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Abstract

This thesis proposes a new interaction protocol for direct help in agent teamwork. 

It addresses design questions that may arise in practical systems development, and 

achieves higher teamwork performance impact than previous versions of the Mutual 

Assistance Protocol (MAP). Direct help, such as performing an action on teammate’s 

behalf, is deliberated by team members as need arises, rather than imposed by team 

organization or centralized mechanisms. The deliberation can start with a request for 

help, or with an offer of help; the two design principles have been embodied in two 

distinct versions of MAP. Based on their observed complementarity, we refine and 

combine them into a single protocol that leverages their individual advantages. Its 

novel features let an agent initiate help deliberation with request or offer, and also 

simultaneously provide and receive help. Simulation experiments demonstrate its 

team performance gains while varying the environment dynamism, agent resources, 

and communication costs.
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Chapter 1

Introduction

Teamwork in multiagent systems is a rapidly evolving field of study with rising re

search motivations in the last two decades. Agents are autonomous intelligent entities, 

situated in an environment, and performing tasks that are delegated to them. They 

can react to changes in the environment, formulate and proactively pursue their own 

goals, and interact socially with other agents and humans [Wooldridge, 2009]. In 

particular, intelligent agents can exhibit collaborative behavior in a team in order to 

achieve a joint objective. The groundwork for studies of agent teamwork has been 

provided in the fundamental papers by Levesque et al. [1990], Cohen and Levesque 

[1991], Wooldridge and Jennings [1994], Rao and Georgeff [1995], Grosz and Kraus 

[1996], and Dunin-Keplicz and Verbrugge [2010]. Early work also included develop

ment of multiagent software platforms [Georgeff and Lansky, 1987] and applications of 

agent teamwork [Ljungberg and Lucas, 1992]. More recently, technological advances 

in intelligent distributed systems increasingly motivate research on agent teamwork 

from an engineering perspective.
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The collaboration in an agent team can incorporate helpful behavior among the 

teammates, inspired by effeetive human teamwork context. The potential benefits of 

helpful behavior to human team performance are recognized in management practice 

[LePine et al., 2000]. Helpful behavior in agent teamwork refers to a collaborative 

act performed by one agent in order to assist its teammate. Different mechanisms 

for assistance between teammates by executing actions or providing information have 

been proposed in the last two decades [Itoh, 1991, Miceli et al., 1994, Yen et al., 2004, 

Cao et al., 2005, Fan et al., 2005, Kamar et al., 2009, Polajnar et al., 2012].

Helpful behavior among agents can be enforced by their global team organization 

or a centralized meehanism, or it can be specified as direct help, which is initiated by 

individual agents as need arises and bilaterally agreed upon by the agents involved in 

the help act. Direct help is specified as a possible component, of team strategies for 

decentralized and reactive adjustment of team behavior to an unpredictable changing 

environment [Polajnar et al., 2014], The growing practical importance of multiagent 

systems motivates the investigation of potential benefits in team performance from 

incorporation of direct help mechanisms.

In order to investigate the practical impact of direct help upon team performance 

from an engineering perspective, one needs to develop interaction mechanisms. Agent 

interaction protocols specify interactive behavior of individual agents dealing with 

each other. Nalbandyan [2011] and Polajnar et al. [2012] introduce the Mutual Assis

tance Protocol (MAP), with its subsequent elaboration in [Nalbandyan et al., 2013], 

which specifies a direct help mechanism for an agent team with heterogeneous skill 

profiles, situated in a dynamically changing environment. The mechanism is based on 

a bilateral distributed agreement in which both requester and helper agents jointly 

decide on performing a help act, in contrast with unilateral approaches as in [Ka-

2



mar et al., 2009], in which only one side of the help transaction makes the decision. 

MAP has two different generic types: Action MAP, that enables teammates to help 

each other by directly performing actions, and Resource MAP, that enables team

mates to help each other by providing the needed resources. Simulation experiments 

in [Polajnar et al., 2012] suggest behavioral advantages of employing Action MAP 

over unilateral help protocols when communication cost is relatively low compared to 

agents’ action costs.

Deliberation on possible direct help can be initiated in two different ways. In 

the requester-initiated approach, the opening message of the help transaction is a 

request for help; in the helper-initiated approach, the opening message is an offer of 

help. Simulation experiments in [Nalbandyan et al., 2013] show that the Requester 

and Helper-Initiated Action MAP (RIAMAP and HIAMAP) have complementary im

pacts on team performance with respect to varying levels of environment dynamism, 

agent resources, and communication cost. Where one dominates, the other is often 

weak, but jointly they maintain superiority over all other Action MAP versions across 

the parameter space. This observation has raised the research question of whether a 

possible combination of the two different approaches might exhibit a superior perfor

mance.

In this thesis, we approach this research question by designing new protocols, 

developing simulation models for them, exploring their impact on team performance 

through simulation experiments, and adjusting our model parameters for optimum 

performance. We study agent interaction protocols for direct help in the context of a 

board game microworld, inspired by the Colored IVails game [Gal et al., 2010], and 

used in previous studies of MAP [Polajnar et al., 2012, Nalbandyan et al., 2013]. For 

modeling and simulation, we use the Agent Interaction Modeling Simulator (AIMS)
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framework introduced by Alemi et al. [2014], which allows concurrent simulation of 

multiple teams in identical dynamic environments. It facilitates representation of 

agent interaction protocols and modeling of environment dynamism, and provides an 

interactive simulation mode to gain direct insights into behavior comparisons between 

teams that employ different help protocols, but are otherwise identical and operate in 

identical dynamic environments.

In particular, we investigate an interaction protocol design tha t combines the 

requester and helper-initiated approaches for deliberation on direct help. We start 

with the observation that in the existing requester and helper-initiated protocols, 

RIAMAP and HIAMAP, an agent is only allowed to either provide or receive help 

at any given time. We refine the existing protocols to enable agents to provide and 

receive help simultaneously. The refined protocols, RIAMAP* and HIAMAP*, are 

then composed into a single new protocol that allows help deliberation to be initiated 

by requesters as well as potential helpers. The new protocol, called the Bidirectionally 

Initiated Action MAP (BIAMAP), allows an agent to initiate help deliberation by 

either a request or an offer, and to provide and receive help simultaneously.

The design objective of BIAMAP is to specify an interactive behavior model for 

direct help among agents that incorporates both proactive requesting and proactive 

offering behaviors and optimizes the balance between them in order to leverage the 

advantages of each across a space of parameters representing environment dynamism, 

agent resources, and communication cost.

We represent the new interaction protocols using a particular state-machine for

malism, translate them to executable code in the AIMS framework, and investigate 

them through simulation experiments across the parameter space. We first evaluate 

the team performance impact of enabling individual agents to simultaneously provide
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and receive help, and then the team performance impact of bidirectional deliberation 

on direct help. The simulation results show that RIAMAP* and HIAMAP* outper

form RIAMAP and HIAMAP, respectively, in most situations. They also show the 

superiority of BIAMAP over both RIAMAP* and HIAMAP* in most of the parameter 

space.

In summary, Nalbandyan [2011] and Polajnar et al. [2012] introduce MAP as a 

better performing interaction protocol in comparison to the unilateral protocols in 

situations when the communication costs are relatively low compared to the actions 

costs. RIAMAP and HIAMAP are introduced in [Nalbandyan et al., 2013] as two ad

vanced variations of MAP, which outperform the basic MAP version and demonstrate 

complementary behaviors over the parameter space. In this thesis, first we introduce 

RIAMAP* and HIAMAP*. their refined versions demonstrating performance gains, 

and finally introduce BIAMAP, a composition of RIAMAP* and HIAMAP*, being 

the best-performing variation of the MAP family using the same parameter settings.

The rest of this thesis is organized as follows. Chapter 2 covers the background 

and related work, Chapter 3 describes the research objectives and presents refine

ments of Action MAP, Chapter 4 presents the Bidirectionally Initiated Action MAP 

(BIAMAP), Chapter 5 presents an evaluation of the new protocols in simulation ex

periments, and Chapter 6 presents the conclusions and future work.
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Chapter 2

Background and Related Work

In this chapter, we overview some groundwork together with related recent studies in 

multiagent systems, agent teamwork, helpful behavior in agent teams, agent intraction 

protocols, and the Mutual Assistance Protocol (MAP) family, with the focus relevant 

to this thesis.

2.1 M ultiagent System s

According to [Wooldridge, 2009], an agent is a computer system situated in some 

environment, holding some level of autonomy in order to satisfy its design objectives; 

and a multi-agent system is a system composed of multiple interacting agents within 

an environment. Shoham and Leyton-Brown [2009] describe multiagent systems as 

“systems tha t combine multiple autonomous entities, each having diverging interests 

or different information or both” .
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Wooldridge and Jennings [1995] suggest that in order to consider an agent to be 

intelligent, the agent is expected to hold the following capabilities. An agent needs to 

be reactive, i.e., able to perceive the environment and respond to occurring changes 

in a timely manner; proactive, i.e., able to take initiatives and perform goal-directed 

behavior; and social, i.e., able to interact with agents and possibly humans.

The environments that agents might be situated in can have some general prop

erties classified by Russell and Norvig [1995]. For instance, an environment can be 

deterministic or non-deterministic. In a deterministic environment, each agent’s ac

tion has a single guaranteed effect, and there is 110 uncertainty regarding the resulting 

environment state due to the action. Also, an environment can be static or dynamic. 

In a static case, the environment state only changes by the agent’s actions; while in 

a dynamic case, there are other processes influencing the environment beyond the 

agent’s control. In a basic model of agents interacting with their environments, the 

environment is initially in some state, the agent perceives the current state and per

forms an action in order to influence the environment and achieve a desirable state; 

the environment may respond to the action by transiting to another state which in ad

vance may be unknown to the agent, due to the environment being non-deterministic 

or dynamic. Hence, the agent may fail and try to perform another action in order to 

achieve its goal; and so on. The states of the environment can be associated with real 

values represented by a utility function, specifying how good each state is, letting the 

agent to deliberate on what to do.

Practical reasoning [Bratman, 1987] is a particular model of decision-making in 

contrast with the traditional approach of theoretical reasoning, also known as symbolic 

artificial intelligence. While theoretical reasoning is directed towards beliefs, practical 

reasoning is directed toward actions. In theoretical reasoning, logical theorems are
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used as models of decision making and agents act as theorem provers. In practical 

reasoning, the decision making process consists of two distinct activities. The first 

one, called deliberation, answers the question of what state of affairs to achieve, and 

the second one, called means-ends reasoning, discovers how to achieve these states 

of affairs. The output of deliberation is intention and the output of means-ends 

reasoning is plan. The practical reasoning agents are endowed with mental states 

similar to the ones in human mind, which are used in their decision making processes.

