
Hamiltonian Cycles in Symmetric Graphs 

Dov Zazkis 

B.Sc, Simon Fraser University, 2006 

Thesis Submitted In Partial Fulfillment Of 

The Requirements For The Degree Of 

Master of Science 

in 

Mathematical, Computer, and Physical Sciences 

(Mathematics) 

University of Northern British Columbia 

November 2008 

© Dov Zazkis, 2008 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by British Columbia's network of post-secondary digital repositories

https://core.ac.uk/display/84872898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-48775-4 
Our file Notre reference 
ISBN: 978-0-494-48775-4 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abs t r ac t 

Let A; be a positive integer. We define Mk to be the graph with a vertex set consisting 

of all binary strings of length 2k + 1 which have either k or k + 1 ones and edge set 

consisting of all pairs of these binary strings which differ in exactly one bit. Showing 

that the graph Mk is Hamiltonian for all k is known as the Middle Levels problem. 

This problem was first posed in the early 1980's and to this day remains unsolved. 

In this thesis we explore the symmetries of M& and graphs related to it. We then use 

these symmetries to propose a method for finding Hamiltonian cycles in Mk when 

2/c + 1 and k are prime. We believe that our method is more efficient than methods 

proposed by previous authors.. 

l 



Acknowledgements 

I'd like to thank my supervisor, Dr. Iliya Bluskov, for his guidance, support and for 

introducing me to the Middle Levels problem which I have enjoyed working on so 

much. I'd like to thank Dr. Jennifer Hyndman, for helping me negotiate through 

some of the group theory problems which unexpectedly popped up during the writing 

of this thesis. I'd like to thank my mother, Dr. Rina Zazkis, for her endless emotional 

and almost endless financial support. Finally, I'd like to thank Heinrich Butow, Eric 

Chlebek and Ashton Fedler for helping me with coding of my algorithm. 

u 



Contents 

1 Introduction 1 

2 Density Based Results 4 

2.1 Definitions 4 

2.2 Some Well Known Results 7 

3 Hamiltonian Cycles in Symmetric Graphs 10 

3.2 The Middle Levels Problem 12 

3.3 Definitions 14 

3.4 Properties of Mk 16 

3.5 Properties of Rk 33 

3.6 The Automorphisms of Rk 44 

3.7 Catalan Numbers 46 

4 Reducing the Middle Levels Problem 49 

4.1 A Reduction of the Middle Levels Problem 49 

4.2 Another Possible Reduction 54 

iii 



4.3 Implementation 59 

4.4 Some Possible Improvements the Algorithm 60 

5 Applications to Gray Codes 61 

6 Conclusion 66 

Bibliography 67 

Appendix 69 

A Java code 70 

B Code output 79 

C Diagrams of Mfe's and jRfc's 80 

C.l Rk 80 

C.2 Mfc 82 

IV 



List of Figures 

3.1 All known non-Hamiltonian vertex transitive graphs 11 

3.2 Midlevel Hotel 13 

3.3 Dejter's reduction 1 34 

3.4 Dejter's reduction 2 35 

3.5 Dejter's reduction 3 35 

3.6 i?3 colored path 36 

3.7 Mj, with colored Hamiltonian cycle 37 

3.8 M3 explicit colored Hamiltonian cycle 38 

3.9 CFA'sofi?3 46 

4.1 R5 51 

4.2 Z5 subgraphs of R5 52 

4.3 Z5 cycles of R5 53 

4.4 Hamiltonian path in R$ 54 

4.5 Posa path heuristic 56 

4.6 Modified Posa path heuristic 58 

v 



5.1 Gray code spinning disk 62 

VI 



List of Tables 

3.1 Anti-Palindromes are not /-vertices 23 

5.1 Binary Counting 62 

5.2 Gray Code Counting 63 

vn 



Chapter 1 

Introduction 

A graph G is defined as a pair of sets (V(G), E(G)), where V(G) is a set of objects 

called vertices and E(G) is a set of unordered pairs of vertices from V(G) called 

edges. A Hamiltonian cycle in G is a list of vertices Vi,v2,v3, ...vn such that every 

vertex in V(G) appears in the list exactly once and ViVi+i,viVn £ E(G) for 1 < i < n. 

Studying the existence of Hamiltonian cycles in graphs has been an important part 

of graph theory since its inception. Although graphs were not explicitly mentioned 

until 1878, some examples of problems equivalent to finding Hamiltonian cycles in 

certain graphs date back hundreds of years. The knights tour problem is such an 

example. It involves finding a sequence of moves on a chessboard which allows a 

knight to visit each of the 64 squares on that chessboard exactly once and return to 

the starting point. 

1 



This problem can be represented as a graph: Let each vertex represent a square 

on the chessboard and for each pair of vertices, v\,v%, let v\V2 be an edge in the 

graph if and only if the squares which v± and v2 represent can be reached from one 

another by a knight in one move. A Hamiltonian cycle in this graph is a solution to 

the knights tour problem. Systematic solutions to this problem were published by 

Leonhard Euler in 1759 [10]. 

The studies of Hamiltonian cycles in graphs can be roughly split into two main 

categories of problems: 1) Finding sets of conditions which force the existence of 

sufficiently many edges which in turn forces the existence of a Hamiltonian cycle, 2) 

Using symmetries as well as structural characteristics to show that certain classes 

of graphs have Hamiltonian cycles. This is typically done recursively, using Hamil

tonian cycles in smaller graphs to build Hamiltonian cycles in larger graphs. For 

convenience, we will refer to the first type as "density based" and the second type 

as "non-density based" results. Our main focus will be the latter. 

Density based theorems are limited in that they can not be used to show that certain 

2 



classes of graphs which have a relatively low number of edges have a Hamiltonian 

cycle. For example, none of the density based theorems can be used to show that 

Cfe with k > 6 ( the cycle on k vertices) is Hamiltonian, even though it is trivial to 

show that Cfc is Hamiltonian. There are many classes of graphs which are believed 

to be Hamiltonian for which density based theorems can not be used to show the 

existence of a Hamiltonian cycle. These graphs are typically quite symmetric. To 

show that graphs which are believed to be Hamiltonian are in fact Hamiltonian, it 

becomes necessary to use the properties of these graphs to either explicitly construct 

a Hamiltonian cycle or show its existence using other non-density based methods. 

These non-density based methods are also limited in that all current known results 

are difficult to apply to a wide variety of graphs. There are many open problems 

which involve proving that certain classes of highly symmetric graphs are Hamilto

nian. 

3 



Chapter 2 

Density Based Results 

Even though it is not our focus, it is reasonable to start with some density based 

results to give the reader a sense of what kind of results can be applied generally 

to all graphs to test whether they are Hamiltonian, regardless of symmetries. We 

will also include some well known group theory results in this section which will be 

needed in later proofs. 

2.1 Definitions 

Definition 2.1.1 A graph, G, is a pair (V(G), E{G)), where V(G) is a set of points 

called vertices and E(G) is set of unordered pairs of vertices from V(G). 

Definition 2.1.2 Two vertices, v\ andv2 in V(G) are said to be adjacent ifv\V2 € 

E(G). 

4 



Definition 2.1.3 A subgraph, G' = (V (G), E'(G)), of a graph G = (V(G),E(G)) 

is a graph such that V'(G) C V(G) and E'{G) C E(G) with xy e E'(G) only if 

x,y G V'(G). The subgraph is said to be a spanning subgraph ifV'{G) = V(G). 

Definition 2.1.4 The subgraph of G = (V(G),E(G)) induced by the set W C 

V(G) is the subgraph G' = (V'(G), E'(G)) with V'(G) = W andE'(G) = {viV3\vh Vj G 

V'(G) and viVj € E(G)}. 

Definition 2.1.5 A graph G = (V(G),E(G)) is said to be bipartitie ifV(G) = 

X UY with \X n Y\ = 0; and if v\Vi G E(G), then exactly one of v\,Vi is in X. 

Definition 2.1.6 A graph G is said to be Hamiltonian if it contains a Hamiltonian 

cycle. 

Definition 2.1.7 A Hamiltonian path in a graph G = (V(G),E(G)) is a list of 

vertices v\,V2,V3, ...vn such that every vertex in V(G) appears exactly once in the list 

and V{Vi+i G E(G) for 1 < i < n. 

Definition 2.1.8 A path in a graph G = (V(G), E(G)) is a list Vi,v2j v3, ...,Vk such 

that ViVi+\ G E(G) for 1 < i < k and for all 1 < i, j < k Vi ^ Vj. The vertices v\ 

and Vk are referred to as the endpoints of the path. 

Definition 2.1.9 A graph G is said to be k—connected if for every pair of vertices 

vi,V2 the graph contains at least k disjoint paths with V\,v2 as endpoints. In general, 

we refer to 1—connected graphs as connected graphs. 

Definition 2.1.10 We say a set X C V(G) is independent if there are no edges 

between vertices in X. The cardinality of the largest independent set in G is called 

5 



the independence number and is denoted a{G). 

Definition 2.1.11 The degree of a vertex v, denoted S(v) is the number of edges 

incident with it. The minimum and maximum degree of a graph G are defined as 

5min{G) = minveV(G)5(v) and 5max(G) = maxveV{G)8{v), respectively. 

Definition 2.1.12 A graph G is said to be m-regular if 5(v) = m for all v 6 V(G). 

Definition 2.1.13 Two graphs, G = (V(G),E(G)) and H = (V(H),E(H)) are 

said to be isomorphic if there exists a bijective mapping 7 : V(G) 1—> V(H) such 

that ifvi,v2 £ V(G) and 7(^1) = v[, 7(1*2) = v2 then v\ and V2 are adjacent if and 

only if v[ and v'2 are adjacent. 

Definition 2.1.14 Two graphs, G = (V{G),E(G)) and H = {V(H),E(H)), are 

said to be homomorphic if there exists a mapping 7 : V(G) >—> V(H) such that if 

V\, V2 € V(G) and 7(^1) = v[ 7̂  v'2 = 7(1*2) then vi and v2 are adjacent if and only if 

v[ and i*2 are adjacent. 

Definition 2.1.15 A automorphism <f> of a graph G is a isomorphic mapping from 

G to itself. 

Definition 2.1.16 A graph G is symmetric if it has a non-trivial automorphism. 

Definition 2.1.17 The Euler cf) function of a positive integer n, denoted 4>{n), is 

the number of positive integers i less than n such that i and n are relatively prime. 

Definition 2.1.18 A group is a set G together with a binary operation ® that sat

isfies the 4 properties: 

(a) G is closed under the operation <g>, meaning that ifx,y are in G then so is x<Siy. 

6 



(b) The operation <S> is associative, that is, {x ®y) ® z — x ® {y ® z). 

(c) There is an element in G called e such that e®x=x=x®e for all x € G. 

(d) Each element x ofG has a so-called inverse, x _ 1 , such that x®x~l = e — x~l®x. 

Note 2.1.19 / / in addition a group has the property that x ® y — y (g) x for all 

x, y € G, then the group is called an Abelian group. We will only deal with finite 

Abelian groups in this thesis. 

Definition 2.1.20 A subgroup H of a group G is a non-empty subset ofG which 

is a group under the same binary operation as G. 

Definition 2.1.21 A coset of a subgroup H of a group G, denoted g®H., is the set 

{g®h\heM}. 

Definition 2.1.22 The subgroup generated by x G G is the set e, x, x <S> x, x ® 

l. This set is denoted (x). 

Note 2.1.23 (x) is in fact a subgroup ofG. 

Definition 2.1.24 The order of a group G is the cardinality of the set of its ele

ments. 

2.2 Some Well Known Results 

We will list some theorems that are useful in deciding whether a dense graph is 

Hamiltonian. 

7 



T H E O R E M 2.2.1 [18] If S(v) + 5(u) > \V(G)\ for every pair of distinct non-

adjacent vertices u, v E V(G), then G is Hamiltonian. 

One consequence of Theorem 2.2.1 the following corollary: 

Corollary 2.2.2 [8] If G is a graph such that 5min(G) > |V(G)|/2, then G is Hamil

tonian. 

T H E O R E M 2.2.3 [16] If G = (X U Y,E) is a bipartite graph with \X\ = n = \Y\ 

(n > 2) and 5(u) + S(v) > n + 1 for each non-adjacent pair u E X and v E Y, then 

G is Hamiltonian. 

T H E O R E M 2.2.4 [14] If G is a d-regular 2-connected graph of order n with d > 

|V(G)| /3, then G is Hamiltonian. 

The following are well-known group theory results which we will utilize later. 

T H E O R E M 2.2.5 Let H be a subgroup of the group G. Then any two cosets <7i<8>lrl, 

#2 ® 3HI are either disjoint or identical and the order of any coset is equal to the order 

of the subgroup used to generate it. 

T H E O R E M 2.2.6 (Lagrange's Theorem) If Wis a subgroup ofG then |H| divides 

|G|. 

T H E O R E M 2.2.7 (First Sylow Theorem) Let p be prime and let H be a group. If 

pm is the highest power of p which is a factor of |H|, then H has a subgroup of order 

pm. 

T H E O R E M 2.2.8 (Third Sylow Theorem) Let p,m and H be the same as in the 

8 



pervious theorem. Then the number of subgroups of M, which have order pm is con

gruent to 1 modulo p. 

