
Heuristic Path Finding Method for Online Game Environment

By

Jia-jia Tang

Bachelor of Education, National Tainan Teachers College, R O C , 1999

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

MATHEMATICAL, COMPUTER, AND PHYSICAL SCIENCES

(COMPUTER SCIENCE)

THE UNIVERSITY OF NORTHERN BRITISH COLUMBIA

August 2010

©Jia-jia Tang, 2010

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patnmoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN 978-0-494-75117-6
Our file Notre reference
ISBN 978-0-494-75117-6

NOTICE AVIS

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distnbuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats

The author retains copyright
ownership and moral rights in this
thesis Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission

L'auteur conserve la propnete du droit d'auteur
et des droits moraux qui protege cette these Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autonsation

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis

Conformement a la lot canadienne sur la
protection de la vie pnvee, quelques
formulaires secondaires ont ete enleves de
cette these

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant

•+•

Canada

Abstract

A Heuristic Path Finding Method is developed that resolves the bottleneck for

system performance in the online game industry In order to obtain a satisfactory

performance, the background processing system for pathfinding has to sacrifice either

efficiency or accuracy

Under this method, designers analyze the game map structure and build area

information first The online game system will then generate path templates for in-game

usage based on the map information As the templates are being generated, the system's

pathfinding Artificial Intelligence (AI) will pick a path from the templates and adjust it

accordingly to produce a real path This method improves pathfinding approaches with

higher accuracy, is less time consuming and requires fewer resources from the game

system We have created a testing system for testing and evaluating pathfinding related

work With this testing system, extensive experiments have demonstrated the advantages

of our method over a few known algorithms

Table of Contents

Abstract 1

Table of Contents n

List of Figures IV

List of Tables vi

Acknowledgments vn

Chapter 1 Introduction 1

1 1 Pathfindings under Different Applications 1

111 Pathfinding without Geographical Information 1

112 Pathfinding without An Overview of Geographical Information 2

113 Pathfinding with An Overview of Map Information 2

1 2 Game Types and Pathfinding Requirement 3

1 2 1 Pathfinding not Required At All 4

12 2 Pre-determined Movements 7

12 3 Pathfinding for Few Requests 8

12 4 Pathfinding for Numerous Requests 10

12 5 Pathfinding for Numerous Requests m An Onlme Game Server 12

13 Motivation and Contribution of This Thesis 14

1 3 1 Motivation 14

1 3 2 Contribution 15

Chapter 2 Overview of current pathfinding approach 17

2 1 A* Algorithm 18

2 2 Waypoint Method 23

2 3 Navigation Mesh 27

Chapter 3 Heunstic Path Finding Method Approach 33

3 1 Overview of Heunstic Path Fmdmg Method Approach 33

3 2 Heuristic Path Finding Approach 34

3 2 1 Pre-processmg 34

3 2 2 Online Path Findmg 36

3 3 Design Details 37

3 3 1 Creating Map Data 37

3 3 2 Preparing Path Prototype 44

3 3 3 Processing the Pathfinding Request 49

Chapter 4 Implementation details and subjects of measurement 54

4 1 Introducing Database to Pathfinding Functionality 55

4 2 Map Information Storage 57

4 3 Territory Type 61

4 4 Memory Usage 66

4 5 System Structure 68

4 6 Testing Structure 69

4 6 1 Hardware with medium capability 69

4 6 2 Umted version of A* algorithm 69

4 6 3 Same pair of starting and ending points 70

4 6 4 Amount matters 70

4 6 5 Diversity in map types 70

4 7 Disadvantage of testing system 71

Chapter 5 The Experiments 75

5 1 Performance on Simple Map 76

5 2 Performance over Maps Different in Size 80

5 3 Performance over Maps Different in Number of Passable Areas 83

5 4 Performance over Maps of Different Style 87

5 5 Analysis over Memory Usage 92

5 6 Analysis of A* Algorithm Detounng 95

5 7 Analysis of Why Heunstic Path Fmding Method Got Detoured 96

Chapter 6 Conclusion 100

61 Summary 100

6 2 Further Research 101

Reference 103

List of Figures

Figure 1-1 Snapshot of Jigsaw3 65
Figure 1-2 Snapshot of Luxor 3
Figure 1-3 Snapshot of Mirror Mysteries
Figure 1-4 Snapshot of The Bank of Jasper
Figure 1-5 Snapshot of Cake Shop 2
Figure 1-6 Snapshot of Go-Go Gourmet
Figure 1-7 Snapshot of The Sims 2
Figure 1- 8 Snapshot of Neverwinter Nights
Figure 1-9 Snapshot of Age of Empire 3
Figure 1-10 Snapshot of World of Warcraft
Figure 1-11 Snapshot of Lineage 2
Figure 2- 1 Snapshot of Dragon Warrior III
Figure 2- 2 A* algorithm used on simple map
Figure 2- 3 A maze like map
Figure 2- 4 An example of how Waypoint net detours NPC
Figure 2- 5 An example of waypoint evaluation affected by play
Figure 2- 6 AI blocked at the bottleneck of Waypoint
Figure 2- 7 The progress of path-finding in Navigation Mesh
Figure 2- 8 Quality of path is affected by the design of mesh
Figure 3-1 Sample game map
Figure 3- 2 Processed map
Figure 3- 3 Path built by reference nodes
Figure 3-4 Optimized path
Figure 3- 5 Sample map
Figure 3-6 processed map
Figure 3- 7 Simplified map
Figure 3- 8 Sample of convex set
Figure 3- 9 Map boundary
Figure 3-10 Sample may m convex polygon
Figure 3-11 Path built from fixed reference points
Figure 3-12 Path built from dynamic reference points

Figure 3-13 Sample game map

Figure 3-14 path-finding steps 48

Figure 3-15 Inner point identification 50

Figure 3- 16 Two final path generated from same area path 51

Figure 3-17 Request that is not able to get a path template from the database 51

Figure 4-1 Paths built by waypomts 59

Figure 4- 2 Less broken map 62

Figure 4- 3 Highly broken map 63

Figure 4- 4 Spacious map 63

Figure 4- 5 Lightly obstructed map 64

Figure 4- 6 Complicated map 64

Figure 4- 7 Waypoint map for complicate map 65

Figure 4- 8 Broken area 66

Figure 4- 9 Generated waypomts 71

Figure 4-10 Closest node and valid node 72

Figure 4-11 Diagonal movement 73

Figure 4-12 Function of Rounded percentage 73

Figure 4-13 Too few waypomts 74

Figure 4-14 Too many selections 74

Figure 5-1 Testing map 76

Figure 5- 2 Area map for 1st experiment 77

Figure 5- 3 Manually designed nodes 78

Figure 5- 4 Generated nodes of Waypoint map 78

Figure 5- 5 Map with 8 passable areas 84

Figure 5- 6 Map with 16 passable areas 84

Figure 5- 7 Map with 24 passable areas 84

Figure 5- 8 Complicate map 88

Figure 5- 9 Random map 88

Figure 5-10 Generated waypoint may not able to link up adjacent points 91

Figure 5-11 Manual design simplified waypoint map 91

Figure 5-12 Defect of A* algorithm in processed map 95

Figure 5-13 Path detoured by Heuristic Path Finding Method 97

Figure 5-14 Additional process to fix Heunstic Path Finding Method's defect 99

v

List of Tables

Table 3-1 Polygon information 35

Table 3- 2 Area paths 36

Table 3- 3 Path finding for the map on Figure 3-5 39

Table 3- 4 Path template generated by Heuristic Path Finding Method 39

Table 3- 5 Path-template for Figure 3-6 40

Table 3-6 data structure 44

Table 3-7 Rule of average vertex location 46

Table 3-8 Map path description 49

Table 3-9 Single Path description 49

Table 3-10 Path templates for Figure 3-16, 17 52

Table 4-1 Map data used by A* Grid Method 58

Table 4- 2 Map data used by Waypoint Method 60

Table 4- 3 Map data used by Navigation Mesh Method 61

Table 5-1 Result of first expenment 77

Table 5-2 Selected result for first expenment 79

Table 5-3 Result of first map of second expenment 81

Table 5- 4 Result of second map of second expenment 81

Table 5- 5 Result of first map for expenment 5-3 85

Table 5- 6 Result of second map for expenment 5-3 85

Table 5-7 Result of third map for expenment 5-3 85

Table 5- 8 Number of waypoint links on each map for expenment 85

Table 5- 9 Result of Complicate map for expenment 5-4 89

Table 5-10 Result of Random map for expenment 5-4 89

Table 5-11 Result of Enlarged Complicate map for expenment 5-4 89

Table 5-12 Result of Enlarged Random map for experiment 5-4 90

Table 5-13 Number of waypoints on each map for expenment 5-4 90

Table 5-14 Sample of memory usage of one path on complicate map 93

VI

Acknowledgments

I would like to thank my supervisor, Dr Liang Chen, for his continuous

guidance and support throughout my studies at the University of Northern British

Columbia I also wish to express my thanks to Dr Charles Brown and Dr Jianbing Li

for then- constant encouragement, valuable advice and patient guidance throughout the

years of my graduate studies

I want to thank General Manager Juinn Ymg Wu and Department Manager

Wenhsiung Lin for giving me a full view and practical aspects about internet service

and database system when I worked for NetForce Inc I want to thank Department

Manager Jack Jair who helped me build the entire concept of online game hosting

service when I worked for Lager network technology, Inc m his department Also, I

would like to thank William Lin, the Technical Department Leader at Magellan

Interactive, who guided me through projects to show how AI movement is

implemented under 2D and 3D engines

As well, I would like to take this opportunity to thank the University of

Northern Bntish Columbia for providing every support throughout my studies in

Canada In addition, I would like to thank all my friends, Jeremy Hsieh and Vivian

Feng for giving me advice and suggestions on my thesis

Last but not least, I would also like to give my sincere thanks to my parents

and family members for their selfless love, endless patience and huge support

Without them, I could not have reached this point

VII

Chapter 1 Introduction

Pathfinding Used in The Modern World

Pathfindmg is a topic that has been discussed over and over for generations At

the same time, there have been many algonthms developed to solve vanous types of

pathfindmg issues In this chapter, we are first going to have a glance at how

pathfindmg utilities are used m the modern world, and then gradually narrow the

scope to focus on the problems we want to resolve

1.1 Pathfindings under Different Applications

When developmg a pathfinding method, there are different types of requests

and accessible information one needs to consider In terms of requests, some methods

dedicate to finding the target despite of potential detour, some methods seek the

shortest path regardless of the time required, while other methods pursue the shortest

time by lowermg the importance of path length requirement In terms of accessible

information, some methods provide world coordinates, others provide only a response

time Simply put, there is no ultimate way to satisfy all kmds of pathfinding requests

All methods are limited by the accessible information provided by the environment

Here we will list the background information that researchers developing pathfinding

techniques would based on

1.1.1 Pathfinding without Geographical Information

Cyberspace is the most known example m this category Browsing the internet

requires the use of computers, cables and virtual messages With a group of

computers connected by cables, every computer generates messages to establish its

relative position withm the group What this achieves is that the computer group can

build its own virtual map specifying the physical relationships of all group members

There is no geographical information such as direction or distance required for

this map The metnc used to estimate the relation between computers is substituted by

the time needed for sendmg and receiving information The most known algorithm in

this category is Dykstra's algorithm (Tim and Mark 2000)

1.1.2 Pathfinding without An Overview of Geographical Information

The typical type is robot pathfinding There are annual robot competitions

hosted by organizations such as FIRST Robotics Competition (FIRST Robotics

Competition, FIRST) Though there have been no breakthrough for a long time, robot

pathfinding is still among competition options Without knowing at first its starting

location, a robot needs a pathfinding Artificial Intelligence (AI) to explore its

environment and find a path to the destmation It tries to build a map according to the

information gathered from the environment This method does not guarantee the

shortest time or the shortest path to reach a target, the AI may reach the destination

without completely exploring the entire map, or it may need to explore the entire map

before reaching the target

The main challenges of this pathfinding method are to correctly recognize its

environment and to initialize a map scratch Once these can be achieved, the AI can

avoid repeatmg errors and reason out correct paths more efficiently

1.1.3 Pathfinding with An Overview of Map Information

One example of this type of pathfinding is the Global Positioning System

(GPS) (Global Positioning System, National Executive Committee) Nowadays

wireless communication is everywhere as satellites are being sent into space and

2

orbiting our planet Since now we can have a clear view of the earth, using the GPS is

definitely a viable solution Users send message to the server to identify their location

and request for a path to the target The server processes the messages, builds the best

solution according to the current map mformation, and then guides the users to their

destination

Electronic game is another example The designer of the game sets up

fantastic virtual environment for players to explore To the game engine, the map is

already m existence and fully-learned The AI only read the on and off signals, unlike

players who can recognize 2D image in a much quicker and more meaningful way In

order to make Non-player Characters (NPC) move more smartly or humanly, the

game system plans the path accordmg to its processing maps

These types of pathfindrng methods have a clear view of the map, geographic

orientation, and the condition of all part of the map All these attributes assist in

reaching a better result

1.2 Game Types and Pathfinding Requirement

Our method is focused on the online games, but it is important to explain our

method further by breaking down the game category into different game types,

including online game, and the reason for this will be apparent shortly Here we are

going to introduce our catalog of game types and how they affect pathfinding requests

In general, graphics are always the most resource mtensive functionality in game

design Visual effects are always the first priority, resultmg in various other functions

being pushed aside to be less important, and AI is an example When the rules of a

game are simple, designer can place more emphasis on the story telling while

simplifying the AI design without affectmg the overall experience for the players