The most popular practical reasoning architecture has been the Belief-Desire- 

Intention (BDI) formalism. In this framework, the agent system is viewed as a ra

tional agent with mental attitudes of belief, desire, and intention, representing the 

informative state, the motivational state, and the deliberative state of the rational 

agent, respectively. The behavior of the system is then determined by these mental 

attitudes and they are critical for desired performance when deliberation is subject 

to resource bounds [Bratman et al., 1988]. Modal logic, by which statements such as 

“necessarily true” or “possibly true” can be expressed [Hughes and Cresswell, 1996, 

Blackburn et al., 2001], has been applied for modelling and axiomatization of BDI 

agents [Rao and Georgeff, 1991, 1993, Georgeff and Rao, 1995].

The Procedural Reasoning System (PRS), developed by Georgeff and Lansky 

[1987], was one of the first and best known agent architectures to explicitly embody 

the BDI paradigm. It has been applied in several practical multiagent applications 

that are successfully used in the real world, such as the OASIS air traffic management 

system [Ljungberg and Lucas, 1992], and the SPOC business process management 

system [Georgeff and Rao, 1996].

Rao and Georgeff [1995] address two main criticisms against formalization of BDI 

agents: the necessity or adequacy of the three mental attitudes, and the utility of



applying modal logic that does not have complete axiomatizations and cannot be 

efficiently computed. They argue the necessity of all three mental attitudes in appli

cation domains where real-time performance is required. They also show that, with 

certain simplifying assumptions, it is possible to build practical BDI systems.

2.2 A gent Teamwork

Agent teamwork refers to the collaboration of individual agents who are committed 

to accomplishing of a particular task. The research on agent teamwork is an active 

field of study, and there have been different approaches to formalization of the mental 

states and semantics needed for agents’ collaborative behavior.

The agent teamwork research started with the BDI framework [Cohen and Levesque, 

1990, Levesque et al., 1990]. Cohen and Levesque [1991] formalize the notions of joint 

action, joint commitment, and joint intention. They argue that a joint action involves 

more than just the union of simultaneous individual actions even when the actions are 

coordinated, and it is done by individuals sharing certain specific mental properties. 

In their work, they investigate joint commitment and joint intention specifications 

based on individual cases such that a team of agents acts as an aggregate agent. The 

individual agents are situated in a dynamic environment in which there is potential 

divergence of mental state. This potential divergence makes the design specifications 

of teamwork complicated since there is tension in acting as an aggregate agent. For 

an agent team with a common goal, in order to hold the team together while letting 

agents have their own private beliefs, each agent treats the common goal as a weak 

achievement goal, i.e., the agent considers the possibility that any agent in the team 

may have privately come to believe that the goal is either achieved, unachievable, or
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irrelevant, and is committed to make that belief mutually known to all other agents. 

Therefore, if any agent comes to believe that the goal is accomplished, not achiev

able, or irrelevant, it drops the common goal, but has a goal that the new status be 

mutually known by all the team members.

The Distributed Constraint Optimization Problem (DCOP) [Mailler and Lesser, 

2004, Modi et al., 2005] is another framework for modeling teamwork in multiagent 

systems. In this framework, the agents cooperate as a team and share a common 

reward function. This framework is useful for modelling distributed reasoning in 

multi-agent domains for being able to perform optimization over a set of distributed 

constraints and having agents’ information private. Formally, for each agent in the 

team, there is a variable from a set V = {x i,x2, over whose value the agent

has control. Variable x* can take on any value from a discrete finite domain Dt. The 

goal of optimization is to change the variable values so that the sum over a set of 

binary constraints and associated payoff or reward functions is maximized. DCOPs 

have been applied to meeting scheduling problems, allocating tasks, and coordinating 

teams of agents [Taylor et al., 2011].

The Partially Observable Markov Decision Process (POMDP) [Kaelbling et al., 

1998] provides a mathematical framework to model sequential decision-making with 

uncertainty. POMDPs consider uncertainty in both agent’s observations and actions. 

An agent in this model keeps a probability distribution over a set of possible states. 

They have been applied to real world domains including robot navigation and ma

chine maintenance [Taylor et al., 2011]. Decentralized POMDPs (DEC-POMDPs) 

are frameworks to model this behavior in multi-agents systems. In general, finding an 

optimal joint policy for general DEC-POMDPs is NEXTP-complete [Bernstein et al., 

2002]. There are two general approaches to this problem. The first one tries to find
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approximate solutions using efficient algorithms [Nair et al., 2003, Bernstein et al., 

2005], which gives no guarantee on the solution quality. The second category tries to 

find the global optimal solution by applying useful DEC-POMDPs’ subclasses [Becker 

et al., 2004, Nair et al., 2005], which lacks expressiveness [Taylor et al., 2011].

While the BDI framework is focused on execution-time reasoning, the DCOP and 

POMDP frameworks focus more on planning-time reasoning and they often fail to 

scale up to large numbers of agents because of high computational cost for a high- 

quality joint policy and also to deal with the model uncertainty. A recent work by 

Taylor et al. [2011] argues that execution-time reasoning is a critical component to 

multi-agent systems and shows that robustly combining execution-time and planning

time reasoning in DCOP and POMDP frameworks results in better performance in 

terms of achieved award, runtime and scalability. It presents new algorithms that 

integrate execution-time and planning-time reasoning and suggests that multi-agent 

community should focus on incorporating more execution-time reasoning.

2.3 H elpful Behavior in Agent Teams

In the last two decades, there has been a research interest in helpful behavior in agent 

teamwork, which specifies mechanisms for assistance between teammates by executing 

actions or providing information [Itoh, 1991, Miceli et al., 1994, Yen et al., 2004, Cao 

et al., 2005, Fan et al., 2005, Kamar et al., 2009, Polajnar et al., 2012],

Kamar et al. [2009] provide a decision-theoretic mechanism for incorporating help

ful behavior in agent teams working on a collaborative activity. The authors argue 

that helpful actions incur some costs to the interacting agents, which may be due
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to communication costs, missed opportunities while helping, adaptations needed for 

receiving the provided help, or interruption costs. They formally integrate decision- 

theoretic and BDI models by incorporating costs and uncertainty into deliberation, 

reasoning based on local probabilistic beliefs of individual agents, and formalizing 

helpful behavior based on the commitments and intentions of the participating agents. 

They formulate two distinct types of helpful behavior including performing actions 

and providing information, which are based on a unilateral decision making mecha

nism; i.e. the decision on performing helpful behavior is made by only one participant 

in the collaborative activity. In another work, Kamar and Grosz [2007] investigate 

effective interruption management in collaborative human-computer activities. They 

formalize interruptions as multi-agent decision making in a human-computer setting.

Polajnar et al. [2011] argue that when an agent team is situated in a realistic 

dynamic environment which is subject to unpredictable changes, helpful behavior 

among teammates can have a positive impact on the team performance. The authors 

point out that for an agent acting in such an environment, there might be situations 

caused by unexpected events which require specialized or collective behavior. As 

it might be impractical to model agents with all potentially required capabilities 

at design time, it is beneficial to incorporate mechanisms for helpful behavior at 

execution time. On the other hand, there is an advantage in modeling agents with 

certain standard capabilities for their reusability in similar domains. In that case, an 

agent may have abilities beyond its immediate role in a particular application, which 

can potentially be incorporated in a help mechanism in order to advance the team 

performance.

Nalbandyan [2011] and Polajnar et al. [2012] present an interaction protocol for 

helpful behavior, called the Mutual Assistance Protocol (MAP), with its subsequent
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elaboration in [Nalbandyan et al., 2013]. MAP is based on a distributed decision 

making mechanism, called bilateral distributed agreement (BDA), in which the deci

sion on performing a help act is made jointly by both requester and helper agents, in 

contrast with unilateral approaches presented in [Kamar et al., 2009].

In a different approach, Dalvandi [2012] investigates the need for empathy among 

artificial agents and provides simulation results suggesting the behavioral advantages 

of incorporating the empathy-driven deliberation on helpful behavior in certain dy

namic environments where rational deliberation is costly. This approach is inspired 

by the way living systems deliberate on helpful behavior in certain situations based 

on the notion of empathy.

In another work, Polajnar et al. [2014] formulate adaptation strategies for agent 

teamwork organization situated in a dynamic environment with unpredictable changes. 

The authors formulate a decentralized reactive approach based on flexible, dynamic 

combinations of complementary adjustment strategies. The specific strategies include: 

individual replanning, direct help among teammates, and subtask swapping among 

the teammates. The simulation results in a microworld setting suggest that help

ful behavior is generally the most beneficial contributor to the combined strategies; 

however, the most inclusive combinations tend to dominate.

2.4 A gent Interaction Protocols

Agent protocols are generally of two types: communication protocols and interaction 

protocols. Agent communication protocols operate at a low level regulating the means 

of sending and receiving information, typically by message passing, among the indi
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vidual agents. They provide speech act classification and semantics, and the domain 

ontology the agents use to understand each other [Wooldridge, 2009]. KQML/KIF 

[Mayfield et al., 1996] and FIPA-ACL [Foundation of Intelligent Physical Agents, 

1997] are two best known standard agent communication protocols. Agent interac

tion protocols are high-level protocols and provide sets of rules specifying interactive 

behavior of individual agents. They model agents’ social activities such as coordina

tion, negotiation, and collaboration. One of the most widely used agent interaction 

protocols has been the Contract Net Protocol (CNP), originally designed by Smith 

[1980] for cooperative problem solving between nodes in distributed systems, inspired 

by the way companies put contracts out to tender [Wooldridge, 2009]. Paurobally 

et al. [2004] discuss CNP interactions for self-interested agents, based on competitive 

bidding between contracting agents.

One may consider designing a universal agent interaction protocol which can be 

employed in all the possible circumstances. Dunn-Davies et al. [2005] point out that 

such a global protocol is not realistic as agents’ social behavior may be realized in a 

variety of approaches. Hence, each specific agent interactive behavior in a particular 

domain requires designing a specific interaction protocol.

Wajid and Mehandjiev [2013] classify agent interaction approaches into two general 

groups: protocol-based approaches, which specify agents’ behavior using interaction 

protocols, and approaches without protocols, which constrain agents’ behavior with

out using protocols. They point out that in the protocol-based approaches, some 

level of predictive behavior is ensured in agent interactions, however less flexibility 

is enforced in agents’ behavior. On the other hand, approaches without protocols 

increase the flexibility of agents’ behavior, but decrease the level of predictive out

come. The authors further classify protocol-based approaches by considering whether

14



the protocols are created at design time or run time. Obviously, approaches which 

create their protocols at run-time are more flexible, but less predictable; and those 

which use design-time created protocols have less flexibility, but more predictability. 

Finally, approaches which create their protocols at design-time are divided into two 

subclasses based on the time of loading protocols: approaches which load the pro

tocols at run-time and those which load at design-time; again, the latter being less 

flexible, but more predictable.

