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ABSTRACT

Historical observed data and future climate projections provide enough evidence that 

water resources systems (i.e., surface water and groundwater) are extremely vulnerable to 

climate change. However, the impact of climate change on water resources systems varies 

from region to region. Therefore, climate change impact studies of water resources systems 

are of interest at regional to local scales. These studies provide a better understanding of the 

sensitivity of water resources systems to changes in climatic variables (i.e., precipitation and 

temperature), and help to manage future water resources. In addition to climate change, 

human-induced land use changes also significantly affect water resources systems. Therefore, 

climate and land use changes can provide offsetting and additive impacts on water resources 

systems depending on the region and watershed characteristics. In this dissertation research, 

groundwater-surface water (GW-SW) interaction under the effects of climate and land use 

changes were investigated through the development of a Gridded Surface Subsurface 

Hydrologic Analysis (GSSHA) modeling system using a case study in Kiskatinaw River 

watershed (KRW), British Columbia, Canada. Based on the simulation results, it was found 

that the mean annual groundwater contribution to stream flow in the study area during the 

short-term period (2012-2016) under the A2 and B1 climate change scenarios of the 

Intergovernmental Panel on Climate Change (IPCC) is expected to decrease by 3.3% and 

1.8%, respectively, with respect to that during the reference period (2007-2011). This was 

due to increased precipitation (on average 6.1% under the A2 and 3.6% under the B1 

scenarios) and temperature (on average 0.64°C under the A2 and 0.36°C under the B1 

scenarios). The climate change would result in increased stream flow (on average 6.7% and



3% under the A2 and B1 scenarios, respectively) and groundwater discharge (on average 

2.8% and 1.2% under the A2 and B1 scenarios, respectively), but the major increase occurred 

in surface runoff (on average 22.5% and 11.2% under the A2 and B1 scenarios, respectively). 

Under the effect of climate change, the mean groundwater contribution to stream flow 

illustrated monthly, seasonal, and annual variation due to precipitation variability. The mean 

seasonal groundwater contribution to stream flow under both climate change scenarios is the 

lowest and highest during summer and winter, respectively. Similar results were found for 

the long-term period (2020-2040).

When land use/land cover (LULC) changes (i.e., increasing forest clear cut area, and 

decreasing forest and agricultural areas) were combined with climate change scenarios, 

similar results of climate change effects were found, but with a decreasing rate except in 

stream flow and surface runoff. Compared to the reference period (2007-2011), the mean 

annual groundwater contribution to stream flow from 2012 to 2016 under the combined 

effect of A2 or B1 climate change scenario and LULC changes is expected to decrease by 

6.4% and 4.3%, respectively. Under the combined LULC changes with A2 and B1 scenarios, 

on average stream flow increased by 10.1% and 5.8%, groundwater discharge increased by 

2.1% and 0.7%, and surface runoff increased by 42% and 29%, respectively. The results 

indicate that the flow patterns were shifted to the regime with more surface runoff and stream 

flow but less groundwater discharge, which implies that land use change has an important 

role in GW-SW interaction within a watershed. In addition, uncertainty analysis of GW-SW 

interaction in the study area was conducted using a Monte Carlo method, and the cumulative 

frequency distributions of groundwater contributions to stream flow under the A2 and B1



climate change scenarios were obtained. These results also illustrated different monthly, 

seasonal, and annual variation patterns.

The key contribution of this dissertation research was the inclusion of climate and LULC 

changes scenarios in the developed numerical model to assess GW-SW interaction. The 

modeling results will help better understand the dynamics of GW-SW interaction due to 

climate change or combined climate and LULC changes. The results will also provide useful 

information for effective short-term and long-term water resources decision making in the 

study area in terms of seasonal and annual water extractions from the river and water 

allocation to the stakeholders for future water supply, as well as for evaluating the ecological 

conditions of the stream. The developed numerical model would serve as a useful tool for 

dealing with GW-SW management problems in the context of climate and land use changes.
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CHAPTER 1

INTRODUCTION

1.1 Background

Groundwater-surface water (GW-SW) interaction is a common phenomenon observed in 

nature. During flooding season, surface water can recharge groundwater, but during drought 

season groundwater acts as an important source to feed the surface water flow. As a result, 

groundwater and surface water are closely linked components of the hydrologic system. The 

development and exploitation of any one component can affect the other component. It is 

thus crucial to quantify the exchange processes between these two components for 

sustainable water resources management (Sophocleous, 2002).

It has been recognized that the water resources system is extremely vulnerable to changes 

in climate (McCarthy et al., 2001; Kundzewicz et al., 2008). The IPCC (Intergovernmental 

Panel on Climate Change) reported that the global atmospheric concentrations of greenhouse 

gases (GHG) will continue to increase in the following decades and lead to continuing 

climate change (Solomon et al., 2007). Climate change impact studies have been conducted 

by more focusing on surface water bodies than on groundwater because groundwater is less 

visible and has a more complex relationship with climate (Scibek et al., 2006a; Kundzewicz 

et al., 2009). Due to the importance of groundwater resources, climate change impact studies 

on groundwater have received increasing attention from many scientists during the last 

decade. For example, Scibek et al. (2006a) conducted a case study of an unconfmed aquifer
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in the Grand Forks valley in south-central British Columbia, and they developed a 

methodology for linking climate models, hydrologic model (i.e., HELP), and groundwater 

flow model (i.e., Visual MODFLOW) in order to investigate the impacts of climate change 

on groundwater resources. Van Roosmalen et al. (2007) used the DK model (The National 

Water Resource model for Denmark) based on MIKE SHE code to study climate change 

impacts on groundwater system for two study areas in Denmark. Krause et al. (2007) used 

the IWAN (Integrated Water Balance and Nutrient Dynamics Model) model to simulate 

exchange fluxes between the groundwater of the floodplain and the surface water within the 

direct catchment of Lower and Central Havel River, Germany. Jenkins (2006) used the 

GSSHA (Gridded Surface Subsurface Hydrologic Analysis) model to investigate GW-SW 

interaction in the floodplain of Rio Grande River, New Mexico, USA during high and low 

flows in Rio Grande River. Godemiaux et al. (2009) examined the climate change impacts on 

the groundwater reserve in Geer Basin catchment in Belgium using a finite element model 

called HydroGeoSphere. Jackson et al. (2011) used the ZOODRM model and the 

ZOOMQ3D finite difference code to assess the impacts of climate change on groundwater in 

the Chalk aquifer system in England. Dams et al. (2012) used a coupled model of WetSpa 

and MODFLOW to study climate change impacts on the groundwater system in the Kleine 

Nete basin in Belgium. Vansteenkiste et al. (2012) compared the estimations of climate 

change impacts on the flow regime in the Grote-Nete catchment in Belgium by using two 

spatially distributed models, MIKE SHE and WetSpa.

In general, most of the previous studies reported how the mean annual groundwater level 

and groundwater recharge or discharge (i.e., mean of 20 to 40 years) would change under 

different climate change scenarios. Only a few studies (Van Roosmalen et al., 2007; Jackson
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et al., 2011; Dams et al., 2012; Vansteenkiste et al., 2012) reported how the mean monthly 

groundwater recharge and discharge, stream flow, as well as groundwater level would change 

between current and projected future climates. There is little knowledge regarding how the 

mean monthly groundwater contribution to stream flow will change under different climate 

change scenarios. These monthly changes could determine the monthly status of groundwater 

resources and site conditions for groundwater-dependent terrestrial ecosystems (Naumburg et 

al., 2005). They will also determine the monthly, seasonal and annual variations of stream 

flow dependency on groundwater, and these will provide useful information for monthly, 

seasonal and annual water extractions from the river, and allocation to the stakeholders for 

future water supply. In addition to climate change, land use changes can also significantly 

affect groundwater recharge and discharge, and surface water flow patterns by altering soils’ 

infiltration rate (Jinno et al., 2009). For example, increasing urban area resulted in decreasing 

groundwater discharge, and increasing stream flow and surface runoff (Klocking et al., 2002; 

Chang, 2007; Lin et al., 2007; Dams et al., 2008; Zhou et al., 2013); the conversion of 

perennial vegetation to seasonal growing crops in the Mississippi River Basin resulted in 

increased groundwater discharge and stream flow, and decreased surface runoff (Zhang et al., 

2006b; Schilling et al., 2010); changing agricultural area into grasslands in a sub catchment 

of Havel River, Germany, resulted in decreased groundwater discharge (Krause et al., 2004); 

the conversion of grassland into forest in the western part of Jutland, Denmark, resulted in 

decreased groundwater discharge (Van Roosmalen et al., 2009); a decrease of grassland area 

with concurrent increases of shrub land rain-fed agriculture, bare ground irrigated agriculture 

and urban area led to an increase in the surface runoff and a decrease in the groundwater 

discharge and stream flow (Ghaffari et al., 2010). A number of studies (Klocking et al., 2002;
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Batelaan et al., 2003; Krause et al., 2004; Lin et al., 2007; Dams et al., 2008; Van Roosmalen 

et al., 2009; Wijesekara et al., 2012; Zhou et al., 2013) have investigated the combined 

impacts of climate and land use changes on watershed hydrology. Many of the previous 

studies reported how the mean annual groundwater recharge and discharge, stream flow, as 

well as groundwater level would change under different land use change scenarios. However, 

little attention was paid to investigate how the mean monthly, seasonal and annual 

groundwater contributions to stream flow will change under both changing land use and 

climatic conditions. Moreover, most of the parameters (e.g., precipitation, soil properties, 

topography) of hydrologic models used for GW-SW interaction simulation require 

measurements from resources-intensive field exercises (Benke et al., 2008), and they are 

always associated with uncertainty. Such parameter uncertainty would also lead to 

uncertainty in modeling outputs (Muleta et al., 2004). A number of studies have conducted 

uncertainty analysis of stream flow in watershed due to parameter uncertainty using various 

uncertainty analysis methods in different hydrologic models (Beven et al., 1992; Kuczera et 

al., 1998; Vrugt et al., 2003; Benke et al., 2008; Mishra, 2009; Dotto et al., 2012; Shen et al., 

2012; Shen et al., 2013). However, few studies have reported regarding the uncertainty 

analysis of the mean monthly, seasonal and annual groundwater contributions to stream flow 

in a watershed.

1.2 Objectives

This dissertation research is proposed to fill the gaps identified above using a study area 

along the river of the Mainstem sub-watershed of Kiskatinaw River Watershed (KRW) in
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north-eastern British Columbia as a case study. The mean monthly, seasonal and annual 

groundwater contributions to stream flow under different GHG emission scenarios (i.e., A2 

and Bl), as well as combined climate and land use changes were investigated using the 

GSSHA model. The related objectives include (1) development of a GSSHA model for the 

study area of the Mainstem sub-watershed, (2) investigating climate change impacts on GW- 

SW interaction in the study area using the GSSHA model under different GHG emission 

scenarios (i.e., A2 and Bl scenarios of IPCC), (3) examining the combined impacts of land 

use/land cover and climate changes on GW-SW interaction, and (4) uncertainty analysis of 

GW-SW interaction under different GHG emission scenarios.

1.3 Organization of dissertation

This dissertation is organized into eight chapters. Chapter 1 introduces the research 

importance and objectives. Chapter 2 provides details of literature review of GW-SW 

interaction. Chapter 3 describes the study area, GW-SW monitoring network development, 

field data collection, and development of the GSSHA numerical model. Chapter 4 presents 

the generation of future climate and land use/land cover change scenarios. Chapter 5 

discusses the modeling results of climate change impacts on GW-SW interaction under 

different GHG emission scenarios. Chapter 6 presents the modeling results of climate and 

land use/land cover changes impacts on GW-SW interaction. Chapter 7 describes the 

uncertainty analysis results of GW-SW interaction. Chapter 8 presents the summary and 

conclusions of this study and recommendations for future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 Background

Investigation of GW-SW interaction in a watershed has been continued since the last 

several decades (Lee, 1977; Woessner et al., 1984; Workman et al., 1991; Geist et al. 1998; 

Krause et al., 2007; Van Roosmalen et al., 2007; Godemiaux, 2010; Dams et al., 2012). This 

interaction occurs throughout the year because groundwater and surface water are closely 

linked components of the hydrologic system. In a watershed, groundwater interacts with 

surface water (i.e., stream or river) in four basic ways depending on the elevations of surface 

water and groundwater table as described below (Woessner, 1998; Winter et al., 1998):

(1) If groundwater levels at both banks are higher than surface water level in the 

river/creek, groundwater contributes to river/creek, which is shown in Fig. 2.1a (i.e., 

gaining stream or groundwater discharging).

(2) If groundwater levels at both banks are lower than surface water level in the 

river/creek, river/creek contributes to groundwater, which is shown in Fig. 2.1b (i.e., 

losing stream or groundwater recharging).

(3) If groundwater levels at both banks are equal to surface water level in the river/creek, 

zero exchange occurs, which is shown in Fig. 2.1c (i.e., parallel flow stream).

(4) If groundwater level at one bank is higher than surface water level in the river/creek 

but lower at the opposite bank, a flow-through channel occurs, which is shown in Fig.
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2.Id (i.e., gaining at one side of the river/creek and losing at other side of the 

river/creek).

River,

Land surface

-"Groundwater
table

River

Land surface

Groundwater
table

RiverRiver

Land surface

Groundwater
table

Figure 2.1 Groundwater-surface water interaction in a (a) gaining, (b) losing, (c) parallel 
flow and (d) flow-through stream (modified from Woessner, 1998). The arrow indicates 
groundwater flow direction.

During the last several decades, numerous studies have been done for investigating GW- 

SW interaction using different methods. This chapter will review the methodologies used in
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previous research on the investigation of GW-SW interaction, and highlight the critical issues 

that need to be further explored.

2.2 Methods used for investigating groundwater-surface water interaction

GW-SW interaction and base flow (groundwater discharge) quantification have been 

investigated by researchers using different methods, including field investigation and 

measurement, numerical models, analytical methods, and experimental methods. Various 

field measurement methods (e.g., seepage meters, piezometer methods, tracer methods) have 

been used to investigate GW-SW interaction and determine base flow, but they are usually 

site and case specific (Kalbus et al., 2006). Due to limited data availability, the understanding 

of the temporal and spatial variation of complex GW-SW interaction processes is very 

limited (Zhang et al., 2004). Sophocleous (2002) pointed out that base flow determination is 

a major challenge due to heterogeneities and the problem of integrating measurements at 

various scales. Analytical methods use analytical equations and graphs to determine base 

flow, but they cannot provide future forecasting. Experimental methods consider 

homogenous formation of soil, and are used in small-scale application. In contrast, numerical 

models are cost-effective for investigating and predicting GW-SW interaction and 

quantifying base flow (Kalbus et al., 2006). In the following sections, different types of 

methodologies used in GW-SW interaction studies are discussed.
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2.2.1 Field measurement methods

2.2.1.1 Using conventional wells and piezometers

Workman et al. (1991) and Jagucki et al. (1995) collected daily groundwater levels and 

river elevation at the Ohio Management Systems Evaluation Area (OMSEA) from August 

1991 to December 1995 to investigate the GW-SW interaction. Eleven wells (152 mm 

diameter PVC casing, and 6.1 m long) were installed in a 260 ha (2.6 km2) area surrounding 

the OMSEA site to monitor groundwater levels, and all the wells were installed on one side 

of Scioto River. The closest and farthest wells were installed 215m  and 2100 m away from 

the Scioto River bank, respectively. Groundwater levels were recorded hourly using 

electronic data loggers. In addition, a stream gauge at Higby, Ohio (approximately 21 km 

upstream from the OMSEA site) used to monitor river stage (i.e., surface water level) and 

stream flow provided over 60 years of data. The GW-SW interaction was then determined 

qualitatively by plotting the temporal variation of groundwater and surface water levels. This 

plot only indicates the GW-SW interaction by showing the almost similar patterns of 

temporal variation of groundwater and surface water levels, and the type of GW-SW 

interaction will be one of the four types as shown in Fig. 2.1 depending on groundwater and 

surface water levels. However, it cannot quantify groundwater discharge due to lack of other 

data (e.g., hydraulic conductivity and porosity of soil) to estimate groundwater discharge. 