9 



Chapter 3 

Hamiltonian Cycles in Symmetric 

Graphs 

Graphs are often represented as "connect the dots" diagrams were each dot represents 

a vertex and two dots are connected by a line if the two vertices they represent are 

adjacent. Because we define graphs in terms of sets and often work with graphs 

in terms of dots and lines they tend to be thought of as both set theoretic and 

geometric objects. This sometimes leads to two words, one set theoretic and one 

geometric in origin being used to describe the same thing. For example; symmetries 

and automorphisms are two words we use to describe the same thing. A graph G 

is said to be vertex-transitive if for every distinct pair of vertices vi,v2 € V(G) 

there exists an automorphism of G which maps v\ to v2. We can intuitively think of 

a symmetry of a graph as a rearrangement of that graph's vertices which preserves 

10 



edges just like in a geometric setting. A vertex-transitive graph can then be thought 

of as "as symmetric as possible", because each pair of vertices can be thought of 

as "the same" under one of the symmetries (automorphisms) of that graph. It is 

known that not all vertex-transitive graphs are Hamiltonian. There are 6 known 

non-Hamiltonian connected vertex-transitive graphs (pictured below). 

singleton graph 2-path graph Peterson graph Coxter graph 

triangle-replaced triangle-replaced 
Petersen graph Coxter graph 

Figure 3.1: 

Arguably, the most important conjecture relating to Hamiltonian Cycles in symmet

ric graphs is the following, due to Lovasz [17] . 

Conjec ture 3.1.9 a) Every connected vertex-transitive graph has a Hamiltonian 

path. 

b) Aside from the six known counterexamples, all connected vertex-transitive graphs 

11 



are Hamiltonian. 

Part b) of conjecture 3.1.9 encompasses the work done in this thesis since the graphs 

we will examine are vertex-transitive. 

3.2 The Middle Levels Problem 

One problem which Lovasz's conjecture encompasses is known as the Middle Levels 

problem. It was first proposed in a paper of Havel's in 1982 [12] although various au

thors have falsely attributed the problem to authors other than Havel (most notably 

to: Edros, Kelly, Dejter, Trotter). The following is Edros's proposal of the problem: 

Suppose that there is a hotel with k + 1 people in the lobby and k people outside. 

There is a single door which leads from the outside to the inside and only one person 

can enter or exit at a time. There are 2( + J ways of placing each of the Ik + 1 

people either in or out of the hotel such that either k or k + 1 end up inside. Is 

it always possible to go through all of these arrangements exactly once and end up 

back at the start by letting one person at a time in or out of the hotel? 

12 



HOTEL 
• • • 

TfHf I 
• • 

HIT' f 

• • 

100101....1' 

Figure 3.2: 

The above interpretation of the Middle Levels problem is useful for explaining the 

problem, however, this formulation is difficult to use in analyzing the problem. So 

let us change how the problem is posed. Assign the 2k + 1 people some arbitrary 

order. Assign the ith person the ith bit in a 2k + 1 bit string and make that bit 1 if 

ith person is inside the hotel and 0 otherwise. It is now easy to see that our problem 

is equivalent to the following: 

For a fixed k, let X be the set of all 2k + 1 bit binary strings containing exactly k 

l's and let Y be the set of all 2k + 1 bit binary strings containing exactly k + 1 l 's. 

Now let Mk be the the graph with vertex set X U Y and x € X adjacent to y G Y if 

and only if x differs from y in exactly one bit. Is M& Hamiltonian for all k? 

This problem has become known as the "Middle Levels Problem" because Mk can be 

thought of as the subgraph induced by the two middle levels of the boolean lattice. 

13 



It is conjectured that Mk is Hamiltonian for all k > 0. Savage, Shields and Shields 

[25] showed that Mk is Hamiltonian for 1 < k < 17. Although many people have 

worked on this problem, there have been no published thorough explorations of the 

properties of Mk and related graphs. We will explore some of these properties and 

use them to propose improvements to the algorithm used in [25]. Our focus will be 

the case where 2k + 1 and k are both prime. 

3.3 Definitions 

For convenience, we will set n = 2k + 1 for the remainder of this thesis. Also we will 

take all subscripts and superscripts to be modulo n. 

Definition 3.3.1 Given A = (a,i,a2, ...,an) e V(Mk) we call the circular shift of 

that vertex, denoted sh(A), the vertex (an,ai,a2, . . . ,an_i). The j t h circular shift of 

A is denoted sh^{A) — sh(sh( sh(A)). We also define sh°(A) = A. 
s v ' 

j times 

Note 3.3.2 If we are given an A= (ai,a2, ...,an) 6 Mk, then 

shJ(A) = (ai_ j ;a2_j,. . . ,a„-j) 

Definition 3.3.3 Given A = (0,1,0,2, •••,an) £ V(Mk), we call the flip of that vertex, 

denoted fl(A), the vertex (a„,an_i,a„_2, . . . ,ai). 

Definition 3.3.4 The class of A e V(Mk) is the set {B e V(Mk)\B = shj(A),0 < 

14 



j <n — 1}. If A,B G V(Mk) with shm(A) = B for some m, then we say that B is 

in the class of A, denoted B G cl(A), or, equivalently, that A and B are in the same 

class. 

Definition 3.3.5 Given A = (ai,a2, ...,an) G V(Mk), we call the complement of 

A, denoted Ac, the vertex (1 — ai, 1 — 02,..., 1 — an). 

Note 3.3.6 Each class has exactly n vertices in it, they are disjoint, and every class 

has a unique complement class. 

Definition 3.3.7 We call a vertex A = (ai, a2,..., an) G V(Mk) an l-vertex if A is 

adjacent to a vertex in the class of Ac. 

Definition 3.3.8 We call cl(A) an l-class if A is an l-vertex. See Remark 3.4-3 for 

more details. 

Example 3.3.9 1010100 is an l-vertex because it is adjacent to s/i((1010100)c) = 

1010101. 

Definition 3.3.10 A bit string, A = (ai, 02,..., an), is a palindrome if f 1(A) = A. 

Example 3.3.11 11001010011 is a palindrome. 

Definition 3.3.12 A bit string, A = (ai,a2 , ...,an), is an anti-palindrome if 

fl(Ac) differs from A only in the (k + l)th position. 

Example 3.3.13 110100100 is an anti-palindrome. 

Note 3.3.14 The concepts 'class' and 1-veriices' were used in previous work on the 

middle levels problem, specifically [4], [5], [22], [23], [24] and [25], but were given 

15 



no formal definitions or names. However, these concepts were utilized inside proofs. 

Since we will be referring to these concepts throughout this thesis it was necessary to 

formalize them. 

3.4 Properties of Mk 

The above four diagrams represent the first four Mjt's. The graph on the left, Mi, 

is isomorphic to C%, so the graph is itself a cycle and hence clearly Hamiltonian. 

However, the number of vertices in M& grows exponentially and finding a Hamiltonian 

cycle becomes progressively harder. 

Observation 3.4.1 If a vertex A in Mk is adjacent to B, then sh(A) is adjacent to 

sh(B) and Ac is adjacent to Bc. Furthermore, if Bi € cl(Bj), then Bf 6 d{Bf) and 

sh(Bi) e cl{sh(Bj)). 

Lemma 3.4.2 If A is adjacent to S i and B% from the same class, then there exist 

C 7̂  A such that C is in the same class as A and B\ is adjacent to both A and C. 

Proof: Since B\ and B2 are in the same class, sh?{B2j = Bx for some 1 < j < n. 

From Observation 3.4.1, we know that sh^{A) is adjacent to shj(Bi) and shj(B2). 

16 



But sh?{B2) = Bi, which means that Bi is adjacent to shP{A) and A. Hence we 

can take C = shP(A), which completes the proof. (Note that since 1 < j< < n, 

sh?(A) ^A).U 

Observation 3.4.3 From Observation 3.4-1 we can conclude that if one vertex in a 

class is an I-vertex, then all the vertices in that class must be I-vertices. 

T H E O R E M 3.4.4 A = (oi, a2,..., an) is an I-vertex if and only if there exist j and 

s such that a, = 1 — Oj_j for all i 6 {1,2, ..n}\{s} and as = as-j. 

Proof: Assume A = (ai,a2, ...,an) is an /-vertex. This means that there exist j , 

1 < j < n, such that the vertex sh^{Ac) = (a[,a2, •••,a'n) differs from A in exactly 

one position. Let that position be s. Then as ^ a's = 1 — as-j, which implies 

as = a s_j. We also have a, = a\ = 1 — a^j for i ^ s. So A has the desired 

property. 

Now, assume instead that A = (a\, 02,..., an) has the properties ai = 1 — ai-j for i ^ s 

and as — as_j for some j and s. Without loss of generality, we assume that s = 1. 

This means that sh?(Ac) = (1 — ai_j, 1 — a2-j,..., 1 — cin-j) = (1 —ai, 02, 03,04, ...a„). 

Hence A differs from s/iJ(Ac) in only the first position, and therefore, A is an /-vertex. 

• 

Lemma 3.4.5 Let A — (01,02, ...an) be an I-vertex with j and s as in Theorem 3.4-4> 

that is, ai *= 1 — Oj_j for all i £ {1,2, . . ,n}\{s} and as — a s_j. Then gcd(n,j) = 1. 

Proof: Suppose toward a contradiction that this is not the case and gcd(n, j) > 1. Z„ 

17 



is a group under addition. Since gcd(n,j) ^ 1, the order of the subgroup generated 

by j is less than the order of the group, which is n. Lagrange's Theorem tells 

us that the order of a subgroup divides the order of the group. Since n is odd 

every divisor of n must also be odd so \(j)\ must also be odd. Let x + (j) be a 

coset of (j) which does not contain s. The distinct elements of x + (j) form the set 

{x,x+j,x+2j, ...x+(\(j)\ — l)j} which is the same as {x,x—j, x—2j, ...x—(\(j)\ — l)j} 

modulo n. Note that x — (\(j)\)j =n x. Since s ^ x + (j), Theorem 3.4.4 gives 

ax = 1 - ax-j = ax_2j = ••• = ° I - ( |0 '> | - I )J
 = *• — ax-(\(j)\)j = * ~~ a^ ' w n i c n is a 

contradiction since ax j^ 1 — ax. D 

Observation 3.4.6 It was shown in the proof of Theorem 3.4-4 that if 

A= (ai ,a2 , . . . ,on) 

is an l-vertex then there is a pair s,j such that a, = 1 — Oj_j for all i ^ s. If we let 

s' = s — j , then we have a, = 1 — aj_j for all i ^ s' + j . This gives us the n equations: 

18 



a\ = 1 — a\-j 

a2 = 1 - a2-j 

dsi = 1 — G,s'—j 

° V + j - l = 1 — &s'- l 

° s '+ j = as' 

as'+j+l = 1 ~~ O-s'+l 

<V+2j = 1 — a s ' + j 

(Xn 1 dn—j. 

Now, the integers 0,1, 2,.., n — 1 /orm a complete system of residues modulo n. Since 

Lemma 3.4-5 tells us that gcd(n,j) = 1, the integers s', s' — j , s' — 2j , . . , s' — (n — l)j 

also form a complete system of residues modulo n. Therefore, {s1, s' —j, s' — 2j, ..,s' — 

(n — l ) j} =„ {0,1, 2, ..,n — 1}. Also, observe that s' — (n — l)j = s' + j (modn), so 

we can write asi = 1 — as/_:;- = as/_2j = 1 — as '-3j = ... = as/_(n_i)j = asi+j. Since 

s', s' — j , s1 — 2 j , . . , s' — (n — 1) j is a complete system of residues modulo n, all the bits 

of A are represented in the above string of equalities. In addition, if we know whether 

asi is equal to 0 or 1, then we can use the values s',j and <v to construct the bitstring 

that represents A. So A is completely determined by the triple (s',j, as>). Now, notice 

that the vertex determined by the triple (s' + 1, j , os/+i = asi) is sh(A). This means 

that all the vertices in the same class as A are determined by (q + s',j,aq+si = as>) 

19 



with 1 < q < n. Also, the complement class can be determined by triples of the form 

(q + s', j , aq+si — 1 — asi) with 1 < q < n. 

L e m m a 3.4.7 If A is an l-vertex, then some vertex in cl(A) is a palindrome. 

Proof: Assume that A is an I-vertex determined by the triple (s,j,as). Then 

as = 1 — as-j = as-2j = 1 — as-3j = = as+3j = 1 — as+2j = as+j, 

which gives 

as-j — as+2j 

&S-2J = Os+3j 

as-(k-l)j = as+kj 

O-s-kj — C's+(k+l)j-

Note that s + (k + l ) j =„ s — kj. Now we can rearrange the above equations to 

get: 

20 



as+(k-l)j — as+(k+l)j 

ds+(k-2)j — Us+{k+2)j 

Observe that, as+^-i)j = a>s+(k+i)j for all 1 < i < k. There exists some circular shift 

of A' of A such that the kth bit of A' is as+kj. The (k + ij)th and (k - ij)th bits of 

A' are as+^+i)j and as+^-i)ji respectively. Since k — (i)j =n n — (k + (i)j), A' is a 

palindrome, as desired. • 

Lemma 3.4.8 If A is an l-vertex, then some vertex in cl(A) is an anti-palindrome. 