3

Here we will discuss five game types accordmg to the way the AI moves We

will also descnbe the role AI movement plays in each game type and how it is

implemented and simplified in consideration of performance The five game types

are

1) Pathfinding not required at all,

2) Pre-determined movements,

3) Pathfinding for few requests,

4) Pathfinding for numerous requests,

5) Pathfinding for numerous requests m an onlme game server

1.2.1 Pathfinding not Required At All

Games fall under this category include puzzle games, object-finding games

and simple First Player Shooter games (FPS) Basing on common games, puzzle

games such as Jigsaw365 (Figure 1-1) and Luxor (Figure 1-2) allow objects to move

to destination directly without any hindrance Object-finding games such as The

Mirror Mysteries (Figure 1-3) and Big City Adventure have fixed objects that require

no movement at all Simple FPS games such as The Bank Of Jasker (Figure 1-4)

permit objects to move up and down but in the same spots These limitations restrict

players' movements in the game and involve high repetition in user control Some

games of this type introduced attributes such as timing or story narration to enrich

game content

4

MENU

* J £ R &

Figure 1-1 Snapshot of Jigsaw365 (Jigsaw365, Playtonium)

Figure 1- 2 Snapshot of Luxor 3 (Luxor 3, Big Fish Games)

5

TREE HOUSE 'SHA RED ITEMS 1

TJ

- ^

-*»' «_-H

Figure 1- 3 Snapshot of Mirror Mysteries (Mirror Mysteries, Big Fish Games)

Figure 1- 4 Snapshot of The Bank of Jasper (The Bank of Jasper, Flashgames247 com)

6

1.2.2 Pre-determined Movements

In this game type, game objects automatically move around according to

predetermined path This movement does not interact with the environment Some

games of this type move objects according to the player's intention, but this does not

involve pathfinding, the player simply chooses one of the pre-defined paths and

follows it Some examples of this game type are Cake Shop (Figure 1-5) and Go-Go

Gourmet (Figure 1-6) Even though players do not control the movements and

cannot change the paths, the movements of the objects provide some other attributes

to the game design, such as time management We categorize this as a separate game

type as it does allow some degrees of variation in object movements, which adds to

the richness of the game content However, this variation in movement does not

require pathfinding, it is only a variation in a list of selection

Figure 1- 5 Snapshot of Cake Shop 2 (Cake Shop 2, Big Fish Games)

7

Figure 1- 6 Snapshot of Go-Go Gourmet (Go-Go Gourmet, Big Fish Games)

1.2.3 Pathfinding for Few Requests

Movement in this game type is more intelligent than that of the previous two

categories Games of this type come with a complete concept of their own virtual

world, such as direction, distance, static objects, interactive objects, friendly

relationship, hostile relationship etc Based on these information, computer

controlled objects interact with the players in a meaningful way, such as moving

closer to actively attack, defending for the player, following player as a companion, or

even just as an impartial third party Even though interactive AI can also be achieved

in simpler games requiring less or no movement in the objects, such as those we

mentioned earlier, the AI in this particular game type chooses its response according

to the object attributes and various selections while moving freely and intelligently in

8

the game world This creates the illusion of time and space and promotes players to

explore the game world by giving them more control flexibility in movement

Most console games belong to this game type, such as The Sims (Figure 1-7)

and Neverwinter Nights (Figure 1-8) Since a game's performance relies heavily upon

the player's hardware, games only activate objects within player's viewport to increase

its overall performance

Figure 1- 7 Snapshot of The Sims 2 (The Sims 2, Electronic Arts Inc)

9

Figure 1- 8 Snapshot of Neverwmter Nights (Neverwmter Nights, BioWare)

1.2.4 Pathfinding for Numerous Requests

Strategy games are a type of games that have active AI objects running outside

of a player's viewport Efficiency is the first priority for game systems AI plays an

important role in the game content of this type Both the computer and the player

control a group of game objects The computer directs the objects of its own team to

compete with the player Though the movement of the computer's team is not visible

to the player, it does perform tasks almost the same way as the player does The AI

team gathers game resources, defeats enemies, constructs buildings and builds its

troops Even objects belonging to a player rely on AI control The game provides

functionality to allow a player to queue tasks on one object, then the object

automatically moves around the world to complete a series of assignments

This is a game type of heavy interactivity between AI and the players

Interactivity means higher capacity and resource requirement Since the game AI is

10

not smart enough to actually set a strategy to beat the player, there are two ways to

lighten the game' s workload one is to allow the AI to cheat in game, the other is to

simplify possible activities

If AI cheats in the game by calculating in advance instead of making real

movement according to player's concurrent status m runtime, the game could end up

bemg very unfair to the players or too easy to win, both cases would make the game

not worth playing Therefore, this game type generally limits the degree of controls in

AI's ability so it has expertise in a few specific tasks, which helps to level the abilities

of AI and the players Although currently in most games of this type, the AI generally

cannot beat the players, it is a very challengmg game type and the only one that

emphasizes the role of AI

The amount of pathfinding requests m this type is significantly more than the

previous types, but the targeted system is still focused on the personal computer To

allow acceptable performance, there should be limitations on AI, so as on pathfinding

techniques A example of this game type is Age of Empire (Figure 1-9)

l l

Figure 1- 9 Snapshot of Age of Empire 3 (Age of Empire 3, Microsoft Game Studios)

1.2.5 Pathfinding for Numerous Requests in An Online Game Server

Online games are the main topic under this category It is basically constituted

by internet, hosting server and clients Game content and interaction between players

are mainly located on the server How resource is used is different in online games

and m console games A console game has to handle the physics of the movements,

virtual effect, AI calculation and game content on its own Virtual presentation

usually uses most of the system resources, game content and AI compete for the

remaining For online games, on the other hand, the client side is devoted to graphic

and the physics of the movements, and the game server is dedicated to content

management and AI Theoretically, online game is more likely to have better AI, but,

because of its multi-player attribute, management of client interaction adds another

heavy load to the system Pathfinding calculation is still at risk of being sacrificed

12

In this environment, there are usually many players logging on to a host server

concurrently, and the objects around each player are activated when any of the online

players approach There is nowhere to secretly save system resource To keep

performance within acceptable range, online game service providers can either

upgrade hardware to increase its capability, or to optimize system structure to meet

the large amount of requests Examples of this game type are World of Warcraft

(Figure 1-10) and Lineage (Figure 1-11)

Figure 1-10 Snapshot of World of Warcraft (World of Warcraft, Blizzard Entertainment)

13

Figure 1-11 Snapshot of Lineage 2 (Lineage, NCSoft)

1.3 Motivation and Contribution of This Thesis

1.3.1 Motivation

There are various pathfinding methods already in existence They are devoted

to make the AI smarter at every movement decision, and, in order to meet quality

requirement, the AI takes time to "think" in order to process all the requests

simultaneously But there is no such time for online game With a wide accessibility

via the Internet, instant response and massive requests processing are the new

demands for game performances

In many well developed online games where players are tempted by fantastic

effects and abundant contents, we can still observe problems caused by poor

pathfinding approaches, such as detounng, being stuck and going through solid

objects In gaming industry, an excuse for adopting such poor pathfinding approaches

14

always rooted from the tradeoff between the good solutions and computmg resources

There is an apparent dilemma between the good solutions and the computmg time for

finding the good solutions This thesis attempts to find an approach such that good

solution and acceptable online time cost can be achieved simultaneously

1.3.2 Contribution

Our method is designed to resolve a massive amount of requests within a

limited amount of time Therefore, our theory focuses on a pathfinding method that is

equipped with the map information Time is in fact a challenge as computers only

processes binary information, which is good for massive simple checking, but not for

more advanced processmg

Instantaneous response is a very important attribute to game performance

With numerous requests, system resource will hardly afford to allow AI making the

best decision at all times The game system maintamer can choose to either expand

hardware resource or to sacrifice AI accuracy Game producers inevitably ponder

between performance and accuracy when considering pushing a product from console

to an online platform

Heuristic Path Fmdmg Approach is a solution to massive pathfinding requests

that need instant response It makes good use of the preparation phase by analyzing

the map structure and creating optimized path templates before the service goes onlme

At runtime, the system knows the possible connection between the start and the

endmg location as soon as requests are sent in by referring back to the path template,

AI can determine that there is no valid path in between immediately if there is no

corresponding path template Our method groups together the locations as areas and

builds paths m advance, so that it saves a lot of time from re-performing the search for

15

each single request It minimizes uncertamty of possible path, simplifies the work of

runtime pathfinding and lowers the usage of system resource

The remaining chapters of this thesis are organized as follows In the next

chapter, Overview of Current Pathfinding Approach, we introduce 3 pathfinding

methods which are popular m game development Chapter 3 descnbes how Heuristic

Path Finding Method works and its design details In Chapter 4, Implementation

Details and Subjects of Measurement descnbes the design of the testing system we

created to test the vanous pathfinding methods, and discusses the major indicators

used in the expenment to compare the methods Chapter 5 demonstrates our

expenments and presents the results and the accompanying analysis Finally, the

conclusions and discussions of future work are provided in Chapter 6

16

Chapter 2 Overview of current pathfinding approach

A game map design highly affects pathfindmg performance The reason is that

generally, game designers create virtual world by decoratmg it with many objects

such as plants, swamps, fields, buildings etc, and would expect players to get

immersed into this fantasy Technical designers tend to unify all objects and set them

mto a certain kind of order Similar to a driver who needs a trip plan to reach his

destmation, the AI of a game needs a game map in order to analyze its surroundings

to build a path plan A coordinate system is the most straightforward reference to AI

movement in that it provides direction and measurement, and is implemented as the

foundation of the game environment

Various pathfindmg methods and theories exist, and some of them are very

comprehensive Comprehensive method naturally demands more system resource

Taking this mto consideration, one needs to realize that in a virtual game world, there

are so many details to plan and manage, and pathfinding is only a minor one Without

a doubt, all game designers want to create a vivid game world by using good

pathfinding techmque, but there is only limited resource on hand Therefore, instead

of using the ultimate solution, game designers usually choose less complicated

methods but are just sufficient enough to meet the requirement The following

discussion introduces three of the most popular methods A* pathfinding algorithm,

waypoint and navigation mesh

A game map is generally designed in coordinate system with integer values

The coordinate system is straightforward to human and at the same time fits the

computer's functionality The reasons to develop game maps with integer values are 1)

floating-point arithmetic is much slower than integer computation, and 2) momtors

used to present game content could not present the partial of one pixel Under this

17

guild line, there are only eight directions in maximum for one object to move in a

two-dimensional game world

2.1 A* Algorithm

A* algorithm was proposed in 1968 (Hart, Nilsson, 2003), as a type of

heuristic pathfinding method It develops a path by setting current position on the

surrounded position which carries lowest evaluating value until reaching the

destination The evaluatmg value is generated by the following function

f(n) = g(n) + h(n)

g(n) is a path-cost function, which is the cost from the starting position to the

current position In game development, the cost represents not only the distance in

between, but also some game environmental attnbutes, such as effort required for

climbing a hill, hostile rate, friction of the ground, etc In this thesis, only distance is

taken into consider

h(n) is an admissible "heuristic estimate" of the distance from current position

to the goal This function provides directional information to guide path toward the

goal There are several heuristic methods introduced on website Amit's A* Page

(A-star-trap, Amit's A* Pages) In game development, this function is developed in

simple way because avoiding complicate computation without affecting presentation

is the major concept to save resources A game system won't need any pathfinding

method if its game world contams no obstacles If obstacles do exists in a game world,

the heuristic estimate applied with fixed tuning value could never fit all game maps

In this thesis, heuristic estimate is the sum up of the vertical distance and the

horizontal distance between current position and the goal

In addition to evaluating function, A* algorithm carries two lists open list and

close list Open list contains all visited positions which are assigned with a cost value,

a heuristic estimate and its previous step One position would be moved out of the

open list mto the close list when all of its surroundmg positions are assigned with

evaluating values

Pathfinding function sets current position on starting point at the beginning

and puts all surrounded position into open list with then" cost, heuristic estimate and

previous step generated according to current position After all surrounded positions

being evaluated, pathfinding function sets the current position on the position stored

in open list which carries lowest evaluating value This process repeats until the

current position reaches the goal The final path is built by tracing back previous steps

from the goal toward the starting position

Two-dimensional game maps developed in coordmate system with integer

values look like grid-maps We will use the term "A* grid" to represent the

pathfinding method implemented in an A* algorithm based on a pure coordmate

system

Feature

Although the A* grid may not be the ultimate solution for game pathfinding, it

is definitely one of the more popular ones Dating back to older games, game maps

were small and assembled by tiles The viewport of the game was similar to looking at

the world from the sky (Fig 2-1) While restncted by RAM memory and the speed of

the computer, the map structure was expanded to contain game object information

Therefore pathfinding AI was allowed to plan an accessible path by referencing map

data

19

Figure 2-1 Snapshot of Dragon Warrior III (Dragon Warrior III, Enix Corporation)

In theory, vertexes are what A* grid is based on to evaluate pathfinding details

Starting with a vertex on a simple two dimensional map, movement in all directions

should be allowed However, when it is implemented on a coordinate system, each

step has only 8 possible directions, moving upward, downward, nghtward, leftward,

and towards the four angles diagonally It would take the object the same amount of

time to move horizontally and vertically, and the same amount of time to move

diagonally

The way an A* grid works is very similar to a man walking in the dark

Eyesight is no longer enough to lead his direction, he has to move around with both

hands stretched out to make sure that next step is clear of obstacles and is safe

Pathfinding AI implemented in an A* grid selects one optimal step from surrounding

grids A path is built by tireless grid-checking from the starting point to the

destination

Advantage

An A* grid method uses a distance and moving cost to evaluate the next step

(A* algorithm, Wikipedia) In order to achieve the best next step, the AI sums up the

20

cost of moving from the starting point to the current location and adds it to the

distance between the current location and the destination The distance estimation

highly depends on the coordinate system which not only contains the distance

measurement but also the direction Compared to Dijkstra's algorithm (Dijkstra's

algorithm, Wikipedia), which is generally used in Internet routing services, the A*

algorithm avoids most unnecessary checking and saves time

Figure 2- 2 A* algorithm used on simple map

This image shows the path built by A* algorithm and the grids that were checked during

pathfinding process (A-star-trap, Amit's A* Pages)

^ZT.