Similarly, Durand et al. (2007) developed a riverbed hyporheic zone monitoring network 

over a 200 m river reach in the River Tame to assess GW-SW interaction. The network 

consisted of an array of 22 hybrid multilevel sampler (MLS) piezometer drive point devices 

that have a 1-cm diameter central piezometer tube for recording hydraulic head, and ten
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multilevel Teflon sampling tubes (3.2 mm OD, 1.6 mm ID) located at 10-cm depth intervals 

below the riverbed for groundwater quality sampling. The MLS piezometer drive points were 

distributed in eight transects with each transect containing two or three devices. A single 

bank-side extraction well was installed for monitoring groundwater level in the bank, and 

eight customized devices were also installed for automatic head measurements at 12 

locations. The hydraulic conditions were continuously recorded by using one pressure 

transducer within the extraction well and one other within the river, and were then used to 

determine GW-SW interaction through plotting surface water and groundwater levels against 

time period. Gonzales et al. (2009) conducted a field work of GW-SW interaction in a 

temperate lowland area of 51.7 km2 in the Netherlands from December 2007 to March 2008. 

Their field work consisted of the drilling o f observation wells, the collection and 

characterization of soil samples at different locations and depths, setting up a groundwater 

monitoring network, and water sampling during floods and low flows. Five observation wells 

were installed surrounding a canal, with four of them on the same site of the canal, and 

another one in the canal close to the surface water level recorder. In order to monitor GW- 

SW interaction, the water levels in the observation wells and canal were recorded by 

automatic data loggers. The water levels of groundwater and surface water were then plotted 

against time period to indicate the discharge of groundwater to the canal.

Geist et al. (1998) installed piezometers in the Hanford Reach (72 km) of Columbia River 

to understand GW-SW interaction. Piezometers were installed into streambed using a hand- 

operated 27-kg air-powered impact hammer attached via hose to an air compressor. In total, 

14 piezometers were installed in the Hanford Reach in 1995. Most of the piezometers were 

installed to a depth of > 1 m. Water surface elevations inside the piezometer (groundwater
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table elevation) and river levels were measured manually using an electrical interface 

measuring tape (Solinst) during 11 days in October and November 1995. Groundwater table 

elevation, river level and the depth of piezometer perforations below the river bed were used 

to calculate vertical hydraulic gradient (VHG) at each piezometer location.

VHL =  £  (2.1)

Where Ah is the difference between the water surface elevation inside the piezometer and 

the water surface elevation of the river (m), and AL is the distance below the river bed to the 

top of the piezometer perforations (m). Positive value of VHG indicates upwelling (i.e., 

groundwater discharge zones), while negative value indicates down-welling (i.e., 

groundwater recharge zones).

Kalbus et al. (2006) pointed out that the piezometer/well provides only point 

measurement of the hydraulic head. The equipment is quick and easy to install, and the 

measurement analysis is straightforward although this method is more appropriate for small 

scale applications and allows for a detailed survey of the heterogeneity of flow conditions in 

subsurface. However, groundwater levels fluctuate with time. All measurements of the 

hydraulic head at a study site should be made approximately at the same time, and the 

resulting contour and flow field maps are representative only of the particular time. Pressure 

transducers and data loggers can be installed in piezometers/wells in order to facilitate 

automatic temporal data collection which can then be used in numerical models to simulate 

groundwater levels and flow paths.
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2.2.1.2 Using seepage meters

Lee (1977) used a bag-type seepage meter to measure water flux across GW-SW 

interface. The meter consisted of a bottomless cylinder vented to a deflated plastic bag. The 

cylinder was inserted into the sediment, and the water flow from groundwater to surface 

water was collected in the plastic bag. From the collected volume, the cross section area of 

the cylinder, and the collection period, the seepage flux was calculated. In case of surface 

water seeping the sediment, a known volume of water was filled into the plastic bag before 

the installation, and from the volume loss the infiltration rate was calculated. Kelly et al. 

(2003) developed a modification of seepage meter fitted with piezometer along the axis of a 

pan, which is also called piezo-seepmeter. A manometer was used to measure the difference 

of hydraulic head between the piezometer screen and the inside of the pan, which was 

temporarily attached to a pump. The pumping flow rate was correlated to the head difference 

between piezometer and pan, and the fluxes into the seepage meter pan were then estimated. 

To overcome the inconvenience of manual measurement, various automated seepage meters, 

which monitor seepage variations with time, have also been developed. For example, Krupa 

et al. (1998) used a heat pulse meter, which is based on the relationship between the travel 

time of a heat pulse in the flow tube and the flow velocity. Paulsen et al. (2001) used an 

ultrasonic meter that relates the travel time of an ultrasonic signal through a flow tube to the 

flow velocity. Sholkovitz et al. (2003) used dye-dilution meter, which is based on the 

principle that the rate at which a dye solution is diluted by the inflow or outflow of water is 

directly proportional to the seepage flow rate. Rosenberry et al. (2004) used an
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electromagnetic meter, which measures the voltage induced by water passing through an 

electromagnetic field, while the voltage is proportional to the flow velocity.

Rosenberry (2008) designed a seepage meter for using in moving water of a side channel 

of South Platte River, Colorado. In that meter, a conical seepage cylinder, made of plastics 

drums, was partially inserted into the sediment bed, and the above portion of the cylinder was 

covered by a plastic or metal lid and was connected through plastic tubing to a seepage bag 

or flow meter, which was positioned inside a rigid shelter. That shelter, made of plastics 

boxes, was located nearby the cylinder and close to the bank where current velocity is very 

slow. Seepage flux was monitored using a flow meter when the seepage bag was full by 

getting water from the conical seepage cylinder. It was found that no significant relationship 

exists between seepage flux and current velocity, and this meter is not suitable for high 

current velocity as the errors are proportional to the current velocity.

Kalbus et al. (2006) pointed out that the inexpensive seepage meters are useful for the 

detection of groundwater discharge or recharge zones, as they are based on a simple concept. 

They provide base flow quantification at a certain reach of a stream/river. Therefore, they 

cannot determine base flow for the whole catchment or watershed. However, for better 

results, more seepage meters are required to be installed at many locations. In stream, the 

fluxes measured by seepage meter might not be entirely attributed to groundwater discharge, 

and they may also include shallow throughflow or hyporheic exchange flow. In addition, 

seepage meters themselves create obstacles to stream flow that might include interstitial flow 

into the seepage meter pan. Anibas et al. (2011) also pointed out about the uncertainties in 

the measured flux due to operational problems in the field. Similar to piezometers, seepage
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meters cannot quantify future groundwater discharge because they can only quantify 

groundwater discharge at observed time period.

2.2.1.3 Using tracer methods

Harvey et al. (1997) used an electrical conductivity mapping method to map groundwater 

discharge zones in a large lake by measuring the variations in sediment pore water electrical 

conductivity using YSI model 34 electrical conductance meter. This method was tested 

within the Hamilton Harbor at the western end of Lake Ontario. Systematic variations of 

electrical conductivity were found between near shore and offshore sediments, and three 

anomalous zones of elevated electrical conductivity were identified to represent groundwater 

discharge. The onshore and offshore piezometers were also used to find out the elevated 

electrical conductivities and the upward hydraulic gradients, which indicate groundwater 

discharge. Similarly, Geist et al. (1998) measured the electrical conductivity of water 

samples collected from the Hanford Reach (72 km) of Columbia River and three in-stream 

piezometers (L2, L5, and L8) to understand GW-SW interaction. Electrical conductivity 

measurement was conducted manually during eleven days of October and November 1995 

using a conductivity/temperature meter (YSI model 30). For piezometer, a 500-mL water 

sample was extracted to measure its electrical conductivity. Electrical conductivity measured 

within the river at all locations averaged 132.9 fiS I cm (S.D. = 4 A / i S  / cm),  whereas 

electrical conductivity values measured within piezometers L2 and L8 were similar with an 

average of 131.9 fiS / cm (S.D. = 3.5 juS / c m )  and 144.1 / iS  / cm (S.D. = 20.4 / j S / c m ) ,  

respectively. The relative similarity between electrical conductivity values suggests that the
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hyporheic zone at these locations was comprised predominantly of river water. Electrical 

conductivity within piezometer L5 was higher, with an average of 281.4 /xS / c m  (S.D. =

16.4 juS / c m ), indicating a higher proportion of groundwater present in the hyporheic zone at 

that location than the other observed sites.

Becker et al. (2004) used a heat balance equation to calculate groundwater discharge by 

measuring stream temperature and stream flow, where the stream temperature was a function 

of groundwater discharge, stream flow, and additional heat gains and losses through the 

stream surface. Conant (2004) and Schmidt et al. (2006) estimated water fluxes through the 

streambed using streambed temperatures by assuming that variations in temperature are 

attributed to spatial variations in water flux through the streambed. Essaid et al. (2008) also 

used heat as a tracer to study the temporal and spatial variability of fluxes through streambed 

by continuously monitoring temperature and head in stream reaches within four agricultural 

watersheds: Leary Weber Ditch (7.2 km2), Indiana (IN); Maple Creek (956 km2), Nebraska 

(NE); DR2 Drain (5.5 km2), Washington (WA); and Merced River (822 km2), California 

(CA). Two locations in Leary Weber Ditch and DR2 Drain, and one location in Maple Creek 

and Merced River were monitored. At the NE, WA and CA sites, piezometers installed in the 

streambed were constructed using 5-cm inner diameter PVC pipe with 15-cm long screen. At 

IN site, piezometers were constructed from 3-cm inner diameter PVC. At IN and WA sites, 

piezometers were extended above the highest stream water level, and were open to the 

atmosphere. At NE site, piezometers were vented to the atmosphere by plastic tubing that ran 

under the stream and came out on the stream bank (above flood stage). Because of the size of 

Merced River, such installations were not feasible and the piezometers were extended 15 cm 

above the river bed and sealed with waterproof caps. Piezometers were installed using the

15



hydro jetting method, which uses high pressure water to flush sediment. Two piezometer 

nests were installed at IN site, and one piezometer nest was installed at other sites. The 

temperature of water in the streams and the piezometers was monitored at a 15-min (IN, NE, 

and CA sites) and a 60-min (WA site) recording interval at multiple depths below the 

streambed by suspending StowAway TidbiT Temperature Loggers (Onset Computer Corp., 

Pocasset, MA; range: -4  to 30°C; accuracy: ±0.2°C at 20°C) within the piezometer clusters. 

Water levels in the stream and in each piezometer were monitored continuously using Solinst 

Levelogger (range: 4 m; resolution: 0.1 cm; accuracy: 4 mm) and Solinst Barologger (Model 

M5) for atmospheric-pressure-change compensation at the same recording interval as for 

temperature. One-dimensional (vertical) models of water and heat flow with 0.02 m thick 

grid-blocks were developed to simulate temperature and groundwater head, and to estimate 

groundwater and surface water fluxes through the streambed. Flux was found to be 

influenced by the physical heterogeneity of stream channel and temporal variability in stream 

and groundwater levels. More related research can be found in Clow et al. (2003), Hood et al.

(2006), and Hannah et al. (2007).

For better results, tracer sampling at many locations is needed. Tracer methods are 

applicable to small scale study areas (Kalbus et al., 2006). Similar to piezometers and 

seepage meters, they cannot quantify future groundwater discharge because they can only 

quantify groundwater discharge during the observed time period.
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2.2.2 Hydrograph separation

A hydrograph is a graphical representation of observed stream flow over time at a 

specific point in a stream/river. Different types of hydrograph separation methods are used in 

quantifying base flow (groundwater discharge) from stream flow. These include (1) simple 

graphical approach, (2) filtering method, (3) stream flow partitioning method, (4) recursive 

filtering method, (5) unit hydrograph method, (6) rating curve method, and (7) environmental 

tracer method. The main problem of hydrograph separation methods is that they can only 

separate base flow from observed stream flow, and cannot predict future base flow.

2.2.2.1 Simple graphical approach

There are various graphical approaches available to separate base flow from stream flow 

hydrograph. Among them, three methods are very common. These are constant-discharge 

method, constant-slope method, and concave method. These methods were used in Linsley et 

al. (1958), Hewlett et al. (1967), Anderson et al. (1980), McNamara et al., (1997), Sujono et 

al. (2004), Blume et al. (2007), and Gonzales et al. (2009). In the constant-discharge method, 

base flow is assumed as constant regardless of stream flow (discharge) (Karamouz et al, 

2012). Base flow is separated from discharge by a straight line beginning at the point of the 

lowest discharge prior to the start o f the rising limb (due to storm) of the hydrograph and 

extending at a constant discharge until it intersects the recession limb (due to end of storm) of 

the hydrograph. In Fig. 2.2, qs indicates the lowest discharge prior to the start of the rising 

limb of the hydrograph, and the straight line indicates the base flow separation line. The flow
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under this line is called base flow, and the flow above the line is called direct runoff or 

surface runoff. This method is the simplest and easiest method to separate base flow from 

discharge, but there are some weaknesses in this method. Generally base flow decreases 

beyond the start of the rising limb, and continues to decrease until the maximum discharge of 

the hydrograph, which is not seen in this method. In addition, flow from groundwater aquifer 

starts prior to the start of the rising limb, which is also not considered in this method.

C onstant-slope m ethod

Concev* m ethod

Canst»nt-ditcharge
method

4o

Time

Figure 2.2 Base flow separation methods (taken from McCuen, 2004).

In the constant-slope method, a point (inflection point) is selected on the recession limb 

of the hydrograph where direct runoff ends because in this method it assumes that flow from 

groundwater aquifer begins prior to the start of the rising limb (Karamouz et al., 2012).



Different methods are used for identifying this inflection point. The most common method 

used is by using an empirical equation (Pettyjohn et al., 1979).

N =  A02 (2.2)

Where N is the number of days from the peak of the hydrograph to the point where the 

direct runoff ends, and A is the area of the catchment in mi2. After identification of this 

inflection point, base flow and direct runoff are separated from stream flow by connecting 

this point and the point of the lowest discharge prior to the start of the rising limb of 

hydrograph using a straight line. In Fig. 2.2, tp and tr indicate the time when the peak of the 

hydrograph occurs and direct runoff ends, respectively, qs indicates the lowest discharge 

prior to the start of the rising limb of the hydrograph, and qr indicates the discharge when the 

direct runoff ends on the recession limb. The straight line connecting qs and qr indicates the 

base flow separation line.

In the concave method, base flow is assumed to decrease while stream flow increases. At 

first, base flow decreases with a constant slope from the start of the hydrograph until the time 

of the peak discharge of hydrograph. Then the peak discharge point and the inflection point 

on the recession limb are connected by a straight line. The inflection point is estimated using 

the same approach used in the constant-slope method. In Fig. 2.2, qo indicates the discharge 

at the start of the hydrograph, qr indicates the discharge when the direct runoff ends, and tp, to, 

and tr indicate the time when the peak of the hydrograph occurs, the hydrograph starts, and 

direct runoff ends, respectively. The line starting from to to tr indicates the base flow 

separation line, and the flow under this line is called base flow. This is the most realistic 

method compared to other two methods, but it requires more computational efforts than the 

other two methods. In cases where drainage from bank storage, lakes or wetlands, soils or
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snow packs contributes to stream discharge, the assumption that base flow represents 

groundwater discharge may not hold (Halford et al., 2000). The limited number of stream 

gauging stations constrains the resolution of this method, and the results are usually averaged 

over long stream reaches.

2.2.2.2 Filtering methods

Pettyjohn et al. (1979) developed three base flow separation methods to process long 

records of groundwater discharge data: (i) fixed-interval (also known as Hysep 1), (ii) 

sliding-interval (Hysep 2), and (iii) local-minimum (Hysep 3) methods, which are also called 

filtering separation methods. The advantage of these methods is that they are standardized 

(objective) and systematic. As a result, they can be easily translated into computer code to 

reduce computation time and to avoid inconsistencies resulting from manual methods (Sloto 

et al., 1996). Pettyjohn et al. (1979) and Sloto et al. (1996) used the analysis interval size 

(i.e., 2N*days) in these filtering methods as the odd integer between 3 and 11 nearest to 2N. 

An empirical equation (Eq. 2.2) is used for estimating this N. In the fixed-interval method, 

the lowest discharge within each analysis interval (2N* days) of the hydrograph is assigned as 

base flow to all days in that interval starting with the first day of stream flow record 

(Pettyjohn et al., 1979). This method can be visualized by moving a bar of 2N*days width 

upward until the bar first intersects the hydrograph (Fig. 2.3a). The discharge at that point is 

assigned as base flow to all days in the analysis interval. Then the bar is moved by 2N*days 

horizontally, and the same procedure is repeated for each analysis interval. Pettyjohn et al. 