Proof: Let A be an /-vertex determined by the triple (s,j,as). The vertex B = 

(61,62,.., bn), determined by the triple (k+l,j, bk+i = as), is in cl(A). We have: 

°k+i — 1 — bk+i-j = bk+i-2j = 1 — bk+i-3j = = °k+i+3j = 1 — bk+\+2j = frfc+i+j-

21 



This gives us: 

frfc+i = h+i 

1 — h+i~j = bk+i+j 

1 — bk+i-2j — bk+i+2j 

1 — bk+i-3j = bk+i+3j 

1 ~~ &fc+i-(fc)j = bk+i+kj-

Hence 1 — bk+i-ij = frfc+i+ij f° r all 1 < z < fc. Notice that & + 1 — ij =n n — (k + l+ij). 

This means that 1 — 6_j = 6j when i ^ k + 1, which implies that B is an anti-

palindrome, as desired. • 

Observation 3.4.9 It may seem that Lemmas 3-4-8 and 3.4-7 provide two more 

useful characterizations of l-vertices, however, since both these proofs are not 'if and 

only if proofs it might happen that some non-l-vertices are palindromes or anti-

palindromes. A simple example will suffice to show that this, in fact, is the case. 

It is easy to see that A = (1 ,1,0,0,1,0,1,1,0,1,1,0,0) is an anti-palindrome. The 

following are all the bit strings in the inverse class of A: 

22 



string in cl(Ac) 

(0,0,1,1,0,1,0,0,1,0,0,1,1) 

(1,0,0,1,1,0,1,0,0,1,0,0,1) 

(1,1,0,0,1,1,0,1,0,0,1,0,0) 

(0,1,1,0,0,1,1,0,1,0,0,1,0) 

(0,0,1,1,0,0,1,1,0,1,0,0,1) 

(1,0,0,1,1,0,0,1,1,0,1,0,0) 

(0,1,0,0,1,1,0,0,1,1,0,1,0) 

(0,0,1,0,0,1,1,0,0,1,1,0,1) 

(1,0,0,1,0,0,1,1,0,0,1,1,0) 

(0,1,0,0,1,0,0,1,1,0,0,1,1) 

(1,0,1,0,0,1,0,0,1,1,0,0,1) 

(1,1,0,1,0,0,1,0,0,1,1,0,0) 

(0,1,1,0,1,0,0,1,0,0,1,1,0) 

bits different from the bits of A 

13 

5 

2 

9 

7 

5 

7 

7 

5 

7 

9 

3 

5 

Table 3.1: 

Clearly, no bitstring in cl(Ac) differs from A in exactly one bit, and therefore, A 

is not an I-vertex. A similar example can be constructed to show that there exist 

palindromes which are not l-vertices. However, not all is lost, as can be seen from 

the next Lemma. This Lemma will be used in the proof of Theorem 3.4-11, which is 

another useful characterization of l-vertices. 

Lemma 3.4.10 If some vertex in cl(A) is an anti-palindrome and some other vertex 

in cl(A) is a palindrome, then A is an l-vertex. 

23 



Proof: Without loss of generality we can assume that A = (0,1,0,2, •••an) is a palin

drome and that sh?(A) in an anti-palindrome. So aj = an+\-i for all i and ai-j = 

1 — an+i_j+j for i — j ^n k + 1. We have: 

a%-j = 1 - a„+i-i+j for i - j ^ „ fc + 1, 

a, = 1 - an+x_i+2j for i ^ „ A; + 1 + j , 

an^i = 1 - an + i_ i + 2 j for i ^ n k + 1 + j . 

Now, if we let x = n — i and 2j + 1 = —y, we see that a^ = ax_y for x ^ „ k — j . 

Hence A is an /-vertex, by Theorem 3.4.4. • 

T H E O R E M 3.4.11 A is an l-vertex if and only if some vertex in cl(A) is an anti-

palindrome and some other vertex in cl(A) is a palindrome. 

Proof: Follows from Lemmas 3.4.7, 3.4.8 and 3.4.10. D 

The following is equivalent to a Lemma that can be found in [4]. 

Lemma 3.4.12 The number of I-classes in Mk is equal to <j>(n)/2. 

Proof: Let A = (q,j,x) = (aua2,...,an) and let B = (q + j,-j,x) = (h,b2, - A ) -

We claim that A = B. We know 

aq = 1 — Oq-j = Oq-2j = 1 — aq-3j = ••• = aq+ji 

bq+j = * — aq+2j = bq+3j = 1 - V H J = ••• = V 

24 



Now, if we write the string of equalities backwards, we get bq — 1 — bq_j = 6g_2j = 

1 — 6g_3j7- = ... = bq+j. Notice that bq = bq+j = x = aq. Hence the two strings of 

equalities: 

aq = \ — O-q-j — aq-2j — 1 ~~ aq-3j = ••• = O-q+j 

bq = l — bq-j = bq_2j = 1 — bq-3j = ... = bq+j 

are identical. Thus A = (q,j,x) = (q + j,—j,x) — B. This also implies that 

the set of triples {(q,j,a) • q € [n]} represents the same class as the set of triples 

{(q, n — j,a):q£ [n]}. Note that if a* = 1, then the triple(i, j , ai) represents a vertex 

in Y, and if a — 0, then it represents a vertex in X. 

Claim: There are exactly two triples that represent each /-vertex. By proving the 

pervious claim we showed that each representation (q, j , x) can be paired with (q + 

j , —j, x) which represents the same vertex. If we assume that some /-vertex B = 

(61,62, ...,bn) does not have exactly two triples that represent it, then, without loss 

of generality, B can be represented by any of the four triples (1, j , 1), (1 + j , n — j , 1) 

and (q, c, 1), (q + c, n — c, 1) with c ^ „ j , n — j . This means that: 

&1 = 1 
and < 

bi = 1 - h-j for i ^ l - j 

bq = l 

bi = l - 6i_c for ij£q-c 

Hence for i ^ q—c, 1—j, we have 6, = 1—6,_c = 1—6j_j, which implies that 6,_c = 6j_j 

for i ^ q — c, 1 — j . This then implies that 6j = 6i+c_j for i ^ q, 1 + c — j . Consider 

the sequence 6i,6i+c_j,&i+2(c-j), •••,&i+(n-i)(c-j)- Note that because 6; = 6,+j_c for 

i j£ q,l + c — j , the sequence will be 1,1,...1,0,0,...0, where the first zero will occur at 

25 



6g+(j_c). We know that B has k + 1 l's and k O's. So it must be that our sequence 

1,1,...1,0,0,...0 has k + 1 ones followed by k zeros. This gives us 1 + (k + l)(j — c) = 

q + j — c (modn). Similarly, if we instead look at bq, bg+c-j, bq+2(c-j), • ••, bq+(n-i)(c-j) 

we get that q + k(j — c) = 1 (modn). Combining these two results we obtain: 

q + 1 + (n)(j - c) =n 1 + j - c + q 

q + l=nl+j-c + q 

0 =n j - C 

Now, 0 =„ j — c implies j =n c, which is a contradiction. 

Each /-class in Y can be represented as either the set {(q,j, 1) : q G [n]} or {(q, n — 

j , 1) : q £ [n]} for some j and each /-class in X can be represented as either the 

s e t {(?).?') 0) : Q ̂  N } o r { (? ! n — J)0) : Q G N } f° r some j . Hence the number of 

/-classes is equal to twice the number of unordered pairs (j, n — j) with gcd(j, n) = 1 

and j < n — j . This is exactly 0(n)/2. • 

THEOREM 3.4.13 If A is adjacent to two distinct vertices from the same class, 

then that class must be the class containing Ac. 

Proof: Suppose that A = (a\, a2,..., an) is adjacent to B and sh^(B) with 1 < j < k. 

From the proof of Lemma 3.4.2 we know that B = (&i, b2, •••,bn) is adjacent to A and 

sh^(A). Without loss of generality, let B differ from A in the Is* bit and from sh^A) 

in the tth bit. Since B differs from A only in the 1st bit, we have 

26 



a,i = bi for i±\ 

ai = l - bi, 

and because B differs from shj(A) only in the tth bit, we have 

ai+j = k for i^t 

at+j = l - b t . 

Combining these results we get that a* = ai+j for i 7̂  l,t. Without loss of generality, 

we can assume that A has k + 1 l's. Using a similar argument to the one we used in 

Lemma 3.4.12, we obtain 1 + (A; + l)(j) = t (modn) and 

al+j = a l + 2 j = •••Ol+(fe+l)j = 1 — al+{k+2)i = 1 — dl+(k+3)j = ... = 1 — Ol-

Note that this implies Oj = 1 — a,+(fe+i)j for alH ^ 1. Hence A can be represented 

by the triple (1, (A; + l)j, 1). Now, repeating this argument for B, we see that B can 

be represented by (t, (k)j, 0). Since kj =n n — (k + l ) j , we establish that B is in the 

complement class of A. • 

Lemma 3.4.14 The vertex (s,j,f) is adjacent to the vertices (s — j,j, 1 — /) and 

(s+j,j,l-f). 

Proof: Let A = (a1,a2, ...an) = (s,j, f) and B = (61, b2, ...&„) = (s - j,j, 1 - / ) . We 

know that / = as = 1 — as~j = as-2j = ... = as_(n_i)j and that 1 — / = ba-j = 

1 — bs_2j = bs-3j = ... = bs-nj. Note that s — nj =n s. From 1 —/ = bs_j = 1 — bs_2j = 

bs„3j = ... = bs_nj we get that / = 1 - bs-j = bs„2j = 1 - ba-3j = ... = 1 - bs. Thus A 

differs from B in only the sth bit. Showing that (s, j , / ) is adjacent to (s + j , j , 1 — / ) 

is similar. D 

27 



If we wish to build a string which represents the /-vertex A with triple (s,j,as), 

then the l 's and O's get added in a certain order. For example, if we wanted to 

build the string representing the /-vertex A e V(M^) with triple (1,3,1), then we 

would start with a blank bitstring of length 5: (*, *, *, *, *). We know that a,\ = 1, 

so that would be our first bit added, giving us (1,*,*,*,*) . Next we know that 

ai = 1 — ai_3 = 1 — a3, so a3 is our second bit added, giving us (1, *, 0, *, *). Now, 

a3 = 1 — a3_3 = 1 — a5, so a5, is our third bit added, giving us (1,*,0, *, 1). We 

continue in this manner until we have the entire string: 

(*,*,*,*,*)-» (1, *,*,*,*)-> (1, *, 0, *,*)-> ( l , * ,0 ,* , l ) -> ( l ,0 ,0 ,* , i ) - f (1,0,0,1,1) 

The above gives us the order in which the bits of an /-vertex get added to the string. 

This means that we can represent a non-/-vertex which is adjacent to an /-vertex 

by just indicating in which bit it differs from its adjacent /-vertex. We will use the 

notation (s, j , as, [«]), to refer to such a vertex. Here [i] indicates that the ith bit added 

is the bit in which this vertex differs from the /-vertex. Similarly, we can introduce 

notation for any vertex in Mk by listing the positions in which it differs from some 

/-vertex. Define the notation to be (s,j,as, [ri,r2, -,rc]), where [r\,r2, ..,rc] is a list 

of bits. For simplicity we will stipulate that r, 7̂  Tj when i 7̂  j , because any two 

strings either differ or do not differ in any given bit. 

Observa t ion 3.4.15 In say, (s, j , / , [ui,u2, •••ur]), note that [ui,u2, ...ur] is just a 

set of instructions that tell us which bits of(s,j, / ) to change in order to get (s,j, f,[ui, 

VQ, ...ur]). If we change s or j , the ith bit we add will still have the same value. This 

28 



means that (si,ji, fi,[ui,u2, •••uc]) is adjacent to (si,ji,fi,[vi,v2,--.vr]) if and only if 

(s2,J2,f2,[ui,u2,...uc]) is adjacent to (s2, J2, h,[v1,v2, ...vs}). Also, (sx, j i , / i , K , u 2 , . . . 

uc]) = (si,ji,fi,[vi,v2,.-vr]) if and only if (s2, j 2 , f2,[ui,u2, ...uc]) = (s2, j2 , /2,fai, v2, ••• 

vr}). 

Lemma 3.4.16 Let A be the vertex represented by the triple (s,j, / ) . Then (s,j, f, [1]) 

and (s,j, f, [n]) are in the same class as Ac. 

Proof: Let A = (s,j, f) = (a\, a2,..., an). Without loss of generality we can assume 

that / = 1. This gives us 

as = 1 

* as_(2i_i)j = 1 - as = 0, 1 < i < k, 

as-2ij — as = 1, 1 < i < A;. 

This means that for (s,j, / , [1]) we have 

as = 0 

< os-(2»-i)i = 0, 1 < i < k, 

as-2ij = 1, 1 < i < fc, 

which is equivalent to: 

a(s+j) = 0 

* a(s+j)-{2i-i)j = 1 = 1 - a(s+J-), 1 < i < k, 

a(s+j)-2ij = 0 = a(s+j), 1 <i < k. 

meaning that (s,j, / , [1]) represents the same vertex as (s + j,j, 1 — / ) , which gives 

us the desired result. The case (s,j,f, [n]) is done similarly. • 

29 



Take some vertex A — (ai, a2, ...an) and some x E {2,3, ..n — 1} which is relatively 

prime to n and form the vertex B = (bi, b2, • ••&«) by defining bi — ax-ii, or equiva-

lently a» = 6n, for 1 < i < n. (Since x is relatively prime to n, x is invertible modulo 

n). We call this action multiplying and we write multx(A) = B. 