1 L JE
/

Figure 2- 3 A maze like map (Maze, Wesg ca)

On a simple map (Figure 2-2), directional movement helps greatly with the

pathfinding On the other hand, with a more complicated map (Figure 2-3), it

inevitably takes the AI more time to resolve a task Since responsiveness is the

21

highest pnonty to game system, the designer usually sets a limit on the length of time

for processmg before aborting the pathfinding task to prevent the task from occupymg

the system resources too long When pathfinding takes excessive amount of time

which might force the game system to abort the process, the NPC might appear as

silly by not reacting much unless the player does something to it Other than the

aborting technique, the game designer can also solve this over-time issue

fundamentally by simplifying the game map After all, the game world is an

imagination, its content is definitely negotiable, unlike the paths specified by the

GPSs that cannot be changed freely since they have to be based on actual roads and

highways

The A* gnd methods is still popular in the game industry As game content is

getting more complicated and as various pathfinding methods are being developed,

the A* algonthm is usually where most pathfinding methods are denved from

Disadvantage

A disadvantage is that there are only eight directions allowed for each step in

an A* grid method If one game object has to move over a long distance at a direction

other than those allowed, it usually ends up moving in a zigzag motion and wastes

time when turning This problem is not obvious if a map is small and less complicated,

and when each gnd can represent a physical object or a relatively large region

As hardware continues to improve, the game system is now designed to show

a more refined visual presentation with each gnd representing a smaller area This

way object should appear to not move gnd by gnd but pomt-to-point As a result,

each gnd, while covenng a much smaller area, is no longer regarded as representing

an object or location, but used more as a reference pomt to calculate distance

22

Furthermore, the measunng unit of each gnd would also have decreased smce each

gnd now covers a smaller area To produce a map contammg the same amount of

objects and space as the older hardware, a designer using the newer hardware would

require more gnd and therefore more resources

More grid and more resources mean bigger game map, which is exactly what

the A*gnd method is not suitable for

2.2 Waypoint Method

When movements are without a gnd, the moving direction becomes more

important for the object at each step The Waypoint Method (Waypoint Method,

Wikipedia) uses links and nodes as additional information to accelerate the A*

pathfinding work

Waypoint Method is very similar to the A* algonthm on a high level The

object starts its movement from the closest node, goes through nodes and links toward

the node closest to the destination, and then moves from there to the target location

There are two phases to validate Waypoint method (1) the design of waypoint net,

and (2) the planning of a route by the pathfinding AI using the waypoint net

Waypoint Method is pnmanly based on the waypoint net A waypoint net is

composed of the selected accessible pomts, which are called the waypomts, and the

links between those points to form a set of paths It usually looks like a net and guides

the object movmg along the links to deliberate waypoints Waypoint net is created to

reduce the number of possible moving direction and the amount of time to make

direction decisions It is unlikely for the pathfinding request to be always located

exactly on the waypoint nodes Therefore, during runtime, it is AI's responsibility to

identify the nearest nodes around the starting pomt and the destmation

23

After the tuned locations are identified, the pathfinding AI tries to build a path

based on the links that connect two arbitrary nodes The link contains distance

information between two nodes In other words, the information provided by a

waypoint net include the points, the direction and the distance This is sufficient for

A* algonthm to perform pathfinding Therefore, Waypoint Method is essentially a

method using the A* algonthm, assisted by coordinate system and waypoint net

Feature

Waypoint Method uses waypoint net to assist the pathfinding process How a

waypoint net is designed is an important issue Unlike the A* gnd method which is

able to identify its grids quickly by referencing to a coordinate system, there is no

simple conversion for the Waypoint Method to convert nodes from a coordinate

system to a waypoint net The pathfinding AI has to scan its surrounding area for both

the start and end points to identify the closest nodes

Furthermore, the A* gnd uses measurement to estimate the moving cost,

whereas the waypoint retrieves the distance information from links If a waypoint net

is designed intensively, it may require longer processing time and occupy more

memory resource than an A* Gnd Method when resolve a task If the waypoint nodes

are designed loosely (Figure 2-4), the waypoint may detour round an object for a

longer path

The A* algonthm is implemented so that the object stops at the first

occurrence it finds the destination, making it unnecessary to scan all irrelevant nodes

Under the Waypoint Method, if the player is in the middle of two waypoints, the order

of checking the direction may affect the outcome (Figure 2-5) If an obstacle is

allowed to be dynamic, it may block the path by bemg on the links This can happen

24

even if there is still room to bypass the obstacle (Figure 2-6) The qualities of the

waypoint net design highly affect the performance of the Waypoint Method

Figure 2- 4 An example of how Waypoint net detours NPC

Mob's path would be disturbed by Waypoint nodes (, red path), as the green path is the

best solution Original image comes from Neverwinter Nights (Neverwinter Nights,

BioWare)

25

Figure 2- 5 An example of waypoint evaluation affected by player's location

Al uses the waypoint behind the NPC as start point The distance from start point to both

waypoints besides the player seems the same to Al Al would choose the waypoint that was

evaluated first while the waypoint on player's right side is more optimal Original image

comes from Prince of Qm (Prince of Qin, Beijing Object Online Technology Corporation)

Figure 2- 6 Al blocked at the bottleneck of Waypoint

If a "random obstacle" is possible, an obstacle which falls on the node at the center of

bridge would block the path of the Waypoint Original image comes from Baldur's Gate

II (Baldur's Gate II, BioWare)

26

Advantage

Waypoint Method is very efficient on a map with less passable area, like the

streets in a metropolitan area, or a complicated map (Figure 2-3) The AI only makes

the decision when the object reaches a node, instead of at every step If nodes are

properly designed and tuned, this method is much quicker than the A* grid in runtime

and generates human-like movement The pathfindmg AI can find all required data

from the waypoint net Other than identifying the starting and ending nodes, it is not

necessary to scan an entire map to build a path

Disadvantage

There is an essential difference from a game map to real world map The

major composition of a game map is a large passable field whereas in the real world

map it is mostly comprised of obstacles When we reach a large passable area, such as

a forest, we tend to follow the path built by others to ensure that we will not get lost

But when we play a game and our characters confront monsters in virtual forest, we

expect monsters to move straight toward us instead of moving to the closest road first

and then following the path toward us The game map may contain much more

accessible area, not only for the convemence of design, but also for higher flexibility

and easier control for users As the game map expands even larger nowadays, keepmg

the nodes dense enough without spending too much time looking for required nodes

and links in runtime would be a challenge

2.3 Navigation Mesh

Navigation Mesh Method expands the concept of a step from strictly refined

location to loosely defined area This concept was evolved around the times of the

dot-com bubble (Dot-com bubble, Wikipedia) when Internet accessibility was bemg

27

heavily invested in Multi-user online services became popular, and capacity was

another critical issue besides visual presentation

As massively multiplayer onlme games became possible, game maps were

also expanded for entertaining purpose Under multiplayer platform, it is impossible

for the game to secretly sacrifice lower priority AI tasks to improve performance

without the users noticing For pathfinding tasks on a large map, the A* grid is very

slow because a large map contains larger search space Waypoint Method has similar

problems on large maps as well However, as the A* algonthm has proved its

reliability for years in game industry, game designers wanted to use the same

algonthm As a result, instead of using another more accurate but complicated method,

designers would tend to increase the system performance by reducing AI selection

Navigation Mesh Method (Navigation Mesh Method, Wikipedia) is one of the newer

methods invented under this concept

Navigation Mesh Method is more of a game specific pathfinding method for

AI Waypoint Method is sufficient for humans as it is easy for us to bypass obstacles

with a pathfinding result on hand For the AI it is a different story AI does not "see"

things It never chooses shortcuts other than the ones given Therefore, the Navigation

Mesh is designed to give the AI freedom to choose any location within a chosen area,

and will not make the path different even if the AI chooses another location in the

same mesh

Feature

Navigation Mesh Method uses a pre-processed map A designer defines

convex polygons to cover entire passable areas Unlike pathfinding methods

mtroduced previously, this method shifts most of the address checking work to

28

boundary calculations This change would be valuable only if the game map is large

enough to make the calculation cost less than address checking The game system also

needs the relationship between conjunct areas At runtime, when pathfinding tasks are

triggered, the game system looks for convex polygons, so called meshes, which the

starting and endmg points belong to It sets a start area as a checking base, picks the

best candidate from all surrounding neighbors, and then sets it as a new starting area

This process is repeated until reachmg the endmg area After a mesh path is

confirmed, the game system should polish it into final movement path as the final

result (Figure 2-7)

29

Figure 2- 7 The progress of path-finding in Navigation Mesh Original image comes from 1701

A D (1701A D, Aspyr)

There are commercial products that help designers to place meshes, such as

Source SDK (Source SDK, Valve Developer Community), which is developed by

Valve Developer Community This tool predefines basic mesh shapes so that a

designer can fill them in on a game map After the game map is completed, this tool

processes the game map to merge all shapes into fewer convex polygons The

designer reviews the result and can attach or detach merged polygons to assist the

game AI Though the mesh generation tool hardly creates perfect maps, it does

simplify the designer's work significantly

Advantage

30

This method simplifies the choice of pathfindmg and indirectly increases

pathfinding performance All resource saved by less selection is invested into

geometry calculation It is excellent for pathfinding on large maps

Disadvantage

Navigation Mesh Method still uses the A* algorithm As an attribute of this

algorithm, the AI evaluates the next step by analyzing surrounding nodes For the

navigation mesh, there is no fixed node within a mesh to be the basis of evaluation

The game system generates one reference node for each mesh to help the evaluation

process No matter how much effort the AI spent in generating an ideal reference

node, there would be at least a few detours caused by unbalanced mesh design

Take Figure 2-7 as an example, the meshes on the left are quite large while

meshes on the right are relatively small The AI sets reference nodes on the center of

each mesh The path built by reference nodes on the left side (green path) is much

longer than the path on the nght (blue path) But the final path, the red line, built from

the blue path, is much longer than the path built from the green line (Figure 2-8) This

could be avoided by reconfirming the built path Nevertheless, reconfirmation and

redoing the path doubles the AI loadmg The path length built during the pathfinding

process of the Navigation Mesh Method is not as straightforward as that built by

Waypoint Method

31

Wfc

-^m

Figure 2- 8 Quality of path is affected by the design of mesh Original image comes from 1701

A D (1701A D, Aspyr)

Additionally, the way meshes are defined greatly affect the performance of

pathfinding If the map is too complicated or meshes are too small, the geometry

calculation may consume even more system resource than address scanning

After going through these popular pathfinding methods, we have developed a

better concept of what the game industry really needs m pathfinding, how it is

practiced in current available products, and why they are not compatible in certain

conditions We will now focus on our Heuristic Path Findmg Method

32

Chapter 3 Heuristic Path Finding Method Approach

3.1 Overview of Heuristic Path Finding Method Approach

Our method targets the onlme hosting service Specifically, Heunstic Path

Finding Method is a method that should be implemented on a server By breaking

down the structure of the system and the components of a request, the Heunstic Path

Finding method efficiently moves a part of the tasks out of runtime, thereby reducing

processmg time and increasing efficiency Many other pathfinding AI, such as those

used in GPS, emphasize accuracy, however, they are highly inefficient to be applied

in a game setting On the other hand, we have designed our method with efficiency as

the highest pnonty, while minimizing any possibilities to sacnfice accuracy Under

our structure, the system is very capable of dealmg with massive pathfinding requests

and still works effectively This is apparent especially when companng with other

methods mentioned previously over a long term basis

The process of the pathfinding work can be divided mto two parts The first is

preparation Heuristic Path Finding Method uses processed map information which

contains ordered vertex sets and relationships of all passable areas The map data is

supposed to provide minimum, well-structured and sufficient information that can be

understood and processed efficiently by the game system Before the main system

provides service, it loads the processed map information, analyzes and rebuilds the

relationship of the passable areas According to the map information, our method

builds a path prototype for each pair of two different passable areas based on A*

algorithm, and stores the path template in a database system The database system is

an independent system located on server side

The second phase is runtime execution After initialization, the server goes

online Requests would be sent as pairs of starting and ending points The game

system identifies corresponding areas for each pathfinding request and then sends a

query to the database to retrieve a matching path The database will perform a data

search, and then sends a set of path template back to the game system In the end, the

game system optimizes the path template to fit the request as the final path

In the following content, we use "database" as the abbreviation of "database

system" And we will use "main system" to represent the major purpose of the system

on server side If it is a game server, "main system" represents the game system, if it

is out testing system, this term is an alias of the testing system

3.2 Heuristic Path Finding Approach

In this section, we are going to demonstrate step by step how Heuristic Path

Finding works Let's take Figure 3-1 as a sample game map for illustration

\Wv
\Nv

\Hv

(& /

\N\A0*

\NVtf*-

\Nv

Figure 3-1 Sample game map

3.2.1 Pre-processing

34

file:///N/A0*
file:///NVtf*

1 When we receive an online game map shown as Figure 3-1, we would rule out

the area that has obstacles in it (Figure 3-2) and then create convex polygons to

hover over the entire passable area

Figure 3- 2 Processed map

2 We would identify vertexes of all the polygons and denote their relationship

After the data recognition, we would deposit everything into a database (Table

3-1)

ID

A

B

C

K

Vertexes

(0,0), (300, 0), (284, 197), (194, 243), (0, 58)

(300, 0), (560, 0), (618, 107), (377, 244), (284, 197)

(194, 243), (195, 243), (228, 322), (205, 511), (188,

597), (137, 682), (0, 641) (0, 58)

(560, 0), (1023, 0), (1023, 108), (618, 107)

Relation

B,C

K,E,A

A, D, H, I

B

Table 3-1 Polygon information

3 We would then execute the pathfinding program and obtain a list of path

templates (Table 3-2)

35

ID

1

2

3

66

Path

AB

AC

AD

JK

Detail

AB

AC

ACD

JGFEBK

Table 3- 2 Area paths

3.2.2 Online Path Finding

1 After all the preparation is complete, the game server is ready to provide online

service to satisfy requests Let's assume that we receive an AI request for a path

from (380, 730) to (740, 60)

