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Abstract 

Deep learning is well known as a method to extract hierarchical representations of 

data. This method has been widely implemented in many fields , including image 

classification, speech recognition, natural language processing, etc. Over the past 

decade, deep learning has made a great progress in solving face recognition problems 

due to its effectiveness. In this thesis a novel deep learning multilayer hierarchy based 

methodology, named Local Binary Pattern Network (LBPNet), is proposed. Unlike 

the shallow LBP method, LBPNet performs multi-scale analysis and gains high-level 

representations from low-level overlapped features in a systematic manner. 

The LBPNet deep learning network is generated by retaining the topology of 

Convolutional Neural Network (CNN) and replacing its trainable kernel with the off-

the-shelf computer vision descriptor, the LBP descriptor. This enables LBPNet to 

achieve a high recognition accuracy without requiring costly model learning approach 

on massive data. LBPNet progressively extracts features from input images from 

test and training data through multiple processing layers, pairwisely measures the 

similarity of extracted features in regional level , and then performs the classification 

based on the aggregated similarity values. 

Through extensive numerical experiments using the popular benchmarks (i.e., 

FERET, LFW and YTF) , LBPNet has shown the promising results. Its results out-

perform ( on FERET) or are comparable ( on LFW and FERET) to other methods in 

the same categories, which are single descriptor based unsupervised learning methods 



on FERET and LFW, and single descriptor based supervised learning methods with 

image-restricted no outside data settings on LFW and YTF, respectively. 
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Chapter 1 

Introduction 

Face recognition is a sub-division of image processing, computer vision, pattern recog-

nition, and machining learning. The application of face recognition systems is using 

computer algorithms to identify /verify human faces in still images or video clips. It 

continuously attracts interests from researchers because of its wide range applications 

in the real world, such as security, computer entertainment, multimedia management , 

law enforcement and surveillance [6 , 7]. 

Since there exist many mystical parts in the perception of human faces , face recog-

nition systems are built using statistical models with only a little prior knowledge. In 

such systems, the images/videos are represented as one or a set of numerical metrics. 

The recognition system itself is a function that accepts matrices as inputs of images 

and returns their similarities. For instance, to find out how much two faces look like 

to each other , a distance measure can be employed to compute the difference between 

the two corresponding matrices. Such difference then reflects how similar these two 

faces are. 
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1 .1 Challenges of Face Recognition 

In the past decade many methods have been proposed to improve the accuracy of 

face recognition significantly. However, there remains a lot of challenges. Figure 1.1 

shows a set of sample pictures that the same person looks dramatically unlike due 

to different photo-taking environments. It is even challenging for a human being to 

identify these faces as one person from these pictures. 

Figure 1.1: The same person looks dramatically different due to pictures taken from 
different pose angle, makeups , lightning condition, aging, etc. The samples are from 
LFW dataset [1, 2]. 

Some of many variance of human faces which bring a lot of uncertainties and 

significantly affect the recognition accuracy are emphasized as follows: 

• Illumination, as one of the well-studied unstable factors, is brought by the change 

of lighting condition which has a non-linear influence on the image even when 

holding other conditions unchanged. Although illumination problem has been 

largely solved in certain conditions 1 , developing illumination-robust algorithm 

for more difficult lighting condition is still an ongoing research since the problem 

becomes more complicated when combining other effects with illumination. 

• Pose angle is another major reason of uncertainties. Since the image of human 

face is indeed obtained by a projecting 3-dimensional object into a 2-dimensional 
1 For the Fe probe set of the FERET benchmark which aims at different illumination, current 

state-of-the-art method has achieved 100% recognition accuracy of it 
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plane, the projected image is inevitably distorted. The size and shape of organs 

in face (e.g., eyes, nose) change in different shooting angles because of effect of 

perspective. Additionally, important information may be lost since large area 

of face is shrunk into a small region in picture, or even occluded. Furthermore, 

it also brings unpredictable effects on illumination. 

• Facial expression brings uncertainty due to the distortion of the face itself: or-

gans leave their original place and change their shapes; even the 3-dimensional 

shape of the face changes because of the muscle movement. 

Other difficulties in face recognition include occlusion, aging, makeups, image quality, 

etc. 

Admittedly, high recognition accuracy has been achieved on some benchmark 

datasets. For example, the error rate of Eighenface is reported as low as 7.3% in 

Yale data set [8]. However , recent researchers ' interests have begun to focus on more 

challenging tasks, including pictures taken in uncontrolled environment (e.g., Face 

Recognition Grand Challenge [3]), in unconstrained environment (e.g. , Labeled Faces 

in the Wild [1 , 2]) and video-based face recognition (e.g., YouTube Faces [4]) which are 

shown in Figure 1.2. The images or videos in these datasets are taken with wide vari-

ation in illumination, expression, pose angle, even the picture quality. Recognition 

for these datasets is considered to be more challenging than in controlled environ-

ment, but the algorithms applicable for them are also more practical in real world 

face recognition tasks. 
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(b) (c) 

(d) 

Figure 1.2: Some example pictures from different types of datasets. (a) and (b) 
are from FRGC [3], where (a) was taken in controlled environment and (b) was in 
uncontrolled environment; (c) is unconstrained image from LFW [1, 2]; (d) are some 
sample frames from a unconstrained video clip in YTF [4]. 

1.2 Overview of this thesis 

Recently deep learning has brought a lot of attentions because of the state-of-the-

art results it achieved in image classification tasks [9, 10, 11, 12, 13, 14, 15, 16, 

17]. Deep learning is one brunch of machine learning which tends to extract high 

level abstractions or representations of data through multiple processing layers [18]. 

A hierarchical architecture can be formed through sequential connections between 

multiple layers. The latter layers in the hierarchy extract higher level of abstractions 

from the lower level ones extracted by the earlier layers. In addition, features are 

extracted in a heavily overlapped manner. This means that a low-level feature can 

contribute to multiple high-level features in the later layer. 

4 



Convolutional Neural Network (CNN) is one of the most commonly studied deep 

learning architectures, which can be viewed as a variant of multilayer perceptron 

(MLP) neural network. CNN obtains the facial discriminative representations from a 

set of hierarchically connected and trainable convolutional kernels [5, 18]. Comparing 

with other regular face recognition methods, training CNN is troublesome. Difficul-

ties in CNN are generally twofold: (i) the learning approach itself is computation 

expensive due to a large amount of parameters in sequentially connected multiple 

layers, which makes the convergence undesirably time-consuming; (ii) overfitting is 

more likely to occur due to the existence of thousands of parameters in this model. 

The former issue is primarily solved using powerful computers and leveraging hard-

ware accelerating techniques (e.g. , GPU computing). To tackle the latter issue, in 

the case of face recognition , many state-of-the-art systems leverage massive external 

data to learn their networks [9 , 10, 11 , 12, 13, 14]. However, we believe that these are 

just workarounds by utilizing more computing resource rather than final solutions. 

Considering the complexities of CNN are mainly attributed to its trainable kernels , 

the question we want to address here is the possibility to replace the convolutional 

kernels with off-the-shelf computer vision descriptors such that the framework is ca-

pable for the high-level feature extraction on dense data with only a few of adjustable 

parameters. This can help avoid the costly training process and therefore reducing 

the need of training data. 

In this thesis, a deep network based on LBP descriptor is proposed, which is named 

as Local Binary Pattern Network (LBPNet). Two filters are used in LBPNet, which 

are based on Local Binary Pattern (LBP) and Principle Component Analysis (PCA) 

techniques , respectively. The over-complete patch-based features are extracted hier-

archically by these two filters. After feature extraction, the LBPNet employs a simple 

network to measure the similarity of the extracted features. Major characteristics of 
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the proposed LBPNet are summarized in t he following: 

Feature extraction in dense grid: Both of t he two fil ters are replicated densely 

in layers. 

Multilayer architecture: The representations are extracted hierarchically: t he lat-

ter layer extracts a higher level of abstractions from the lower level ones of the 

earlier layer. 

Partially connected layer: Filters only compute based on t he selected subset of 

t he inputs from t he earlier layer. 

Multi-scale analysis: Filters wit h different parameters are used in each of t he layers 

to capture mult i-scale statistics. 

Unsupervised learning: Since both LBP and P CA are unsupervised learning algo-

rithms, LBNet is capable to perform unsupervised learning on data. 

Since LBPNet contains all t he fundamental characteristics of deep learning ar-

chitecture, it can be classified as a simplified deep network with hand-craft filters. 