Observation 3.4.17 Let A = (ai,a2, ...,an) = (i,j,f) with n prime. We know 

that ai = 1 — a^j = aj_2j = 1 — Oi-3j = ... = aj_(n_i)j. S'o w/ien we take 

multx(A) = A' = (a'va'2,...,a'n), we have that a'xi = 1 - a'xi_xj = a'xi_2xj = 1 -

axi-3xj = ••• = a'ix-(n-i)xj• This gives us A' = (ix,jx,f). Similarly, we can establish 

that multx((i, j , f[ri,r2, ..rs])) = (xi,xj,f[ri,r2,..rs]). So if multx(A) = B, then for 

every A' £ cl(A), multx(A') e cl(B). 

Note 3.4.18 The vertices A with the property that sti(multx(A)) = A for some 

j and some x ^ „ —1,0,1 will have a special role later. We will refer to these as 

central vertices. Note that a consequence of Observation 3.4-17 is that if A is a 

central vertex, then so is every other vertex in its class as well as all the vertices in 

its inverse class. 

T H E O R E M 3.4.19 If A is a central vertex with shj (multx(A)) = A, then for every 

y € (x) there exists j such that sh?(multy(A)) = A. 

Proof: By the remark preceding this theorem, if A is a central vertex, then so is every 

other vertex in cl(A). We know that multx(A) € cl(A). Combining these results, 

we get that multx(multx(A)) = multx2(A) e cl(A). We can repeat this argument to 

get that multxm(A) E cl(A) for all m. Every element in (x) can be written as xm for 

30 



some m. Hence for every y G (a;) we have multy(A) G cl(A). Therefore, for every 

y G (x) there exists a j such that shP(multy(A)) = A. D 

Lemma 3.4.20 For any vertex A G V(Mk), multn_i(A) = fl(A). 

Proof: Let A' = (a'l,a'2,...a'n) = multn_i(A). Observe that j(n — 1) = jn — j = 

n—j (modn). This means that a^_j = a* for all i, and therefore m«W„_i(^4) = fl(A), 

as desired. • 

Observation 3.4.21 From observation 3.4-17, we know that multx(i, j , f) = (ix,jx 

, / ) . We wish to show that if A is central and x ^ n — 1, then multx(A) 0 cl(A). 

If we assume toward a contradiction that jx = j (mod n), we get that x =n 1, which 

is a contradiction because, x G {2,3, ..n — 1}. So jx ^ j (mod n) . If we assume 

that jx = n — j (mod n), we get x =n n — 1. In Lemma 3.^.20 we established that 

mitZtn_1((i,j ' ,/[ri,r2 , . .r s])) = //((z, j , / [ r x , r 2 , ..rs])). Therefore, there is only one 

multiplication of a vertex which sends that vertex to a vertex in the same class and 

that is the one which flips it. Another consequence of this is that if k > 2, then no 

vertex is both a central vertex and an l-vertex. 

Lemma 3.4.22 If A is a central vertex with sh°' (multx(A)) = A, then 

shj+1-x(multx(sh(A))) = sh(A). 

Proof: Let A = (ai,a2, ...,a„) be a central vertex with shJ(multx(A)) = A and let 

31 



A' = {ax,a'2, •••,a'n) be the vertex sh(A). We know that axi_j = <ij for all i. Also, 

a'i = Oi_i for all i. So a'xi_x_j+1 = ax{i_x)^ = a;_i = a[. This gives < . + ( j _ x + 1 ) = a't 

for all z, which implies that sh^~x+l{multx{A')) = A', as desired. • 

Corollary 3.4.23 Ifn is prime and A is a central vertex in Mk with shP(multx(A)) = 

A, then for every r there is some vertex A' G cl(A) with shr(multx(A')) = A'. 

Proof: Let n be a prime and A a central vertex in Mk with shJ(multx(A)) = A and let 

r be fixed. By repeatedly applying Lemma 3.4.22, we get sh^+y^-~x\multx{shy{A))) = 

shy(A) for all y. Now, j + y(l — x) =n r for some y. Solving for y, we get 

y =n (r — j ) ( l — x)"1. If follows that s / i ^ - ^ 1 - ^ (A) has the desired property. 

• 

Lemma 3.4.24 If n is prime and A is adjacent to A' then multx(A) is adjacent to 

multx(A') for every x G {2,3,. . , n — 1}. 

Proof: Let A — (ai,a2,..., a„) and A' = {a'x,a'2, •••,a>'n) be adjacent. Then A differs 

from A' in one bit, say a,. Let x G {2,3, ..,n — 1}. Since n is prime and x G 

{2,3, ..,n — 1} we know that x has a multiplicative inverse modulo n, namely x~x. 

Hence multx(A) = (aix-i,a2x-i,...,anx-i) and multx(A) = (a'lx^, a'2x^, ...,a'nx^). 

However, we know that aj = a'j for all j ^n i, so that multx(A) and multx(A') differ 

in only the ixth bit and are therefore adjacent. • 

Observation 3.4.25 Lemma 3.4-24 showed us that ifn is prime and A is adjacent 

to A' then multx(A) is adjacent to multx(A') for every x G {2,3,. . , n— 1}. Hence the 

32 



mapping from V(Mfc) to itself, given by multx, preserves edges and it is therefore a 

homomorphism. Since the mapping is invertible (multx-i is its inverse) this mapping 

is in fact an automorphism. 

3.5 Properties of Rk 

Dejter [4] observed a useful reduction of the the problem. The problem of finding 

a Hamiltonian cycle in Mk can be reduced to the problem of finding a Hamiltonian 

path in a smaller graph, Rk. Rk is obtained in the following way: 

First we obtain the reduced graph Nk- Let each vertex in Nk represent a distinct 

class of Mfc and let two vertices in Nk be adjacent if their corresponding classes in Mk 

contain vertices which are adjacent. Two vertices in Nk will be called inverses of each 

other if they represent classes which are inverses of one another. The reduced graph 

Rk is obtained by letting each vertex represent a pair of vertices which are inverses 

of one another in Nk. Two vertices in Rk are adjacent if they represent adjacent 

vertices in Nk, and if a vertex in Nk is adjacent to its inverse, the corresponding 

vertex will have a loop in Rk. Now, because of how we construct Rk, each vertex in 

it represents 2n vertices in two classes which are inverses of one another in Mk- We 

will refer to these 2n vertices in Mk as the pa ren t s of the vertex they correspond 

to in Rk- Notice that vertices in Rk which have loop edges are exactly the vertices 

whose parents are /-vertices (I for loop). Dejter showed that a Hamiltonian path in 

Rk with loop vertices as endpoints can be used to construct a Hamiltonian cycle in 

Mk. 

33 



Observation 3.5.1 The representations for the vertices of Mk that we used earlier 

can be carried over to Rk; we can even further simplify the notation: For example, in 

(i,j,f[ui,U2,---us]), the i and f are redundant, so we can represent the same vertex 

with (j, [u\,U2, •••us\). Note that the l-vertex (i,j, f) will now be represented as (j). 

The following is a special case of a Theorem proven in [4]. 

T H E O R E M 3.5.2 / / there exist a Hamiltonian path from (1) to (k) in Rk, then 

there exists a Hamiltonian cycle in Mk-

Proof: Using the relationship between Rk and Mk we can turn a Hamiltonian path 

in Rk into 2n disjoint paths which together include all of the vertices of Mk-

(1,1,1) (n,1,0) (2,1,1) (1,1,0) (1,1,1) (2,1,0) ( l + k , l , l ) ( k , l , 0 ) ( n , l , l ) (n-1,1,0) 

I I : I I t::::t ! : : : : t ! 
(j,k,a) (j + l,k,a) (j+2,k,a) (j+k,k,a) (j+n-l,k,a) 

(l-j,k,l-a) (j,k,l-a) (j+l,k,l-a) (j+k-l,k,l-a) (j+n-2,k,l-a) 

Figure 3.3: 

Now, all we need to do is connect the paths into a cycle. We add the n edges of the 

from (j, 1, l ) ( j — 1,1,0) ( we showed in Lemma 3.4.14 that these edges exist). Now 

we have n disjoint paths which together include all of the vertices of Mk-

34 



(1,1,1) (n,l,0) (2,1,1) (1,1,0) (1,1,1) (2,1,0) ( l+k,l , l )(k, l ,0) (n,1,1) (n-1,1,0) 

i ! ! i t i::::t i:::: I I 
(j,k,a) (j + l,k,a) (j+2,k,a) (j+k,k,a) (j+n-l,k,a) 

(l-j,k,l-a) (j,k,l-a) (j + l,k,l-a) (j+k-l,k,l-a) (j+n-2,k,l-a) 

Figure 3.4: 

We know we have n edges of the from (j, k, l ) ( j + k, k, 0). We claim that adding 

these completes the cycle. 

(1,1,1) (n,1,0) (2,1,1) (1,1,0) (1,1,1) (2,1,0) ( l+k,l , l )(k, l ,0) (n,1,1) (n-1,1,0) 

r::::Tt 
(j,k,a) (j + l,k,a) (j+2,k,a) (j+k,k,a) (j+n-l,k,a) 

(l-j,k,l-a) (j,k,l-a) (j+l,k,l-a) (j+k-l,k,l-a) (j+n-2,k,l-a) 

Figure 3.5: 

It suffices to show that we can get from any vertex of the form (j, k, 1) to any other 

vertex of that form. We know that (j, k, 1) is connected through a path to (j — 1, k, 0) 

35 



which is connected to (j — k — 1, k, 1) = (j — (k + 1), k, 1). Repeating this we can get 

from (j, k, 1) to (j — x(k + 1), fc, 1) for any x. Since gcd(k + 1, n) = 1, the integers 

j , j — (fc + 1), j — 2(fc + 1),..., j — (n — l)(k + 1) form a complete system of residues 

modulo n. Thus we can get from any vertex of the form (j, k, 1) to any other vertex 

of that form. • 

We now illustrate the construction in Theorem 3.5.2 by example: 

Let us start with R3 pictured below. We construct a Hamiltonian path between two 

loop vertices (1) = 1010101, (3) = 1111000. This path can be explicitly written as: 

1010101, 1010001, 1011001, 1011000, 1111000 and is represented below as a colored 

path. 

Figure 3.6: 

This path in R3 represents 2(7) = 14 disjoint paths in in M3. The edges are color 

matched so one can see which edges in R3 correspond to edges in M3. Now add all 

edges of the form (j, 1,1) (j — 1,1,0) as well as all edges of the form (j, k, l)(j + k, k, 0). 

This, along with the paths we already have, gives us a Hamiltonian cycle in Mfc. 

36 



Figure 3.7: 

If the reader wishes to follow the path directly, the following diagram illustrates it 

with the edges color matched as in the previous diagrams. 

37 



1111000 1011000 1011001 1010001 —~s 1010101 

1010100 =~~ 1011100 

0001111 = ~ — 0001011 

1110001 = - — 0110001 

1001110 — s 0001110 

0011010 — ~ — ; 1011010 

1001010 = — 1001011 1001001 — — — - 1101001 

0100011 — ~ ~ 0101011 

0101001 = — — 0111001 0011001 — 0011101 

OQiilio = ^ — 0010110 — 0110110 0110100 • ~ s 0110101 

0010101 = = — — • 0010111 0010011 — 1010011 

1100011 = — — — 1100010 1100110 1000110 ™ — — s s 1010110 

1010010 = — 1110010 0110010 0111010 ——-—z 0111000 

0101100 1101100 1101000 — — ~ 1101010 

0101010 = — 0101110 0100110 — 0100111 ~ — = 0000111 

1000111 = — • 1000101 --- 1001101 0001101 ——=i 0101101 

0100101 : = — — 1100101 1100100 1110100 

Figure 3.8: 

Corollary 3.5.3 Let n be prime. If there exists a Hamiltonian path in Rk from (a) 

to (b) and gcd(a, b) = 1 = gcd(a + b, n), then there exists a Hamiltonian cycle in Mk-

The proof of this result is essentially identical to the proof of Theorem 3.5.2 with a 

replacing 1 and b replacing k. 

38 



Lemma 3.5.4 Rk contains (fcwfc+1)! vertices. 

Proof: Each class has n vertices in it and each class has a corresponding unique 

inverse class, so that each vertex in Rk represents exactly 2n vertices in Mk. Since 

there are 2(£) vertices in Mk, then the number of vertices in Rk is 2 x (™)/(2n) = 

(fc)"(fc+l)!' a S c l a i m e d - D 

Dejter noted that the number of vertices in Rk is always a Catalan number. We will 

explore the relationship between Rk and the Catalan numbers more thoroughly in 

the next section. 

Observation 3.5.5 The number of loop vertices in Rk is exactly <f>(n)/2. This fol

lows directly from Lemma 3.4-12. 

Observation 3.5.6 If n is prime then, Rk has k + 1 vertices of degree k — 1 and 

(fc)?(fc+l)! ~ (k + !) vertices of degree k + 1. 

