the microSD

card), a USB device port, an on-board 256 MB Flash memory, and exposed pins

for on-chip peripherals such as GPIO, UART, USART, ADC, PWM, I2C, and SPI.

Figure 4.2 shows the main SAM4S board and its daughter boards, together with

the REB233 board (acquired separately) for IEEE 802.15.4 connectivity. This is the

hardware assumed by the construction guide.

Figure 4.2: Target Platform: SAM4S Starter Kit and REB233 radio

It is worth noting that in a previous offering of the course the IEEE 802.15.4

Xbee[20] from Digi was used as radio. However, students had problems with the

extra wiring required, and a few Xbee modules were burned in the process. Being

29



plug and play, the REB233 board is expected to serve the same purpose without any

wiring.

Optionally, the BNO055 absolute orientation sensor (Figure 4.3 (a)) can be used as

additional hardware to enable applications related to robotics, navigation, and others

where tracking of pose or motion is desired. It is a low-cost absolute orientation sensor

that integrates an accelerometer, gyroscope, and magnetometer to provide raw data

and a hardware-calculated orientation in euler angles. Although the final release of

MiniOS does support it, it is only mentioned in the guide as complementary material;

that is, it is not required for completion of laboratories.

(a) BNO055 orientation sensor (b) Hardware for possible a GUI laboratory

Figure 4.3: Additional optional hardware

Lastly, it is possible to seamlessly add support for touch screen using the Atmel

maxTouch Xplained Pro (Figure 4.3 (b)). Due to its high cost, it is not supported by

MiniOS. Still, it represents a good option for a GUI laboratory as it plugs directly as

an expansion board, and drivers are available.

Being an embedded platform, development of software is somewhat distinct. The

following section attempts to offer more details in this regard.
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4.2.1 Development Environment

Clearly one cannot (easily) use the system’s target platform to develop the system

itself. Instead a separate host computer is necessary for development of the system. In

particular, using a cross-compiler, first the source code is compiled to an executable in

the host. Then, the executable is flashed to the target’s program memory by a flashing

tool. Finally, for debugging, an on-board hardware debugger interfaces with software

in the host to enable source-level debugging. All of the different host-side software

tools, including the GNU toolchain are integrated in Atmel’s IDE: Atmel Studio.

Communication between the target platform and host tools is via USB. Figure 4.4

depicts the described programming environment. Incidentally, Atmel Studio was built

with Microsoft Visual Studio Shell. So, the programming environment is the same as

that from Microsoft Visual Studio.

Figure 4.4: MiniOS development environment

The Atmel debugging facilities, when used correctly, allow debugging of firmware
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running in the MCU as if it was a regular desktop application. It allows pausing

(possibly at breakpoints) of the CPU for inspection and modification of memory,

registers, IO interfaces, and source-level variables (including not primitive types). It

also allows to step through both assembly and C code, as well as dis-assembled code.

Figure 4.5 shows a screenshot of a sample debugging session.

Figure 4.5: Sample debugging sessions

The final piece in the development platform is the system’s guide to its construc-

tion, which is discussed in the following section.

4.3 The MiniOS Book

The idea of the MiniOS guide (or book) is to:

• Cover in-detail all the technical material that is necessary to build MiniOS.

• Guide students in the process of developing it themselves.
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Consequently, the guide is intended to be self-contained, in the sense that a student

could rely solely on it to build the system (characteristic not present in other similar

OS books). The style of the guide was initially inspired by the tutorial Write Yourself

a Scheme in 48hrs [31], and later by the more textook-like style of the Xinu Book [9].

Our guide is divided in two parts, as shown in Table 4.1.

Table 4.1: Book Layout

PART I PART II
(HW ARCHITECTURE) (SW SYSTEM)
1. Introduction 1. Basic IO and Booting
2. Instruction Set Architecture 2. Hardware Abstraction Layer
3. Memory 3. System Calls
4. IO 4. Fault Manager
5. Stack 5. Memory Protection
6. Interrupts 6. Scheduler

7. IO events
8. Thread Synchronization
9. Network Stack
10. Command-Line Interface

The intention of the first part is to instruct on computer architecture using the

ARM Cortex-M4 and the SAM4S board. The second part is dedicated entirely to the

system, and it assumes some working knowledge of what is covered in the first section.

Ideally, a student should complete the first section of the book, and then engage in

building the system. However, if this is not the case (as we have experienced), working

knowledge of a different computer architecture suffices. At worst, students will take

extra time to learn certain Cortex-M4 technicalities. Importantly, all these required

technicalities are available for consultation in the architecture section, and when used

in the systems section, they are referenced.

An important aspect of the guide is the great amount of details offered. This is

because it was written with the purpose to not leave students in the situation of discov-

ering neither advanced topics nor topics pertaining to other subjects by themselves.
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Among others, it covers topics and information related to data structures, drivers,

CPU, peripherals, the SAM4S board, the SAM4S MCU, the C language, assembly,

the linker, and even programming patterns that are particular of systems or low-level

programming. For instance, the guide explains and demonstrates the following: how

to use callbacks to push data (coming from interrupts) from a lower layer to an upper

layer; how to load a pre-compiled application from permanent storage to RAM for

execution; how to write a linker script; how to do context switch; how to change CPU

privileges; where in the documentation to find the mapping between physical pins and

logical IO bits; and so forth. Some of this information is too technical or advanced to

be left for discovery, and some does not pertain to OS instruction per se. Appendix

1 shows an excerpt of the Scheduler Chapter.

To put it in perspective, consider the analogy of an engineering course with the

objective of teaching about principles of motor vehicles (say, their inner workings).

One could have students designing, manufacturing, and putting together every single

cam and piston of the motor; then going ahead in designing their own engines, manu-

facture them, and assemble them together; then continue to re-invent techniques and

mechanisms that are otherwise well-known and of standard use in assembling of cars;

and then let them teach themselves how to operate machinery that they will need.

Alternatively, one could provide all the working pieces, a demonstration of all the

techniques and methods they will be needing, partial solutions to the parts that are

known to be difficult, and have students assemble the car. Assembling a car seems

a task already difficult on its own to be adding more to it (unless the purpose of

such course is to prepare students for automotive design). In other words, more than

writing an OS from the ground up, we are looking for students to assemble one, from

the ground up. (The analogy, of course, is not perfect, but should reflect what we are

looking for in the MiniOS guide.)
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Importantly, most pieces of code that are given, are not just given, but derived,

meaning, the book explains the steps in obtaining it from documentation or other

assumed background knowledge. This gives interested and motivated students the

tools to modify those parts, should they want to (e.g. for a final project).

