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Abstract 

This thesis demonstrates that local feature based approaches are always more sta-

ble than global feature based approaches for pattern classification problems. Guided by 

the original theory that a regional matching approach is more robust than a national 

matching approach for two-dimensional pattern classification, this thesis examines the 

applications of the theory in one-dimensional and two-dimensional pattern classifica-

tions. We propose two local feature based approaches for two significant applications 

of pattern classification, namely start codon prediction and content based image clas-

sification. For start codon prediction which is considered as a typical one-dimensional 

pattern classification problem, we have developed a districted neural network that can be 

taken as a regional voting version of the conventional neural network. Experiments have 

been performed on the well known translation initiation sites (TIS) data sets and results 

have shown significant improvement of prediction accuracy. For two-dimensional pattern 

classification, we propose differential latent semantic index (DLSI) approach for content 

based image classification. The feasibility of using local features in the DLSI method 

is also investigated and an extensive experimental study on a real image database has 

proved its effectiveness. 
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Chapter I 

Introduction 

This chapter introduces the motivation and the major contributions of this thesis. 

The organization of the rest of the thesis is also presented. 

1 Motivation 

The classification of pattern plays an important role in our lives. In most instances 

we can say that humans are the best pattern classifiers, yet we do not understand how 

humans recognize and classify patterns. It is a basic capability of all human beings; 

when we see an object, we first gather all information about the object and compare its 

properties and behaviors with the existing knowledge stored in our brain. If we find a 

proper match, we recognize and classify it . 

With developments in technology, computerization has taken a significant place in 

our daily activities. Pattern classification is an active research area that studies the op-

eration and design of systems that classify patterns in data. Important application areas 

of pattern classification include image analysis, character recognition, speech analysis, 

gene recognition, man and machine diagnostics, person identification and industrial in-

spection. After many years of research, the design of a general purpose machine pattern 

recognizer/ classifier still remains an elusive goal. 

In this thesis we discuss typical supervised machine-learning problems for pattern 

classification applications where the pattern to be classified or recognized is either one-
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dimensional (lD) or two-dimensional (2D). For these problems, it has been shown 

[CT03a] that a local feature based simple approach, named regional voting, is always 

more stable and robust than the corresponding global feature based approach, named 

national voting [CT03a] [CT03b]. Chen & Tokuda [CT05] conjecture that the general 

local feature based approach is always better than the general global feature based ap-

proach; although it has not been proved mathematically. The regional matching approach 

is similar to the Electoral College where the nation is divided into some regions and the 

winner is first decided for each pre-divided region. Finally the winner of the whole na-

tion is determined by simple majority of the winning regions using the "winner-take-all" 

principle within the pre-divided regions. It is contrusted to the simple voting system 

where the majority voting across the whole nation selects the winner of the nation. 

This thesis applies the conjecture, that the general local feature based approach is 

always more robust than the general global feature based approach, in applications and 

shows that, at least in some important applications, the conjecture is true. We have 

considered two important pattern classification problems, namely start codon prediction 

and content based image classification, and developed local feature based approaches for 

these problems. 

2 Major Contributions 

In this thesis we have proposed two pattern classification schemes based on local 

features and also demonstrated their applications in two different areas of pattern recog-

nition, namely gene recognition and image classification. We have identified these two 
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classification problems as lD and 2D pattern classification respectively. The list of the 

major contributions of this thesis is as follows: 

• We have theoretically proved that, for lD pattern classification, the local feature 

based districted matching approach is more robust and stable than the global fea-

ture based undistricted matching approach. 

• We have developed a districted neural network on the idea of regional voting for 

start codon prediction. Experiments have been performed on the well known trans-

lation initiation sites (TIS) data sets. Experimental results have shown significant 

improvement in the prediction performances. 

• We have applied a differential latent semantic index (DLSI) approach based on 

feature extraction for content based image classification. The effectiveness has been 

proved by experiments. The novel idea of using local features in addition to global 

features in DLSI approach has also been proposed to improve the classification 

accuracy. 

• These approaches and experiments also reconfirm the belief that a local feature 

based approach is always more stable than a global feature based approach, as 

conjectured by previous reports on theory of voting [CT03a] [CT03b] . 

3 Overview 

The following chapters outline the methods and applications of local-feature based 

approaches for one-dimensional and two-dimensional pattern classification. Chapter 2 
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gives an overview of basic concepts of pattern classification and provides literature reviews 

on local and global feature based pattern classification methods. Chapter 3 describes the 

methods and applications of the two pattern classification techniques (i.e. districted 

matching approach and differential latent semantic index). The detailed experimental 

study and results of both of these approaches are demonstrated in Chapter 4. A summary 

of this thesis and a discussion of future work are provided in Chapter 5. 
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Chapter II 

Background 

This chapter gives a brief overview on some basic concepts of pattern classification 

scheme. It accentuates the difference between global feature based and local feature 

based pattern classification schemes. A review of a number of global and local feature 

based classification methods is also provided. Some general performance measures for 

the classification techniques are described in the last section. 

1 Introduction to Pattern Classification 

Pattern recognition/ classification methods are used to automatically recognize and 

classify different kinds of physical objects or abstract multidimensional patterns. Several 

types of commercial pattern recognition systems exist which can automatically classify 

fingerprint images, handwritten cursive words, human faces, speech signals, printed text, 

blood cells , human genes, etc. Most machine vision systems utilize pattern recogni-

tion/classification approaches to identify objects for sorting, inspection, and assembly. 

The design of a pattern classification system requires the development of following mod-

ules: (i) sensing, (ii) feature extraction and selection, (iii) decision making, and (iv) 

system performance evaluation. The availability of powerful personal computers and 

inexpensive and high resolution sensors has influenced the development of pattern recog-

nition algorithms in new application domains (e.g. bioinformatics, text, image and video 

retrieval). 
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Classification of patterns can be performed in either supervised or unsupervised ways. 

In supervised classification the input pattern is classified to be an element of a predefined 

class defined by the system designer. Unsupervised classification classifies and assigns 

the input pattern to a previously unknown class. 

Nowadays, interest in the area of pattern recognition has grown due to many promis-

ing applications which are not only challenging but also computationally more demand-

ing. These new applications include bioinformatics, data mining, document and image 

classification, multimedia retrieval, voice and speech recognition, remote sensing etc. 

Pattern classification techniques can be divided into four groups: 1) template match-

ing, 2) statistical classification, 3) syntactic or structural matching, and 4) neural net-

works. These groups are based on the representation, design style and recognition func-

tions. For example, in template matching, patterns are represented by samples, pixels or 

curves. In syntactic approaches, pattern primitives are used for representing the pattern. 

Statistical approaches and neural network methods usually used features to represent 

pattern. Several classification models can also be employed together to design hybrid 

systems. An overview of these classification methods is given in [JDM99]. 

2 Features of Pattern 

Features play a significant role in pattern classification approaches. A feature simply 

represents a measurement on a pattern, or a combination of measurements on a pat-

tern. In a pattern classification method, features are produced by functions of the raw or 

pre-processed measurement data. These functions are generally called feature extractors. 
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Features can be global or local depending on how they are extracted from the patterns. 

The pattern classification approaches can be classified into two groups based on the type 

of features used in classification method: global feature based pattern classification and 

local feature based pattern classification. 

2.1 Global Feature Based Pattern Classification 

Most pattern classification systems are likely to use global features. Global features 

describe an entire pattern at a time. Global features have the capability to specify a whole 

object with a single vector. Consequently, their use in typical classification procedures is 

easy and straightforward. However, global features are very sensit ive to noise. In global 

feature based methods, patterns are usually represented in high dimensional space and 

many learning techniques cannot be used efficiently. 

Global features , have been used in applications in various fields of pattern classi-

fication such as bioinformatics, face recognition [TP91], hand writing recognition and 

image compression. Global feature based pattern classification is a common technique 

for finding patterns in data of high dimensionality. For example, in bioinformatics Hua et 

al [HSOl] introduced a support vector machine to predict the subcellular localization of 

proteins. They used global features called amino acid composition which is the fraction 

of each amino acid in a protein sequence. Pedersen et al [PN97] used trained neural 

networks that use a combination of local start codon context and global sequence infor-

mation for prediction of translation initiation sites. Features used in this method are the 

nucleotides (A, C, G and T). 

7 



For face recognition, a single feature vector that represents the whole face image is 

normally used as input to a classifier. Several global classifiers have been proposed in the 

field of face recognition, (e.g. minimum distance classification in the eigenspace [TP91], 

Fisher 's discriminant analysis, and neural networks [FC90]). It has been observed that 

these global techniques work well for classifying frontal views of faces. However, these 

global feature based methods are not robust against simple pose changes since global 

features are extremely sensitive to translation and rotation of the face. 

2.2 Local Feature Based Pattern Classification 

Local features represent the part of any pattern. Local features are processed at 

multiple points in a pattern and are therefore more stable and robust to noise, occlusion 

and clutter. Local feature based method usually represent pattern by a variable number 

of feature vectors. As a result, it may require specialized classification algorithm to 

handle it. 

Although several applications based on local feature for pattern classification have 

been proposed, only a few works have provided detailed theoretical explanations about 

why local feature based methods are stronger than the global feature based methods. 