When reducing Mk to Rk, the two most natural automorphisms, shifting and nipping 

the string are used to condense Mk into Rk. A natural question is whether there are 

any more automorphisms present in Rk, and if so, can we use them to reduce the Rk 

further into an even smaller graph? The answer to this question is positive in some 

special cases. To illustrate these, we need to develop some further machinery. 

We want to extend the definition of multiplication to Rk: For A, B G Rk we say 

that multx(A) = B if for every parent of A, say, A' £ Mk, multx(A') is a parent of 

B. Using this definition we can now extend the definition of central vertices to 

39 



include vertices in Rk. That is: A £ Rk is a central vertex if multx{A) = A for some 

a; ^ n — 1,0,1. We have already observed that if A £ Mk is a central vertex, then so 

is every other vertex in both its class and its inverse class. This means that central 

vertices in Rk have parents which are central vertices in Mk. 

Lemma 3.5.7 Let n = 2k + 1 be prime. If a vertex A £ Rk can be represented as 

both (i, [«i,«2, ..its]) and (j, [ui,u2, ..us]) with i ^ n j,n — j , then A can be represented 

as (r, [uu it2, ..«„]) /or any r £ ( u - 1 ) -

Proof: This is a consequence of Note 3.4.18 and Theorem 3.4.19: If A £ Mk is 

central, then for every r £ (ij~x) there exists an m such that shm(multr{A)) = A. 

D 

T H E O R E M 3.5.8 Let k > 3. / / ftoi/i k and n = 2k + l are prime, then there is at 

least one central vertex in Mk-

Proof: The set Z n \{0} is a group under multiplication. This groups has order 2k. 

By the first Sylow theorem, we know that this group has some subgroup G of order 

k. Let the the elements of G be {^i,^, •••Xk\- Now let A — (ai,a,2, ..,an) with a, = 1 

if i £ {21,2:2, ...£fc} and â  = 0 otherwise (note that A has k l 's and k + 1 0's as 

desired). We claim that A is central. Consider A' = (a[, o2,.., a'n) = multXi(A). The 

cosets of the subgroup G are either disjoint or identical. So j G = G if j £ G and 

j G n G = 0 otherwise. Hence jx~l £ {xi, x2, .--Xk} if and only if j £ {xi,x2, •••Xk}, 

since x^1 £ G. Thus, a'j = ajx7i = 1 if and only if j £ {xi,x2, ...Xk}, and a'j = 0 

otherwise. So multXi(A) = A. In fact, multXi(A) = A regardless of which x\ we 

choose. This establishes that A is a central vertex, because at least one element of 

40 



G is not - 1 , 0 , 1 . • 

T H E O R E M 3.5.9 If k and n = 2k + 1 are both prime, then there are exactly two 

central vertices in R^ and these two vertices are adjacent to each other. 

Proof: Let A be a central vertex in Rk and G the group from the previous theorem. 

From Corollary 3.4.23 and Theorem 3.4.19, we know that for any pair b G G and c € 

{0,1, 2,3, ...n — 1} there exist a parent of A, say A' £ M^, such that shc(multb(A')) = 

A' = (a[,a'2, ..a'n). This means that for any i, a'u_c = a^. Let / (x ) = 6x — c. We 

know that for any fixed i, a\ = a',^ = alp,^ = a L . = .... Since fr(i) can take on a 

finite number of values, there exist some 0 < r\ < r2 < n such that fri(i) = fT2{i)-

Without loss of generality we can assume that r^ is minimum. The function f(x) is 

invertible: f~x{x) — b~lx + b~xc. So if r\ ^ 0: 

r{i)=np{i) 

i=nr^(i) 

This contradicts the minimality of r2 since r2 — r\ < r2- So r\ must be zero, meaning 

that i =n fT2(i). This means p(i) =n fr2+j(i) for all j . If r2 > k then we have more 

that k +1 bits all equal to one another. This is a contradiction, because A' has either 

k + 1 l 's and k 0's or k + 1 0's and k Vs. So 0 < r2 < A;. If we assume that r2 = 1, 

then we can solve for i: i =nbi — c—>i =n c(b — 1)_ 1 . Since we can solve for it, there 

41 



is exactly one value of i for which r2 is 1. If we assume that r2 = 2 we get 

i =n f{i) 

i =n b2i — cb — c 

c(b + 1) =n (b2 - l)i 

(b2-l)-lc(b + l)=ni 

(6 2 - l ) - 1c(6 + l ) = „ i 

( f e + l ) - 1 ( 6 - l ) - 1 c ( 6 + l ) = n z 

(b-iy'c^i 

So in this case we notice that i =n c(b — 1)_ 1 happens to be the same i we got 

when solving for i when r^ = 1. Thus the minimum r is never 2 for any i. Claim: 

fm(x) = 6mx — c(6m _ 1 + bm~2 + .. + b + 1). We proceed to show this by induction. 

The base case, f(x) = fl(x) = bx + c, is given. Now, assume that the claim holds 

for all m < M - 1: 

fM(x) = f(fM(x)) 

fM(x) = f(bM~lx - c(bM~2 + bM~3 + .. + b + 1) 

/ ^ ( x ) = 6(6M-Xx - c(6M-2 + 6 M - 3 + .. + b + 1) + c 

/M(rr) = (6Ma; - c(bM~l + bM~x + .. + &))+ c 

fM(x) = bMx - c(6M"1 + bM~l + .. + b + 1) 

42 



Thus fm(x) = bmx - c{bm~l + bm~2 + .. + b + 1). Note that b2k =n 1 by Fermat's 

Little Theorem. So we have: 

f2k(x) = b2kx - c{b2k~l + b2k-2 + .. + b + 1) 

= b2kx-c(b2k-l)(b-l)-1 

=n{l)x-c{l-l){b-l)-1 

= X 

Thus f2k(x) = x. This means that r2|2fc. We showed that r2 ^ 2 and that r2 < k 

so r2 can only be 1 or fc since we assumed that k was prime. So r2 is 1 when 

i = c(6 — 1)_ 1 , and k, otherwise. So we have 3 sets of bits of sizes 1, k and k each 

of which must be either all l 's or all O's. Since there are either k or k + 1 l 's, one 

of the sets of size k has to be all l's and one of the sets has to be all O's. If the 

bit in set of size one is 1, then we get one of the central vertices, and if it is 0, we 

get a neighboring central vertex. Observation 3.4.21 tells us that /-vertices are not 

central vertices. So these two adjacent central vertices must be distinct parents of 

two distinct central vertices in R^. Thus we have constructed two central vertices 

in Rk- By Corollary 3.4.23 and Theorem 3.4.19, we know that had we had chosen 

any other b, c we would have gotten the same two central vertices. So they must be 

unique. • 

43 



3.6 The Automorphisms of Rk 

Let k and n both be prime. The set Z„\{0} is a group of order 2k under multiplica

tion. The first Sylow Theorem (Theorem 2.2.7) tells us that Z n \{0} has a subgroup 

G of order k. We know show that this subgroup is unique. 

THEOREM 3.6.1 Ifn andk are both prime then, Z„\{0} has exactly one subgroup 

of order k. 

Proof: We know, by the Third Sylow Theorem (Theorem 2.2.8), that the number of 

such subgroups is congruent to 1 modulo k. So if we assume toward at contradiction 

that there is more than one such subgroup, then there must be at least k +1 of them. 

At least two of these subgroups must have a common element, y, other than 1, by 

the pigeonhole principle. However, since k is prime, these subgroups are cyclic and 

hence both equal to (y), a contradiction. So G is unique. • 

The mapping from cj) '• Rk |—> Rk given by A (-» multx{A) is an automorphism for all 

x G {1, 2,3..., n — 1}. Let A = [a\, a<i,.., an) with Oj = 1 if and only if i G G. We 

showed in the proof of Theorem 3.5.8 that if x G G, then A = multx(A). However, if 

x £ G+{0}, then ix G G if and only if i £ G+{0}. This means that when x 0 G+{0} 

and C and C are the two central vertices, multx{C) = C and multx(C) = C. This 

happens because multx(C
c) differs from C in exactly the 0th (=nth) bit. Hence 

the mapping given by multx(C) with x G G fixes the central vertices and when 

x 0 G + {0} it maps them to one another. So we will refer to the k automorphisms 

that fix the central vertices as cent ra l fixing automorphisms, or CFA's for short. 

44 



Lemma 3.6.2 / / n and k > 2 are both prime, then the unique subgroup of Z„\{0} 

of order k is (x2), where x is an arbitrary element in Z n \ { —1,0,1}. 

Proof: The only element of order 2 in Z„\{0} is —1. Lagrange's Theorem tells us 

that the order of an element divides the order of the group. Thus if x e Z„\{—1,0,1} 

then, x has either order 2k or k. It suffices to show that x2 is of order k. By Ferrmat's 

Little Theorem (x2)k =n x2k =n x71"1 =n 1. Hence (x2)h =n 1 and x2 has order k. D 

The above Lemma shows us that, we can use any square to generate the subgroup 

of order k. We showed the uniqueness of this subgroup in Theorem 3.6.1. Using the 

proofs of Theorems 3.5.8 and 3.5.9 we can then use this subgroup to generate all 

central vertices in Rk-

Let's explore the automorphisms of R%. R3 has 5 vertices. Three of them are loop ver

tices and the other two are central vertices. We label the three loop vertices (1), (2) 

and (3) and the two central vertices C\ and C2. The automorphism represented by 

the diagram is written underneath it. mult\ is, of course, the identity. Since the 

unique subgroup of Z7 \{0} of order 3 is {1,2,4} multi, mult2 and mult^ are CFA's. 

If there exists some CFA that maps A to B, then we say that A and B are com

patible. Similarly, if there exist some CFA that maps the path/cycle A\,Ai, ..,Am 

to Bi,B2, --jBjn we say that Ai,A2,--,Am and J5i, B2,.., Bm are compatible. The 

set of all vertices which are compatible with A will be referred to as the compat

ibility class of A, denoted com(A). A is compatible with itself since the identity 

45 



3) i2) 

-multi 

3) J?) 

multA 
c2 c2 

mu/t3 

Figure 3.9: 

automorphism is a CFA. If n and fc are prime, all the compatibility classes, with the 

exception of the compatibility class that contains only the two central vertices, have 

k vertices in them. 

3.7 Catalan Numbers 

The Catalan numbers arise naturally in combinatorics in many counting problems; 

often these problems involve recursively defined objects. The kth Catalan number, 

Ck, is defined as ^vj;(2
fe

fe) Dejter noted that the number of vertices in Rk is always a 

Catalan number (specifically Rk, has Ck vertices ). An example of one of the ways 

that Catalan numbers arise is as the result of counting the number of binary strings 

of length 2k with k l 's and k O's such that no initial segment of the string has more 

46 



O's than l's. The number of these string is the Catalan number Ck. If we add a 

prefix 1 to such a string, it will have the property that every prefix will have more 

l 's than O's. This leads us to the following definition: 

Definition 3.7.1 We will refer to a binary string as valid if every prefix of that 

string (including the prefix which is the entire string) has more l's than O's. 

Note that we can create Ck valid bit strings of length n by taking the Ck strings of 

length 2k that have A; l 's and k O's and the property that no initial segment of the 

string has more O's than l 's and adding the prefix 1 to each of them. 

T H E O R E M 3.7.2 Among all the circular shifts of a bit string with k + 1 l's and 

k O's there is exactly one valid bit string. 

Proof: Suppose toward a contradiction that there are two distinct valid bitstrings A 

and A' such that shP(A) = A' for some j . Since A = (ai, ct2, ...an) is valid J^= 1(—1 + 

2OJ) > 0 for all 1 < s < n. Specifically this means 
that£r=i1 - j(- l + 2a*)>0. 

bince 

1 = E £ i 1 - i ( - l + 2*) + £ I U + W ( - 1 + 2a,), we know that E I U + w ( - l + 2a,) < 

0. But shP(A) = A' which means that A' = (ai-.j,a2-j,---,an-j) — (a'i,a'2, ...,a'n). 

This means that 0 < X^Ln+i-j(~ 1 + 2a«) = X^=1(—1 + 2a'i) and hence the prefix 

a[, a'2,..., a'n_j , of A' does not contain more O's than l's, a contradiction. 

Therefore, among all the circular shifts of of a bit string with k + 1 l 's and k O's, 

there is at most 1 valid bitstring. However, we can create Ck valid strings with k + 1 

l's and k O's (as noted above) and there are Ck classes of circular shifts. Hence there 

is exactly one valid bit string among the circular shifts of a bit string with k + 1 l 's 

and k O's. • 

47 



The above theorem tells us that every vertex in Rk has a unique representation as 

a valid string. This is useful in both building and searching through Rk- All valid 

strings of length n can be generated recursively [27]. However, for the purpose of 

out experiments, we choose to generate them non-recursively. 

We know that the first two bits of a valid bit string must both be 1. We will start 

there and sequentially add bits to the end of the existing string. Let us say we have 

some partially completed string A = (a\ = l,a2 = 1,03, ...,aTO). We then count the 

number of ones in the partially completed string of length m. If this number is k +1, 

we add n — m O's to the end of the string and we have a valid string of length n. If 

this is not the case, we certainly have less then k + 1 l 's, and then we will compute 

the sum S = Y^Lii- l + 2a,). If this sum is greater than 1, we replace A with the two 

partially completed strings (ai = l ,a 2 = l ,a3 , ...,am, a m + i = 0) and (ai = 1,0.2 = 

1,0.3, •••,am,am+i = 1). If the sum is 1, then adding a 0 to the end of the string 

would make it non-valid, so we replace A with (ai = 1,02 = 1,03,..., am, am+\ = 1). 

