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Abstract 

Root-associated fungi, including ericoid mycorrhizas, are important to the health of 

alpine and northern forest ecosystems. These symbiotic root-fungus associations form 

with shrubs in the family Ericaceae. This is the first report of an attempt to profile the 

fungal community structure associated with roots of Vaccinium membranaceum 

(huckleberry) over a biogeoclimatic (BEC) zone elevation gradient in BC's eastern rocky 

mountains. Four biogeoclimatic zones were targeted on McBride peak: the alpine, ESSF, 

ICH and SBS. Fungal associates were grown in culture and fungal DNA analyzed directly 

from the roots. Both techniques generated community profiles that demonstrated 

differences in root-associated fungal community structure between each of the four 

zones. The higher elevation alpine and ESSF hosted fungi known to form ericoid 

mycorrhizas. Lower elevation ICH and SBS tended to host more common fungi. The 

diversity patterns generated have potential implications in climate change. 
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Chapter 1 

"One of the main reasons the world faces a global environmental crisis is the belief that 

we human beings are somehow separate from the natural world in which we live, and 

that we can therefore alter its physical, chemical, and biological systems without these 

alterations having any effect on humanity" 

Kofi Annan 

"In myriad ways humanity is linked to the millions of other species on this planet. What 

concerns them equally concerns us. The more we ignore our common health and 

welfare, the greater are the many threats to our own species. The better we understand 

and the more rationally we manage our relationship to the rest of life, the greater the 

guarantee of our own safety and quality of life" 

E.O. Wilson 
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Introduction 

This work is motivated by and entrenched within the idea that understanding ecosystems 

benefits humanity. Regardless of how humanity chooses to see ecosystem services, we 

are at the mercy of the ecology that surrounds us. The ecosystem can thrive without us, 

yet we cannot survive without it. 

With the awareness of potential impacts of global climate change (IPCC 2007), it 

is becoming more crucial than ever to increase fundamental understanding of 

ecosystem processes so that we may predict and possibly mitigate the inevitable 

changes. The soil in boreal and northern temperate climates is storing a sizable portion 

of the earth's carbon (Smith and Read 2008). Since these forests cover 70% of the 

northern hemisphere, their ecosystems are globally important (Read 2002). Soil 

dynamics, including in large part mycorrhizal symbioses, are an important part of this 

globally crucial system. 

Researchers in ecology and soil science have generally accepted the role of 

symbiosis in root systems (Sapp 2004), and studies exploring the structure and function 

of mycorrhizas have flourished. It has become evident that associations of fungus and 

plant roots as partners have the potential, in some ecosystems, to drive above ground 

diversity (Read etal. 2004). In nitrogen limited boreal and heath environments, 

mineralization of nitrogen is reduced by the presence of plants capable of intercepting 

nitrogen from freshly senescing plant matter; an ability conferred to plants through 

ericoid and ectomycorrhizal associations. Thus fungal symbioses drive the competitive 

exclusion of plants that do not have mycorrhizas, or are otherwise able to access 

nitrogen via fixation, in these ecosystems (Read et a/. 2004). Mycorrhizas as drivers of 

ecosystems thus warrant intensive study. 
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Ericoid mycorrhizas (ERM) are fungal symbioses formed with roots of most 

members of the order Ericales, including Ericaceae and Epacridaceae (Peterson et al. 

2004). These plants form an important component of the understory of northern 

temperate and boreal forest and dominate in alpine, arctic and heath environments 

(Smith and Read 2008). Of these, black huckleberry (Vaccinium membranaceum Dougl. 

Ex Torr.) is a non-timber forest product (NTFP) that has eluded cultivation. Huckleberry 

fungal associations may be at the root of this. 

Mountain slopes provide a natural gradient of abiotic factors that may be 

exploited for the study of mycorrhizal symbiosis. A slope face may have similar plants 

throughout that are growing under very different above and below ground conditions. 

Because of the variability in precipitation and temperature, mountain slopes often 

consist of belts of biogeoclimatic zones. These mountain slopes are excellent proxies for 

ecological structuring over large latitudinal spreads. An elevation gradient may have an 

alpine tundra landscape at its peak and be dense with trees and understory vegetation 

at its base. At McBride peak (McBride, BC), V. membranaceum is found from the base of 

the slope to the top of the mountain allowing for the exploration of the impact of the 

different biogeoclimatic zones and associated abiotic factors on the V. membranaceum 

root-associated fungal community. Differences of adaptation to the plants' particular 

environment are expressed not morphologically but within the context of their fungal 

symbionts. Furthermore, changes in community structure may represent potential future 

shifts in response to climate change. As temperatures increase biogeoclimatic zones are 

generally expected to shift up mountain slopes and northward, and as such plant 

communities and their soil microorganisms can be expected to change with them. The 
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results of this study will contribute to understanding the potential range of changes 

within soil ecosystems in response to climate change. 

The objectives of this study were: 

• To assess changes in fungal diversity of Vaccinium membranaceum root-

associated fungi over an elevation gradient as defined by targeting four 

biogeoclimatic zones (alpine, ESSF, ICH, SBS) along a mountain slope 

and 

• To correlate changes in abiotic factors over that elevation gradient to changes in 

fungal diversity. 

Literature Review 

Mycorrhizas are a globally important symbiosis formed by soil fungi and plant roots. A 

fungus colonizes plant root cells and an interface between the two is created; the 

resultant bidirectional nutritional exchanges potentially confer benefits to both partners. 

The fungus is better suited to extracting minerals from the soil, its mycelia are orders of 

magnitude smaller than plant roots and can penetrate areas otherwise inaccessible to 

plants (Peterson et a/. 2004), and have specialized enzymes that release nutrients. In 

return, the plant provides a space for the fungus within its root cells and interstitial 

spaces, protecting it from a diverse and challenging soil environment that is home to 

many predators with competing interests. The fungus is heterotrophic whereas the plant 

is able to photosynthesize and can trade its carbon to the fungus. 

The mycorrhizal relationship exists in a continuum of interactions that are 

important because they impact large scale ecology in natural habitats (Brundrett 2004; 

Read etal. 2004). Mycorrhizal associations can be balanced where both partners benefit 
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or exploitive where only one partner benefits. When a fungus has no apparent effect on 

the plant, the relationship is termed endophytic (Brundrett 2004). The most extreme 

example of exploitive relationships is the achlorophyllous plant that acquires carbon 

from mycorrhiza via a common mycelial network that connects it to another 

photosynthesizing plant (Cullings et al. 1996). Furthermore, the relationship ranges from 

obligatory as in the case of AM (arbuscular mycorrhizas), to loose, as is probably the 

case with dark septate endophytes, where the fungus can thrive within roots but also in 

the soil or among other plant parts. Common mycelial networks add a significant layer of 

complexity and connectedness to ecological landscapes. Links can occur between 

multiple plants and by multiple fungi (Simard and Durall 2004). Furthermore, 

mycorrhizas are impacted by and have impacts upon herbivore behaviour (Gehring and 

Whitman 2002) as well as other soil heterotrophs (Gange and Brown 2002). Mycorrhizal 

associations are important because of their potential range of impacts on plants and 

ecosystems. 

Seven categories of mycorrhiza are recognized, with AM (arbuscular mycorrhiza) 

being the most widespread, and ECM (ectomycorrhiza) occurring on some gymnosperms, 

dicotyledons and one monocotyledon genus (Brundrett 2002). Other categories, 

including arbutoid, monotropoid, orchid and ericoid are restricted to specific plant 

families (Brundrett 2002). Ericoid fungi are found on the roots of plants in the order 

Ericales, including Ericaceae in the Northern Hemisphere and Epacridaceae in the 

Southern Hemisphere (Smith and Read 2008). Ericoid mycorrhizas are found in northern 

temperate and boreal forests and predominate in nutrient poor habitats including 

heaths, the alpine and sub-alpine regions in mountainous regions as well as the arctic 

(Read 2002; Smith and Read 2008). 
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Structure of the ericoid symbiosis 

According to molecular clock estimates, the ERM condition arose 140 mya in the 

Cretaceous period which is consistent with the currently accepted notion that the 

Ericales originated in that time period (Cullings 1996). Like all mycorrhizal associations, 

ERM are distinguished by intimate and specific intracellular contact between the fungus 

and host (Smith and Read 2008). 

Hair roots are a characteristic feature of ericaceous plants. These minute lateral 

roots have no secondary growth and are composed of a narrow vascular cylinder, a layer 

or two of cortical cells and a single layer of epidermal cells (Peterson et al. 2004). Hair 

roots are typically lOOum to <50um in diameter (Smith and Read 2008). Epidermal cells 

are penetrated by fungal hyphae and become enlarged with the increased numbers of 

organelles such as mitochondria, plastids and endomembrane components, as well as 

an enlarged nucleus (Peterson et al. 2004). Epidermal cells are a feature of young hair 

roots and disappear as the root ages, they may be sloughed off and act as propagules of 

the fungus in the soil (Ashford et al. 1996). Cortical cells thicken and become the outer 

surface of the older roots (Smith and Read 2008). Ericoid hyphae penetrate root 

epidermal cells individually, possibly functioning as separate units (Perotto et al. 2002). 

Conventional wisdom regarding this individual penetration has recently been challenged 

by observations of lateral hyphal connections between adjacent epidermal cells using 

confocal scanning laser microscopy (CSLM). It has thus been suggested that one 

individual hyphal penetration may result in colonization of more than one epidermal cell 

(Massicotte et al. 2005). 

Colonization results in an increase in cytoplasmic volume of the root cell. 

Although the fungus penetrates the cell wall, it does not penetrate the cell plasma 
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membrane. Once hyphae enter, the fibrillar sheath disappears. Hyphae coil and branch 

inside the cell forming hyphal complexes (Peterson et al. 2004). Two types of hyphal 

complexes have been observed: loose and compact, the latter densely packed and 

taking up most of the epidermal cell volume (Massicotte et al. 2005). The cell 

membranes of both plant and fungus remain continuous and their cytoplasms do not 

mix. An apoplastic compartment between the membranes of both partners is formed 

(Dexheimer and Pargney 1991). The coiling and branching of these membranes greatly 

increases the surface area available for nutrient exchange (Peterson and Massicotte 

2004). The extent of the colonization will vary, although it is often high in field collected 

samples. It is hypothesized that there is a high turn-over rate of hyphal complex 

formation in ERM (Peterson etal. 2004). 

Initiation of the colonization process is probably fungus and host specific. Plant 

roots secrete a mucilaginous compound and ericoid mycorrhizal fungal cell walls 

produce an exocellular fibrillar sheath both probably involved in the recognition process. 

The specifics of this remain ambiguous (Straker, 1996). The fibrillar sheath disappears 

from the internal fungal structures after recognition takes place. When fungi encounter a 

non-host plant, the interaction produces a different deleterious and characteristically 

necrotrophic response in the plant. Rhizoscyphus ericae invasion of Trifolium pratense 

(clover) shows no disappearance of the fibrillar sheath (Straker, 1996). Furthermore, 

there is no characteristic swelling of the cytoplasm, rather a degeneration of cytoplasm 

and organelles as well as rupture of the plasmalemma occurs (Bonfante-Fasolo et al. 

1984). Compatible colonization is thus different from other non-compatible invasions 

and indicates some level of specificity between the partners. 
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Ericoid fungi 

There are several fungi that are known to form ericoid mycorrhizas. Rhizoscyphus 

ericae (Zhang and Zhuang 2004) of the order Helotiales, Ascomycota (Perotto et al. 

2002), a teleomorph of the anamorph Scytalidium vaccinii Dalpe, Litten & Sigler (Egger 

and Sigler 1993) was originally described as Pezizella ericae then transferred to 

Hymenoscyphus ericae. Oidiodendron spp. with teleomorphs in the order Onygenales 

(Perotto et al. 2002) have also been identified as ericoid mycorrhizas. These taxa are the 

most commonly identified ERM fungi (Allen et al. 2003; Chambers et al. 2000; 

Hambleton and Currah 1997; Monreal etal. 1999; Perotto etal. 2002; Read 1996; 

Sharpies eta/. 2000). 

There are probably many other fungi that form ERM, but identification of fungi 

forming these associations is limited by the lack of distinguishing observable 

morphologies as is typical in ECM associations. Fungi can be isolated from roots and 

grown in culture. While identification and manipulation of the specimen is easy with this 

approach, it excludes fungi that do not grow on laboratory media. Analyzing DNA directly 

extracted from roots circumvents the culturing issue, but creates its own set of 

challenges. There is, for instance, no reference sample with associated morphology. 

Berch et al. (2002) found that Gaultheria shallon (Pursh.) was predominately colonized 

by an unculturable basidiomycete. Therefore, the finding that Rhizoscyphus ericae and 

Oidiodendron spp. are often isolated from ericaceous plant roots does not preclude the 

existence of other common ERM forming fungi that are unculturable. 

Rhizoscyphus ericae can be an attractive partner for an ericaceous plant due to 

its metabolic diversity. Rhizoscypus ericae has been shown to scavenge both inorganic 

nitrogen (as ammonia and nitrate) and phosphorus (Read 1996). Rhizoscyphus ericae 
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has been shown to produce many extracellular enzymes that degrade structural 

components of plant litter (Read and Perez-Moreno 2003) providing a source of 

otherwise inaccessible organic nitrogen and phosphorus. When necessary, this fungus 

can obtain its own carbon from pectins and lignins (Peterson etal. 2004). Rhizoscyphus 

ericae is able to tolerate water stress (Chen et al. 2003) and furthermore, can tolerate 

heavy metals such as arsenic (Sharpies et al. 2000), cadmium (Perotto et al. 2002), zinc 

(Martino et al. 2000) and copper (Gibson and Mitchell 2005, Monni et al. 2000). 