Chen and Tokuda [CT03a] examined the robustness of the local feature based regional 

matching scheme over global feature based national matching technique. The effect of 

concentrated noise on a typical decision-making process of a simplified two-candidate 

voting model was discussed. They proved that the regional matching process using 

local features is more robust and stable than a national approach using global features. 
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They established that the local matching scheme is capable of accepting a higher level 

of noise than the global matching scheme before the result of the decision changed. 

A shifting strategy which considers all the possible different partitioning of the nation 

was used for further improvement. In addition to the theoretical analysis, two realistic 

experimental results are presented. The first experiment described the problem of mixed 

white-black flag, where one wants to identify it either as a white or a black-dominated 

flag. This experiment applied the theory directly on a pixel by pixel basis without any 

kind of features extraction, data compression or dimensionality reduction methods. It 

showed that, after adding small amount of noise, global voting reversed the results of 

the original candidate selection while regional voting having different kind of regions 

size could conserve the original results. It also demonstrated that, as the region size 

decreases, the stability margin increases. The second experiment was carried out on a 

face recognition problem. The external noises which occur in face images are typically 

characterized by clutter or occlusion in imagery. The experimental results showed the 

superiority of regional voting over national voting for images of lower noise level and 

also for images of higher noise level. The extension of the original discrete-model-based 

stability analysis of regional and national voting in the paper [CT03a] was described for 

more practical continuous model in the paper [CT03b]. The continuous model based 

analysis reconfirms the earlier conclusion that regional voting with smaller sized regions 

always demonstrates an improved stability over those with larger sized regions in the 

presence of both white and concentrated components of noise. This conclusion is still 

valid in the continuous case providing that the weak distribution assumption is valid 

[CT03b]. 
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The use of local features is most common in the field of image retrieval and classifica-

tion [LWWOO]. One of the interesting papers, which developed a classification method to 

classify images and video according to their "type" or "style", used local feature based 

approaches [Kar03]. The proposed classifier determines the identity of an artist by the 

style of his/her painting, or detects the activity in a video sequence. It employed local 

properties of spatial or spatio-temporal blocks of images which were based on the discrete 

cosine transform (DCT) coefficients. The naive Bayes classifier was used for the learning 

and classification scheme. This paper attempted to classify every image block first, and 

then to classify the whole image by a majority vote. The information extracted from this 

block based process accomplished more than the classification of the entire image. The 

image was mapped to the different regions, each dominated by a certain style or type. 

This technique often produces results which are very similar to human perception. This 

paper showed that the local analysis of the image found more useful information than 

that present in histogram based approaches , which classified the entire image based on 

similarity between, for example, cumulative distributions of gradients, or wavelet coeffi-

cients. A new similarity measure of images based on region representation was described 

by Li, Wang and Wiederholdin [LWWOO]. An image was represented by a set of regions, 

generally corresponding to objects, which are described by their local features like color, 

texture, shape, and location properties in the proposed image retrieval systems. Images 

were segmented into blocks with 4 x 4 pixels and a feature vector was extracted for 

each block. These block sizes were chosen to optimize between texture effectiveness and 

segmentation coarseness. The integrated region matching (IRM) measure for estimating 

overall similarity between images incorporates properties of all the regions in the images 
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by a region-matching scheme where one region of an image is matched to several regions 

of another image. After regions were matched, the similarity measure was computed as 

a weighted sum of the similarity between region pairs , with weights determined by the 

matching scheme. The overall similarity approach decreases the effect of imprecise seg-

mentation, helps to clarify the semantics of a particular region, and facilitates a simple 

querying interface [LWWOO]. 

Local feature based pattern classification also provides the flexibility of using weight-

ing strategies to improve the classification performance [Li03] [AMHW03] [LWWOO]. 

Xuelong Li [Li03] proposed a content based image retrieval algorithm based on running 

sub-blocks with different similarity weights for image retrieval by movable contents. The 

algorithm can be extended to retrieve the images with the same content located in dif-

ferent locations. In this approach, the first step was to split the images into different 

sub-blocks by a dynamic sub-block splitting method based on the size of the query ob-

ject. The sub-block of the query image was compared with the sub-blocks of the stored 

images to process histogram matching which facilitates the retrieval of images with the 

query content located in different areas. Since, different parts in an image contribute dif-

ference effects to human vision perception, different weights were assigned to sub-blocks 

according to their locations. As a result, sub blocks were evaluated not only by their 

locations in an image but also by simulated perceptions. A similarity matrix was used 

to measure the similarity between any sub-blocks of the query image and the sampled 

image. Li claims (in [Li03]) that their algorithm can significantly improve the retrieval 

performance for certain kinds of objects with little influence of the entire color histogram. 

Local features have also found application in face recognition. Several approaches 
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showed improved performance of local feature based face recognition over global feature 

based face recognition [HHWP03] [AMHW03]. Heisele et al [HHWP03] demonstrated a 

local component based method and two global methods for face recognition, and eval-

uated and compared them with respect to robustness against pose changes. The local 

component-based method employed a face detector that identified and extracted local 

components of the face. The face detector was designed by a set of Support Vector Ma-

chine (SVM) classifiers that detect learned local facial components and a single geometri-

cal classifier. The detected facial components were obtained from the image, normalized 

in size, and applied as inputs to the SVM classifiers. In addition to local approaches, 

two global systems were designed to recognize faces by classifying a single feature vector 

containing the gray values of the whole face image. A single SVM classifier was trained 

for each person in the database in the first global system. In the second system the 

images of each person were divided into view-specific clusters. View-specific SVM classi-

fiers were trained on each single cluster. The testing database contained a wide variety 

of faces rotated up to about 40 degrees. Although the component-based face detector 

was computationally more expensive than the global face detector, the robustness of the 

local component based method on the both global systems was clearly shown. 

The ability of using different kinds of voting techniques along with local features 

also makes the local feature based method attractive for different classification purposes. 

Artiklar et al [AMHW03] proposed a local voting network for human face recognition. 

A template matching-based classifier system, which employed local features called local 

distance computations and a voting scheme was used for facial image classification. The 

system has the ability to reject unknown patterns, and provides invariance over small 
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amounts of translation. The shifting process was used to compute the (local) distance 

between an input window and a database window. In addition to standard voting meth-

ods, they also investigated the feasibility of a weighted voting system. In the local voting 

method, the local window received only a single vote for the most similar image and all 

other images did not receive any votes. The opinion here is that the correct person may 

not be first on the list, but may be second or third. A weighted or fuzzy-approach to 

voting was also proposed where the vote was not cast as a 0-1 binary decision. Instead, 

the vote was cast as a real number in the interval [0, 1]. Although the performance of 

the both methods was nearly the same, the weighted voting offered more flexibility in 

the sense that there were more operating points to choose from. 

3 Performance Measures 

In practice, the performance measures of a pattern classification system must be 

estimated from all the available samples which are split into training and test sets. The 

classifier is first designed using training samples, and then it is evaluated based on its 

classification performance on the test samples. The percentage of correctly classified test 

samples is taken as an estimate of the performance of the classifier. It is very impor-

tant that the training set and the test set should be sufficiently large and independent 

for reliable and accurate performance measure. In fact this requirement of independent 

training and test samples is still often ignored [Bao]. 
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3.1 Overall Accuracy 

The performance of a classification task has traditionally been measured by the 

overall accuracy. Accuracy represents the overall correctness of the classifier and the 

overall error rate reflects (1- Accuracy). Each time a classifier is presented with a case, 

it makes a decision about the appropriate class for the case. The overall accuracy can 

be defined as the ratio of the number of correctly predicted cases to the number of cases 

examined: 

A 
number of correctly predicted cases 

ccuracy = --------------~~~----------
total number of cases 

However, the overall accuracy (or percentage classified correctly) does not provide an 

exact insight into how well the classifier is performing for each of the different classes. 

In general, a classifier might perform well for a specific class, which accounts for a large 

amount of the test data. This will bias the overall accuracy, in spite of low class accu-

racy for other classes. Thus, it is imperative to consider the individual class accuracy to 

avoid this kind of bias while assessing the accuracy of a classifier. One of the interesting 

measures for performance analysis is the Matthews correlation coefficient (MCC) when 

there are only two classes to be classified [Mat75]. 

3.2 Matthews Correlation Coefficient (MCC) 

Matthews correlation coefficient is an efficient and straightforward way to evaluate per-

formance. Two-class classification problems are frequently used in our daily life. The 

options are restricted to predict the occurrence or non-occurrence of a single case or 

hypothesis with two-class classification [Bao]. In these circumstances, the two possi-

14 



ble errors are frequently used: false positives or false negatives. Table 1 illustrates the 

four possibilities for two-class classification problem where a particular prediction rule is 

employed [Bao]. 