If we continue extending the partial strings in this way we will end up with a list of 

all valid string of length n. 

Having a unique representation for each vertex of Rk allows us to construct the edges 

of Rk easily. Starting with a valid string A = (oi, a2, ...a„), for each bit â  with a; = 1, 

we flip every bit except at to get a bit string B, and then, if B is not valid, we can 

simply look through the shifts of B until we find one that is. If we do this for all 

possible a,'s we will have all the neighbors of A. This is quite useful, because we can 

now construct Rk directly without needing to construct Mk first. 

48 



Chapter 4 

Reducing the Middle Levels 

Problem 

4.1 A Reduction of the Middle Levels Problem 

In the previous sections we developed the machinery that we will use in this chapter 

to propose a method different than those used by previous authors for determining 

whether a particular graph M^ is Hamiltonian. We believe that this method has the 

potential to verify that a particular M^ is Hamiltonian in a more computationally 

efficient manner. Much like previous methods, our method involves a Hamiltonian 

cycle/path heuristic. The difference lies in how the problem is broken down into 

steps. 

In Observation 3.4.25, we justified that the reduced graph R^ has non-trivial auto-

49 



morphisms. We will utilize these automorphisms in order to create a graph which 

has fewer vertices than Rk- This is done in a way similar to the way Rk is con

structed from Mfc (discussed earlier), with one major difference. In Rk, every vertex, 

represents 2n vertices from M^. In this new reduced graph, which we will refer to as 

Zk, each vertex represents k vertices in Rk, but there are two vertices in Rk, which 

are not represented in Zk- These are the two central vertices whose existence was 

shown in Theorem 3.5.9. 

There are 3 major steps in our method: 

1) We construct Zk for the particular Rk-

2) We use a Hamiltonian path heuristic to find a Hamiltonian cycle in Zk- This cycle 

corresponds to k disjoint cycles in Rk-

3) We interconnect the cycles as well as the two central vertices into one Hamiltonian 

path by removing one edge from each cycle and interconnecting them using edges in 

Rk. The Hamiltonian cycle in step 3 corresponds to a Hamiltonian cycle in Mk. 

We would like to remind the readers that our explorations are only for the case 

where both n and k are prime. If this is not the case, we have no guarantee that the 

number of central vertices is 2, or that each compatibility class has k vertices in it. 

For example, RQ has 6 central vertices. 

We illustrate this method for the case k = 5 and n = 11. (Note that these are both 

primes): 

We start off with R5 which is pictured below. The two central vertices are placed 

50 



over top of each other to de-clutter the image. They are represented as a star and 

the 5 central vertices are represented as circles. All other vertices are represented 

with points. 

Figure 4.1: 

Now we find Z5, which is isomorphic to 5 disjoint subgraphs of R$. 

51 



Figure 4.2: 

We now find a Hamiltonian cycle in Z5 which corr 

52 



Figure 4.3: 

Breaking a single edge in each cycle, we interconnect the broken cycles into a long 

Hamiltonian path in R^. 

53 



Figure 4.4: 

This Hamiltonian path corresponds to a Hamiltonian Cycle in Mk, by Dejter's The

orem. 

4.2 Another Possible Reduction 

In the previous section we described a method that at least conceptually reduces 

part of the problem. The issue with that method is that we never specified how to 

construct Z^ or which vertices specifically were in it. Methods of choosing which 

vertices are in Zk may be time consuming and inefficient. Depending on which 

method we choose it may actually be more time consuming to construct Zk than 

54 



to just simply use a Hamiltonian path heuristic to search through Rk. Luckily, we 

do not need to construct Zk in order to utilize the symmetries of Rk to reduce the 

problem. If we have a cycle in Rk which includes exactly one vertex from each 

non-central compatibility class and includes no central vertices, then we can build k 

compatible cycles and interconnect them just like in the previous method. 

Posa [20] developed a useful Hamiltonian path heuristic which was used in [25], [24] to 

construct Hamiltonian paths in Rk- The heuristic starts off at some vertex, v\. This 

vertex will be at the start of our path. Then the heuristic keeps extending the path 

by randomly choosing an available neighbor of the vertex at the end of the path. It 

does this until there are no available neighbors with which to extend the path. If vm 

is the vertex at the end of the path, vi,V2,...,vm and vm has no available neighbors, 

then the neighbors of vm must all be on the path already. Say vm, is adjacent to i>j, 

with 1 < i < m — 1. We observe that fi,U2,f3, ..,Vi,vm,vm_i,vm_2, --,Vi+i is also a 

path of length m. However, it may be possible to extend this new path, unlike its 

predecessor, since the new path does not have vm at its end. We can keep doing 

this until we get stuck and then backtrack and try to extend the path again. This 

heuristic was used successfully to find a Hamiltonian path in Rn, which is a graph 

with 129,644,790 vertices. 

55 



Vi Vi+i 

vi vi+1 

Figure 4.5: 

We need to modify this heuristic slightly when we search through Rk since we want 

to utilize the symmetries of Rk- Working in a case were n and A; are both prime we 

first remove the two central vertices from our search space. Then starting with an 

Z-vertex we start extending a path from that vertex. Every time we add a vertex to 

the path, we remove that vertex as well as all vertices that are compatible with it 

from the search space. This guarantees that the path does not contain two vertices 

that are compatible with one another. Unlike in Posa's algorithm, when we cannot 

extend the path, we are not guaranteed that the neighbors of the vertex at the end of 

the path are on the path. However, we are guaranteed that each neighbor is on a path 

which is equivalent under some CFA. So our current path, say Vi,V2,-.-,vm, cannot be 

extended and the vertex at the end of the path, vm, is adjacent to a vertex, Wi, with 

1 < i < m — 1, which is on some path, wi,W2, ...,wm, which is equivalent under some 

CFA to i>i,-U2, ...,t)m. Notice now that wi,W2,ws, ..,Wi,vm,vm-i,vm-2, •-,vi+i is also a 

path of length m and it might be possible to extend this path, unlike its predecessor. 

Also note that this path contains exactly one vertex from each compatibility class 

that we have already removed and still starts with an /-vertex. If successful, this 

56 



algorithm is faster than Posa's algorithm, because it needs to construct a much 

shorter path. 

We modify the heuristic further to make sure the path is a cycle. This can be done by: 

1) We can check if the point at the end of the path is adjacent to the ^-vertex at the 

beginning of the path. If it is, we have a Hamiltonian cycle in Zk, as desired. If this 

is not the case, we backtrack and try again. The heuristic applied in [25],[24] used 

this idea to make sure their path had the desired endpoints. 

2) When the path contains all vertices we can still use Posa's technique to change 

which vertex is at the end of the path, as in the diagram on page 56. We do this 

repeatedly until the path has the desired end vertex. 

57 



Vi 

wn 

W\ 

Figure 4.6: 

Once we have constructed a Hamiltonian cycle in Zk, we proceed as in the previous 

section to interconnect the k cycles we have created as well as the two central vertices. 

We do this with a different modification of the Posa heuristic. We start with llfcOfc 

and break the cycle that contains it into a path which starts with llfeOfc = (k). We 

will refer to the vertex at the end of the path as E. This is our initial path. Now, if 

58 



E has a neighbor, A, in a cycle, C, that we have not yet added to our current path, 

then we can break C into a path by removing one of the two edges incident with A, 

creating a path C. Then we attach A to E, there by extending our current path. If 

E has no such neighbor then all of its neighbors are on the current path and we use 

Posa's method to choose a different path with a different vertex at its end. We do 

this until we have a path containing all vertices with the endpoints llfeOfe and l(10)fe. 

Using this method allows us to add many vertices at a time to our current path. It 

also places fewer restrictions on the order of the vertices in the final path because 

this does not force them to appear in the same order that they did in the cycles we 

constructed earlier. 

4.3 Implementation 

We coded the algorithm described in section 4.2. The Java code is included in Ap

pendix A. This code successfully constructed a Hamiltonian path in R5 (the smallest 

case it can be tried on) and i?n, verifying that the algorithm works. The code output 

for R5 is included in Appendix B. The next case where this algorithm can be applied 

is R23 and this case is still open. Due to time and memory constraints we did not 

try the algorithm on this case. Also, we did not recode the algorithm used in [25] 

for direct comparison on the same machine. Hence, we do not have direct proof that 

our algorithm is faster. We believe that is it faster based on the fact that it operates 

on a much smaller graph than Rk-

59 



4.4 Some Possible Improvements the Algorithm 

It may be worth noting that in our runs of the algorithm, no backtracking was used at 

all. In spite of that, the algorithm still managed to find an appropriate Hamiltonian 

path each time it was implemented. It is likely that using strategic backtracking 

in this algorithm, both when constructing and interconnecting the cycles, would 

considerably improve runtimes. This would involve backtracking whenever several 

successive rearrangements do not yielded an extendible path. Our current method 

just keeps rearranging the path until it is possible to extend it. If we treat our 

representative vertices in Rk as binary integers, note that when generating the list of 

vertices in Rk as described in section 3.7, the list is built in order from the smallest 

to the largest integer. This means that if we are searching for a vertex in that 

list we can do it using a binary search instead of a linear one which is what was 

done in our code. In the algorithm used in [25], instead of rearranging the list of 

vertices which represent the path, every time the path could not be extended a list 

of pending rearrangements was updated. Using this list all the rearrangements were 

implemented simultaneously. This lead to a significant improvement in runtime. It 

seems feasible to do something similar to improve our algorithm. It is our hope that 

implementing all these improvements in our algorithm will allow it to successfully 

find a Hamiltonian path in i?23- We also, note that it seems feasible to run a similar 

algorithm on cases where n and k are not both prime. We will just have more central 

vertices to find and keep track of. Hence it may be possible that a modification of 

our algorithm could be used in establishing that Mis is Hamiltonian. 

60 



Chapter 5 

Applications to Gray Codes 

We will mention one particular application of Hamiltonian cycles, Gray codes. We 

start by describing an application based on Gray codes and then we introduce 

them. 

Consider a rotating device split into sections with a sensor on it which sends a binary 

signal to a computer telling it which section the sensor is currently on and hence the 

current position of the device. You can think of this device as a drum in a photocopy 

machine, a magnetic storage device or an axle of a vehicle (abs system); all these are 

real life examples of devices that use this idea. First, we use binary numbers as in 

part (a) of the above diagram to number the positions of the device: 

61 



m (e) 

Figure 5.1: 

position 

0 

1 

2 

3 

4 

5 

6 

7 

binary representation 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

position 

8 

9 

10 

11 

12 

13 

14 

15 

binary representation 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Table 5.1: 

If the device stops spinning and the sensor is in-between positions then the signal 

sent to the computer will be a mix of the two adjacent strings. In the above list 

of binary strings, we notice that certain adjacent positions differ significantly. For 

example, the 0th position (0000) and the last position (1111) are adjacent, so that if 

62 



the sensor is in-between those two positions, then it is possible that the signal sent 

to the computer could be about any one of the 16 positions. So it would be useful to 

have a circular list of binary strings such that any two strings which are adjacent on 

the list differ in exactly one position. If the device is labeled in this way, then when 

the sensor is between positions, the sensor sends a signal which is one of the positions 

which it is in-between, hence giving the computer a much more accurate information 

about the position of the device. The following is a list of binary strings with this 

minimal change property, (this one corresponds to part (b) of the diagram): 

position 

0 

1 

2 

3 

4 

5 

6 

7 

binary representation 

0000 

0001 

0011 

0010 

0110 

0111 

0101 

0100 

position 

8 

9 

10 

11 

12 

13 

14 

15 

binary representation 

1100 

1101 

1111 

1110 

1010 

1011 

1001 

1000 

Table 5.2: 

These minimal change listings are commonly referred to as "Gray codes" named after 

Prank Gray who was one of the first people to research them. It is easy to show that 

Gray codes exist for all possible lengths of binary string. We will include the proof 

of this well-known fact, because we will need it for the discussion that follows. 

63 



T H E O R E M 5.1.1 [11] A listing of all binary strings of length n exists such that 

any two binary strings which are adjacent on the list differ in exactly one position 

(the first and last entries in the list are also considered adjacent). 

Proof: We will proceed by induction on n. For n = 1, the list 0,1 has the desired 

property. Now, assume inductively that listings with the desired adjacency properties 

exist for all n < N — 1. This means that there exists such a list, Ljv-i, of all binary 

strings of length N — 1. Now we build L^ in the following way: add a zero to the 

beginning of every element in .Ljv-i, this creates a new list L'N_V Now take the list 

of the elements of LN-I in reverse order and add a 1 to the beginning of each of 

those strings; call this list L!'N_i • Combine L!'N_X and L'N_1 into one list which we 

will call Lp{. Since every iV-bit binary string can be created by adding either a 0 

or 1 to the beginning of one of the strings of LJV-I , LN contains all possible strings 

of length N. Notice that all strings of LN_X have the adjacency property and so do 

the strings in L'N_V Since the first string in L'N_X and the last string in LN_X differ 

in only the first bit and the first string in LN_X and the last string in L'N_1 differ 

in only the first bit, every pair of adjacent strings on the list, differ in exactly one 

position, as desired. D 

The above proof shows us how to construct Gray codes of all different sizes recur

sively. Starting with 0,1 -» 00,01,11,10 -> 000,001,011,010,110,111,101,100 etc... 