2 The pathfinding AI would first identify where these 2 points belong They are

area-J and area-K

3 The AI would retrieve the path template from the database The path is

J-G-F-E-B-K The path built by the reference nodes is shows m Figure 3-3

Figure 3- 3 Path built by reference nodes

36

4 The AI would optimize the path template by adjusting the intersections on the

edges The resulting path is (380, 730), (414, 677), (452, 547), (448, 502), (618,

106), (740, 60) It is shown in Figure 3-4

Figure 3- 4 Optimized path

3.3 Design Details

As mentioned, Heuristic Path Finding Method is a method for online service

It reduces the runtime workload by using a distributed structure We will describe

how it is designed, the role each part plays, and the contribution made by each part to

the overall performance

3.3.1 Creating Map Data

Heuristic Path Finding Method is a pathfinding method with an overview of

graphical information The format of the map information is essential to our method

Heuristic Path Finding Method creates a path prototype before the game system is

ready to provide service Efficiency is the first priority for a game system Even if

37

longer initialization time is allowed in the online game business model, the game

system maintainer would always want to make the loading time as short as possible

Therefore we need to make the map data used by Heunstic Path Fmdmg Method as

compact as possible with sufficient information

Convex Set

The first decision that should be made is how detailed the map information

should be Take Figure 3-5 as an example, it is a simple map, 4x4 umts in size One

unit represents one step, moving across this map takes 4 steps at the most If there is a

request to build a path from Al to D4, there would be 22 checks for step-checkmg

among candidate steps under the A* grid method (Table 3-3)

If we use Heunstic Path Fmding Method, the pathfinding Al would create 120

path templates to cover all possibilities The A* Gnd Method only creates storage

memory as large as the size of map and each grid is assigned with a number, it

requires a space for only 16 integers in this example Heunstic Path Finding Method

takes at least 240 mtegers in storage space to denote the starting and ending location,

excluding path details (Table 3-4)

For execution time, the A* gnd method takes 22 times of step checking for

path al to d4 For Heunstic Path Fmdmg Method, if the path templates are stored in a

binary tree, it takes 0(log 120) for an average case to search for a path, or 0(120) m

the worst case (Binary search tree, Wikipedia)

38

a1

b1

d

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

Figure 3- 5 Sample map

Confirmed

path

al

al,b2

al,b2,c3

a l ,b2, c3, d4

Candidates in open list

a2,bl ,b2

a2, bl , a3, b3, a3, b3, cl , c2, c3

a2, b l , a3, b3, cl , c2, d2, d3, d4, c4

Table 3- 3 Path finding for the map on Figure 3-5

Start

al

al

al

al

d2

d3

End

a2

a3

a4

bl

d4

d4

Middle steps

a2

a2, a3

d3

Table 3- 4 Path template generated by Heuristic Path Finding Method for Figure 3-5

If we divide this map into 4 groups (Figure 3-6) and apply it to Heuristic Path

Finding Method, the pathfinding Al would create 6 path templates for it (Table 3-5)

We expand steps into areas in order to reduce the amount of path templates to be

created, nevertheless, we do not want this expansion to break a pathfinding task into

several minor and cross-referencing tasks Passable areas should not overlap each

other Each area should guarantee that one object within its range has direct access to

39

another point m the same area The area should be a convex set (Convex set,

Wikipedia)

With processed map, Heuristic Path Fmdmg Method uses 12 integers to store

path templates The maximum searchmg time is 0(6) A* gnd method does not use a

processed map Thus, its storage space and execution time remams the same For this

reason, Heuristic Path Finding Method becomes attractive

a1

- I -

bi

a2

- 1 -
b2

Figure 3- 6 processed map

Figure 3- 7 Simplified map

Start

al

al

al

a2

a2

bl

End

a2

bl

b2

bl

b2

b2

Middle steps

Table 3- 5 Path-template for Figure 3-6

Smce the sample map is a square without any obstacles, it could be taken as

one single passable area (Figure 3-7) Withm one passable area, our method will not

require any path to search With direction and destination provided by pathfinding Al,

40

game system could correctly move game object to wherever it should be The A* gnd

method is uncompetitive at all in this case

Polygon Shape

The second decision is the description of boundary Boundary helps to identify

the area where the specific location belongs to Heunstic Path Fmdmg Method uses a

processed map When the pathfinding AI receives a pair of starting and ending pomts,

it has to identify their location by checking through convex sets If a convex set is

formed by random curve (Figure 3-8), the system should go through each step to

confirm that the requested point is within the boundary

Take Figure 3-9 as an example, it takes 20 units to surround an area of 4x4

units A larger area will require a longer boundary In the worst case scenario,

requested point will be located on the last checked area The time saved during the

pathfinding process by using convex set may be consumed by area identification

Therefore, we need a boundary description, which is simpler than recordmg every

passable location around an area

41

Figure 3- 8 Sample of convex set

Figure 3- 9 Map boundary

The simplest way to describe a passable area is to use it as a convex polygon

When dealing with a graphical calculation, a straight lme is always easier than a curve

Map designers only need to call out vertexes of convex polygons, which the main

system is based on m order to reverse back edges and relation of those polygons

Data Structure in Runtime

To meet the efficiency requirement, the map is simplified into vertex polygons

to descnbe the passable areas The system would load the polygon vertexes, rebuild

the graphic structure, restore the relationship and keep the information in memory

Checking the boundary of a passable area should be done in a routine manner, rather

than allowing the AI to frequently allocate and release the memory then retrieve the

data from the database, keepmg the required information in memory of a gaming

system will shorten the checking time

42

We have vertexes used to form the polygon boundary, these vertexes can also

be used to identify the relationship of the polygons The map used by Heuristic Path

Finding Method is partitioned into convex polygons (Figure 3-10) Adjacent areas

share the same edge, such as edge Val-Va2 of polygon A Edges that belong to only

one polygon are taken as adjacent to non-passable area, like edge Vbl-Val of

polygon B

According to this rule, the system can identify adjacent passable areas by

scanning though polygon vertexes Since the vertexes are checked so frequently, we

can keep the relationship of the vertexes m memory while tracking the adjacent areas

and corresponding edges during map loading process

Figure 3-10 Sample may in convex polygon

Struct Map

{
Polygon 1

Vertex 1 {xl

Vertex 2 {xl

Vertex 3 {xl

Neighbor 1

yi}

yi}

yi}

Neighbor ID Polygon 3

Edge Vertex 1 & Vertex2

43

Neighbor 2

Polygon 2

J
Table 3- 6 data structure

After the map is completely loaded, the map information would be kept m

memory as the structure illustrated m Table 3-6

3.3.2 Preparing Path Prototype

With the loaded map information, the system is capable of building a path

prototype In order to increase pathfinding efficiency at runtime, Heunstic Path

Finding Method prepares a path prototype for every pan- of two different passable

areas that are accessible to each other, and stores them m the database When a

pathfinding request is received, the system retrieves the path within the corresponding

areas based on the starting and ending points, finally, it adjusts the path to fit the

current conditions When the passable area is properly divided, this process helps the

system cut down on task processing time without losing accuracy

Heunstic Path Fmding Method uses the A* algonthm to build a path prototype

One important attribute of the A* algonthm is that it evaluates the candidate pomts

based on the cost accumulated from the starting point and distance estimation from

this pomt to the destination When we said that "we are going to build path from

area-A to area-D", we do not have any specific location that could be called as "step",

we do not even have starting and ending pomts Without a specific location, we

cannot provide the pathfinding AI distance information, which the A* algonthm bases

its evaluation on

In order to make the A* algorithm work under ambiguous map information,

such as the passable areas used by our method, we have to create temporary reference

points and adjust it gradually to a better location, which allows the following

evaluation to benefit from (Figure 3-11 and 3-12)

We call a gradually changing reference point as "dynamic reference point"

Since the reference point would be changed anyway, we set the reference point as an

average vertex point which only needs a simple calculation (Table 3-7) and is always

within a passable area due to the attribute of convex polygon

Figure 3-11 Path built from fixed reference points

Figure 3-12 Path built from dynamic reference points

struct point {

int pX,

int pY,

} ,

pomt pVertexl, pVertex2, pVertex3, pVertexN,
PtTemp = (pVertexl + pVertex2 + pVertex3 + +pVertexN) / N,

Table 3- 7 Rule of average vertex location

Having a processed map and rule of reference pomt generation, Heuristic Path

Findmg Method is ready to build a path template We now use Figure 3-13 as an

example to illustrate how a dynamic reference point helps our method generate a path

template

Figure 3-13 is a map with 4 passable areas C, D, E and F Heuristic Path

Findmg Method is supposed to build area path CD, CE, CF, DE, DF and EF The

following steps show how our method builds the path template for CF

Figure 3-13 Sample game map

Step 1 The pathfinding AI generates reference pomts according to the rule in

Table 3-7 as the starting point in area C, denoted as Pstart, and the endmg pomt in

area F, denoted as Pend (Figure 3-14 (a))

46

Step 2 By looking at the relation list, the pathfinding AI establishes that area

C has 2 neighbor areas area D and E The AI puts both areas into an open list

according to the rule of the A* algonthm, and generates a reference point for each

area, denoted as PdTmp and PeTmp (Figure 3-14 (b))

Step 3 Heuristic Path Finding Method evaluates paths from Pstart to

PdTmp and PeTmp by A* algonthm The evaluation would suggest that PdTmp is

closer to Pend The AI sets area D as the next step and creates new reference point,

dTmp2, on the intersection of the path from Pstart to current PdTmp and the line

Edge_CD of polygon D (Figure 3-14 (c))

Step 4 The AI puts area C to close list according to the rule of the A*

algonthm By looking into the relation list, the AI establishes that area F is the only

neighbor to area D, which is still out of close list AI puts area F mto open list

Step 5 Knowing that the ending point is located in area F, the AI takes ending

point Pend as the reference pomt The AI has referenced a point before the path has

entered area D, Pstart m this case, and a reference pomt after the path has gone out

of area D, Pend in this case At last, the AI adjusts the reference pomt for area D to

its final location

Step 6 The AI builds a lme from Pstart to Pend as LmeCE and extends the

edge DLeft to DRight to infinite line, LineD The AI finds the intersection of LineD

and LineCE on PdTmpF (Figure 3-14 (d)) If PDTmpF is out of section DLeft and

LRight, the AI can use the closest vertex to replace it

Step 7 With reference point PdTmpF and Pend, the AI modifies the

reference point of area F to P_fTmp2 (Figure 3-14 (e))

Step 8 Area F is the final area The AI has routed a real path which starts from

Pstart, goes across P dTmpF, PfTmp2 to the ending point, P end The path template

is CDF The AI now stores the path template into database (Figure 3-14 (f))

Step 9 Path template CE was completed

(a) AI generates start and (b)AI generates reference (c)Reference point on

ending points points for area D and E area D is modified to the

intersection on edge

(d)The final reference (e)AI modifies reference (f) Path CF is completed

point of area D point of area F to P_fTmp2

Figure 3-14 path-finding steps

From this illustration we can see that reference point has been modified twice

and the final version is very close to the shortest path Correct reference point is

crucial for A* algorithm to build the information on the cost of an arbitrary point for

path evaluation At the phase of building path template, only area information is

48

stored in database Other information such as Pstart or PdTmpF, m this case, is

discarded

The area path is stored m the database under the schema illustrated on Table

3-8 and Table 3-9 Splitting data mto 2 parts shifts the sorting task from the game

system to the database system, which also prevents the game system from reversmg

the order Comparing with the other methods described earlier, our method takes more

time for preparation This would actually be intolerable if it were for one-time usage

However, smce our method is aimed for a massive request processing, the time used

for initialization will be redeemed gradually by the time saved during the runtime

phase in the overall time consumption

Id

idStart

idEnd

ldPath

Identity

ID of start shape

ID of endmg shape

Path identity

Table 3- 8 Map path description

Id

ldFind

ldPath

IdMesh

Identity

Order of path

Path identity

Shape identity

Table 3- 9 Single Path description

3.3.3 Processing the Pathfinding Request

When the game system starts to provide the hosting service, the pathfinding

request would be passed as a pair of starting and ending points The game system

identifies the corresponding areas and then queries a path from the database We

define a map as a list of vertex of a convex polygon This approach not only

guarantees that two different arbitrary points within the same passable area have

direct access to each other, but also simplifies the way to identify a pomt

49

Bemg a convex set, any of its interior angles must be less than 180 degree

Therefore, for any point withm it, the angle between the vector of one vertex to its

neighbonng vertex and a vector of same starting vertex to an arbitrary point within the

convex polygon must be less than the interior angle of the start vertex, illustrated on

Figure 3-15 (a) If one of these pomts meets this rule after checkmg through all the

vertexes of one convex polygon, its area location can be confirmed (Figure 3-15 (b))

Next vertex

(a) Angle of inner point to edge is smaller than vertex angle

(b) AI checking through all vertex angles to identify a inner point

Figure 3-15 Inner point identification

The database selects one path template from the prepared data according to its

starting and ending areas, and then it sends the path back to the game system m the

correct order Consequently, the game system will convert the path template mto a

50

real path by gradually modifying the reference points in the same way it builds a path

template without a pathfinding evaluation (Figure 3-16) If any 2 different areas have

no accessible path to each other, there would be no record in the database and the

game system is notified without wasting any time on the pathfinding process (Figure

3-17 and Table 3-10)

Figure 3-16 Two final path generated from same area path

m
Figure 3-17 Request that is not able to get a path template from the database

Start

A

A

A

A

B

B

B

C

C

D

End

B

C

D

E

C

D

E

D

E

E

Middle steps

B

BC

BCD

C

CD

D

Table 3-10 Path templates for Figure 3-16,17

From the entire pathfinding workflow, we can see that Heuristic Path Finding

Method greatly simplifies AI's work by shifting a major portion of the pathfinding

process from runtime to the preparation phase Effort spent at searching for a path and

maintaining the path information is not earned out by the game system, instead, it is

accomplished by the database system, which is an expert for this type of work

We can see that, Waypoint Method accelerates the A* grid method by

switchmg the focus from estimate calculation to map simplification, Navigation Mesh