Additionally, a secondary device driver integration guide was developed. This

smaller guide demonstrates the process of integrating third-party drivers, and shows

working sample code. It can be challenging to write working code for an IO peripheral

out of poor, and often buggy or incomplete, third-party documentation. Appendix 2

shows two sample entries from the driver guide.

In addition to text material we have prepared demonstrative videos. These are

videos made to strengthen the text material, by showing explained concepts, tech-

niques, processes, solutions to labs, or running sample driver code. For example,

Figure 4.6 shows a debugging session right before a system call.

Figure 4.6: Video demo: Entering kernel mode

Within the video the control register is highlighted to demonstrate that, in fact,

the CPU is in both user and unprivileged mode. Upon execution of the software
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interrupt, it is shown again, but this time specifying kernel privileged mode.

Lastly, we would like to emphasize that all this extra instruction goes in accor-

dance with what is argued by Guzdial et al in [16] in favour of strong instructional

guidance for novice learners. In particular, he mentions that there is strong evidence

that the minimal guidance approach we typically use in computer science instruction

is inadequate. One can argue that operating systems and computer architecture are

typically second and third year courses, and therefore students are not novice pro-

grammers. While this is true, students are still considered novice learners from a

low-level programming and OS development perspective.

Based on the described system, hardware platform, and guide thus far, the next

section presents suggestions on how to accommodate the material in actual laboratory

projects.

4.4 Laboratory Projects

There is a total of twelve labs, with different suggested durations. The first lab is an

optional short introduction. The next two labs are also short, and, since they involve

base modules, they cannot be skipped nor their order can be altered. The remaining

eight are optional, and most of them can be implemented regardless of order. In case

a module is considered to be good to have, but not of interest as to dedicate a lab to

it, there is the possibility to hand it in to students. For instance, the fault manager

can be a useful module to have as it outputs human-readable messages when the CPU

faults, and it could be given to students.
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4.4.1 Lab 1 - Basic IO and Booting

In this lab students are introduced to the booting process, the use of third-party

firmware as basic input-output, and the programming environment (including debug-

ging facilities). The recommended time for solving this lab is one week and is optional,

albeit recommended. Another way of looking at this lab is that it enhances bare-metal

applications with bare-metal firmware, as depicted in Figure 4.7.

Figure 4.7: Architecture Goal for Intro Lab

The learning outcomes for this lab are to familiarize students with the develop-

ment environment; to provided some guidelines on how to make efficient use of the

debugging facilities; and to show the process of integrating third-party firmware to be

used as basic IO.

4.4.2 Lab 2 - Hardware Abstraction Layer

For this lab students write the HAL, and the system module. Some of the implemen-

tations expected from this lab are, for example, an IO device abstraction composed

of a read function and a write function, an abstraction for registering callbacks of

interrupt-based IO, among others. The recommended time for solving this lab is one

week, and it is mandatory. Figure 4.8 shows the result of completing this lab.

The objective of this lab is to give some insight and hands-on experience on inter-
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Figure 4.8: Architecture Goal for HAL Lab

action with bare-metal IO peripherals, and in the process convey students the impor-

tance that a) abstraction plays in development of the system, and b) the repercussions

that a HAL has in portability.

4.4.3 Lab 3 - System Calls

Provided hardware-specific information on how to establish a kernel and user mode

separation, students must add code to support software-interrupt based IO system

calls via minilib. The separation is made even clearer by splitting compilation of OS

and app. MiniOS is compiled and flashed to the MCU, while applications are compiled

and moved to an SD Card from where they are loaded into RAM and executed. Since

loader code is given, students are asked to write a rudimentary version of MiniOS CLI

that supports listing of files and execution of applications only in the SD Card’s root

folder.

Optional tasks involve buffered output: implementation of a line-buffered oled_write

function together with a a flush function. In the process, the inability of user code

to directly access data from interrupt-based input is emphasized; although nothing is

done about it until later labs. The recommended time for solving this lab is one or

two weeks.
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Figure 4.9: Architecture Goal for System Calls Lab

Upon completion of this lab students are expected to have some insight and work-

ing knowledge of:

• The separation of kernel from user applications and the mechanisms used by

operating systems to interface them both.

• The role and place of libraries such as the GNU C Library in an operating

system.

• The limitations of poll-based IO.

• Buffered IO.

4.4.4 Optional Lab – Fault Manager

The fault manager is another short lab. Here students are given guidance on CPU

faults, and are asked to add support for fatal system errors—the mini black screen

of death. If both memory protection and the CLI are in part of the MiniOS version

for this lab, a more complex task involves termination of the offending application
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and continue of execution. The recommended time for solving this lab is one week,

or two with the additional task. For this lab, students are expected to gain insight

as to what causes fatal system errors in computers, and have some experience in the

process of handling and reporting them.

4.4.5 Optional Lab – Memory Protection

For this lab students must implement memory protection to prevent user code from

accessing system code and data in memory. If the fault manager has been imple-

mented, an extra task of enabling segmentation faults is available. The recommended

time for solving this lab is one week, or two if thread protection is included. The idea

of this lab is to supply students with insight and working knowledge on the use of

memory protection to prevent bugs and malicious code to mess with the system, as

well as to let them experience first hand what a segfault is.

4.4.6 Optional Lab – Scheduler

The scheduler is perhaps the most technically challenging lab. Starting from the sys-

tem timer, a single-threaded scheduler and a yield function are derived and demon-

strated. Available tasks include extending it to support multiple threads, priorities,

round-robin scheduling, a sleep function, thread signalling, and different scheduling

policies, among other tasks. The recommended time for solving this lab is two weeks,

or three if extra tasks are added. The learning outcomes for this lab are to provide

students with experience of the obscure inner workings of a thread scheduler, to let

them experience first hand how sharing CPU is made possible by a set of small clever

tricks done by the operating system; also, to get some working knowledge on a) im-
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plementation of different scheduling policies; b) how different threads queues can be

used to support sleeping threads, priorities, and thread signalling, among other tasks.

4.4.7 Optional Lab – IO events

In this lab students write the IO manager and the IO event dispatcher to add support

for user-level run-to-completion IO events. Every time new data is received from

interrupt-based IO, the IO manager stores it in intermediate kernel buffers and notifies

the scheduler to wake up and run the event dispatcher threads. This is a short lab, and

its recommended time is one week. On completion of this lab, students are expected

to have an understanding of a) the implementation of events from threads; b) the

benefits of a hybrid thread-event approach.