Benefits of Rhizoscyphus ericae colonization could include better access to nutrients as 

well as heavy metal resistance. 

Some Oidiodendron spp. are recognized to form ERM with multiple potential 

hosts (Lacourt et al. 2001). Although less thoroughly characterized than R. ericae, 0. 

maius has been shown to play a role in nitrogen acquisition when forming ERM with 

Gaultheria shallon (Xiao and Berch 1999). 

Dark Septate Fungi 

Dark septate fungi are frequently found on ericaceous plant roots. Isolated often, 

they rarely sporulate and produce dark to mouse grey mycelium in culture. They are 

called 'endophytes', a term which means they do not appear to help or harm the plants 

they inhabit (Peterson et al. 2004). Structurally, dark septate fungi appear different from 

ericoid fungi. They present both distinct melanized hyphae with septa as well as thinner 

hyaline hyphae. They form extensive networks around and within roots and are known to 

colonize both epidermal and cortical cells and vascular tissues as well (Peterson et al. 

2004). Dark septate fungi form microsclerotia which are easy to identify and diagnostic 

of their presence in field collected samples (Peterson et al. 2004). 
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Dark septate fungi are ubiquitous. Besides their associations with ericaceous 

plants, they are also found on the roots of 600 trees and plant species (Mandyam and 

Jumpponen 2005). They do not seem to be limited to associations with plant roots. 

Menkis et al. (2004) report isolating Phialocephala spp. from healthy and decaying roots, 

coarse woody debris (CWD) and fine woody debris (FWD), healthy stems and freshly cut 

woody surfaces of Picea abies (L.) Karst., Pinus sylvestris L. and Betula pendula L in 

Sweden and Lithuania. Menkis et al. (2004) theorize that dark septate fungi may alter 

strategies to coincide with the life stages of trees: from mycorrhizal-like colonization of 

healthy roots and stems to decomposition in declining and dead wood. It appears that 

dark septate fungi are able to thrive in disparate ecological niches. 

Further evidence is provided by Addy et al. (2000) who isolated dark septate fungi 

across a sand to wetland gradient. They found that dark septate fungi show no 

preference for either extreme and thrive in both very wet and very dry conditions (Addy et 

al. 2000). The Phialocephala spp. collected at each of their sites showed little sequence 

variability suggesting that there is little specificity among strains for particular 

environmental conditions. Thus they do not seem to be limited by habitat or geographic 

range. Piercey et al. (2004) isolated Phialocephala fortinii with near identical sequences 

from geographically distant locations: from southern Alberta at 49° N to Nunavut at 78° 

N. Experiments examining their roles as mycorrhizal fungi produce contradictory results 

(Mandyam and Jumpponen 2005). Depending on the experimental conditions and the 

identity of the plant being tested, they can show positive, neutral or negative host 

responses (Jumpponen 2001). Jumpponen (2001) argues that, because of this and 

because they are capable of forming structures and interfaces that would allow for 

symbiosis, they should be considered mycorrhizal. Even though their function remains 
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elusive, their sheer abundance must have ecological impact and thus cannot be ignored 

(Mandyam and Jumpponen 2005). 

Field Study Rationale 

Many of the functions, or lack thereof in the case of dark septate endophytes, 

attributed to root-associated fungi, are based on laboratory experiments. Given complex 

systems like plant-fungus symbioses, the tendency has been to plan reductionist 

experiments simplifying the system so that effects can be clearly demonstrated. Such 

designs demonstrate potential effects occurring in natural habitats. They do not, 

however, show how those potentials are expressed (Read 2002). For instance, it has 

been shown that R. ericae grown in culture changes its nutritional preferences and 

metabolizing abilities after storage (Grelet et al. 2005). The fungus, in this case, has 

adapted to its new environment: the medium in the petri dish. What it may have been 

able to do under field selection pressures is potentially lost. Increasing the complexity of 

the system under study corresponds to an increase in relevance at the expense of 

precision. Thus field studies are the most relevant and least precise of all experimental 

designs (Read 2002). The challenge, then, is to measure appropriate variables that will 

help explain differences observed in the field. Naturally occurring gradients of 

vegetation, forest productivity, microclimate, soil nitrogen availability, and soil pH have 

been exploited to show differences in mycorrhizal assemblages in changing field 

environments (Bougoure et al. 2007; Mulder and de Zwart 2003; Nilsson et al. 2005). 

Gradients occur naturally on mountain slopes and have been used to assess 

ectomycorrhizal communities (Kernaghan and Harper 2001). The slopes of British 

Columbia's interior rocky mountains are not only appropriate for this purpose, they have 

some unique ecological features that can be incorporated into studies. 
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Northern Wet-belt Forests 

In BC, plant landscapes are recognized as belonging to 14 biogeoclimatic zones 

(Meidinger & Pojar 1991). This ecosystem classification provides a framework of 

reference for ecological studies on temperature, moisture and aspect, and by inference 

on fungal communities associating with mycorrhizal plants. Each zone is, broadly 

speaking, a plant community that is an expression of the temperature and precipitation 

regimes present at that location. In this study, zones are considered proxies for different 

habitats of V. membranaceum root-associated fungal communities. While the host 

remains constant, climate variables and plant communities differ based on BEC zone 

classifications. The study site is located in the northern wet-belt forest. Northern wet-

belt forests include the very wet subzone of the Sub-boreal Spruce (SBS) Zone and the 

wet and very wet subzones of the Interior Cedar-Hemlock (ICH) and Engelmann Spruce-

Subalpine Fir (ESSF) Zones. Throughout this study, the subzones sampled are referred to 

by their general BEC zone designations. The very wet subzone of the SBS is 

characterized by high annual precipitation and high growing season precipitation. It also 

has the lowest mean annual temperature of all the SBS units (DeLong 2003). This 

subzone is dominated by hybrid white spruce (Picea glauca (Moench) Voss * Picea 

engelmannii Parry ex Engelm.) and subalpine fir (Abies lasiocarpa Hook. Nutt.) (DeLong 

2003). The SBS is contiguous with the wet and very wet subzones of the ICH at higher 

elevations. The very wet subzone of the ICH is characterized by less annual precipitation 

than the very wet SBS. This subzone is dominated by western red cedar (Thuja plicata 

Donn ex D. Don) and western hemlock (Tsuga heterophylla (Raf.) Sarg). At higher 

elevations, the very wet ESSF zone is characterized by sub-alpine fir and Engelmann 

spruce (Picea engelmannii Parry Ex. Engelm.) (Coupe et al. 1991). Due to their steep 
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topography, wet-belt forests provide a unique opportunity to study impacts of elevation 

as a proxy of temperature and precipitation as a selection pressure on mycorrhizal 

systems and provide a platform for extrapolation under scenarios of climate change. 

The plant host: Vaccinium membranaceum 

Vaccinium membranaceum grows between elevations of 600 and 3500m above 

sea level. It is known as the western black huckleberry (Small and Catling 2005). It is a 

deciduous shrub measuring 0.3 to 1.5m tall that produces creamy pink to yellowish 

flowers 5-6mm in size from April to June. They are found in foothills to montane regions 

from southern Yukon and NWT to Wyoming in the south (Kershaw et al. 1998). V. 

membranaceum is rhizomatous, forming extensive clumps (Small and Catling 2005). It 

can be differentiated from other Vaccinium spp., which include wild and cultivated 

blueberries, by their finely toothed ovate leaves and characteristically black to deep 

purple fruit. It is a non-timber forest product (NTFP) as it is not currently cultivated, only 

collected in the wild. Traditionally used by First Nations peoples, the berries are eaten 

raw, dry or cooked and the roots and leaves have been used for medicinal purposes to 

relieve gout and alleviate diabetes mellitus (Stevens and Darris 2000). 

Approaches to the study of root-associated fungi 

Traditionally, the study of fungal diversity has relied on collecting sporocarps or 

examining differences in root morphology as well as isolating fungi from roots. Fungal 

fruiting patterns have not been shown to represent underground diversity. Root 

morphology remains useful but is restricted to ECM and cannot be used to distinguish 

ERM. Not all fungi are culturable, and those that do not grow on media are missed in 

approaches that use this approach exclusively. Berch et al. (2002) found that 65% of 

their Gaultheria shallon ericoid roots were colonized by a non-culturable basidiomycete: 
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Sebacina vermifera. Allen et al. (2003) found that 74% of their colonized roots yielded 

no culturable fungi. In contrast, an Australian study of Epacris pulchella (Epacridaceae) 

roots found only 8% of their roots yielded no culturable fungi (Bougoure and Cairney 

2005). It is recommended that a combination of isolation and directly extracted DNA be 

used to capture the most diversity (Allen et al. 2003; Berch et al. 2002; Bougoure and 

Cairney, 2005). 

Molecular Approaches 

The rRNA operon has features that make it a good tool for differentiating fungi. 

Coding regions are conserved and consequently are good targets for fungal specific 

primers. Non-coding regions tend to vary between genus and species, allowing for 

differentiation and identification of the fungi. There are two intergenic spacers between 

the 18S rRNA gene and 28S rRNA gene that flank the 5.8S rRNA gene, called ITS1 

(intergenic spacer 1) and ITS2 (intergenic spacer 2) (Figure 1). Amplifying this region is 

the starting point for both sequencing and identification as well as community profiling 

techniques. Although ideal for 

18S rRNA 5.8S 28S rRNA 

' ITS1 ' ITS2 ' 

Figure 1. Schematic of rDNA ITS region 

identification of some fungi, its not effective for all. The Sebacinales are known to have 

very diverse ITS regions and this region cannot be relied on solely for their identification. 

In the case of these fungi, rDNA large subunit (LSU) data is needed to supplement the 
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ITS identifications (Selosse et al. 2007). The ITS region cannot be used for quantification 

because its copy numbers vary between fungi, but the specifics of those differences that 

would aid in quantification are not known (Anderson and Cairney, 2004). Thus the 

abundance of a particular ITS genotype may not directly reflect the abundance of the 

fungus it resided in. Furthermore, identification to the species level is not always 

possible due to lack of information in GenBank. The fungal ITS region is less variable 

than the RNA spacer region in bacteria, and which is widely used in bacterial community 

profiling (Anderson and Cairney, 2004). 

Length-Heterogeneity PCR (LH-PCR) 

Length-Heterogeneity Polymerase Chain Reaction (LH-PCR) is a microbial 

community profiling technique. Developed to evaluate bacterial diversity, it is also known 

as Automated Ribosomal Intergenic Spacer Analysis (ARISA) (Fisher and Triplett 1999). 

Adapted for fungal diversity assessments (Ranjard et al. 2001), this technique is used to 

profile communities for comparison between sites. Intergenic spacers flanking the 5.8S 

RNA are targeted with a PCR reaction containing fluorescent labeled primers. Amplified 

fragments are analyzed using an automated sequencer with laser detection. The profile 

of peaks generated from a community is a fingerprint that represents the diversity of 

fungi within that community (Ranjard et al. 2001). It has been used to effectively 

compare fungal communities (Lejon et al. 2005; Ranjard et al. 2001). Profiling methods 

are known to underestimate the diversity of a community because they can fail to detect 

rare species (Bent et. al. 2007). 

Statistical analysis 

Multivariate data were collected for this study. Several statistical approaches 

were employed and are detailed below. 
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Non-metric Multi-dimensional Scaling (NMS) 

Most ordination methods make multivariate assumptions that are not appropriate 

for ecological data. Non-metric multidimensional scaling (NMS) is a preferred method for 

analyzing plant ecological data because it avoids certain pitfalls. For instance, NMS does 

not assume that there are linear relationships between variables (McCune and Grace 

2002). NMS seeks to represent the data in the lowest number of dimensions while 

retaining the relative order of distances between objects. The resultant multidimensional 

plot shows similar objects closer together than more dissimilar objects. Unlike 

eigenvector techniques, NMS does not seek to maximize the variability represented by 

each axis; in NMS, the axes are arbitrary (Legendre and Legendre 1998). Another 

advantage of using NMS for ecological data is that it helps to relieve the zero-truncation 

problem. Once a species is absent from a habitat, we cannot tell how 'disfavourable' that 

environment is to that species; there is no 'negative' abundance. Zero-truncation makes 

it difficult to use species abundance as a measure of favourability of habitat. NMS uses 

ranking to linearize relationships between distances in species space, and this helps to 

relieve the zero-truncation problem (McCune and Grace 2002). 

Any distance measures can be chosen in NMS. A good ecological distance 

measure is S0rensen's Index. This measure is a value ranging from zero to one. Zero 

represents identical items; the larger the value, the greater the difference between the 

two objects. The S0rensen's measure also assumes symmetry in that the distance from 

A to B is the same as B to A. Distances are based on non-Euclidean mathematics: fuzzy 

sets theory where the proportion coefficients are used as distance measures of the 

intersection of two fuzzy sets of quantitative data. However, NMS is adaptable to any 

distance measure that is appropriate for ecological data sets (McCune and Grace 2002). 

16 



The procedure starts with a distance matrix using the previously selected 

distance measure and the data are assigned positions in ordination space (either 

randomly or based on scores from a previous ordination). This initial configuration (X) is 

then normalized and a new matrix (D) is calculated. A matrix of dissimilarity coefficients 

is created. The dissimilarity coefficient matrix is then rank ordered. Elements of D which 

do not satisfy the monotonicity constraint are then replaced successively. The amount of 

movement required to achieve monotonicity is measured and used to determine 

"stress". Stress is the difference between the original dissimilarity matrix and the 

distances between objects reordered in ordination space. The lower the stress, the 

better the fit. The goal of the iteration procedure is to minimize stress. Objects are 

consecutively moved in direction of steepest descent (i.e., greatest reduction in stress) in 

ordination space until a minimum reduction in stress is achieved with each iteration. The 

process is repeated (iterated) until stability is achieved or until a certain predetermined 

number of iterations are performed (McCune and Grace 2002). 