2.5 The M utual A ssistance Protocol (M A P )

The Mutual Assistance Protocol (MAP) [Nalbandyan, 2011, Polajnar et al., 2012] has 

been specifically designed for helpful behavior in agent teamwork, distinguished by its 

distributed deliberation approach. MAP provides a mechanism for helpful behavior 

by enabling agents in a team to directly assist each other. Its bidding sequence is 

similar to the one in the Contract Net Protocol [Smith, 1980]. The help deliberation 

process is jointly determined by two agents through a bilateral distributed agreement. 

In this section, we first describe its team model, principles, and variations, and then 

review some design features, introduced in [Nalbandyan et al., 2013], which formulate 

criteria for deliberation on whether to engage in helpful behavior.
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2.5.1 M AP Characterization and Principles

1. The Agent Team Model

A team A consists of agents A j , i e /  =  { l , . . . , n } , n > l ,  situated in an environment 

E. The agents are able to perform actions from a domain Act =  {qj. . . . , a rri}, 

m  > 1. Each agent A, has its individual skill profile, which defines A,’s efficiency for 

the domain Act in the context of environment state. A, knows its own skill profile 

precisely; but its knowledge of teammates’ profiles may be limited to a varying degree. 

The team is assigned a task T, with each agent A, addressing a subtask Tt tha t has 

a resource budget Ri. The subtask assignment process can be random or optimal 

[Polajnar et al., 2014]. The environment E  can change dynamically by events other 

than the actions of any agent in the team. Agent A, acts rationally with the objective 

to advance the team performance.

2. Local Planning Autonomy (LPA)

Agents in a team are equipped with a property called local planning autonomy (LPA), 

which enables each agent to generate its own local plan, 7rt , for its assigned subtask, 

Ti. An agent A, rationally selects the best plan among its candidate plans using its 

own beliefs, J3,-, based on its individual view of team interest rather than self-interest, 

represented by A,’s team utility function

Ui : Plans x BeliefSets — > R +
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where K+ is the set of positive real numbers. Thus, each individual agent can au

tonomously assess how to best contribute to the team. Agents with LPA can engage 

in helpful behavior when they jointly determine through a bilateral distributed agree

ment, that the help act is in the interest of the team.

з. Bilateral Distributed Agreement (BDA)

The fundamental design concept underlying the MAP protocol is that the deliberation 

on whether to perform a helpful behavior is based on a bilateral distributed approach 

in contrast to unilateral approaches as in [Kamar et al., 2009]. In a bilateral distributed 

agreement (BDA), the two parties deliberating about a help transaction jointly decide 

on performing the helpful behavior based on their individual assessments of team 

benefit and team loss. The agent A, that considers receiving help, calculates the team 

benefit, A,+ =  ufin', B,) — 11,(71,, B i), where irt is its original plan and 7r' its new plan 

affected by the possible received help. Similarly, the agent Aj that considers providing 

help calculates the team loss, A “ =  u fiir^B j) -  U j ( n " ,  B}), where iij is its original 

plan and i t "  its new plan that includes the help act. The help transaction may occur 

only if the difference A tj = At+ — A c a l l e d  the net team impact (NTI), is positive. 

Note that agent A * calculates A f  using its individual belief set Bi, while agent Aj 

calculates AJ  using its own beliefs Bj. (In particular, note that agent’s individual 

beliefs include its cost vector.) The team benefit and team loss calculations are done 

from the receiver and provider’s perspectives, respectively, and therefore the functions

и, and Uj must be properly mutually scaled to allow meaningful comparisons. The 

agreement is reached through a bidding sequence similar to the one in the Contract 

Net Protocol [Smith, 1980]. The behavioral advantages of the bilateral distributed 

approach are presented in [Polajnar et al., 2012] by modeling and simulation of the
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MAP protocol and two unilateral protocols.

4. Variations of the MAP

There are two generic versions of the MAP protocol: Action MAP and Resource 

MAP. In Action MAP, an agent can perform an action on behalf of a teammate. In 

Resource MAP, an agent can provide a part of resources needed for an action to be 

performed by a teammate. Action help is performed by a single helper agent, while 

multiple helper teammates can cooperate in resource MAP.

Furthermore, helpful behavior can be initiated either by a requester agent who 

asks for help or a helper agent who offers help. The corresponding interaction proto

cols, called the Requester-Initiated Action MAP (RIAMAP) and the Helper-Initiated 

Action MAP (HIAMAP), are introduced in [Nalbandyan et al., 2013].

2.5.2 M etrics for Help Deliberation

1. Estimating the Cost of a Plan

Each agent A, is able to generate candidate plans to accomplish its assigned subtask 

Ti. The agent selects the least-cost plan among the generated plans and remains 

committed to it. However, the environment can change dynamically and the initial 

plan cost can change as the agent proceeds. If the agent knows the model of environ

ment dynamism, it can estimate the expected cost of its initial plan, or its remainder 

[Nalbandyan et al., 2013].
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2. Agent’s Individual Wellbeing

The individual wellbeing metric, introduced in [Nalbandyan et al., 2013], expresses 

how well an agent A{ is accomplishing its subtask Tt. It is defined as:

Ri — EcostAPi)
w - -  ■ ( e + m  (Z1)

where EcostAPi) is the estimated cost of the remaining plan Pi for agent A i) (  is 

the number of actions in Pt, Ri is the remaining resources, and c, is the average 

expected cost of an action for A{ (i.e., c, =  (l/m)S]JL:1Cjfc). The wellbeing value 

changes as A, performs actions, gets involved in a help act, or as the environment 

state changes. An agent with positive wellbeing expects to accomplish its subtask 

with its own resource budget and have some excess of resources; while a negative 

wellbeing indicates shortage of resources and that help may be needed. Agents apply 

wellbeing thresholds called watermarks in order to deliberate on helpful behavior.

3. Proximity to Accomplishing a Subtask

Agents incorporate the notion of proximity to accomplishment into their deliberation 

on help act in order to favor the teammates who are in proximity of accomplishing 

their subtasks and are more likely to score for the team [Nalbandyan et al., 2013]. 

An agent A t applies a proximitiy bias function, pbias, which maps its remaining plan 

length, £, into a positive priority value, to its assessments of the team benefit and 

team loss.
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2.6 T he R equester-Initiated  A ction  M A P

In the Requester-Initiated Action MAP (RIAMAP), agents can proactively request 

action help, but they do not offer help [Nalbandyan et al., 2013]. Agents can bid to 

the requests, but if an agent has sent a request, it does not bid to other requests. The 

protocol comprises three interaction phases as follows. The corresponding sequence 

diagram is given in Fig. 2.1.

Request n-i

Bid

Select best bid

Confirm

Figure 2.1: The RIAMAP bidding sequence.

1) Help request generation:

At the start of every round, agent Ai with next action a k at the cost of cost,k and the 

current calculated wellbeing of Wi broadcasts a help request message containing ak 

and the calculated team benefit, A+, if any of the following three conditions holds:

(i) Ri < costlk\
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(ii) Wi < W LL and costik > LowCostThreshold;

(iii) costik > RequestThreshold;

where LowCostThreshold is the upper limit of the “cheap” action range, Request- 

Threshold is the lower limit of the “expensive” action range, and W LL is a fixed 

low watermark value for wellbeing. Condition (i) means that the agent’s remaining 

resources Ri me insufficient for A t to perform a*,; only help can unblock the agent. 

Condition (ii) indicates that the agent’s wellbeing is low, and that a*, is not cheap in 

its skill profile, which will further reduce the wellbeing; help will improve the agent’s 

chances of reaching the goal. Condition (iii) indicates that ak is expensive for agent 

Af, help may benefit the team regardless of A,’s wellbeing.

2) Bidding to a request:

Each agent receives the request and deliberates on bidding to it, while an agent who 

has sent a request does not. Agent A} calculates the team loss, A~, for performing the 

requested action a*, and NTI using the received team benefit, A*. If NTI is positive, 

Aj sends a bid containing a*, and the associated NTI value to the requester At. In 

case of having multiple qualified requests, Aj bids to the one with highest NTI.

3) Confirming the chosen bid:

Agent Ai receives the bids, selects the one with highest NTI, and sends a confirmation 

to the bidder agent Aj.
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An Improved Version of RIAM AP

Polajnar et al. [2014] introduce a “frugal” version of RIAMAP, called RIAMAP2, in 

which the help transaction may also occur when NTI is equal to zero. The original 

criterion, NTI > 0, allows a help act only if it is expected to increase the team score. 

However, the calculation of the expected team score does not take into account the 

potential impact of help. RIAMAP2 recognizes the fact that if help saves the total 

resources at team level, the savings can later be used for help acts that may eventually 

increase the team score. When agent Ai requests help from agent Aj for an action 

a*,, and NTI =  0, savings occur if Aj performs a k at lower cost than Aj. The cost 

comparison accounts for the fact that agent Aj ,  when performing a* on behalf of 

a teammate (rather than within its own local plan), incurs additional overhead cost, 

represented here by a constant help overhead, h. In RIAMAP2, the help act is allowed 

to occur if either NTI > 0, or else NTI =  0 and costik ~  costjk > h.

2.7 The H elper-Initiated A ction  M A P

In the Helper-Initiated Action MAP (HIAMAP), agents can proactively offer action 

help, but they do not otherwise request help [Nalbandyan et al., 2013]. Agents can 

bid to the offers, but if an agent has sent an offer, it does not bid to other offers. The 

protocol comprises three interaction phases as follows. The corresponding sequence 

diagram is given in Fig. 2.2.
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Offer n-l

Calculate team benefit 
I Bid If NTI >0

Bid

Select bid

Figure 2.2: The HIAMAP bidding sequence.

1) Help offer generation:

At the start of every round, agent Ai calculates its individual wellbeing IT,. If 

is above a fixed high watermark W HH, it broadcasts an offer message containing 

pairs for each action for which A<’s cost is below the OfferThreshold

parameter, where Aj*^~ denotes the team loss associated with a*.

2) Bidding to an offer:

Each agent receives the offer and deliberates on bidding to it, except an agent who 

itself has sent an offer. If an agent A j finds that its next action a*, is included in the 

offer, it calculates the team benefit for not performing the offered action, A ^ '+, and 

uses the team loss, A ^  , received in the offer, to calculate the value of NTI. If NTI 

is positive, Aj sends a bid containing a*, and the associated NTI value to A t. In case 

of having multiple qualified offers, Aj bids to the one with highest NTI.
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3) Confirming the chosen bid:

Agent Ai receives the bids, selects the one with highest NTI, and sends a confirmation 

to the bidder agent Aj .

2.8 The A gent Interaction M odeling Sim ulator

The Agent Interaction Modeling Simulator (AIMS) framework introduced in [Alemi 

et al., 2014] is developed for design-oriented simulation studies of interaction models 

used in agent teamwork. It allows concurrent simulation of multiple teams in identical 

dynamic environments. It facilitates representation of agent interaction protocols and 

modeling of environment dynamism.