Table 1: Two Class Classification Performance 

Class Positive(C+) Class Negative(C-) 
Prediction Positive(R+) True Positives (TP) False Positives(FP) 
Prediction Negative (R-) False Negatives (FN) True Negatives(TN) 

We can define MCC and accuracy as follows: 

MCC = TP.TN- FN.FP 
J(TN + FN)(TN + FP)(TP + FN)(TP + FP) 

TP+TN 
Accuracy= TP +TN+ FP + FN 

TP+TN 
(C+) +(C-) 

The ability of a classifier to detect "true positives" is called as sensitivity and is defined 

as follows: 

TP TP 
Sensivity = TP + FN C+ 

The ability of a classifier to avoid "false positives" is called as specificity and is defined 

as follows: 

TN TN 
Speci ficity= FP+TN C-

Usually MCC, sensitivity and specifivity are very effective performance measures for the 

applications when the number of "yes/positive" and number of "no/negative" samples 

differ greatly. 
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Chapter III 

M ethodology 

This chapter introduces the methods of local feature based pattern classification ap-

proaches. Basic definitions and main theorems for local feature based districted matching 

approach and the basis of employing districted matching approach for the recognition of 

translation initiation sites in mR A sequences are discussed in detail. It also provides 

the overview of DLSI and proposes its application in image classification problems. The 

use of local features in DLSI is also proposed. 

1 Local Feature Based Approach for 1D Pattern Classification 

1.1 Districted Matching Approach 

The districted matching approach can be defined as a local feature based method 

where any one-dimensional pattern to be classified is first divided into a number of regions 

and features are extracted locally from each region. Then, each region is classified based 

on the local features extracted from it. Finally, the whole l D pattern can be classified 

according to a type of voting. 

1.1.1 Definition and Model 

We can describe the districted matching approach by considering a simple two can-

didate voting problem where there are only two candidates, A and B, and each voter 

can vote for only one candidate. Let a and /3 denote the percentages of the (total) votes 
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which candidates A and B get from the whole interval in the absence of noise. Now, 

we suppose that the voting is carried out on an interval [0 , N - 1] which consists of N 

unit cells, each having exactly one vote to exercise. Without losing generality, we assume 

a + f3 = 1 and a > f3. 

The undistricted voting system (also called national voting for 2D cases in [ CT03a]) 

is defined as the voting system where the entire population N of the nation votes either 

for candidate A or candidate B. A candidate wins if and only if he/she gets a majority 

of the N votes. The districted voting system (also called regional voting for 2D cases in 

[CT03a]) is defined as the voting system where firstly the nation is partitioned into N /r 

intervals, each of which is called as a region; a population of r cells in each region votes 

for candidate A or Band a majority of votes determines the winner of the region, and a 

majority of the N /r winning regions determines the winner for the nation. To simplify 

the analysis, we further assume that N is divisible by r. We also assume that the two 

end points of the interval are glued together to form a circle, so that the interval can be 

partitioned into a total of r different partitions [C K04]. 

The definitions of some basic terms used to explain the stability margin of districted 

and undistricted matching approach are given below. 

Definition 

• We call a set of noise anti-A-noise (or anti-B-noise) if all the cells under influence 

will vote for B (or A) regardless of whether it originally votes for A (or B). The 

number of the cells under influence is called the number of noise units. We consider 
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two different kinds of noise, namely white noise and concentrated noise, which will 

be defined later. 

• We call a vote noise-contaminated if the vote of a cell happens to undergo a change 

either from candidate A to B or from candidate B to A under some changes of 

environmental conditions. The noise-contaminated vote undergoing a change from 

candidate A to B (or B to A) is especially called anti-A -noise- contaminated vote 

(or anti-B-noise-contaminated vote). 

• A set of anti-A-white noise (or anti-B-white noise) is dispersed uniformly over 

the nation, producing a uniformly distributed anti-A-noise-contaminated vote (or 

anti-B-noise-contaminated vote). The "uniform" here means that the number of 

anti-A-noise-contaminated vote (or anti-B-noise-contaminated vote) is proportional 

to the difference of numbers of A and B supporters (or A and B supporters) in any 

reasonably sized area. It is obvious that the union of a set of white noise is also a 

set of white noise. 

• A set of anti-A-concentrated noise (or anti-B-concentrated noise) is defined as the 

union of non-overlapped intervals of size n, among which all the cells are under 

influence of anti-A-noise (or anti-B-noise) and thus the votes for A (or B) will 

become noise-contaminated votes under the influence of the concentrated noise. 

The union of these intervals is called a noise concentrated area, and n is called the 

size of noise blocks. Intuitively, the white noise is isolated and scattered randomly 

over discrete "points" of the nation while concentrated noise is distributed over 

connected, continuous areas which may be randomly distributed across the nation. 
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• A region is defined to be anti-A -noise-polluted (or anti-B-noise-polluted) if and only 

if the conjunction set of the region and the anti-A-noise-concentrated (or anti-B-

noise-concentrated) area is not empty. 

• In accordance with the above two types of noise , the anti-A-noise-contaminated 

votes (or anti-B-noise-contaminated votes) comprise the two types depending on 

the noise type, namely the anti-A -white-noise-contaminated votes (or anti-B-white-

noise-contaminated votes) and anti-A -concentrated-noise-contaminated votes (or 

anti-B-concentrated-noise-contaminated votes). Notice that, when both of white 

noise and concentrated noise coexist, some noise-contaminated votes may belong 

to both of these two types. 

Figure 1 illustrates the relationship between noise concentrated block, noise contam-

inated cells and noise concentrated area as defined above. In the figure , the size of the 

nation, N, is 35 cells, is equally divided into 7 regions. Each region, r, contains 5 cells. 

The size of noise concentrated block, n, is 4 cells. The size of noise concentrated area is 

4 x 4 = 16 cells. We can also notice that the total number of noise contaminated cells is 

20 cells while the total size of noise contaminated region is 6 x 5 = 30 cells (6 of the 7 

regions are contaminated). 

Since we are interested in computing the lower bounds of the voting stability in this 

case, we only consider the anti-A noise in the analysis. Thus, when we refer to noise, 

concentrated noise, white noise , or contaminated votes hereinafter, anti-A-noise, anti-A-

concentrated-noise, anti-A-white-noise, anti-A-noise-contaminated votes are implied. 

We let Nc, and Nw denote the number of concentrated-noise contaminated votes, and 
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Fig. 1: Nation with noise concentrated blocks, noise contaminated regions and noise 
contaminated area 

the number of white-noise contaminated votes respectively. 

In the analysis, we assume that there is only anti-A-noise, as we want to establish 

a lower bound to a breakdown point in the prevailing situation of a > {3. The result 

for the districted vote will be established in Theorem 1.2 while the exact bound for the 

undistricted vote is given in Theorem 1.1. 

The following assumption is made in terms of the definitions we introduced. 

A ssumpt ion We assume that the size of equally partitioned regions is sufficiently 

large so that the average distribution assumption holds in each region; where Average 

Distribution Assumption is defined as, in the absence of noise: the voting distribution 

of the undisturbed undistricted vote prevails in any sufficiently large size areas whether 

consisting of a continuous part of the nation or of randomly chosen blocks of cells. 

The assumption implies that , in the absence of noise, the global statistical behavior of 

the ratios of A and B supporters prevail in each of the regions such that there are almost 

ar cells give vote for A and {Jr cells give vote for B. We conclude that, if candidate A 
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(or B) wins in the nation, so does candidate A (or B) in each of the regions. 

1.1.2 Main Theorems 

Theorem 1.1. Undistricted voting will preserve the original candidate A if 

N - 'Nc/ a a - (3 
'Nc + 'Nw X N < -2-N 

This theorem can be proved by noticing the following two facts: 

(1) Among 'Nw anti-A-white-noise-contaminated votes, ~ x 'Nw votes come from the 

anti-A-noise-concentrated area. 

(2) The undistricted voting is able to preserve the original candidate selection, if and 

only if the number of overall anti-A-concentrated-noise-contaminated votes is less than 

a-{3 N - 2- X . 

The detailed proof can be found in [CT05] . 

Theorem 1.2. The original candidate selection of the districted voting will be retained 

if: 
n 

'Nc < ~~ + 1 ·a · N/2 and'Nw <(a- /3)/2 X N. 

Proof: The proof is similar to the proof of t heorem for stability analysis of regional 

voting in paper [CT05]. 

Since a concentrated noise block of size n can be partitioned into at most ~ + 1 

different regions, we can write, 

Sr ( rn- 11 ) r Sc :::; - r- + 1 -:;;,' 

where Sr is the total size of concentrated noise polluted regions within the nation and 

Sc denotes the total size of noise concentrated area. We can see that when Sr is less 
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than half of the total number of regions , districted matching will preserve the original 

candidate selection in districted voting. 

Thus we can write 
n 

I Sc I< ~ ~ + 1 · N / 2 

Substituting the relation of ~ =I Sc I xa, we get: 

n 

~ < r lrl . a . N/ 2· 
~ + 1 

On the other hand, when ~ < (a- (J)/2 x N, the white noise is not enough to reverse 

the candidate selection in any region that is concentrated noise free [ CT05]. Therefore, 

we have proved the theorem. 

Theorem 1.2 shows clearly that to retain the original candidate selection of A in the 

districted vote, a larger subdivision of the nation, namely partitioning into smaller sized 

regions , leads to a higher stability, provided that the regions are large enough to hold 

the Average Distribution Assumption. 