4.4.8 Optional Lab – Thread synchronization

Here students implement thread synchronization mechanisms: locks, semaphores,

monitors, and barrier synchronizations. The recommended time for solving this lab

is one week or two depending on the number and complexity of the mechanisms to

be implemented. At the end of this lab students are expected to understand, from

an implementation perspective, synchronization mechanisms used in multi-threaded

programming.
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4.4.9 Optional Lab – Network Stack

A MAC layer interface is delivered as part of this lab’s material. Students must, then,

use the trickle algorithm [21] to enhance the system with network capabilities. A more

complicated task includes writing a host application that transmits an executable,

having a node receive it and execute it. Since trickle is straightforward to implement,

the recommended time for solving this lab is one week, or two with more complicated

tasks. The objective of this lab is to demonstrate, in a rudimentary manner, how

computer networks are built out of layer-2 point-to-point communication; also, to

show the difficulties of a) providing applications with networking services, and b)

dealing with unreliable wireless communications.

4.4.10 Optional Lab – Console and CLI

In this lab students write a either a console or a CLI (or both). The console is launched

on system start up and enables:

• To print information during system initialization;

• User login;

• Execution of basic commands; and

• To browse and execute applications stored in the SD Card.

The console is internal to MiniOS. System initialization messages include CPU

speed and peripherals found. More advanced features involve basic managing of user

accounts, and enabling applications to exit and give control back to the console. The

42



CLI is an application that runs in user mode and allows similar functionality. More

advanced tasks include the implementation of privileges for user accounts; the writing

of a host terminal that gives it a more traditional feeling; or a host panel board that

shows sensor information. This is a short lab and the recommended time for solving

this lab is one week. The purpose of this lab is to demonstrate how the command line

interpreter fits in with the rest of the system.

4.4.11 Final Project

As final projects, students may form teams and create something of their own. Any

idea involving an embedded OS, or extension of the OS itself are eligible choices.

Unlike all the remaining labs, this project has no rigid specification. It is open ended

and students are encouraged to implement something of their interest. A complete

version of the system can be handed in to those teams who need it. In the end, exact

specifications differ depending on instructors’ preference. The idea is for students to

put all acquired knowledge to practice and hopefully deepen their knowledge in some

specific OS aspect of their choice. This concludes the presentation of the instructional

platform.

4.5 Summary

This chapter provided implementation details of all the parts constituting the in-

structional platform: in particular, the modular system’s architecture, the MCU tar-

get platform, and the accompanying book. Finally, it presented labs with specific

teaching objectives, suggested completion time, and suggested assignment tasks.
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Chapter 5

Evaluation

The idea of MiniOS was not to replace other instructional systems, but to create an

alternative system that could adhere itself to the already existing set, more precisely,

it was meant to be a small, complete, and functional MCU-based system that could

be used for teaching operating systems concepts, while lessening students’ struggle.

Due to our policy of minimal implementations and minimal hardware, we were

able to write the entire system in only of less than 500 lines of C code and less than

250 lines of assembly. Following the principle of not placing students in the position

of discovering new non-relevant information, we have developed a self-contained book

covering the construction of the system. All this together has enabled MiniOS to be:

• Functional and complete.

• Small.

• Built-from the ground up.

• Simple enough to reduce students’ struggle in building an instructional system.

The last objective of serving as a tool for teaching operating systems concepts is

left unanswered. Instead we report on our experience in using MiniOS to teach the

laboratory component of a course in operating systems.
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This chapter begins by reporting our observations and findings in using MiniOS

at the University of Northern British Columbia (UNBC). It elaborates on the use of

MiniOS as a prototyping and research platform. Then, it presents student feedback,

and finishes by discussing further research concerning the experimental evaluation

of the reported observations, as well as the unanswered objective mentioned above.

The analysis is mostly based on anecdotal evidence and hence qualitative in nature.

We do not have enough data to make a quantitative analysis that have statistical

significance.

5.1 Observations and Findings

Reflecting on the experience to date, MiniOS has served well as an instructional

system. Previous versions of the teaching platform (Figure 5.1) were used as the

laboratory component for OS (CPSC 321) in Fall 2013, 2014 and 2015, and as the

laboratory component for computer architecture (CPSC 231) in Winter 2015 and

2016.

(a) 2013 (b) 2014 (c) 2015

Figure 5.1: MiniOS architecture in different years

Figures 5.1(a), 5.1(b), and 5.1(c) illustrate the evolution of MiniOS. Overall the
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delivery of the material went without problems, and in the process we gathered expe-

riences.

5.1.1 Book experience

The role of the book seemed to have served its purpose. The amount of details offered

in its latest version allowed for students to complete assignments (both CPSC 231

and 321) with little necessity to rely on other sources. In early offerings where the

guide covered less material, students consistently indicated being frustrated for the

lack of related external sources. Moreover, the amount of details seemed to have

enabled students to complete projects. In Fall 2013, CPSC 321, two of the five teams

using the SAM4S board (two teams used different hardware) were not able to present

working projects due problems of technical nature. In 2014, the number went down

to one and that team used different hardware. In 2015, it went down to zero, and all

teams used the SAM4S board.

The system part of the guide assumes that students have had some experience

working with the SAM4S board and Cortex-M architecture. When we delivered CPSC

321 in 2015 this was not the case for every student, as some had taken CPSC 231

one year earlier (in 2014) using a different CPU architecture. Interestingly, the lack

of previous Cortex-M experience did not seem to matter considerably. Three of the

thirteen students attending labs did not have previous Cortex-M experience. Still,

based on marks and personal appreciation, they performed similar to the rest of the

class. In fact, one of them went to obtain the highest marks in labs. It is quite possible

and reasonable that they dedicated more time to get on track with the new hardware

platform and programming environment.
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5.1.2 Instruction and tutorial experience

Based on previous experience teaching labs by building an OS for x86, MCU embedded

hardware seemed to have allowed us to dedicate less instruction to present students

with hardware details. Specially with the use of the guide, the required concepts

previously introduced in CPSC 231 were just referenced and not re-introduced.