The AIMS framework has been specifically developed to support incremental im

provement of interaction protocol design by performance optimization of the protocol 

through iterative adjustment of its parameter values in a series of simulation experi

ments. Its interactive simulation mode provides direct insights into behavior compar

isons between teams that employ different help protocols, which can be used in each 

iteration of the protocol design.

In the AIMS framework, protocols are represented as state machines of a partic

ular type, with synchronous communication and alternating states for sending and 

receiving messages. Such representations are easily translatable to executable code in 

AIMS.
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Chapter 3

Refinements of Action MAP

This chapter presents the motivation for designing a new combined protocol together 

with its design objectives. It includes the refined versions of the requester and helper- 

initiated protocols which are required for composition of the new combined protocol. 

Section 3.1 describes the research motivation, Section 3.2 formalizes a refined team 

model which explicitly represents the impact of the environment state, Sections 3.3 

and 3.4 present refined models of the two one-sided protocols which allow simultaneous 

providing and receiving help, and Section 3.5 provides the state-machine representa

tions of the refined protocols.

3.1 The M otivation and Research O bjectives

The motivation for incorporation of helpful behavior in agent teamwork emanates 

from its potential benefits in practical applications. In this study, we are interested
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in investigating the practical impact of direct help upon team performance from an 

engineering perspective. Our research objectives involve developing a comprehensive 

mechanism for the deliberation process in help interactions in order to advance the 

team performance. The Mutual Assistance Protocol (MAP) family provides a direct 

help mechanism by enabling agents in a team to directly assist each other. Distributed 

deliberation on direct help is the underlying principle of MAP. In a decentralized 

manner, the members of an agent team use their own individual beliefs to jointly 

deliberate on performing a help act. Each direct help act results from a bilateral 

distributed agreement that is in the interest of the team.

The deliberation on getting involved in helpful behavior, whether to provide or 

receive direct help, can be initiated from two different sides. One possibility is for an 

agent to make a request for help to its potential helper teammates. Alternatively, it 

is possible for an agent to make an offer of help to its potential requester teammates. 

The former approach is realized in the Requester-Initiated Action MAP (RIAMAP), 

and the latter in the Helper-Initiated Action MAP (HIAMAP). The practical impact 

of the two different approaches on team performance has been investigated through 

simulation studies. It was noted in [Nalbandyan et al., 2013] that the performance 

profiles of RIAMAP and HIAMAP are complementary. In certain situations, where 

one is performing weakly, the other is often dominating. While neither of them gen

erally outperforms the other, together they maintain superiority across the parameter 

space, representing environment dynamism, agent resources, and communication cost. 

This has given rise to the research question of whether a possible combination of the 

two one-sided protocols might show an even better performance profile. This combi

nation can be realized by letting agents to initiate help deliberation by both requests 

and offers in a single combined protocol.
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In this study, we compose the requester and helper-initiated protocols in order 

to specify a single interaction protocol that integrates both proactive requesting and 

proactive offering of direct help. The new protocol specification is intended to leverage 

the advantages of the two one-sided protocols. It is expected to exhibit better overall 

performance by being robust and superior in most of the parameter space. The impact 

of the new combined protocol on team performance are explored through simulation 

experiments in Chapter 5.

While investigating possible combinations of the two one-sided protocols, we have 

realized a limitation in the existing MAP protocols: an agent is not allowed to both 

provide and receive help at the same time. In our new combined protocol, simultane

ous providing and receiving help act can potentially happen as there are both offers 

and requests made at the same time and an agent can potentially be involved in two 

different roles. Moreover, the practical impact of simultaneous providing and receiv

ing direct help is of interest from an engineering perspective, as it enables the agents 

with specialized roles to more flexibly share their knowledge and expertise. An agent 

may be expert in a particular situation for which it can help one of its teammates 

who has difficulty in performance, but at the same time, it is also beneficial for the 

team if the agent dealing with an unexpected situation can receive help from another 

teammate who is expert in that situation. Hence, as a prerequisite step, we first refine 

the existing requester and helper-initiated protocols in order to enable the agents to 

provide and receive help simultaneously. The immediate impacts of refined protocols 

on team performance are examined through simulation experiments in Chapter 5.
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3.2 The Refined A gent Team M odel

In the previous studies of Action MAP (such as [Polajnar et al., 2012, Nalbandyan 

et al., 2013]), the cost of an action performed by an agent only depends on the par

ticular type of action and the agent’s skill profile, but not on the nature of the envi

ronment in which the agent is situated. Malek Akhlagh and Polajnar [2014] formalize 

the following refined agent team model, in which the cost of performing an action 

also depends on a component of the environment state tha t impacts the execution 

of the action. This refinement explicitly represents the impact of the environment 

state in the agent’s action cost model. Using this refined model, the criteria for help 

deliberation such as estimating the cost of a plan or agent’s individual wellbeing are 

not restricted to a particular microworld and can potentially be applied to different 

practical application domains.

A team consists of agents Ai, A 2 , ■ ■ ■ ,A„, n > 1, that operate in an environment 

E  by performing actions from a domain Act. The team is assigned a task T, and each 

At is given an individual subtask Ti with a budget Ri. Each instance of action a € Act 

performed towards Ti has a cost that is charged to R.,. Let ActE =  {oj . . . . ,  n m}, 

m  > 1, be the set of all augmented actions of the form < a, e >, where e is the 

component of environment state that impacts the cost of performing a. Then the 

agent Ai performs a*, at a cost represented as a positive integer constant costik■ The 

vector costi represents the A,’s skill profile with respect to the augmented actions, 

and the n x m matrix cost represents the individual abilities of all agents.

The environment is dynamic in the sense that its state can be changed by events 

other than agents’ actions. Each agent maintains its own belief base through percep

tion and communication, and acts rationally in the interest of the team. To model
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agent interaction protocols without explicit synchronization details, it is assumed that 

agents perform actions in synchronous rounds and communicate only at the start of 

each round, in a sequence of synchronous phases.

3.3 The Refined R equester-Initiated  A ction  M A P

In the requester-initiated approach, agents can proactively request, but they do not 

offer help. In the previous model, RIAMAP [Nalbandyan et al., 2013], agents that 

consider providing help can bid to requests, but if an agent has sent a request, it does 

not concurrently bid to other requests in the same round, resulting in only providing or 

receiving help in one round. In order to allow simultaneous providing and receiving 

of help, we present the refined Requester-Initiated Action MAP (RIAMAP*) that 

removes this restriction. In the refined model, an agent is allowed to concurrently 

request help in one protocol session, and bid to a request in another session. In 

other words, the agent is able to take the roles of bidder and requester at the same 

time. The potential advantage of the refined model becomes manifest when an agent 

has sent its request for having an expensive action performed by a teammate, and 

simultaneously bids to a request from another agent to perform a cheaper action in 

its skill profile. A protocol session comprises three interaction phases as follows. Its 

interaction sequence is illustrated in Fig. 3.1.

1) Help request generation:

This phase of RIAMAP* is identical to the request generation of RIAMAP (Section

2.6); we restate the formal conditions here to make the description of RIAMAP*
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' Requester
Requester Ak A Bidder Ai Bidder AJ

I

I
 Calculate 
team benefit

Request

Calculate 
team benefit

Request n - i ^ B  Request n -i

Calculate team lo ss!1 Calculate team loss
Bid If NTl > 01I  Bid if NTl > o

^  m l Bid I1 ̂  m2 Bid 1
p (m l< n ) II  ̂ (m 2<n)
Select best bid „ 1■Select best bid „1 la J

i

i
Confirm

Figure 3.1: The RIAMAP* bidding sequence.

self-contained.

At the start of every round, agent At with next augmented action a*, at the cost of 

costik and the current calculated wellbeing of Wt broadcasts a help request message 

containing a k and the calculated team benefit, At+, if any of the following three 

conditions holds:

(i) Rj < costlk\

(ii) Wi < W lh and costik > LowCostThreshold;

(iii) costik > RequestThreshold;

where LowCostThreshold is the upper limit of the “cheap” action range, Request- 

Threshold is the lower limit of the “expensive” action range, and W LL is a fixed low 

watermark value for wellbeing.
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2) Bidding to a request:

All agents including the ones who have sent requests, receive the request from Ai and 

deliberate on bidding to it. The rest is identical as in HIAMAP (Section 2.7), restated 

here for completeness. An agent Aj calculates the team loss A~ for performing the 

requested action a and NTI using the received team benefit, A+. If NTI is positive, 

A j  sends a bid containing and the associated NTI value to the requester A,. In 

case of having multiple qualified requests, Aj bids to the one with highest NTI. The 

potential advantage of the refined model becomes manifest when an agent has sent its 

request for having an expensive action; and it also bids to requests from other agents 

for cheaper actions in its skill profile.

3) Confirming the chosen bid:

Agent Ai receives the bids, selects the one with highest NTI, and sends a confirmation 

to the selected bidder agent Aj .

3.4 The Refined H elper-Initiated A ction  M A P

In the helper-initiated approach, agents can proactively offer, but they do not other

wise request help. In the previous model, HIAMAP [Nalbandyan et al., 2013], agents 

that consider receiving help can bid to offers, but if an agent has sent an offer, it does 

not concurrently bid to other offers in the same round, precluding the simultaneous 

providing and receiving of help. In order to remove this restriction, we present the 

refined Helper-Initiated Action MAP (HIAMAP*), which allows an agent who has
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sent a help offer to concurrently bid to offers from other agents in the same round, 

taking the roles of offerer and bidder at the same time, and may as a result provide 

and receive help simultaneously. The potential advantage of the new model becomes 

manifest when the agent has offered help for some low cost actions in its skill profile, 

and simultaneously bids to an offer from another agent to receive help for its next 

expensive action. A protocol session comprises three interaction phases as follows. Its 

interaction sequence is illustrated in Fig. 3.2.

Offerer Ak
Offerer A 
Bidder Ai Bidder A| |

i

ICalculate 
team loss

Offer

Calculate team
Bid if NTI >

if*
■ s »

m l
(ml<n) 

Select best bid

C onfirm

Calculate 
team loss

Offer n-1

Calculate team benefi
Bid if NTI >

^  m2 Bid 
™(m2<n)
Select best bid

Confirm

i
Figure 3.2: The HIAMAP* bidding sequence.

1) Help offer generation:

This phase of HIAMAP* is identical to the offer generation of HIAMAP (Section

2.7); we restate the formal conditions here to make the description of HIAMAP* 

self-contained.
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At the start of every round, agent Ai calculates its individual wellbeing W ,. If Wt 

is above a fixed high watermark W HH, it broadcasts an offer message containing pairs 

[ak, Al**- ] for each augmented action for which .4,’s cost is below OfferThrcshold 

parameter, where A-*^~ denotes the team loss associated with n k.