(1979) used 5 days as the analysis interval size to separate base flow at French Creek,
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Pennsylvania. In Fig. 2.3a, for example, in the analysis interval from April 5 to April 9, the 

lowest discharge (49 ft3/s) was assigned as base flow to every day in that interval. Similarly, 

the other minimum values of discharge were assigned for other intervals, and then connected 

to define base flow hydrograph. Therefore, in this method, the stream flow hydrograph is 

partitioned into non-intersecting intervals. On the other hand, in the sliding-interval method, 

the analysis interval is continuously moved over the hydrograph. In this method, the lowest 

discharge in one half of the analysis interval minus 1 day [i.e., 0.5(2N*-1) days] of the 

hydrograph before and after the day is considered and assigned on that day (Pettyjohn et al., 

1979). This method can be visualized by moving a bar of 2N*days width upward until the bar 

first intersects the hydrograph (Fig. 2.3b). The discharge at the point is assigned as base flow 

to the median day in the analysis interval. Then the bar is moved over to the next day, and the 

same procedure is repeated. In Fig. 2.3b, for example, in the analysis interval from April 16 

to April 20, the lowest discharge (42 ft3/s) was assigned as base flow to April 18, which is the 

median day in the interval. In the local-minimum method, the discharge on each day is 

checked to determine if it is the lowest discharge in one half of the analysis interval minus 1 

day [i.e., 0.5(2N*-1) days] of the hydrograph before and after the day being considered 

(Pettyjohn et al., 1979). If it is, then that discharge in that day is a local minimum, and is 

connected to the adjacent local minimums by straight lines (Fig. 2.3c). The base flow values 

for each day between two local minimums are approximated using linear interpolation. This 

method can be visualized by connecting the lowest points on the hydrograph by straight 

lines. In Fig. 2.3c, the local minimums were found on April 9, 15, 21 and 24.
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Figure 2.3 Filtering separation using (a) fixed-interval, (b) sliding-interval and (c) local- 
minimum methods at French Creek, PA (taken from Pettyjohn et al., 1979).
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These base flow separation methods were used in Eckhardt (2008) and Gonzales et al. 

(2009). Zhang et al. (2006b) used HYSEP hydrograph separation method and regression 

analysis to assess the effects of land use changes on stream flow and base flow in the 

Mississippi River, USA, from 1940 to 2000. Land use maps between 1940 and 2000 were 

collected from the government agencies. Base flow was separated from stream flow using 

HYSEP hydrograph separation method (Sloto et al., 1996). Then the relationship between 

base flow and soybean fractional area, which is the major land use change between 1940 and 

2000, was established using regression analysis. The results indicate a positive correlation 

between these two parameters. It is also found that the conversion of perennial vegetation to 

seasonal growing crops, especially soybeans, in the basin since 1940’s might have reduced 

evapotranspiration, increased groundwater recharge, and therefore, increased base flow and 

stream flow.

2.2.2.3 Stream flow partitioning method

Rutledge (1998) developed a stream flow partitioning method called PART (A 

computerized method of base-flow-record estimation) program, a USGS base flow separation 

method, to separate base flow component from daily records of stream flow. This program 

works by 1) searching the period of stream flow records for days that fit a requirement of 

antecedent stream flow recession, which is that the decline of daily stream flow is less than 

0.1 log cycle, 2) designating base flow to be equal to stream flow on these days, and 3) 

interpolating linearly the base flow on other days in the stream flow record that do not fit the
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requirement of antecedent stream flow recession. This method was used to separate base flow 

from stream flow in Neff et al. (2005), Eckhardt (2008) and Saha et al. (2013).

2.2.2.4 Recursive filtering method

Eckhardt (2005) developed a low pass filtering technique to separate base flow from 

stream flow hydrograph. This recursive filter requires the determination of two parameters: 

(i) the recession constant a, which can be derived from statistical analysis of the recession 

curve of hydrograph, and (ii) the maximum value of base flow index (BFImax), which cannot 

be measured, but obtained from the suggested values given in Eckhardt (2005). The base 

flow is calculated using the following equation:

k  ~  1 -a B F lm a x  1 '  }

Where yk (m3/s) and bk (m3/s) are stream flow and base flow, respectively, at time k 

(subject to bk < yk), BFImax is the maximum value of base flow index, and a is the recession 

constant. This method was also used in Eckhardt (2008) and Gonzales et al. (2009).

2.2.2.5 Unit Hydrograph method

This method is based on the principle that an impulse of recharged water into the 

subsurface system produces a similar response as that to surface runoff by an impulse of 

effective precipitation. Since the unit hydrograph is a linear hydrologic system model, its 

solution procedure follows the principles of proportionality and superposition (Su, 1995). Su
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(1995) proposed the Nash’s cascade reservoir model to represent the base flow unit 

hydrograph mathematically, where the groundwater watershed is presented by a series of 

identical linear reservoirs, and each of them having the same storage constant. Base flow is 

then calculated using the following equation:

« ( o = " s b i i r i ' - ,/* <2-4>

After simplification, =  A t 6 (2.5)

Where Q(t) is base flow (m3/s), A (m3/s), 0  (dimensionless), and <p (1/s) are model 

parameters, which can be determined by fitting the model using information from the 

recession limbs of the hydrograph. This method was used in Gonzales et al. (2009).

2.2.2.6 Rating curve method

This method is based on the assumption that there is a relationship between groundwater 

levels and discharge in the stream during recession periods. Kliner et al. (1974) attempted to 

determine this relation by fitting an envelope to all the available data from groundwater 

levels against discharge measurements. Sellinger (1996) proposed to fit a curve only to the 

data corresponding to the recession limbs. Theoretically, both approaches should give similar 

results. The rating curve was developed using the following equation:

Q =  A e Bh + Q0 (2.6)
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Where Q is the discharge (m3/s) at the outlet of the catchment, Q0 is the constant 

discharge (m3/s) coming from the deeper aquifer, h (m) is the groundwater level in an 

observation well or an average groundwater level over the catchment, and A (m3/s) and B 

(1/m) are fitting parameters, which can be determined by the least squares method using 

observed discharge (Q) and groundwater level data (h). This method was used in Blume et al.

(2007), and Gonzales et al. (2009).

22 .2.1 Using environmental tracers

Hydrograph separation using environmental tracers, such as isotopic and geochemical 

tracers, provides information on the temporal and spatial origin of stream flow components 

(Kalbus et al. 2006). Stable isotopic tracers, such as stable oxygen and hydrogen isotopes, are 

used to distinguish rainfall event flow from pre-event flow because rain water often has a 

different isotope composition than water already in the catchment (Kendall et al., 1998). 

Geochemical tracers, such as major chemical parameters (e.g., sodium, nitrate, silica, 

conductivity) and trace elements (e.g., strontium), are often used to determine the fractions of 

water flowing along different subsurface flow paths (Cook et al., 2000). In order to separate 

the stream flow components using environmental tracers, mixing models (Pinder et al., 

1969), and diagrams (Christophersen et al., 1992) based on mass conservation are used. The 

main assumption is that the chemical composition of all investigated components is constant 

and significantly different, and the mixing is conservative. The stream flow separation is 

calculated by solving the following linear mixing equation:
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Ct Qt  — CpQp +  CEQE (2.7)

After rearranging Eq. (2.7) and usingQr = QP +  QE,

2? =  £lz£i  (2.8)
Q t  Cp - C E  v '

Where Ct is the tracer concentration in the stream water, Cp is the tracer concentration in 

the pre-event water (groundwater), Ce is the tracer concentration in the event water (surface 

runoff/quickflow), Qt is the stream flow measured at the outlet of the study area, Q p is the 

pre-event water discharge, and Qe is the event water discharge. Moratatti et al. (1997) used 

isotropic tracer analysis to separate base flow from stream flow hydrograph. Water samples 

from the main channel of upper Solimoes River and lower Amazon River were collected for 

analyzing stable oxygen ( l80 ) .  Stream flow data were collected from neighboring gauges. 

Then mass balance based equation (Eq.2.8) was used to calculate base flow. Similarly, 

Gonzales et al. (2009) collected water samples at different stages of the water cycle: rainfall 

(one sample per event), ponded water, groundwater at the five observation wells at an 

experimental field (once per week), and the stream flow at the outlet of the catchment (time 

intervals: 4 h during the rising limb and shortly after the runoff peak, and 8 h during 

recession periods). Water samples were analyzed in the laboratory for stable oxygen ( l80 )  

using a mass spectrometer. Then base flow was separated from stream flow using those 

tracer results and the mass balance based equation (Eq.2.8). More related research can be 

found in Soulsby et al. (2006), Stewart et al. (2007) and Koeniger et al. (2009).

In order to use hydrograph separation methods described in section 2.2.2.1 to 2.2.2.6, the

temporal record of observed stream flow data is needed. These methods can be used for a 

large area if the stream flow data at the outlet is available. The main problem in these
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methods is that they can only separate base flow from observed stream flow, and cannot 

predict future base flow. On the other hand, in order to use environmental tracer method, 

stream flow data and observed tracer concentrations of pre-event water (groundwater), 

stream and event water (surface runoff) are needed. This method’s main drawbacks are that 

event and pre-event waters are often too similar in their isotope composition and the 

composition is often not constant in space or time (Genereux et al., 1998). Therefore, this 

method is suitable for a small area in the order of 10 km2. Moreover, this method cannot 

predict future groundwater component o f stream flow in a watershed; it can only separate 

groundwater component from observed stream flow using measured tracer concentrations 

data with some limitations. Even this method is not suitable to use in past stream flow time 

series data if no tracer data of stream, pre-event and event water in the past are available.

2.2.3 Review of numerical solutions

Different types of numerical models have been used to assess GW-SW interaction at 

various scales of watersheds. For example, Refsgaard (1997) used the MIKE SHE model for 

simulations of stream discharge and groundwater head (i.e., level) in the Karup catchment 

(440 km2), Denmark, with a maximum grid size of 1000 m being used. The model was 

calibrated and validated to observed stream flow at the catchment outlet, and observed 

groundwater head at different wells in the study area. Stoll et al. (2011) also used the MIKE 

SHE model in a small catchment in northern Switzerland to assess the impacts of climate 

change on groundwater related hydrological fluxes. They used eight different types of 

climate models, which considered SRES (Special Report on Emissions Scenarios) A1B
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greenhouse gas (GHG) emission scenario of the Intergovernmental Panel on Climate 

Change (IPCC). With an area of approximately 9 km , the model domain was discretized 

into grid cells of 100 m by 100 m. The model was calibrated with observed groundwater 

levels at 10 wells in the study area for a 4-year time period (1999-2002). They presented 

their results of how the mean annual groundwater level would change with climate up to 

year 2100 at the selected wells in the study area. Vansteenkiste et al. (2012) did a 

comparison of two spatially distributed models, MIKE SHE and WetSpa (Water and 

Energy Transfer between Soil, Plants and Atmosphere under quasi Steady State) 

(developed by Liu et al., 2003), to investigate the climate change impact on the flow 

regime in Grote Nete catchment (385 km2), Belgium. The WetSpa model grid resolution 

was 100 m by 100 m, whereas the MIKE SHE model grid resolution was 250 m by 250 

m. Both models were calibrated and validated using observed discharge at the outlet of 

the catchment. It was found that the MIKE SHE model required more parameters to 

adjust than the WetSpa model during calibration period. They reported their results of 

how different future climate change scenarios (i.e., high (a future with wet winters), mean 

(a future with intermediate between wet and dry winters), and low (a future with dry 

winters and summers) scenarios, which were based on the A2, A IB, B1 and B2 GHG 

scenarios) would affect stream discharge in the study area, while both models predicted 

almost similar variation pattern. They also reported how the mean monthly groundwater 

levels at selected wells would change under different future climate change scenarios 

using the MIKE SHE model between years 2071-2100 and the current climate (1961- 

1991).
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In addition to MIKE SHE, many other models were also used. Klocking et al. (2002) 

used the ArcEGMO (Eco-Hydrological Watershed Model) model for assessing the impacts 

of land use change on the overall water availability and seasonal distribution of water for two 

meso-scale river basins (Saale River - 24000 km , and Havel River - 19100 km ) in 

Germany. The model grid resolution was 1 km by 1 km. The model was calibrated for two 

basins with observed stream discharge at the basin outlet. The results illustrated how the 

mean annual basin discharge (i.e., stream flow), groundwater recharge and 

evapotranspiration changed in both basins from 1981-1994 under different land use change 

scenarios.

Wilcox (2003) used a 3-D telescopic (smaller-scale) model to investigate GW-SW 

interaction along a 10-km reach of the river between Brown Arroyo and San Antonio, with a 

study area width of approximately 5 km. The horizontal model grid cell was 31 m by 31 m, 

and the vertical discretization was 12 m to 31 m. The model grid was generated by using 

Microsoft Excel and ESRI ArcView software, and the model was calibrated and validated 

with observed groundwater levels. The modeling results illustrated how groundwater levels 

changed during sensitivity analysis.

Zhang et al. (2006a) developed a rainfall-runoff model using the revised REWASH 

(Representative Elementary Watershed approach) code. The model was evaluated by a multi

criteria approach using both discharge and groundwater table measured at various locations. 

The study was conducted in the Hesperange catchment (292 km2), Luxembourg, while a 50 

m by 50 m digital elevation model was used for watershed delineation. The model was 

calibrated using observed stream flow at the outlet of the catchment. The modeling results
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illustrated how groundwater levels changed during rainfall events. More related research can 

be found in Hughes (2004), and Bidwell et al. (2008).

Van Roosmalen et al. (2007) used the DK model (The National Water Resource 

model for Denmark) based on the MIKE SHE code to study climate change impacts on 

groundwater system for two study areas of 5459 km2 and 7226 km2 in Denmark. The 

model grid cell was 1 km by 1 km. The model was calibrated and validated with observed 

stream discharge and groundwater levels (head) at different wells. The modeling results 

showed how the mean annual groundwater head would change under two IPCC GHG 

emission scenarios (A2 and B2) in 2071-2100, while the mean monthly stream flow, base 

flow and overland flow under these scenarios were also examined. Van Roosmalen et al. 

(2009) also used the DK model to study climate and land use changes impacts on 

groundwater system. They developed a 3-D model for an agricultural area of 5459 km2 

with a modeling grid size of 500 m by 500 m. The model was calibrated and validated 

with observed stream discharge and groundwater levels at different wells. They presented 

their results of how the mean annual water balance would change under A2 and B2 GHG 

emission scenarios in 2071-2100 when comparing to current climate (1990-2004). They 

also reported how the mean monthly recharge and stream flow would change under those 

scenarios during the same time period. In terms of combined land use and climate 

changes impacts, they highlighted how the mean monthly and annual evapotranspiration 

and recharge would change.

Rihani et al. (2007) used a 3-D variably saturated subsurface flow code called Parflow 

(developed by Ashby et al., 1996) and a 2-D overland flow simulator (developed by Kollet et 

al., 2006) for assessing GW-SW interaction in the Dominguez Channel Watershed (555 km2)
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in Los Angeles County, USA. The model domain was 17.7 km by 23.9 km by 2 m, with a 

grid cell of 310.9 m by 310.9 m by 0.1 m. The model was calibrated using observed stream 

flow hydrograph from a storm event. The modeling results illustrated how stream flow 

changed during sensitivity analysis.

Gauthier et al. (2009) developed a numerical model using CATHY (CATchment 

Hydrology) that integrates 1-D land surface and 3-D subsurface flow processes for the 

Thomas Brook catchment (8 km ) in Nova Scotia, Canada. The model grid cell was 60 m by 

60 m by variable thickness ranging from 10 m to 200 m (top to bottom). The model was 

calibrated with observed stream flow at the outlet of the catchment. The modeling results 

reported how groundwater levels changed with time during observed rainfall events, and how 

yearly recharge values changed under different heterogeneity conditions.

Yimam (2010) coupled a USGS Precipitation-Runoff Modeling System (PRMS) with a 

USGS MODFLOW-2005 to simulate GW-SW interaction in the Grote-Nete catchment (405 

km2), Belgium. The model domain was divided into 59 HRUs (Hydrologic Response Unit) 

based on their hydrologic and physical characteristics. The model was calibrated and 

validated with observed discharge at the outlet of the catchment. The modeling results 

showed how the components (subsurface flow and surface runoff) of stream flow changed 

with time.

Jackson et al. (2011) used the ZOODRM model (developed by Mansour et al., 2004) and 

the ZOOMQ3D finite difference code (developed by Jackson et al., 2004) in the Chalk 

aquifer system (2600 km2), England to assess the impacts of climate change on groundwater 

system. They used 13 different types of climate models, which considered SRES A2 GHG 

emission scenario of IPCC. The ZOODRM model was used to calculate recharge in the study
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area, and this recharge was then used in the Z00M Q3D code for groundwater modeling. The 

ZOOMQ3D model was calibrated and validated with observed groundwater levels at 

different wells in the study area, and the modeling results reported how the mean annual 

groundwater level, stream discharge and base flow would change in the study area between 

year 2080 and current climate (1961-1990). They also presented how the mean monthly 

groundwater recharge and discharge, and groundwater levels at selected wells would change 

under future climate change scenarios obtained from thirteen climate models.