Comparing wit h t he regular CNN architectures, LBPNet retains the key CNN ar-

chitectural features but simplifies the model by replacing its trainable kernel with 

the off- t he-shelf computer vision descriptor , the LBP descriptor , to avoid t he costly 

training approach. The framework proposed in t his thesis significant ly outperforms 

the original LBP approach. 
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1.3 Contributions 

The main contributions of this thesis are summarized as follows: 

This thesis presents a novel deep learning based methodology for face recognition 

named Local Binary Pattern Network (LBPNet). It extracts and compares high-level 

over-complete facial descriptors hierarchically based on a single-type LBP descriptor. 

By borrowing the deep network architecture from Convolutional Neural Network while 

replacing its trainable kernel to off-the-shelf computer vision descriptors, LBPNet 

is able to perform multi-scale analysis on dense features hierarchically while only 

requiring a simple training approach on a relatively small training set. In addition, 

the LBPNet is capable for both supervised and unsupervised learning algorithm. 

By embedding into our framework the original LBP approach performance boosts 

significantly. Experimental results on several public benchmarks (i .e. , FERET, LFW, 

YTF) have shown that the LBPNet outperforms or is comparable to other single 

descriptor based methods under the same protocols, including unsupervised learning 

protocol on FERET and LFW and image-restricted no outside data protocol on LFW 

and YTF, respectively. 

1.4 Organization of this thesis 

The rest of this document is organized as follows: 

Chapter 2 introduces the general face recognition pipeline as well as several base-

line methods of it, namely, LBP, subspace projection (PCA and LDA) and classifiers 
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including Nearest Neighbourhood classifiers and Support Vector Machine. 

In Chapter 3, several state-of-the-art algorithms which are related to our works or 

inspired us are introduced. In the first section, several over-complete feature extrac-

tion algorithm are introduced. Next in the second chapter, the patch-based systems 

for face recognition are discussed. Finally, the third section introduces the architecture 

of Convolutional Neural Network. 

Chapter 4 elaborates the proposed baseline LBP and LBPNet methods. The detail 

designs of each layers of LBPNet are given in the first section. Next, the scheme for 

video based face recognition is introduced. 

Chapter 5 includes the introduction of the benchmarks employed in the experiment 

(i.e., FERET, LFW, YTF) as well as the parameter settings for each dataset. 

Chapter 6 reports the experimental results of LBPNet. Its results outperform 

( on FERET) or are comparable ( on LFW and FERET) to other methods in the 

same categories, which are single descriptor based unsupervised learning methods 

on FERET and LFW, and single descriptor based supervised learning methods with 

image-restricted no outside data settings on LFW and YTF, respectively. Addition-

ally, results from the baseline LBP methods of LBPNet are also reported to demon-

strate that the deep learning architecture of LBPNet improves the performance fun-

damentally. 

In the end, Chapter 7 summarizes this thesis and suggests some future directions. 
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Chapter 2 

Background 

There exist two types of face recognition tasks: face verification and face identification. 

The identification systems find the identities of unknown faces according to the known 

faces, whereas the verification systems confirm or reject two faces having the same 

identity. The dataset of known faces is called gallery set while the set of unknown 

faces is probe set . The general processing pipeline of the face recognition system has 

several important stages as follows . 

Face detection: The first stage of face recognition is face detection. It finds the 

facial area in image or video frame and passes it to the next stage. 

Face normalization: Face normalization module performs preparation for the fol-

lowing stages. It contains two components: geometric normalization component 

which rotates and scales the face to the same position among all images; pho-

tometric normalization component which performs illumination adjustments. 

Feature extraction: A feature is a numerical representation of image. It is either 
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directly computed from intensity image or from other features of this image. 

Extracted features are robust to variances and easy to classify compared to 

intensity images. In mathematical context, feature extraction is a projection 

from input space into feature space (Figure 2.1) . 

10 

-1 

-2 

-3 

-2 

(a) (b) 

Figure 2.1: Samples are projected from the input space (a) into feature space (b). 
Samples are hard to be separated in input space, but they are linearly-separable in 
feature space. 

The features can roughly be divided into two categories: low level features ( e.g., 

LBP [19], SIFT [20], Gabor [21]) and high level features which are computed 

from low level ones. The high level features are more informative and more 

robust of variances. Section 2.1 will have a briefly introduction on the low level 

descriptor LBP and Chapter 3 will discuss several high level feature extraction 

frameworks. 

Dimensionality reduction: One common problem of face recognition methods is 

that the extracted features are of high-dimensionality. Therefore, techniques of 

dimensionality reduction are highly desired. It is a critical step in many state-

of-the-art methods [22, 23, 24, 25, 26]. Linear subspace projection, as one of the 

widely used techniques, is introduced in 2.2 

Classification: The last stage of the face recognition pipeline is to classify the faces 

10 



through the extracted features. The classifier evaluates the similarity level of 

the faces and makes decision according to it. Several classifiers are discussed in 

Section 2.3. 

Note that not every work includes every stage mentioned above. Particular works 

usually just focus on improving one or several stages while leaving other stages as 

it is by leveraging the existing algorithms or results. Also in some works, feature 

extraction or/and dimensionality reduction stages are absent. 

2.1 Local Binary Pattern 

The Local Binary Pattern (LBP) operator, introduced by Ojala et al. [27], is a regional 

descriptor-based approach for texture description. It was latter introduced into face 

recognition area by Ahonen et al. [19]. 

The LBP generation approach in [19] is described as follows . To start with, the 

LBP map is built by applying LBP operator. For each pixel of the image, the operator 

thresholds its surrounding 3 x 3 pixels: for each neighbourhood pixel, if its grey scale 

value is greater than the centre pixel, we assign a binary number 1 to it ; otherwise, 

we assign a Oto it. Afterwards, all the binary numbers are stacked into one vector as 

the label of the centre pixel. The diagram of encoding scheme is shown in Figure 2.2 , 

the centre pixel is labelled as 01011010 in binary or 90 in decimal. 

One extension of this basic operator is to allow neighbourhoods of arbitrary size 

and numbers as shown in Figure 2.3. The notation LBPP,R are used to denote a LBP 

operator in which P points are sampled on a circle of radius of R. When the sampling 

11 
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Figure 2.2: The basic LBP operator 

point is not in the centre of pixel, the bilinear interpolation will be used to obtain its 

value. 

Figure 2.3: LBP operators which can be denoted as LBPs,2 , LBPs,3, LBP16,3 

Another extension is the uniform pattern which is denoted as LBPu2 . A LBP 

label is called uniform when at most two bitwise transition from O to 1 or vise versa 

is contained when considering it as a circular. Some examples are shown in Figure 

2.4. For the operator of 8 sampling points , there exist 58 uniform patterns (Figure 

2.5). According to [19], around 90% pattern in LBP8 ,1 is uniformed. LBP labels in 

this case can be further encoded into 59 numbers: one for non-uniform pattern and 

others for uniform pattern. 

The second step of [19] is to generate LBP histogram features. The LBP image is 

divided into several non-overlapped cells, and the histograms are computed in each 

12 



0 0 0 
Figure 2.4: Diagrams represent LBP label "00011111", "00000000" and" 10001110" 
respectively. The leftmost two are uniform patterns while the rightmost one is not as 
it contains more than two bitwise transition. 

cell which is defined as histogram function H: 

Hi = L B((LBP;,'}i(x, y)) = i)li E [O, n] (2. 1) 

where i denotes different encoded LBP labels, (x, y) are coordinates of circle centre, 

and 

{ 

1, when v is true 
B(v) = 

0, when v is false 
(2.2) 

This histogram function counts the number of different LBP labels in a specific area 

and then stack the result into one string. The overall LBP histogram descriptor of 

this image is the concatenation of the histograms of all cells. The diagram of the 

whole approach is shown in Figure 2.6. 

2.2 Linear Subspace Projection 

Linear subspace projection seeks a transformation matrix W to project the input 

vector p into a lower dimensionality space expressed as 

pl = wrp (2.3) 
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0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 
Figure 2.5: 58 uniform pattern of LBP;t . From top to bottom, the number of 1 in the LBP label increases; from left to 
right , t he label rotates as a circular. 



LBP operator Divide into cells 

Concatenate the histo ram vectors 

Figure 2.6: A schematic diagram of LBP descriptor extraction pipeline 

If p E !Rm, W E !Rm xn, m > n , then pl E !Rnxl is narrower than p. Additionally, 

subspace projection can also be employed as feature extractor [8]. In the rest of this 

section, two linear projection methods, Principle Component Analysis (PCA) and 

Linear Discriminant Analysis (LOA) , will be introduced. 

2.2.1 Principle Component Analysis 

PCA projection is a orthogonal projection. If the input data are correlated, it is 

possible to generate output data of lower dimension than the input data while keeping 

as much as possible variability of the input data. By projecting into PCA subspace, the 

variables in the input are decorrelated to each other. Figure 2.7 shows an example of 

PCA the input data contains 2 correlated attributes, and PCA finds out an optimized 
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direction of projection to reduce the dimension of the data to 1. This direction 

keeps most of the variability of the input data. PCA is useful in the context of 

face recognition due to its high dimensional data and limited number of samples. 