2) Bidding to an offer:

All agents including the ones who have sent, offers, receive the offer from A, and 

deliberate on bidding to it. The rest is identical as in HIAMAP (Section 2.7), restated 

here for completeness. If an agent Aj finds that its next action a k is included in the 

offer, it calculates the team benefit for not performing the offered action, A ^ +, and 

uses the team loss, A ^ _ , received in the offer, to calculate the value of NTI. If NTI 

is positive, Aj sends a bid containing a k and the associated NTI value to A,. In case 

of having multiple qualified offers, A} bids to the one with highest NTI. The potential 

advantage of the new model becomes manifest when an agent has offered help for 

actions that have low costs in its skill profile, while simultaneously bidding to offers 

from other agents for its own next action, which has a high cost in its skill profile.

3) Confirming the chosen bid:

Agent Ai receives the bids, selects the one with highest NTI, and sends a confirmation 

to the selected bidder agent Aj.
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3.5 The State-M achines o f the Refined Protocols

In the simulation models, we represent agent interaction protocols as finite state 

machines of a particular type, with synchronous communication and alternating states 

for sending and receiving messages. The state-machine formalism is then supported by 

full specification of the agent’s deliberation and interactive behavior in each specific 

state together with the respective transition rules. Such representations are easily 

translatable to executable code in the AIMS framework.

In the state-machine representation of the refined one-sided protocols, at the end 

of every protocol session, each agent Ai is in one of the following final states that 

determines its team-oriented behavior based on its interaction with the teammates 

and deliberation on receiving or providing help:

Blocked: for shortage of resources and not receiving help from teammates;

OwnAct: decided to perform its own action and not engage in a help act;

GetHelp: committed to receive help from a teammate and have its next action

performed at no cost;

HelpAct: committed to provide help by performing a teammate’s next action

instead of its own;

Help&GetHelp: committed to both receive and provide help simultaneously.

Fig. 3.3 and 3.4 illustrate the state-machine representations of RIAMAP* and 

HIAMAP*, respectively. A sample state specification is presented in Fig. 3.5 for 

RIAMAP* and in Fig. 3.6 for HIAMAP*.

As an illustration, consider the behavior of agent A, in RIAMAP* (Fig. 3.1). 

Initially, the agent is in state S-Request. If it decides to broadcast a request, it transits

34



to state R-Request2, in which it receives requests from other agents. Then it transits 

to S-Bid2, where it deliberates on bidding to the requests. If the deliberation results 

in bidding to a request, the agent transits to R-Bid2, where it receives bids from 

other agents for its own request. If it has received any bids, it transits to S-Confirm.2, 

where it sends a confirmation to the selected bidder. In the case that confirmation 

was sent, it transits to R-ConfirmS, where it may receive confirmation for its own bid 

to another agent’s request. If it does receive the confirmation, it transits to S-Act4- 

Finally, it transits to R-Help&GetHelp, which results in providing and receiving help 

simultaneously.
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Figure 3.3: The RIAMAP* state-machine representation. The agents participating 
in the protocol execute interacting state machines. The execution strictly alternates 
between sending and receiving states (denoted S  and R, respectively). Double-line 
boundaries indicate final states.
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Figure 3.4: The HIAMAP* state-machine representation.
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State S-Bidl:
{

if (number of received requests > 0) 
for (each received request) 

calculate NTI;
if (highest NTI > 0 && has enough resources to send a bid) 

send a bid to the requester with the highest NTI; 
go to state R-Await; 

else if (has enough resources to perform next action) 
go to state R-OwnAct;

else
go to state R-Blocked; 

else if (has enough resources to perform next action) 
go to state R-OwnAct;

else
go to state R-Blocked;

}

Figure 3.5: A RIAMAP* sample state specification, shows an instance of the delib
eration on transitions from a given state. The states specifications are translated to 
executable code in the AIMS framework.

State R-Bid2:
{

read received bids;
if (number of received bids > 0)

bestBid := select the bid with highest NTI; 
go to S-Confirm2;

else
go to S-Await3;

}

Figure 3.6: A HIAMAP* sample state specification.
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Chapter 4

The Bidirectionally Initiated 

Action MAP

This chapter presents the Bidirectionally Initiated Action MAP (BIAMAP), which 

combines the refined requester and helper-initiated protocols, RIAMAP* and HIAMAP*. 

Section 4.1 provides an analysis of the requester and helper-initiated behavior over 

all parameter space, which highlights the motivation for combining the requester and 

helper-initiated approaches, Section 4.2 presents a discussion on possible combina

tions of the two one-sided protocols, Section 4.3 presents the design and specification 

of BIAMAP, and Section 4.4 provides its state-machine representation.
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4.1 R equester vs. H elper-Initiated Behaviors

The design of the new combined protocol is expected to balance the requester and 

helper-initiated behaviors in such a way as to maximize the advantages of the two 

one-sided approaches. In order to do that we need an analysis of their behavior over all 

parameter space. In the sequel, starting from the observations by Nalbandyan et al. 

[2013], we analyze their relative performance in some critical situations with respect 

to environment dynamism, initial resources, and communication cost, in order to 

determine how their performance profiles complement each other.

Environment Dynamism

Generally, a high level of environment dynamism hampers the helper-initiated proto

col significantly more than the requester-initiated protocol. When the environment 

state changes at a low rate, the helper-initiated protocol dominates with high initial 

resources. This happens as in this situation, a typical agent follows its initial selected 

plan without dramatic changes of costs and therefore it is able to make offers to other 

agents whenever its wellbeing is higher than the offering threshold. But when the en

vironment change rate is high, a typical agent's wellbeing is below the offer threshold 

and the agents make fewer offers resulting in fewer help acts. On the other hand, the 

requester-initiated protocol dominates because it can adjust its teamwork to dramatic 

changes by broadcasting requests particularly when the communication cost is low.

40



Initial Resources

Generally, decreasing the initial resources hampers the helper-initiated protocol sig

nificantly more than the requester-initiated protocol. When the initial resources are 

low, for the helper-initiated protocol, a typical agent’s wellbeing is below the offering 

threshold and the agents cannot make offers. On the other hand, the requester- 

initiated protocol dominates especially with low communication cost. This happens 

as with low initial resources, typical agent wellbeing is below the requesting thresh

old and agents can make requests in case of resource shortage while this increased 

broadcasting activity is mildly penalized with low communication cost. But when 

initial resources are high, the helper-initiated protocol dominates since typical agent 

wellbeing is above the offering threshold and agents are able to make more offers to 

enhance the team performance.

Communication Cost

As the communication cost increases, it hampers the requester-initiated protocol sig

nificantly more than the helper-initiated protocol. Hence, the helper-initiated protocol 

dominates with high communication cost. This is mainly because of the way in which 

two protocols generate help requests and help offers: the agents with declining well

being generate more requests in the requester-initiated protocol, but fewer offers in 

the helper-initiated protocol. Hence, in the requester-initiated protocol, an increased 

cost of broadcasting depletes the remaining resources. However, when the commu

nication cost is low, helpful behavior can be provided at a lower cost and the agent 

team can benefit from increased broadcasting activity with little penalty. Hence, the 

requester-initiated protocol dominates when communication cost is low.
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The design of the new combined protocol seeks to optimize the balance between 

the requester and helper-initiated behavior in order to leverage the advantages of each 

across the parameter space and integrate their strengths into a single protocol with 

superior performance. The design process involves the composition of two individual 

state machines into one, and performance optimization of the new protocol through 

iterative adjustment of its parameter values in a series of simulation experiments. The 

AIMS framework has been specifically developed to support this type of incremental 

improvement of interaction protocol design.

4.2 Com bining the O ne-Sided Protocols

One might envision different possible combinations of the requester and helper-initiated 

protocols. One possible combined mechanism is to allow both one-sided protocols to 

initiate the deliberation on getting involved in helpful behavior, whether to provide 

or receive direct help, by broadcasting a help request and/or an offer, possibly in a 

combined message, in the same interaction phase. This approach might increase the 

quality of finding a match between a requester and a potential helper, because of the 

variety of available requests and offers to all agents; however, it can increase the com

plexity of deliberation by incurring extra computation cost of finding team benefit or 

team loss, and increase the communication cost of broadcasting requests and offers in 

the same interaction phase, without informed pre-estimation of the need for sending 

a message.

An alternative approach is to impose a fixed order on the request generation and 

offer generation phases in the combined mechanism, with one of the two phases always 

preceding the other. This specified order of interaction phases can be incorporated in
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agents’ deliberation on whether to generate a help request or an offer.

The design is which the request generation phase precedes the offer generation 

phase allows agents to broadcast help requests that may be rendered unnecessary 

by subsequent offers. When resources are low, the requests become frequent, and 

unnecessary communication expenditures become prohibitive. The rationale for the 

alternative design, in which the help offer generation comes first, is to let the agents 

first consider what they are able to offer, and then deliberate on making requests 

based on what offers they have received. This approach avoids the unnecessary help 

request generation; we adopt it as basis for our design of the combined protocol.

4.3 The B idirectionally Initiated A ction  M A P

The Bidirectionally Initiated Action MAP (BIAMAP) incorporates the proactive re

questing and proactive offering of direct help in a single protocol, by realizing that 

the deliberation on help can potentially be initiated from both helper and requester 

sides in a combined mechanism design. In BIAMAP, an agent is allowed to make an 

offer and/or a request in their respected interaction phases. In other words, the agent 

can potentially take the roles of offerer and requester in the same protocol session. 

It can then bid to an offer and/or a request based on whether it has made an offer 

and/or a request.

A protocol session comprises four interaction phases, one more in comparison to 

the requester-initiated and helper-initiated protocols. For instance, an agent needing 

help can either bid to received help offers or broadcast a help request. In the current 

design, the agent should do the latter only if suitable offers are not available. The
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interaction phases are described as follows.

1) Help offer generation:

At the start of every round, agent A, deliberates on offering helpful behavior to its 

teammates. In case it decides to provide action help, it broadcasts its offer.

2) Help request generation:

Having received offers from teammates. A, deliberates whether it needs help for its 

next action. In case it determines its need, it processes the offers by calculating the 

NTI value for those offers which match with its next action. If its next action matches 

with any offer for which the NTI value is positive, it does not send a help request. 

Otherwise, in case there is no suitable offer, it broadcasts a help request.

3) Bidding to requests and/or offers:

Once Ai has received all offers and requests from its teammates, four different sit

uations arise, depending on whether Ai has sent a help offer and/or help request, 

described in the following.
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Case 1. A, has not sent any help offer or request. In this ease, it considers bidding 

to both the received offers and requests. It deliberates and decides whether to bid to 

an offer, a request, or both. The protocol interaction sequence for this situation is 

illustrated in Fig. 4.1.