A Monte Carlo test is used to evaluate whether the NMS procedure is extracting a 

pattern that could happen by chance. The original data set is randomized and the NMS 

procedure repeated. Stress between the two analyses is compared. The original data 

should produce a stress that is lower than the randomized data. A p-value is derived by 

comparing stresses and expresses the probability of getting such a result with the 

original data set by chance (i.e., Type 1 error) (McCune and Grace 2002). 

The best solution in NMS has low stress and is stable. Ecological data often 

presents a stress of 10-20; a value of over 20 suggests the graph produced is not very 

reliable. Plots of stress vs iteration number should be examined to determine stability. A 
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final instability of l O 3 should be considered maximal for graphical interpretation 

purposes (McCune and Grace 2002). 

Objects close together on an NMS plot are more similar to each other than 

objects further apart. Each axis will represent a portion of the variance. Correlations to 

other variables can be overlaid from another matrix (McCune and Grace 2002). 

perMANOVA 

Non-metric multidimensional scaling represents relationships graphically; to test 

for statistical differences between groups the perMANOVA procedure can be used. This 

non-metric version of an ANOVA test avoids several key assumptions of multivariate 

ANOVA's. There is no requirement of multivariate normality or homogeneity of variance 

which are often difficult to achieve in ecological data. A distance measure can be 

selected and should mirror that used in NMS. Statistical significance is determined by a 

Monte Carlo test (McCune and Grace 2002). 

Indicator Species Analysis 

With ecological data, differences detected using perMANOVA can be 

characterized with Indicator Species Analysis. In this simple approach, a species is a 

perfect indicator if it is always present in one group (faithful) and never present in any 

other group (exclusive). Each species is evaluated with respect to this criterion and given 

a score based on how good of an indicator species it is. Confidence in the result is 

determined by a Monte Carlo test and reported as a p-value. If perMANOVA answers the 

question "are the groups different?", then indicator species analysis answers the 

question "how are they different?" (McCune and Grace 2002). 
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Canonical Correspondence Analysis 

Canonical Correspondence Analysis (CCA) is an ordination technique that uses 

environmental variables to constrain the species matrix data. It is an excellent technique 

to demonstrate how sampled species are related to the values of environmental 

variables from the same sites. It is an eigenvector technique that extracts principal axes 

using a reciprocal averaging algorithm with the addition of a constraint at each 

calculation step. The constraining step uses standardized environmental variables from 

a second matrix and applies an ordinary least squares multiple regression. These are 

then used as predicted values in the subsequent calculation of species scores (Quinn 

and Keough 2002). As such, this technique excludes from its analysis community 

structure data that is unrelated to the environmental variables (McCune and Grace 

2002). 

This is an a priori approach. Canonical correspondence analysis assumes the 

environmental variables tested are independent variables and that the species matrix 

represents dependant data (0kland 1996). Variation that cannot be explained by the 

environmental variables is ignored (McCune and Grace 2002). Implicit within this is the 

assumption that there are no other independent variables that could affect the species 

data. The purpose of ecological studies is often to find the variables that impact 

community composition. By ignoring variation that does not fit with the environmental 

variables that happened to have been measured (often out of convenience), any 

indicators of additional effects are removed (0kland 1996). As such, CCA offers no 

additional information about community structure. Its function is solely to explain 

species variation in terms of the measured environmental variables. 
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Canonical Correspondence Analysis is vulnerable to dramatic shifts in results with 

the inclusion of irrelevant or noisy environmental data (McCune 1997). Once the number 

of environmental variables approaches the number of sites, the constraints on the axis 

become so weak as to become no different than random variables (McCune and Grace 

2002). Environmental variables are also assumed to have linear relationships, and as 

such, the data must be transformed to satisfy this requirement (Quinn and Keough 

2002). Environmental variables used in constraining should be few and have clear linear 

trends. 

Canonical Correspondence Analysis is sensitive to abundances, weighing rare 

species heavily. It also falls prey to the problem of distortion of data if species at the end 

of each gradient are very dissimilar to each other. It will group these samples as more 

similar by a common lack of identical species, the resulting graph may curve on itself like 

a horseshoe. This technique is often used in examining species diversity differences 

along gradients. Because of the distortion problem, it is not good for large gradients 

where species at the ends of the gradients are completely different from each other 

(Quinn and Keough 2002). 

Recognizing the limitations of this technique, it is possible to use it synergistically 

with other ordination techniques. Configurations that agree between constrained and 

non-constrained ordinations indicate strong real trends (0kland 1996). Still, these are 

only graphical representations. Follow up analysis, such as multivariate ANOVA, are 

needed to characterize group structure (Quinn and Keough 2002). 
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Chapter Two: Methods 

Study site 

McBride peak (53° 20 N, 120° 07 W) is located just outside the town of McBride in the 

Interior range of the Canadian Rockies in east-central British Columbia. The southwest 

facing slope of McBride peak encompasses four biogeoclimatic zones: the alpine, ESSF, 

ICH and SBS. The subzones of each BEC zone are described in the introduction. 

Transects were created to target the midpoint of each zone, thus spacing between 

transects is not equidistant along the slope. The start and end points of each transect 

were recorded with GPS unit and those points used in ClimateBC to calculate mean 

annual temperature (MAT), mean annual precipitation (MAP), mean summer 

precipitation (MSP) and the number of frost free days (NFFD) taken as the average 

Climate BC output for the two GPS points (Wang et al. 2007). 

The alpine zone used in this study (Figure 2A) was probably the lower range of the 

true alpine-tundra biogeoclimatic zone, as there were several tree islands of Whitebark 

pine (Pinus albicaulis Engelm.) and subalpine fir {Abies lasiocarpa), although stunted, in 

the surrounding area. The AT is by definition treeless (Pojar and Stewart, 1991). The area 

sampled was dominated by Mountain Heather (Cass/ope mertensiana Bong D. Dong., 

and Phyllodoce sp.). The canopy was open. The elevation sampled was 1923 ± 10m. The 

MAT was 0.5°C, the MAP was 1262mm, the MSP was 587mm and the NFFD was 129. 

The ESSF was dominated by stunted subalpine fir (Abies lasiocarpa), Whitebark 

pine {Pinus albicaulis) and Engelmann spruce (Picea enge/mann/7)(Figure 2B). The 

canopy was mostly open, although the trees were larger and thus provided more shade 

than in the alpine landscape. The understory was dominated by Rhododendron 

albiflorum Hook, and Menziesia ferruginea Smith. The organic layer of the soil was 
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shallow (3-5 cm deep). There were more rocks at this elevation that made excavation of 

plants more difficult. The elevation sampled was 1801 ± 7.5m, about mid-way through 

the zone. The MAT was 0.5°C, the MAP was 1229mm, the MSP was 586mm and the 

NFFD was 129. 

The ICH was the mid elevation biogeoclimatic zone in this study (Figure 2C). 

Climax forests in the ICH would be dominated by western hemlock (Tsuga heterophylla) 

and western red cedar {Thuja plicata) (Ketcheson et al. 1991). Due to recent fire 

disturbance history, as inferred by charcoal in the soil pit and younger serai stands, 

these were present but sparse especially at higher elevations of the zone. The overstory 

was dominated by trembing aspen (Populus tremuloides Michx.) and paper birch {Betula 

papyrifera Marsh.). The understory was dense with large Rhododendron albiflorum, 

Menziesia ferruginea and willows {Salix spp.) The V. membranaceum plants were difficult 

to excavate due to the density and size of other roots present in this soil. Vaccinium 

membranaceum plants were mostly shaded at this elevation. The elevation sampled was 

1224 ± 10.4m. This is the upper elevation limit for the ICH. In the field, mid points of 

each BEC zone were targeted. Thus this appeared to be the best place to sample in situ. 

The MAT was 0.4°C, the MAP was 1491mm, the MSP was 558mm and the NFFD was 

130. 

The lowest elevation sampled, the SBS, had a more open understory than the ICH 

stand but and a more closed overstory (Figure 2D). The SBS was dominated by Douglas-

fir (Pseudotsuga menziesii (Mirb.) Franco) and white spruce. Root systems within the soil 

at this elevation were prolific rendering excavation of V. membranaceum plants 

challenging. It was, however, easier than the ICH to excavate because the understory 
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vegetation was less dense. Plants excavated at this elevation were shaded. A 

complete list of plants found at each site (excluding V. membranaceum) can be 

found in Table 1. The elevation sampled was 875 ± 11.2m. The MAT was 0.1°C, the 

MAP was 1353mm, the MSP was 600mm and the NFFD was 125. 

Harvesting plants 

McBride peak is accessible by a road (4-wheel drive only) that terminates just below 

the AT zone. In July of 2006, four 100m transects were laid out perpendicular to the 

slope of the mountain, each transect targeting a biogeoclimatic zone. Ten black 

huckleberry plants, selected as the closest plant to each ten meter interval along the 

transect, were harvested with their surrounding soil, for a total of 40 plants. The 

entire root system was targeted. Excavations of plants yielded soil blocks 

approximately 0.5 x 0.5m x 20cm (Figure 3A). A 12cm TDR water probe was used to 

assess soil moisture at time of harvest. Measurements were taken at each of the 

four comers of an excavation site, averaged, and reported per plant (Figure 3B). For 

leaf mass to area (LMA) analysis, ten randomly selected leaves were taken from each 

plant and stored in plastic bags at-20°C. Plants were double-bagged and kept in 

coolers for transport to the lab, where they were stored at 4°C. 

Harvesting hair roots 

Each V. membranaceum plug containing soil and its root system was soaked in tap 

water for 24-48 hours to loosen the soil. Over the course of 60 days, all the plants 

were processed in the same manner: roots were massaged free of soil, other roots 

and rocks, and all attached lateral hair roots were harvested, cut into l-5cm pieces 

and assigned randomly to one of three processing approaches: 1) surface sterilized 
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immediately for culturing, 2) frozen at -20°C for DNA extraction, and 3) preserved in 

50% ethanol for microscopy. 

Fungal isolation 

Twelve randomly selected root pieces from each plant were surface sterilized in 10% 

H2O2 for 45 seconds, washed 3 times in sterile 6H2O and plated onto full strength 

Potato Dextrose Agar (PDA), as per the protocol of Berch et al. (2002), at six 3cm root 

pieces per plate. Plates were examined once a week and growing fungi were sub-

cultured onto individual plates. Sub-cultured fungi were monitored for contamination, 

cultured again if necessary and discarded if contamination could not be eliminated. 

Cultures were grown for 6 months at room temperature (20 °C) then stored at 4°C. 

Isolates were named to identify the plant from which they originated. This 

convention is used throughout the text. Names begin with a letter (i.e. A, E, I, S) which 

refers to a biogeoclimatic zone (i.e. alpine, ESSF, ICH, SBS). The letter is followed by a 

number which references the number of the plant the fungus was originally isolated 

from. Plant numbers range from 1-10 along each transect. The second number 

following a dash denotes the chronological order in which the fungus was isolated 

and is largely irrelevant, other than to denote it as different from another isolate from 

the same plant. 

A total of 461 isolates were cultured from the surface sterilized roots, with 

cultures representing every plant harvested. These were categorized based on 

morphological features. Ninety representative cultures were first sequenced as 

described below, and this revealed that many of these cultures were Phialocephala 

fortinii (the most common dark septate endophyte [Peterson et al. 2004]) and were 

easily recognized based on morphology in culture. Thus a second round of 
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sequencing excluded obvious P. fortinii cultures and focused on all other 

morphologies, aiming to sequence each type of culture obtained from each 

harvested V. membranaceum plant. After the second round of sequencing, both P. 

fortinii and Cryptospohopsis sp. could be readily identified by culture morphology and 

were counted as isolated from their respective plants even if those specific cultures 

were not identified with sequencing. The numbers and identities of cultures isolated 

for each plant are summarized in the results. 

Sequencing fungal cultures 

The DNA from 298 cultures (out of 461) was extracted using Nucleospin multi-96 

plant kit (MJS BioLynx) according to the manufacturer's protocols. Six positive 

controls {Cladosporium sp., Endoconidioma, Geomyces pannorum, Knufia sp., 

Sclerotinia sclerotiorum, Tilletia barclayana) were used per 96-well plate. 

Extracted DNA was amplified using the forward primer ITS5 

(5'GGAAGTAAAAGTCGTAACAAGG3') and reverse primer LR6 

(5'CGCCAGTTCTGCTTACC3'), targeting the ITS1 and ITS2 region of rDNA. In a lOuL 

reaction, consisting of O.lmM of dNTP's, 0.8uM of each primer and l x Titanium 

Taq™ buffer (including 3.2mM MgCb) and O.lng Titanium Taq™ Polymerase, luL of 

template was added. The thermocycler conditions were 95°C initial denaturation, 

then 95°C for 1 minute, followed by annealing at 58°C for 30s and a 72°C extension 

for 2 minutes for 40 cycles. A final of extension of 72°C for 8 minutes was included 

before being held at 10°C. Bands were visualized using the E-gel® 96 high-

throughput agarose electrophoresis system (Invitrogen). 