Method for further simplifying the map by introducing the area concepts in passable

steps We further improves online pathfinding progress by converting the solo

pathfinding progress into a distributed structure such that a resource costly portion of

computations can be done off-line, the repetitive calculation of these computations

can be avoided Thereafter, by adopting our algorithm, not only the pathfinding

efficiency is improved but also the entire gaming system achieves a better

performance since the resources (time and memory) become predictable

The system resources used for initialization are relatively heavier than other

methods, but the workload is lighter at runtime Heuristic Path Finding Method is free

from complicated pathfinding with database support, its area of identification is

52

simplified by the map defimtion Heunstic Path Finding Method takes advantage of a

distributed structure, general functionality of operation system and charactenstics of

data types to meet massive pathfindmg requests mstantly

53

Chapter 4 Implementation details and subjects of

measurement

Pathfinding is not the most important AI functionality, but it helps computer

controlled objects to move similar to humans and make virtual world more vivid The

first requirement for a game system is being responsive to user input Accuracy of AI

is not a major issue but it still needs to respond correctly when the computer

controlled character faces the player

Heuristic Path Findmg Method targets the onlme game pathfinding

functionality As we mentioned in Chapter 1, onlme game provides service via

internet Comparing to console game, the number of concurrent users of online game

is hundreds if not thousand times more than that of console game, and the demands

for game functionality also expand greatly Having many players logging on to the

same virtual world, fairness and concurrency become important issues The virtual

world is not stationary, a game system does not have an infinite amount of time to

calculate for the best solution In order to resolve massive requests in a limited time,

game system can choose either adapting more well-designed algorithm or managing

system resource more efficiently Our method is the second category It breaks down

the workflow of pathfindmg process, and introduces database to assist management

In order to prove that our Heuristic Path Findmg Method has better

performance on massive pathfinding environment, we have built a testing system

which is able to perform all pathfindmg methods mentioned previously and generate

reports for performance analysis In this chapter, we will describe the

implementation of the testing system and subjects of measurement it focuses on

4.1 Introducing Database to Pathfinding Functionality

Database is introduced to the world by business model It is an excellent tool

in dealing with a huge amount of data Some of the main characteristics of a database

mclude the ability to analyze data by specified rules, create the best structure to hold

information, and specialize in selecting data efficiently

Database is constituted by four basic functionalities insert, update, select and

delete When a user inserts a row of data into a database, the database would first try

to find a proper location to store the data If no proper location is found, database

could expand current structure based on an efficient selecting process, build space to

allow further incoming data, and adjust the maximum size limitation accordingly

Functionality of deletmg data shares the same basic rules as insertion The only

difference lies in that database shrinks it structure accordmg to the rules mstead of

expandmg it Usually updating data will not cause changes to structure, since data size

and format are already defined when the table is created

The most useful functionality of database to pathfinding m a game setting is

selecting data Database selects the required data accordmg to query statements The

rules specified by the statements may be very complicated The need to perform

complex selection in a short time is the reason why a database should alter its

structure during the insertion and the deletion processes Database takes time to

optimize data structure whenever a change is required, which helps database to select

as efficiently as possible Heuristic Path Finding Method adapts to this attribute by

building all paths in the initialization phase and leaving path selection to runtime By

shifting time consuming work to the initialization phase, our method changes

pathfinding work into data selection in the runtime phase

55

Introducing new factor into existmg mechanism always requires additional

resources If usmg Heuristic Path Findmg Method comes with a cost, we need to

know clearly what the cost is for using this new feature, and how it can be mitigated

Onlme game host usually has at least one database to maintam user accounts

A game company always wants to gather user information as detailed as possible for

busmess analysis On the other hand, game map and path template are mostly defined

in a compact format for reasons we mentioned earlier m chapter 3 Comparing to user

information, pathfindmg data occupies relatively less space but provides essential

support for the game system Schema of path template is designed in a straightforward

manner for the database Selecting one path from a path template table does not

require complex functionality such as pattern recognition or data mining, which are

used in business analysis The workload that Heuristic Path Finding Method adds to

database is nothing when comparing to what it can achieve for game hostmg, such as

user account management

In the game world, player movement triggers AI pathfindmg requests

constantly Game system is responsible of processing the requests and adjustmg path

template to each path used in the game Therefore the game system decides the

number of connection to spare for database connection This means that our method

will not be allowed to carry out any unexpected connection or to impair the workflow

of game system As a result, while introducing database into pathfindmg functionality,

our method will not affect the original budget and performance It simply hands out

part of its work to database, and relies on the database's specialty to increase total

performance

56

4.2 Map Information Storage

Our testmg system contams four pathfinding methods A*gnd method,

Waypoint method, Navigation Mesh Method and Heuristic Path Fmding Method All

methods are implemented under the same A* algorithm and storage preference By

unifying pathfinding functionality, the testing system ensures that any performance

difference is caused only by the difference m the structure of the methods rather than

by any potential self-optimization of the functionality of each method Each method

has its own data structure to hold map information Here we will describe the

attributes of these data structure for each method and illustrate how it is implemented

in our testing system

When game application starts, player sees a virtual world illustrated or

descnbed on screen In the virtual environment, there might be grass, tiles, trees, walls,

buildings, etc Objects are not randomly put on the map, but by designers' will to give

soul to the virtual world However, to the pathfinding AI, every object only means

one of the two things passable location or non-passable location

Using A* grid method, one grid represents one step of movement Pathfinding

map could be set as a simple matrix to mimic coordinate system Objects which

occupy one or more grids on the map set flag on corresponding grids Game system

determines passable grid according to the flag on grid Table 4-1 illustrates how map

information is used The final path built by A* grid method is continuous points

linking the starting and the ending points

57

enum _e_object_id_

{

eObjectGrass = 0,

eObjectTile,

eDecorateStnp,

eDecorateCurtain,

eObstacleTree,

eObstacleWall,

},

unsigned int uiMapInfo[50][50],

uiMap[25][25] = eDecorateCurtani,

uiMap[23][25] = eObstacleTree,

location getNextPoint(location poGnd, location EndGnd)

{

location poCheck = poGnd,

location poNext = poGnd,

unsigned int iCost = MAX UNSIGNEDINT,

unsigned int iTempCost,

if (int idDirection = 0, idDirection < 8, idDirection++)

{

iTempCost = getCost(poCheck, EndGnd),

If(iCost>iTempCost)

{

poNext = poCheck,

iCost = iTempCost,

}
poCheck = poCheck + locationShiftfidDirection],

}
return poNext,

}
Table 4-1 Map data used by A* Grid Method

58

Figure 4-1 Paths built by waypoints

Waypoint method uses processed map information Map is described as a

series of waypoints with links to other waypoints (Figure 4-1) Every waypoint

represents passable location and every link represents accessible path Whenever a

request is sent in as a pair of starting and ending points, testing system finds the

closest waypoints to either point, and then Waypoint Method tries to find a path

between these two waypoints Table 4-2 illustrates the structure of map information

and how it is used The final path generated by Waypoint Method is a series of

waypoints, corresponding links, and straight path between waypoints and the starting

and ending points

59

class wpmap

{
Public $pLink, //neighbor array

}

class waypoint

{
protected $mapdata, // wpmap array

protected function getNeighborList (aWpData Spoltem, array &$lst = array())

{
$mapPoint = mapdata[$poItem],

while (hst($nbKey, $nbVal) = each($mapPoint->dLmk))

{
$pt = $this->stndToPomt($nbKey),

$wpfmd = new aWpData($pt),

$lst[] = $wpfind,

}
return count($lst),

}

}
Table 4- 2 Map data used by Waypoint Method

Navigation Mesh Method uses processed map as well Its map information

contains sets of convexes for passable areas to be described as convex polygons In

this regard, Heuristic Path Findmg Method is similar to the Navigation Mesh Method

in that it also uses area-based pathfinding estimation To avoid testmg system bemg m

favor of either the Navigation Mesh Method or our method, we use the same structure

as we described m chapter 3 for both methods Table 4-3 shows how map structure is

defined and used in the testmg system Whenever a request is sent to AJ, the AI

identifies areas where the starting and endmg points belong to Then the AJ builds a

path according to roughly created reference points and gradually modifies reference

points to a final path The process is similar to what is performed by Heuristic Path

Finding Method during the preparation phrase

60

class nmmapdata

{
public $lstVertex = array(),

public SlstNeighbor = array(),

}

class NaviMesh

{
protected $mapdata, // array of nmmapdata

protected function getNeighborList ($meshld, array &$lst = array())

{
SmeshData = $this->mapdata[$meshld],
while (hst($key, $val) = each($meshData->lstNeighbor))

{
if(isset($this->lstClose)

&& array_key_exists($key, $this->lstClose))

continue,

$lst[] = $key,

}
return count($lst),

}

}
Table 4- 3 Map data used by Navigation Mesh Method

Last but not least, our Heuristic Path Finding Method is a method that keeps

game map during runtime Its map is not used for pathfindmg at all, but for area

identification and path modification Details of our method are described in chapter 3

Heuristic Path Fmding Method does not use brand new map structure, but it

chooses the one that helps the AI to build better path in 2 phase process

4.3 Territory Type

Our testing system implemented four pathfindmg methods Only the A* Grid

method uses unprocessed map data It honestly reflects the shortcomings of a map,

61

such as redundant data stored on the map, which definitely affects performance of the

pathfinding Every type of processed data is altered based on a set of specific

problems that the process is designed to resolve These solutions in general are to

simplify complicated conditions or to skip repetition Waypoint method focuses on

accessible direction, Navigation Mesh method focuses on decreasing the number of

choices, Heuristic Path Finding Method focuses on saving system resource for

massive tasks processing No matter how a method tries to simplify source data, the

resulting path would inevitably be affected by the style of the map content Every

method has its pros and cons on different map types and this is what our testing

system trying to reveal Here we will discuss attributes of each map type which would

be used in the experiments

We define map type according to how obstacles are scattered around on a

map Taking a map with ten obstacles as an example, if obstacles cluster in the center,

which could be taken as one single obstacle, the map could be described as less

broken map (Figure 4-2) If obstacles spread evenly on the map, it is defined as highly

broken map (Figure 4-3)

Figure 4- 2 Less broken map

Figure 4- 3 Highly broken map

Upon this concept, we can define maps into four types

Spacious map

Figure 4- 4 Spacious map

If one map contains only a few number of obstacles or obstacles crowded

together, there is higher possibility for one object traveling through the map without

hitting an obstacle This kind of map is identified as spacious map (Figure 4-4)

Pathfinding method is not really necessary on this map type

63

Lightly obstructed map

•

Figure 4- 5 Lightly obstructed map

A map has obstacles spreading around evenly with a potential to break

accessible area into several small pieces of convex polygons, we define it as lightly

obstructed map (Figure 4-5) Accessible portion of this map type is still large, but

NPC need more indication from AI to avoid hitting obstacles

Complicated map

Figure 4- 6 Complicated map

64

Figure 4- 7 Waypoint map for complicate map

If a map has many obstacles which purposefully form paths that allow

travelers to pass through, we define it as complicated map (Figure 4-6) Though it

seems the obstacle here makes pathfmding work difficult, this map type has in fact

simplified the work if the map data is processed For example, if we process the map

to waypoint map, illustrated as Figure 4-7, we could see that there is only one path to

move object from PstartA to PendA, and there are only two directions for object on

PstartB to move to PendB by passing though either P re f l or P_re£2 Pathfmding

AI is necessary and beneficial for this map type because even though this type of map

is more complicated, it offers fewer choices in the available routes Hence, as soon as

the AI is able to determine the turning corners at each point, it will easily figure out

the best route

65

Broken area

Figure 4- 8 Broken area

Maps that match none of previous three conditions could be defined as broken

area (Figure 4-8) Processed map data of this type only reduce redundant checking,

but is of no help on simplifying pathfinding work

With the concept of map types, we now have a glimpse of what pathfinding AI

confronts In pursuit of large game environment and performance optimization, how

to maneuver pathfinding AI with scarce resource is what our method wants to

achieve

4.4 Memory Usage

Performance of game system does not rely on the speed of Central Processing

Unit (CPU) only, but also on data structure that stores constantly referenced static

data Memory is an important resource for game system Durmg runtime, memory

cache is more convenient than disk storage If game data is too large to be kept in

cache, game system has to save it in storage device Swapping data from storage

device to memory cache is a time consuming technique and would obviously slow

down system process This is what game system designers desperately want to avoid

Pathfinding work consumes memory, too There are three types of memory usage that

66

pathfinding method needs map data storage, runtime allocation and prepared

information

1) Map data storage

In the very first version, a map was defined almost identical to a coordmate

system, such as the map used by A* grid method The bigger the map size, the

larger memory usage required With the intention to enhance performance,

developers not only try to improve algonthm of pathfinding method, but also

simplify the map it uses Map information is constantly referenced to, and must

be kept m RAM (Random-accessed Memory)