Offerer Ak Bidder Ai

iCalculate 
team loss

Offer

Process] 
offer

Calculate team
Bid If NTI >

14Select
Bid

Calculate 
team benefit

n -i Request

i

I
Calculate team loss 
Bid if NTI > 0

best bid
Confirm

(ml<n) ;(m2<n)

"C onfirm aSelect 
best bid

Figure 4.1: BIAMAP case 1: Ai has not sent an offer or a request.
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Case 2. A, has not sent a help offer, but has sent a help request. In this case, it 

considers bidding to the requests but not to the offers. Hence it only deliberates and 

decides on bidding to a request. The protocol interaction sequence for this situation 

is illustrated in Fig. 4.2.

The rationale for not bidding to offers in this case is that A, has already considered 

the available offers in the request generation phase, but did not find a suitable one 

and hence decided to send a help request.

Offerer Ak
i

ICalculate 
team loss

Offer n-ln -ik . •

Process■  
offer ■

R equest n«i>

Calculate team Ic 
Bid if NTI:

Sel
best

' ^  m Bid
e c tB  (m<n)
b i d j  ________

Confirm

Figure 4.2: BIAMAP case 2: Ai has sent a request and has not sent an offer.
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Case 3. Ai has sent an offer, but has not sent a request. In this case, it considers 

bidding to the offers but not to the requests. Hence, it only deliberates and decides on 

bidding to an offer. The protocol interaction sequence for this situation is illustrated 

in Fig. 4.3.

The rationale for not bidding to requests in this case is that the agents who have 

sent requests have already considered the available offers from all agents, including 

Ai, but decided to send a request.

 Al.
is.

n̂-i offer
I Process 
I oner

dculate team benefl 
lid If NTI > 0

Bid
(mKn)1

Confirm

I Calculate 
I team loss

I"-1 Q f f e r
I Process 
■ offer

I Calculate team benefit 
Bid if NTI > 0

I
 Calculate 
team loss

Bid m2
(m2<n] 

Select best bid

Confirm

' ■  Select 
■  best bid

Figure 4.3: BIAMAP case 3: A, has sent an offer and has not sent a request.
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Case 4. A, has sent both an offer and a request. In this case, it does not consider 

bidding to any of the received offers or the requests. The protocol interaction sequence 

for this situation is illustrated in Fig. 4.4.

The rationale for not bidding to offers and requests in this case consists of the two 

reasons already given in cases 2 and 3.

Bidder Ak

^ n - i  Offer

Process
offer

Calculate 
team loss

Calculate 
team benefit

Re(lUeSt ■*!ICalculate team benefit 
Bid if NTI >0 Calculate team loss 

Bid if NTI >0
Bid m l 

(ml<n)
j  Select best t

4 ™ ?  Bid

Select best bid

Confirm Confirm

Figure 4.4: BIAMAP case 4: Ai has sent an offer and a request.
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4) Confirming the chosen bids:

In this phase, the agent A, who has sent a help offer or a request, receives possible 

bids to its offer or request. In each case, it selects the bid with highest NTI and sends 

a confirmation to the selected bidder agent. In the case that A * has sent both an offer 

and a request, it may receive bids for both, hence it may send confirmations to two 

selected bidders.

4.4 The State-M achine R epresentation  o f B IA M A P

We represent BIAMAP using the state-machine formalism illustrated in Fig. 4.5, sup

ported by full specifications of states together with the respective transition rules. At 

the end of every protocol session, each agent A* is in one of the final states introduced 

in Section 3.5, which determines the agent’s behavior in the current round: Blocked, 

OwnAct, GetHelp, Help Act, or Help&GetHelp.

As an illustration, consider the behavior of agent A, in BIAMAP case 3 (Fig. 4.3). 

Initially, the agent is in state S-Offer. If it decides to broadcast an offer, it transits 

to state R-Offer2, in which it receives offers from other agents. Then it transits to

S-Request2, where it deliberates on sending a request based on the offers it may have 

received. If it decides not to make a request, it transits to R-Awaitl, in which it ignores 

requests from other agents. Next, it transits to S-Bid3, where it only deliberates on 

bidding to the offers. If the deliberation results in bidding to an offer, the agent 

transits to R-Bid4, in which it receives bids from other agents for its own offer. After 

tha t it transits to S-Confirm4 and, if it has received any bids, sends a confirmation to 

the selected bidder. In the case that confirmation was sent, it transits to R-Confirm5,
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where it may receive confirmation for its own bid to another agent’s offer. If it does 

receive the confirmation, it transits to S-Act.4- Finally, it transits to R-Help&GetHelp, 

which results in providing and receiving help simultaneously.

A sample state specification is presented in Fig. 4.6. The state specifications are 

translated into executable code in the AIMS framework.
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Figure 4.5: The BIAMAP state-machine representation.
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State S-Requestl:
{

if (has accomplished its subtask) 
go to state R-Requestl; 

else if (needs help for its next action)
if (next action matches with any of offered actions for which NTI > 0) 

go to state R-Requestl; 
else if (has enough resources to broadcast) 

broadcast request; 
go to state R-Request2;

else
go to state R-Blocked;

else
go to state R-Requestl;

Figure 4.6: A BIAMAP sample state specification.
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Chapter 5

Evaluation

This chapter presents the simulation models and performance results for agent teams 

that employ our new interaction protocols, in comparison with teams that employ 

previously existing versions of MAP. Using the AIMS framework, we compare the 

performance of teams through their concurrent simulations in identical dynamic en

vironments for different values of parameters representing environment dynamism, 

agent resources, and communication costs. The simulation models are based on the 

same board game microworld (Subsection 5.1.1), the same model of Action MAP 

(Subsection 5.1.2), and the same parameter settings (Subsection 5.2.1), that were 

used in previous studies of MAP [Nalbandyan et al., 2013]. In a preliminary round of 

experiments (Subsection 5.2.2), we optimize the values of wellbeing thresholds (water

marks), that are subsequently used in deliberation on making a help request or offer. 

In the next round of our simulation experiments (Subsection 5.2.3), we explore the 

team performance impact of the refinements in the requester and helper-initiated pro

tocols, i.e., the impact of allowing agents to simultaneously provide and receive help.
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We examine whether the refined one-sided protocols, RIAMAP* and HIAMAP*, out

perform their previously existing counterparts, RIAMAP and HIAMAP, respectively. 

The next round of experiments (Subsection 5.2.4) demonstrates the complementary 

behavior of RIAMAP* and HIAMAP*, analogous to the previously observed comple

mentarity of RIAMAP and HIAMAP. In the final round of experiments (Subsection 

5.2.5), we explore the team performance impact of combining the requester and helper- 

initiated approaches into a single protocol. Using the same parameter settings as in 

the previous round, we examine our new combined protocol, BIAMAP, in comparison 

to RIAMAP* and HIAMAP*. The observed behavior and performance confirm the 

design expectations of exploiting the complementarity and leveraging the strengths of 

the two constituent protocols.

5.1 The Sim ulation M odels

We study agent interaction protocols for direct help in the context of a board game 

microworld, inspired by the Colored TYails game [Gal et al., 2010] and introduced in 

[Polajnar et al., 2012]. Its demonstrated suitability for the analysis of the impact of 

help protocols on team performance in several publications on MAP makes it fully 

adequate for our comparative studies of new and existing MAP variations in this 

research. We use the AIMS framework, introduced in Alemi et al. [2014], which 

allows concurrent simulation of multiple teams in identical dynamic environment. It 

facilitates representation of agent interaction protocols and modeling of environment 

dynamism. We use it to compare the performance of teams that employ different 

help protocols, but are otherwise identically designed and pursue identical tasks in 

identical dynamic environments.
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5.1.1 The Microworld

The players in the game are software agents. The board is a rectangle divided into 

squares of different colors from a color set S  =  {Si , . . .  ,S m}, as shown in Fig. 5.1. 

The color of a square represents the component of the environment state that impacts 

the cost of performing the agent’s action of moving to that square. At the start of the 

game, the board color setting is uniformly random, and each agent A, is randomly 

assigned an initial location Li  and a goal G, on the board. Agents are able to observe 

the entire board. A, moves toward G ,,  which represents A,  working on its assigned 

subtask T i . The resource budget R ,  allocated for T, is defined as !ta ' . where li is the 

shortest distance (i.e. number of squares) from Li  to G,, and a' a positive integer 

constant called the initial resources coefficient. The game proceeds in synchronous 

rounds. In every round, Ai can move to a neighboring square, which represents 

performing an action. Agents are allowed to be on the same square at the same time.

The cost of making a move on the board in any direction depends only on the color 

of the square to which the agent moves, and on the agent that performs the move, 

but not on the direction. This makes the color alone correspond to the augmented 

action of Section 3.2. A*’s individual skill profile is represented as a vector cosL with 

positive integer values: when A, moves to a square with color £*,, it pays cost,k from 

its resource budget Ri. All the cost vectors for all agents are included in a  n x m 

positive integer matrix cost. A, may be blocked for shortage of recourses required for 

its next move. The game terminates when no one can make a move because of either 

being blocked or having reached the goal.

The team performance is represented by team, score, which is the sum of all indi

vidual scores calculated at the end of the game as follows. If A, has reached its goal,
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A c tio n  c o s t s  o f  A1

A c tio n  c o s t s  o f  A 2

Figure 5.1: The board game microworld. Each agent A, has its individual vector costi, 
indexed by the color set. At the start of the game, A t plans its path by estimating the 
least-cost path among the shortest paths, from its initial location Li to its individual 
goal G,. The board colors change dynamically, affecting costs of the selected paths. 
[Adapted from [Nalbandyan et al., 2013].]

its individual score is the goal achievement reward <?,; if it is blocked, its score is dta", 

where di is the number of steps it has made, and a" is a positive integer constant 

called the cell reward.

The environment dynamism is represented by the board color setting changing 

after each round: the color of any square can be replaced by a uniformly random choice 

from the color set S. The replacement occurs with a fixed probability D, called the

56



level o f disturbance. Initially, each agent selects its plan as the least-cost path among 

the shortest paths to its goal, and commits to it for the entire game. However, the 

environment evolves as the board colors change after each round, affecting the cost of 

the selected path.

5.1.2 The Simulation M odels of Action M AP

In the analysis of MAP, we assume that agent knows the stochastic behavior of the 

environment dynamism. The agent does not know the disturbance value, D, but can 

estimate it by recording the frequency of changes in the board. The agent applies the 

estimated value of D  in calculating the expected cost of remaining path and individual 

wellbeing as follows. The selected path Pi of length £, consists of actions ■ ■ ■ • •

Ci is the average expected cost of an action for .4,. a =  1 — D  represents the stability 

of the dynamic environment. Hence, the estimated cost o lk  — th  round action, a*,, is 

a kc o s t i (a k )  + (1 — crk )ci- By adding the estimated costs for all the actions in Pr, the 

expected cost for A t to accomplish Pi is:

E c o s t i (P i)  =  (£ (5.1)

The individual wellbeing is then calculated as in Chapter 2:

R i -  E co s t i (P i)  

‘ {£ +  1 )ct
(5.2)

with E c o s t i (P i)  provided by (5.1).