Sequencing was performed using the BDT System (Brinkman Instruments, 

CA). Forward primers used were ITS1 (5TCCGTAGGTGAACCTGCGG3') and ITS5, 
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reverse was ITS4 (5TCCTCCGCTTATTGATATGC3'). A final volume of 10uL contained 

0.875x sequencing buffer v3.1, 0.125x BDT sequencing mixture v3.1 and 0.16uM 

primer as well as less than 20ng of PCR template. Sequences were edited and 

forward and reverse sequences aligned using Sequencher 4.2.2 (Gene codes corp). 

Edited sequences were compared to GenBank using BLAST searches 

(www.ncbi.nlm.nih.gov) to find the closest named fungus. 

LH-PCR 

Roots (1/3 of entire root system of each huckleberry plant) stored at -20°C (stored no 

more than 2 months) were pulverized by immersion in liquid nitrogen and ground 

with a mortar and pestle. The mortars and pestles were washed with soap and water, 

immersed in 3M HCI for 24 hours and washed again with soap and water prior to use 

in order to ensure no cross contamination between samples. DNA was extracted from 

the crushed roots using the UltraClean Soil DNA extraction (MoBio Laboratories Inc) 

kit following the alternative protocol for maximum yields. Spectrophotometric 

analysis of extractions showed very low amounts of DNA in some cases with 

concentrations ranging from l-50ng/uL. 

Each plant was subjected to extraction twice and was amplified with one set 

of primers targeting the ITS1 region of fungal ribosomal DNA for LH-PCR. The primers 

used were ITS3 (5'-GCATCGATGAAGAACGCAGC-3') and green dye (D3) labeled NLB4 

(5'-5D3-GGATTCTCACCCTCTATGAC-3') (Invitrogen Inc). Each 30uL reaction contained 

3uL of genomic DNA (no single dilution worked for every sample, thus some samples 

amplified successfully with no dilution, some with 1/10,1/20, or 1/50), l x PCR 

Buffer, 2mM dNTP's, 25mM MgCI2, lOuM of each primer and 3U of Platinum Taq 

DNA Polymerase (Invitrogen). Thermocycler conditions were as follows: 4 minutes 
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denaturation at 94°C followed by 35 cycles of denaturing, annealing and extension at 

93°C for 35 seconds, 52°C for one minute and 72°C for 1.5 minutes respectively. The 

final extension was 5 minutes at 72°C. Reaction products were visualized with 

ethidium bromide staining in 1% agarose gel electrophoresis and subjected to 

fragment analysis with the Beckman Coulter CEQ™ 8000 Fragment Analysis System 

(Beckman-Coulter Inc.). 

Fragment Analysis 

Fragments were binned and analyzed in the AFLP (amplified fragment length 

polymorphism) program of the Beckman Coulter CEQ™ 8000 Fragment Analysis 

System (Beckman Coulter Inc.). Analysis parameters were set for the 600bp size 

standard quartic model. A 3bp bin size was selected in accordance with Beckman-

Coulter Inc equipment detection limits (Beckman Coulter 2004) for the 600bp 

ladder. All directly extracted DNA samples were analyzed together to eliminate the 

possibility of discrepancy between program settings on the fragment analysis system. 

Profiles were then examined manually and flawed profiles, some including those with 

problems such as ladder failures or the detection of incorrect dyes, were deleted. 

The Variable Percentage Threshold (VPT) method (Osborne et al. 2006) was 

used to score peaks in LH-PCR profiles generated by the AFLP program. Osborne et al 

(2006) have demonstrated that the VPT method outperforms other approaches when 

tested on replicate PCR data. Variability of the fluorescence signal between profiles, 

due to the uncertainty of amount of LH-PCR product applied in each run, is taken into 

account when selecting which peak to retain and which to discard. The total area of a 

profile is divided by different values (divisors), and those peaks below the divisor 

value eliminated. Different divisors are tested and the correlation examined until the 
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relationship between the divisor and the number of peaks retained is weakest. The 

point at which correlations between the total area and number of peaks retained is 

weakest is theoretically the point at which signal is distinguished from noise. The 

optimal divisor for each profile is thus found and peaks with areas less than this 

value are removed from the profile before further analysis. The VPT method was 

applied to fragment lengths ranging from 300-681bp in size. 

Eighty profiles were kept for further analysis: 40 duplicate root samples. 

These are not true replicates. Each duplicate sample was extracted from a different 

set of hair roots from one plant. One species of fungus could have been present in 

one sample and not the second; thus a peak in only one of the two samples does not 

imply incongruence between samples, rather it indicates the presence of that species 

within only one of the two sub-sampled root systems. The duplicate profiles are thus 

additive and were performed to boost the quality of information obtained: overall, 

fragments common to both duplicate profiles accounted for only 20% of the 

fragments detected. The result was a matrix of presence/absence data for x distinct 

fragments on each of the 10 plants harvested at the 4 elevations. 

Linking cultures with LH-PCR 

The LH-PCR technique was paired with sequencing to determine if individual 

fragments correspond to a particular culture. A selection of cultures were subjected 

to LH-PCR in duplicate, and sequenced as per above. Representatives of each 

identified taxon were selected for LH-PCR analysis. 

3 1 



Statistical analysis of Matrices 

The sequencing and direct DNA analysis approaches both yielded data in matrix 

format that could be visualized using non-metric multidimensional scaling (NMS). 

Three matrices were analyzed. Presence/absence data from the culturing approach 

was summarized in one matrix, as was presence/absence data from the direct DNA 

analysis. The number of cultures isolated per plant was used as an abundance 

measure for a third matrix. Although the LH-PCR approach does generate data on 

amount of DNA detected, it is not an appropriate abundance measure. The copy 

number of ITS1 differs between species of fungi, thus the amount detected cannot 

be used as a measure of abundance of a fungus. Furthermore, the difficulty of 

preferential amplification in PCR adds another level of uncertainty that precludes 

using this method as an abundance measure. 

All 3 matrices were calculated on the basis of the Sorensen distance 

measure. Ordinations were performed using PC-ORD v5.0. (McCune and Grace 2002) 

run on autopilot in the 'slow and thorough' mode, using random starting coordinates. 

Monte Carlo tests were run for each matrix, with 250 randomized runs to determine 

the chance (p=0.04 in all cases) that a similar stress could have been obtained by 

chance. The dimensionality of the solution is selected once the addition of more 

dimensions provides only small reductions in stress. No solutions above a final stress 

of 20 or above an instability value 0.03 were considered. Solutions for ecological 

community data with stress values between 10-20 are common; the lower the value, 

the more reliable the solution (McCune and Grace 2002). Differences between 

richness of fragments and cultures and abundance of cultures from the four 

elevations were determined using a non-parametric multivariate ANOVA 
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(permANOVA). Results were deemed significant when p<0.05 and somewhat 

significant when p<0.1. 

Indicator species analysis 

Indicator species analysis was applied to the fungal community data to assess the 

value of a species (or fragment) to indicate the conditions present at a particular 

elevation. This intuitive measure, ranging from 0 to 100, applies as value of 100 to a 

perfect indicator. A perfect indicator species or fragment would always be present at 

a particular elevation (faithful) and would never occur at another elevation (exclusive) 

(McCune and Grace 2002). Relative abundance of a species or fragment within an 

elevation compared to other elevations is determined and multiplied by the relative 

frequency (proportion of species or fragments in each elevation that contain that 

species or fragment). Since the two values are multiplied, both values must be high 

to result in a high indicator species value. A Monte Carlo randomization was used to 

determine statistical significance (McCune and Grace 2002). 

Canonical Correspondence Analysis 

Canonical Correspondence Analysis (CCA) was used to assess the potential for the 

environmental variables to explain the variability in fungal community structure. 

Since this ordination technique is sensitive to irrelevant environmental data, only 

those variables found to differ along the elevation gradient were used in the analysis. 

These included water content, pH of both organic and mineral soils, age of plants, 

C:N ratio of mineral soil and LMA. All values tested were z-scores with outliers 

replaced by means for the elevation (group). 
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Diversity measures of LH-PCR fragments and cultures 

Both LH-PCR fragment and culture data were summarized in terms of alpha, beta 

and gamma diversity. Alpha diversity is the average richness at each elevation. 

Gamma diversity is the sum of all unique species or fragments at that elevation. Beta 

diversity as per Whittaker (1960) ((3w) is reported as the ratio of gamma to alpha 

diversity. This approach to measuring beta diversity is included here because it is the 

most common metric reported in the literature (Koleff et a/. 2003) and so could 

facilitate comparisons to other studies. In addition (3 sorensens and Psim (Koleff et al. 

2003) are included. BetaSorensens is a broad-sense measure that emphasizes species 

in common and differences in richness between the fungal communities. BetaSim is a 

narrow-sense measure that emphasizes gains and losses of species between sites 

and is thus more sensitive to composition changes than p sorensens- With both 

measures, high values represent low beta diversity (high similarity) and conversely, 

low values represent high beta diversity (low similarity between root associated 

communities). 

Plant characteristics 

Age determination 

Vaccinium membranaceum is a multi stemmed shrub. All large stems attached to the 

same root system were sectioned by hand using razor blades and stained for 1 

minute in 10% potassium iodine solution and mounted in lactoglycerol on slides and 

examined with an Olympus CH30 light microscope. Rings, defined as the change in 

vessel dimension from early wood to late wood, were counted to determine the age 

of each plant. The oldest shoot was taken to be the age of the plant. 
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Leaf Mass per Area (LMA) 

The leaves collected at the time of harvest were thawed in a refrigerator (4°C), patted 

dry and average area determined using a LI-3100 Area meter (LI-COR Lincoln 

Nebraska). Leaves were then dried to a constant weight at 105°C, their final weight 

determined on a Sartorius MC410S analytical balance. Average mass was divided by 

the average area of the ten leaves from each plant to yield a LMA value for each 

plant. Relatively higher ratios represent smaller and thicker leaves that would be 

present in high light saturation circumstances, whereas lower ratios represent larger 

and thinner leaves typical of shaded closed-canopy environments. 

Soil characteristics 

Soil analysis 

Prior to soaking in tap water, a random sample of soil from at least 4 different 

locations on the soil plug was taken and air dried. Mineral and organic fractions from 

soil blocks associated with each plant were collected separately and sieved; the 

organic fraction being kept free of leaf litter. Soils were ground in a coffee grinder 

and used for pH and carbon and nitrogen determination. The pH measurements were 

performed in duplicate using an Orion 710A pH meter, diluting the organic soil 2:1 in 

dH20 and 1:1 for the mineral soil. Total organic carbon and total nitrogen content of 

both the organic and mineral soil fractions were determined using a Fison NC 1500 

Elemental Analyzer. 

Fungal Characteristics 

Fungal Colonization Assessment 

Approximately half of the roots stored in 50% ethanol were used to determine the 

extent of fungal colonization. Roots were first rinsed 3 times in sterile dhbO and then 
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cleared in 5% KOH at 60°C for 12 hours. To remove the KOH, roots were again rinsed 

3 times in sterile distilled water and then stained with 0.03% Chlorazol Black E 

(Sigma C-1144) in 1:1 lacto-glycerol at 60°C for 3 hours. Roots were stored at 4 °C in 

1:1 lacto-glycerol. Percent colonization was determined by using a modification of the 

Brundrett (1996) method for examining arbuscular colonization of root sections in a 

dissecting microscope. Although low magnification may be adequate to assess 

arbuscular colonization, it is insufficient for ericoid colonization. The protocol by 

Brundrett (1996) involves floating roots in a petri dish containing grid. The points at 

which the roots intersect the grid are assessed as colonized or not, for a total of 100 

intersections expressed as percent colonized. The following is a modification of the 

Brundrett (1996) method designed to be used with a compound microscope to 

accommodate the greater magnification needed to determine colonization of ericoid 

hair roots. 

Stained roots sections were mounted on glass slides in lacto-glycerol as the 

mounting medium and assessed under 400x magnification with the Olympus CH30 

light microscope. To mimic spreading root sections on grid, roots sections were 

arranged parallel to the length of the slide and the eyepiece micrometer used as a 

line of intersection for the roots. Scrolling through the roots was accomplished by 

moving the stage a set distance, following gradations on the stage, for each 

observation. Cells intersecting the micrometer line were determined to be colonized 

by classic, or non-typical ericoid morphology or dark septate (Peterson et al. 2004; 

Massicotte et al. 2005). Percent colonization values include all types of colonization 

noted. It was also noted whether there were hyphae on the surface of the cells, 

however, these observations were not included in the determination of the percent 
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colonization values. One hundred random intersections of the fine roots were used to 

determine the final value for each plant. Only young lateral roots were used, roots 

over 6 cells thick were excluded from the assessment. 

Statistical analysis of plant, soil and fungus characteristics 

All of the plant, soil and univariate fungal variables were tested for differences 

between elevations using one-way ANOVA's. A post hoc Tukey's HSD analysis was 

used because it is a conservative measure and more likely to reveal true differences 

between groups (Zar 1999). Variables were sorted into plant characteristics (age and 

leaf mass to area), soil characteristics (water content, pH-organic and pH-mineral 

soil, and C:N ratio-organic and C:N ratio-mineral soil) and fungus characteristics 

(extent of colonization, richness of fragments and richness of cultures). A p<0.05 was 

considered significant, whereas p<0.1 was considered potentially significant within 

the context of field-collected, ecological data . 
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Chapter 3: Results 

LH-PCR 

The total number of fragments (ranging from 310 to 681bp) generated from all 40 

root samples was 57 (Figure 4). The alpine samples generated 20 fragments, 3 of 

which were exclusively found in the alpine samples. The ESSF root samples 

generated 27 fragments, 5 exclusive to that biogeoclimatic zone. The ICH samples 

yielded the most fragments (36) and the most exclusive fragments (10). The SBS root 

samples yielded 29 fragments, 4 of which were unique. Plant root samples from 

individuals yielded between 1-20 fragments each. Although the mean number of 

fragments isolated per plant from each elevation increases in value with decreases 

in elevation (Alpine=4.4 fragments; ESSF=6.7; ICH=7 and SBS=8.3) (Table 2), there 

is no significant difference between them based on a one-way ANOVA. The variability 

of numbers of fragments found per plants was high enough to obscure a difference. 