Tutorials were offered in a classroom once a week. Despite the material being

covered in the guide, many times students needed further clarification. While some

were able to finish labs with minimal or no consultation at all, others did not. Thus,

it is recommended to have dedicated lab or tutorial sessions, where the lab instructor

gives an oral presentation of the material. To gain insight into what is difficult and

what is not, and what could use extra instruction, it is advised that the lab instructor

solves the labs in advance.

5.1.3 Language experience

Java is the language used to teach most courses at UNBC. This means that, for

many students, CPSC 321 was their first encounter with C language. Among all the

C-specific concepts, pointers and pointers to pointers demonstrated to be difficult to

decipher. In fact, students consistently reported much of the struggle with assignments

came from inexperience with the C programming language. To compensate for it,

tutorials covered the use of pointers, callbacks, structures, organization of code in

modules, use of header files, compiler attributes, among other relevant C specifics.

Often students were not able to proceed further due to a specific language detail they

were confused about or not knowledgeable of. While some students were prompt to
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ask, other were not. Those that did not ask reported spending a considerable amount

of extra hours figuring out by themselves. Thus, students were encouraged to ask for

language related doubts. In general, it is recommended that the lab instructor does

not hesitate in assisting students with language problems.

5.1.4 Debugger experience

The presence of debugging facilities, albeit circumstantial, showed to be very im-

portant for solving the laboratory assignments. On occasions, the debugger was the

difference between students completing an assignment or not. Often assistance was

given in the form of debugging sessions. Sometimes because the lab instructor was

unsure where the mistake was, and some other times because the debugger allowed for

a demonstration of a concept that was otherwise not being understood from an oral

explanation. Also, we have found that most of students’ bugs are due not to wrong

logic (they usually get it right), but due to a missing technical detail or a wrong

assumption of technical nature. Debugging was very useful in finding those mistakes,

as it enabled to verify step by step the details and assumptions of what is supposed

to happen versus what is actually happening. This contrasts with typical remote de-

bugging, which is a rather limited way of debugging (similar views are expressed by

Holland et al[18]).

We also noted that in spite of previous debugging experience, in most cases, stu-

dents lacked the debugging abilities to take advantage of the facilities available. In this

regard, videos showing effective use of the debugger, as well as personal assistance,

were provided. Interestingly, students seemed to have improved their bug-finding

skills after only a couple short sessions of personal debugging assistance.
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5.1.5 Hardware experience

In the first offering of the course, the MCU platform had a neutral reception. This,

however, has changed for the later two offerings of the course. Perhaps the guide

played a role in that. For the latest offerings of both CPSC 231 and CPSC 321 more

than half of students showed interest and enthusiasm of working with hardware.

Overall, boards behave well. On occasions, albeit not often, boards would simply

fail to be recognized by Atmel Studio. Some times resetting the host computer or re-

plugging the board would fix the problem, but other times the board would continue

to fail and a replacement had to be given. So it is recommended to have extra boards

in case they are needed.

Working with external peripherals can sometimes be a problem. There was a few

incidents where Xbee modules and one board where burnt due to wrong wiring. Being

computer science majors, a good number of students showed problems with wiring of

external peripherals. For example, late in the course one student started having prob-

lems integrating an Xbee for his final project, and expressed that CPSC 321 was (until

the issues started) his favourite course in that semester. These problems repeated in

a few occasions, and as a consequence, the latest version of MiniOS has stopped re-

quiring any use of peripherals that are not expansion boards, since they simply plug

into an expansion slot. Concretely, Xbee radio modules have been replaced by the

REB233 board. At the time adding external support for PS/2 keyboards was also

being considered, but had to be dismissed for the same reasons.

For final projects, students choose something of their interest, and often they re-

quire external hardware that requires wiring. In this regard, not only wiring, but
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finding the right piece of hardware have been consistently mentioned (in project re-

ports) to be challenging. For our part, we have provided assistance in both.

5.1.6 Project experience

At the end of the semester we held, for both courses, a final project presentation,

where students had to give a short presentation and demonstration of their projects.

Figure 5.2 shows two sample projects. Figure 5.2a shows a clock alarm project that

runs MiniOS. Figure 5.2b shows a project named Pinto pipes, a rudimentary command

line interpreter that supports redirection. Other projects include Ascii at a distance

(a communication API for wireless devices), SOS (simple operating system), Remote

sensor drone (a remote rover with sensing capabilities), thread signalling for MiniOS,

and System Security (secure user account management).

(a) Clock Alarm Project
(b) Pinto Pipes Projects

Figure 5.2: Sample student projectss
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5.1.7 Drivers experience

An important aspect of MiniOS is the integration of third-party open source firmware.

This enabled seamless integration of a variety of different peripherals. With available

drivers, the adding of hardware functionality to the system became a mechanical task.

We found this to be good for student engagement, as driver availability is the main

limitation in using external hardware in projects. In fact, during project proposals

we advised students to check for driver availability before acquiring any peripheral.

It is worth noting that by themselves, drivers are of little use as their use is difficult

to figure out from documentation. The device driver guide played an important role

in simplifying it, and turning it into a mechanical task.

5.2 MiniOS as a prototyping research platform

The amount of functionality built-in, together with the ease of hardware integration,

made MiniOS a good alternative for embedded systems prototyping. In particular,

applications have access to OS facilities, as well as straightforward sensor and actuator

integration. Prototyping platforms with similar capabilities are Microsoft’s .NET

gadgeteer[35] and mbed [2]. Figure 5.3 shows two mobile robots part of a experimental

multi-robot platform based on MiniOS.

Likewise, given that MiniOS’ inner working are well documented and are compar-

atively simpler that other systems, it could serve well as systems research platform

where system designs can be tried in relatively small time frame. Up to this point, we

have discussed our appreciation of the teaching experience. The next section discusses

feedback received from students.
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Figure 5.3: MiniOS-based multi-robot platform

5.3 Students’ feedback

In Fall 2014, students were asked to elaborate in what they thought were strengths

and weaknesses of laboratories projects. These are some of the answers.

S1: Strengths: The assignments are very hands on and we get to see the things we

discuss in class. The example programs show the functionality of the board.

Weaknesses: There seems to be little documentation for the ASF. The coding

can be hard to follow

S2: Assignments are a good way to see the complexity and challenge in dealing with

the hardware level. They are nice in that you can access the hardware directly,

and use the debugger that is provided to actually “see” the registers and the

hex or binary values stored here, and how things are interacting. However,

that is also its main weakness. being that they are reasonable complex pieces

of software it is very challenging to understand how all the components are

interacting at times. [...] Along with the large amount of digging that needs to

be done to understand the documentation, the other challenge is understanding
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C as I have not used it much to although things are similar it is still not Java.

however it is kinda nice [illegible] to use something other than Java.