To simplify the analysis, we suppose the two ends of the interval are glued together so 

that there are T different partitionings for partitioning the whole interval into regions of 

size r. Notice that , for each partitioning partitions the nation into N jr regions, we can see 

that as a total, these T partitionings partition the nation into N non-equivalent regions, 

many of which are overlapped, of course. Then, we can define a districted matching 

scheme for all these N regions rather than N /r regions by one partitioning. 

Theorem 1.3 . Generalized districted voting will retain the candidate selection if: 

n a- (3 
~ < · a· N/2 ~ < --N. r+n-1 2 
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Theorem 1.3 could be proved by using the technique for proving Theorem 1.2, and 

the observation that a noise block of size n can pollute at most n + r- 1 regions among 

all the N regions [CT05]. 

We can refer to a region as Pro-A (A dominated) or Pro-B (B dominated) if A 

dominates B or B dominates A in that region. Figure 2 illustrates the number of noise-

contaminated votes that districted and undistricted voting can accommodate before the 

original Pro-A decision is reversed. Near equilibrium cases of a - (3 = 0.02 are treated 

in the Figure 2. 
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Region size 

Fig. 2: umbers of white & concentrated noise contaminated votes a voting system can 
accommodate 

We can see that, as the size of subdivided regions decreases, the number of noise 

contaminated votes a districted voting can accommodate increases continuously up to a 

certain point beyond which we could expect that the size of the regions might be too small 

such that the average distribution assumption might not be valid, although we do not 
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know a distinct lower boundary of the region sizes for assuring the average distribution 

assumption. 

It may seems that for very large regions with small white noise, the stability margin for 

the districted voting looks smaller than that of the undistricted voting for concentrated 

noise. This is due to the upper ceiling operation we have adopted in the analysis where we 

have regarded all of the concentrated noise polluted regions as Pro-B regions in counting 

the winning regions by districted voting, so that only the regions that remain entirely 

free of noise contamination are counted to remain Pro-A. In fact, many of the Pro-

B transformed regions still remain Pro-A even in the presence of concentrated noise. 

Evidently this is most serious when the size of regions is large. We can see that, if 

the size of regions is close to the size of the nation, the districted voting will be close 

to undistricted voting again. This implies that if the effect of over-estimation of the 

concentrated noise polluted regions is properly taken into account the stability margin 

will increase so that the curve representing districted voting close to the right end of 

figure 2 will move slightly up. Thus, we conclude that the districted voting is always 

more stable than the undistricted voting as long as the size of regions is large enough 

to hold Average Distribution Assumption even if the region size is very large; and the 

districted voting and the undistricted voting will become identical, when the size of 

regions is so large as that of the nation. 

Comparing with the conclusion in [CT03a], where the stability margin for districted 

voting of 2D pattern is ~ < ( ~ + l )
2 ·a· N/2, we can see that the improved perfor-

mance of the districted vote scheme for lD pattern is even more substantial than that 

for 2D objects. 
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1.2 Application 

In the previous section we presented a theoretical model of the districted matching 

approach. The following sections will present a detailed description of the application of 

the districted matching approach for a practical problem in bioinformatics. 

1.2.1 Problem Statement 

Living organisms are made up with proteins they produce according to their genetic 

information. Deoxyribonucleic acid or DNA is called the building block of the life. It 

contains the information the cell needs to synthesize protein and to replicate itself. DNA 

is made up of four nucleotide bases called: Adenine (A) , Guanine (G), Thymine (T) and 

Cytosine (C). The information in DNA is first passed on to Ribonucleic Acid or RNA 

in the process of transcription. In this process, Thymine (T) in DNA is replaced by 

Uracil (U) in RNA. Then, in translation, this information is used to make proteins. The 

replication ability of D A is represented by the circular arrow around it in Figure 3 [tis]. 

Conversely, in some viruses RNA is reverse transcribed into DNA, and RNA is able to 

replicate itself. These situations are described by the dashed arrows. Thi'S flow of the 

genetic information is called the central dogma of molecular biology as shown in figure 3. 

The initiation of translation almost always occurs at an AUG codon following the 

ribosome binding site. This AUG codon is sometimes called as start codon. After the 

translation initiation takes place, the ribosome reads the messenger RNA or mRNA 

triplets and a transfer RNA (tRNA) molecule transports the proper amino acid to the 

25 



Replication Replication 
~--, ... ... 

Transcription :' ~ '1 Translation I t .... ..,_ 

c::::::::====::::::;:.>- \ \RN A p . DNA ....-:--·------------- .. / .... '-\... ~ - rote1n .... _,.. _______ -----J 

Reverse 
Transcription 

Fig. 3: The central dogma of molecular biology 

protein synthesis site. The amino acid is appended to the protein chain, which, by this 

way, is extended until a stop codon is reached [tis]. 

The recognition of the translation initiation sites (TIS) is important to extract pro-

tein sequences from nucleotide sequences. Usually, translation initiation takes place at 

the first occurrence of AUG codon nearest to the 5-inch end of the mRNA, but in some 

cases an AUG further downstream is selected. It is observed that less than 10% of all 

mRNA sequences do not use first AUG as start codon. As a result, if one can obtain 

complete and error free mRNA sequences then it is possible to predict the translation 

initiation sites at more than 90% accuracy simply by choosing the first AUG as start 

codon. Almost 40% of mR A sequences contains upstream AUGs after extracting an-

notated GenBank nucleotide data very carefully. The use of unannotated genome data 

makes the problems of prediction even worse. These errors of sequence analysis cause 

the prediction of translation initiation sites (TIS) to be a critical task [PN97]. 

We can consider all these errors as different kinds of noise in a simple two candi-

date voting system and can model the problem of predicting the translation initiation 
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sites as a one-dimensional (lD) classification problem. It is fairly standard to use a 

sliding window covering fixed lengths upstream and downstream of an AUG and test if 

the nucleotide sequence in a window matches to a pattern of start codon. Neural net-

work is one of the very popular approaches for the recognition of start codons, where 

the inputs are the nucleotide sequences in a sliding window. Taking this method as 

a general, undistricted matching scheme, we can obtain a districted matching scheme 

from it: partition the input window into a certain number of sub-windows, use a neural 

network for each of the sub-windows; then use another neural network whose inputs are 

the outputs of the previous neural networks for the determination of start codons [CN05] . 

1.2.2 Implementat ion 

Undistricted N eural N etwork 

A neural network used for the above prediction problem is usually a multi-layer neural 

network with N inputs, and some (more or less) hidden neurons. We used Pedersen-

Nielsen's neural network, shown as NNu in figure 4. NNu has 3 layers with some hidden 

units and 2 outputs. One of the outputs is used for predicting whether the centered AUG 

of the input is a start codon, while the other is used for predicting whether the centered 

AUG is a non-start codon. The output of the network is interpreted by believing the 

output neuron with the highest score. We shall call it an undistricted neural network as 

opposed to a districted neural network which we will define next. 
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Fig. 4: Undistricted Neural Network 

Districted Neural Network 

A districted neural network is shown in figure 5. A districted neural network con-

stitutes two levels of neural networks: a set of lower level networks and a higher level 

network. Each of the lower level neural networks , called a regional sub-neural network, 

takes a block (region) of cells as its inputs; the higher level network, called an assembling 

sub-neural network, takes the outputs of the regional sub-neural networks as inputs. Each 

of the regional sub-neural networks NNt (1 ::::; t ::::; r) uses the same structure as that of 

an undistricted neural network, but with input xkt-l ,kt which constitutes the cells Xi, for 

all kt - l ::::; i ::::; kt (we let k0 = 1, kN = N). The assembling sub-neural network NNA has 

3 layers with some hidden units , 2 outputs, and 2r inputs, where r is the number of total 

regions. 

It is expected that, although it is most likely to come up with much more errors in 

comparing with the large undistricted neural network, each regional sub-neural network 

can independently determine a class label for any input array. Of course this may cause 

many errors because of limited input sizes. But, we can expect that not all the re-
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gional sub-neural networks make wrong conclusions at the same time, so the assembling 

sub-neural network can fuse together these individual regional sub-neural networks to 

produce a correct answer. 
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Fig. 5: Districted Neural Network 

Although the training data set used for undistricted and districted neural network is 

the same, the ways of applying the training dataset in this two kinds of neural network 

are somewhat different. 

Training Data Set for Undistricted Neural Network: We denote the sample 

set U, of which each sample is of form (x N; (d 1, d 2)), where (d 1 , d 2) is either (1, 0) or 

(0, 1) representing x N is centered with a start codon or a non-start codon. 

Training Data Set for Districted Neural Network: The training set R t for 
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a regional sub-neural network NNt (1 ::; u ::; r) is constructed as follows: for any 

the cells xi, for all kt- 1 ::; i ::; kt. 

The training set A for the assembling sub-neural network NNA is constructed as fol-

lows: first , we have each regional sub-neural network NNt (1 ::; t ::; r) trained using 

the training set Rt described above; then, for any (xN; (d1 , d2 )) E U , we place a sample 

(f . (x1,k1) g (x1 ,k1) j (xk1 +1,k2) g (xk1+1,k2) . . . j (xkr- J,N) g (xkr-J ,N)· (d d)) J ,1 , g,1 , f ,2 , g,2 ' ' J ,r ' g ,r ' 1' 2 

into A, where (ft,t(xkt-J,kt ), g9,t(xkt- J,kt)) (1 ::; u::; r) is the output of the trained re-

gional sub-neural network NNt with input xkt- J,kt. 