2) Runtime allocation

In runtime, most methods need temporary allocated memory to store all

potential selections, so called "open list" in A* algonthm, and fully checked

selections, so called "close list", before the final decision is made The

temporary memory may become too large when consumed by temporary data,

which may cause memory swapping m runtime Open list is scanned repeatedly

whenever evaluation for the next step is needed This kind of memory usage is

crucial to performance but highly unpredictable

3) Prepared data

Only Heunstic Path Finding Method uses prepared data Prepared data is used

for assisting pathfinding AI Prepared data consumes system memory in keeping

its accessibility Referencing to the prepared data takes additional processing

time m runtime which is not necessary in other pathfinding methods Preventing

the prepared data from holding back system performance is therefore an

67

important task Designers should take this into account before employing

prepared data

Minimum usage of both runtime memory and static data is an ideal that

pathfinding methods should pursue If large-sized static data is inevitable,

minimizing memory usage for runtime allocation should have higher priority to

guarantee better performance

4.5 System Structure

In order to perform pathfinding task, there should be a map, a pair of starting

point and endmg point and specific pathfinding methods Heuristic Path Finding

Method requires additional database connection There are 3 other pathfinding

methods, A* gnd method, Waypomt method and Navigation Mesh method, to be

compared with our method The testmg system we use also implements tools such

as image decoder for A* gnd method and waypomt generator to simplify map

generation It also has record parser to translate result into analysis data

We created our system under the server-client structure Hypertext

Preprocessor (PHP) provides comprehensive basic utility Under Apache web host,

PHP core functionality is good at memory management, technique sorting and

database communication, which is good for us to concentrate on developing

pathfinding method We use BMP file as the source of map data Instead of usmg

PHP's external library to decode image files when executing pathfinding task, we

convert image files by our simplified external executable file to text file, which is the

format PHP excels at

68

4.6 Testing Structure

Heuristic Path Finding Method is a method derived from A* algorithm, and so

as the other three methods implemented in the testing system Our experiments focus

on the difference m output between each method By avoidmg difference in

charactenstics that all methods share in common, we wanted this testing system to

reveal the difference in performance affected by designed structure Here are

guidelines we followed when implementing the testing system

4.6.1 Hardware with medium capability

Hardware is an important element, together with operatmg system and

pathfinding methods, to affect the overall performance Also, the hardware determmes

the level of complexity in the available mathematical calculation for pathfinding work

A* grid method uses unprocessed map data, together with simple math calculation, to

resolve a pathfinding request, whereas the other three methods use the processed map

data with elaborate mathematical calculation One pathfinding task could be resolved

by either numerous simple calculations or fewer elaborate calculations When using

low-end hardware, difference in performance would be obvious especially when map

data is changing On the other hand, when using high-end hardware, changes in map

content may affect performance only slightly, or even unnoticeably Therefore, we

built our testing system based on medium-leveled hardware to make difference

significant

4.6.2 United version of A* algorithm

All methods, including Heuristic Path Finding Method, are based on A*

algorithm It is important to develop all methods under the same version of A*

algorithm There are existing open source codes for pathfinding methods available,

69

but each of them specializes in different aspects, such as data management, cache

technology or order evaluation To minimize the variation m core functionality, our

testmg system applies same technique at common functionality, such as sort, stack

and data dump, on all methods

4.6.3 Same pair of starting and ending points

Comparing pathfinding performance between two paths of different

complexities makes no sense The testing system generates and stores the same set of

testmg data for each map to be applied to all four methods Every method completes

all tasks and saves execution-related data as text file for performance analysis

4.6.4 Amount matters

We want a pathfinding method to be capable of fitting into the modern game

environment, which asks for immediate response in a highly interactive virtual world

It is an environment that is prone to trigger massive request in peak time Massive

amount of testmg is requested for our experiment In order to make difference in

performance significant, each method processes and completes all tasks in one setting,

and then another method does the same from beginning to end, rather than having

each method processing one task only, then alternates until all methods complete all

tasks

4.6.5 Diversity in map types

We expect each pathfinding method to have its own specialty in some map

types We provide maps of all types to ensure our expenments were not in favor of

any particular method A variety of map types ensures result of our expenments to be

neutral

70

4.7 Disadvantage of testing system

During the development of our testing system, we have encountered an issue

on Waypoint method, which was not able to be resolved fundamentally due to the

shortage of manpower at that time We have found a way to get around it, but the

solution has affected the experiment result in a certain way

When we were evaluating the testing result during development, we found that

the Waypoint method relies too much on the design of the pre-processed map It

needs different plotting strategies for different maps For example, waypoints cannot

be too loose in the spacious map, and Waypoint method would sometimes detour to a

longer path Waypoints cannot be too intensive, either Intensive waypoints cause

redundant checking The more links one waypoint has, the slower this method would

be

». 4 4 4 4 4 4 + 4

: : * : : : : :

fr444*+4+4

t > 4 4 - t + + 4 + 4
4 - 4 4 4 4 + 4 + 4

Figure 4- 9 Generated waypoints

Waypoint is not only for eliminating unnecessary checking, but also for ruling

out unnecessary selection At that time, we were in the process of deciding map

content We wanted each map used in the experiment to correctly represent the map

type it was supposed to be Whenever we made a change to map content, waypoints

would be reprocessed After several times of resetting, we finally used a tool to

generate grid like waypoint-set (Figure 4-9) This tool saved us a lot of tuning time for

plotting Waypoints, but was not smart enough to solve the design problem Here we

71

list the issues that we took into consideration when reviewing the output of the

Waypoint method

1) Pre-checking for starting and ending points

In our design, the system tries to identify the closest waypoints to the starting

and the ending points before pathfinding work begins There are chances that the

closest waypoint is not accessible to the requested points (Figure 4-10) Instead of

spending time on tuning reference nodes, the testing system used unprocessed map to

assist identification During runtime, the testing system checked each step along the

straight path between waypoints and the requested points to ensure that there are no

blocking areas in between This is a content design issue Loading time and memory

usage for path-checking should not be included as Waypoint Method's performance,

but there is no proper way to split them out of the performance result of Waypoint

Method Accessibility checking in runtime may slow the performance a little In our

analysis, we named each result of Waypoint with postfix NoCheck to denote the

accessibility checking was turned off

Figure 4-10 Closest node and valid node

72

2) Rounding total length

When we implemented the waypoint generating tool, we tried to minimize the

number of links for one point to reach others, because the processed map information

is supposed to reduce unnecessary checking But it ended up giving improper

selections to the pathfinding AI A waypoint can only choose points at the top, the

bottom, the left and the right of itself One of the advantages Waypoint Method has

over A* Grid Method is that linking direction for each waypomt is pre-designed, and

it help to make better decision from fewer selections Under current structure, moving

diagonally takes two steps to complete (Figure 4-11) In order to make the final path

length closer to human design, we assumed that there were half chances for one step

to move diagonally, therefore we estimated a realistic path length to be 80% of the

final length (Figure 4-12) The estimated value is denoted as "Rounded" in

experiment result

ffl

Figure 4-11 Diagonal movement

ra-ra
Rounded Percentage

((0 5 *1) + (0 5 *)) / ((0 5 * 1) + (0 5 * 2)) = 80%
Figure 4-12 Function of Rounded percentage

Although rounded value and the assumption it based upon may not seem

accurate, we do not consider Waypoint Method experiment as failed When trying to

73

plot suitable waypoints, we found that density is a major issue for this method If the

density of waypoints is too low, path length would be doubled In contrast, time spent

for pathfinding may extend if density is too high (Figure 4-13, 4-14) Our waypoint

generation tool was able to cope with density issue Comparing to density,

disadvantage in direction only affects performance in a minor way and the rounded

value could help to adjust it The length of the final path that could be rounded to a

more realistic value by the rule we made is shown in Figure 4-12

Figure 4-13 Too few waypoints

Figure 4-14 Too many selections

74

Chapter 5 The Experiments

This chapter describes the experiments we designed, discusses the testing

results and analyzes the outcomes For each expenment, we will explam the reason of

the design, as well as the assumption and the expectations we have If the result is

different from our expectation, further analysis will be specified A pathfinding report

is also constructed containing three major columns method name, length m total and

time spent Experiments that used maps other than spacious map, specifically the

prepared maps, will have a fourth column showing the loading time

The first column describes which method generated this record "A-star gnd"

represents A* Gnd Method "Waypoint" represents Waypoint Method Postfix of

waypoint title in numenc format denotes the honzontal and vertical space between

two waypoints The postfix "NoCheck" denotes this execution skipped checking of

accessibility which is descnbed in Chapter 4-7 "Navigation Mesh" represents

Navigation Mesh Method And "Heuristic" represents our method Heunstic Path

Finding Method

The second column, "length in total", shows the sum of the path lengths for all

resolved tasks For Waypoint Method, there is a second record noted as "rounded"

which is the adjusted value due to the defect of Waypoint generating tool This issue

was descnbed in Chapter 4-7 The third column, "time spent", shows the length of

time each method took to resolve all tasks The fourth column, "loading time",

represents the length of time the game system took to load prepared data We do not

have this record for spacious map because the time is immaterial to have meaning on

its difference

5.1 Performance on Simple Map

The simplest map is the spacious map type Object travelling across this map

type rarely runs into an obstacle Almost all direction is correct, every step is valid

Pathfinding method has very few selections to choose from, if any Result of this

expenment should reveal how long a method needs to build a path when every

decision is correct We expect this expenment to give us a preview of all implemented

methods With this basic concept, we can adjust upcoming tests and correspondmg

assumption to be more realistic

Expectation of this expenment is that A* Gnd method would get the shortest

final path, but longest procession time, whereas Heuristic Path Finding Method would

get the shortest processing time

Preparation

We have designed a map of size 250 * 250 with one blocking area on the map

(Figure 5-1) We divided the map into five passable areas for area-based methods

(Figure 5-2) For Waypoint Method, reference nodes are generated based on different

densities We generated 2000 sets of testing data for this expenment

Figure 5-1 Testing map

76

Figure 5- 2 Area map for 1st experiment

Result

Method name

A-Star Grid

Waypoint 50

Waypoint_40

Waypoint_30

Waypoint_20

WaypointlO

Navigation Mesh

Heuristic

Length in total (pixels)

279097 87

395471 513

(Rounded 316377 210)

383775 036

(Rounded 307020 029)

373674 116

(Rounded 298939 293)

361022 793

(Rounded 288818 234)

348798 283

(Rounded 279038 626)

264847 510

266564 490

Time spent (sec)

1702 92

16 32

21 85

34 53

79 34

480 97

4 14

4 15

Table 5-1 Result of first experiment

Analysis

For the very first time, we tried manually designing Waypoint reference nodes

for this experiment (Figure 5-3), but the resulting path length ended up as 2 5 times

longer than the shortest path generated by other methods This forced us to use

generated nodes with spreading distance of 50 pixels Even when we tested this new

77

waypoint set, total length is still a lot longer than that generated by other methods

Therefore we have decided to generate several sets of reference nodes in different

densities and choose a comparable one to be representative (Figure 5-4)

1̂ 1
Figure 5- 3 Manually designed nodes

* 4 4 4 + + 4 4 - 4

' * P
* * 4 P * * * * +• -t

1 - 4 4 4 4 + 4 4 - 4

» 4 4 4 4 + 4 4 - 4

Figure 5- 4 Generated nodes of Waypoint map

We already know that the total number of waypoints on a map affects the

performance of Waypoint method Choosing a representative at this early stage of the

test is difficult In fact, it was chosen after all the experiments were completed We

finally set a limit on total length for Waypoint, the total length should not be greater

than 130% of the longest length generated by other methods Since our waypomt

generating tool could not generate waypoints as sophisticated as a human could, we

accepted Waypoint Method generated path that is less accurate in order to reduce time

78

spent on pathfinding We chose the waypoint_30 which was generally accepted in

other experiment as representative Selected results show the following

Method

A-Star Grid

Waypoint_30

Navigation Mesh

Heuristic

Length in total (pixel)

279097 87

373674 116

(Rounded 298939 293)

264847 510

266564 490

Time spent (sec)

1702 92

34 53

4 14

4 15

Table 5- 2 Selected result for first experiment

From this result, we found that A-Star Grid method did not have the shortest

total length By analyzing its data structure, we found that the paths of this method are

fixed on 8 directions If targeted-point is not right on any of those direction, "A* Grid

Method" detours object to longer path The other attribute is that A* Grid Method

checks all directions even when some of them are not accessible In contrast, methods

using processed map have fewer but more effective selections when choosmg each

next step By reviewing the Waypomt Method, we know that it is a pomt-based

method, similar to the A* Grid Method However, since the Waypomt Method uses

processed map, it spent a lot less time in completing all tasks when companng to the

A* Grid Method

It seems that the Navigation Mesh method performed better than Heuristic

Path Finding Method slightly We found that our method did not have advantage on

time efficiency even when it is supported by a database The possible reason is that

the map is too simple and the pathfinding procedure did not take much time m

choosing accessible area There is insignificant difference in total length between

these two area-based methods When checking the generated paths, we found that it

was caused by path prototype which is generated based on presumed center location

upon each passable area We will describe this further at the end of this chapter

79

Conclusion

With a simple map, area-based methods performed much better than

point-based methods, but it is not the type that our method is best suited for In

addition, for Waypomt methods, we needed to prepare different set of waypoints to

reveal the choice for best performance and rules to tolerate its defects m design

5.2 Performance over Maps Different in Size

This experiment is to demonstrate how the size of the map affects the

performance of pathfinding methods We provided two maps of the same structure but

different in size for the test We assumed that since point-based methods resolve tasks

according to real map data while the area-based methods simplify tasks into a

description of shapes The change in size should affect pomt-based pathfinding

methods only

Preparation

The map used in previous experiment was taken as the first map for this

experiment We then expanded this first map to four times larger in width and in

height, and made it as the second map Therefore, we have two maps with the same

design, but of size 250 * 250 and 1000 * 1000 respectively for testing

As we know that processed map with waypoints situated 30 pixels apart from

each other in distance, in both horizontal and vertical direction, was sufficient to

generate acceptable length of path, we have created for the second map another set of

waypoints with 120 pixels apart m distance, denoted as Waypoint_120 The number

of waypoints on the first map with waypomt set of Waypoint_30 and the number of

waypoints on the second map with waypomt set of Waypoint_120 are the same Also,

the density of the waypomt set of Waypoint_30 on the first and the second maps are

80

the same Density is important on a waypoint map In this expenment, we also wanted

to figure out whether the same number of waypomts, or the same level of density, in

two maps that differ in sizes, would achieve the same final resulting path in the two

maps by using the Waypomt Method

While the sizes of the map differ, we keep the shapes of the areas intact The

number of passable shapes and blocking areas are also the same on both maps

Result

Method name

A-Star Grid

Waypomt_30

Waypoint_30_No_Check

Navigation Mesh

Heuristic

Length in total (pixel)

143613 26

147687 436

147804 903

133821 463

134682 360

Time spent (sec)