In the deliberation on whether to perform the help transaction, the two parties in
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the bilateral distributed agreement (BDA) calculate team benefit or team loss of the 

help act from their own perspectives. An agent A  who is receiving help calculates 

the team benefit and an agent A j  who is providing help calculates the team loss, with 

incorporation of the notion of proximity to the goal, as follows:

Team benefit:

= Shl( 1 +  p b ia s{ if)  -  pbi.as(£{̂ )  ) (5.3)

Team loss:

=  <fi( 1 +  p b ia s{^ ]) -  p b ias(i^ )  ) (5.4)

where:

6 -  the difference in A ’s individual scores at the end of the 

game with and without the help act; 

fifa -  the difference in A, ’s individual scores at the end of the 

game without and with the help act (including the help 

overhead h)\

ih -  the remaining path length at the end of the game if the 

help is provided;

£n -  the remaining path length at the end of the game if the 

help is not provided; 

pbias -  the proximitiy bias function, which maps the remaining 

path length, £, into a positive priority value, defined in 

this thesis as:

pbias(£) = (5.5)

where A>0 is the proximity bias coefficient.
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The difference between team benefit and team loss is called net team impact (NTI). 

The help transaction occurs if NTI, A^ =  A f  -  A j, is positive.

Our final comment regarding this simulation model concerns its treatment of ob

servability. Our agents observe the board with two purposes. The first one is planning, 

and it only requires that the agent see the rectangle determined by its initial posi

tion and its goal position. The second purpose is agent’s perception of environment 

dynamism, currently represented by disturbance D. In this thesis, we assume that 

each agent can see the entire board and thus assess the disturbance with maximum 

accuracy. In general, MAP and its variations could be studied in conjunction with 

various observability models.

5.2 Perform ance Com parisons

5.2.1 The Parameter Settings

The game board has the size 10 x 10 with six possible colors. Each agent’s cost vector 

includes three entries randomly selected from an ‘expensive’ range: {250,300,350,500} 

and three entries from a ‘cheap’ range: {10,40,100,150}. Hence, each agent’s skill 

profile is specialized for certain colors. Each team includes eight agents. The ini

tial subtask assignment process is random. The goal achievement reward is 2000 

points. The cell reward is 100 points. The help overhead, h, is 20 points. The 

RequestThreshold and LowCostThreshold, used in request generation process are 351 

and 50, respectively. The Offer Threshold, used in the offer generation process, is 299. 

In our experiments, we vary: the level o f disturbance in the dynamic environment, D\
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the initial resources for each step of the path, a'; and the communication cost of send

ing a unicast message, U. The final team scores are averaged over 10,000 simulation 

runs, using random initial board settings.

Our simulation experiments use the same parameter space as previous studies 

of MAP [Nalbandyan, 2011, Polajnar et al., 2012, Nalbandyan et al., 2013]. The 

ranges of the parameters representing environment dynamism, agent resources, and 

communication cost are limited to a certain degree as follows. The disturbance level, 

D, does not exceed 0.5, as with a greater level of unpredictability in the environment, 

rational planning and deliberation are no longer meaningful. The initial resources 

coefficient, a', varies in a range that provides the agents with moderate amounts 

of resources, as too severe shortage discourages providing help and overabundance 

eliminates the need for receiving help. The unicast cost, f/, is relatively low compared 

to action costs, as with very high communication costs, unilateral approaches have 

advantages over the bilateral approach in MAP [Nalbandyan, 2011, Polajnar et al., 

2012],

5.2.2 Optimizing the Watermarks

An agent’s individual wellbeing is incorporated in its deliberation on whether it can 

offer direct help or needs to receive help and hence to broadcast an offer or a request to 

its teammates. The wellbeing threshold values, watermarks, used in both the requester 

and helper-initiated approaches, need to be optimized in order to advance the agent’s 

interactive behavior. In this section, we present simulation results for individually 

optimizing W LL and W HH for the refined requester-initiated protocol (RIAMAP*) 

and refined helper-initiated protocol (HIAMAP*), respectively, and then collectively
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for the bidirectionally initiated protocol (BIAMAP). In the following experiments, 

the other parameters are kept constant at selected mid-range values in the parameter 

space: the level of disturbance, D, is 0.2; the initial resources for each step, a', is 160; 

and the communication cost of sending a message, U, is 9.
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•  *R

13500

13000

Figure 5.2: Team scores vs. W LL

Fig. 5.2 shows the team performance of employing RIAMAP* while varying the 

low watermark value for proactive requesting of help, W LL. As can be seen, the 

team performance is optimal when W Ll is close to -0.2. The general shape of this 

graph and the location of its maximum do not change significantly when we vary the 

values of disturbance, initial resources, and communication cost. Hence, we adopt the 

location of the maximum in this graph as the experimentally optimized value of W LL 

for RIAMAP* in the rest of our simulation experiments.
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Figure 5.3: Team scores vs. W HH

In a similar experiment, we observe the team performance of employing HIAMAP* 

while varying the high watermark value for proactive offering of help, W HH. Fig. 5.3 

shows the experimentally optimal value of W HH found to be close to 0.4. Again, 

the location of this optimum is not very sensitive to variations in disturbance, initial 

resources, and communication cost values. Hence, we adopt W HH =  0.4 for HIAMAP* 

in the rest of our simulation experiments.

Fig. 5.4 presents the performance of a team employing BIAMAP, which incorpo

rates both requester and helper-sided deliberation, and uses both the low and high 

watermarks. Hence, we observe its team performance while varying both W lL and 

W HH parameters. It can be seen that BIAMAP team score highly depends on these 

wellbeing thresholds, and one needs to find their optimal values. In this particular
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BIAMAP

Figure 5.4: Team scores vs. W LL and W HH

situation, the maximum team score of 14547 is-achieved when W LL and W HH are -0.8 

and 0.6, respectively.

We henceforth adopt the optimized parameter values: W LL =  -0.8, W HH =  0.6, 

along with the setting of other parameters used in the optimization process, namely 

D = 0.2, a' = 160, and U — 9, as the standard set of values for BIAMAP experiments. 

In every simulation experiment for evaluating BIAMAP, the parameters that are kept 

constant have these standard values.
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5.2.3 The Team Performance Impact of RIAM AP* and HIAM AP*

In the following simulation experiments, we observe the team performance impact of 

the refined one-sided protocols that enable agents to provide and receive direct help 

simultaneously in both requester and helper-initiated approaches. We compare four 

teams that employ different interaction protocols: RIAMAP, RIAMAP*, HIAMAP, 

and HIAMAP*. The teams are otherwise identical and operate in identical environ

ments. We explore the relative team performance in three experiments, in which we 

vary one of the parameters: level of disturbance, Z), initial resources coefficient, a', or 

the unicast cost, U.
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Figure 5.5: Team scores vs. Disturbance
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Fig. 5.5 shows the comparative team scores for varying the level of disturbance, 

D. The other parameter values are set as a' = 200 and U = 21. The relatively high 

values of initial resources and communication cost favor the helper-initiated approach, 

HIAMAP*, when the disturbance is low. However, with high disturbance HIAMAP* 

degrades significantly and falls below RIAMAP*. One can note that each new protocol 

(RIAMAP* or HIAMAP*) outperforms the previous version (RIAMAP or HIAMAP, 

respectively), in situations when the respective one-sided behavior is more effective, 

as discussed in Section 4.1. For example, it can be observed that RI and RI* achieve 

same team score when there is no disturbance; but RI degrades more as disturbance 

increases, and RI* prevails at high disturbance. On the other hand, HI* outperforms 

HI when disturbance is low, but achieves almost same result when disturbance is 

high. As discussed before, this occurs because high disturbance hampers the helper- 

initiated protocols significantly more than the requester-initiated ones. The picture 

also illustrates the complementary performance profiles of the requester and helper- 

initiated approaches at different ends of the disturbance range.

In the second simulation experiment, we observe the comparative team scores of 

RIAMAP, RIAMAP*, HIAMAP, and HIAMAP* for varying the unicast cost, U. The 

other parameter values are set as D  =  0.2 and a' — 160. We extend the communica

tion cost up to 30, in order to explore its impact on different protocols. Fig. 5.6 shows 

the simulation results. As can be seen, the requester-initiated protocols, RIAMAP 

and RIAMAP*, outperform the helper-initiated protocols, HIAMAP, and HIAMAP*, 

in low U values; and then they degrade significantly more in high U values. The team 

performance impact of simultaneous providing and receiving help becomes manifest 

only when the requester or helper-initiated protocols are more effective, i.e. when 

they have advantage over the other one-sided protocols in particular situations. In 

this case, when communication cost is low, the requester-initiated approach is more
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Figure 5.6: Team scores vs. Communication Cost

effective, and hence there is team performance gain by employing RIAMAP* over 

RIAMAP. At the other side, when communication cost is high, the helper-initiated 

approach has advantage over the requester-initiated one, and thus we observe some 

team performance gain by employing HIAMAP* over HIAMAP. Again, the comple

mentary behaviours of the two different approaches are found in the results.

Fig. 5.7 presents the simulation results of the third experiment, in which we ob

serve the behaviors of RIAMAP, RIAMAP*, HIAMAP, and HIAMAP* by varying 

the initial resources coefficient, a!. We set D  to a relatively high value of 0.3, and 

U to a relatively low value of 3. In this situation, the requester-initiated approach 

has advantage over the helper-initiated one, as high disturbance hampers it less sig-
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Figure 5.7: Team scores vs. Initial Resources

nificantly and it is more effective when communication cost is low. Accordingly, it 

can he seen that there is significant team performance gain by employing RIAMAP* 

compared to RIAMAP, i.e. allowing simultaneous providing and receiving help in the 

requester-initiated approach. However, with rise of the initial resources, the impact 

of this feature decreases, as the requester-initiated approach becomes less effective, 

i.e. there will be less need for making a request, and a typical agent may decide 

to perform its action on its own, rather than receiving help from a teammate. Fur

thermore, with more of initial resources, the helper-initiated approach achieves better 

result, and all the protocols achieve almost same team score when a' =  200. Also, 

the team performance impact of employing HIAMAP* over HIAMAP is not manifest
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because of high level of disturbance and low communication cost, which make the 

helper-initiated approach less effective.

5.2.4 Complementary Profiles of RIAM AP* and HIAM AP*

In this section, we explore the complementary performance profiles of the refined re

quester and helper-initiated protocols (RIAMAP* and HIAMAP*) across the param

eter space. We present three simulation experiments in order to compare the relative 

performance of two agent teams employing different help protocols, RIAMAP* and 

HIAMAP*, but otherwise identical and operating in identical environments. In each 

experiment, we vary two of the following three parameters: level of disturbance, D, 

initial resources coefficient, a', and the unicast cost, U; the third parameter is kept 

constant at the standard value selected in Section 5.2.2.