Godemiaux (2010) examined the climate change impacts on groundwater reserve in 

Geer Basin catchment (480 km2) in Belgium using a 3-D finite element model called 

HydroGeoSphere. The elements have lateral dimensions equal to approximately 500 m.

In total, there were 9420 and 785 nodes for subsurface and surface domains, respectively.

The model was calibrated with observed groundwater levels and stream flow data. The 

modeling results showed how the mean annual groundwater level, stream discharge, and 

evapotranspiration in the study area would change under A2 GHG emission scenario in 

three different time periods (2011-2040, 2041-2070 and 2071-2100) with respect to 

present climate (1961-1990). Starzyk (2012) also used the HydroGeoSphere, a fully 

integrated and physics-based, numerical model capable of simulating surface-subsurface 

flow in a 3-D framework in Bertrand Creek Watershed (46 km2), British Columbia. The 

2-D surface mesh was created using the Grid Builder (developed by McLaren, 2009) and 

composed of 9,827 triangular elements (5,062 nodes) draped over the surface topography. 

Nodal spacing of the fmite-element mesh varied from 20 m along the creek to 300 m at 

nodes farther from the creek. The 3-D subsurface contained 196,540 prisms and had an 

equivalent nodal geometry to the 2-D surface mesh (i.e., subsurface nodes coincided with
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nodes on the surface mesh). The model was calibrated with observed groundwater levels and 

stream flow data, and the modeling results were reported as how the groundwater head in the 

study area and GW-SW exchange flux in four reaches changed with time.

Ma et al. (2002) used the MODFLOW to simulate the transient GW-SW interaction using 

the HEC-2 based water surface profiles of San Joaquin River, California. The HEC-2 

modeling outputs of the 150-mile stretch of San Joaquin River were used as the inputs for the 

MODFLOW. Over 300 wells were drilled in the upper 100 feet of the San Joaquin Valley 

aquifer, and were installed in-stream and on the banks of the river. Groundwater elevation 

data were collected from the databases of monitoring wells of the California Department of 

Water Resources, the city of Fresno, the US Bureau of Reclamation and several irrigation 

districts. The MODFLOW model in the study area was developed using these groundwater 

table elevations, river conditions, soil textures, and evapotranspiration data. The model grid 

spacing along the river averaged about 300 feet, while the grid spacing perpendicular to the 

river length was 50 feet. The layer thickness was 2 feet to 60 feet from the top of the layer. 

The developed model was calibrated to fit observed groundwater table elevation data, and the 

modeling results were presented as how groundwater levels would be affected by changing 

future river stage conditions. Kasahara et al. (2003) simulated the hyporheic exchange flow 

in mountainous streams using MODFLOW and MODPATH models. A stream channel 

length of 1750 m with approximately 50-m width of land boundary was surveyed. A 3-D 

MODFLOW model was developed using groundwater level data, which were collected from 

over one hundred wells. The model grid cell size was 0.5 m by 0.5 m by 0.3 m, and the 

model was calibrated using observed groundwater table elevation data. The MODPATH 

model was then used to estimate hyporheic exchange flow at each well network site. The
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modeling results were reported as the hyporheic exchange flow and its relative proportion 

with respect to observed stream discharge. They also generated water table contour maps and 

estimated the aerial extent o f hyporheic zone. Hester et al. (2008) used HEC-RAS, 

MODFLOW and MODPATH models to simulate the coupled surface and subsurface 

hydraulics in a gaining stream reach with a 3 m width and 30 m length. The grid cell of the 

coupled model was 3 m by 3 m by 0.25 m, and the model was calibrated and validated using 

observed water levels at a weir and three in-stream piezometers. They reported how 

hyporheic exchange changed with different types of in-stream geomorphic structures (i.e., 

weirs, steps, lateral structures).

Allen et al. (2004) examined climate change impacts on groundwater system in Grand 

Forks aquifer (34 km2), British Columbia using the visual MODFLOW, with modeling 

domain being associated with variable horizontal spatial resolution (50 m to 100 m). The 

Hydrologic Evaluation of Landfill Performance (HELP) hydrologic model was used to 

simulate recharge, and this recharge was then used in the visual MODFLOW model. The 

MODFLOW model was calibrated with observed groundwater levels at different wells in the 

study area, and they reported how the groundwater head changed under different recharge 

conditions. Scibek et al. (2006a, b) conducted a case study of an unconfined aquifer in the 

Grand Forks valley in south-central British Columbia to develop a methodology for linking 

climate model, hydrologic model and groundwater model to investigate future impacts of 

climate change on groundwater resources. The aquifer is 34 km2, located in a semi-arid area, 

and comprised of heterogeneous glaciofluvial/glaciolacustrine sediments in a mountainous 

valley. The HELP hydrologic model was used to simulate recharge, and this recharge was 

used in the visual MODFLOW and the 3-D MODFLOW models to simulate groundwater
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flow. They presented their results of how the mean annual recharge and groundwater head in 

the study area would change under different climate scenarios (2010-2039, 2040-2069). 

Schilling et al. (2006) also used the MODFLOW to study GW-SW interaction in Walnut 

Creek, Iowa, with a channel of approximately 300 m length and 10 m width. The modeling 

domain, covering 157 m from the groundwater divide to one edge of Walnut Creek, was 

discretized into an irregular grid varying from a minimum cell width of 0.2 m next to the 

creek to a maximum of 7.0 m at the divide. The model was calibrated using observed 

groundwater levels at six wells, and the results were presented as how much stream water 

penetrated into the flood plain during high hydraulic gradient.

Batelaan et al. (2003) used MODFLOW and WetSpa models to delineate groundwater 

flow system under future land use change conditions in a major part (292 km2) of the Grote- 

Nete basin, Belgium. Both models were calibrated with observed groundwater levels at 

different wells in the study area. Woldeamlak et al. (2007) also used the MODFLOW model 

to investigate the effects of climate change on the groundwater system in the most parts (525 

km2) of the Grote-Nete basin, Belgium. With a spatial resolution of 50 m by 50 m, the model 

used only one layer of 90 m thickness. The model was calibrated and validated using 

observed groundwater levels at 38 wells. The outputs from climate model (i.e., precipitation 

and temperature) and the WetSpa model (i.e., recharge) were used as inputs for the 

MODFLOW model. They reported how the mean annual groundwater head and discharge 

would change under different climate scenarios (wet and dry scenarios for 2100).

Dams et al. (2008) developed a methodology to couple land use change model (CLUE-S: 

Conversion of Land Use and its Effects at Small regional extent) with a water balance model 

(WetSpa) and a groundwater model (MODFLOW) to assess the impacts of land use changes
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on groundwater quantity in the Kleine Nete basin (581 km2), Belgium. Yearly land use maps 

from 2000 to 2020 were generated using the CLUE-S model considering future European 

land-use demands and Special Report on Emission Scenarios (SRES) (Al, A2, B1 and B2) of 

IPCC. These land use maps were used in the WetSpa model to calculate yearly groundwater 

recharge, and the calculated recharge was then used in the steady-state MOFLOW model to 

determine the groundwater level and flux under different future land use and climatic 

conditions. The model grid resolution was 50 m by 50 m, and the MODFLOW model was 

calibrated with observed groundwater levels at different wells. Dams et al. (2012) also used 

coupled WetSpa with MODFLOW model to study the impacts of climate change on the 

groundwater system in the Kleine Nete basin (581 km2), Belgium, with a grid cell size of 50 

m by 50 m. The WetSpa model was used to simulate river discharge and groundwater 

recharge, while the MODFLOW model was used to simulate the effects of climate change on 

groundwater level and flux. The WetSpa model was calibrated to observed river discharge at 

the basin outlet and the filtered base flow, while the MODFLOW model was calibrated to the 

filtered base flow and observed groundwater heads at different wells. The filtered base flow 

was calculated from observed stream flow records using an automated base flow filtering 

method (developed by Arnold et al., 1999). The modeling results were presented as mean 

monthly variation of groundwater recharge and discharge in the study area under reference 

climate (1960-1991), 28 climate scenarios (A2 and B2 GHG emission scenarios from 14 

climate models) of 2070-2101, and the mean of those scenarios.

Lin et al. (2007) used the CLUE-S land use change model and the generalized watershed 

loading functions model (developed by Haith et al., 1987) to assess various land use change 

impacts on stream flow, surface runoff, and groundwater discharge in the Wu-Tu watershed
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(204 km2), Taiwan. With a modeling grid resolution of 50 m by 50 m, the lumped 

generalized watershed loading functions model was calibrated using observed stream flow 

data. Wijesekara et al. (2012) used coupling of land-use cellular automata (CA) model and 

the MIKE-SHE/MIKE-11 hydrological model to assess the impact of future land use changes 

on stream flow, surface runoff, and base flow in the Elbow River watershed, Canada. The 

CA model was calibrated using four land-use maps covering the period 1985-2001 and 

validated against the maps of 2006 and 2010. Based on the historical land use changes, the 

future land-use changes were then performed from 2006 to 2031 at a five year interval. The 

MDCE-SHE model was calibrated and validated to observed river discharge at the outlet of 

the watershed. Zhou et al. (2013) used coupling of CLUE-S and the SWAT (Soil and Water 

Assessment Tool) model to understand and quantify the hydrological responses (i.e., stream 

flow, surface runoff, and base flow) due to land use/land cover changes in the Yangtze River 

delta region, China, from 1985 to 2008. The SWAT model was calibrated and validated to 

observed river discharge at the outlet of the region. They reported that the increase of urban 

areas resulted in an increase of stream flow and surface runoff, and a decrease o f base flow. 

More related research can be found in Chang (2007), Ghaffari et al. (2010), and Schilling et 

al. (2010).

Krause et al. (2004) used the IWAN (Integrated Water Balance and Nutrient Dynamics)
•y

model to assess the impacts of land use changes on GW-SW interaction in a 200 km sub 

catchment of Havel River, Germany. This model coupled the WASIM-ETH-I (Water Flow 

and Balance Simulation Model) with the MODFLOW. The model grid resolution was 25 m 

by 25 m, and the model was calibrated and validated with observed groundwater levels at 

different wells in the study area. They reported how the groundwater recharge changed under
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different land uses in 2001-2002. Krause et al. (2007) also used the IWAN model to simulate 

exchange fluxes between the groundwater of the floodplain and the surface water within the 

direct catchment of Lower (189.1 km2) and Central (998.1 km2) Havel River, Germany. The 

model grid spatial resolution was 50 m by 50 m. The IWAN model was calibrated with the 

observed groundwater levels at the boreholes in the study catchments. They reported how 

stream flow changed daily in the last 13 years (1988-2000) in two study catchments. They 

also presented mean monthly dynamics of simulated exchange fluxes between the 

groundwater of the floodplain and the surface water.

Downer et al. (2002a) used the GSSHA (Gridded Surface Subsurface Hydrologic 

Analysis) model to investigate GW-SW interaction in Judicial Ditch 31 watershed (23.3 

km2), Minnesota, USA. The model grid resolution was 90 m by 90 m, and the model was 

calibrated using observed stream flow data at the outlet of the watershed. The modeling 

results illustrated the impacts of tile drain removal on surface ponding. Jenkins (2006) also 

used the GSSHA model to simulate transient GW-SW interaction in the floodplain of the 18- 

mile stretch of Rio Grande River, New Mexico, USA. The model grid resolution was 35 m 

by 35 m, and the model was calibrated using observed stream flow data at the outlet of the 

study area. The modeling results showed the transient river water table during high and low 

flows in Rio Grande River. Downer et al. (2006) updated GSSHA model by incorporating the 

volume of groundwater discharge in the modeling output to estimate groundwater 

contribution to stream flow. Paudel (2010) used GSSHA model to simulate watershed 

response under different land uses scenarios in Tifton watershed (113 km2), Georgia. The 

model was calibrated using observed stream flow data at the outlet of the watershed. The 

modeling results presented the peak flow as well as total runoff volume under various land
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use conditions in Tifton watershed. Similarly, McCarty (2013) also used GSSHA model to 

simulate stream flow under changes in vegetation, land use and other features in Parley’s 

Canyon, Utah. El Hassan et al. (2013) used GSSHA model to simulate stream flow caused by 

tropical storm which persisted for several days in a sub-watershed (538 km2) of San Antonio 

river basin. The model was calibrated using observed stream flow data at the outlet of the 

watershed for one rainfall event in 2007, and validated for three rainfall events in 2002, 2004 

and 2010. The GSSHA model was also used in hydrologic studies in different types of 

watersheds (Sharif et al., 2006; Sharif et al., 2010; Swain et al., 2013).

Beven et al. (1992) used the Generalized Likelihood Uncertainty Estimation (GLUE) 

method as an uncertainty analysis method in the Institute of Hydrology Distributed Model 

(IHDM) to investigate how the stream flow hydrograph responses under parameter 

uncertainty during a number of storms in the Gwy catchment (3.9 km2), Wales. The GLUE is 

a Bayesian Monte Carlo simulation-based method. 500 realizations of the IHDM were run 

considering the four most sensitive parameters for 5 storms. They presented their outputs in 

the form of the cumulative frequency distribution. Similar related research was done by Freer 

et al. (1996) in a small Ringelbach research catchment, France considering 30 realizations 

using the TOPMODEL. Shen et al. (2012) used the GLUE method in the SWAT model to 

investigate the impacts of parameter uncertainty on the stream flow and sediment in the 

Daning River watershed (4426 km2) of the Three Gorges Reservoir Region, China. Twenty 

parameters were chosen for uncertainty analysis based on sensitivity analysis, and 10,000 

model runs were performed. They also presented their outputs in the form of the cumulative 

frequency distribution. Kuczera et al. (1998) used the multinormal approximation to 

investigate the multiresponse data (i.e., stream flow, stream chloride concentration,
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groundwater level) in the CATPRO model due to the uncertainty of 9 parameters in the 

Wights catchment (94 ha) in the Western Australia. They presented their outputs in the form 

of response surface.

Vrugt et al. (2003) used the Markov Chain Monte Carlo (MCMC) method in the 

HYMOD model to conduct uncertainty analysis of stream flow due to 5 parameters’ 

uncertainties in the Leaf River watershed (1944 km2), Mississippi. They presented their 

outputs with 95% prediction uncertainty bounds. More related research can be found in Vrugt 

et al. (2008), and Dotto et al. (2012). Benke et al. (2008) used the Monte Carlo Simulation 

(MCS) method in 2C hydrological model to conduct uncertainty analysis of the prediction of 

stream flow under parameter uncertainty in an area of 2000 m2 in eastern Australia. Five 

parameters were chosen for uncertainty analysis based on sensitivity analysis. They reported 

how the output uncertainty changes due to increasing parameter variation. Mishra (2009) 

used the first-order second-moment (FOSM) and MCS methods in the Natural Systems 

Regional Simulation Model (NSRSM) to compare the effects of parameter uncertainty on the 

prediction of stream flow in south Florida. Five parameters were chosen for uncertainty 

analysis, and 100 Monte Carlo realizations were considered. The final outputs using the MCS 

method were presented in the form of the cumulative frequency distribution. More related 

research can be found in Shen et al. (2013).

Based on the above review, numerical models can determine base flow, and predict 

future base flow trend. In order to calibrate and validate these models, field collected 

groundwater levels from monitoring piezometers/wells, and stream flow data are needed. As 

a result, these models depend on the field methods’ outputs.
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2.3 Summary

Based on the above detailed literature review, numerous studies have been done for 

investigating GW-SW interaction in different sizes of watersheds in the last several decades. 