1.3 Discussion 

For the districted approach, it is very critical to choose the optimal size of the regions 

so that it can accommodate the maximum amount of noise contaminated votes. Usually 

it depends on several other factors. For example, size of noise block, level of white noise, 

etc. However, these factors are usually application and environment dependent and are 

not very easy to analyze. Thus , another reasonable solution is to try different sizes of 

regions to find the best region size (if we don't have enough prior knowledge of the factors 

involved in the particular application domain) [CT05]. 
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2 Local Feature Based Approach for 2D Pattern Classification 

2.1 Differential Latent Semantic Index 

This section gives an overview of how Differential Latent Semantic Index (DLSI) 

works in document classification, on the original papers by Liang Chen, N aoyuki Tokuda 

and Akira Nagai [CTNOl] [CTN03]. 

DLSI is an efficient method of document indexing that improves the performance as 

well as the robustness of the document classifier, exploiting both the distances to, and 

the projections on, a reduced document space [CTN03]. 

Each document in the D LSI method is represented by the term by document vector. 

A term is defined as a word or a phrase that occurs in at least two documents. Suppose 

the list of the terms that appear in the documents are t1 , t2 , ... , tm. Each document j in 

the collection is represented with a real vector (a1j, a2j, , amjf with aij = fij x gi, where 

fij is the local weight of the term ti in the document, while gi is a global weight of ti 

across the whole document collection. 

2.1.1 Weighting 

Weighting strategies play a significant role in the performance of DLSI. Local weight 

of a term represents the significance of the term in the document while the global weight 

indicates the importance of the term applicable throughout the document collections. 

Several techniques have been proposed for calculating the local and global weights. For 

example, local weights can be calculated by either raw occurrence counts, boolean, or 

logarithm of occurrence count. Global weights can be given by no weighting (uniform 
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weighting) , domain specific, or entropy weighting. Although each weighting scheme has 

its own advantages and disadvantages, experimental outcomes showed that the best ap-

proach is to use a logarithmic function for local weighting and entropy for global weight-

ing. The logarithm of the occurrence count reduces large variations between documents 

and reduces the effects of large differences in frequencies. The entropy weighting scheme 

assigns higher weights to discriminating terms and lesser weights to terms that carry 

non-significant information. 

2.1.2 Differential Document Matrix and Space 

The Differential document matrix and the reduced DLSI space are the central con-

cepts of DLSI method. The term document vector is normalized as (b1 , b2 , ..... , bm) by 

the following formula 

ai 
bi = ---;.= === 

~~
The centroid vector C = ( c1 , c2 , . . ... , Cm f of a cluster can be calculated in terms of the 

normalized vector as: 

Si 
ci = ~

~ Si2 
where (s1 , s2 , ..... smf is a mean vector of the member documents in the cluster. 

An intra differential document vector T is defined as T = Ti - T1 , where Ti and T1 

are two normalized document vectors belonging to a same document class; and an extra 

differential document vector T as T = ~ - T1 , where ~ and T1 are belonging to different 

document clusters. The differential intra- and extra- term by document matrices are 

respectively defined by the matrix, each column of which comprises an intra- and extra-

32 



differential document vector respectively. 

Using singular value decomposition (SVD), any m x n differential term document 

matrix D (differential intra- or extra- term by document matrix) of rank r :S ( q) = 

min(m, n), can be decomposed into a product of three matrices: D = USVT, such that 

U and V are an m x q and a q x n unitary matrices respectively, and the first r columns 

of U and V are the eigenvectors of DDT and DT D respectively. S = diag(61 , 152 , ..... , bq) 

where bi are non-negative square roots of eigen values of DDT , bi > 0 for i :S r and 

bi = 0 for i > r. 

A new reduced matrix Sk can be obtained by selecting the left-upper corner k x k 

matrix (k < r) of diagonal matrix S. Similarly Uk and Vk are the matrices obtained 

by keeping the leftmost k columns of U and V. The product of Uk , Sk and Vk gives 

a matrix Dk which is approximately equivalent to D. An appropriate value of k must 

be selected, depending upon the type of application. Generally we choose k ~ 100 for 

1000 :S n :S 3000. The corresponding k is usually smaller for the differential term by 

intra-document matrix than that for the differential term by extra-document matrix, be-

cause the differential term by extra-document matrix normally has more columns than 

differential term by intra-document matrix has [CTN03]. SVD produces new reduced 

intra- and extra-DLSI space. In addition to the global description ability, intra- and 

extra- DLSI spaces can be effectively used as additive information to improve adaptabil-

ity to the unique characteristics of the particular differential document vector. On the 

other hand, SVD is used not only to reduce the dimension of the term by document 

matrix but also to reduce the noise significantly. 
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2.1.3 The Posteriori Model 

The likelihood function P(xiD) of any differential document vector x given D can be 

estimated by 

n1/2exp(-I!: "k ~ - n.o2(x)) p X D - 2 D t = 1 t5i 2p 

( I ) - (21r )n/2 rr7=1 8i . p(r-k) /2 
(1) 

where y = U[x, s2 (x) = llxll 2
- 2:7= 1 yf, p = ~ ~ and r is the rank of matrix 

D. 

We notice that , the terms 2:7= 1 * and c(x) respectively describe the projection onto 
' 

and the distance to a reduced space spanned by the column vectors of Uk from x. If an 

document I belongs to a cluster centered at C, we could expect P(xiD1 ) should be large, 

and P(x iDE) should be small, where xis the differential vector of I and C; D1 and DE 

are differential intra- or extra- term by document matrices. 

When both P(x iD1 ) and P(x iDE) are computed, the Bayesian posteriori function 

can be computed as: 

(2) 

where P(D1 ) is set to 1/n, and P(DE) = 1- P(D1 ) , n is number of clusters in the 

collection. 

In this fashion , the Bayesian posteriori likelihood function for the differential docu-

ment vectors, based on their projections on the DLSI spaces and their distances to the 

DLSI spaces, provides a most probable similarity measure of a document belonging to a 

cluster. 
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2.1.4 LSI and DLSI 

It is important to clarify the difference between the DLSI approach and traditional 

LSI approach. In LSI method the similarity between two documents is calculated by the 

cosine angle between the projections of a pair of normalized documents vectors in the 

LSI space [DDL +go]. As described by [CTNOl], the cosine measurement of projections 

of two vectors has the same geometric meaning as the length of the projection of differ-

ential document vectors of two vectors in differential latent semantic space. Since LSI is 

a global dimensionality reduction approach, it has the problem in adapting to particular 

characteristics of each document. In contrast, DLSI approach takes into consideration 

the distance to, as well as the projection on, a reduced vector space. Therefore, it is 

able to capture individual features and much richer information about each document. 

DLSI has shown improved performance in full text document retrieval and classification 

compared to the standard LSI based approach. 

2.2 Application 

We have applied the DLSI approach, which was originally developed for document 

classification and retrieval, to a new application domain; content based image classifica-

tion. The new concept of using local features in D LSI has also been proposed here to 

increase the robustness of the DLSI classifier. 
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2.2.1 Problem Statement 

As digital image and video libraries have become rapidly available to everybody 

through the Internet , interest in the potential of digital image classification and retrieval 

has increased enormously over the last few years. Content based image retrieval and clas-

sification which retrieve and classify images based on the low-level features, such as color, 

texture , and shape derived from images, are becoming increasingly active research areas. 

We study supervised image classification, which is a technique to categorize images based 

on the available training data [HKZ98]. This topic is so useful for semantic organization 

of digital libraries and in obtaining automatic annotation of images important for effi-

cient image retrieval systems, that many approaches have already been proposed. Huang 

et al [HKZ98] proposed a method for hierarchical classification of images via supervised 

learning. They used low level feature-banded color correlograms of the training data 

to obtain a hierarchical classification tree that can be used to categorize new images. 

Park et al [PLK04] developed a neural network classifier, where the backgrounds are 

removed from original images and shape-based texture features are extracted for training 

the neural network. Li, Najmi and Gray [LNGOO] proposed a two-dimensional hidden 

markov model for image classification. Support vector machine (SVM) approaches have 

also been used in image classification. Goh et al [GCCOl] combined SVM-based binary 

classifiers to handle the multiclass image classification problem. However, it seems that 

no consistently adequate level of performance and user satisfaction have been achieved 

in this area. 

In the area of full text document retrieval and classification, it is noticed that syn-
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onymy and polysomy are two major problems that cause surface based retrieval systems 

to miss important related materials to recall and/ or recalling many unrelated documents 

[ CTN 01]. Several approaches have been investigated to use the co-relations of terms 

(words) to weaken the influences of these two problems. We believe co-relationships 

among features extracted automatically from images should also be taken into consider-

ation in order to improve the performance of image classification. 