The experiments are designed to examine the requester and helper-initiated be

havior hypothesis, discussed in Section 4.1. The behavior analysis investigates the 

efficiency of each one-sided approach in some critical situations with respect to en

vironment dynamism, initial resources, and communication cost. The reasoning is 

centered on the agent’s individual wellbeing, which impacts its deliberation on direct 

help. Generally, in a situation which results in low value of individual wellbeing, 

the requester-initiated approach is more effective; while with high value of individual 

wellbeing, the helper-initiated approach is more effective.

In the first experiment we vary the level of disturbance, D, and initial resources 

coefficient, a', while the unicast cost, U , is set to 9. Fig. 5.8 presents the comparative 

team scores achieved by RIAMAP* and HIAMAP*. It can be observed that the 

requester-initiated protocol, RIAMAP*, dominates when disturbance is high. This

68



RIAMAP*
■ ■ H IA M A P *

u o 1UU Initial R eso u rces
D isturbance

Figure 5.8: Team scores vs. Disturbance and Initial Resources

happens because the individual wellbeing of agents decline as dist urbance grows, which 

hampers the proactive offering of help, but encourages the proactive requesting of help 

(Section 4.1). For lower disturbance, RIAMAP* still dominates when initial resources 

are low to moderate, because HIAMAP* is less effective in this situation. However, 

HIAMAP* dominates when disturbance level is low and initial resources are highly 

available; i.e. the situation in which the helper-initiated approach is highly effective.

Fig. 5.9 presents the simulation results of the second experiment in which we
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vary the level of disturbance, D, and unicast cost, U, when the initial resources 

coefficient, a', is set to 160. The comparative team scores show that the requester- 

initiated protocol, RIAMAP*, dominates when communication cost is low and also 

when disturbance is high. This is because the requester-initiated approach is more 

effective with low communication cost, and also high disturbance level has more neg

ative impact on the helper-initiated approach. On the other side, the helper-initiated 

protocol, HIAMAP*, dominates when disturbance is low and communication cost is
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high, as high communication cost has more negative impact on the requester-initiated 

approach.
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Figure 5.10: Team scores vs. Communication Cost and Initial Resources

In the third experiment, we vary the unicast cost, U, and initial resources coeffi

cient, a', while the disturbance level, D, is set to 0.2. Fig. 5.10 presents the simulation 

results and again confirms the complementary performance profiles of the requester 

and helper-initiated approaches. As can be seen the requester-initiated protocol, 

RIAMAP*, dominates when communication cost is low and initial resources are low. 

On the other hand, the helper-initiated protocol, HIAMAP*, dominates when com
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munication cost is high and initial resources are high. This is again in agreement with 

our analysis of the requester and helper-initiated behavior in critical situations.

The simulation results in this section confirm our previous analysis of the relative 

strengths and weaknesses of each particular one-sided approach, and identify the 

critical situations where one of them dominates significantly. This analysis of their 

complementary performance profiles is incorporated in the BIAMAP design strategy, 

in which we leverage the strengths of the two different approaches in a combined 

protocol.

5.2.5 The Team Performance Impact of BIAM AP

In the following, we present three simulation experiments in order to examine the new 

combined protocol, the Bidirectionally Initiated Action MAP (BIAMAP), which is a 

composition of RIAMAP* and HIAMAP*. We compare three agent teams employing 

RIAMAP*, HIAMAP*, and BIAMAP, but otherwise identical and operating in iden

tical environments. The simulation results show the impact of combining requester 

and helper-initiated approaches on the team performance. In each experiment, we 

vary two of the following three parameters: level of disturbance , D, initial resources 

coefficient, a', and the unicast cost, U; the third parameter is kept constant at the 

standard value selected in Section 5.2.2.

In the first simulation experiment, we explore the relative team performanee for 

varying the disturbance level, D, and initial resources coefficient, a', while the uni

cast cost, U, is set to 9. Fig. 5.11, which is equivalent to Fig. 5.8 with addition 

of BIAMAP, shows the comparative team scores for the three teams. The immedi

ate observation is that the team which employs BIAMAP outperforms the other two
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teams in most of the parameter space. This suggests the superiority of the combined 

protocol, BIAMAP, that allows initiative from both helper and requester sides. How

ever, in the corner which corresponds to low disturbance and high initial resources, 

HIAMAP* still outperforms BIAMAP. This is because the helper-initiated approach 

is very effective in this situation, while the requester-initiated component of BIAMAP 

is not, and HIAMAP* prevails for being a simple one-sided protocol with no cost of 

unproductive requester-initiated behavior.
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Fig. 5.12, which is equivalent to Fig. 5.9 with addition of BIAMAP, presents the 

simulation results of the second experiment in which we vary the the level of distur

bance, D, together with the unicast cost, U, while the initial resources coefficient, a', 

is set to 160. The comparative team scores show that BIAMAP outperforms the two 

one-sided protocols in most of the parameter space. The exception arises when the 

communication cost is low, especially in the corner which corresponds to high distur

bance level. This is because the requester-initiated approach is very effective in this 

situation, while the helper-initiated component of BIAMAP is not, and RIAMAP*
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prevails for being a simple one-sided protocol with no cost of helper-initiated behavior.
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Figure 5.13: Team scores vs. Communication Cost and Initial Resources

In the third experiment, we vary the unicast cost, U, and initial resources coeffi

cient, a', while the disturbance level, D, is set to 0.2. Fig. 5.13, which is equivalent 

to Fig. 5.10 with addition of BIAMAP, presents the simulation results and again 

shows the superiority of the combined protocol, BIAMAP, that allows initiative from 

both helper and requester sides. BIAMAP outperforms the two one-sided protocols 

in most of the parameter space, except in the situation when the communication cost
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is low, especially in the corner which corresponds to low initial resources. This is 

again because the requester-initiated approach is very effective in this situation, while 

the helper-initiated component of BIAMAP is not, but still incurs the extra cost of 

helper-initiated behavior.

The simulation experiments presented in this section confirm that the overall per

formance of BIAMAP compared to RIAMAP* and HIAMAP* is superior. It outper

forms both one-sided protocols in most of the parameter space, except in the critical 

situations where one of the one-sided approaches becomes unproductive, but BIAMAP 

still incurs the overhead costs of incorporating that approach. By optimizing the wa

termark parameters in Section 5.2.2, we have better tuned the balance between the 

proactive requesting and proactive offering behaviors, and we have better leveraged 

the advantages of the two different approaches in different situations. The experi

mental results in this chapter are slightly better than the ones in [Malek Akhlagh and 

Polajnar, 2014], because of the watermark optimizations.
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Chapter 6

Conclusions and Future Work

This thesis presents a new agent interaction protocol, called the Bidirectionally Initi

ated Action MAP (BIAMAP), for incorporating direct help into agent teamwork. The 

new protocol is a new version of the Mutual Assistance Protocol (MAP), and inherits 

its principles and design features such as its agent team model, the local planning au

tonomy (LPA), and the bilateral distributed agreement (BDA). The novel features of 

BIAMAP allow an agent to initiate deliberation on direct help by either a request or 

an offer, and also to simultaneously provide and receive help. The impact of BIAMAP 

on team performance is investigated through simulation experiments with the same 

simulation models, microworld, and parameter space used in the previous studies of 

MAP. The experiment results suggest superiority of BIAMAP compared to existing 

MAP variations.

Building on previous research on help protocols, we have analyzed two different ap

proaches to initiating deliberation on direct help, including their deliberation patterns 

and state-machine representations. In the first approach, an agent can proactively re
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quest help from its teammates; in the second, it can proactively offer help. We have 

first refined the bidding patterns of the Requester-Initiated Action MAP (RIAMAP) 

and Helper-Initiated Action MAP (HIAMAP) by realizing the possibility that the 

same agent can both provide and receive direct help simultaneously, which has re

sulted in their refined versions: RIAMAP* and HIAMAP*. Then, by analysis of 

the relative strengths and weaknesses of the requester and helper-initiated behaviors 

and realizing the possibility that a single protocol can incorporate both proactive re

questing and proactive offering of help, we have designed the new combined protocol, 

BIAMAP, which is a composition of RIAMAP* and HIAMAP*, and leverages the 

advantages of the two one-sided approaches in different situations.

In our simulation models, we have represented the new interaction protocols in the 

particular state-machine formalism used in the Agent Interaction Modeling Simulator 

(AIMS) framework. It includes full specifications of states together with the respective 

transition rules, in a form that is easily translated into executable code in AIMS. We 

have investigated the impacts of employing RIAMAP*, HIAMAP* and BIAMAP on 

team performance through simulation experiments in AIMS, by varying the levels of 

parameters representing environment dynamism, agent resources, and communication 

costs.

The simulation results demonstrate the team performance gains for agent teams 

that employ the new protocols. RIAMAP* and HIAMAP* outperform the original 

one-sided protocols, RIAMAP and HIAMAP. respectively. BIAMAP outperforms all 

other MAP versions in most of the studied parameter space. This indicates tha t direct 

help in agent teamwork is the most effective when it can be both offered and requested 

within the same protocol, and also simultaneously provided and received by the same 

agent.
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In the current version of BIAMAP, in the deliberation process on whether to 

perforin the help transaction, an agent bids to an offer or a request only when the 

net team impact (NTI) is positive, i.e., when the team benefit within the receiver’s 

subtask exceeds the team loss within the provider’s subtask. Further studies can be 

established in order to incorporate the complementary saving feature introduced in 

the “frugal” version of RIAMAP, in which the help transaction may also occur when 

NTI is equal to zero but the help act saves resources at the team level.

The BIAMAP performance is superior in most of the parameter space except in 

the critical situations when one of the one-sided approaches becomes unproductive, 

while BIAMAP still incurs the overhead costs of incorporating that approach. This 

motivates us to introduce additional metrics into BIAMAP that may allow finer bal

ancing of the one-sided behaviors in such critical situations. The possible design 

strategy requires an analysis of the potential benefits and costs of maintaining such 

metrics and verifying whether the benefits outweigh the costs.

For future work, we can also investigate the team performance impact of incorpo

rating the Resource MAP, in which one or multiple potential helpers provide a part or 

all of the total required resources for performing a teammate’s action, and compare it 

with the impact of Action MAP. We can further specify a combined approach which 

incorporates both Action and Resource MAP variations, and investigate its potential 

impact on the team performance in different scenarios.

We have investigated our help protocols in the context of a board game microworld, 

supported in the AIMS framework. In this study, we have simplified our modeling of 

the agent team, the subtasks, and the environment, in order to investigate the behavior 

of direct help in relatively pure form, without the impact of extraneous factors that 

may vary greatly across practical systems. When adapting our protocols to real-
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world engineering applications, one may need to analyze the design requirements with 

respect to the observability of environment, asynchronicity of communications and 

actions, scalability issues of increasing the number of agents or the size of environment, 

time and deadlines for completing subtasks, etc. However, we expect to investigate 

these problems mainly in the context of specific classes of concrete applications.
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