S3: In my opinion, the programming assignments are a mixed bag. I think its a good

way to show incrementally how each part of an OS is designed and implemented

in practice. The assignment themselves strengthen the knowledge learned in

class.

The downside, however, is the language implemented. Its a minor point, but it

is an issue with which I struggle. Until this course, I’ve never used/been/seen

exposed to C. It just makes understanding and implementing ideas needlessly

complex.

S4: [...]It is too easy to get stuck on a simple task specially when the student is

using a new language and development environment that is foreign.

Being a Java university, the first assignment should a strictly C assignment.

Designed to get an understanding of the differences from Java, and features

required to use the Atmel libraries. This can be assigned day 1 of the term.

S5: Strengths: Got to see and develop an entire OS. Get to use a simple enough

platform to feasibly develop all components. The interactive nature of

the platform makes progress easy to see and rewarding. Tutorials are well

written and provide detailed instructions. Code base is quite small and it

is easy to hold entire system in your head.

Weaknesses: Lack of documentation and online support for platform. Each

assignment is very involved and requires a large time commitment.

S6: Strengths:

– The projects are fun, engaging and rewarding
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– Interacting with real hardware is great

– The resources provided by the TA are complete and helpful

Weaknesses:

– C is not something I am particularly familiar with

– Atmel resources (documentation) are not always helpful

– C language guides are not always applicable

For fall 2015 substantial changes were made to the guide. In particular:

• It was made more self-contained, and this it made little or no reference to

external documentation.

• Additional missed necessary details dealing with the architecture were covered.

• Tutorial time was devoted for looking at specific C knowledge required to com-

plete assignments.

• Certain embedded systems specific details not relevant to operating systems was

removed.

Students were again asked to elaborate in what they thought were strengths and

weaknesses of laboratories projects. These are some of the answers (here we group

them)

• Strengths:

– Physical depiction of what we’re doing (interactive buttons & oled screen)
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– Overall great assignment layout. I don’t understand why people need ex-

tensions!

– Everyone loves bonus questions!

– Nice to have many examples/viewpoints

– I’ve heard from many that they’re having trouble with their board. Not

me personally though.

– Great examples to draw from.

– Much prior use of board/software

– enforces understanding of:

∗ Interrupt

∗ HAL

∗ better code

∗ better structure

– FUN!

– The documentation provided is top notch. It makes the world of a dif-

ference having lab documents and driver documents written in PLAIN

LANGUAGE which speeds up learning.

– Unified system. The SAM4S is easy to work with, we have been using it

for a few years, so students aren’t totally new to developing for it.

– Software support. It’s undeniable Atmel Studio is useful in learning how to

code for embedded systems. Visually stepping through code and viewing

memory being modified helps intuition. As well as debugger.

– Relevant work, simplistic design. it’s easy to develop on ARM and learn

the ropes. Jumping to x86 would be more difficult. ARM is also very

popular and won’t be going away soon.
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– Assignments are relevant to course. It’s easier to break down OS concepts

and learn how to code them [illegible]. it solidifies the ideas and makes

classes easier to understand.

• Weaknesses:

– lack of any useful documentation about the SAM4S online

– C is a bit tough when no taught any prior C (pointers, memory is odd)

(still not so hard)

– Atmel Studio 6.0, 6.2 a bit finicky and error prone (better with 7.0 now!)

– **For me* Many others would disagree:

∗ not so hard enough sometimes

∗ would like to build some driver from scratch (camera, touchscree, etc)

– Assignment are long. A lot of time is required to complete. Due to bugs

it can sometimes take more than a week. Two weeks is usually required.

– Atmel Studio is buggy, it leads to a lot of wasted time messing around.

– It can sometimes be difficult to tie into classroom lectures. It would almost

help to focus lecture on how ARM systems can have an OS build on them

to have more insight.

Although our evaluation is purely qualitative, we would like to draw more general

conclusions from it. In the next section, we discuss the possibility of doing so.

56



5.4 Discussion

Arguably, the smaller a system is, the better it lends itself for construction or modi-

fication. Similarly, the less sophisticated an architecture, and the more instructional

material is provided for it, the less effort that must go into its comprehension. In that

sense, we believe, this thesis work is justified. In fact, it was derived precisely from

that rationale. However, we do not know whether the MiniOS platform fulfils its ob-

jective of teaching operating systems principles. We would like not only to know this,

but also to explore the possibility of generalizing some of the observations and findings

collected while using MiniOS to teach operating systems laboratories. We dedicate

this section to discuss these possibilities, as well as to provide some background on

experimental computing education research.

5.4.1 Experimental research in computer science education

When proposing or experimenting with a new teaching tool or approach, the obliga-

tory question is—does it work? If the answer is yes, then the follow up question is:

is there evidence that it works? A review of computer science education publications

will quickly reveal the answer to this question. For a majority of proposed educa-

tional approaches and tools, the answer is no. As Lister criticizes in [22] and [23],

solutions to problems in computing education research must be validated by evidence,

not intuition and introspection. On this same topic, Guzdial [15] states:

“Without evidence, teachers rely on intuition informed by experience.

Sometimes that intuition may be informed by years of experience. Some-

times that experience is not at all relevant.”
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Practically, it can also be a problem. Consider the concerns raised by Fincher [13]

regarding the problems that secondary school teachers face when adopting teaching

techniques and tools:

“We need a program of educational research to support teachers, to ensure

ideas work in real classrooms and with real teachers—and so we do not

repeat cycles of error. Teachers are faced with a plethora of plausible

approaches and no way to choose between them but the conviction (and

charisma) of their inventors [...] [The] evidence these are based on is solely

“Do it like this! It works for me!”

Does this mean computer science education research without experimentation has

no value at all? Valentine [34] argues that, in spite of the lack of experimental data,

solutions to problems are valuable contributions. Still, if we are to do computing

education research, eventually we ought to grow as a community and take that extra

step of validating our solutions with evidence.

Likewise, Hazzan[17] claims qualitative research does have its place in computer

science education:

“The nature of quantitative research does not [...] enable the researcher

to explore all aspects of complex situations. [...] Qualitative research ap-

proach enables us to highlight many angles of people-centered situations.”