Cultures 

A total of 379 cultures (out of 461 fungi isolated) were successfully identified by 

sequencing the ITS1-5.8S-ITS2 region of ribosomal genes. The remaining 82 cultures 

represent: those that were not successfully sequenced (18); were sequenced but did 

not produce a confident identification in GenBank (5); were cultures that died (29); 

were contaminated (6); those that were morphologically similar to P. fortinii and 

excluded from sequencing (24). Morphologically unique cultures were targeted for 

sequencing. Appendix 1 contains photographs of the sequenced fungi. Between 1-6 

distinct cultures were isolated from each plant. Overall, twenty discernable taxa were 

identified, 8 of which were isolated on only one occasion. Eleven taxa were isolated 

from the alpine, 4 of which were exclusive to the alpine. The ESFF generated 10 taxa, 
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only one of which was exclusive to that elevation. The ICH generated 8 taxa, 2 of 

which were exclusive to the ICH. The lowest elevation SBS generated 9 taxa of which 

3 were exclusive. 

The most commonly isolated fungus was Phialocephala fortinii, representing 

52% of the cultures isolated and found at all four elevations. Meliniomyces spp. and 

Cryptosporiopsis spp. were also found at all four elevations. Meliniomyces spp. was 

found most frequently in the ESSF representing 20% of the cultures isolated at that 

elevation. Cryptosporiopsis spp. was found most frequently in the SBS, representing 

47% of all the taxa isolated from the roots of plants at this lowest elevation. 

Rhizoscyphus ericae was found most frequently at high elevations, representing 21% 

of the isolates from the alpine. It was not found in the SBS. Table 3 summarizes the 

total number of each culture found at each elevation. Figure 5 shows the relative 

frequency out of 10 of those fungi isolated from each elevation. Phialocephala fortinii 

had a relative frequency ranging from 1 (isolated from every plant) to 0.7 (isolated 

from 7 out of 10 plants). In contrast to the mean of LH-PCR fragments found, the 

mean number of cultures found per plant per elevation decreases with decreasing 

elevation (Alpine=3.5 cultures; ESSF=3.2; ICH=2.7 and SBS=2.4) (Table 2), but 

again, there is no significant difference between the means based on a one-way 

ANOVA. 
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Table 2. Average species and fragment richness per plant (a) and its standard 
deviation (SD) using both culturing and direct fungal DNA analysis (LH-PCR), beta (3= 
Y/ a), and gamma diversity (y=total species richness per elevation). 

Cultures 

Alpine 

ESSF 

ICH 

SBS 

<x(SD) 

3.5 (1.35) 

3.2 (1.4) 

2.7 (0.82) 

2.4(0.97) 

P 
3.1 

3.1 

3.3 

3.75 

Y 
11 

10 

9 

9 

LH-PCR 

Alpine 

ESSF 

ICH 

SBS 

cx(SD) 

4.4(3.75) 

6.7 (4.88) 

7.0(5.75) 

8.3 (1.89) 

P 
4.5 

4.0 

5.3 

3.5 

Y 
20 

27 

36 

29 

Table 3. Summary of numbers of the 20 unique cultures isolated and sequenced 
from V. membranaceum plants at all four elevations. 

Reference name 

Phialocephala fortinii 
Rhizoscyphus ericae 
Cryptosporiopsis spp. 
Meliniomyces spp. 
Oidiodendron spp. 
Neonectria radicicola 
Lachnum sp. 
Epacris microphylla root-fungi 
Salal root UBCtral53 
Geomyces pannorum 
Salal root UBCtral80 
Salal root UBCtra264 
uncult mycorrhizal d_fir 
ectoclone 879/18 
ericoid endophyte GU32 
Uncult ectoclone 63/24 
Gyoerffyella sp. 
Rhizoscyphus aggregate 
Leptodontidium orchidicola 

Totals 

Total 

196 
23 
75 
30 
14 
10 
7 
5 
5 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 

379 

alpine 
29 
15 
11 
2 
2 
0 
0 
3 
3 
0 
2 
2 
1 
1 
0 
0 
0 
0 
0 

71 

ESSF 

65 
7 
8 

25 
9 
2 
4 
1 
2 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

124 

ICH 

75 
1 

19 
2 
3 
0 
2 
0 
0 
2 
0 
0 
0 
0 
0 
1 
0 
0 
0 

105 

SBS 
27 
0 

37 
1 
0 
8 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
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Diversity measures of LH-PCR fragments and cultures 

The diversity indices of Psoralens and Psim (Table 4) are used to compare each 

elevation based on both analysis techniques. For both approaches, LH-PCR and 

cultures, both diversity indices show that the alpine and SBS have the highest beta 

diversity between them (they are most different from each other). The diversity 

indices also agree that the alpine and ESSF have the lowest beta diversity (they are 

most similar). Differences between the ESSF and ICH are technique dependant: 

cultured fungi are more different between these elevations than LH-PCR fragments. 

The final comparison between ICH to SBS shows that these two elevations are more 

different based on LH-PCR fragments than based on cultured fungi. Comparing the 

alpine and ICH, the culture data shows a discrepancy between the two beta diversity 

measures. BetaSim, which focuses on gains and losses of species between elevations 

indicates that they are more similar, whereas p sorensens, which places greater 

emphasis on species in common, indicates that these elevations are more different 

from each other. 

Table 4. Beta diversity using Broad-sense (P sorensens ) and narrow-sense (Psim) 
measures to compare presence/absence fungal community structure data using 
both culturing and direct DNA approaches between elevations. 

Alpine vs ESSF 
ESSF vs ICH 
ICH vs SBS 

Alpine vs ICH 
Alpine vs SBS 
ESSF vs SBS 

Cultures 

Beta-Sorensens 

0.609 
0.459 
0.594 
0.444 
0.375 
0.464 

Beta-sim 

0.737 
0.538 
0.655 
0.632 
0.474 
0.481 

LH-PCR 

Beta-Sorensen's 

0.667 
0.632 
0.444 
0.500 
0.400 
0.632 

Beta-sim 

0.700 
0.667 
0.444 
0.556 
0.444 
0.667 

Thus it appears that in this case, there are fewer species in common and greater 

gains and losses of species between elevations. Finally, comparing the ESSF and 
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SBS shows that these elevations are similar based on LH-PCR fragments and 

different based on cultivable fungi. Overall, Psim reports higher similarities between 

elevations in all but one case. 

Linking identified cultures with LH-PCR 

Several different taxa generated the same length fragment when analyzed with the 

LH-PCR technique (Table 5). Lengths of fragments were further analyzed by 

comparing lengths as determined by LH-PCR and those determined by counting the 

number of base pairs as determined by sequencing (Table 6). The lengths of 

fragments do not match between the two techniques. The discrepancy ranges from 1 

to 9 base pairs. Identification through sequencing demonstrated that multiple 

species can produce fragments of the same length in LH-PCR. Some fragments seem 

more likely than others to represent a particular species; fragment 491 was 

produced by 3 isolates of P. fortinii (Table 5), but also by an Oidiodendron species. 

Phialocephala fortinii also produced a 484, 489, and 494bp fragment. These 

isolates do not differ based on a UPGMA tree (Figure 6). Phialocephala fortinii was 

the most frequently isolated culture (Table 2), and 500bp the most common 

fragment (Figure 4), but surprisingly, there were no P. fortinii cultures that produced 

fragments of this size. 

Cryptosporiopsis sp. produced 497 and 500bp sized fragments, but no 

others. Likewise, Epacris microphylla produced only 500 and 502bp sized fragments. 

No species seemed to produce all of the fragments sizes. Only Lachnum pygmaeum 

was faithful in producing only one sized fragment. 

The 500bp fragment was produced by 6 different isolates (only 5 are listed 

because one of the isolates could not be identified with certainty using GenBank). 
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Table 5. Cultures identified using sequencing and their corresponding LH-PCR 
fragments. Culture identifications beginning with A denote Alpine samples, E denote 
ESSF, I for ICH and S for SBS. 

LH-PCR Fragment 
494 

480 
484 
489 

491 

497 

500 

502 

Name by sequencing ID 
Phialocephala fortinii 
Uncultured clone 
(DQ233886.1) 
Lachnum pygmaeum 
Salal root associate 
UBCtra305 
(AF149076.1) 
Lachnum pygmaeum 
Geomyces pannorum 
Phialocephala fortinii 
Oidiodendron sp. 
Meliniomyces 
Phialocephala fortinii 
Phialocephala fortinii 
Oidiodendron maius 
Phialocephala fortinii 
Phialocephala fortinii 
Phialocephala fortinii 
Cryptosporiopsis 
Rhizoscyphus ericae 
Uncultured mycorrhizal 
fungus (EF195481.1) 
Rhizoscyphus ericae 
Salal root associate 
UBCtral53 
(AF149078.1) 
Ericoid endophyte 
(AF252837) 
Epacris microphylla 
Cryptosporiopsis 
Cryptosporiopsis 
Salal root associate 
UBCtral53 
(AF149078.1) 
Meliniomyces 
Rhizoscyphus ericae 
Cryptosporiopsis 
Meliniomyces 
Cryptosporiopsis 
Neonectria radicicola 
Meliniomyces 
Epacris microphylla 

Culture ID 
A4-3 
A8-3 

11-4 
110-2 

S7-4 
S5-13 
Al-5 
A2-4 
E5-31 
17-1 
E3-3 
11-9 
16-3 
S6-14 
S9-3 
Al-15 
A8-la 
A10-9 

E4-5 
E7-14 

E9-11 

A2-1 
A5-7 
A7-1 
E3-1 

E5-26 
E6-4b 
13-1 
18-9 
S3-5 
S5-12 
A3-6 
Sl-2 



Table 6. Comparisons of lengths of ITS2 segments of identified cultures as 
determined using LH-PCR and sequencing. 

Culture 

Phialocephala fortinii 
Uncultured clone 
(DQ233886.1) 
Phialocephala fortinii 
Oidiodendron sp. 
Phialocephala fortinii 
Rhizoscyphus ericae 
Uncultured mycorrhizal 
fungus (EF195481.1) 
Rhizoscyphus ericae 
Salal root associate 
UBCtral53 
(AF149078.1) 
Ericoid endophyte 
(AF252837) 
Epacris microphylla 
Cryptosporiopsis 
Cryptosporiopsis 
Salal root associate 
UBCtral53 
(AF149078.1) 
Rhizoscyphus ericae 
Meliniomyces 

Length by 
LH-PCR 

494 
494 

484 
489 
491 
491 
491 

491 
491 

491 

500 
500 
500 
500 

500 
502 

Length by 
sequencing 

489 
490 

490 
491 
491 
494 
494 

494 
497 

493 

498 
489 
499 
498 

494 
498 

It appears as though this fragment may be the most common ITS2 fragment length. It 

is likely that it represents more unculturable fungi. 

Phylogenetic analysis of cultures 

Phylogenetic trees using UPGMA (Unweighted Pair Group Method with Arithmetic 

Mean) were generated for ITS sequences from the most commonly isolated fungi 

(Figures 6-9). In general, very little sequence variation was found between different 

isolates of the same taxa. The four most commonly isolated fungi were compared 

using phylogenetic trees. Phialocephala fortinii ITS sequences do not differ across 

the elevation gradient (Figure 6). Cryptosporiopsis sp. ITS sequences show some 

aggregation based on elevation (Figure 7). GenBank sequences for C. radicicola and 

C. ericae were included in this tree to characterize the affinities among sequences in 
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the tree. Most of the Cryptosporiopsis sp. isolated are related to C. ericae, and these 

are representatives from the ESSF, ICH and SBS. Several SBS isolates group together 

with C. mdicicola. Alpine isolates tend to group out from the rest and appear to be 

related to neither C. ericae or the less predominant C. radicicola. One alpine isolate, 

A8-1, stands out as least related to the whole group. Rhizoscyphus ericae did not 

differ between or within the alpine and ESSF (Figure 8). Meliniomyces sp. was found 

mostly in the ESSF. Isolates of Meliniomyces from other elevations do not seem to 

differ greatly from those found in the ESSF (Figure 9). 
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LH-PCR Multivariate approaches 

Differences in the community structure of fungi associated with V. membranaceum 

roots as detected by LH-PCR were analyzed using NMS. Presence/absence of 

fragments generated from each plant was used to produce the plot in Figure 11. A 

final stress of 15.6 for a 3-dimensional solution with an instability of 0.002872 was 

found. Each point on the plot in Figure 11 represents the suite of fragments found on 

the roots of one plant. The Axis 1 & 2 projection shows the SBS plants tend to group 

together. The arrows in this projection also indicate the direction and relative 

strength of the correlation between this grouping of plants and two environmental 

variables: pH of organic soil (Pearson and Kendall correlation, r2=0.120) and leaf 

mass to area ratio (r2=0.123). Thus, the grouping of SBS plants tends to be 

associated with increased pH values of the organic fractions of soil and a decrease in 

the leaf mass to area ratio (Appendices 3 & 4). These correlations are not very 

strong. As illustrated by the Axis 1 & 3 and Axis 2 & 3 projections of Figure 11, there 

is considerable overlap between the points, such that the SBS grouping is not very 

distinct. Thus the structure of the community associated with SBS plants resembles 

the communities of some plants from other elevations. 