However, few studies (Van Roosmalen et al., 2007; Jackson et al., 2011; Dams et al., 2012; 

Vansteenkiste et al., 2012) have investigated how the mean monthly groundwater recharge 

and discharge, stream flow, as well as groundwater level would change between current and 

projected future climates in the watershed. There is little knowledge regarding how the mean 

monthly groundwater contribution to stream flow will change under different climate change 

scenarios. In addition to climate change, a number of studies (Klocking et al., 2002; Batelaan 

et al., 2003; Krause et al., 2004; Lin et al., 2007; Dams et al., 2008; Van Roosmalen et al., 

2009; Wijesekara et al., 2012; Zhou et al., 2013) have investigated the combined effects of 

climate and land use changes on watershed hydrology. Many of the previous studies reported 

how the mean annual stream flow, groundwater recharge and discharge, as well as 

groundwater level would change under different land use change scenarios. However, little 

attention was paid to investigate how the mean monthly, seasonal and annual groundwater 

contributions to stream flow will change under both changing land use and climatic 

conditions. These monthly changes could determine the monthly status of groundwater 

resources and site conditions for groundwater-dependent terrestrial ecosystems (Naumburg et 

al., 2005). They will also determine the monthly, seasonal and annual variations of stream 

flow dependency on groundwater, and these will provide useful information for monthly, 

seasonal and annual water extractions from the river, and allocation to the stakeholders for 

future water supply. Using the GSSHA numerical model, this study investigated monthly,
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seasonal, and annual groundwater contributions to stream flow under different GHG 

emission scenarios (i.e., A2 and B l) of IPCC, as well as combined climate and land use 

changes. Furthermore, a number of studies have investigated how stream flow in a watershed 

responds due to parameter uncertainty using various uncertainty analysis methods in different 

hydrologic models (Beven et al., 1992; Kuczera et al., 1998; Vrugt et al., 2003; Benke et al., 

2008; Mishra, 2009; Dotto et al., 2012; Shen et al., 2012; Shen et al., 2013). However, few 

studies have reported regarding the uncertainty analysis of the mean monthly, seasonal and 

annual groundwater contributions to stream flow in a watershed. In this study, uncertainty 

analysis of the mean monthly, seasonal and annual groundwater contributions to stream flow 

was performed under different GHG emission scenarios using 50 Monte Carlo realizations of 

the most sensitive modeling parameters through the GSSHA model.
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CHAPTER 3

METHODOLOGY

3.1 Overview of study area

Situated in the Peace country region, the Kiskatinaw River Watershed (KRW) is a critical 

area for northern British Columbia (BC)’s social, environmental, and economic development. 

The City of Dawson Creek has been drawing water from Kiskatinaw River for drinking 

purpose since the mid-1940s because the groundwater in this region contains high total 

hardness (Dobson Engineering Ltd. et al., 2003). The KRW is a rain dominated hydrologic 

system with peak flows occurring from late June to early July, but in January the flow drops 

to 0.052 m3/s, which is less than 0.5% of the average annual flow rate (10 m3/s). There is no 

available information about groundwater contribution to river flow in the KRW. On average, 

the watershed receives an annual precipitation of 499 mm, consisting o f 320 mm of rainfall, 

and 179 mm of snow (Dobson Engineering Ltd. et al., 2003). During the last 40 years, the 

City of Dawson Creek has experienced steady water demand growth with an average annual 

growth rate of about 3.2%. In addition to providing a community water supply, the KRW has 

many other values, such as timber harvesting, agriculture, oil and gas, wildlife, recreation, 

and potential mineral resources development (Dobson Engineering Ltd. et al., 2003). In 

particular, a large and increasing scale of timber harvesting, oil and gas 

exploration/production, and agricultural activities in recent years have caused growing 

concerns to various water users.
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The KRW, as shown in Fig. 3.1, has been divided into 5 sub-watersheds, including (a) 

Mainstem (433 km2), (b) East Kiskatinaw (996 km2), (c) West Kiskatinaw (1005 km2), (d) 

Halftnoon-Oetata (194 km2), and (e) Brassey (208 km2) (Dobson Engineering Ltd., 2007). It 

has an elevation ranging from 687 m to 1354 m (Fig. 3.2). In this research, a study area along 

the river of the Mainstem sub-watershed was used as a case study because the yearly time- 

series stream flow data, as required by the GSSHA model calibration and validation, were 

not available at the other 4 sub-watersheds. In addition, the drinking water intake of the water 

supply system for Dawson Creek is situated at Arras in the study area of the Mainstem sub

watershed. The study area (213.82 km2) has an elevation ranging from 687 m to 950 m (Fig. 

3.3), and an average slope of 7.8% (Fig. 3.4). The average slope provides information about 

the topography of the study area which influences surface runoff. According to Canadian 

topographic classification, this study area is moderately sloping (Canada Department of 

Agriculture, 1974). This slope was calculated by ArcGIS using the elevation values of the 

study area (Fig. 3.3).
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Figure 3.1 Overview of Kiskatinaw River Watershed
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Figure 3.3 Digital elevation map of the study area
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Figure 3.4 Slope patterns of the study area
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3.2 Methodology

Fig. 3.5 presents the research framework of this dissertation. It includes tasks of data 

collection, numerical model development for investigating GW-SW interaction, generation 

of climate and land use/land cover changes scenarios, quantification of GW-SW interaction 

under various climates and land use/land cover changes scenarios, and uncertainty analysis of 

GW-SW interaction under climate change scenarios. The data collection was conducted 

through a number of ways, such as interviews with relevant stakeholders, processing of 

paper-based soil and land use/land cover maps, monitoring of groundwater and surface water 

levels, river flow data collection from Water Survey Canada, climate and meteorological data 

collection from neighboring weather stations, channel geometry survey, and digital elevation 

map (DEM) collection.

Uncertainty analysis of 
GW-SW interaction 

under climate change

Quantification of 
climate change impacts 
on GW-SW interaction

Quantification of climate 
and land use/land cover 

changes impacts on GW- 
SW interaction

Development of numerical 
model for investigating and 

quantifying GW-SW interaction

Generation of climate 
change 0 e  precipitation and 

temperature) and land 
use/land cover change 

scenarios

Watershed data collection 
(elevation, channel 

geometry, soil, 
meteorological, hydrologic, 
land use/land cover, e tc )

Generation of climate 
change scenarios (i.e. 

precipitation and 
temperature) using 

Canadian Regional Climate 
Model

Figure 3.5 Research Framework
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3.2.1 Groundwater-surface water monitoring network

In order to examine the GW-SW interaction in the KRW, a groundwater monitoring 

network was established in September 2010 by installing 22 piezometers equipped with 

Odyssey data loggers at 8 sites based on site accessibility (Fig. 3.6). At most of the sites, a 

bank piezometer was installed on each side of the river along with an in-stream piezometer. 

In addition, surface water level and discharge were measured at each of these sites using staff 

gauges equipped with Odyssey capacitance data loggers, and Sontek’s Acoustic Doppler 

Flow Tracker. Cross sections were then completed using Sontek’s Acoustic Doppler Flow 

Tracker in accordance with the BC Hydrometric Standards (British Columbia Ministry of 

Environment, 2009). Piezometers (% inch by 10 feet) with 44 holes at one end along with a 

welded drive tip (Fig. 3.7) were inserted at depths of between 1 m and 2.4 m at different sites 

using hand auger and slide hammer. In addition, one bank piezometer (1 inch by 16 feet) 

equipped with Odyssey data logger was installed in the study area (Fig. 3.8) in late summer 

2011 due to access and logistic problems, with an insertion depth of 3.5 m using hand auger, 

slide hammer and high-reach iron auger with long spiral extensions. Since all the piezometers 

were unscreened at those holes, sediment or fines entered the piezometers during installation 

and after the piezometers were in place. However, the piezometers were designed in such a 

way that those sediments or fines entered the piezometers settled at the bottom of 

piezometers (just below the lower perforation of piezometer in Fig. 3.7). The sensors of the 

Odyssey data loggers were set up inside the piezometers after sediment or fines settled at the 

bottom of piezometers. In addition, the piezometers were inserted such a way that the bottom 

of piezometers remained at a minimum of 40 cm below the groundwater level during dry 

season in order to capture all seasons data, and this type of set up allowed data loggers to
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record groundwater level continuously although sediment or fines entered the piezometers 

during the monitoring period, but they settled at the bottom of piezometers. Geist et al. 

(1998) also used similar unscreened piezometers for GW-SW interaction studies in the 

Hanford Reach of Columbia River. Since in this study pumping was not performed in those 

piezometers, there is no chance of clogging in those piezometers. Each Odyssey data logger 

was calibrated using the 3-point calibration method as outlined by Odyssey before inserting 

in the piezometer (www.odysseydatarecording.com). Data loggers were set for data 

collection of groundwater level at a 20-min interval. It is to be noted that in this study, only 

unconfined aquifer was considered for GW-SW interactions. Due to the lack of the 

stratification of soil layers of KRW, it is difficult to find out whether any confined aquifer 

contributes to the unconfined aquifer in KRW.
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Figure 3.6 Groundwater monitoring network in the KRW
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Figure 3.7 Piezometers with drilled holes and welded drive tip

Figure 3.8 Piezometer at Mainstem area in the KRW
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3.2.2 Surflcial geology

Surficial geology map provides the types and distributions of unconsolidated sediments 

overlying bedrock, and their morphology and properties across the landscape 

(www.gov.bc.ca). Since the detailed soil map of KRW is not available, the surficial geology 

map of KRW will provide information regarding possible soil types of KRW. The surficial 

geology map of KRW (Fig. 3.9) was developed using Arc GIS based on data from Reimchen 

(1980). In KRW, there are seven types of surficial deposits, including alluvial, eolian, 

lacustrine, colluvial, morainal, glaciofluvial, and organic deposits. Table 3.1 lists their 

compositions in the KRW, and it was found that KRW is dominated by the morainal deposit.

Table 3.1 Composition of different types of surficial deposits in the KRW

Surficial deposit type Area (km2) % of KRW area

Alluvial 204.35 7.09
Colluvial 47.74 1.65

Eolian 532.35 18.47
Glaciofluvial 61.92 2.15

Lacustrine 331.37 11.50
Morainal 1689.18 58.60
Organic 15.45 0.54

Total 2882.36 100
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Figure 3.9 Surficial geology map of KRW
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3.2.3 Soil map development

Soil map is an important input for developing the GSSHA model. Soil maps are generally 

available from Natural Resources Canada and Land Resource Research Institute, Canada. 

Unfortunately, only approximately 20% of KRW area has soil information (Fig. 3.10) from 

the National Topographic System map (Fig. 3.11) (Land Resource Research Institute, 1985). 

As a result, KRW’s soil map was developed based on the surficial geology map of KRW and 

the land formation information of its surrounding region (i.e., Soil survey reports of the Land 

Resource Research Institute, Ministry of BC Environment, and Natural Resources Canada). 

Table 3.2 lists an example of the soil classification system in Canada (Agriculture and Agri- 

Food Canada, 1998), namely the Brunisolic among ten soil orders.
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Figure 3.10 Soil (subgroup) map of KRW
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Figure 3.11 The KRW location in the NTS 93 P (Land Resource Research Institute, 1985)

Table 3.2 Canadian System of Soil Classification (Agriculture and Agri-Food Canada, 1998)

Order Great Group Subgroup
Brunisolic Melanie Brunisol Orthic Melanie Brunisol 

Eluviated Melanie Brunisol 

Gleyed Melanie Brunisol 

Gleyed Eluviated Melanie Brunisol

Eutric Brunisol Orthic Eutric Brunisol 

Eluviated Eutric Brunisol 

Gleyed Eutric Brunisol 

Gleyed Eluviated Eutric Brunisol

The relationship between surficial geology and soil classification in northern British 

Columbia can be described as follows (Land Resource Research Institute, 1985), and is 

shown in Table 3.3.
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Table 3.3 Relationship between surficial geology and soil classification

Surficial deposit types Surficial deposit forms to soil subgroup

Glaciofluvial • Eluviated Eutric Brunisol (i.e., subgroup of Eutric 
Brunisol) landscape for elevation range of 700- 
1050 m

• Brunisolic Gray Luvisol (i.e., subgroup of Gray 
Luvisol) landscape for elevation range of above 
1050 m

Alluvial Orthic Gray Luvisol (i.e., subgroup of Gray Luvisol)

Eolian • Brunisolic Gray Luvisol when the elevation is
greater than 750 m

• Orthic Gray Luvisol for elevation of less than 750 
m

Lacustrine Orthic Gray Luvisol

Colluvial Eluviated Eutric Brunisol

Morainal • Brunisolic Gray Luvisol when the elevation is 
greater than 800 m

• Orthic Gray Luvisol when the elevation is less 
than 800 m

Organic Mesisol (i.e., Great group of Organic)

Based on the above information and the DEM, the glaciofluvial deposit information 

shown in the surficial geological map o f KRW (Fig. 3.9) was converted into the Eluviated 

Eutric Brunisol and Brunisolic Gray Luvisol depending on the elevation (Table 3.3). 

Similarly, the alluvial, eolian, lacustrine, collovial, morainal, and organic deposits 

information shown in the surficial geological map were converted into the corresponding soil 

sub groups. After this conversion, a soil map of KRW was developed (Fig. 3.10). Luvisol is 

one of the mostly available soil orders in the forested region of Canada 

(www.SoilsofCanada.ca), and it also accounts for a major soil group in KRW, which is
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dominated by forest cover (Saha et al., 2013). Each soil subgroup is associated with specific 

mineral contents (i.e., sand, silt and clay). Based on the percentage of mineral contents, the 

specific soil type (e.g., loam, clay loam, sandy loam, silt loam) was then classified using 

USDA (United States Department of Agriculture) soil type classification system (USDA, 

1987) (Fig. 3.12). The Mesisol does not contain any sand, silt or clay, but it is considered as a 

loamy-skeletal family (www.SoilsofCanada.ca). As a result, it is considered as a loam. The 

final soil type map of KRW is shown in Fig. 3.13. This map only shows the horizontal 

heterogeneities of soils. Since the stratification of soil layers of KRW is not available, it was 

assumed that the soils in the vertical direction are same as in the horizontal direction (i.e., 

isotropic), for example, the area containing clay loam soil has the same soil (clay loam) in the 

vertical direction of that area. Therefore, in this study, the soils of KRW were assumed as 

isotropic. This assumption will help delineate the approximate aquifer (unconfined) bottom 

map using the GSSHA model. The accuracy of modeling results would improve if the 

detailed stratification of soil map in KRW is available because soil properties (i.e., hydraulic 

conductivity, porosity) greatly affect groundwater flow.
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Figure 3.12 USDA Soil type classification system (USDA, 1987)

The soil type map of the study area was developed by clipping the soil type map of KRW 

to the study area of the Mainstem sub-watershed using Arc GIS (Fig. 3.14). Three types of 

soil were found, including clay loam, sandy loam, and silt loam. Clay loam covers the 

majority (91%) of the study area, while the silt loam and sandy loam cover 6% and 3%, 

respectively.

62



Soil typ*

Ctoy toam 

town
sandy town
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3.2.4 Climate and meteorological data collection

In the KRW, there is only one active weather station (i.e., Noel station). There are two 

other active weather stations surrounding the KRW, and they are located at Tumbler Ridge 

and Dawson Creek (Fig. 3.15). Holtan et al. (1962) recommended that when the watershed 

size is more than 20 km2, the minimum number of weather station for watershed hydrology 

study will be 1 per each 8 km2. The World Meteorological Organization (WMO) (1981) 

recommended using one weather station per 250 to 1000 km2 when it is difficult to get 

available meteorological data. As a result, the use of data from 3 weather stations is 

acceptable for climate change study in KRW. In this study, observed precipitation, 

temperature, and other meteorological data (e.g., barometric pressure, relative humidity, wind 

speed, direct and global radiation) were collected from these three stations from 2000 to 

2011. Since Dawson Creek and Noel weather stations did not have observed precipitation, 

temperature, and other meteorological data during winter and spring seasons, Tumbler Ridge 

weather station’s data were used during those seasons. During summer and fall seasons all 

three weather stations’ data were averaged to get their daily distribution for the study area. 

The arithmetic average method was used in climate data for various hydrologic studies (e.g., 

Fujieda et al., 1997; Anctil et al., 2004; Chenini et al., 2010; Guardiola-Claramonte et al., 

2011; Wang et al., 2012).

64



Soli typo

WiHi Cl* town 
K f i  *»n&t lo in  

[ ] «Alo«m

Figure 3.14 Soil type map of the study area
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Figure 3.15 Available active weather stations in and around KRW
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3.2.5 Land use/land cover map of the study area

Land use/land cover (LULC) maps for the study area of the Mainstem sub-watershed in 

1999 and 2010 were generated from Saha et al.’s (2013) results using Arc GIS. The details of 

this LULC map generation are found in Paul (2013). The composition of different LULC in 

1999 and 2010 are shown in Fig. 3.16 and 3.17, respectively. The definitions of different land 

use types are presented in Table 3.4. The details of LULC changes in the study area between 

1999 and 2010 are shown in the next Chapter (Table 4.2).

Table 3.4 Definitions used in different land use types (Paul, 2013)

Land use types Description

Agriculture It includes cultivated land as well as grass land (pasture)

Built up area It includes man-made structures e.g., houses, roads, industrial 
infrastructures etc.