Gray codes constructed in this way are called binary reflected Gray codes. Al

though these are useful, sometimes in practice it become useful to put additional 

restrictions on these lists. For example, note that, in a binary reflected Gray code, 

64 



the first bit changes only twice which is less than any other bit whereas the last 

bit changes most often. There are situations in which that may be undesirable and 

we want a Gray code in which every bit changes the same number of times. Such 

balanced Gray codes were shown to exist for all even lengths of a binary string by 

Wagner and West [28]. For a general binary string some heuristics have been pro

posed. There are many variations on the theme of creating Gray codes with various 

different restrictions. Currently, the Middle Levels problem seems to be the most 

notorious unsolved Gray code problem. 

65 



Chapter 6 

Conclusion 

We developed two new characteristics of/-vertices (Lemma 3.4.10 and Theorem 3.4.4) 

as well as defined and characterized central vertices (Note 3.4.18). Then we used these 

characteristics to verify how many of these vertices are in particular Rk's (Theorem 

3.5.9 and Observation 3.5.5), focusing on the case where both n and k are prime. We 

explored the role of these vertices in the automorphisms of Rk (Section 3.6) and used 

central vertices to define a particular type of automorphisms, CFAs. These CFAs, 

as well as the work of Posa and Dejter played a crucial role in the development of 

the algorithm described in section 4.2. We believe that the algorithm is amenable 

to confirm more cases as Hamiltonian. It is also our hope that our work on the 

automorphisms of Rk will aid the development of a complete solution to the Middle 

Levels problem. 

66 



Bibliography 

[1] R. Cada, T. Kaiser, M. Rosenfeld and Z. Ryjacek, Hamiltonian decom
positions of prisms over cubic graphs, Discrete Mathematics 286(2004), 45-56. 

[2] Y. Chen, Kneser graphs are Hamiltonian for n > 3k, Journal of Combinatorial 
Theory, Series 5 80(2000), 69-79. 

[3] F. Chung, P. Diaconis, R. Graham, Universal cycles for combinatorial 
structures, Discrete Mathematics 110(1992), 43-59. 

[4] I.J. Dejter, Hamilton cycles and quotients of bipartite graphs, Graph Theory 
with Applications to Algorithms and Computer Science (1985), 189-199. 

[5] I.J. Dejter and J. Quintana, Long cycles in revolving door graphs, Congres-
sus Numerantium 60(1987), 163-168. 

[6] I.J. Dejter, J. Cordova and J. Quintana, Two Hamilton cycles in bipartite 
reflective Kneser graphs, Discrete Mathematics 72(1988), 63-70. 

[7] I.J. Dejter, J. Cedeno and V. Jauregui, A note on Prucht diagrams, 
Boolean graphs and Hamilton cycles, Discrete Mathematics 114(1994), 131-135. 

[8] G.A. Dirac, Some theorems on abstract graphs, Proceedings of the London 
Mathematical Society 2(1952), 69-81. 

[9] D.A. Duffus, H.A. Kierstead and H.S. Snevily, An explicit 1-factorization 
in the middle of the boolean lattice, Journal of Combinatorial Theory, Series A 
65(1994), 334-342. 

67 



L. Euler, Solutio d'une question curieuse qui ne paroit soumise a aucune anal
yse, Mem. Acad. Sci. Berlin 15(1759), 310-337. 

F . Gray, Pulse code communications, U.S. Patent Number 2632058 (March 
1953). 

I. Havel, Semipaths in directed cubes, Graphs and Other Combinatorial Topics 
(1983), 101-108. 

P. Horak, T. Kaiser, M. Rosenfeld and Z. Ryjacek, The prism over the 
middle-levels graph is Hamiltonian, Order 22 (2005) 73-81. 

B. Jackson, Hamiltonian cycles in regular 2-connected graphs, Journal of Com
binatorial Theory, Series B 29 (1980), 27-46. 

H .A. Kierstead and W . T . Trotter, Explicit matchings in the middle levels 
of the boolean lattice, Order 5 (1988), 163-171. 

J. Moon and L. Moser, On Hamiltonian cycles in bipartite graphs, Israel 
Journal of Mathematics 1(1963), 163-165. 

L. Lovasz, Problem 11. In Combinatorial Structures and their Applications, 
(1970). 

O. Ore, A note on Hamiltonian circuits, The American Mathematical Monthly 
67(1960), 55. 

O. Ore, Hamiltonian connected graphs, Journal de Mathematiques Pures et 
Appliquees 42(1963), 21-27. 

L. Posa, Hamiltonian circuits in random graphs, Discrete Math. 14(4) (1976), 
359-364. 

F. Ruskey, Combinatorial Generation (2001). 
www.lstworks.com/ref/RuskeyCombGen.pdf 

C D . Savage, Long cycles in the middle two levels of the Boolean lattice,Ars 
Combinatoria 35(A) (1993), 97-108. 

C D . Savage and P. Winkler, Monotone Gray codes and the middle levels 
problem, Journal of Combinatorial Theory, Series A, 70(1995), 230-248. 

C D . Savage and I. Shields, A Hamilton path heuristic with applications to 
the middle two levels problem, Congressus Numerantium 140(1999), 161-178. 

68 

http://www.lstworks.com/ref/RuskeyCombGen.pdf


[25] C D . Savage, I. Shields and B. J. Shields, An update on the Middle Levels 
problem, submitled (Aug 2006). 

[26] I. Shields, Hamilton cycle heuristics in hard graphs, Ph.D. thesis, North Car
olina State University, Raleigh, (2004). 
www.l ib .ncsu.edu/ theses /avai lable /e td-03142004-013420/ 

[27] R. Stanley, Enumerative combinatorics vol. 1, (1997). 

[28] D.G. Wagner and J. West, Construction of uniform Gray codes, Congressus 
Numerantium. 80(1991), 217-223. 

69 

http://www.lib.ncsu.edu/theses/available/etd-03142004-013420/


Appendix A 

Java code 

package midlevel; 

import Java.util.ArrayList; 

import Java.util.Scanner; 

import java.io.IQException; 

import Java.util.Random; 

public class Main { 

private ArrayList<Node> node; 

/* this is the same k as in the thesis and is assigned a 

value in public HidLevel*/ 

final private int K; 

// MAX is equal to k+1 and is assigned a value in public MidLevel 

final private int MAX; 

/* this is is the same n as in the thesis ( n=2k+l ) 

and is assigned a value in public MidLevel */ 

final private int N; 

/* This is a list of all the elements in the 
subgroup of Z_n\{0} which has order k */ 

final private int[] multiplyList; 

class Node extends Object { 

private ArrayList<Boolean> cell; 

^Override 

public boolean equals(Object object) { 

Node node = (Node) object; 

final int SIZE = this.cell.sizeC); 

for (int i = 0; i < SIZE; i++) 

if (this.cell.get(i) != node.cell.get(i)) 

return false; 

return true; 

70 



/* Default Constructor initiate a new ArrayList */ 

NodeC) { 

this.cell - new ArrayList<Boolean>(); 

> 

/* Clone Constructor */ 

Node(Node clone) -C 

this.cell = new ArrayList<Boolean>(); 

for (int i = 0; i < clone.lengthC); i++) 

this.cell.add(clone.getCi)); 

> 
/* Oparam value to be added to our Node String */ 

void add(boolean value) -{ 

this.cell.add(value); 

> 

boolean get(int index) { 

return this.cell.get(index); 

} 

/* Shift Node one placing */ 

void shift() { 

final int size = this.cell.sizeO - 1; 

final boolean temp - this.cell.get(size); 

for (int i = size; i > 0; i~) 

this.cell.set(i, this.cell.get(i - 1)); 

this.cell.set(0, temp); 

/* flparam x is the multiplier */ 

void multiply(int x) throws lOException { 

if (x == 0) 
throw new IDExceptionO ; 

final int size = this.cell.sizeO; 
Node clone = new Node(this); 

int location; 

for (int i = 0; i < size; i++) { 
location » i * x X size; 

this.cell.set(location, clone.cell.get(i)); 

> 
this.validifyO; 

} 

/* Flip the ones to zeros and zeros to ones */ 

void compliraentO { 

final int SIZE = this.cell.size(); 

for (int i - 0; i < SIZE; i++) 

if (this.cell,get(i) ™ true) 

this.cell.set(i, false); 

else 

this.cell.set(i, true); 

> 

/* Cheks if the number of ones exceeds the number of zeros 

in every prefix */ 

boolean validO { 

int count = 0; 

final int SIZE = this.cell.sizeO ; 

for (int i * 0; i < SIZE; i++) { 

if (this.cell.get(i)) 

count++; 

else 

count—; 

if (count <= 0) 

return false; 

} 

return true; 

} 

/* Converts to vertex to a vertex in 

the same class which is valid */ 
void validity() { 

boolean flag - true; 
do 

if Othis.validQ) 

71 



this, shift 0 ; 

else 

flag = false; 

while (flag); 

} 

ArrayList<Node> neighbours() throws IOException < 

Node clone; 

ArrayList<Node> list = new ArrayList<Node>() ; 

final int SIZE = this.cell.size(); 

for (int i = 0; i < SIZE; i++) { 
if (this.cell.get(i)) { 

clone * new Node(this); 

clone.cell.set(i, false); 

clone.complimentO ; 

clone.validifyO ; 

list.add(clone); 

} 

} 

if (list.sizeO != MAX) 

throw new IQExceptionO; 

return list; 

ArrayList<Node> friends() throws IOException { 
Node clone; 
ArrayList<Node> list = new ArrayListO; 

for (int i : multiplyList) { 

clone = new Node(this); 

clone.multiply(i); 

clone.validifyO ; 

list.add(clone); 

> 

return list; 

/* flreturn value number of ones in Node String */ 

int numberQfOnesO { 

int count = 0; 

for (int i - 0; i < this.cell.size(); i++) 

if (this.cell.get(i)) 

count++; 

return count; 

/* ©return value number of zeros in Node String */ 
int numberOfZeros() { 

int count * 0; 

for (int i - 0; i < this.cell.sizeO; i++) 
if (!this.cell.get(i)) 

count++; 

> 
return count; 

aOverride 

public 

} 

int le: 

> 

String toStringO { 

String temp = ,MI; 

for (int i = 0; i < cell 

if (cell.get(i) ! 

temp += 

else 
temp +* 

return temp; 

ngthO { 
return this.cell.size(); 

.sizeO; i++) 

"1' 

"0' 

true) 

'; 

'; 

public Main(int value) throws IOException { 
//this initializes the variables used to what the user indicated 

72 



} 

K = value; 

MAX = K + 1; 

N « 2 * K + 1; 

node - new ArrayList<Node>(); 
multiplyList * new int[K]; 

multiplyList[0] = 4; 

for (int i = 1; i < K; i++) 

multiplyList [i] = 4 * multiplyList [i - 1] '/, N; 

if (multiplyList[multiplyList.length. - 1] != 1) 

throw new IOExceptionO; 

private void nodeBuilder(Node temp) throws IOException { 

/*this method is used to extend the partial strings when 

building the list of vertices in R_k*/ 

if (temp.numberOfOnesO =x this.MAX) { 

this.node.add(zeroSpaces(temp)); 

// System.out.println(this.node.get(this.node.size() - 1)); 

} else if (temp.numberOfOnesO > this.MAX) 

throw new IOExceptionO ; 

else { 
if (temp.numberOfOnesO - 1 == temp.numberOfZerosO) { 

temp.add(true); 

nodeBuilder(temp); 

} else { 

Node clone = new Node(temp); 

temp.add(false); 

nodeBuilder(temp); 

clone.add(true); 

nodeBuilder(clone); 

private int find(ArrayList<Node> x, Node y) throws IOException { 

/*this method finds and returns the possition of the given node 
on the given list*/ 

if (x.sizeO — 0) 

throw new IOExceptionO ; 
for (int i - 0; i < x.sizeO; i++) •( 

if (x.get(i).equals(y)) 
return i; 

} 
throw new IOExceptionO ; 

private boolean finder(ArrayList<Node> x, Node y) throws IOException { 

/*This method returns true if the given node is on the given list 

and false otherwise*/ 

if (x.sizeO =•== 0) 

throw new IOExceptionO ; 

for (int i = 0; i < x.sizeO; i++) { 

if (x.get(i).equals(y)) 

return true; 

} 
return false; 

> 

private ArrayList<Kode> appender(ArrayList<Node> x, ArrayList<Node> y ){ 
/*This combines the two lists given into one list*/ 

ArrayList<Node> temp = x; 
for( int i = 0; i < y.sizeO ; i++) temp.add(y.get(i)); 

return temp; 

private ArrayList<Node> cycleCutter(ArrayList<Node> x, int y, boolean 

direction ){ 

/•This method returns the nodes in a cycle starting as the given 

index and in the give direction*/ 

ArrayList<Node> temp = new ArrayList<Node>(); 

if( !direction ){ 

for(int i-0; i<x.size();i++) 