Whereas Figure 11 is a graphical NMS representation of fragment profiles 

associated with the roots of plants at particular elevations, differences in the profiles 

between elevations were also tested using multivariate ANOVAs (perMANOVA). 

According to the perMANOVA analysis, the SBS differs significantly from the alpine 

and ESSF (both, p<0.05) and somewhat from the ICH (p=0.15). Figure 10 includes a 

schematic of these LH-PCR differences as well as differences detected based on 
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culture data (below). Figure 10 represents the overlaps in community structure over 

the mountain side and demonstrates graphically that these differences exist as a 

gradient from the top to the bottom of the slope. 

Furthermore, indicator species shows two significant indicators: fragment 496 

for ESSF (p<0.05) and fragment 612 (p<0.1) for the SBS. 

Figure 10. Schematic of multivariate differences between elevations based on three 
approaches: LH-PCR of fungal DNA extracted directly from roots; presence/absence 
data based on culturingfrom roots; and abundance based on numbers of cultures 
isolated from each plant over the four elevations tested. Results shown are those 
where p<0.05. Diagram is not to scale. 
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Multivariate approaches to Cultures 

Two data sets were used in NMS of culture data: presence/absence and abundance. 

The NMS ordination of presence/absence data yielded a 2-D solution (Figure 12). 

This analysis had a final stress of 19.53 and an instability of 0.00002. This graph 

also shows that the SBS plant root communities tend to group together. Only six 

points representing SBS plant root community structure appear in Figure 12. 

Cryptospohopsis sp. and P. fortinii were isolated from roots of five out of ten plants in 

the SBS: thus in presence/absence data, these five plants appear identical and thus 

overlap in the ordination graph. Pearson and Kendall correlations show that 

differences represented by Axis 1 in this graph are correlated with increases in pH of 

both soil fractions (organic and mineral) and carbon to nitrogen ratios of the mineral 

soil. Also, the grouping is correlated with a decrease in leaf mass to area ratios. 

Comparing the elevations using perMANOVA shows that adjacent elevations 

are not different from each other. The alpine and the ESSF do not differ, nor does the 

ICH and ESSF, nor the ICH and SBS. The differences found are between the alpine 

and the ICH and SBS (p<0.01). The ESSF is also significantly different from the SBS 

(p<0.01). These differences are illustrated in Figure 10. 

Abundances were calculated based on the relative number of identical 

cultures isolated from each plant. Ordination of identified cultured fungi from each 

plant using the same parameters as above yielded an unstable NMS results with 

repetitive trails. Comparing elevations with perMANOVA (Figure 10) demonstrated 

significant differences between the alpine and ESSF (p<0.05), the alpine and ICH 

(p<0.05) and between the ESSF and ICH (p<0.01). The alpine differed somewhat 

55 



from the SBS (p=0.062). Differences between the ESSF and ICH were not significant 

(p=0.128) and between the ICH and SBS (p=0.183). 
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Figure 12. NMS ordination of presence/absence of cultures isolated at each of the 
four elevations (highest to lowest): alpine, ESSF, ICH and SBS. Associated primarily 
with Axis 1, Pearson and Kendall correlations for environmental variables are pH of 
organic soil (r2=0.221), pH of mineral soil (r2=0.185), C:N ratio of mineral soil 
(r2=0.135) and LMA (r2=0.157). 

Using the presence/absence data, the only significant indicator species was 

found for the alpine: Rhizoscyphus ericae (p=0.051). When abundances are 

considered, Cryptosporiopsis is an indicator for the SBS (p=0.040) and Meliniomyces 

is an indicator for the ESSF (p=0.028). Phialocephala fortinii is somewhat of an 
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indicator of the ICH (p=0.174), but it is present at every elevation and thus a poor 

indicator species. 

Canonical Correspondence Analysis 

The LH-PCR and both interpretations of the culturing approaches demonstrate the 

same result with CCA (Figures 13-15). In all 3 cases, CCA indicates the fungal 

community structure is different between high and low elevations. The LH-PCR data 

(Figure 13) clearly separates the ICH and SBS (low elevations) from the alpine and 

ESSF (high elevations). The low elevation root associated fungal community structure 

variability is best explained by increasing soil pH (of both mineral and organic soils). 

The high elevation fungal community structure is associated with increased age of V. 

membranaceum plants, increased sun leaves (by leaf mass to area ratios), and 

wetter soil. 

The matrix of presence/absence of cultures isolated from roots of plants at 

each of the elevations as analyzed by CCA shows the same trend as the LH-PCR 

results (Figure 14). Fungal community structure partitions between high and low 

elevations. The correlations to environmental variables are also the same with the 

addition of carbon to nitrogen ratios increasing with low elevations. 

Figure 15 shows the CCA analysis of the abundance of cultures data. Here, 

like in the previous two analyses, the CCA graphs show that root-associated fungal 

community structure partitions based on elevation. The high elevation alpine and 

ESSF overlap and are distinct from the lower elevations ICH and SBS, which also 

overlap. The environmental variables that correlate to the changes are also the same 

as the presence/absence of cultures data in Figure 14. High elevation communities 

correlate with higher soil moisture, higher proportion of sun leaves and older plants. 

57 



Lower elevation communities correlate with high soil pH values and higher mineral 

soil carbon to nitrogen ratios. 

Mantel tests 

The mantel test was used to determine if plant and soil characteristics correlate to 

observed differences between fungal communities (McCune and Grace 2002). Two 

matrices, one containing fungal community data (any one of the three) and one 

containing environmental variables are compared to see if a positive association 

exists between the two. In the case of both types of culture data, a weak positive 

association was detected by the Mantel test (r=0.218, p=0.002, relative abundance 

of cultures; r=0.199, p=0.001 for presence/absence culture data). The LH-PCR of 

fungal DNA data demonstrated no such association. 

Plant, soil and fungus characteristics 

Plant and soil characteristics as well as colonization by ERM were compared between 

the four elevations. The plant variables measured were age and leaf mass to area 

ratios (LMA). The soil characteristics determined were percent water content at time 

of excavation, and the pH and C:N ratios for both mineral and organic soils. Extent of 

colonization by ericoid and dark septate fungi was also determined. Of these factors, 

six were found to differ significantly (p<0.05) between elevations using one-way 

ANOVA's (Figure 16). 

Plant characteristics differed between elevations. Higher elevation V. 

membranaceum plants (alpine and ESSF) were significantly older than their lower 

elevation (ICH and SBS) counterparts. Leaf mass to area ratios were highest in the 

alpine, followed by the ESSF and then both low elevations which did not differ 
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significantly from each other. The plants at the low elevations were thus equally 

shaded whereas the ESSF was partially shaded and the alpine plants experienced full 

sun; these measurements conform to field observations. 

Soil characteristics also differed between elevations. At the time of 

excavation, the higher elevation V. membranaceum plants (alpine and ESSF) had 

significantly wetter soils than their lower elevation (ICH and SBS) counterparts. Alpine 

and ESSF organic horizons were more acidic than ICH organic horizons which were 

more acid than the lowest elevation SBS. The mineral soils, however, did not differ 

between the alpine, ESSF and ICH, but were more acidic than the SBS mineral soils. 

Finally, the C:N ratios were lower in the alpine than in the SBS, with overlap in the 

mid elevations. The C:N ratio values of the organic horizons ranged from 16.5 to 74.8 

across elevations. No difference in ratios was detected, which may have been due to 

the high variability within groups. 

The extent of colonization of roots by ericoid and dark septate fungi did not 

differ convincingly between the elevations (Appendix 3). The alpine (mean=46.3 ± 

15.2%) and ICH (mean=45.1 ± 13.8%) are somewhat more colonized than the ESSF 

(mean=34.2 ± 13.1%)and SBS (mean=34.6 ± 14.9%) (p<0.1 in each case). These 

differences only become apparent after the removal of two potential outliers in a 

data set that is highly variable. Thus these apparent differences may not be real. The 

extent of colonization values represent a sum of ericoid and dark septate 

microsclerotia recorded during observation. Both of these morphologies were 

considered separately and neither differ between the elevations. Variability remains 
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high for these values as well (with the exception of the dark septate morphology 

observed on ESSF and SBS plant root samples, which have a low variability). 
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Chapter 4: Discussion 

The purpose of this study was to characterize changes in fungal community structure 

associated with V. membranaceum hair roots across a BEC zone elevation gradient 

and to correlate those changes with environmental variables across that gradient. 

There were differences between the high elevation (alpine and ESSF) and low 

elevation (ICH and SBS) fungal communities, with considerable overlap. The SBS 

fungal community tended to group together. Correlations were weak and limited to 

two variables measured. The higher elevation (alpine and ESSF) fungal communities 

were correlated with indicators of an open canopy (LMA), whereas the lower elevation 

(ICH and SBS) fungal communities was correlated with an increase in pH of the 

organic soil at lower elevations. 

Most of the interpretation of the results is focused on the NMS analysis. The 

objectives of this study were met using statistical approaches that do not weigh 

equally. NMS is best suited for this exploratory data set (Quinn and Keough 2002) 

and is primarily used in interpretation. The second approach, CCA, is important in 

that it corroborates the patterns generated by NMS. CCA does not weigh equally to 

NMS. The two techniques for assessing the fungal community, Length Heterogeneity-

PCR and culturing, complement each other. These methods are assumed to 

contribute information equally to the conclusions. 

LH-PCR 

The NMS ordinations of the LH-PCR data demonstrate a grouping of the SBS plants. 

This grouping is corroborated by the CCA analysis. The perMANOVA analysis also 

indicates that the SBS is significantly different from both of the two highest elevation 

sites: the alpine and ESSF. Both the NMS and perMANOVA show considerable 
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overlap in root-associated fungal community structure between the elevations. In 

light of the pattern of fragments generated, it is not surprising that the NMS analysis 

found that there are overlaps in the community structure. Many fragments are 

common to all four elevations. The diagram representing significant differences 

based on perMANOVA suggests that there is a gradient from the top to the bottom of 

slope in terms of similarity of fungal community structure between these sites. 

Adjacent elevations tend to be alike (not significantly different from each other) but 

do differ from elevations further apart. 

Each elevation has several fragments that are exclusive to it. The ICH, with 

10, has the greatest number of exclusive fragments. The ESSF has 5, the SBS has 4 

and the alpine has 3. Only two fragments, however, are significant indicator 'species' 

(fragment 612 is an indicator of the SBS and fragment 496 is an indicator of the 

ESSF). Indicator 'species' (fragments, in this case), must be found on most plants in 

an elevation and must not be found at other sites. Although there are many exclusive 

fragments (22 total), they appear to represent rare fungi. Furthermore, the cultured 

fungi generated LH-PCR fragments ranging from 484-502bp in length. The fragments 

that were exclusive to each elevation did not fall into this range. It thus appears that 

the LH-PCR technique was able to detect more rare taxa of fungi than the culturing 

method. 

Lejon et al. (2005) used LH-PCR to examine fungal and bacterial community 

structure in forests of Norway spruce (Picea abies), Douglas fir (Pseudotsuga 

menziesii), and oak {Quercus sessiflora) and mixed stands in Morvan, France. They 

found 100 fragments per fungal profile when examining soil samples with LH-PCR. 

Our study found a maximum of 20 per profile. The technique used by Lejon et al 
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(2005) was slightly different (using both ITS1 and ITS2) and their substrate was soil, 

which could account for the difference. Soil is known to contain a great diversity of 

fungi including decomposers, parasites, mycorrhizal fungi and in different states 

such as spores and mycelia (Stamets 2005). It is likely that soil would yield more 

fragments in LH-PCR than thin hair roots where extraneous soil material had been 

meticulously removed. 

Fragments generated by LH-PCR do not necessarily represent one taxon. Nor 

do they correspond directly to length as determined by sequencing. This may be due 

to changes in fragment length due to the inclusion of the fluorophore in fragment 

analysis (Ritchie etal. 2000). LH-PCR can, however, discriminate between different 

communities of fungi (Ranjard etal. 2001). 

Cultures 

Four fungi were most commonly isolated from surface sterilized roots. Rhizoscyphus 

ericae is a known ERM (Pearson and Read 1973) and was a significant indicator of 

the alpine; its occurrence decreased with elevation and none were isolated from the 

lowest elevation. Meliniomyces sp. was most frequently isolated from plant roots in 

the ESSF. It was isolated at least once in every other elevation. Cryptospohopsis spp, 

were found in abundance in the SBS. Phialocephala fortinii was most frequently 

isolated and was found at every elevation. The largest proportion of P. fortinii was 

found in the ICH (71%), followed by the ESSF (52%), the alpine (41%) and the SBS 

(35%). Oidiodendron sp. and Neonectria radicicola were also common, but found in 

fewer numbers than the above fungi. 

Ordination with NMS of the data generated from culturing approach 

demonstrates similar patterns to those found with the LH-PCR approach. Figure 12 
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shows the grouping of SBS plants based on the presence and absence of cultures 

isolated from their roots. This pattern is corroborated by the CCA ordination for 

presence/absence data and also by the less robust abundance measure, namely 

plate enumeration. Four out of 10 SBS plants yielded only Cryptosporiopsis sp. and P. 

fortinii cultures. Furthermore, perMANOVA demonstrates that the differences in 

community structure follow a gradient along the slope of the mountain where high 

elevation communities differ from low elevations. This is also true for the culture 

abundances data set. 

Phialocephala fortinii was isolated at every elevation and in abundance from 

the middle elevations. It has been shown to be a root-associate of numerous trees 

(Mandyam and Jumpponen 2005) and isolated from other plant parts (Menkis et al. 