Forest It includes evergreen deciduous, broadleaf coniferous and mixed 
forests

Forest clear cut It includes the forest cut block areas, which were cleared by the 
industry (e.g., oil and gas). This land use class contains most of the 
gas development infrastructures, including drilling pads

River River network

Wetland It includes non-forested and slightly forested marshes, swamps etc. 
where the groundwater table is at near or above the surface for 
significant part of the year
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Figure 3.16 Land use/land cover map in the study area in 1999

68



w+

Land use type

Agriculture 

Built up area 

Forest

Forest clear cut

River

Wetland

Figure 3.17 Land use/land cover map in the study area in 2010
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3.3 Numerical model development

3.3.1 Model selection

The selection of numerical model for GW-SW interaction study was based on literature 

studies. Jenkins (2006) mentioned that groundwater flow models (e.g., Parflow, ZOOMQ3D) 

cannot simulate river hydraulics and evapotranspiration, and they need to be coupled with 

another hydrologic model for investigating stream-aquifer interaction. Some groundwater 

models, such as SEEP2D (Tracy, 1977) and MODFLOW (McDonald et al., 1988) can 

simulate the steady-state water table if the river stage is specified, but they cannot model a 

flood surge. In addition, the effects of water in the unsaturated zone are not considered in 

these groundwater flow models. GSSHA is one of the few numerical models that have the 

capability to incorporate the groundwater physical processes into the hydraulics. The other 

numerical model is MIKE SHE which was developed by DHI Water and Environment. Both 

models incorporate almost the same hydrologic processes, including the same unsaturated 

flow equation (Richard’s equation). The only difference between these two models is the 

calculation of evapotranspiration (ET). In MIKE SHE, the Kristensen and Jensen method 

(Kristensen et al., 1975) is used for calculating ET based on a number of empirical equations. 

The required input includes time series for the reference ET, the leaf area index, the root 

depth, and the values for several empirical parameters that control the distribution of ET 

within the system (Refsgaard et al., 1995). On the other hand, in GSSHA model, the Penman- 

Monteith method (Monteith, 1981) is used for calculating ET by knowing the vegetation and 

surface characteristics based on soil and land use data. In this method, hydraulic conductivity 

of soils varies with the types of land uses (i.e., same soil type with different land use has
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different hydraulic conductivity, and therefore, various infiltration rates). As a result, this 

approach is appropriate for investigating land use impacts on GW-SW interaction. 

Furthermore, few studies have been reported to use GSSHA model for long term simulation 

in GW-SW interaction studies under changing climatic and land use conditions. As a result, 

the GSSHA model was chosen in this study to examine GW-SW interaction.

3.3.2 Details of GSSHA

GSSHA is a physically based and distributed hydrologic model that simulates the 

hydrologic response o f a watershed under given hydrometeorological inputs. It simulates the 

major hydrological processes, such as spatially and temporally varying precipitation, 

snowfall accumulation and melting, precipitation interception, infiltration, 

evapotranspiration, surface runoff routing, unsaturated zone soil moisture accounting, 

saturated groundwater flow, overland flow, sediment erosion and deposition, and in-stream 

sediment transport (Downer et al., 2002b). Each simulated process has its own time step and 

associated update time. During each time step, the update time is compared to the current 

modeling time, and when they match, the process is updated and the information is 

transferred to dependent processes. This formulation allows the simultaneous simulation of 

hydrological processes that have dissimilar response times, such as overland flow, ET, and 

lateral groundwater flow. In GSSHA model, snowfall accumulation is considered when 

precipitation occurs during air temperature of below 0°C. The details of GSSHA can be 

found in Downer (2002). During GSSHA model development, Watershed Modeling System 

(WMS) Version 8.4, a graphically-based software environment, was used in this study for
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delineating watershed, importing soil and land use maps and segmentation, defining reach 

segment and segment cross section parameters, and providing the time series data of climate 

and meteorological inputs. The following modeling methods were implemented:

• Infiltration was calculated using the Green and Ampt infiltration with redistribution 

(GAR) method (Ogden et al., 1997).

• Overland flow routing was simulated using the alternating direction explicit (ADE) 

finite difference method (Saul’yev, 1957).

• Channel routing was simulated using an explicit solution of the diffusive wave 

equation. This method has several internal stability checks, which result in a robust 

solution that can be used for subcritical, supercritical, and trans-critical flows.

• Where groundwater significantly affected the surface water hydrology, saturated 

groundwater flow was simulated with a finite difference representation of the 2-D 

lateral saturated groundwater flow equations. During the simulation, the additional 

processes of stream-groundwater interaction and exfiltration occurred.

• When both saturated groundwater flow and channel routing are being simulated, 

water flux between the stream and the saturated groundwater can be simulated. By 

specifying that both overland flow and saturated groundwater flow grid cells 

containing stream network nodes be considered as river flux cells, water will move 

between the channel and the groundwater domain, and this water flow was calculated 

based on Darcy's law.

• Exfiltration is the flux of water from the saturated zone onto the overland flow plane. 

It is seen at a change in slope on a hillside. It occurs when the groundwater table
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elevation exceeds that of the land surface. Fluxes to the land surface were computed 

using Darcy's law.

3.3.3 Data required

The following data are required to develop a GSSHA model:

• Watershed specific data (e.g., elevation, channel geometry, soil type, land use/land

cover), which can be obtained from Geographic Information Systems (GIS)

databases, satellite images, soil survey reports, and field observations.

• Precipitation and temperature data, and other meteorological data (e.g., barometric

pressure, relative humidity, wind speed, direct and global radiation), which can be

collected from available weather stations in the KRW.

• Stream flow data, which can be collected from Water Survey of Canada, and surface 

water monitoring network.

• Groundwater level data which can be collected from groundwater monitoring 

network.

• Channel cross section data which can be approximated based on field survey data.

3.3.4 Watershed delineation and stream network development

The Canadian Digital Elevation Data (CDED), with a resolution of 13.74 m by 23.81 m, 

downloaded free from Geo Base of Natural Resources Canada (www.geobase.ca) was used
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for watershed delineation and stream network creation in WMS environment. The outlet 

location of the study area was chosen at Arras (City of Dawson Creek’s water pump station), 

and the delineated watershed is shown in Fig. 3.18. It also shows the stream network in the 

study area which contains 236 segments, including segments of the main river (i.e., stream) 

and seasonal tributary drains. Uniform cross section of trapezoidal channel was assumed for 

stream segments and seasonal drains due to limited data and the infeasibility of conducting a 

cross sectional survey at each segment. The segments’ cross section of the main river was 

chosen from field survey (weir’s length at pump station in Arras) and Google map, while the 

seasonal tributary drains’ cross section was chosen from field observations because these 

drains are very narrow. Table 3.5 lists all the defined cross sections’ geometry (i.e., 

trapezoidal channel) for the segments. In WMS, each cross section’s geometry was recorded 

manually.

Table 3.5 Channels’ cross sections in the study area

Segment type Channel width Channel depth Side slope
(m) (m) (H:V)

Stream 40 1 1.5

Tributary drain 1 0.1 1.5

After the creation of stream network from DEM, 105 segments containing adverse slope 

were generated using the coarse grid resolution of DEM data. Such adverse slope creates 

backward flow from downstream to upstream which is not realistic. As a result, the 

streambed elevations of the adverse slope contained segments were smoothed through the 

interpolation of stream bed elevations manually one by one in WMS (Downer et al., 2002b).
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Figure 3.18 Watershed delineation and stream network development in the study area
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3.3.5 Modeling grid and index map development

In this study, the Kiskatinaw River is 71.26 km long and 40 m wide. Using WMS, a 2-D 

GSSHA grid with a spatial resolution of 30 m by 30 m was chosen for simulation based on 

available digital elevation model (DEM) and land use data. The uniform grid size was 

selected because it is the only available option in WMS. In order to use very fine resolution 

grid cell (e.g., 1 m by 1 m) for simulation, DEM and land use data should be at similar scale, 

but the available DEM data was in a grid resolution of 13.74 m by 23.81 m, and the available 

land use map was in a resolution of 30 m by 30 m. In addition, the GSSHA model cannot be 

constructed using modeling grid below DEM cell size. As a result, the grid cell of 30 m by 30 

m was chosen to maintain consistency with available DEM and land use data. A similar type 

of grid cell with coarse resolution was used in Ma et al. (2002) and Krause et al. (2007) for 

conducting GW-SW interaction studies. In a distributed model like GSSHA, the modeling 

parameters are assigned at the grid cell level. In GSSHA, the land use and soil type data are 

converted into index maps so that parameter values can be easily assigned to each grid cell. 

In this study, three index maps were created for parameter assignment, including a land use 

index map, a soil type index map, and a combined land use and soil type index map, as 

shown in Figs. 3.19, 3.20, and 3.21, respectively. In the land use index map, six different 

integer values were assigned as index ID for six types of land uses as per the guidelines of 

Downer et al. (2002b), for example, agriculture -  21, built up area -  16, forest -  43, forest 

clear cut -  83, river - 5 1 ,  and wetland -  61. In the soil type index map, three different integer 

values were assigned as index ID for three soil types as per the guidelines of Downer et al. 

(2002b), such as sandy loam -  10, clay loam -  15, and silt loam -  17. In the combined
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Figure 3.19 2010 land use index map.
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Figure 3.20 Soil type index map.
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Figure 3.21 2010 combined land use and soil type index map. Here yellow, cyan, green, 
orange red, orange, and blue color indicates forest clear cut-clay loam, forest-silt loam, 
forest-sandy loam, forest-clay loam, agriculture-clay loam, and wetland-clay loam, 
respectively
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land use and soil type index map, eleven different integer values (i.e., 1-11) were assigned as 

index ID for eleven different combinations of land uses and soil types for example, clay 

loam-forest -  1, clay loam-built up area -  2, etc.

In addition, the initial groundwater table and aquifer bottom maps were prepared for GW- 

SW interaction simulation. Since there is only one piezometer in the study area due to access 

and logistic problems, the initial groundwater table map of the study area was prepared (Fig. 

3.22) using observed groundwater table data collected from the all piezometers in the 

groundwater monitoring network in the KRW based on the interpolation method. This map 

was developed by clipping the initial groundwater table map of KRW to the study area using 

the GIS tool in WMS. Four types of interpolation methods are available in GSSHA, 

including linear, inverse distance weighted (IDW), Clough-Tocher, and natural neighbor 

method. Linear interpolation is the simplest TIN (Triangular Irregular Network) based 

method, and it is suitable for huge datasets. In the IDW, all of the data points are used to 

calculate each interpolated value, and it is suitable for both large and scattered data (Amidror, 

2002). The basic assumption of IDW is that the interpolated values should be affected more 

by nearby points and less by more distant points. As a result, the interpolation value at each 

new point is a weighted average of the values of the scattered points, while the weight of the 

scatter point decreases as the distance from the interpolation point to the scatter point 

increases (Kurtzman et al., 1999). The Clough-Tocher method is a finite element method 

based on TIN and suitable for both scattered and large data sets (Amidror, 2002). The natural 

neighbor method is area and distance weighted, and is suitable for clustered data (Connor et 

al., 2005). In this study, the initial groundwater table map was prepared using the IDW 

interpolation method because it is widely used in groundwater study (Rao et al., 2010;
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Figure 3.22 Initial groundwater table map on Oct 15th 2010. The color bar indicates 
groundwater table elevation above mean sea level.
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Zehtabian et al., 2013). In Fig. 3.22, most interpolations were found in the south end of the 

study area because most o f the piezometers in the groundwater monitoring network (Fig. 3.6) 

are located below the southern part of the study area. On the other hand, few interpolations 

were found in the northern half of the study area due to the presence of few piezometers 

around that area. All these interpolations indicate equipotential line (i.e., line with constant 

head or groundwater table). Groundwater flow lines are at the normal (i.e., right angle) of 

these equipotential lines. Based on these equipotential lines shown in Fig. 3.22, it was found 

that the regional groundwater flow field in the study area is a mixture of gaining and flow

through systems. The aquifer (unconfined) bottom map (Fig. 3.23) showing aquifer bottom 

elevation contour lines was prepared using borehole log data of a few existing wells in the 

upper part of KRW and its surrounding area collected from the database of British Columbia 

Water Resources Atlas (www.gov.bc.ca). This map was also prepared based on the IDW 

interpolation method. The distance between aquifer bottom elevation and ground elevation 

was then used to create the vertical layer of the modeling domain. For example, Woldeamlak 

et al. (2007) used only one layer of 90 m thickness in their developed model for investigating 

GW-SW interaction. Before using the collected groundwater table data, barometric pressure 

correction was applied because groundwater table fluctuates with atmospheric pressure 

change (McWhorter et al., 1977). Typically, an increase in barometric (i.e., atmospheric) 

pressure will cause a lower water level, and a decrease in barometric pressure will result in a 

higher water level. This increase in barometric pressure occurs at a location when the altitude 

of that location is below mean sea level, and vice versa. In the KRW, all the piezometers in 

the groundwater monitoring network are situated above mean sea level, and therefore,
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Figure 3.23 Aquifer (unconfmed) bottom map. The color bar indicates aquifer bottom 
elevation above mean sea level.
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barometric pressure decreases with increasing altitudes at those piezometers. The decrease of 

barometric pressure results in higher groundwater table in those piezometers because of the 

increase of entrapped air volume in those piezometers. Therefore, all the observed 

groundwater table data were subtracted by barometric pressure correction in order to get 

corrected groundwater table data. The barometric pressure correction was made according to 

the technical guidelines of Solinst (www.solinst.com). The barometric pressure data were 

collected from the three nearby weather stations because no barologger was used in this study 

to measure barometric pressure at each piezometer location. By comparing Fig. 3.22 with 

Fig. 3.23, the saturated thickness of unconfined aquifer in this study area ranges from about 

10 m to about 140 m. This range is approximate because there are few groundwater table and 

aquifer bottom data available in this area. In addition, the stratification of soils in the study 

area is not available to firmly support this approximate range. Similar ranges were found in 

Ogallala (maximum thickness 366 m) and Edward Trinity (maximum thickness 243 m) 

aquifers in USA (Texas Water Development Board, 1995).

3.3.6 Initial and boundary conditions

In this study, the initial condition was chosen as the stream discharge (stream flow) on 

October 15th, 2010, at Arras (watershed outlet) because the groundwater table data collection 

from almost all the piezometers started on October 15th, 2010. The discharge at Arras site 

was determined from the summation of observed stream discharge at Farmington station 

(Water Survey Canada station), which is located downstream of KRW (Fig. 3.24), and the 

daily pumping rate from Arras. The Farmington station records stream flow in an hourly
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interval. The Farmington station was chosen because it is the nearest station to Arras, and 

there is no observed flow data available at Arras. It is to be noted that the observed stream 

flow at Farmington station is the total stream flow of KRW, but the study area is only a part 

of KRW. Thus it is necessary to know stream flow at the inlet of the study area on October 

15th, 2010 (Fig. 3.25). The flow at the inlet was determined by combining the stream flow of 

two confluences of Kiskatinaw River (i.e., East and West confluences in East and West 

Kiskatinaw sub-watersheds, respectively, in Fig. 3.24). Using Sontek’s Acoustic Doppler 

Flow Tracker, the stream flow at both confluences was measured ten times in different 

months from June 2010 to February 2012. The contribution of both confluences to 

Kiskatinaw River flow was then calculated by dividing the measured stream flow at a 

particular confluence at a specific time of the particular day by the total observed flow at 

Farmington station at the same time on that day. In this way, the contribution of both 

confluences to Kiskatinaw River flow was calculated on ten occasions. Based on these 

contribution values, the East and West confluences contribute averagely 27% and 45%, 

respectively, to Kiskatinaw River flow. Tables 3.6 and 3.7 show the contribution of East and 

West confluences to Kiskatinaw River flow, respectively.
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Figure 3.24 Major sub-watersheds and Water Survey Canada station at Farmington in 
the KRW (modified from Paul, 2013)
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Figure 3.25 Inlet and outlet (i.e., Arras) of the study area
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Table 3.6 Contribution of East confluence to Kiskatinaw River flow

Date Time 
(24-hr format)

Observed stream 
flow at 

Farmington
(m3/s)

Observed stream 
flow at East 
confluence

(m3/s)

Contribution of 
East confluence 
to Kiskatinaw 
River flow (%)

15-Jun-2010 11:18 7.72 2.7645 35

16-Jul-2010 14:22 0.829 0.1599 19

3-Sep-2010 11:51 0.52 0.1739 33

17-0ct-2010 8:02 1.121 0.2608 23

28-Jan-2011 10:00 1.121 0.1917 17

3-Apr-2011 9:45 1.727 0.453 26

14-Jun-2011 12:37 17.93 6.0586 33

16-Aug-2011 14:53 3.5 1.4232 40

7-Sep-2011 16:48 2.1 0.6262 29

13-Feb-2012 10:46 0.9 0.1475 16

Average 27
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Table 3.7 Contribution of West confluence to Kiskatinaw River flow

Date Time 
(24-hr format)

Observed stream 
flow at 

Farmington 
(m3/s)

Observed stream 
flow at West 
confluence 

(m3/s)

Contribution of 
West confluence 

to Kiskatinaw 
River flow (%)

15-Jun-2010 13:17 7.72 2.8284 36

17-Jul-2010 12:03 0.793 0.4042 51

3-Sep-2010 15:58 0.52 0.3961 76

16-0ct-2010 14:44 0.755 0.6084 80

28-Jan-2011 14:51 1 . 1 2 1 0.318 28

3-Apr-2011 11:33 1.727 0.2634 15

15-Jun-2011 8:09 15.93 6.0397 37

15-Aug-2011 13:38 3.65 2.0062 55

7-Sep-2011 13:19 2 . 1 1.0302 49

12-Feb-2012 12:04 0.9 0.2096 23

Average 45

Hence the stream flow at the inlet of the study area is 72% of the stream flow at 

Farmington station, and the remaining 28% flow comes from other sub-watersheds (i.e., 

Mainstem, Brassey, Halfmoon-Oetata, and other areas). It is also to be noted that due to 

safety and logistics problems, point stream flow measurements at both confluences were not 

conducted during spring runoff and high flow seasons. In this study, no-flow condition was
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chosen as the groundwater flow boundary condition around the perimeter of the study area 

for model simplicity. In fact, Kala Groundwater Consulting Ltd. (2001) found a water divide 

(i.e., no flow boundary condition) on the east side of the Arras area. In addition, groundwater 

table was not found at Arras site (east bank of Kiskatinaw River) during piezometer 

installation in late summer 2 0 1 0 , and this indicates a no-flow boundary condition at this site. 