Then, he goes on to say:

“It is suitable to employ a qualitative research approach mainly in the

study of personal experiences and processes (such as learning, understand-
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ing, teaching, choosing), which are descriptive in nature. Accordingly, and

naturally, it would be appropriate to study such topics based on the anal-

ysis of verbal-descriptive data.”

The approach suggested by Hazzan is to begin with exploratory qualitative re-

search as to collect data in the form of observations and interviews; then, in a second

quantitative stage, test specific hypotheses that are drawn from these observations

and interviews. Lastly, based on the findings of the second sage, do a third quali-

tative research with the purpose of gaining new perspectives on the original results,

and even perhaps explain them. In either case, it is clear that research in computing

education is going in a direction where experimental research goes hand in hand with

qualitative research.

Part of the work presented in this thesis is equivalent to the first step described

above. It presents not only the MiniOS platform per se, but also observations and

feedback in using it as instructional laboratory material. For future research we would

like to generalize some of the results of our work by engaging in the second and third

stages. Moreover, we would like to give definitive answer to the question concerning

MiniOS instructional value.

5.5 Summary

This chapter presented our observations and findings while using MiniOS to teach

laboratory projects at the University of Northern British Columbia from 2013 to 2016

on different perspectives; those dealing with the book, instruction, tutorial, language,

debugger, hardware, projects, and drivers. Then, the use of MiniOS as prototyping
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research platform was briefly considered, and student feedback was presented. Fi-

nally, we discussed experimental research in computing education and considered the

qualitative results of this work as part of a larger research endeavour.
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Chapter 6

Concluding Remarks

6.1 Conclusions

The main contribution of this thesis is MiniOS, an instructional platform for the

delivery of operating systems laboratories. MiniOS follows on the steps of instructional

systems that attempt to deal with complexity by lowering the code volume. We go

further and identify the target hardware platform as an additional source of complexity

that can also be account for. The result is a MCU instructional operating system,

and to our knowledge, the first one of its type. In addition, the platform includes

a step-by-step guide to its construction whose purpose is to offer all the necessary

details for the construction of the system.

The platform was used in three different occasions to deliver laboratory assign-

ments for an introductory course in operating systems. Student feedback was overall

favourable. We presented this feedback together with other experiences.

MiniOS cannot—and is not intended to—replace more traditional desktop-centered

design approaches; instead it serves as an alternative. For example, if a course has

as objective to provide students with experience in topics related to the MMU (e.g.

virtual memory), or to teach OSes as they are built in industry, the MiniOS approach
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is a poor fit.

University laboratories are not the only place where MiniOS has found use. Given

the amount of built-in functionality and the ease with which hardware can be inte-

grated, it can, and has, been used as a rapid embedded prototyping platform. Like-

wise, being well-documented, it serves as a systems research test bed. Currently

the only existing ports is the SAM4S Xplained Pro board, but there is no reason

that would not allow MiniOS to be ported to other MCU platforms. In fact, it was

designed to be ported.

6.2 Future Work

For future work, we would like to explore the possibility of porting the instructional

platform to other MCU platforms like Arduino Zero, a Cortex-M0 based Arduino.

The integration of bare-metal drivers as part of MiniOS might work well with the

plethora of available Arduino code online. Since there is existing infrastructure for

ad-hoc wireless connectivity, it is possible to add internet connectivity and customize

MiniOS to work as an IoT OS.

The guide, together with the SAM4S board have been used in two occasions to

deliver computer architecture labs. These results, however, have not been published,

and many have not been discussed in this work. Thus there is material for future work.

The samples of the book presented in this thesis are the 2015 version. Currently we

are working on a newer version that we intend to publish like a small book or e-book.

Finally, there is space for further work on generalization of some of the findings and

observations made during the use of the platform in the past three years.
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Appendix 1



 
 

 
Threads 
 

The concept of thread is abstract and can mean slightly different things on 
different contexts. As far as we are concerned, a thread is an instance of 
MiniThread (Figure 4.9). Threads have a name, a stack pointer, and, at all times, 
they are in one of more possible states. (Do not confuse state as discussed in 
this subsection, with state context as discussed in the previous subsection.)  So 
far a thread‘s state can be either ready or running, and we represent this in the 

form of state diagrams (Figure 4.10).  
 
From an application perspective, applications should be 
allowed to create threads via a system call; say, 
thread_create. Following other thread library interfaces, we 
arbitrarily make the thread_create system call to take (in this 
order): a pointer to the thread’s code, its name as a string, 
and the size of its stack in 32-bit elements (not bytes). (Figure 
4.11 shows an example of its use to create a thread.) 
 

Now, we expand our non-threaded scheduler to support one 
thread; and we approach this by attempting to write a 
definition for scheduler_thread_create (the implementation of 
thread_create within the scheduler). 
 

 
One-thread scheduler Part One 
 
Starting with the obvious, we write the incomplete 
definition in Figure 4.12, which leads us to an 
important question—what is the initial SP for a new 
thread? Clearly it must be an address within the 
process stack. Since the Cortex-M4 stack grow 
downwards, it must be the end of the stack for the 
thread being created. This in turn raises a second 
question—where is the stack for some given thread? So far nowhere. We have not allocated any stack 
space for any thread. Then a third question follows—on creation, how do we allocate space for a thread’s 
stack? Now we address the problem of allocating stack space for a thread; and, although there are 
different ways this can be done, we do it very in the simplest way the author was able to imagine: one 
after another.  
 

One-thread scheduler Part two (stack allocation for threads or y los 
detalles siguen)  

Let the end of the process stack be epstack. Initially, before creation of 
the first thread, the process stack is empty. So the SP for the first thread 
is epstack. Following a “one-after-another” layout, SP for the second 
thread must be epstack - the first thread’s stack size in bytes; and so forth 

typedef struct{ 
     uint8_t* name; 
     uint32_t* sp; 
     ThreadState state; 
}MiniThread; 
 

Figure 4.9 

Figure 4.10 

void t1(void){ ... } 
 
int main(void){ 
     thread_create( t1, "thread 1", 512 ); 
} 
 Figure 4.11 

... 
MiniThread thread; 
 
void scheduler_thread_create( void (*code)(void),  

  uint8_t* name,   
  uint32_t stack_sz ){ 

 thread.name = name; 
 thread.state = ThreadStateReady; 
 thread.sp = ... 
} 
 

Figure 4.12 

Figure 4.13 

(excerpt from scheduler chapter) 



 
 

until no more space is available. This is depicted in Figure 4.13. (Note how allocating space is as simple as 
setting the right SP for every thread, on creation.)  