Reducing the dimensionality of data helps avoid overfitting and consequently improve 

performance. 

PCA Projection Axis 

Figure 2.7: Input data are projected to the PCA projection axis 

The PCA projection matrix is obtained by solving the eigenvector problem of 

the covariance matrix of the input matrix. Let A be the input matrix where A = 

{P1 ,P2 , .. ·Pn}- In addition, the mean of each input vector, Pi, is O (A is zero mean). 

C is the covariance matrix of A defined as 

(2.4) 

The eigenvector and eigenvalue of C are defined as 

Cx = >.x (2.5) 

where x represents one eigenvector of C and >. is its corresponding eigenvalue. The 
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vector, zi, is one principle component of A, which is computed by 

zi = x[ A (2.6) 

The variance of zi is the corresponding eigenvalues .\. PCA keeps the first n principle 

components with the largest variance while throws away others which are regarded as 

noise. The transformation matrix W is formed by the first n corresponding eigenvec-

tors which is presented as 

(2.7) 

The projection of the input matrix A in PCA subspace is then computed as 

(2.8) 

It can be proved that PCA minimizes the reconstruction error, I IA - wr Alf. 

For each input vector Pi, the projected new vector is p/ = WfacAPi· For input 

with non zero mean value, data must be centred to O by subtracting mean. Equation 

2.3 is thus rewritten as 

pl= WJcA(P - p) (2.9) 

where p denotes the mean of the vector p. The dimensionality of pl is generally lower 

than p, where pl E IRn xl (n is the number of principle components retained in WPcA), 
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2.2.2 PCA Whitening 

According to previous discussion in Section 2.2.1 , the projection result of PCA is 

composed by dimensions with highest variance. It is reasonable in some applications 

but in face recognition the high variability of image usually corresponds to illumina-

tion, facial expression, etc. It has been suggested that removing the most significant 

three dimensions to form the transformation matrix can reduce the variation due to 

lighting [8]. Recent works [28, 24 , 29, 30, 31] suggest to normalize all the components 

by whitening. This approach assumes the discriminative information is distributed 

equally among all dimensions, thus the noise can be reduced by downweighting the 

high variance components whereas increasing the week ones. 

The whitening transformation is a decorrelation transformation in which the out-

put vectors are uncorrelated and have variance of 1. In the case of PCA whitening, 

the PCA transformation matrix yields to another whitened matrix by 

W A-lwr 
WPCA = 2 PCA (2.10) 

1 _l _l _l 
where A-2 = diag(>. 1 

2
, >.2 

2 
. .• >.n 2

), >.i is the corresponding eigenvalue of the eigen-

vector in WPCA· 

2.2.3 Linear Discriminant Analysis 

Unlike PCA which is a unsupervised learning technique, LDA is a supervised learning 

method. It searches to project inputs into a subspace that preserve maximum dis-

criminatory information. The similarities and differences of LDA and PCA are briefly 
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Figure 2.8: The difference of PCA and LDA projection. It can be seen that PCA keeps 
more variance of the data ( curves are wider than in LDA) whereas LDA separates the 
samples with a larger margin. The data with different label are hard to differentiate in 
PCA; however, solving the LDA problem is not always feasible due to lack of training 
data. 
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demonstrated in Figure 2.8. If we design a system to predict the gender of people ac-

cording to his/her behaviour , the LDA can provide better discriminative information 

than PCA. 

Formally, LDA finds an optimal projection matrix WLDA which maximizes the 

equation below 

(2.11) 

where SB is the between classes scatter matrix and Sw is the within classes scatter 

matrix. The between-class scatter matrix is defined as 

C 

SB= L ni(µi - µ)(µi - µf (2.12) 
i=l 

And the within-class scatter matrix is defined as 

(2.13) 
c xEc 

where µi is the mean of i-th class and ni is the samples number of this class , µ the 

overall mean of all classes, c is the total number of classes. The Equation 2.11 is 

solved by the generalized eigenvalue problem expressed as 

(2.14) 

Then W is formed by the first n eigenvectors of matrix S1;} SB. However, in face 

recognition system the Sw is often singular (i.e., Sw1 does not exist) due to the high 

dimensionality of facial features . [8] suggested to use PCA before LDA to reduce its 

dimensionality to avoid such singular problem. 
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2.3 Classifier 

Three commonly used classifiers, namely, Nearest Neighbour (NN) classifiers, Support 

Vector Machines (SVM) and Convolut ional Neural Network (CNN) are introduced in 

t his section. 

2.3.1 Nearest Neighbour Classifiers 

There are many possible distance measures available for classificat ion purpose. Some 

of t hem are presented below. 

Euclidean distance: 

(2 .15) 

Histogram intersection: 

(2.16) 

Log-likelihood s t a tis tic: 

d(p, q) = - L Pi 10g Qi (2. 17) 

Chi square statistic (x2): 

(2. 18) 
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Cosine similarity: 

(2.19) 

Mahalanobis distance: 

d(p , q) = J(p - q)TS- 1 (p - q) (2.20) 

where S is the covariance matrix. Although few methods use the regular Maha-

lanobis distance as classifier, a category of classifiers named matrices learning 

extend this equation by employ learn-based Mahalanobis matrix S to compute 

the distance. 

2.3.2 Support Vector Machines 

Support Vector Machines (SVM) is a supervised learning algorithm used for binary 

classification. Given a set of training samples with labels { xi, yi} where xi denotes the 

sample vector and Yi E { -1, 1} is class label, SVM seeks a hyper plane w · x - b = 0 

in hyperspace}{ which separates the samples according to their labels ((a) in Figure 

2.9). Here w is the weight vector and bis the bias. 

By varying the bias, we can obtain infinite number of hyper planes with the same 

weight vector. Among all the possible representations of the hyper plane, the maximal 

and minimal value of b present such kind of hyper planes that it minimizes the distance 

between the hyper plane and samples from one class. Here the sample(s) which is 

closest to the hyper plane is called support vector. 

As a matter of convention, we scale w and b to proper values to represent these 
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(b) Among all the possible hyper planes , two 
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hyper planes and observations from one class. 
The distance between these two hyper planes 
is called margin. The samples in the hyper 
planes are called support vectors. 

Figure 2.9: Linear separation of inputs 

two hyper planes as: 

w . x- b1 = 1 (2.21) 

W · X - b2 = -1 (2.22) 

The distance between these two hyper planes is 11:i 11 which is called margin. Intu-

itively, the optimized separation should maximize the margin when we have no prior 

knowledge of the distribution ((b) in Figure 2.9) . 

Then the optimization problem can be written as 

minL(w) = llwll subject to Yi(w · Xi - b) 2:: 1 (2.23) 

This is a problem of Lagrangian optimization and can be solved using Lagrange mul-
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tipliers ai. 
m 

f(x) = sgn(:L aiyiK(xi, x ) + b) (2.24) 
i=l 

where ai and b are found by using SVC learning algorithm [32] and 

{ 

1, if V > 0 
sgn(v) = -

-1 , if V < 0 
(2.25) 

For the linear separation in the input space, K (xi, x) = xi · x . For non-linear separa-

t ion, the technique called kernel trick is employed. Samples are projected into feature 

space which is linearly-separable (same as Figure 2.1). Some of popular kernels are 

presented as follows. 

Polynomial kernel: 

(2.26) 

Radial basis function (RBF) kernel: 

(2 .27) 

Sigmoid kernel: 

K(p, q) = tan(,pT q + c) (2.28) 

2.3.3 Convolutional Neural Network 

Convolutional Neural Network (CNN) is a non-linear classifier which is inspired by 

biological neural network. Unlike other classifiers above, CNN usually perform classi-
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fication on intensity images. It extracts and classifies features in the same framework. 

The details of CNN will be given in Section 3.3.1. 
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Chapter 3 

Previous Works 

In this chapter, previous works which this framework is based on or is inspired by will 

be introduced. In Section 3.1 and 3.1.1, algorithms based on over-complete feature 

and patches are introduced, which are used in the feature extraction stage our pro-

posed method. Next, in the third section, a regular Convolutional Neural Network 

architecture is described, as well as the borrowed ideas from this architecture that we 

are use to build the newly proposed method. 