The LSI approach, which was developed for full document retrieval, and has shown 

significant effectiveness in content based document retrieval by offering a dampening 

effect on the synonymy and polysomy problems, has now been applied to image processing 

by Pecenovic [Pec97], Heisterkamp [Hei02] and Zhao et al [ZG02] and proved to be a 

very promising method for image retrieval. Inspired by the idea of extending the LSI 

approach from document to image retrieval and classification, we propose the DLSI 

scheme for image classification. We can model this problem of image classification as a 

two-dimensional (2D) pattern classification. 

The major problem of applying DLSI to image classification is that words must be 

replaced by image features. On the other hand, in order for DLSI to work acceptably, the 

number of terms must be relatively high. These conditions make the process of feature 

selection a challenging task. Finally, the idea of occurrence count becomes even more 

difficult to imagine for image features that usually have numeric values. 
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2.2.2 Implementation 

Features Extraction 

The images are represented as vectors of features in content based image classifica-

t ion, and two images are considered to be similar if their feature vectors lay close in the 

feature vector space. Widely used features include color , texture and shape of objects in 

the image. For document classification, DLSI represents each document as a term vec-

tor, where 'term' can be considered as global feature. In this work, we have used global 

features as well as local features to construct the feature image vector, as we believe that 

local features are more robust than global features in the presence of different kinds of 

noise. Here we first use only color as global features in verifying the efficiency of our DLSI 

approach in comparing with that of the LSI method and the SVM approach. Then, we 

extract texture from image blocks as local features. Texture features are used in addition 

to the color features to improve the accuracy of DLSI based image classification [NCK04]. 

Global Feature Extraction 

For global feature we extract color from the whole image. 

Color Features: Color is a very important cue in extracting information from im-

ages. Color features are relatively robust and simple to represent. They are invariant to 

rotation, translation and scaling, but remain sensit ive to illumination change and noise. 

This feature is used in most image classification systems. The distribution of color is 

a useful feature for image representation. Humans perceive a color as a combination of 

three basic colors, R (red), G (Green) and B (Blue) , which form a color space. Different 
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color spaces can be generated by separating chromatic and luminance information. To 

extract color information, a color space must be chosen first. The most commonly used 

color space is RGB. Usually the color image acquisition and recording hardware are de-

signed for this color space. However, the RGB color space model is very complex because 

of the mutual relation. Thus, it is very difficult to handle the RGB color space in image 

processing application. On the other hand, HSV i.e. H (Hue) S (Saturation) V (Value) 

color space is more intuitive than RGB color space and very close to human perception. 

So we have chosen to convert all the images from RGB to HSV color space. As proposed 

by Zhao and Grosky [ZG02], we extract from each pixel of an image the hue and the 

saturation values, and quantize them into 10-bin histograms. Then, two histograms are 

combined into one hue saturation histogram with 100 bins. Consequently, each image is 

represented with 100 color features. 

Local Feature Extraction 

For local feature extraction we divide each image into a regular grid of non-overlapping 

blocks and calculate four important texture descriptors for each image block. 

Texture Features: An important set of features for image classification using DLSI 

technique is the set of texture descriptors. Texture features offer one vital cue for the vi-

sual perception and discrimination of image content. Intuitively texture features provide 

measures of properties such as smoothness, coarseness and regularity. 

Although the perception of texture plays a significant role in the visual system for 

recognition and interpretation, it is quite difficult to adequately model texture. There 

are several methods to calculate the texture features. A texture descriptor based on a co-
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occurrence matrix is quite popular. We can consider the co-occurrence matrix as second 

order statistical measure of gray level variation which represents the joint probability of 

gray level occurrence at a certain displacement in an image. The co-occurrence matrices 

are computed locally within a small window across the image. The choice of window 

size usually depends on the image and application. The size of the window should be 

reasonable , so that the extracted information has statistical significance. For the image 

classification system, we consider four vital texture descriptors which are very easy for 

humans to differentiate: energy, inertia, entropy and homogeneity. 

Energy= LLPij 
j 

Inertia= L L (i- j) 2Pij 
j 

Entropy = - L L Pij log Pij 
j 

~ p ·· 
Homogeneity = L..t ( .11 

.) 2 . . 1 + '/,- J 
Z,J 

where Pij is an element of the cooccurrence matrix. The entry ( i, j) of cooccurrence 

matrix Pd for an image represents number of occurrences of the pair of gray levels i and j 

at distance d. Energy gives a measure of textural uniformity of an image. The maximum 

value of energy is obtained when gray level distribution has a constant or a periodic form. 

Inertia which represents image contrast, measures the amount of local variations in an 

image. Entropy, which is inversely proportional to energy, measures the randomness of 

an image. The entropy of an image is very high when the image is not texturally uni-

form. Homogeneity is inversely proportional to the inertia. It reaches its maximum value 

when most of the occurrences in gray level co-occurrence matrix are concentrated near 
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the main diagonal [PCGV02]. 

Occurrence Count and Weighting 

We use the ideas in [Pec97] to find "occurrence counts" for both global and local 

features such as histogram bins and textures. Basically, the occurrence count Oij of 

feature i in image j is defined as: 

if valij 2: f.Li; 

Otherwise 

where valij is the value of the feature i in image j and f.L i and O"i are the mean and 

standard deviation respectively of the feature i's value across the training set. 

After occurrence count is established, the local and global weighting of features are 

employed. Following [CTN03] we use logarithmic scaling for local weights and entropies 

for global weights: 

1 N 

9i = 1 - lo N L qij log % 
g j=l 

where qij = ~ , Oij is the occurrence count of feature i appear in image j and di is the 
t] 

total number of times that feature i appear in the collection, N the number of images in 

the collection. 

Algorithm 

Reduced DLSI Space Selection and Classification System Set Up: 

(1) Extract numerical features of the images in the training image set . 
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(2) Calculate and apply global and local weights of each feature, create a feature vector 

for each image. 

(3) ormalize the feature vectors for all the images. 

( 4) Construct intra differential feature-image matrix D7xn1
, such that each of its columns 

is an intra differential feature vector. 

(5) Construct an extra differential feature-image matrix D7J; xnE , such that each of its 

columns is an extra differential feature vector. 

(6) Decompose D7xn1 and D7j; xnE by SVD algorithm into USV form. Find proper 

values of K1 and J(E to define the likelihood functions P(xiD1 ) and P(xiDE) using 

the equation 1. 

(7) Define the posteriori function 

P(xiDI)P(DI) 
P(Diix) = P(xiDI )P(DI) + P(x iDE)P(DE)' (3) 

where P(D1 ) is set to 1/n, and P(DE) = 1 - P(D1 ), n is number of clusters in the 

collection. 

Automatic Image Classification by DLSI Space Based Classifier: Given an 

image as a query to be classified: 

(1) A feature vector is set up by generating the features as well as their frequency of 

occurrence in the image, so that a normalized feature vector N is obtained for the 
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Image. For each of the clusters in the image database, repeat the procedure of items 

(2)-( 4) below 

(2) Using the image to be classified, construct a differential feature vector, x = N- C, 

where C is the normalized vector giving the center or centroid of the cluster. 

(3) Calculate the intra-image likelihood function P(xiDI), and the extra- image likeli-

hood function P(xiDE) for the differential image feature vector x. 

(4) Calculate the Bayesian posteriori probability function P(D1 Ix). 

(5) Select the cluster having a largest P(D1 Ix) as the recall cluster. 

2.3 Discussion 

In the case of document classification, we know that the frequency of each term in the 

document is calculated, which constitutes the term vector to represent each individual 

document in the document collection. We can consider this term as global feature. For 

image classification purposes, we use the local texture feature which is extracted from 

the part of the image (i.e. from the image block). The global color feature is also 

used to construct the feature vector , as we know in some cases global features like color 

contains vital information so that we can not avoid them completely. Although it is also 

possible to compute the color features locally and use them in feature vector, we did not 

employ them in our method because of some technical difficulties. For example, time 

limitation. We believe that in the future local color feature will be able to improve the 

classification accuracy further. Since the use of local features gives better performance 
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of DLSI classifier, we can say that the local feature based DLSI approach is more robust 

than global feature based DLSI approach . 
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Chapter IV 

Experiments and Results 

This chapter provides the experimental details and results after employing two local 

feature based methods: districted matching approach and DLSI method in the area of 

gene recognition and content based image classification respectively. 

1 Districted Matching Approach for Start Codon Prediction 

This section discusses about the data set and the detailed experimental results of 

using districted matching approach for prediction of translation initiation sites in mRNA 

sequence. 