The corresponding code is in Figure 4.14. stack_get  
returns a pointer to the top of the allocated stack so far, 
while stack_alloc allocates space simply by moving down 
the pointer. In this case the SP is moved down by 
stack_sz 32-bit elements. (The exact implementation 
details are left as exercise.) Once SP has been set 
correctly, when a thread executes for the first time it will 
do it starting on its own stack.  

Everything seems to be in place now. Memory is 
allocated for a thread and its SP is set accordingly on 
thread creation. Then, on context switch, the pre-empted 
thread’s context is saved and the new active thread’s 
context is restored. This takes us to consider yet another 

detail: for a thread to be pre-empted, it must first be in execution. Hence, now we look at the problem of 
execution of the first thread. In particular, creation and execution of main—yes, main is also a thread! 

 

One-thread scheduler Part three (creation and execution of 
the main thread  or los detalles no tienen fin)  

Although we could do this in various different manners, we 
write scheduler_thread in a way that, when called for the 
first time, instead of returning back as normal, it transfer 
execution to the newly created thread. Specifically, as it 
shown in Figure 4.15. (Two things must be noted here. First, 
we are invoking a thread_create system call; this is because 
at that point the machine is in user mode. Second, execution 
will never return from thread_create back to the reset 
handler.) 

To see how to transfer 
execution from within scheduler_thread_create to the newly created 
main thread, consider the following—how exactly does execution 
gets to scheduler_thread_create? It gets there from user mode via an 
SVC call i.e. an exception. How does the CPU know where to go back 
on exception return? There is a stacked PC that was placed there on 
exception entry. What would happen if we replace the stacked PC 
with the address of main? Then execution would transfer to main—
and that is exactly what we do. We insert a custom hardware context, 
thereby simulating that execution was in main before exception entry. 
This is depicted in Figures 4.16. (Note SP must too be set accordingly for 
the unstacking to go the way we want.) 

... 
MiniThread thread; 
 
void scheduler_init(void){ 
     stack_init( hal_cpu_get_epstack() ); 
     ... 
} 
 
void scheduler_thread_create( void (*code)(void),  

  uint8_t* name,  
  uint32_t stack_sz 
){  

     thread.name = name; 
     thread.state = ThreadStateReady; 
     thread.sp = stack_get(); //set SP 
  
     stack_alloc( stack_sz ); //space for  

  //thread's stack 
} 
 Figure 4.14 

void Reset_Handler(void){ 
   ... 
   //Initializes the system 
   system_init(); 
 
   //initializes and starts the scheduler 
   scheduler_init(); 
 
   //set CPU in user mode 
   hal_cpu_set_psp( hal_cpu_get_epstack() ); 
   hal_cpu_psp_active(); 
   hal_cpu_set_unprivileged(); 
 
   //Creates and starts main thread 
   thread_create( main, "main thread", 512 ); 
 
   //Execution will never reach here 
   while (1); 
} 
 Figure 4.15 

Figure 4.16 



Stack 

A stack is an abstract data type with two operations: push and pop. Push adds one element to the stack, 

pop removes one from it. Operations are performed in a way that, given a stack in state S, a push 

operation followed by a pop operation will leave the stack in the same state S.  

Visually, push adds an element to the top of the stack, and pop 

removes an element also from the top (Figure 5.0). Data is thus 

added and removed in a last-in-first-out (LIFO) manner. 

Except, perhaps, for a research prototype, all Von Neumann 

machines have built-in support for one or more stacks. (To relate 

this with previous knowledge on data structures, think of how a 

stack can be implemented as a linked list, or an array, or even two 

queues. In the machine’s case it is implemented as raw memory bytes.)  

 

Implementation in hardware 

Like any abstract concept, there is gap between its theory and implementation. In the case of a hardware 

stack this is a considerable gap; and one has to be careful, when reasoning about it, to keep the 

implementation details in mind. Specifically, a stack as such does not exist in the architecture. We limit 

ourselves to utilize the facilities provided to “pretend”1 there is one.   

Facilities vary among architectures, but they typically include a stack pointer register, and special 

instructions to push and pop element in and out.  

 

Cortex-M4 Stack facilities  

The stack pointer register (SP) is a special purpose register pointing 

to the top of the stack. Importantly, even though, visually we think of 

the stack as growing upwards (as a pile of plates), in the Cortex-M4, 

like in other architectures, the stack grows downwards. In other 

words, the more data the stack has, the lower the memory address 

the stack pointer holds. This is depicted in Figure 5.1. 

(Keeping this confusing-non-intuitive-against-gravity way of 

visualizing the stack let us continue.)  

A push instruction, with syntax push {reg}2, moves SP down one word, then stores the register reg to the 

memory location pointed by SP. Contrariwise, a pop instruction, with syntax pop {reg}3, loads reg with the 

value stored in the memory address pointed by SP, then it moves SP one word up (effectively “removing” 

that element from the stack).  

Figure 5.0 

Figure 5.1 – Stack grows downwards 

1 One could argue all abstractions are pretensions. For instance, we pretend a link list is a stack when using the first one when implementing the second one.  

The difference I see is: in the case of the machine’s stack, memory locations are never completely abstracted as stack elements, as general memory instructions 

still can be applied to them. Therefore, knowledge of both memory, and architecture, as well as imagination are neccesary. The closest example I can think of is 

that of weak typing in programming languages. You may have, for example, a char type in C, but that doesn’t prevent you from doing integer arithmetic with a 

char, thus requiring extra knowledge of how characters are encoded as integer values. If you’re forced to think of integers when dealing with characters, then 

such a “char abstraction” is rather loose. 

(excerpt from stack chapter) 



Appendix 2



SSD1306 OLED Display  

 

Description 

The display in the OLED1 extension board is a 128x32 pixel white monochrome OLED Display. It is driven 

by a SSD1306 display controller from Solomon Systech. It interfaces with the MCU via SPI (serial 

peripheral interface). 

 

ASF Modules required  

 SSD1306 OLED Controller (component) 

 

Demo 

The demo prints a message on the screen. See SSD1306 OLED Demo. 

Notice only text of pre-defined size is supported. However it is possible to drive the display to display 

more things. This is an example. This is another example. Maybe you feel like modifying the drivers to 

allow for bigger fonts or even shapes. 