3.1 Over-Complete Feature 

Instead of designing a new computer vision feature from scratch, some recent efforts 

[23, 25 , 33, 34, 35, 36, 22] , have particularly focused on extracting over-complete 

feature with off-the-shelf LBP descriptors. 
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Over-complete features are extracted from the image in a redundant and heav-

ily overlapped way. Comparing with regular feature, it is more informative. The 

algorithms discover the invariant pattern across all feature to extract more robust 

discriminative features. However, the features are also of high-dimensionality because 

they contain redundant information. Therefore, feature compression techniques are 

desirable in this kind of algorithm. In the rest of this section, several over complete 

feature extraction and compression methods are introduced. 

3.1.1 Feature Extraction 

Several schemes are used to reform a regular feature extraction algorithm to extract 

over-complete feature, which is summarized in the follows. 

Dense grid: For computer vision descriptors which are computed from grids, their 

dense versions can be obtained by forcing such grids to heavily overlap. Densely 

extracted SIFT [33, 34, 35, 36] and LBP [33, 25] fall into this category. 

Image pyramid: By using image pyramid, the original image is scaled to different 

size to extract features in different resolutions [37, 23]. The features from higher 

level capture globe structure information whereas the later level is able to extract 

detail texture of the image. 

Multiscale analysis: The third way is by adopting multiscale analysis framework. 

The dense feature is obtained varying one or multiple parameters of the orig-

inal algorithm and fusing them into one high level feature. For instance, Ga-

bor features are obtained by applying a family of Gabor wavelets [21, 38]; [22] 

proposed a multi-scale LBP descriptor which combines features computed by 
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multiple LBP operators. 

Some systems may employ more than one schemes to obtain the over-complete 

features. The three discussed schemes are presented in Figure 3.1. 

Figure 3.1: Schemes of over-complete feature extraction 

(a) Dense grid (b) Image pyramid 
Feature 3 

+ 
Feature 2 

+ 
----+ Feature 1 

(c) A example of multiscale analysis: Multiscale LBP 

3.1.2 Feature Compression 

The dense feature contains a lot of redundant information. Thus it can be compacted 

into a smaller size without losing much information. In addition, the dimensionality 

reduction can also benefit the recognition rate by removing unimportant information 

which is usually noise and expose high-level transformation invariant features. Some 

remarkable approaches are summarized as follows. 
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Subspace projection 

The details of subspace projection have been discussed in Section 2.2. To compress 

feature by subspace projection, the first step is to stack all the dense features into 

one vector. Next , the transform matrix is learned to reduce the dimensionality of the 

stacked features. In Section 3.1.1 , [23] uses PCA and [22] uses PCA+LDA to reduce 

the dimension of their features respectively. 

Fisher Vector 

Fisher Vector (FV) encodes large set of features into one high dimensional vector by 

Gaussian Mixture Models(GMM) [39 , 36]. GMM is a soft assignment algorithm which 

aims to find K Gaussian components that minimize the overall probability of each 

samples presented in the Equation 3.1 

K 

P(x) = L wkN(x lµi , cri) (3 .1) 
i=l 

where xis the input features, wk is the weight of the Gaussian component , N(x lµi , cri) 

is the multivariate Gaussian component with mean µ; and covariance er; . The GMM 

problem is solved by expectation-maximization (EM) algorithm [40, 41] . 

After solving the GMM problem, the mean, ¢k1) , and covariance deviation, ¢k2
) , 

( the average first and second feature differences) between features and each of the 
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GMM cent res are computed by: 

(3.2) 

(3.3) 

where N is t he total numbers of features and cxp(k) is the soft assignment weight of 

p-th feature xv to t he k-t h Gaussian. Finally, the Fisher Vector feature of one image 

is obtained by stacking all the results into one vector : 

,1., = [,1., (l ) ,1.,(2) ,1.,(l ) ,1.,(2)] 
'I' 'l'l , 'l' l , · · · 'l'K , 'l'K (3.4) 

This feature represents t he differences between t his part icular image and t he distribu-

t ion of all the training images in feature space. Note t hat although this representation 

is still of high dimensionality (65536 for K = 512, feature length = 64), it is signif-

icant ly lower than directly concatenation all the obtained features ( 1. 7M in t he case 

of [36]) . 

Probabilistic Elastic Matching 

Li et al. proposed a method named Probabilistic Elastic Matching which has a similar 

approach to Fisher Vector and achieved a even better result [33, 34, 35]. Similar as 

FV, a GMM is t rained from t he dense features. They force t he covariance matrix 

of each GMM to be spherical to balance the two parts of extracted features (the 

appearance feature and its spatial location , respectively). After fitting into GMM, 

t he features are encoded by the highest probability of all t he features from one image 
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to each GMM centres, formally, 

(3.5) 

And the compact representation of this image is 

(3 .6) 

It should be noted that the dimensionality of this feature is lower than FV since ni is 

scalar while ¢i is matching difference vector. 

3.2 Patch-based Algorithm 

The holistic face recognition algorithm take the whole face image as input and generate 

only one facial descriptor , such as Eigenface and Fisherface [8]. On the contrary, the 

patch-based system measures the similarity using a divide-and-conquer strategy. The 

image is firstly partitioned into several patches to extract regional features. The final 

decision is made by considering the similarities among all patches. The patch-based 

system has inherent advantage on variations of lighting, facial expression or occlusion, 

since these variations are always smaller in the patch than in the whole face. 

3.2.1 Naive Patch-based Algorithm 

In the naive patch-based algorithm, the image, u, is firstly partitioned into several non-

overlapped patches whose coordinate is denoted as Pi,j(u) . To compare two images 
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u and v, the similarity, si,j, for each corresponding pairs of patches of two images is 

calculated as: 

(3.7) 

where dis the dissimilarity measure. The overall distance is then computed by com-

bining all regional distance. The most straightforward way is to sum all of them as 

follows 

s = L Wi ,j Si ,j (3 .8) 

where wi,j is the weight of Pi,j patch. If no realizable ways exist to determine this 

parameter , it can be set empirically or leave it as 1. 

This naive algorithm is simple and fast, thus it is adopted by many works [38, 19, 

22]. However, its performance is not optimal. Many advanced patch-based frameworks 

have been proposed, and two of them are introduced in the rest of this section. 

3.2.2 Electoral College 

Chen et al. proposed a unified framework named electoral college [42] which mainly 

tackle the misalignment problem. In this method , every patches in the images, u , in 

gallery set allow to shift in a small range s to form a pile of patches which is defined 

by 

R i, j(u) = {Pi-s,j-s(u), Pi-s+l ,j-s(u) , ... Pi+s,j+s(u)} (3.9) 

The regional similarity is defined as the highest similarity between the pile of patches 

from image u and patch from image v , i.e. 

si ,j = max(d(Ri,1(u) , Pi,1(v))) 
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This framework is proved to be able to improve all the holistic algorithm [42] 

together with the original LBP approach [43]. 

3.2.3 Component-level face alignment 

A different way of generating patches is suggested in [29]. In their work, the patches 

are generated to represent a specific component of the face. They identified 9 such 

kind of components in total, including forehead, left eyebrow, right eyebrow, left eye, 

right eye, nose, left cheek, right cheek and mouth. The regions of components are 

obtained by the facial landmarks (e.g., eyes, nose, mouth) , for example, the forehead 

component is obtained by cropping a particular region of image aligned by left eye 

and right eye. Note that unlike naive algorithm and electoral college, patches in this 

framework are not in the same size and are partially overlapped . They argued that 

the large pose variation can be handled since the facial component can be aligned 

more accurately. 

3. 3 Deep Learning 

Deep learning is a methodology of machine learning for obtaining hierarchical repre-

sentations of images in our case. It uses a multilayer cascade to extract high level 

abstraction or representations of data. The features extracted in earlier layer are fed 

to the later layer as input. Additionally, feature extraction is in a heavily overlapped 

manner. Feature in earlier layer can contribute to multiple features in the later layer. 

In the rest of this section the most well-studied deep learning architecture, Convolu-

tional Neural Network, is introduced. 
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3.3.1 Convolutional Neural Network 

Convolutional Neural Network (CNN) is variant of neural network pioneered by [44], 

improved by [5] and simplified by [45]. It is a biologically-inspired architecture which 

contains multiple interconnecting neurons to form a network. CNN is proved to 

have inherent advantage in computer vision processing because of its 2-dimensional 

convolutional kernels and feature maps. As shown in Figure 3.2, layers in CNN 

hierarchically extract higher level features from their input layers, and then connect to 

multilayer perceptron neural network (MLP) to perform classification. The extracted 

features in earlier layer focus on detail information such as edge and corner, while the 

features in the latter layer represent a higher level of abstraction. Several different 

kinds of layers common in all CNN architectures are described as follows. 

INPUT 
32x32 

Convolutions 
I Fu.I con~ection I Ga~ssiru, connections 

Col1\/0lutions SUbsampli'lg Full connection 

Figure 3.2: One example of Convolutional Neural Network: the architecture of LeNet-
5 from [5] . 