1.1 Data Set 

The experiment is done on the well-known Arabidopsis thialiana TIS set and verte-

brate TIS set provided by Pedersen and Nielsen [PN97]. Here we compared the original 

artificial neural network approach proposed by Pedersen and Nielsen to its "districted 

voting" version. The data were extracted from GenBank [BBL097] , and the possible 

introns were removed by the splicing of mR A sequences. Only high quality sequences 

containing at least 10 nucleotides upstream and 150 nucleotides downstream of the ini-

tiation point were selected, and redundancy was reduced so as to avoid over-estimated 

performance resulting from biased over-represented samples. The Arabidopsis thialiana 

TIS set contains 523 sequences, and the vertebrate TIS set contains 3312 sequences. Fol-
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lowing the setting of [PN97] , we generate one data point for each potential start codon 

(the triplet AUG) on each sequence. Each data point is represented by a sequence win-

dow of 203 nucleotides centered around the respective AUG triplet. In case a sequence 

window "falls off the edge", i.e. , the triplet AUG lies less than 100 nucleotides from ei-

ther end of the available sequence, the positions missing from the 203 nucleotide window 

are filled with E, the symbol for unknown. This results in 13505 data points for the 

vertebrate set, and 2048 for the Arabidopsis thialiana set. We use roughly 80% of the 

data points of each set for training, and the remaining 20% for testing. The vertebrate 

test set contains a total of 2700 data points of which 666 are start codons, and the A. 

thialiana test set contains 410 data points of which 107 are start codons. 

1.2 Experimental D etails and Results 

The performances are mainly estimated by Matthews correlation coefficient [Mat75]. 

All the neural network experiments are writ ten in Matlab 6. 

1.2.1 U ndistricted N eural N etwork 

The artificial neural network proposed by Pedersen and Nielsen has 3 layers with 30 

hidden units and 2 outputs [PN97]. The inputs were presented by encoding nucleotide 

sequences into a binary string, using a sparse coding scheme where each nucleotide is 

represented by 5 binary digits (personal communication): A=00001, C=00010, G=00100, 

T=01000 and E=10000. Thus the neural network has 203 x 5 = 1015 inputs. As it is 

well known in practice that different implementations of a neural network approach might 
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result in slightly different performance, we re-implement the original version of Pedersen 

and Nielsen's approach using Matlab 6. We use the same amount of inputs, outputs, 

hidden neurons as in paper [PN97]. The activation function used for each hidden layer 

neuron is a/the hyperbolic tangent sigmoid transfer function ( tansig) and the activation 

function used for each output neuron is a/ the saturating linear transfer function ( satlins). 

Gradient descent with momentum and adaptive learning rate back-propagation algorithm 

( traingdx) is used for neural network training. 

The best performance that we obtained on the vertebrate set showed a Matthews 

correlation coefficient of 0.5955 with overall accuracy of 85.52%, sensitivity of 64.41% 

and specificity of 92.43%. The best performance for the Arabidopsis data set yielded a 

Matthews correlation coefficient of 0. 7058, with overall accuracy of 88.78%, sensitivity of 

76.63% and specificity of 93.07%. 

The best performances obtained in [PN97] for these two sets are 0.6208 and 0.7122, 

respectively. We believe that the differences come from different implementations. While 

we notice that 0.6208 and 0. 7122 are still lower than most of the best results we obtained 

by using districted neural networks, we believe that it should be fair to compare the re-

sults using the programs by the same programmer in the same programming environment. 

1.2.2 Districted Neural Network 

For the districted neural network approach, we should partition the input vectors 

into blocks. We use a regional sub-neural network for each block , then an assembling sub-

neural network to generate the final results. Notice that each data point is represented by 
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a sequence 203 nucleotides. We partition each data point into r equivalent subsequences, 

Win(l) , Win(2) , · · · , Win(r) , and associate these subsequences with same label "start 

codon", "non-start codon" indicating that the AUG centered at the original window 

sequence is a start codon, or a non-start codon. When 203 is not divisible by r, we let 

the last block contains slightly more nucleotides than other blocks do. 

For each i (1 :::; i :::; r), we implement a regional sub-neural network, using the same 

structure as the undistricted neural network described above but with fewer inputs and 

fewer hidden neurons, for the subsequences Win( i) of all the data points. As a total, we 

haver regional sub-neural networks , each of which has 2 output neurons. The numbers 

of hidden neurons for the regional sub-neural networks are smaller than that for the 

undistricted neural network. In our experiments, we use 10 hidden neurons for all these 

regional sub-neural neural networks in all the cases. 

For the assembling sub-neural network, we implement a neural network with 2r in-

puts, 2 outputs and r hidden neurons. The inputs of the assembling sub-neural network 

come from the outputs of the regional sub-neural networks, and the two outputs are the 

results indicating whether the centered AUG of the concatenated sequence of the inputs 

of the regional sub-neural networks is a start codon or a non-start codon. The activation 

function used for each hidden layer neuron is a hyperbolic tangent sigmoid transfer func-

tion ( tansig) , and each of the output neuron uses a log-sigmoid transfer function ( logsig) 

as its activation function. The training function ( trainlm) is used to update weight and 

bias values according to Levenberg-Marquardt optimization. Notice that each regional 

sub-neural network is trained separately, and the assembling neural network is trained 

after all the regional sub-neural networks have been trained. The training sets for these 
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sub-neural networks are generated using the method described in Section 1.2.2 from the 

same training set used for undistricted neural network. Of course, we use the same testing 

set for test purposes. The Matthews correlation coefficients and accuracy we obtained by 

Table 2: Performances of districted neural networks for vertebrate data set 

I Number of regions I Matthews correlation I Accuracy I Sensitivity I Specificity I 
3 0.6260 85.89% 73.57% 89.92% 
5 0.6277 86. 15% 72.07% 90.76% 
7 0.6414 86. 19% 76.87% 89.23% 
9 0.6246 85.37% 76.72% 88.20% 

11 0.5994 85.63% 65.01% 92.38% 
13 0.5121 82.74% 56.91% 91.20% 
20 0.5159 83 .26% 53.15% 93.12% 
40 0.5611 84.07% 63.96% 90.66% 

using the districted neural networks for vertebrate and Arabidopsis thialiana data sets 

for different sizes of blocks are recorded in Tables 2 and 3 respectively. 

Table 3: Performances of districted neural networks for the Arabidopsis thialiana data 
set 

I Number of regions I Matthews correlation I Accuracy I Sensitivity I Specificity I 
3 0.7558 90.73% 79.44% 94.72% 
5 0.7100 89.02% 75.71% 93.70% 
7 0.8034 92.43% 85.04% 95.04% 
9 0.7159 89.27% 75.70% 94.05% 

11 0.7448 90.49% 73.83% 96.36% 
13 0.7442 90.49% 70.09% 97.69% 
20 0.7243 89.51% 77.57% 93.73% 
40 0.6788 88.05% 70.09% 94.39% 

We could clearly see that, in most of the cases, the districted neural network approach 

performs much better than undistricted neural networks. The reduced performances, for 

the cases when the sizes of regions are 5 (corresponding to the districted neural networks 
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with 40 regions, respectively), could be taken as the cases when the regions are too small 

to fully satisfy the average distribution assumption. 

1.3 Computational Complexity Analysis 

The computational complexity of a neural network depends on several factors. Neural 

networks are intricate devices, with a number of different implementations and no gener-

ally accepted standard form. The computationally important aspects of a neural network 

include the network topology (the properties of the graph of nodes), the signal propa-

gation method (the flow of signals through the graph), the activation function (used to 

map inputs to outputs on the neuronal level) , the input weights (used to determine the 

relative values of inputs to a neuron from some other neurons), the update procedure 

(used during the training process to change weights), nodal complexity (the node count 

in the network), and the computational model (whether deterministic or probabilistic). 

Computational complexity of neural network is calculated in terms of how complicated 

a neural network must be in order to complete the required computation [Kro] . 

Generally the structural complexity of a neural network depends on the number of 

the hidden nodes which is also related to input dimension. Often the number of nodes 

increases along with the increase of the net's input dimension. As the number of nodes 

increases the structural complexity also increases. Hence the successful reduction of the 

net's input space can significantly decrease the network structural complexity, whereby 

the nodal complexity and also time complexity (the network's learning converges faster) 

[Hua03]. 
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The districted version of neural network consists of several regional sub neural net-

works. Each regional-neural network takes a sub-input space as its own input. The 

outputs of regional neural networks are applied to a higher level neural network. So the 

output of higher level assembling neural network is the combination of sub-neural net-

work's outputs. Since districted approach divides the high dimensional input space into 

several low-dimensional ones, the number of inputs and hidden nodes required for each 

regional sub neural network is much smaller than original undistricted version of neural 

network. In addition to decreasing the structural complexity it also decreases the time 

complexity, since each regional neural network converges much faster than the original 

undistricted neural network. In this complexity analysis we did not consider other impor-

tant aspects, which affect the computational complexity of neural network. Because here 

we just want to compare the complexity of districted and undistricted neural network. 

For both the districted and undistricted version, we used the feed-forward backpropa-

gation neural network with same weight function , net input function, and transfer and 

training functions. 

Here we recorded the time required to train districted and undistricted version of 

neural network only for Arabidopsis thialiana TIS set . For districted neural network we 

consider blocks with reasonable sizes ( 5, 7, 9 and 11). We did not record all the cases 

because of time limitation. We believe that these example cases are enough to give the 

insight of how the time required for districted neural network depends on the size of 

block. 

We used three iterations of training for each neural network (i.e., train each neural 

network three times) and recorded the CPU time required by training and calculate 
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Table 4: Time required for regional sub neural network (in seconds). 

No of region Average time for 
Training 

5 23.829 
7 20.499 
9 17.258 
11 15.0212 

Table 5: Time required for assembling sub neural network (in seconds). 