73 



temp. add(x. get ( (y+i)7.x. size () ) ) ; 

for(int 1=0; i<x.size();i++) 

temp. add(x.get ( (y-i+x. size O )'/,x. sizeO ) ) ; 

} 

return temp; 

private ArrayList<Node> flip(ArrayList<Node> list, int x, int y) 

/*This implements the modificed Posa flip to make a cycle */ 

throws IOException { 

ifCy<2)return list; 

ArrayList<Node> temp = new ArrayList<Node>(); 

final int multiplier » this.multiplyList[x]; 

for (int i - 0; i < y + 1; i++) 

temp.addClist.get(i)); 

for (int i = list.sizeO - i; i > y; i—) { 

list.get(i).multiply(multiplier); 

temp.add(list.get(i)); 
} 
return temp; 

private ArrayList<Node> flip(ArrayList<Node> list, int y) 

throws IOException •( 

/•This method implements the other modified Posa flip which 

is used to change the end point of the current path then trying to 

interconnect the cycles */ 

if(y<2)return list; 

ArrayList<Node> temp = new ArrayList<Node>(); 

for (int i = 0; i < y + lj i++) 

temp.addClist.get(i)); 

for Cint i - list.sizeO - 1; i > y; i~) i 
temp.addClist.get(i)); 

} 
return temp; 

private ArrayList<Node> purge(ArrayList<Node> x, ArrayList<Wode> y) 

throws IOException { 

/*This method supllse the first list given with all the coi 

entries from the second list removed*/ 

ArrayList<Node> result = new ArrayList<Node>(); 
boolean inList - false; 

for (int i - 0; i < x.sizeO; i++) { 

for (int j = 0; j < y.sizeO; j++) { 

if (x.get(i).equals(y.get(j))) { 

inList = true; 

break; 

> 
> 
if C!inList) 

result.addCx.get(i)); 

inList = false; 

} 

return result; 

private ArrayList<Hode> purge(ArrayList<Node> x, Node y) throws 

IOException { 

final int size » x.sizeO; 

for (int i = 0; i < size; i++) 

if (x.get(i).equals(y)) < 

x.removed); 
break; 

> 
return x; 

} 

private ArrayList<Node> intersection(ArrayList<Node> x, ArrayList<Node> y) 

74 



throws IOException { 

ArrayList<Node> result - new ArrayList<Node>(); 
boolean inList = false; 

for (int i = 0; i < x.sizeO; i++) { 

for (int J = 0 ; j < y.sizeO ; j++) { 

if (x.get(i) .equals(y.get(j))) { 

inList - true; 

break; 

} 

> 
if (inList) 

result.add(x.get(i)); 

inList = false; 

} 

return result; 

private ArrayList<Node> multiList(ArrayList<Node> x, int y)throws 
I0Exception{ 

ArrayList<Node> temp* new ArrayList<Node>(); 

Node node™ new Node(); 

for (int i=0; i< x.sizeO; i++){ 

node = new Node( x.get(i) ); 

node.multiply(y); 

temp.add(node); 

} 

return temp; 

} 

private Node zeroSpaces(Node node) { 

/* this is used in nodeBuilder to append the appropriate number 
of 0's to a string when it already had k+1 l's*/ 

int adjust = this.N - node.lengthO ; 
if (adjust == 0) 

return node; 
for (int i = 0; i < adjust; i++) 

node.add(false); 

return node; 

private static void print(ArrayList<Node> x) { 

// prints a list of vertices 

System.out .println( "Length = " + x.sizeO); 

for (int i •* 0; i < x.sizeO; i++) { 

System.out.println( x.get(i) ) ; 

> 

/* Entry point for our program. */ 

public static void main(String[] ignored) throws IOException { 

Scanner in = new Scanner(System.in); 

System.out,print("Enter value of K: " ) ; 

Main simulation = new Main(in.nextlntO) ; 

simulation.run(); 

} 

private void run() throws IOException { 
// Make the list of vertices in R_k 
Node first = new NodeO; 

first.add(true); 
first.add(true); 

this.nodeBuilder(first); 

// Make the two central vertices, then remove them from the list of 

// vertices R_k 

Node centl = new NodeO; 

for (int i = 0; i < N; i++) { 

centl.add(false); 

} 

System.out.println("R_k made successfully"); 

System.out,println("running Posa path constructor...."); 

centi.cell.set(0, true); 

75 



for (int i : multiplyList) 

centl.cell.set(i, true); 

Node cent2 = new Node(centl); 

cent2.cell.set(0, false); 

cent2.compliment(); 

centl.validifyO; 

cent2.validify(); 

ArrayList<Node> cent * new ArrayList<Node>(); 

cent.add(centl); 

cent.add(cent2); 

/* compare is a copy of the list of all the vertices in 

R_k 'node' which we will use to check that all the vertices 

are on our final Hamiltonian path*/ 

ArrayList<Hode> compare = new ArrayList<Node>(node); 

node = purgefnode, cent); 

// Now we the list that will turn into the cycle in Z_n 

ArrayList<Node> cycle = new ArrayList<Node>(); 
cycle.add(node.get(node.size() - 2)); 

cycle.add(node.get(node.size() - 1)); 

node - purge(node, cycle.get(0)„ friends O ) ; 

node = purge(node, cycle.get(l). friends O ) ; 

// Initialize variables used in main loop; 

ArrayList<Node> inter * new ArrayList<Node>(); 

ArrayList<Node> flipList = new ArrayList<Node>(); 

int location * -1; 

int multilndex = -1; 

Node choosen - new Node(); 

Node flipNode * new NodeO; 

boolean flip * false; 

boolean allGood a true; 

boolean done = false; 

boolean pathNowCycle = false; 

Random rand = new Random(); 

while (!done) { 

while (!flip) { 

inter * intersection(node, cycle.get(cycle.size() - 1) 

.neighboursO); 

if (inter.size() != 0) { 

choosen = inter.get(rand.nextlnt(inter.size())); 

cycle.add(choosen); 

node " purge(node, choosen.friends()); 

} else { 

if (node.sizeO == 0) { 

done = true; 

System.out.println("done"); 

break; 

} else { 

flip = true; 

} 

} 

} 

if (!done) { 

flipList = purge(cycle.get(cycle.size() - 1).neighboursO, 

cycle.gBt(cycle.size() - 2)); 

flipNode = flipList.getfrand.nextInt(flipList.size())); 

flipList = intersectionfcycle, flipNode.friends()); 

if (flipList.sizeO -- 0 ) 0 

//Do nothing 

else{ 

multilndex = find(flipNode.friends(), flipList.get(0)); 

flipNode * flipList.get(O); 

location = find(cycle, flipNode); 

cycle = flip(cycle, multilndex, location); 

flip = false; 

> 
} else { 

/* verify that cycle was built correcrly*/ 

for (int i = 0; i < cycle.size() - 1; i++) { 

if (!finder(cycle.get(i).neighboursO, cycle.get(i + 1))) { 

System.out.println("error in cycle construction"); 

allGood = false; 

76 



> 
} 
if (allGood) { 

System.out.println("Path contains all vertices:"); 

System.out.println("Attempting to make path into cycle..."); 

do { 

if Ofinder(cycle.get(cycle.sizeC) - 1) .neighboursO , 

cycle.get(0))) { 

//System.out.println("path.. . to ... cycle"); 

flipList = purge(cycle.get(cycle.size() - 1) 

.neighboursO, cycle, get (cycle. sizeO - 2)); 

flipNode - flipList.get(rand.nextlnt(flipList 

,size())); 

flipList =* intersection(cycle, flipNode.friends()); 

if (flipList.size() == 0) { 

System.out,println("flipList error"); 

} else { 

multilndex = find(flipNode.friends(), flipList 

•get(0)); 

flipNode - flipList.get(0); 
location - find(cycle, flipNode); 

cycle - flipfcycle, multilndex, location); 

> 
} else { 

pathNowCycle = true; 

allGood = true; 

for (int i = 0; i < cycle.size() - 1; i++) { 

if O f inder(cycle.get(i) .neighboursO , cycle 

.get(i + 1))) { 

System.out 

.printlnO'error in cycle construction"); 

allGood = false; 

> 
} 

} while (!pathNowCycle); 

if (allGood) { 
System.out.printlnC"cycle complete"); 

} 

> 

} 

System.out.printlnO'Interconnecting borken cycles...."); 

ArrayList<Node> finalPath = new ArrayList<Node>();//Hamiltonian path 

/*This is a array that contains all the cycles that are equivalent 

Under CFA's as well the last entry on the array is a list of the 

two central vertices */ 

ArrayList<Node> [] CYCLES = new ArrayList[K + 1]; 

CYCLES[0]-cycle; 
boolean direction; 

int numberOfCyclesIncluded; 
for(int i=0; i<K;i++){ 

CYCLES[i+l] = mu l t iL i s t ( cyc l e , t h i s .mu l t i p lyL i s t [ i ] ) ; 
> 
CYCLES[K]-cent; 
ArrayList<Node> NeighborList - new ArrayList<Node>(); 

d i rec t ion - rand.nextBooleanO ; 
f inalPath « appender( finalPath,cycleCutter(CYCLES[0], 1 ,direct ion ) ) ; 
numberDfCyclesIncluded31; 
done=false; 
Node neighbor -new NodeO ; 

int index; 

do{ 

NeighborList » purge(f inalPath.get(finalPath,size()-l) .neighboursO , finalPath); 

if(numberOfCyclesIncluded == K+l) done=true; 
else if(NeighborList.size()*=Q ){ 

/*if this is the case all neighbors of the last vertex on 
our current path lie on the path so we Posa flip the path*/ 

NeighborList = finalPath.get(finalPath.sizeO-l) .neighboursO ; 
neighbor - NeighborList .get(rand.nextlnt(NeighborList.sizeO)) ; 
finalPath * flip(finalPath, find(finalPath,neighbor)); 

77 



}else{ 

/*If this is the case the last vertex on our current path 

has a neighbor on a path we haven't added yet so we can 

extend the current path by*/ 

//find on cycle list; 

neighbor = NeighborList.get(rand.nextInt(NeighborList.size())); 

int j=0; 

do< 

if( finder(CYCLES[j].neighbor) ) { 

index ~ find(CYCLES[j].neighbor); 

direction = rand.nextBooleanO ; 

finalPath = appender( finalPath, 

cycleCutter(CYCLES[j].index.direction ) ) ; 

numberOfCyclesIncluded++; 

break; 

> 

}while(true); 

} 

}while(!done); 

System.out.println("Path now contains all verties"); 

System.out.println("flipping path to get correct endpoints..."); 

boolean correctEndpoints - false; 

Node end -new NodeO; 

end,add(true); 

forCint i =• 0; i < K; i++){ 

end.addCtrue); 

end.add(false); 

} 

do{ 

if(finalPath.get(finalPath.size()-l).equals(end)) correctEndpoints =true; 
else-C 

NeighborList - finalPath.get(finalPath.size()-l).neighboursO; 

neighbor = NeighborList.get(rand.nextInt(NeighborList,size())); 
finalPath - flip(finalPath, find(finalPath,neighbor)); 

> 
}while(!correctEndpoints); 

System.out.println("Done making Hamilton!an Cycle in R_k"); 

/*Check that the final path is infact Hamiltonian by 

1) checking that all the vertices are in it 

2) all adjacent enties are neighbors*/ 

if( purge(compare,finalPath).size() — 0 kk 
compare.size() " finalPath.size() ) 

{ 
System.out.println("Final path contains all vertices"); 
allGood = true; 
for (int i = 0; i < finalPath.size() - 1; i++) 
•C 

if (!finder(f inalPath.get (i) .neighboursO , 

finalPath.get(i + 1))) 

{ 

System.out.println("error in cycle construction"); 

allGood = false; 

> 

> 
if( allGood ) print(finalPath); 

> 
} 

} 

78 



Appendix B 

Code output 

Enter value of K: 

5 
R^k made successfully 
running Posa path constructor.... 

done 

Path contains all vertices: 

Attempting to make path into cycle... 

cycle complete 

Interconnecting borken cycles.... 
Path now contains all verties 

flipping path to get correct endpoints... 

Done making Hamiltonian Cycle in R_k 

Final path contains all vertices 

Length = 42 

11111100000 

11111010000 

11011110000 
11110010010 

11011010010 
11010110100 

11101010010 
11110001010 

11101010100 
11101100010 

11101100100 

11011001100 
11011100100 

11111001000 

11101110000 
11110011000 
11100111000 
11110001100 
11100110010 
11010101100 
11011001010 
11011010100 
11010110010 
11101001010 
11110101000 
11010111000 
11100101100 
11101001100 
11011100010 
11101101000 
11111000100 
11110110000 
11110010100 
11101011000 
11100110100 
11011011000 
11110100100 
11111000010 
11110100010 
11011101000 
11100101010 
11010101010 

Ru 

79 



Appendix C 

Diagrams of M^'s and R^s 

C.l Rk 

All Z-vertices are pictured with loops. Central vertices are pictured as empty circles. 

The remaining vertices are pictured as filled circles. 

9 
i?2 : Note that this is the only case were there are vertices that are both central and 

1-vertices. 

80 



ifc 

R 4 • 

81 



C.2 Mk 

Because Mk is vertex transitive we choose not to label l-vertices or central vertices 

any differently than other vertices. 

M 2 • 

82 



M3: 

M4: 

83 