Convolutional Layer: The convolutional kernel (filter) works as neuron in this 

layer. The neuron is defined as 

(3.11) 

where a1 is the input and w is the corresponding weight, * is denoted as the 

convolutional operator, b is the bias and a1+1 is the output. Here a is called 
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activation function which provides nonlinearity. 

To simplify the learning process, kernels with the same parameters replicated 

over the entire image/feature map and connect to the latter layer with same 

weight. In addition , multiple kernels exist in one layer to generate different fea-

ture maps. Another important characteristic of this layer is that convolutional 

kernels that only connect particular subset of feature maps from earlier layer. 

This helps to further reduce the computational cost. 

Subsampling (Pooling) Layer: The purpose of subsampling layer is to reduce the 

size of feature map to consequently reduce variance. The feature map is spited 

into several non-overlapped cells, and the maximum or mean feature of this cell 

is taken as output to form pooled features. 

Fully Connected Layers: The fully connected layers are a MLP connecting to the 

convolutional part of CNN to perform the classification. Unlike convolutional 

layers, these layers fully connect to their earlier layers. The size of the feature 

map keeps reducing with every new convolution and sampling operation in hi-

erarchical layers. With proper selected parameters , the size will reduce to 1 x 1, 

thus all the feature maps can be stacked into one single vector as the input to 

MLP. 

CNN employs the backpropagation algorithm with gradient descent for learning 

purpose. To begin with, CNN computes the output of each input samples and finds 

out the output error by comparing it with the correct label. After that, the error 

is backpropagated to each layer to compute the gradient of the error. Finally, the 

parameters of CNN are adjusted according to the gradient. This approach repeats 

until convergence is reached. 
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Although many techniques such as shared weight are employed to simplify the 

model, CNN is still an architecture of high complexity and consequently is hard to 

train. First , the learning approach itself is computational expensive. With the in-

creasing number of processing layers , the gradient tends to be unstable which means 

the parameters are hard to converge. This issue is partially solved by using more 

powerful computer hardware, especially by leveraging GPU computing techniques. 

Second, since there exist thousands or sometimes millions of parameters in one CNN, 

the model is easily overfitted. Therefore, a large amount of training data is desired. 

However , regarding to the face recognition, the available samples are usually quite 

limited. One common solution is to learn the the networks with outside data. For ex-

ample, all the CNN which achieve state-of-the-art in the LFW benchmark are learned 

by massive outside data [9 , 10, 11 , 12, 13, 14]. 
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Chapter 4 

Proposed Algorithm 

In this chapter, a simple but powerful deep learning architecture called Local Binary 

Pattern Network (LBPNet) is proposed so as to provide a novel tool for face recog-

nition. In the rest of this chapter, we will firstly describe the LBPNet architecture 

in details. Next, an introduction on video-based face recognition on LBPNet will be 

given. 

4.1 Architecture 

The architecture of LBPNet can be divided into two parts: (i) deep network for 

feature extraction, and (ii) regular network for classification. The overall diagram of 

our proposed system is shown in Figure 4.1. 

Two layers in the deep network, which use LBP and PCA filter respectively, are 
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Figure 4. 1: A schematic diagram of LBPNet . 



hierarchically connected to extract high-level over-complete representations of the 

images. Two such networks are connected with the classification networks, allowing 

taking two images as the input. Hence, the similarity measurement can be performed 

based on the extracted features. The decision is made according to the output of 

the network which is the similarity of these two images: in identification system, the 

face with the highest similarity in gallery set is chosen as the identity of the probe 

image; in verification system, the hypothesis is accepted or rejected by thresholding 

the similarity value. Details of each layer are described in the following subsections. 

4.1.1 LBP Filter Layer 

A filter in image processing is a neighbourhood operation, of which the output is 

computed by applying an algorithm to the values of the pixels in the neighbourhood 

of the corresponding input pixel. In the LBP filter layer, the filters are based on LBP 

operator described in [19]. The LBP operator, LBP;,,'t, labels each pixel 9c in the 

image by thresholding its P surrounding points gP (p E [1 , Pl) and stacking labels lp 

(defined in Eq. 4.1) into one binary string 

{ 

1, when gp > 9c 
lp = 

0, when 9p ~ 9c 
( 4.1) 

The points are sampled from a circle of radius of R, whose centre is at 9c· In addition, 

we use the unique pattern ( denoted as u2 in the operator) to encode the labels. The 

feature generated in the filter is formulated as 

(4.2) 
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where z is the size of the filter , and B(v) is 1 when vis true; 0 otherwise. 

Note that here the square root of the LBP histograms is used to increase the 

discrimination ability [28]. By replicating the kernel, a 3-dimensional feature cube is 

generated from the image. 

To capture multi-scale representations of the image, the computation is repeated 

in the LBP filter layer using multiple kernels subject to different combinations of LBP 

radius, rand filter size, z. The features obtained in this layer represent the multi-scale 

LBP histogram features of the image. When considering them as one feature vector, 

it is of high dimensionality, which can be over lOM in our experiments. 

4.1.2 PCA Filter Layer 

The objective of this layer is to generate outputs from the input features which is both 

lower in dimensionality and higher in the capability of abstraction. In the context of 

face recognition, the outputs represent multi-scale patch-based features. The objective 

is mainly achieved by performing PCA on each computation window. 

To start with, the input features are sampled and concatenated into the vector Pz , 

which is given by 

Pz =[hr1 ,z(u , v) , hr1 ,z(u + s , v) , ... 

hrk ,z(u+n x s,v+n x s)] 

n = lM/sJ 

(4.3) 

( 4.4) 

where the size of the filter is M x M, s is the sampling stride, hr,z ( u, v) is the feature 
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vector located at the u-th column and the v-th row of the feature cube generated by 

the LBP filter with sample radius r and size z. ( u, v) denotes the starting point of 

sampling. Considering the feature extraction is in a dense grid in the earlier layer, 

the features are highly redundant - in general, two neighbourhood features can share 

up to 90% of the same LBP labels. Therefore, features are sampled to reduce the 

resulting vector length while preserving the critical discriminative information. 

Here, the PCA filter only computes based on the feature cubes that are generated 

by LBP filters of the same size. This resembles the partial connections between 

convolutional layers in CNN. We find it helps simplify the computation and increase 

the discrimination ability. 

After obtaining the concatenated vector, we reduce the dimensionality by PCA 

projection. In general, for a given matrix A, PCA seeks a transformation matrix, W , 

which minimizes the reconstruction error, IIA - wr All. The solution is known as 

the matrix constructed by the first n eigenvectors of the covariance matrix C = AT A 

when A is zero mean. In our case, the input matrix, A, is formed by 

(4.5) 

where qi is defined as 

(4.6) 

In this method the extracted feature (Pi) yields another vector ( qi) by subtracting the 

mean vector of the entire training set from itself. 

In the context of face recognition, high variability of images generally corresponds 

to the change of illumination, facial expression, etc. Such impact of high variability 
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can be reduced by downweighting the high variance directions whereas increasing 

the weak ones, since the discriminative information are uniformly distributed over all 

directions of the data [24]. Here, we normalize all the eigenvectors by whitening, the 

transformation matrix is then expressed as 

1 1 1 

W = [>.~ 2 x1, >.; 2 x2 , ... A~ 2 Xn] (4.7) 

where >.i is the eigenvalue of the corresponding eigenvector Xi- The output feature is 

then extracted by 

(4.8) 

where Wi is the whitened PCA transformation matrix. Same as the first layer, multi-

scale representation can be obtained using multiple filters with different parameters. 

Here we vary the starting point , (i , j) , and leave other parameters unchanged. Figure 

4.2 shows an example of 4 filters with different starting points . The diagram of the 

deep part of LBPNet consisting of the first two layers is presented in Figure 4.3. 

The outputs of the deep network represent patch-based over-complete features of the 

image. 

(u,v)=(l,1) (u,v)=(l,5) (u,v)=(S,1) (u,v)=(S,5) 
I + + + + + + + 

l 
-,-

+ + + + + + + + + + + + + + + + 
+ + + + + + + + + + + + + + + + 
+ + + + + + + + + + + + + + + 

I + + + + + + + + + + + + + + -,- -t-

Figure 4.2: 4 different PCA filters. Only vary the starting point of sampling and keep 
other parameters unchanged. 

42 



//-
// l·--•• ' 

-

., '' ··---... //LBPs.3, =12 

,' ~: - - - ----- ·:.::::,.:,,... 

LBP8 2, z=12 //-
', -· , , --~----- ,, ,.LBPs,3, '\ ;,- ........ ' ,' -.. ": ,., ... 