Iteration NN with NN with NN with NN with 
5 regions 7 regions 9 regions 11 regions 

First 38.89 29.33 34.16 36.47 
Second 18.84 31.04 33.06 20.38 
Third 20.92 24.27 6.92 28.18 

Average Training 26.217 28.213 24.7133 28.3433 
Time 

the average of them. Here are the tables showing that the average t imes required for 

each sub-neural network in districted approach and the neural network in undistricted 

approach. 

Table 6: Time required for undistricted neural network (in seconds) . 

Iteration Time 
First 156.05 

Second 87.44 
Third 174.44 

I Average t1me 1139.31 I 

So from the above experimental results we can see, as the number of blocks increases 

the input size of regional neural network decreases (although we used the same num-

ber of hidden nodes for different size of blocks) and the computational time for training 

the neural network also decreases. The average time required for each regional neural 
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network is almost 1/n of the time required from the undistricted neural network where 

n is the number of regions. For example if the average time required for training of 

undistricted neural network is T then the time required for each regional neural network 

is almost T jn, where n is the number of blocks or regions. Again the time required to 

train the assembling neural network is relatively small. So if we train the regional neural 

networks sequentially then the time required for districted matching approach is slightly 

larger than the undistricted version because of the additional training time required for 

second level neural network. On the other hand if we train the regional neural networks 

in parallel then the time complexity of districted neural network will reduce effectively 

than the undistricted version of neural network. So we can conclude that the proposed 

districted approach of neural network gives much better prediction accuracy with a same 

or faster learning speed than undistricted approach. 

2 DLSI for Image Classification 

This section illustrates the experiments that have been conducted using DLSI for 

content based image classification. 

2.1 Image Collection 

We conducted our experiments on a collection 150 COREL images. The image clas-

sification community does not yet have enough experience and established systems for a 

common data set testbed to be used for comparison. Thus we downloaded several images 

from Internet [dat] which are widely used by image retrieval research groups [LWWOl] 
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Fig. 6: The samples of images in the collection 

[LW03]. We created our own image database using 150 images from it, which are suitable 

for content based image classification purposes. The images are of size 384 x 256. The 

image collection is divided into fifteen different semantic clusters: buses, dinosaurs, ele-

phants, horses , roses , cherries, fireworks , sea, sunset, hills, ancient buildings, aero planes, 

deserts, people and snow- 10 images each, based on their contents. Figure 6 shows 15 

typical images in the collection. We choose 5 images from each of the 15 clusters to 

construct the training set, and use the remaining 75 images for testing. 

2.2 Experimental Details and Results 

All the experiments of content based image classification are carried out using Mat-

lab 6. 
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2.2.1 DLSI with Global Features 

LSI vs DLSI 

To compare effectiveness of traditional LSI and proposed DLSI approach for image 

classification purpose the LSI-based and DLSI-based classifiers are set up using the above 

training set, and tested on the testing set. Initially 100 color features are extracted from 

the images in the image collection so that each image feature vector has 100 components. 

The value of kin the SVD decompositions of LSI and DLSI algorithms is important be-

cause it represents the dimensions of the reduced LSI and DLSI spaces. The classification 

accuracy on the testing images for LSI and DLSI methods with different values of k are 

shown in graphically in Figure 7. The image-feature matrix for LSI method is of size 

100 x 75. We could notice that , the LSI approach works best for k = 35, where the best 

accuracy of 70.66% is reached. To apply the DLSI on the same data set we generate intra 

and extra feature-image matrices of size 100 x 60 and 100 x 74 respectively. DLSI method 

gives the best accuracy of 81.33% when k1 = kE = 25. It is clear that DLSI method is 

able to reduce the dimensions more effectively and eliminate the noise more efficiently 

than LSI method. Figure 7 shows some of the query images and retrieved clusters using 

both LSI and DLSI method. 

SVM vs DLSI 

We also employed a support vector machine (SVM) approach for the classification 

problem to demonstrate the performance of our approach. SVM approach which intro-

duced by Vapnik [Vap98] provides state-of-the-art performance in many classification 
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Fig. 7: The classification accuracy of LSI and DLSI for different values of k 

problems such as text categorization, hand-written character recognition, face recogni-

tion, image classification, and bioinformatics. It has been used for image classification 

and retrieval by several authors [GCC01] [TCOl]. The optimization criterion in SVM is 

the width of the margin between the classes. Training samples are mapped into a higher 

dimensional space and SVM tries to find a linear separating hyperplane with the maxi-

mal margin in the higher dimensional space. It is mainly a two-class classifier. Therefore 

we designed 15 binary SVM classifiers for 15 image classes. Each classifier separates 

one image class from the rest 14 image classes. We used SVMlight [Joa] developed by 

Thorsten Joachims [Joa99] for conducting the experiments of support vector machine. 

The same 100 color features are used for training and testing the SVM classifiers. Best 

performance is obtained by using polynomial kernel with degree 2. For that case we 

got the best accuracy of 78.66% while using DLSI we obtained the highest accuracy of 
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Fig. 8: Test images (top left corner) and the clusters recognized using LSI and DLSI (in 
best case) respectively 
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Fig. 9: Test image (top left corner) and clusters recognized by the DLSI approach, 
without texture features and using texture features respectively. 

81.33% (for k=25). 

2.2.2 DLSI with Local Features 

In order to test the performance of the DLSI method with local texture feature to-

gether with global color features, we have divided the whole image into 24 non-overlapping 

blocks with each block of size 64 x 64 and calculated 4 texture features: energy, inertia, 

entropy and homogeneity for each of the block. As a result , the feature vector of each 

image has 196 components (100 color features and 96 texture features). The classification 

accuracy reached to 82.66% by doing so. Figure 9 shows the result of DLSI space based 

classification method after adding texture feature to feature-vector. The experimental 

result clearly demonstrates that local features are important for DLSI approach and able 

to improve the performance of global feature based DLSI scheme for image classification. 
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2.2.3 Computational Complexity 

Although the classification time and space complexity increase slightly after adding the 

local texture features used by DLSI algorithm, the main time consuming part SVD and 

feature extraction of image database are done off-line manner. Therefore the execution 

time of DLSI is not very critical for real time image classification. Moreover we can say 

that the computation time required to classify input image in DLSI approach is almost 

same as in LSI or SVM approach. 
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Chapter V 

Conclusion 

This final chapter presents the summary of the overall thesis and some ideas for the 

future research work. 

1 Summary 

In this thesis we have tried to establish the difference between local and global 

feature based approaches to the problem of pattern classification. Two local feature 

based classification methods have been investigated. The theoretical analysis of the local 

feature based districted matching approach is described in detail. The theory shows the 

robustness of a local feature based method over a global feature based method for lD 

pattern classification. In addition to the theoretical approach, experiments are provided 

on mR A sequences to predict the translation initiation sites using districted neural 

network. Experimental results confirm that a districted neural network is able to increase 

the prediction accuracy considerably. 

Differential Latent Semantic Indexing (DLSI), which has been used successfully for 

full text document retrieval and classification, is employed here to classify the image pat-

terns. Experiments have been conducted on the COREL image database. The results of 

the experiments proved that the DLSI algorithm is suitable for efficient image retrieval 

and is more robust than the LSI approach in image classification. Our experiments also 

proved that DLSI outperforms SVM for content based image classification. Finally, after 
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combining local feature (texture) with global feature (color) we can improve the classifi-

cation accuracy of the DLSI method. 

2 Future Work 

This section presents the ideas that came up during our thesis work which we will 

investigate in the future. 

2.1 Recursive Districted Matching 

The districted matching approach can be employed recursively. We can partition 

each region into smaller regions and perform local feature based districted matching 

scheme recursively for determining the winner of that region. We can assume that this 

multi-level districted matching scheme will be more stable against noise. 

2.2 Districted DLSI 

The districted matching approach can be used to improve the classification accuracy 

of the DLSI method. In this case the input image x and database images Xmk can be 

divided into small non-overlapping blocks. The classification task is then performed 

locally between corresponding blocks. We can apply the DLSI approach for each input 

image block and corresponding blocks of database images for each class. The local 

block determines the image cluster which gives the higher value of posteriori probability 

function and cast a vote for that image class. We repeat this process for all local image 
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blocks and keep track of all the votes Vmk received by each cluster in the database. Once 

the local voting is done, we determine how many votes were cast for each cluster by 

summing among all the image blocks of that cluster: 

Then finally, we can select the image cluster by majority voting. Since the local 

analysis of the image encloses more useful information than the global histogram-based 

methods, we believe that the districted version of DLSI approach will classify the input 

image more accurately than the undistricted version of D LSI approach. 

Certain other aspects, such as adding new local features (for example, a shape fea-

ture) to the DLSI approach would make it more flexible. 

2.3 Local feature Based Approach for Popular Classification Methods 

Detailed experiments on some other popular pattern recognition methods (such as 

support vector machine, hidden markov model (HMM)) in some common application 

domains like 3D object recognition and gene pattern classification based on local feature 

will be very interesting. The investigation of the local feature based method with shifting 

strategy is also left for our future work. 
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