For stream routing, flux river boundary condition (i.e., a boundary condition in which the cell 

contains a stream node allows the exchange of water between the stream and groundwater 

during simulation) was chosen as the groundwater flow boundary condition for stream 

because a significant amount of water goes into the subsurface (groundwater) flow from 

stream network. Two major assumptions were considered for developing the model: (1) the 

soils of KRW were isotropic, and (2) the stream flow at the inlet of the study area was equal 

to 72% of the stream flow at Farmington station. These assumptions would impact the results 

compared to those under using the actual information of soil layers in the study area and the 

temporal stream flow at the inlet.

3.3.7 Model calibration and validation

The model needs to be calibrated before being applied for prediction. The objective of 

calibration is to determine the parameter set which results in the best fit between the 

predicted and observed discharge. In this study, automated calibration was chosen, and it 

uses shuffled complex evolution (SCE) method (Duan et al., 1992). In this method, the 

minimum and maximum values (i.e., range) of each parameter are needed, and these ranges 

were collected from literatures and other field results obtained under similar conditions
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(Gaiser, 1952; Chow, 1959; Clapp et al., 1978; Rawls et al., 1982; Rawls et al., 1983; 

Smedema et al., 1983; Minhas et al., 1986; Miller et al., 1998; Celik, 2005; Reynolds et al., 

2007; Saskatchewan Ministry of Agriculture, 2008; Hatch et al., 2010). After calibration, the 

model needs to validate against another set of observed data in order to make sure that model 

calibration was done properly. The common goodness-of-fit statistics were used to assess the 

modeling performance during calibration and validation. These statistics were not used 

directly in the automatic calibration process, but were used after calibration as an additional 

method of comparison. The coefficient of determination (R2), coefficient of efficiency (NSE: 

Nash-Sutcliffe efficiency), percent bias (PBIAS), and RMSE-observations standard deviation 

ratio (RSR) have been widely used to evaluate the goodness-of-fit of hydrologic models. The 

R2 is the square of the Pearson’s product moment correlation coefficient and describes the 

proportion of the total variance in the observed data that can be explained by the model 

(Legates et al., 1999). It ranges from 0 to 1, with higher values indicating better agreement. It 

is calculated by the following equation (Legates et al., 1999):

R2 _
obs n o b s 'I / 'n s im _ n s im   ̂■Vmean)  \ V m ean)

.[̂ iCQS*5- Q&’an)2] ‘ [£,N=1(Q?im-QSn&n)2]
(3.1)

Where Q°bs and Qfimare the ith observed and simulated stream flow, respectively, and 

Qmean and Qmean are the mean observed and simulated stream flow, respectively.

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the relative 

magnitude of the residual variance compared to the measured data variance (Nash et al., 

1970). It ranges from minus infinity to 1, with higher values indicating better agreement. If
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NSE > 0, the model is considered to be a better predictor of system behavior than the mean 

of the observed data. NSE is calculated by the following equation (Nash et al., 1970):

(3.2)

The percent bias (PBIAS) quantifies the average tendency of the simulated data to be 

larger or smaller than the observed data (Gupta et al., 1999). The optimal value of PBIAS is 

0, with low-magnitude values indicating accurate model simulation. Positive value of PBIAS 

indicates model underestimation bias, while negative value indicates model overestimation 

bias. PBIAS is calculated by the following equation (Gupta et al., 1999):

RMSE-observations standard deviation ratio (RSR) standardizes RMSE (root mean 

square error) using the standard deviation of observations (Singh et al., 2004), and it 

combines both an error index and the additional information recommended by Legates et al. 

(1999). It is calculated by the following equation (Legates et al., 1999):

RMSE (3.4)
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Where RMSE is root mean square error, and a obs is the standard deviation of observed 

stream flow. RSR varies from the optimal value of 0, which indicates zero RMSE or residual 

variation, and therefore, perfect model simulation. Lower RMSE means lower RSR, and 

therefore, better model simulation results.

Generally, the GSSHA model is calibrated and validated using observed stream flow. In 

this study, the GSSHA model was calibrated and validated using observed stream flow, 

groundwater table, and groundwater contribution to stream flow (i.e., base flow index).

3.3.7.1 Using stream flow

The ideal calibration needs 3 to 5 years of observation data, which consists of a sufficient 

range of hydrologic events to activate all model constituent processes during calibration (Gan 

et al., 1997). If such data is not available, Gupta et al. (1999) suggested that the available data 

should be separated into two data sets: “above-mean” flows (wet years) and “below-mean” 

flows (dry years). In this study, the land use map for year 2010, and the groundwater table 

elevation data from October 15th, 2010 to February 12th, 2012 were available. However, the 

steam flow data at Farmington Water Survey Canada station during January 2012 was not 

available. As a result, the calibration and validation were conducted using observed data 

from October 15th, 2010 to December 31st, 2011. During this period, the land use map of year 

2010 was used due to the unavailability of land use map for year 2011. The difference 

between stream flow at Arras and the inlet of the study area (i.e., 72% of the stream flow at 

Farmington station) was used as observed stream flow at the outlet of the study area. From 

October 15th, 2010 to December 31st, 2011, the mean stream flow was 6.05 m3/s. Based on
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this number and the suggestion of Gupta et al. (1999), this observed time period was divided 

into two data sets: one from October 15th, 2010 to April 6 th, 2011, which is below mean flow 

(i.e., 0.36 m3/s ) for calibration, and the another from April 7th, 2011 to December 31st, 2011, 

which is above mean flow (i.e., 9.74 m3/s) for validation. A simulation time step of 1 minute 

was used for calibration and validation based on the temporal convergence study of observed 

and simulated stream flows at the outlet of the study area.

Fig. 3.26 shows the GSSHA model calibration results. The results show that there are 

some discrepancies between observed and simulated stream flows in terms of their trends 

during the periods from late Oct to late Nov, 2010, and from late Dec, 2010 to mid-Jan, 2011. 

The first discrepancy (from late Oct to late Nov, 2010) may have occurred because the model 

was at rest (stationary) before model simulation, thus producing the perturbation of outputs 

during the initial stage of model simulation. The second discrepancy may have occurred 

because of the consideration of stream flow at the inlet of the study area to be equal to 72% 

of the stream flow at Farmington station, which was found as a mean value of only 10 point 

stream flow measurements. The calibration obtained the following statistics: R2= 0.67, NSE= 

0.62, PBLAS= 9.2% and RSR= 0.54. Santhi et al. (2001) and Van Liew et al. (2003) 

mentioned that a R2 value of greater than 0.5 is acceptable for model evaluation. US EPA 

(2007) stated that a R2 value between 0.6 and 0.7 can show fair performance for hydrologic 

models. Moriasi et al. (2007) reported that numerical model simulation can be judged as 

satisfactory if NSE>0.5, RSR<0.7, and PBIAS<25%. Based on these evaluation statistics 

criteria, the GSSHA model calibration is deemed as satisfactory.
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Figure 3.26 Observed and simulated stream flows at the outlet of the study area during 
calibration

Fig. 3.27 shows the modeling validation results, with R2= 0.63, NSE= 0.58, PBIAS= 

10.1%, and RSR- 0.6. As a result, satisfactory model validation was achieved.
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Figure 3.27 Observed and simulated stream flows at the outlet of the study area during 
validation

Another approach of calibration and validation was used assuming constant land use/land 

cover in the study area during the last several years. Similar approach was used in model 

calibration and validation in various GW-SW interaction studies (e.g., Krause et al., 2004; 

Van Roosmalen et al., 2007; Van Roosmalen et al., 2009; Jackson et al., 2011; Dams et al., 

2012; Vansteenkiste et al., 2012). In this study, the calibration was conducted for the time 

period from October 15th, 2010 to December 31st, 2011, and the validation was performed for 

the time period from October 15th, 2006 to October 15th, 2010 using observed stream flow 

data collected from Farmington Water Survey Canada station. This validation is similar to

96



hindcasting, opposite of forecasting. Fig. 3.28 shows the calibration results, with R2= 0.65, 

NSE= 0.61, PBIAS= 8.4 %, and RSR= 0.56, indicating satisfactory performance.
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Figure 3.28 Comparison of observed and simulated stream flows at the outlet of the study 
area during calibration

Fig. 3.29 shows the validation results, with R2= 0.62, NSE= 0.59, PBIAS= 13.8%, and 

RSR= 0.61. It also indicates satisfactory modeling performance. All the calibrated parameters 

in the GSSHA model and their values are listed in Table 3.8.
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Figure 3.29 Comparison of observed and simulated stream flows at the outlet of the study 
area during a 4-year validation period

Table 3.8 Calibrated parameters’ values used in the GSSHA model

Process Process Parameter Unit Value
Infiltration Saturated hydraulic 

conductivity (Ks)-clay 
loam/forest

cm/hr 0.15

Infiltration Ks-clay loam/built-up area cm/hr 0.03

Infiltration Ks-clay loam/forest clear 
cut area

cm/hr 0.08

Infiltration Ks-clay loam/agriculture cm/hr 0 . 1 0

Infiltration Ks-clay loam/wetland cm/hr 0.05

Infiltration Ks-sandy loam/forest cm/hr 0.93
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Infiltration Ks-sandy loam/forest clear 
cut area

cm/hr 0.34

Infiltration Ks-sandy loam/agriculture cm/hr 0.42

Infiltration Ks-silt loam/forest clear cut 
area

cm/hr 0.7

Infiltration Ks-silt loam/forest cm/hr 0.81

Infiltration Ks-silt loam/built-up area cm/hr 0.09

Infiltration Initial moisture-clay loam - 0 . 2 1

Infiltration Initial moisture-silt loam - 0.15

Infiltration Initial moisture-sandy loam - 0 . 1 1

Overland flow Manning’s n - built-up area - 0 . 0 1 1

Overland flow Manning’s n-agriculture - 0.035

Overland flow Manning’s n-forest - 0 . 1

Overland flow Manning’s n-forest clear 
cut

- 0.03

Groundwater Porosity-silt loam - 0.501

Groundwater Porosity-clay loam - 0.464

Groundwater Porosity-sandy loam - 0.453

Channel flow Manning’s n - river - 0.025

Soil moisture Soil moisture depth m 0.5

Groundwater- Ks - stream bed material cm/hr 1 . 1

channel

Groundwater- Stream bed material’s cm 15
channel thickness
Retention Retention depth-agriculture mm 0 . 1

Retention Retention depth-forest mm 0 . 1 2

Retention Retention depth-forest clear mm 0 . 1

cut
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3.3.7.2 Using groundwater table

The GSSHA model was also calibrated and validated using observed mean daily 

groundwater table at one bank piezometer in the study area from September 21st, 2011 to 

December 31st, 2011. The comparison of mean daily measured and simulated groundwater 

tables at that piezometer during calibration and validation is shown in Fig. 3.30. The 

calibration was done from September 21st, 2011 to November 10th, 2011, with R2= 0.59 (Fig. 

3.31), NSE= 0.56, PBIAS- -16.9% and RSR= 0.66 being obtained. The validation was 

performed for the period from November 11th, 2011 to December 31st, 2011, with R2= 0.91 

(Fig. 3.32), NSE- 0.52, PBIAS- -23.9%, and RSR= 0.45 being found.
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Figure 3.30 Comparison of mean daily measured and simulated groundwater tables at one 
piezometer in the study area during calibration and validation
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Figure 3.32 Comparison of mean daily measured and simulated groundwater tables at one 
piezometer in the study area during validation
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3.3.7.3 Using groundwater contribution to stream flow

The GSSHA model was also calibrated and validated using the calculated mean monthly 

groundwater contribution to stream flow based on the PART base flow separation program of 

the USGS (Rutledge, 1998). In the PART program, groundwater contribution to stream flow 

is expressed as a base flow index. This program estimates daily base flow by considering it to 

be equal to stream flow on days that fit a requirement of antecedent recession, and then 

linearly interpolating it for other days in the stream flow record. Based on these daily values, 

the mean monthly groundwater contribution to stream flow was calculated. On the other 

hand, the GSSHA model estimates monthly total volume of stream discharge (flow) and 

groundwater discharge, and based on those values the mean monthly groundwater 

contribution to stream flow was calculated (Downer et al., 2006). The calculated 

groundwater contribution to stream flow in the study area by PART program for the period 

of January 2007 to December 2009 was used for GSSHA model calibration, with R2= 0.92 

and NSE= 0.74. The PART-calculated groundwater contribution to stream flow in the study 

area for the period from January 2010 to December 2011 was used for GSSHA model 

validation, with R2= 0.71 and NSE= 0.55. As a result, the developed GSSHA model holds 

satisfactory modeling performance. The comparison of mean monthly groundwater 

contribution to stream flow from January 2007 to December 2011 calculated by the PART 

program and simulated by GSSHA model is shown in Fig. 3.33.
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CHAPTER 4

GENERATION OF CLIMATE AND LAND USE/LAND COVER CHANGE

SCENARIOS

4.1 Background

In order to investigate GW-SW interaction in the study area under the impact of climate 

and land use changes, it is necessary to generate fiiture climate and land use/land cover 

change scenarios. The climate change scenarios were generated for the KRW because of the 

small size of the study area compared to the grid size of the Canadian Regional Climate 

Model, and the lack of available climatic data in the study area. This chapter details the 

generation of future climate and land use/land cover change scenarios.

4.2 Generation of future climate change scenarios

In this study, future climate scenario (i.e., precipitation and temperature) data for the 

KRW were collected from the CRCM 4.2 (Canadian Regional Climate Model) of CCCma 

(Canadian Centre for Climate Modeling and Analysis) for a short-term period from 2012 to 

2016 and a long-term period from 2020 to 2040. The short-term period was used to 

understand the annual dynamics of climate change, and to make a comparison of GW-SW 

interactions between the effect of climate change and the effect of combined climate and land 

use/land cover (LULC) changes scenarios. On the other hand, the long-term period was
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chosen to provide long-term future climate prediction. The climate data from the CRCM is in 

the form of monthly means of climatic variables under different greenhouse gas (GHG) 

emission scenarios. These monthly mean values can be converted to daily values in a 

particular month using downscaling method. With a 45-km horizontal grid-size mesh, the 

CRCM is based on the MC2 (Mesoscale Compressible Community) dynamical kernel, which 

uses the semi-implicit and semi-Lagrangian (SISL) numerical integration scheme to solve the 

fully elastic and non-hydrostatic Euler field equations (Bergeron et al., 1994).

4.2.1 Downscaling of future climate data

The general circulation models (GCMs) are useful tools to explore the likelihood of 

plausible future climate changes. The ability of these models to provide reliable simulations 

of climate at a global scale is continuously increasing, and their projections of future climate 

conditions are becoming more consistent (van Roosmalen et al., 2010). However, due to the 

broad scale at which they operate, only a coarse representation of topography, land-sea 

contrast, and land cover is included. Their simulation ability of fme-scale atmospheric 

circulations is limited. Thus, a number of methods have been used to downscale the GCM 

data, including statistical and dynamical methods (Fowler et al., 2007). Dynamical 

downscaling uses regional climate models (RCMs) or limited-area models, which use lateral 

boundary conditions and sea surface temperatures (SSTs) from GCM as initial atmospheric 

conditions. The advantage of using dynamically downscaled climate data is that the variables 

are downscaled coherently. In addition, the dynamic downscaling is physically based, but is 

computationally intensive. The use of RCMs has increasingly gained interest in recent years
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and the ability of RCMs to reproduce the present-day climate has substantially improved (Xu 

et al., 2005; van Roosmalen et al., 2010). Moreover, recent developments have resulted in 

RCM outputs with higher resolutions, and this is important for hydrological impact studies. 