!_ __ ·······-···············--

=10 

~ 
\ Sampling and projection 

LBPs,2, z=lO 

u,v}:(1, 1} 

1.1,v)={l,S) 

Dense feature 
of the image 

Figure 4.3: The deep part of LBPNet. The feature cubes are represented as 2-
dimensional map. 

4.1.3 Similarity Measurement Layer 

Two deep networks are connected to accept two images as the input. The extracted 

features in the upper layer consist of two subsets from each image, respectively. The 

regional similarity scores, c\ , are computed pairwisely between two corresponding 

features . Here we use angle-based measure, cosine similarity, which is formulated as 

a i · a t i 8i =----llai ll llati ll (4.9) 

where a i, a ti are two features from upper layers, respectively. The output of these 

layers represents the regional similarity of two faces in specific scale. 
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4.1.4 Aggregation Layer 

In this layer, we reduce the number of regional similarities before training the network. 

It is assumed that the similarities of the same coordinate in different map contribute 

equa.lly to the final score, then all the maps are aggregated into one map by 

1 J 
>.=-'"""6 · i J ~ i,J 

j=l 

(4.10) 

where 6i ,j is the i-th score in j-th map , and J represents the total number of maps. 

4.1.5 Output Layer 

The unsupervised learning is the deep learning part of LBPNet. To provide unsuper-

vised learning on the output layer , the output >, is computed as 

(4.11) 

where I represents number of patches. This method uses the average of all regional 

similarities as the overall similarity. However, the performance can further boost by 

training this layer in supervised manner. It is done by assigning different weight ai 

for each Ai to compute the overall similarity: 

(4.12) 

The coefficients, { a 1 , a2 , ... a1 } , should maximize the similarity, A, between same 

people and minimize it between different people. In practice, we use linear-SVM to 

44 



determine the coefficients. 

4.2 LBPNet for Video Based Recognition 

Although LBPNet is initially designed for still image face recognition, it is also possible 

to use it for video based tasks. The naive algorithm is to use all frames in video as 

gallery set. However, the number of available frames is too high that this algorithm is 

computational unfeasible. Following [46] , after aligning all faces to the same position, 

we average the LBP features of them in the first layer to form a mean feature vector: 

(4.13) 

where h'ic(l) is the k-th LBP feature in the l-th frames and hk is the mean feature of 

k-th cell in the video clip. Once the mean feature vector is generated, it can be used 

as the feature from still image in LBPNet. 
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Chapter 5 

Experiment Design 

We experimentally validate our framework on the public benchmarks FERET [47], 

LFW [1 , 2] and YTF [4] datasets. In this chapter , the database as well as the exper-

iment setting will be introduced. 

5.1 Experiment on Face Identification: FERET 

To evaluate the capability of LBPNet on face identification, we use one of the well 

known Face Recognition Technology (FERET) [47] dataset. This dataset contains 

controlled images of 1, 196 individuals. It contains one gallery set and 4 probe sets: 

(i) Fb set , which is taken in the same condition but with different facial expression, 

(ii) Fe set, which is taken in different light condition, (iii) Dup-1 set , which is taken 

between one minute and 1031 days after the gallary set, (iv) Dup-lI set, which is a 

subset of Dup-1 and is taken after at least 18 months. 
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Figure 5.1: Examples from FERET dataset. Pictures in the upper line are probe 
images and the pictures beneath them are the matching ones on gallery set. 

The original FERET dataset is provided with a ground truth information file where 

eyes positions are recorded. We use CSU tools to perform the face normalization 

and crop the centre region of 150 x 130 according to this file. The images are also 

preprocessed following the suggestion by Tan et al. [48]. All the parameters in this 

experiment are listed in the Table 5.1. 

Table 5.1: Parameter settings for experiment on FERET 

LBP filter 
LBP operators 
LBP filter size 
PCA filter 
PCA filter size 
sampling stride in the window 
starting point of sampling 
PCA dimension 
stride of the PCA filter 

{ LBP2~ , LBP3~ , LBPlD 
c={ll , 12} ' ' 

w = 110 
81 = C 

i,j E {1 , c/2} 
d = 1800 
82 = 10 

5.2 Experiment on Face Verification: LFW 

For the face verification task, the de-facto evaluation benchmark, Labeled Faces in 

the Wild [1 , 2] dataset, is used to evaluate our framework. LFW is an image dataset 
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for unconstrained face verification which contains 13,233 images of faces of 5, 749 

individuals. Each face has been labelled with the name of the person pictured. We 

use the view 2 of dataset which comes with a 10-fold split for cross validation. 

We conduct two different experiments on LFW: experiment under unsupervised 

in which the model is trained without knowing the label information and without 

the outside data; experiment under restricted setting in which we train our classifier 

without any outside data. 

We use the LFW-a dataset which is aligned by commercial software and crop the 

centre of the images of size 170 x 100. We use the same parameter settings of the 

LBPNet as the experiment on FERET with some exceptions (Table 5.2)) 

Table 5.2: Parameter Settings for experiment on LFW 

LBP filter 
LBP operators 
filter size 
PCA filter 
PCA filter size 
sampling stride in the window 
starting point of sampling 
PCA dimension 
stride of the PCA filter 

{ LBP1~, LBP2t LBP3D 
c= {16, 12, 14,i6, 18, 26} 

w = 80 
S1 = C 

i,j E {1,c/ 2} 
d = 500 
S2 = 10 

5.3 Experiment on Video Based Face Recognition: 

YTF 

To evaluate the capability of our framework on video based face recognition, the 

popular YouTube Faces (YTF) [4] dataset is used. YTF is a video dataset for un-
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(a) Matching pairs 

(b) Mismatched pairs 

Figure 5.2: These are first 7 matching and mismatched pairs of LFW dataset under 
view 2. Images are obtained from the provided LFW-a dataset which is aligned version 
of LFW dataset. The centre regions of size 170 x 100 are cropped. 
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constrained face verification. The dataset contains 3, 425 images of faces of 1, 595 

individuals whose names come from LFW. Each video contains 181.3 frames on av-

erage. Similar as LFW, it comes with a 10 subsets for the restricted protocol. The 

quality of the picture on YTF is generally worse than LFW. 

We use the aligned version of the database and crop the centre region of size 

170 x 100 as on LFW. All the parameters are listed in Table 5.2. 

Table 5.3: Parameter Settings for experiment on YTF 

LBP filter 
LBP operators 
filter size 
PCA filter 
PCA filter size 
sampling stride in the window 
starting point of sampling 
PCA dimension 
stride of the PCA filter 

50 

{LBPt~, LB Pt~ , LBP;§} 
C = {12, 14, 16} 

w = 80 
81 = C 

i,j E {1 ,c/2} 
d = 500 
S2 = 10 



(a) Example of matching pairs 

(b) Example of unmatched pairs 

Figure 5.3: These are the sampled frames from the first matching and unmatched 
pairs of YTF dataset. Frames are aligned and the centre regions of size 170 x 100 are 
cropped. The quality of images is significant worse than LFW dataset . 

51 



Chapter 6 

Results And Analysis 

6.1 Results on FERET 

Table 6.1 lists the recognition rate of our framework on FERET dataset as well as 

some other known approaches. All the results are from their original papers. For 

the purpose of completeness, we list all the methods known to us. However, to fairly 

evaluate the LBPNet, only the single type descriptor based unsupervised methods are 

considered comparable to the LBPNet . As shown in the table, the LBPNet obtains 

0.978 in mean recognition accuracy. It outperforms the current best by 0.2%. When 

looking at each particular probe set, the LBPNet achieves closely matched (on Fb) , 

same good (on Fe) or better (on Dup-1 and Dup-11) results. On the most challenged 

Dup-11 probe set, the LBPNet suppresses the current best result (91.0%) in 2.6%. It 

should be noted that: i) although the supervised learning (use a subset of the dataset 

to learn their model) and fusion descriptor can increase recognition accuracy, the 
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Table 6.1: Comparative results of various methods on aligned FERET dataset 

Methods Fb Fe Dup-I Dup-II Meant Comments 
LGBPHS [38] 0.94 0.97 0.68 0.53 0.85 Fusion 
Tan&Triggs [26] 0.98 0.98 0.90 0.85 0.95 Fusion+supervised 

Supervised or/and fusion MLBP [22] 0.992 0.995 0.900 0.855 0.961 Supervised 
methods S[LGBP _Mag-LGXP] [49] 0.99 0.99 0.94 0.93 0.97 Fusion +supervised 

sPOEM+POD [50] 0.997 1.00 0.949 0.940 0.980 Fusion 
GOM [51] 0.999 1.00 0.957 0.931 0.984 Supervised 

e;, 
c.,.;, LBP [19] 0.93 0.51 0.61 0.50 0.78 

LBP Template [43] 0.989 0.928 0.760 0.634 0.905 

Single descriptors based un- LGBPWP [52] 0.981 0.989 0.838 0.816 0.933 
LBP-DLMA [53] 0.994 0.993 0.887 0.869 0.957 supervised learning methods POEM [31] 0.996 0.995 0.888 0.850 0.959 
G-LQP [24] 0.999 1.00 0.932 0.910 0.976 
LBPNet 0.996 1.00 0.942 0.936 0.978 

t Computed by Fb+Fc+Dup-I s ince Dup-II is the subset of Dup-I 



LBPNet still outperforms most of them; ii) some competitive methods (i.e., [24, 50, 

52]) extract descriptors from the Gabor images ( extracted by Gabor filters from the 

intensity images) , which may bring advantages comparing with the regular descriptors. 