686 93

16 68

1148

4 41

4 33

Table 5- 3 Result of first map of second experiment

Method name

A-Star Grid

Waypoint_30

Waypoint_30

No check

Waypoint_120

Waypoint_120

No check

Navigation Mesh

Heuristic

Length in total (pixel)

550411 114

692857 908

692856 678

751701 005

753483 978

531761 404

535521 783

Time spending (sec)

24262 60

586 94

450 07

29 25

10 90

4 22

4 26

Table 5- 4 Result of second map of second experiment

Analysis

Our original testmg requests 2000 paths Smce the size of map greatly affects

the performance of A-Star Grid Method, we have lowered the number of testing

requests to half of original requests, which means 1000 paths in total only Time spent

81

by A-Star Gnd method to complete testing on the second map is 35 times longer than

that for the first map

For Waypoint method, we expected that time spent for Waypoint_30 on the

first map to be similar to that spent for Waypoint_120 on the second map, smce they

both have the same number of reference nodes To our surprise, Waypoint_120

consumed more than 175% times of processmg time to complete the same number of

tasks By analyzing the structure of our testmg system, we found the search of the

closest waypoints was the cause There are other sets of testing result with postfix

NoCheck which disabled accessibility checking Comparing with NoCheck

records, processing time spent on the first map, (Waypoint_30 No check,) and that on

the second map, (Waypoint_120 No check,) are very close, but we could not

guarantee that the path is accurate, for the reason mentioned in Chapter 4-7

In comparing the result of total length, the length for Waypoint_30 on the first

map is within 111% times of the shortest path length, but 141% times of the shortest

length for Waypoint_120 on second map Even when we increased the number of

reference nodes by using Waypoint_30 on the second map, the total length is still

130% times more than that of the shortest length This means that the size of the map

does affect the effectiveness of pathfinding for Waypoint methods

Time spent by the Navigation Mesh method and the Heuristic Pathfinding

method on both maps are similar The difference is probably caused by the different

location of testmg points Area-based pathfinding methods have the best performance

as usual

82

Conclusion

The size of map does impact pomt-based pathfinding methods Though

Waypoint method does not really use map data directly, the map size forces it to

introduce even more waypoints in order to get proper accuracy

5.3 Performance over Maps Different in Number of Passable Areas

The previous experiment proved that the size of map is not the differentiating

factor distinguishing Heuristic Path Fmding Method and Navigation Mesh method,

while it has impact on pomt-based methods We assumed that this is because

area-based methods search path accordmg to the setting of passable area In other

word, instead of the real data of the map, the number of convex polygons will affect

the performance of area-based pathfinding methods According to our hypothesis,

with the support of a database, our method should perform better than the Navigation

Mesh method m conditions that require more decisions to be made in processing

pathfinding tasks To test this out, we have designed a set of tests with maps different

in structure and mcrease in complexity, to prove our method works the best in

complicated maps,

Preparation

We have prepared three maps of the same size, 250 * 250, for testing The first

one has three blocking areas and eight passable ones The second map has six

blocking areas and sixteen passable ones The third map has nine blocking areas and

twenty-four passable areas (Figure 5-5, 6 and 7) For Waypoint method, as it

performed well with reference nodes spread 30 pixels apart, we applied the same

setting for this experiment, denoted as Waypoint_30 2000 pairs of testmg points were

generated separately for each map

83

Figure 5- 5 Map with 8 passable areas

10

11 \ 12 14 15
13

Figure 5- 6 Map with 16 passable areas

i ; 2

j x
10

\ 1 2 /
11 V - / 1 3

^ 14 j\5

I y 16 /
/ 17

19 / ^ C -
^ 2 1

Figure 5- 7 Map with 24 passable areas

Result

1st map

A-Star Gnd

Waypoint_30

Navigation Mesh

Heuristic

Loading time

0 027540

0 032246

2 475555

Length m total (pixel)

326223 478

413958 696

(rounded 331166 957)

309288 714

309205 525

Time spent (sec)

9267 414

31392

10 547

10 847

Table 5- 5 Result of first map for experiment 5-3

2nd map

A-Star Grid

Waypoint_30

Navigation Mesh

Heuristic

Loadmg time

0 018263

0 060433

2 318125

Length m total (pixel)

335569 048

424859 793

(Rounded 339887 834)

319688 349

323713 448

Time spent (sec)

12947 092

28 918

18 128

16 040

Table 5- 6 Result of second map for experiment 5-3

3rd map

A-Star Grid

Waypoint_30

Navigation Mesh

Heuristic

Loading time

0 020889

0104791

7 402034

Length m total (pixel)

337743 504

422145 153

(Rounded 337716 123)

320305 282

313578 203

Time spent (sec)

17298 147

29 060

27 014

21780

Table 5- 7 Result of third map for experiment 5-3

Analysis

Map ID

1st map

2nd map

3 map

Number of links

76

68

76

Table 5-8 Number of waypoint links on each map for experiment

Observing the result, we learned that with the increasing complexity of the

map structure, the time spent by most methods for pathfinding have increased, but the

Waypoint methods was an exception We found that Waypoint method spent less time

on the second map which has six blocking area, companng to the time spent on the

85

first map The time spent on the third map is longer than that on the second map, but

still shorter than that on the first map Comparing the result in total length, rounded

length on the first map is 101 5% longer than the shortest result generated by the other

methods, length on second map is 101 3% longer than shortest result, and length on

third map is almost the same length as the shortest result There is not much

difference on path effectiveness between the three results

Now let's take a closer look at the number of links between the waypoints

The number of links for the first map and the third map are the same, but the time

spent on the third map is shorter than that on the first map This shows that Waypoint

method works better on map with more blocking areas, and the way that waypoints

are plotted produce greater impact than the structure of the map content

By analyzing the result of Heuristic Path Findmg Method and Navigation

Mesh method, we found that the number of passable areas obviously affected the time

spent on pathfinding for area-based methods Time spent by our method to prepare

data and to execute pathfinding tasks increased as the map structure gets more

complicated The condition is the same for Navigation Mesh method, but the increase

in time spent is more than that of our method, although the difference of total length

between these two methods is not significant

In conclusion, the complexity of the map structure seems to have a reasonable

amount of influence over the Waypoint method in particular, as well, it impedes the

overall performance of area-based performance According to the result, Heuristic

Path Findmg Method has better performance comparing to A-Star Gnd and

Navigation Mesh Although it takes longer for our method to prepare area paths, the

time spent for preparation can soon be redeemed when the amount of tasks performed

is sufficiently large Comparing our method with the Waypomt method, it is

86

ambiguous which one gets most benefits from increasmg the complexity of map

structure

5.4 Performance over Maps of Different Style

In our assumption, we expected Waypoint method to have better performance

with complicated map, and the same for our Heuristic Path Findmg Method Heuristic

Path Finding Method targets on large sized map with massive requests of pathfinding

job, which is suitable for the condition of online game server We wanted to know if

our method has better performance than Waypoint method, and how much better

Preparation

Accordmg to our definition of "complicated map", there are fewer choices for

one pomt to reach destination due to the style of map We designed two maps m

different styles for this experiment One has blocking areas setting similar to a maze,

while the other spreads blocking areas randomly Both maps have same number of

passable areas and are the same size to minimize the potential disadvantage for either

area-based methods or pomt-based methods (Figure 5-8, 9) We have also created the

other set of maps four times larger m width and height for testmg, since our method is

expected to have better performance on large-sized map

From experiment 5-2, we already know that A-Star Grid method is not

competitive on large sized map, hence we have excluded it from this experiment For

Waypoint method, we know that path checking affects the total time spent on

pathfinding procedure, therefore we tested the method under both pre-check and

no-check conditions on large-sized maps Then we went on to get the range of time it

needed to complete pathfinding tasks

87

Figure 5- 8 Complicate map

Figure 5- 9 Random map

88

Result

Waypoint_30

Waypoint_14

WaypointPlan

Navigation Mesh

Heuristic

Loading time

0006858

0 021967

0 046915

0 205142

59 246823

Length in total (pixel)

715234 421

(Rounded 572187 537)

560692 137

(Rounded 448553 710)

567626 052

448676 985

450705 093

Time spent

(sec)

28 136

139 038

24188

70 683

47 427

Table 5- 9 Result of Complicate map for expenment 5-4

Waypoint_30

Waypoint_14

Navigation Mesh

Heuristic

Loading time

0020342

0 022197

0 219754

48 094717

Length in total (pixel)

417744 605

(Rounded 334195 684)

359095 704

(Rounded 287276 564)

270937 143

271165 358

Time spent

(sec)

25 043

106 722

58 119

46 926

Table 5-10 Result of Random map for expenment 5-4

Complicate map

(Large)

Waypoint_30

Waypoint_30_No_

check

Navigation Mesh

Heuristic

Loading time

0124941

0 075602

1 299509

69 591744

Length m total (pixel)

2169147 194

(Rounded 1735317 756)

2168347 208

(Rounded 1734677 766)

1722141 686

1720703 606

Time spent (sec)

1241 953

1025 128

75 229

69 592

Table 5-11 Result of Enlarged Complicate map for expenment 5-4

89

Random map

(Large)

Waypoint_30

Waypoint_30_No_

check

Navigation Mesh

Heuristic

Loading time

0218128

0 086802

0 234787

48 348284

Length in total (pixel)

1388172 086

(Rounded 1110537 669)

1388175 473

(Rounded 1110540 379)

1106868 213

1098376 210

Time spent (sec)

847 409

738 894

57 971

47 914

Table 5-12 Result of Enlarged Random map for experiment 5-4

Analysis

During our experiment, we found that Waypoint_30 did not meet the

requirement for length After looking into the waypoints, we found that links to the

generated nodes were broken (Figure 5-10) Waypoint set with 14 pixels apart from

each other, which is denoted as Waypoint_14, were generated and taken as

representative of Waypoint method With new waypomt set, Waypoint Method was

not as competitive as area-based methods m terms of time spent

Waypoint30

Waypoint 14

Waypomt plan

Number of links

51

283

57

Table 5-13 Number of waypoints on each map for experiment 5-4

There is another set of waypoints created manually for testing, shown in

Figure 5-11 We found that performance by the planned waypoints is satisfactory and

total distance is within requirement The number of links for Waypoint_30,

Waypoint_14 and Waypoint Plan are listed in Table 5-13 From this test we learned

that the waypoints affect the performance of Waypoint Method by the way they were

plotted

90

Figure 5-10 Generated waypoint may not able to link up adjacent points

Figure 5-11 Manual design simplified waypoint map

Observing the result of small sized maps while excluding the result of

Waypoint Plan, we found that both Waypoint methods and Navigation Mesh methods

had worse performance on complicated map than on random map In the contrary,

map style does not have obvious influence on Heuristic Path Finding Method during

91

pathfindmg process, but does affect its time for preparing area path Companng this

with the result of expenment 5-4, it seems that the performance of our methods is

mainly affected by the number of passable areas, other attributes such as size and

style have insignificant influence on its performance

Companng the result of small-sized maps with that of large-sized maps,

Waypomt method performs worse on large-sized maps, as shown in the result of

expenment 5-3 Our method had the best efficiency on all maps tested in this

expenment In conclusion, though Navigation Mesh methods and Heunstic Path

Finding Method has comparable performance in total distance, our method has

excellent performance on complicated map while the other area-based methods were

undermined by the increased complexity in map types

5.5 Analysis over Memory Usage

Memory usage includes map data, prepared data and runtime allocation The

first two are predictable as developers can design buffenng technique to eliminate its

impact on game system The last one is unpredictable and may cause serious impact

in runtime In this expenment, we reveal how memory is consumed dunng the

pathfindmg process We know that if the map type is too simple or if the path is too

short, there is likely no pathfindmg search required in some pathfindmg methods

Therefore we decided to run this experiment on complicated map type with a path go

across it

We picked one representative path to run our experiment We used the

complicate map of size 250x250 which was used in expenment 5-4 test, (Figure 5-8)

and picked one randomly generated request, pomt (1, 77) to (209, 247), as

representative to run memory logging process We used manually designed waypomt

92

map (Figure 5-11) for Waypoint Method, as it has reasonable plotting strategy The

results are shown as follows

Used for

loading Map

file*

Used by

processed map
*

Used to record

prepared path
**

Maximum size

of open list

Maximum size

of close list

Number of

steps

Memory

allocated in

runtime *

Total memory

used in testmg

system *

Total memory

usage

A Start Grid

8000 Bytes

(7% in total)

14467 Bytes

(629 structs)

91839 Bytes

(3993 structs)

2448 Bytes

(306 points)

108,754 Bytes

(93% in total)

116,754 Bytes

116,754 Bytes

Waypoint

1784 Bytes

(52 points and

114 links)

(70% in total)

207 Bytes

(9 structs)

437 Bytes

(19 structs)

104 Bytes

(13 points)

748 Bytes

(30% in total)

2,532 Bytes

2,532 Bytes

Navigation

Mesh

3188 Bytes

(51 shapes,

264 vertexes,

109 neighbors)

(93% in total)

80 Bytes

(5 structs)

80 Bytes

(5 structs)

88 Bytes

(11 points)

248 Bytes

(7% in total)

3,436 Bytes

3,436 Bytes

Heuristic

3188 Bytes

(51 shapes,

264 vertexes,

109 neighbors)

(97% in

testing system,

2% in total)

140976 Bytes

(10473 notes,

1275 paths)

(0% in testing

system, 98%

in total)

88 Bytes

(11 pomts)

88 Bytes

(3% in testing

system,

0 0006% in

total)

3,276 Bytes

144,252 Bytes

Table 5-14 Sample of memory usage of one path on complicate map (Figure 5-8)

93

* Memory usage was allocated in testing system

* * Memory usage was allocated in database system

From Table 5-14, we can see that the total amount of memory used by

Heuristic Path Fmdmg Method is relatively large comparmg to other methods, but

most of it was located m database The amount of memory allocated in runtime is the

least among all, this saves the engme from spending effort on maintaining memory A