2004). A fungus with such a range of substrates may be easier to isolate because it 

is able to grow under various conditions, including saprotrophically. The reason there 

may be an abundance of cultures from these elevations may be related to its 

propensity to grow on potato dextrose agar, as opposed to ericoid fungi which may be 

unable to grow without a host presence. Interestingly, more P. fortinii isolates were 

found in the ESSF and ICH (65 and 75, respectively) than in the alpine and SBS (29 

and 27). Since the isolating techniques were identical, it seems that there may be 

more P. fortinii mid-slope than at the extreme high or low elevations, on the same 

host. This result is especially interesting in light of the fact that the alpine and ESSF 

zones were located close together, that they would differ so considerably in yielding 

P. fortinii cultures. It seems to indicate that these two zones differ somewhat in terms 

of V. membranaceum root-associated fungal communities. Regardless, P. fortinii 

was found on most V. membranaceum plants in this study. Its ubiquity may be 
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attributed to its many adaptations and abilities (Addy et al. 2000, Piercey et al. 

2004). Its preference for the mid-range of the gradient may indicate less fitness at 

the extremes. 

In the SBS, Cryptosporiopsis spp. increase in abundance relative to the other 

higher elevations. This finding contrasts previous studies that have indicated that 

Cryptosposiopsis sp. is rarely isolated (Sigler and Gibas 2005; Verkley et al. 2003) 

and often failed to be detected (Allen et al. 2003; Berch et al. 2002) in ericaceous 

plants in North America. It has been demonstrated as an endophyte of aspen 

{Populus tremuloides Michx.) (Wang et al. 2007). Cryptosporiopsis spp. have various 

unique qualities such as transforming food industry by-products (Huszcza et al. 

2008; Kostrzewa-Sustowa etal. 2007). They have also been isolated from healthy 

aerial plant parts (Wang et al. 2007). The results of our study indicate that 

Cryptosporiopsis spp. can be found in abundance in a North American ericaceous 

plant, and that this abundance seems to be habitat specific (i.e., the SBS) when it 

comes to associations with V. membranaceum. 

The only other fungus isolated from all four elevations, besides P. fortinii and 

Cryptosporiopsis spp., was Meliniomyces spp. Meliniomyces spp. is the name given 

to the 'Hymenoscyphus ericae aggregate' of morphologically distinct fungi often 

isolated from ericaceous roots and related to Rhizoscyphus (formerly 

Hymenoscyphus) ericae. Meliniomyces variabilis Hambleton & Sigler has recently 

been demonstrated to form typical ericoid mycorrhizas with roots of Vaccinium 

microcuttings (Vohnik et al. 2007). Meliniomyces spp. were found to be associated 

with many ericoid and non-ericoid hosts and thus may not be host-specific 

(Hambleton and Sigler 2005). Meliniomyces spp. may have some mycorrhizal 
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affinities, sometimes showing an ability to form ECM, sometimes ERM (Hambleton 

and Sigler 2005). 

Oidiodendron spp. were isolated from two plants in the alpine, and one each 

from the ESSF and SBS. Oidiodendron maius forms ERM, but other species do not 

(Hambleton and Currah 1997, Lacourt etal. 2001). Oidiodendron maius was isolated 

from the ESSF and SBS. A determination of species for the alpine samples was not 

possible from the sequences obtained (due to quality of sequences). This genus is 

widespread and has been isolated worldwide (Rice and Currah 2005), so it is 

surprising that so few representatives were found in this study. 

Not all fungi can be isolated in culture (Berch et al. 2002). Those that can be 

isolated are not necessarily mycorrhizal fungi (Smith and Read 2008). In this study, 

surface sterilization with dilute hydrogen peroxide was used to eliminate adhering 

fungi and surface hyphae, the assumption being that only those fungi present within 

plant root cells would be isolated on media plates. In practice, this has been shown 

to also effect fungi within roots and may reduce the numbers of isolates obtained 

(Smith and Read 2008). It could be that the profile of cultured fungi that were found 

using this approach is more a reflection of the fungi that were resistant to the 

hydrogen peroxide treatment, than what was in the root originally. Thus, the fact that 

52% of the isolated fungi were P. fortinii could be a function of its resistance to the 

surface sterilization technique. 

Abundance values are influenced by the sample size of the roots used to 

generate them. It is very difficult to determine the extent of hair root presence in a 

root system. Roots could have become detached during excavation or during 

washing. Estimates of root mass were probably flawed and thus not incorporated in 
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the analysis of abundance data. Root size estimates would have been needed to 

determine sample sizes appropriate to each population to apply correction factors 

post sampling (Quinn and Keough 2002). Abundance values are therefore not given 

much weight in the interpretation of the results in this study. 

Soil, Plant and Fungal Variables 

The second objective of this thesis was to correlate changes in root-associated fungal 

community structure to measured environmental variables. High elevation (alpine 

and ESSF) V. membranaceum plants were older and experienced more sun than the 

lower elevation (ICH and SBS) plants. The age of the plants may be impacted by the 

fire history of the site, as charcoal was found when digging in the ICH. High elevation 

soils were wetter and more acidic and possessed relatively less carbon than lower 

elevations. The trends appear linear along the BEC zone elevation gradient. 

Of all the variables measured, only leaf mass to area ratios and pH of the 

organic soil correlated to changes in community structure. And these correlations 

were not very strong. Although environmental variable trends were strong, the lack of 

good correlation to fungal community structure may be due to the structure of 

community data itself which show overlap between the elevations. The lack of 

apparent structure in the data may be responsible for the poor correlations (McCune 

and Grace 2002). 

Natural Gradients 

This is the first report of ERM community structure over an elevation gradient. 

Similar studies that exploit natural gradients to find patterns of mycorrhizal 

community structure have been done (Bougoure et al. 2007; Kernaghan and Harper 

2001; Mulder and de Zwart 2003; Nilsson et al. 2005). Bougoure et al. (2007) 
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examined both Calluna vulgaris (L.) Hull and Vaccinium myrtillus L. root-associated 

fungal community structure along a heath to forest gradient in Scotland using 

denaturing gradient gel electrophoresis, terminal restriction fragment length 

polymorphism and cloning and sequencing. They found the fungal community 

composition did not differ for V. myrtillus between their sites, whereas it did for C. 

vulgaris. Both were shown to have a distinct fungal profile and high fungal diversity 

associated with their roots. It appears as though root associated fungal communities 

are different between hosts and may vary with environmental conditions, but again, 

that is host dependent. Nilsson et al. (2005) explored the dominance of mycorrhizal 

types across a short nutritional gradient. By use of in-growth mesh bags and 

phospholipid fatty acid analysis, they found that in nutrient poor habitats, ERM and 

ECM dominate and there is more fungal biomass than in nutrient rich habitats. 

Arbuscular mycorrhizal fungi dominated in the more nutrient rich portion of their 

study gradient. Their results suggest that the dominant mycorrhizal categories 

change from ERM to ECM to AM as nutrient status increases along a gradient. 

Kernaghan and Harper (2001) found that ECM species richness and diversity 

decreased with increases in elevation along their gradient in the Alberta Rockies. 

They collected and used DNA sequencing to identify sporocarps. They found that host 

specific ECM tended to be found in ECM habitats, namely the subalpine forest. The 

alpine did harbour ECM fungi, but they tended to be generalists. Similarly, in this 

study, known ERM fungus (i.e., R. ericae) were found predominately in habitats with 

an abundance of ericaceous plants. At lower elevations, other hosts were present. 

There, fungi that exhibit other capabilities (i.e., P. fortinii) and are not specifically 

ERM were more likely to be found. 
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This study has exploited a natural gradient to gain understanding of ERM in 

situ. Much is known about fungi from controlled laboratory studies which are 

valuable but can never replace real world field studies (Smith and Read 2008). From 

laboratory-based studies, it is known that R. ericae is able to tolerate water stress 

(Chen et a/. 2003). It can be inferred from this study that R. ericae confers this ability 

to its host. From the CCA analysis in this study, it appears, however, that the R. 

ericae-rich alpine zone correlates with wetter soil. At the time of this study, R. ericae 

did not seem to be associated with conferring water stress tolerance to this particular 

host. This first study of ERM associated with V. membranaceum across a natural 

elevation gradient joins other studies that attempt to understand the dynamics of 

mycorrhizal systems in natural settings. 

Diversity measures of LH-PCR fragments and cultures 

The LH-PCR method found more richness than the culturing method as demonstrated 

by higher alpha diversity values. Of note is the higher standard deviation of alpha 

diversity values in the LH-PCR approach. This prevents meaningful comparisons 

between elevations with the Pw measure. The number of fragments found per plant 

with LH-PCR ranged from 1-20, whereas the number of cultures obtained per plant 

ranged from 1-6. Plants with high fragment numbers did not correspond to those that 

had high numbers of cultured fungi. Gamma diversity was about 3 fold higher for LH-

PCR fragments than cultures. With both alpha and gamma diversity measures, the 

differences could be attributed to direct DNA extraction and LH-PCR capturing more 

fungi. Berch et a/. (2002) found most of their Gaultheria shallon roots yielded few 

culturable fungi but were colonized and yielded fungal DNA. Length-heterogeneity 

PCR fragments could also represent spores associated with the roots or saprotrophs 
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that were captured in the DNA extraction step. The fragment analysis captures more 

diversity but the ericoid or root-associated status of the fungi detected is not known, 

especially since these fragments were not clones and therefore not identified in this 

study. 

Beta diversity is a measure of similarity between elevations. The alpine and 

ESSF are very similar by all measures and techniques. The results for the next 

transition, from ESSF to ICH are technique dependant. Culturable fungi are more 

different between these elevations than LH-PCR fragments. The final transition 

between ICH to SBS shows that these two elevations are more different based on LH-

PCR fragments than based on culturable fungi. Considering the extremes of the 

gradient, the alpine compared to the SBS, both beta diversity measures and both 

techniques indicate that these elevations are most different from each other. 

Comparing the alpine and ICH, the culture data shows a discrepancy between the two 

beta diversity measures. BetaSim, which focuses on gains and losses of species 

between elevations indicates that they are more similar, whereas Psorensens, which 

places greater emphasis on species in common, indicates that these elevations are 

more different from each other. Thus it appears that in this case, there are fewer 

species in common and greater gains and losses of species between elevations. 

Finally, comparing the ESSF and SBS shows that these elevations are similar based 

on LH-PCR fragments and different based on culturable fungi. Overall, pSim reports 

higher similarities between elevations in all but one case. Using more than one 

measure of similarity can reveal more about the data than one measure alone. 

Beta diversity measures are similarity indices. The NMS analysis performed in 

this study was based on 3 sorensens, as recommended by McCune and Grace (2002). 
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The resultant structure in the NMS plots was minimal. The LH-PCR raw data could be 

interpreted as changing in terms of species gained and lost from one elevation to the 

next. Since B sorensens does not emphasize these differences, it may not be the best 

distance measure for this data set. Richness did not differ between elevations (both 

techniques) based on one-way ANOVA's. The high variability between the numbers of 

fungi detected to be associated with V. membranaceum plant roots likely inhibits 

elucidating differences. The program used to run the NMS analysis, PC-ORD, does not 

include an option to use a narrow-sense beta diversity measure to generate the 

distance matrix in the first step of the analysis. Exploring the data with Bsim as the 

distance measure could yield better NMS plots. 

Linking sequenced cultures with LH-PCR 

Length-heterogeneity PCR appears to underestimate actual fungal diversity. The 

500bp fragment appears to be produced by 6 different isolates; six different taxa are 

considered as one in this analysis. Nonetheless, by the diversity measures, LH-PCR is 

still producing considerably higher alpha diversity than that observed with isolating 

fungi from surface sterilized roots. Each LH-PCR produced fragment may not, in fact, 

represent one taxon. 

Furthermore, the lengths of the fragments do not always match between LH-

PCR and sequencing. Differences of a couple of base pairs may be expected (Ritchie 

et al. 2000). Some values differ considerably beyond the error inherent in the 

procedure (example, the Cryptosporiopsis A5-7 LH-PCR fragment length is 500bp, but 

is 489bp by sequencing). This demonstrates that the LH-PCR technique should not 

be used to identify individual taxa from a profile. Profiles taken as a whole in 

representing root-associated fungal community can be compared between elevations 
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because these errors presumably are carried throughout the procedure. Despite the 

caveats, this technique has been demonstrated as effective in distinguishing fungal 

community structure (Ritchie et al. 2000, Ranjard et al. 2001) and in our study 

revealed interesting insights. 

Phylogenetic analysis of cultures 

The existence of distinct subpopulations of P. fortinii between elevations was not 

found. This may be because P. fortinii has low ITS variability (Addy et al. 2000; Griinig 

et al. 2002; Menkis et al. 2004). Examining a latitudinal transect of Canada, Piercey 

et al. (2004) did not find distinct subpopulations for P. fortinii associated with Salix 

spp. between latitudes. They did, however, find subpopulations within their sites. 

Considering how close spatially our sites were, it is surprising that there was not 

more than one population type associated with V. membranaceum within and 

between elevations. Of course, the effect observed by Piercey et al. (2004) could be 

host specific, as they examined Salix spp. Furthermore, sequencing may be 

insufficient to effectively separate cryptic species (Griinig et al. 2004). Grunig et al. 

(2004) found evidence of the existence of multiple cryptic P. fortinii species using 

RFLP (restriction fragment length polymorphism) and ISSR-PCR (inter simple 

sequence repeat polymerase chain reaction). Their study, like the latitudinal transect 

study of Piercey et al. (2004) found identical subpopulations in study sites separated 

by 5km. 