6.2 Results on LFW 

Table 6.2 and Figure 6.1 show the results and ROC on LFW under unsupervised 

setting comparing with other baselines and state-of-the-art results. Only the single 

descriptor based methods are listed in the tables for fairly comparison. The LBPN et 

achieves 0.9404 under this setting which is ranked third best among all. It closely 

matches the first and second best ones, which are 0.9428 and 0.9405 respectively. 

Table 6.2: Comparative results of various methods on LFW dataset view 2 with 
unsupervised setting 

Methods AUC Alignment 

SD-MATCHES [54] 0.5407 
H-XS-40 [54] 0.7547 
GJD-BC-100 [54] 0.7392 
LARK [55] 0.7830 
MRF-MLBP [56] 0.8994 LFW-a + MRF 
Pose Adaptive Filter [57] 0.9405 PAF(3D alignment) 
Spartans [58] 0.9428 3D Generic Elastic Model 
LBPNet 0.9404 LFW-a 

Regarding to the experiment under restrict setting, the results are reported in 

Table 6.3 and ROC curve are plotted in Figure 6.2. The LBPNet achieves promising 

results , whose average accuracy is 0.8772. 

It should be note that most state-of-the-art methods employ sophisticated face 

register modules (e.g., 3D Generic Elastic Model in [58]) or/ and classifiers (e.g. , Joint 
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Table 6.3: Comparative results of various methods on LFW dataset view 2 with 
image-restricted no outside data setting 

Methods 

Nowak [59] 
Hybrid descriptor-based [60] 
3x3 Multi-Region Histograms (1024) [61] 
Pixels/MKL [62] 
Vl-like/MKL [62] 
MRF-MLBP [56] 
APEM [33] 
Fisher vector faces [36] 
Spartans [58] 
Eigen-PEP [35] 
POP-PEP [34] 
MRF-MBSIF-CSKDA t [63] 
LBPNet 

µ±Ss 
0.7393 ± 0.0049 
0.7847 ± 0.0051 
0.7295 ± 0.0055 
0.6822 ± 0.0041 
0.7935 ± 0.0055 
0.7908 ± 0.0014 
0.8408 ± 0.0120 
0.8747 ± 0.0149 
0.8755 ± 0.0021 
0.8897 ± 0.0132 
0.9110 ± 0.0147 
0.9363 ± 0.0127 

0.8772 ± 0.0040 

Classifier 

Joint Bayesian 
CoMax-KCFA 
Joint Bayesian 

LDE 
CSKDA 

Cosine Similarity 

t We only list the result which shows the best performance among the three reporting descriptors (i.e. , MLBP, MLPQ, 
MBSIF) in their paper 

Bayesian in [35]). Since in this experiment we just leverage the provided aligned 

dataset and employ simple NN classifier, the performance is compromised. Potential 

improvement is expected if we adopt similar strategies, but it is not our focus in this 

thesis. 

6.3 Results on YTF 

Table 6.4 reports our results on YTF comparing with other state-of-the-art methods. 

To fairly evaluate our method, we only select methods which do not require outside 

data for learning ( same protocol as restrict setting on LFW). Our result is ranked 

second best in terms of both accuracy and AUC. When only comparing LBP based 

methods , our method outperforms all the other methods, especially improves the 
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Table 6.4: Comparative results of various methods on YTF with image-restricted no 
outside data setting 

Methods nm bm,gg mmn;lb AUC EER 

Min dist, FP1BP [4] 65.6 ± 1.8 70.0 35.6 
Min dist , 1BP [4] 65 .7 ± 1.7 70.7 35.2 
11u1,u211, FP1BP [4] 64.3 ± 1.6 69.4 35.8 
11u11u211, 1BP [4] 65.4 ± 2.0 69.8 36 
MBGS 12 mean, FP1BP [4] 72.6 ± 2.0 80.1 27.7 
MBGS 12 mean, 1BP [4] 76.4 ± 1.8 82.6 25.3 
MBGS+SVM- [64] 78.9 ± 1.9 86.9 21.2 
APEM-FUSION [33] 79.1 ± 1.5 86.6 21.4 
Eigen-PEP [35] 84.8 ± 1.4 92.6 15.5 
LBPNet unsupervised NA 87.6 19.9 
LBPNet 81.6 ± 0.4 88.1 20.0 

accuracy of 1BP baseline method [4] about 15%. 

We also report unsupervised results in Table 6.4. The insignificant difference 

between their AUC also implies that the performance is compromised because of the 

simple NN classifier. 

6.4 Comparison With Baseline LBP methods 

In addition to the deep learning architecture, 1BPNet introduces two techniques based 

on the original 1BP approach: (i) square root 1BP descriptor , and (ii) WPCA that 

are used on extracted features. To further confirm the major improvement of 1BPNet 

that comes from the adopted deep learning architecture, in this section we experimen-

tally compare 1BPNet to the variations of 1BP method that have been created by 

combining 1BP with the techniques reported in [28]. For ease of reference, we define 

these methods as baseline 1BP methods. 
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Regarding to the parameter settings, we use the operator LBPt~ and cell size 10 

for LBP and the select first 800 principal dimensions in PCA. Note that the LBP 

baseline result is different from [28] because different parameters and cropping region 

are used to keep consistency with the experiments in Chapter 5. 

Table 6.5: Comparative results of baselines and LBPNet on FERET 

Methods Fb Fe Dup-1 Dup-II Mean 
LBP 0.966 0.974 0.706 0.684 0.878 
sqrtLBP 0.976 0.974 0.755 0.735 0.900 
sqrtLBP + WPCA 0.992 0.995 0.837 0.786 0.939 
LBPNet 0.996 1.00 0.942 0.936 0.978 

All the results on FERET are reported in Table 6.5. sqrtLBP denotes using the 

square root of the LBP operator and sqrtLBP+ WPCA denotes using both the square 

root and WPCA of the extracted features. It can be concluded that LBP combining 

with these two techniques improve the performance considerately. sqrtLBP+WPCA 

outperforms LBP by 12% in terms of the mean accuracy. The LBPNet then further 

improve the accuracy by 4%. Especially in the most difficult probe sets Dup-1 and 

Dup-Il, LBPNet makes impressively improvement which are 10% and 14% respec-

tively. 

Table 6.6: Comparative results from LBPNet and baseline methods on LFW 

Methods 
LBP 
sqrtLBP 
sqrtLBP + WPCA 
LBPNet 

AUC (Unsupervised) 
0.7714 
0.7765 
0.8849 
0.9404 

Accuracy (Supervised) 
0. 7088 ± 0.0058 
0.7108 ± 0.0041 
0. 7793 ± 0.0053 

0.8772 ± 0 .0044 

Not surprisingly, the results on LFW show the same pattern of achievement (Table 

6.6). Square root LBP and WPCA greatly improve the performance of the original 

LBP approach, and the LBPNet further increases the accuracy by nearly 10%. 
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Table 6.7: Different predictions of baseline method (TT +sqrtLBP+ WPCA) and LBP-
Net on FERET 

Probe set Total Number Different Predictions Progression Regression 
Fb 1195 8 8 0 
Fe 194 1 1 0 
Dup-1 722 113 81 7 
Dup-11 234 47 36 4 
Fb+Fc+Dup-1 2111 122 90 7 

Therefore, in both two cases the LBPNet brings significant improvements compar-

ing with baselines. Considering all experiments are under the same settings, the only 

possible source of the improvement is the unique deep architecture in the LBPNet. In 

the rest of this section, we will further discuss the predictability and discrimination 

ability changes by study the distribution of their predictions. 

6.4.1 Predictability 

Although it has been demonstrated that LBPNet increase the overall recognition 

capability, it is still unclear that how it impacts to each individual class on the dataset. 

For ease of discussion, here we define: for every different prediction LBPNet makes , 

when it is a correct prediction, we call it a progression; otherwise, it is a regression. 