Star Grid method dynamically allocated huge amount of memory m runtime In

general condition, this sometimes causes memory swapping that triggers even longer

delays on overall performance of the game system

Memory allocated for open list and close list is used by A* algorithm when

performing pathfinding tasks Both may dramatically increase due to the complexity

of map content and path Waypoint Method allocated larger memory during

pathfinding but required less total memory usage than Navigation Mesh Method,

because, on this particular map, processed map data used by Waypomt Method was a

lot less than that used by Navigation Mesh Method As we know that map size

undermines the accuracy of Waypoint Method since more waypoints are needed in

large-sized map As a result, when this experiment runs on a large map, memory

usage by processed map could be very different from the result of this particular

experiment

This is a memory log of one pathfinding task For massive pathfinding

requests, memory allocated in runtime for A Star Grid method would clearly exceed

the memory usage of other methods, and hence probably not allow other tasks to be

performed smoothly On the other hand, our method uses relatively less resource in

the testing system and has high possibility of completing its own task without

delaying other threads, such as keepmg up frame rate and processing user input

Among all the methods, Heuristic Path Finding Method occupies the least testing

94

memory usage in the testing system, our method is the most resource friendly to game

system

5.6 Analysis of A* Algorithm Detouring

A* algorithm is a directional pathfinding theory It is supposed to build the

shortest path in the shortest time by avoiding unnecessary checking without

compromising in accuracy on a grid-like map But when an adjacent step extends to

linked step, such as waypoint in Waypoint method, or extends to an adjacent area,

such as passable area in Heuristic Path Finding Method, accuracy of A* algorithm

drops Figure 5-12 illustrates this defect by a Waypoint map When A* algorithm tries

to build path from Pstart to Pend, it chooses path above the obstacle When AI

checks adjacent points of Pstart, It would always select point Rl 2 The crucial point

Runused, which could end the pathfinding process even more quickly and correctly,

would never be selected due to the directional characteristic of A* algorithm

Rl 2^

li
P staiYM

0
Rl_l

R_unused

P end

Figure 5-12 Defect of A* algorithm in processed map

AI does not have infinite time to pursue the best solution Heuristic Path

Finding Method breaks pathfinding work into two phases This not only increases the

ability of instant response in runtime, but provides more potential options for AI to

95

choose from The second attnbute, potential option, is not implemented in the testmg

system We will describe it briefly in Chapter 6, the Conclusion and Further Research

5.7 Analysis of Why Heuristic Path Finding Method Got Detoured

When we analyzed the testing result, we found that Heuristic Path Finding

Method sometimes built longer path than Navigation Mesh Method They both were

defined under the same map information and shared the same path-refined technique

The only difference in building path is that Heuristic Path Finding Method used

presumed starting and ending pomts and applied path template to requested points,

whereas the Navigation Mesh build a path accordmg to requested points directly

Here we describe how terminal points make a difference

In the preparation phase, Heuristic Path Finding Method tried to mimic the

starting and endmg pomts to meet general requests by setting them to average

convexes location However, under certain conditions, presumed terminal points are

not convincing Take Figure 5-13 as an example, when Heuristic Path Fmding

Method tries to build path template for area-A to area-B, it always builds the path as

Figure 5-13 (a) Dunng runtime, if there is a request from Ps to Pe, our method

applies path template to these two points and builds a path shown on Figure 5-13 (b)

But Navigation Mesh Method could correctly build a path shown on Figure 5-13 (c)

96

path prepared for area

(a) Path build without area path

Figure 5-13 Path detoured by Heuristic Path Finding Method

97

This detour under Heuristic Path Finding Method would be obvious when

there is relatively large passable area on the map and there comes a request where

terminal points are very close to the edge After figuring out the cause of this

condition, we found that there is potential solution to resolve this problem

Adjacent areas

Area

A

D

Neighbor areas

B, D

C,D

(a) List all adjacent areas

Eliminate improper paths

Template

BC

BD

DC

DD

Path detail

BC

BAD

DABC

D

Reason of being eliminated

Eliminated Path route back to starting area

Eliminated Path route back to starting area

(b) Evaluate path template selected for neighbor areas

98

A C

path

D

(c) Build candidate paths

Figure 5-14 Additional process to fix Heuristic Path Finding Method's defect

If Heuristic Path Finding Method is able to locate the neighboring area of the

starting and ending points (Figure 5-14 (a)), determine all the path templates

surrounding both points (Figure 5-14(b)), and calculate the distance between the two

points of each path template (Figure 5-14(c)), it would be able to derive a path just as

correct, or even better, than the Navigation Mesh Method This is because using path

templates gives pathfindmg method more selections, which is omitted by the A*

algorithm This is described in Chapter 4-2 Map information storage

This idea was not implemented in our testing system The first reason is that

we realized this issue too late and it would require major change to the current system

The second reason is that because we needed to run test over A* grid method, we

needed to use small-sized map in case this method is not able to complete pathfinding

task on large map However, area-based method does not work well on small-sized

map If we implemented path selection to our method, all the experiment would be

unfair to our testing method because it would need to prepare relatively more

information for small areas, which only produce relatively minor difference on path

length

99

path ABCE

Chapter 6 Conclusion

6.1 Summary

We have introduced database into our Heuristic Path-Finding Method and

used a testing system to test the method to reveal how the system performance was

improved by shifting memory usage and management to database We have also

discussed the method m details and analyzed the concept of how our method works

and why it is better than other methods Finally, we have created a testmg system to

prove our assumption about the performance of our method is correct

Based on our experiments, we found that Heuristic Path-Finding Method costs

the least system resources on processing massive pathfinding tasks on large-sized

maps with medium to high level of complexity This pathfinding method's

performance improves in a consistent manner as the number of areas increased on a

map, regardless of the map category Although at current stage of implementation, our

method sometimes builds a path longer than the Navigation Mesh Method does in

certain situations, it can easily be seen that such weakness can be avoided by simply

searching a few more paths surrounding both points as shown in Chapter 5-7

Navigation Mesh Method guarantees a faster pathfinding progress comparing to

Waypoing Method and A* Gnd Method, because it has smaller searching space But

Navigation Mesh Method does not provide a predictable time and memory usage

which is one of the features of our Heuristic Pathfinding Method Most of online

games in the market are still using Waypoint Method, since it is generally understood

that Navigation Mesh Method does not have a significant advantage over Waypomt

Method Therefore, there is enough reason to believe that, it will be attractive enough

for gaming industry to move toward the predictable method, Heunstic Pathfindmg,

directly from the unpredictable method, Waypoint Method

Waypoint method may outrun our method on complicated maps, but plotting

waypoints is quite challenging, which definitely impact the performance of Waypoint

Method Heunstic Path-Finding Method requires time to build path templates and

communicate with the database, both of these slow down the processing time

However, the multiple path templates produced by our method in the preparation

phase allow it to save time by changing pathfindmg work to data selection at runtime

On the contrary, other methods will need to run their pathfindmg process

contmuously

Since our targeted system is the online game server, resource used on a single

task should be limited whenever possible Our method is proved to use steady amount

of resource and require relatively less memory mamtenance for performing massive

pathfindmg tasks Hence, the charactenstics of our Heunstic Path Findmg Method

include bemg system resource friendly on modern technology, communicating

effectively in the highly interactive online environment, and processing efficiently

massive requests

6.2 Further Research

We have proved Heunstic Path Finding method out-performed other methods

but there are still issues that should be addressed for further research As we know, for

area-based methods, when locatmg the areas a particular point belongs to, pathfindmg

tool would scan all edges of all shapes on a map until successfully findmg an

appropnate area It would be more efficient to keep a map in memory with gnd

101

information addressmg mesh ID This solution consumes system memory but is stable

and could greatly boost the efficiency of locatmg starting and endmg pomts

The other issue is the potential path options, which we have addressed m

Chapter 5-6 Giving our method more path selection could lead to better path within

shorter time, companng to the Navigation Mesh Method We would need further

improvement on the testmg system to prove this assumption

102

Reference

Tim Parker, Mark A Sportack 2000 TCP/IP Unleashed, 2nd edition Indianapolis,

IN, USA SAMS Publishing P 234

FIRST Robotics Competition [Internet] [updated 2010 June 14] Manchester, NH,

USA FIRST Available from http //www usfirst org/Default aspx

Global Positioning System [Internet] [updated 2010 July 12] Washington, D C ,NW,

USA National Executive Committee for Space-Based PNT Available from

http //www gps gov/

Jigsaw365 [Internet] [updated 2010 Aug 12] Chapel Hill, NC, USA Playtonium

Available from http //www playtonium com/)igsaw365/

Luxor 3 [Internet] [updated 2010 Aug 12] Vancouver, BC, Canada Big Fish Games,

Inc Available from

http //www bigfishgames com/download-games/2207/luxor-3/index html

The Mirror Mysteries [Internet] [updated 2010 Aug 12] Vancouver, BC, Canada

Big Fish Games, Inc Available from

http //www bigfishgames com/download-games/6964/mirror-mystenes/mdex ht
ml

The Bank of Jasper [Internet] [updated 2010 Aug 12] Flashgames247 com

Available from http //www fldshgames247 iom/pky/11262 html

Cake Shop 2 [Internet] [updated 2010 Aug 12] Vancouver, BC, Canada Big Fish

Games, Inc Available from

http //www bigfishgames com/download-games/6645/cake-shop-2/index html

Go-Go Gourmet [Internet] [updated 2010 Aug 12] Vancouver, BC, Canada Big Fish

Games, Inc Available from

http /;/www bigfishgames com/download-games/2696/go-go-gourmet/mdex htm
I

The Sims 2 [Internet] [updated 2010 Aug 12] Redwood City, CA,USA Electronic

Arts Inc Available from http //thesims2 ea com/

Neverwinter Nights [Internet]

Developer [updated 2010 Aug 12] Edmonton, AB, Canada Bio Ware

Available from http //mvn bioware com/

Image source [updated 2009 Jun 9] San Francisco, CA,USA CBS Interactive,

Inc Gamespot Available from

http //www gamespot com/pc/rpg/neverwintermghts/index html

103

Age of Empire 3 [Internet]
Developer [updated 2010 Aug 12] Redmond, WA, USA Microsoft Game
Studios Available from http //www ageofempires3 com/
Image source [updated 2009 Jun 9] San Francisco, CA, USA CBS Interactive,
Inc Gamespot Available from
http //www gamespot com/pc/strategv/ageofempiresin/index html

World of Warcraft [Internet]

Developer [updated 2010 Jul 23] Irvine, CA, USA Blizzard Entertainment

Available from http //www worldofwaicraft com/

Lineage 2 [Internet]

Developer [updated 2010 Aug 12] Seoul, South Korea NCSoft Available

from http //www hneage2 com/

Image source [updated 2010 Feb 10] San Francisco, CA, USA CBS

Interactive, Inc Gamespot Available from

http //www gamespot com/pc/rpg/lmeage2tliechaoticchronicle/index html

Hart,P E , Nilsson,N J and Raphael,B , "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths" IEEE Transactions on Systems Science

and Cybernetics, 1968, vol 4, no 2 100-107

Dragon Warrior III [Internet]

Developer [updated 2010 Aug 12] Tokyo, Japan Emx Corporation Available

from http //www square-emx com/

Image source [updated 2010 Feb 10] San Francisco, CA, USA CBS

Interactive, Inc Gamespot Available from

http //www gamespot com/gbc/rpg/dragonwarnor3/mdex html

A* algorithm [Internet] [updated 2010 July 27] Wikipedia Available from

http //en wikipedia org/wiki/A*_algonthm

A-star-trap [Internet] [updated 2010 Feb 16] Amit's A* Pages Available from

http //theory Stanford edu/~amitp/GameProgramming/

Maze [Internet] [updated 2007 Dec 8] Wesg ca Available from

http //www wesg ca/2007/12/hosting-a-website-based-on-your-local-network/

Waypomt Method [Internet]

Definition [updated 2010 July 26] Wikipedia Available from

http //en wikipedia org/wiki/Dukstra%27s algorithm

Implemented in game [updated 2001 March 14] Manhasset, NY, USA

Gamasutra Available from

104

http //www gamasutra com/view/feature/3096/toward more realistic jpathfindi

ng php?page=l

Pnnce of Qin [Internet]

Developer [updated 2010 Aug 12] Beijing, Chma Beijing Object Online

Technology Corporation Available from http //www square-enix com/

Image source [updated 2010 Aug 12] San Francisco, CA, USA CBS

Interactive, Inc Gamespot Available from

http //www gamespot conVpc/rpg/pnnceofqin/index html

Baldur's Gate II [Internet]

Developer [updated 2010 Aug 12] Edmonton, AB, Canada Bio Ware

Available from http //www bioware com/games/shadowsamn/

Image source [updated 2008 Sep 4] San Francisco, CA,USA CBS Interactive,

Inc Gamespot Available from

http /'www gamespot com/pc/rpg/baldursgate2throneofbhaal/index html

Dot-com bubble [Internet] [updated 2010 Jun 10] Wikipedia Available from
http //en wikipedia org/wiki/Dot-com bubble

Navigation Meshes [Internet] [updated 2009 Dec 17] Wikipedia Available from

http //en wikipedia org/wiki/Navigation_mesh

1701 AD [Internet]

Developer [updated 2010 Aug 12] Austin, TX, USA Aspyr Available from

http //www aspyr com/

Image source [updated 2010 Aug 12] San Francisco, CA, USA CBS

Interactive, Inc Gamespot Available from

http //www gamespot com/pc/strategy/anno 1701 /index htmPtag=stitialclk%3B

gamespace

Source SDK, [Internet] [updated 2010 Jul 18] Bellevue WA, USA Valve Developer

Community Available from

http //developer valvesoftwarc com/wiki/Navigation_Meshes

Binary search tree [Internet] [updated 2010 May 4] Wikipedia Available from

http //en wikipedia org/wiki/Binarysearchtree

Convex set [Internet] [updated 2010 Jun 8] Wikipedia Available from

http //en wikipedia org/wiki/Convexset

105