Likewise, we did not find subpopulations of Cryptosporiopsis spp that were 

distinct to specific sites. Sequencing ITS regions may be insufficient for some species 

within this genus. Wang et al. (2007) suggest that sequencing mitochondrial rDNA or 

3-globulin gene may be necessary to elucidate the relationship of the closely related 
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C. radicicola and C. ericae. These two species are very similar in terms of both ITS 

sequences and morphology. 

Rhizoscyphus ericae and Meliniomyces spp. also demonstrated no 

fractionation of populations based on comparison of ITS sequences with UPGMA. In 

the case of these two fungi, there were fewer genotypes overall and fewer isolates 

that spanned more than one elevation. The phylogenetic graphs demonstrate that 

both these fungi are probably monospecific. 

Canonical Correspondence Analysis (CCA) 

Canonical correspondence analysis is a good addition to this study. It helps to 

confirm NMS results. The best indicator of finding trends in community structure is 

when constrained (i.e., CCA) and non-constrained ordinations (i.e., NMS) corroborate 

each other (0kland 1996). On its own, CCA is insufficient for this analysis because it 

assumes the species data is dependant on the environmental variables tested 

(McCune and Grace 2002). Furthermore, the CCA of both LH-PCR and cultures show 

near identical trends: distinct clusters that separate the high and low elevation fungal 

community structures. As with the NMS analysis, CCA demonstrates that the two 

technical approaches for measuring the fungal community agree with each other. 

Patterns of diversity 

This study considers a local community, an elevation within a BEC zone, and a 

regional community as defined as the slope of McBride peak. According to Kneitel 

and Chase (2004), patterns of diversity over local and regional scales can be used to 

understand community structure and dynamics. The fact that P. fortinii is found in 

abundance in all these elevations supports previous observations that it is able to 

adapt to a variety of root habitats (Grunig et a/. 2004; Piercey et al. 2004). Because 
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P. fortinii and R. ericae, and P. fortinii and Meliniomyces spp. coexist, there must 

exist various niches within a root system. Trade-offs are individual characters 

manifest within an environmental context (Knietel and Chase 2004). A trade-off may 

be an ability to utilize one resource and not another. Thus coexistence may be 

dependant on the two organisms accessing different resources in a shared space. 

Abiotic factors may limit the ability of an organism to access a particular resource. 

Resistance to drought or low temperatures may give one organism better access over 

a less tolerant one. Life strategies with respect to predation are another trade-off. 

Finally, temporal variation may allow species to coexist. In this case, organisms may 

have abilities to withstand difficult conditions, through generation of dormant spores 

for example (Kneitel and Chase 2004). Diversity patterns may point to mechanisms 

of coexistence. Of all possible trade-offs, this study did attempt to characterize 

abiotic factors. Based on CCA, R. ericae and Meliniomyces may have traits that make 

them better competitors under the conditions of high light, higher soil moisture and 

older V. membranaceum plants. 

This study did not attempt to look at resource competition or predation or 

temporal variation. And while these factors could easily be at play, they would, given 

the ephemeral nature of the subject organisms, be very challenging to determine. 

While niche theory is a valuable theoretical framework for understanding community 

dynamics, if trade-offs are ignored, similar patterns of diversity can be predicted 

based on variable rates of dispersal alone (Hubbell 2001). 

Dispersal mechanisms could be used to explain the patterns described in this 

study. Both Cryptospohopsis (Wang et al. 2007) and P. fortinii (Menkis et al. 2004) 

have been found in aerial parts of plants. It could be that they are able to release 
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spores from above ground. Fungi that are restricted to soil and root environments 

may have more limited dispersal ranges. If they are obligate root residents, they may 

not have the capacity to colonize at a distance. Thus these fungi may be more widely 

distributed if they are indeed able to aerially disperse. 

Climate Change 

This study demonstrates that fungal root-associated communities can differ across a 

BEC zone gradient. Although these effects may be host-specific (Bougoure et a/. 

2007), fungi such as R. ericae appear to be restricted to the higher alpine elevation 

site. A significant warming trend, measured in decades, is expected to elevate 

climate variables (temperature and precipitation) associated with BEC zones 

northward and up mountain slopes (Hamann and Wang 2006). Whether and how the 

associated plant communities will respond is the subject of current inquiry (eg. 

Iverson et a/. 2004; Saxe et al. 2000). Presumably, the alpine will be reduced in size 

while other BEC zones migrate upwards. Different outcomes are possible with 

changes in precipitation. Should BEC zones migrate upwards, this could effectively 

reduce the pool of (apparently) less abundant and alpine restricted fungi such as R. 

ericae. If dispersal is indeed the main mechanism generating observed patterns of 

diversity (Hubbell 2001), then species such as R. ericae, could become restricted to 

ever decreasing mountain-top islands and potentially become threatened. Unlike P. 

fortinii and Cryptosporiopsis, which appear to be capable of aerial dispersal, R. ericae 

may be restricted to propagation within the soil and thus unable to hop between 

mountain top islands. 

Furthermore, in boreal and heath environments, carbon is easily stored 

because it is a nitrogen-limiting environment. Mycorrhizal fungi sequester organic 
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nitrogen as soon as it becomes available and remaining litter is low in nitrogen and 

thus poor substrate for decomposers. Organic carbon is thus stored. Such 

environments have low mean annual temperatures and evapotranspiration rates. 

Should temperature rise due to climate change or nitrogen deposition increase due 

to pollution, the dynamics could shift to favour mineralization of nitrogen thus making 

the carbon pools more accessible to saprotrophs. This could then release the stored 

carbon into the environment exacerbating the CO2 problem (Read et. a/ 2004). 

Shifting this particular mycorrhizal-driven ecosystem could have global implications. 

Increases in carbon emissions under different scenarios have been modeled to 

demonstrate that CO2 feedbacks within the atmosphere, because they are buffered 

by land and sea uptake of carbon, are not linear (Boer and Arora 2009). If the 

mycorrhizas in this ecosystem are selected against due to shifting ecological zones, 

their functional role in sequestering nitrogen and thus acting as a large carbon 

storage bin could be reduced, perhaps eliminated. Tipping the scales in favour of 

nitrogen mineralization in these ecosystems could be the trigger to accelerate CO2 

emissions globally. 

Conclusion 

Vaccinium membranaceum root-associated fungal community structure differs over 

an elevation gradient of 1000m on McBride peak, BC. The highest elevation is most 

different from the lowest elevation with a gradual gradient of change over the slope. 

Elevations closest together tend to be most alike. Results from both techniques used 

in this study, LH-PCR and culturing, demonstrated this pattern. Rhizoscyphus ericae 

and Meliniomyces were most commonly found at high elevation and Cryptosporiopsis 

sp. were found mostly in the lower elevations. The same strain of P. fortinii was found 
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in abundance throughout the slope. Strong correlations to environmental variables 

were not found and the cause of the observed community structure patterns are thus 

deserving of further investigations. 
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Appendix 2: Summary of cultures found per plant. 

Alpine Summary 

Phialocephala fortinii 
Rhizoscyphus ericae 
Cryptosporiopsis spp. 

Meliniomyces sp. 
Oidiodendron spp. 

Epacris microphylla 
SalalrootUBCtra180 
Salal root UBCtra 153 
Salal root UBCtra264 

uncult mycorrhizal d fir 

A1 

3 
3 
5 
1 

A2 

1 
2 
1 

A3 

3 
1 

1 
1 

A4 

4 
1 

A5 
14 
1 
2 

A6 

3 

1 

A7 

1 

1 

A8 

4 
1 

A9 

1 
4 
2 

1 

1 

A10 

1 
1 

1 

1 
2 
1 

ESSF Summary 
Phialocephala fortinii 
Rhizoscyphus ericae 
Cryptosporiopsis spp. 

Meliniomyces spp. 
Oidiodendron sp. 

Epacris microphylla 
Lachnum sp. 

near ericoid GU32 
UBCtra 153 

Neonectria radicicola 

E1 
9 
2 

1 

1 

E2 
9 

E3 
8 
1 

1 
3 

E4 
5 
1 

4 

E5 
5 

17 
9 

1 

E6 
10 
2 

E7 
6 

4 

1 

1 

E8 E9 
6 

4 
1 

1 

E10 
5 
1 
1 
2 

ICH Summary 
Phialocephala fortinii 
Rhizoscyphus ericae 
Cryptosporiopsis spp. 

Meliniomyces sp. 
Oidiodendron mauis 
Epacris microphylla 

Lachnum sp. 

Uncult ectoclone 63/24 
Geomyces pannorum 

11 
8 

3 

1 

12 
1 

6 

1 

13 
1 

3 

1 

14 
20 
1 

1 

1 

15 
9 

1 

16 
10 

3 

1 

17 
7 

2 

18 
4 

4 
1 

19 
7 

110 
8 

1 

1 

SBS Summary 
Phialocephala fortinii 
Cryptosporiopsis sp. 
Lachnum pygmaeum 
Geomyces pannorum 
Neonectria radicicola 

Gyoerffyella sp. 

Epacris microphylla 
Rhizoscyphus aggregate 

Leptodontidium orchidicola 

S1 
3 
3 

1 

S2 
3 

S3 
4 
5 

S4 
1 
1 

S5 

1 

1 
6 

1 

S6 
1 

12 

2 

S7 
5 

1 

S8 

5 
6 

1 

S9 

5 
2 

1 

S10 

7 



Appendix 3: Measured plant characteristics 

Raw data summarizing leaf mass per area, ages and percent colonization for all 
plants in this study. 

Plant ID 

Al 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
A10 
El 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
110 
SI 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
S10 

LMA 

59.52 

61.61 
56.34 
54.36 
57.51 

64.5 
67.96 
50.95 
51.77 
57.12 
51.07 
46.44 

47.49 
42.88 
51.18 

39.65 
50.91 
43.36 
54.73 

51.6 
32.52 
46.39 
25.68 
28.47 

28.13 
20.86 
25.71 
31.57 
36.12 

37.08 
29.61 
32.92 

25.47 
29.49 
29.79 
29.41 
23.92 

32.52 
26.88 
31.88 

age 

15 
10 
17 
13 
14 
10 
13 
11 
7 
24 
3 
8 
5 
12 
8 
14 
11 
13 
11 
10 
5 
6 
11 
7 
7 
6 
3 
5 
7 
5 
4 
12 
2 
6 
5 
6 
4 
4 
9 
6 

% 
colonization 

55 
66 
36 
29 
23 
42 
38 
67 
58 
49 
20 
41 
40 
26 
34 
27 
18 
-

38 
64 
56 
62 
28 
42 
28 
49 
37 
31 
54 
64 
46 
24 
33 
30 
14 
19 
38 
33 
66 
43 



Appendix 4: Measured soil characteristics 

Raw data summarizing water content of soil at time of harvest, pH of organic (pH-O) 
and mineral (pH-M) soil layers, and carbon to nitrogen ratios for organic (C:N-0) and 
mineral (C:N-M) soil layers determined for most plants in this study. The shaded grey 
cells indicate places where a value was unobtainable (frequently due to the absence 
of one of the two soil layers in that sample); the mean of all measurements at that 
elevation was used in its place in the multivariate analysis only (NMS and 
permANOVA). Continued next page. 

plant ID 
Al 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 

A10 
E l 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 

E10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

110 

% H20 
10.75 
13.75 

10 
10 

10.25 
15.25 
12.25 
16.75 
11.25 

11 
7.25 
9.5 

6.25 
10.25 
15.25 

13 
10.25 
17.5 

17.25 
8.25 

7 
5.75 
9.5 
11 

10.5 
6.25 
9.25 
8.5 
8 

6.5 

pH-0 
3.64 
3.08 
4.04 
3.93 
3.81 
3.68 
3.97 
3.85 
3.47 
3.95 
3.52 
4.06 

-

3.89 
3.66 
3.67 
3.99 
3.63 
3.52 
3.7 

4.84 
5.62 
4.16 
3.67 
4.74 
3.87 
3.71 
4.14 
4.66 
5.15 

pH-M 
-

3.82 
4.1 

-

4.42 
4.2 

4.08 
3.92 
3.51 
4 .01 
3.95 
4.3 

4 .11 
3.83 
3.51 
4.25 
4.03 
4.43 
3.93 
3.4 

4.56 
4.43 

-
-

4.04 
4.18 
3.69 
4.02 
4.32 

-

C:N-0 
16.5 

31 .31 
28.87 
25.57 
26.07 
30.73 
26.35 
30.85 
25.04 
18.19 
33.57 
37.3 

-

28.64 
70.91 
32.82 
24.4 

74.77 
38.23 
34.44 
28.17 
26.09 
26.94 
33.22 
28.89 
27.14 
31.18 
30 .51 
34.38 
27.37 

C:N-M 
-

19.09 
22.09 

-

27.12 
21 .61 
17.53 
17.26 
18.85 
8.93 

16.85 
30.63 
24.33 
24.06 
34 .31 
26.69 
17.83 
26.55 
17.22 
25.65 
26.47 
25.52 

-
-

21.19 
26 .51 
26.56 
21.48 
27.83 

-

96 



Continued from previous page. 

plant ID 
S I 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

SIO 

% H20 
5 

5.75 
6.75 
5.75 
5.25 

5 
6 
5 
5 

8.75 

pH-0 
5.58 
6.01 
5.21 
5.96 
5.14 
5.2 

5.43 
4.27 
5.66 
5.59 

pH-M 
5.23 
5.97 
4.83 
5.11 

-
4.6 
4.4 
-

4.89 
4.68 

C:N-0 
21.68 
23.92 
24.68 
28.73 
24.1 

30.14 
24.68 
45.17 
26.54 
26.19 

C:N-M 
24.14 

16 
23.24 
33.18 

-
30.58 
36.61 

-
27.37 
23.13 



Appendix 5: Aerial Photograph of McBride Peak 
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