 

Demo Code 

#include <asf.h> 
#include <string.h> 
 
int main(void) 
{ 
 
 sysclk_init(); 
 board_init(); 
 
 // Initialize SPI and SSD1306 controller. 
 ssd1306_init(); 
 
 // Clear screen. 
 ssd1306_clear(); 
  
 //Set line and column to 0 
 ssd1306_set_page_address(0); 
 ssd1306_set_column_address(0); 
  
 /// -------- First Screen -------- 
 ssd1306_write_text("Coffee consumption improves"); 
  
 delay_ms(1500); 
  
 ssd1306_set_page_address(1); 
 ssd1306_set_column_address(8); 
  
 ssd1306_write_text("programming performance"); 
  
 delay_ms(1500); 
  
 ssd1306_set_page_address(2); 
 ssd1306_set_column_address(20); 
  
 ssd1306_write_text("when coding in C."); 
  
 delay_ms(1500); 
  
 
 
 /// -------- Second Screen -------- 

(excerpt from device driver’s guide) 



 ssd1306_clear(); 
 ssd1306_set_page_address(0); 
 ssd1306_set_column_address(0); 
  
 uint8_t text[65]; 
 uint8_t* pText = text; 
 uint8_t *char_ptr; 
 uint8_t i=0, column=0, page=0; 
  
 //use sprintf to create strings from numbers, variables and other strings 
 sprintf(text, "When coding in Java, however, performance decreases in %f %%", 73.37); 
 
 //print text character by character 
 while(pText){ 
  //write a single character 
  char_ptr = font_table[*pText++ - 32]; 
  for (i = 1; i <= char_ptr[0]; i++) { 
   ssd1306_write_data(char_ptr[i]); 
  } 
   
  //newline 
  if(column++ == 35){ 
   column = 0; 
   page++; 
   ssd1306_set_column_address(column); 
   ssd1306_set_page_address(page); 
  } 
   
  //wait 
  delay_ms(100); 
 } 
  
 
 
} 

 

 

 



Buttons   

 

Description 

Unlike other Parallel IO-based devices, mechanical buttons deserve their own entry. This is because they 

are peculiar: when pressed, they bounce. We like to think that when a button is pressed it will change the 

IO line’s state and when the button is released its state will go back. Something like this:  

 

The physical world is never that ideal, however. When a mechanical button is pressed it bounces, 

therefore generating a train of pulses instead of just one. 

 

 

This is then interpreted as the button being pushed several times. The ATSAM4SDC32 has hardware 

support for de-bouncing, which allows to filter pulses which duration is less than a specified threshold. 

This will not eliminate all the glitches, but it will make it much better; so expect a few of them when you 

press buttons. Another way is to do it by software, but this requires intervention of the CPU. The idea is 

the same, whenever a change in state is detected in an IO line, check the IO line again a few milliseconds 

later; if the state is the same then the button was pressed, else it was a glitch. Maybe even check the IO 

line in several occasions after the first pulse and determine that the button was pressed only when the 

state of the button was the same in all the occasions (an example of this is shown in one of the Parallel IO 

entries… the one with the movement sensor).  

This video explains further. This is a software de-bouncing example in Arduino. 

 

ASF Modules required  

 Same as Parallel IO 

 

 

(excerpt from device driver’s guide) 



Demo 

The Button Demo toggles LEDs when buttons are pressed. The drivers allow to set a “cut-off frequency 

for the de-bouncing filter” as the last parameter of pio_set_debounce_filter. 

See Buttons Demo. 

 

Demo Code 

#include <asf.h> 
 
#define LED1  IOPORT_CREATE_PIN(PIOC, 20); 
#define LED2  IOPORT_CREATE_PIN(PIOA, 16); 
#define LED3  IOPORT_CREATE_PIN(PIOC, 22); 
 
void Button_Handler(uint32_t id, uint32_t mask) 
{ 
 uint32_t led; 
 
 if ( ID_PIOA == id && PIO_PA0 == mask ){ led = LED1; } 
 else if( ID_PIOC == id && PIO_PC29 == mask ){ led = LED2; } 
 else if( ID_PIOC == id && PIO_PC30 == mask ){ led = LED3; } 
 else { return; } 
  
 ioport_set_pin_level( led, !ioport_get_pin_level(led) ); 
} 
 
const uint32_t irq_priority = 5; 
void configure_buttons(void) 
{ 
 //Configure Pushbutton 1 
 pmc_enable_periph_clk(ID_PIOA); 
 pio_set_debounce_filter(PIOA, PIN_PUSHBUTTON_1_MASK, 10); 
 pio_handler_set(PIOA, ID_PIOA, 
 PIN_PUSHBUTTON_1_MASK, PIN_PUSHBUTTON_1_ATTR, Button_Handler); 
 NVIC_EnableIRQ((IRQn_Type) ID_PIOA); 
 pio_handler_set_priority(PIOA, (IRQn_Type) ID_PIOA, irq_priority); 
 pio_enable_interrupt(PIOA, PIN_PUSHBUTTON_1_MASK); 
 
 //Configure Pushbutton 2 
 pmc_enable_periph_clk(ID_PIOC); 
 pio_set_debounce_filter(PIOC, PIN_PUSHBUTTON_2_MASK, 10); 
 pio_handler_set(PIOC, ID_PIOC, 
 PIN_PUSHBUTTON_2_MASK, PIN_PUSHBUTTON_2_ATTR, Button_Handler); 
 NVIC_EnableIRQ((IRQn_Type) ID_PIOC); 
 pio_handler_set_priority(PIOC, (IRQn_Type) ID_PIOC, irq_priority); 
 pio_enable_interrupt(PIOC, PIN_PUSHBUTTON_2_MASK); 
 
 //Configure Pushbutton 3 
 pmc_enable_periph_clk(ID_PIOC); 
 pio_set_debounce_filter(PIOC, PIN_PUSHBUTTON_3_MASK, 10); 
 pio_handler_set(PIOC, ID_PIOC, 
 PIN_PUSHBUTTON_3_MASK, PIN_PUSHBUTTON_3_ATTR, Button_Handler); 
 NVIC_EnableIRQ((IRQn_Type) ID_PIOC); 
 pio_handler_set_priority(PIOC, (IRQn_Type) ID_PIOC, irq_priority); 
 pio_enable_interrupt(PIOC, PIN_PUSHBUTTON_3_MASK); 
} 
 
int main(void){ 
 sysclk_init(); 
 board_init(); 
 configure_buttons(); 
  
 while(1); 
 
} 
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