If the new method introduces not trivial number of regressions, it means this method 

at least is not superior than its baseline in some particular scenarios. 

Table 6.7 shows predictability differences between LBPNet and its baseline. Some 

examples of different prediction by the baseline and the LBPNet are shown Figure 

6.4. For probe set Fa and Fb which is recognized as easy to identify, the two methods 

predict same labels for most classes. All the different predictions on these two probe 

sets are progression. In the case of more challenged probe sets Dup-1 and Dup-11, 
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the LBPNet only gives 4 and 7 regressions. For the whole dataset , LBPNet gives 

regressed predictions on only 6% of samples. This result clearly shows that LBPNet 

improves the predictability of its baseline monotonously in almost all the conditions. 

6.4.2 Discrimination ability 

Here we define discrimination ability as how well the algorithm can cluster inputs 

into groups. In a perfect face recognition system, the (normalized) similarity of two 

images should be 1 when they are from the same person, and O for the different ones. 

However, this goal is unrealistic since someone (e.g., siblings) have more similar faces 

than others which will influence the similarity measurement. The similarity is thus 

always some value in between. The discrimination ability of a particular algorithm 

is measured by how significant the differences of the similarities are between different 

classified groups. 

Two different algorithms with different discrimination abilities can give same one 

correct prediction for a particular dataset as shown in Figure 6.5. However, the one 

represented by Figure 6.5(a) is apparently worse than the other since it smears all 

the classes together. With only a small change on the classifier, it will fail on this 

classification task. In this section, the discrimination ability improvement of LBPNet 

will be discussed. 

For the face identification system, we compare the subsets with the highest and 

second highest similarity (i.e., the first and second guess of the prediction). Higher 

distance between them indicates that this algorithm can better differentiate the target 

class from others. Table 6.8 presents the computed distances which is normalized by 

the max similarity. The table clearly shows that LBPNet better separate the images 
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into two categories with normalized distance of 0.22 whereas it is only 0.06 and 0.19 in 

baselines, respectively. We also compare them only on their correct labelled classes. 

The results consistent with former ones with only about 0.005 increment for both 

three algorithms. It means that even for the subset of 100% correct labelled classes , 

LBPNet separates them with larger margin in the feature space. 

Table 6.8: Mean normalized distance between the highest and second highest similar-
ity from various algorithms on FERET 

Methods Distance Distance On Correct Prediction Set 
TT +sqrtLBP 0.0643 
TT+sqrtLBP+WPCA 0.1945 
LBPNet 0.2216 

0.0722 
0.2092 
0.2268 

For the face verification system, we carry out statistic analysis on the "matching 

pairs" and "mismatched pairs" set separately. The results are summarized in Table 

6.9. The similarity are normalized by the max similarity of the whole dataset. The 

differences between the two means are about 0.09 in all these three compared algo-

rithms. However , the standard deviations of the LBPNet are lower than the others. 

Specifically, the standard deviation of the matching set of the LBPNet is significantly 

lower than others. It means for the images from the same person, LBPNet gives con-

stantly high similarity near to 1. This is well consistent with our intuitions in that 

people may rank the similarity level of different people in a large variance, but always 

give the same highest score for pictures from the same one. 

Table 6.9: Distribution of the similarity computed from various algorithms on LFW 

Mismatched Pairs Matching Pairs 
Methods Mean STD Mean STD 
LBP 0.6079 0.0967 0.6975 0.0669 
sqrtLBP+ WPCA 0.8110 0.0889 0.9014 0.0304 
LBPNet 0.8639 0.0841 0.9527 0.0168 

Figure 6.6 shows the distributions of the baseline methods and the LBPNet. It 
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shows that although the mean distance keeps unchanged in these three methods, 

the discrimination ability varies because of the different of distribution. In LBPNet 

the curve of the matched set becomes tall and narrow which corresponds the lower 

standard deviation in Table 6.9. The curve of mismatched pairs set turns asymmetric 

with long tail in the opposite side of matching pair set. It also shows the increasing 

of discrimination ability even the standard deviation value does not reduce a lot. 
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Probe Image 
Prediction By 

LBPNet 
Prediction By 

Baseline 
Correct 

Classification 

Figure 6.4: Examples of different predictions by baseline and LBPNet . From top to 
bottom, the first two are progressions and t he third is regression . The last one none 
of them classify t he subj ect correctly, t hus it is neither progression nor regression. 
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Chapter 7 

Conclusions and Future Work 

7 .1 Con cl us ions 

In this thesis, a novel tool for face recognition named Local Binary Pattern Network 

(LBPNet) is proposed. This work is inspired by the successful LBP method and 

Convolutional Neural Network (CNN) deep learning architecture. 

The LBPNet consists of two networks connected together: deep network part for 

feature extraction and simple network for classification. In feature extraction network, 

the discriminative representations are extracted progressively by two different filters: 

LBP filters and PCA filters. LBP filters are based on LBP descriptors described in 

[19], while PCA filters reduce feature dimensionality by feature selection and subspace 

projection. All the two filters are replicated densely on the input maps. In each 

layers, filters with different parameters are employed to capture multi-scale statistic. 

The extracted features in LBPNet are: (i) high-level features extracted from low-
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level LBP features , which are more robust to variability; (ii) over-complete features 

which contains redundant information from overlapped filters and multi-scale analysis. 

The classification network is based on a simple nearest neighbourhood classifier. By 

connecting to two feature extraction networks, two sets of features from two different 

images are accepted, and the overall similarity are computed hierarchically in this 

part. 

Extensive experiments were conducted on several public benchmarks (i.e., FERET, 

LFW and YTF) to evaluate our method. LBPNet achieves promising results compar-

ing to the other methods in the same category: its results outperforms ( on FERET) or 

is comparable ( on LFW and FERET) to other methods in the same categories, which 

are single descriptor based unsupervised learning methods on FERET and LFW, and 

single descriptor based supervised learning methods with image-restricted no outside 

data settings on LFW and YTF, respectively. We also conducted experiments between 

LBPNet and the baseline LBP methods. The baseline LBP methods are defined as 

the original LBP method or it combining with one or more techniques used in LBP-

Net . The results showed that LBPNet improves the baselines fundamentally in terms 

of both predictability and discrimination ability. 

Comparing with CNN, the LBPNet retains a similar topology: (i) the network 

employs multiple processing layers to gradually extract features; (ii) features are ex-

tracted in a heavily overlapped manner; (iii) layers are partially connected to simplify 

the model; (iv) multiple kernels are used in one lay to obtain multi-scale representa-

tions. The most significant architectural difference between LBPNet and CNN is that 

LBPNet uses off-the-shelf computer vision descriptor (LBP descriptor, in our case) 

instead of trainable convolution kernel in CNN. Comparing with the regular LBP and 

CNN method, the LBPNet has the following achievements: 
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High Accuracy Comparing with the original shallow LBP method, LBPNet, which 

is a deep learning architecture based LBP method , improves the recognition 

accuracy significantly. The extensive experiments show that the main improve-

ments come from its deep learning architecture. 

No costly learning approach required Two layers in LBPNet are learn-based layer: 

PCA filter layer (supervised and unsupervised learning) and output layer (su-

pervised learning only). Comparing with regular CNN method whose learning 

is based on back-propagation and gradient decent , the learning approaches on 

these two layers are simple and fast. 

Comparing with the regular CNN method, LBPNet avoids the computation 

expensive learning approach. LBPNet only require a simple learning stage in 

PCA filter layer and output layer (supervised learning only). The 

No additional training data required The regular CNN needs to be learned on 

massive training data due to the large number of parameters it contains, while 

the LBPNet can be learned on a relatively small training set. As a result , the 

LBPNet do not require outside data to train its model even on the challenging 

LFW and YTF datasets. 

7.2 Future Work 

Some of many areas which are potential to continue to enhance our proposed frame-

work are summarized as follows. 

• Although LBPNet is proposed based on LBP descriptor , this deep learning 
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network is not limited to it. One possible alternative is SIFT descriptor [20] 

which is utilized by many state-of-the-art systems [36 , 35, 34]. 

• The dimensionality can be reduced discriminately with supervised learning al-

gorithm (e.g. , LDA) instead of PCA in the second layer. 

• It is possible to fold more processing layers in deep network part of LBPNet. 

Comparing with regular CNN which usually contains three or more layers, the 

abstraction level of extracted features in LBPN et may not be as high as in CNN. 

• The results on LFW and YTF under supervised learning protocol (Table 6.3 

and Table 6.4) suggest that , superior results can be achieved with sophisticated 

classifiers. Replacing the simple NN classifier in LBPNet with other learn-based 

method (e.g. Joint Bayesian [65]) could improve performance in this category. 
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