The higher resolution of RCMs compared to GCMs makes it possible to realistically simulate 

regional climate features, such as orographic precipitation, extreme events, and regional scale 

climate anomalies, or non-linear effects (Fowler et al., 2007).

In statistical downscaling, the relationship between the simulated and observed climate 

variable is determined independently for each variable (Fowler et al., 2007). The advantage 

of using statistical downscaling is that it is comparatively cheap, and computationally 

efficient. Many statistical downscaling techniques have been developed to convert large- 

scale GCM and RCM outputs into results at a finer resolution. The simplest way is to apply 

GCM and RCM scale projections in the form of change factors (CFs) through the 

‘perturbation method’ (Prudhomme et al., 2002) or ‘delta-change’ approach. Differences 

between the control and future GCM/RCM simulations are applied to baseline observations 

by simply adding or scaling the mean climatic CF to each day. As a result, it can be rapidly 

applied to several GCM/RCM outputs to produce a range of climate scenarios. However, this 

method has a number of limitations. Firstly, it assumes that GCM/RCM can simulate more 

accurately for the relative change than the absolute values, i.e., assuming a constant bias 

through time. Secondly, CFs only downscale the mean, maxima, and minima of climatic 

variables, ignoring change in variability and assuming a constant spatial pattern of climate 

(Diaz-Nieto et al., 2005). Moreover, for precipitation, the temporal sequence of wet days is 

assumed to be unchanged, but the variation in wet and dry spells may be an important 

component of climate change.
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4.2.2 Delta change method

Delta change method has been commonly applied to cope with biases when using climate 

model outputs in hydrological impact studies (Hay et al., 2000; Xu et al., 2005). It is a simple 

way of transferring the change in a climatic variable simulated by climate model to an 

observed data set by using delta change factors. This method has been used for hydrological 

impact assessments in Scandinavia (e.g., Bergstrom et al., 2001; Andreasson et al., 2004; 

Graham, 2004; Graham et al., 2007; van Roosmalen et al., 2007). It consists of altering an 

observed database of climatic variables with delta change factors to obtain a database for the 

future (scenario). In this study, the monthly delta change values for precipitation and 

temperature were determined for the watershed scale from the CRCM 4.2 simulation outputs 

because these outputs are from a 45-km horizontal grid-size mesh (Bergeron et al., 1994). 

Absolute changes were used for temperature because it is a state variable and not a flux, 

whereas the relative change factors were applied for precipitation because it is a flux (van 

Roosmalen et al., 2010). For temperature, the procedure of delta change method is as 

follows:

W , j )  =  Tobs( i , j ) +  Ar 0 )  , i = 1 , 2  ....31; j = 1 , 2 . . . 1 2  (4.1)

where TA is the temperature input for the future hydrological scenario simulation, Tobs is 

the observed temperature in the historical period, (i, j) stand for day and month, respectively, 

and Ar  is the change in temperature. This Ar value is calculated by Eq. 4.2.

At O') =  Tscen 0 )  -  Tctrl 0 )  j -  1, 2, 3... 12 (4.2)
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where Tctn  0 )  *s the mean daily temperature for month j and it is calculated as the mean 

of temperature of all days in month j for all 1 2  years of the reference (i.e., control) period; 

TSCen O ') is the mean daily temperature for month j of each particular year from 2 0 1 2  to 

2016 (i.e., short-term). The indices “seen” and “ctrl” stand for the scenario period (2012- 

2016) and the control period (2000-2011), respectively. This led to 12 monthly delta change 

values for each year from 2 0 1 2  to 2016, and they were used to adjust the observed daily 

temperature within the individual months for future temperature input.

For precipitation, the delta change method can be described as follows:

where PA is the precipitation input for the future hydrological scenario simulation, Pobs is 

the observed precipitation in the historical period, (i, j) stand for day and month, respectively, 

and Ap is the change in precipitation, which can be calculated by:

where Pctri (J) is the mean daily precipitation for month j and it is calculated as the mean 

of precipitation of all days in month j for all 12 years of the control period, and Pscen (J) *s 

the mean daily precipitation for month j of each particular year from 2012 to 2016. The 

indices “seen” and “ctrl” stand for the scenario period (2012-2016) and the control period 

(2000-2011), respectively. Similar downscaling approaches for precipitation and temperature 

were used in the long-term period (2020-2040) scenarios.

One of the advantages of the delta change method is that a bias correction of the RCM 

data is not necessary because the change in variables between the scenario and the control

Pa (* .;)=  Ap(/')* PobsVJ)  , i = 1, 2 ....31; j = 1, 2...12 (4.3)

(4.4)
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period is used, and the bias is assumed to be equal for both the control and scenario 

simulations. Another advantage is that an observed database is used as the baseline resulting 

in a consistent set of scenario data, whereas the use of climate model output directly could 

result in unrealistic dynamics in input variables due to climate model variance. On the other 

hand, the use of an observed database is also a drawback of this method because information 

on the changes in variability and extremes in the future climate simulated by climate model is 

lost. As a result, the delta change method is more applicable for impact studies on 

groundwater systems than surface water systems because groundwater systems are more 

sensitive to changes in means than to changes in extremes (van Roosmalen et al., 2010).

4.2.3 Future climate change scenarios

In this study, precipitation and temperature for the short-term (2012-2016) and long-term 

(2020-2040) periods were downscaled from CRCM 4.2 modeling outputs using the delta 

change method under two types of greenhouse gas (GHG) emission scenarios of SRES 

(Special Report on Emissions Scenarios) of the Intergovernmental Panel on Climate Change 

(IPCC) (IPCC, 2000), namely the A2 and B1 scenarios. The A2 scenario was chosen because 

it represents regional economic development, and in the KRW, the large-scale shale gas 

exploration/production activities began in 2005, and enhances regional economy (British 

Columbia Ministry of Energy and Mines, 2012). On the other hand, the B1 scenario was 

chosen because it describes a more integrated and environmental friendly world. The details 

of all GHG emission scenarios are presented in Table 4.1.
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Table 4.1 GHG emission scenarios (IPCC, 2000)

Emission scenario Description

• The Al scenario describes a convergent world that becomes 
more homogeneous with increased social and cultural 
interactions

• Very rapid economic growth
• Global population reaches peak in 2050 and then gradually 

decreases
• Quick introduction of new and more efficient technologies
• The Al scenario is divided into 3 subsets based on their 

energy sources: fossil intensive (A1FI), non-fossil intensive 
(AIT), and balanced of all sources (A IB)

• The A2 scenario describes a very heterogeneous world with 
self-reliance and preservation of local identities

• Economic development is regionally oriented
• Global population is increasing continuously
• More fragmented and slower technological change than other 

scenarios.

• The B1 scenario describes a more integrated and 
environmental friendly world

• Rapid change in economic structures in service and 
information economy due to the reduction of material

B 1 intensity and the introduction of clean and resource-efficient
technologies

• Emphasis is given on global solutions to economic, social and 
environmental sustainability

• Global population that peaks in mid-century and thereafter 
declines.

• The B2 scenario describes a heterogeneous world
• Emphasis on local solutions to economic, social and

B2 environmental sustainability.
• Global population increases continuously but at a lower rate

than under the A2 scenario
• Less rapid and more diverse technological changes than under 

the Al and B 1 scenarios.
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Figure 4.1 Projected trends of the atmospheric concentrations of three greenhouse gases: 
carbon dioxide (CO2 ), methane (CH4 ), and Nitrous oxide (N2O) over the 21st century (taken 
from US EPA, 2011)

Emission scenarios predict future GHG emissions, which is one of the reasons for global 

warming (IPCC, 2007). Fig. 4.1 shows the projected trends of the atmospheric concentrations 

of three greenhouse gases over the 2 1 st century: carbon dioxide (CO2), methane (CH4), and 

Nitrous oxide (N2 O). These GHG emission scenarios are used in GCMs as radiative forcing
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to produce climate change scenarios for specific climate variable (e.g., precipitation, 

temperature). According to IPCC (2000), none of the SRES scenarios are more likely to 

occur than others. Hence none of the SRES scenarios represent a "best guess" for future 

emissions. In this study, the A2 and B1 scenarios were considered to show the variable 

impacts of future climate changes on GW-SW interaction.

4.2.3.1 Precipitation

4.2.3.1.1 Short-term

The future predicted monthly precipitations of KRW from 2012 to 2016 (short-term) 

under the A2 and B1 GHG emission scenarios using the delta change method are presented 

in Figs. 4.2 and 4.3, respectively. Fig. 4.2 shows that the trend of monthly precipitations is 

not the same in every year under the A2 scenario due to increase in the atmospheric 

concentrations of greenhouse gases (GHGs), especially carbon dioxide (C 02), methane 

(CH4 ), and Nitrous oxide (N20 ) (IPCC, 2000, 2007). The peak monthly precipitation shifts 

annually, and it falls between June and August, most commonly in July. Under the B1 

scenario (Fig. 4.3), similar trends are found. From the comparison of projected mean monthly 

precipitations under both scenarios from 2 0 1 2  to 2016 with respect to the mean monthly 

precipitations of 2000-2011 (Fig. 4.4), it is found that the peak monthly precipitation under 

both scenarios shifts to July rather than remaining on the trend of mean monthly 

precipitations of 2000-2011. It is also found that with the exception of February, May, and 

December, the mean monthly precipitations are higher under the A2 scenario than under the 

B1 scenario.
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Figure 4.2 Projected monthly precipitations of KRW from 2012 to 2016 under A2 scenario
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Figure 4.3 Projected monthly precipitations of KRW from 2012 to 2016 under B1 scenario
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Figure 4.4 Comparison of projected mean monthly precipitations under A2 and B1 scenarios 
from 2 0 1 2  to 2016 with respect to the mean monthly precipitations of 2 0 0 0 - 2 0 1 1

When the annual precipitations from 2012 to 2016 are compared to the mean annual 

precipitation of 2 0 0 0 -2 0 1 1 , it is found that precipitation increases every year under both 

scenarios, except in 2012 for the B1 scenario (Fig. 4.5). The increase of annual precipitation 

under the A2 scenario is between 2% and 6 %, while the most and least increases are found in 

2012 and 2013, respectively. On the other hand, under the B1 scenario, the increase of annual 

precipitation is between 1% and 5%, while the most and least increases are expected in 2013 

and 2015, respectively. In 2012, the annual precipitation decreases by 1% as compared to the 

mean annual precipitation of 498 mm in 2000-2011. The mean annual precipitation of 2012- 

2016 under the A2 and B1 scenarios is 522 mm (standard deviation, a = 8  mm) and 510 mm 

(a= ll mm), respectively, and these numbers are above the mean annual precipitation of 

2000-2011 by 24 mm (5%) and 12 mm (2.5%), respectively.
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Figure 4.5 Projected annual precipitation of KRW from 2012 to 2016 under A2 and B1 
scenarios

When the seasonal precipitations from 2012 to 2016 under the A2 scenario are compared 

to the mean seasonal precipitations of 2000-2011, it is found that summer (i.e., June to 

August) precipitation increases every year with a rate of 4% to 14% with respect to the mean 

summer precipitation of 2000-2011 (Fig. 4.6). The most and least increases are expected in 

2014 and 2015, respectively. The mean precipitation from 2000 to 2011 in winter, spring, 

summer, and fall are 109 mm, 93 mm, 158 mm, and 138 mm, respectively. Conversely, in 

winter (i.e., December to February), precipitation decreases from 2012 to 2014 with a rate of 

1% (i.e., in 2013) to 4% (i.e., in 2014), and then increases from 2015 (by 5%) to 2016 (by 

6 %). Spring (i.e., March to May) precipitation follows the similar trend of winter 

precipitation, with a decrease from 2012 to 2014 by a rate of 1% (i.e., in 2014) to 6 % (i.e., in

2012), and then an increase from 2015 (by 15%) to 2016 (by 4%). In fall (i.e., September to 

November), precipitation increases from 2012 to 2014 with a rate of 2% (i.e., in 2012) to 8 %
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(i.e., in 2013), and then decreases in 2015 by 3%, and increases again in 2016 by 4%. On 

average, the mean winter, spring, summer, and fall precipitations from 2 0 1 2  to 2016 under 

the A2 scenario are 111 mm (o=9 mm), 95 mm (a= 8  mm), 172 mm (a=7 mm), and 144 mm 

(ct=11 mm), respectively. This indicates that the mean winter, spring, summer, and fall 

precipitations from 2012 to 2016 under the A2 scenario increase by 2 mm (1.5%), 2 mm 

(2%), 14 mm (9%), and 6  mm (3.5%), respectively, with respect to the mean winter, spring, 

summer, and fall precipitations from 2000 to 2011. Due to the anthropogenic increases in the 

atmospheric concentrations of greenhouse gases, these types of variable trends are found 

(IPCC, 2000, 2007).
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Figure 4.6 Projected seasonal precipitations of KRW from 2012 to 2016 under A2 scenario 
with respect to the mean seasonal precipitations of 2 0 0 0 - 2 0 1 1
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When the seasonal precipitations from 2012 to 2016 under the B1 scenario are compared 

to the mean seasonal precipitations of 2000-2011, it is found that in winter, precipitation 

increases from 2012 to 2014 with a rate of 2% (i.e., in 2014) to 12% (i.e., in 2012), and then 

decreases in 2015 by 14%, and increases again by 5% in 2016 (Fig. 4.7). Spring precipitation 

increases in 2012 by 8%, and then decreases from 2013 to 2015 with a rate of 1% (i.e., in

2013) to 12% (i.e., in 2014), and then increases again in 2016 by 1%. In summer, 

precipitation decreases in 2012 by 9%, and then increases from 2013 to 2016 with a rate of 

2% (i.e., in 2014) to 11% (i.e., in 2013). In fall, precipitation follows a decrease-increase 

cyclic pattern from 2012 to 2016. The most and least increases occur in 2015 (i.e., 12%) and 

2013 (i.e., 4%), respectively. The most and least decreases occur in 2012 (i.e., 9%), and 2014 

(i.e., 3%), respectively. On average, the mean winter, spring, summer, and fall precipitations 

from 2012 to 2016 under the B1 scenario are 112 mm (a=15 mm), 94 mm (a=8 mm), 164 

mm (a=13 mm), and 140 mm (o= ll mm), respectively. This shows that the mean winter, 

spring, summer, and fall precipitations from 2012 to 2016 under the B1 scenario increase by 

3 mm (2.5%), 1 mm (1%), 6 mm (4%), and 2 mm (1%), respectively, in relation to the mean 

winter, spring, summer, and fall precipitations from 2000 to 2011. Similarly, due to the 

anthropogenic increases in the atmospheric concentrations of greenhouse gases, these types 

of variable trends are found (IPCC, 2000,2007).
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Figure 4.7 Projected seasonal precipitations of KRW from 2012 to 2016 under B1 scenario 
with respect to the mean seasonal precipitations of 2000-2011

Based on the above seasonal figures, it can be concluded that the mean seasonal 

precipitation from 2012 to 2016 increases in all seasons under both scenarios with respect to 

those of 2000-2011. It is also found that the increase of the mean precipitation is greater in 

the summer than in the winter. Similar types of precipitation increase patterns were predicted 

in northern British Columbia by British Columbia Ministry of Forests and Range (2008).
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4.2.3.1.2 Long-term

Similar to the short-term period, the future monthly precipitations of KRW under the A2 

and B1 scenarios show variable patterns in the long-term period (i.e., 2020-2040) due to the 

anthropogenic increases in the atmospheric concentrations of greenhouse gases (IPCC, 2000, 

2007). Figs. 4.8 and 4.9 present the projected mean monthly precipitations from 2020 to 2040 

under the A2 and B1 scenarios, respectively. In these figures, the error bars of one standard 

deviation among monthly precipitations of 2020 to 2040 are also shown. From the 

comparison of projected mean monthly precipitations under both scenarios from 2020 to 

2040 with respect to the period of 2000-2011 (Fig. 4.10), it is found that the peak monthly 

precipitation under both scenarios is expected in June, and shows the similar trend of the 

mean monthly precipitations of 2000-2011. Similar to the short-term period, the mean 

monthly precipitations are higher in most of the months under the A2 scenario than under the 

B1 scenario.
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Figure 4.8 Projected mean monthly precipitations under A2 scenario from 2020 to 2040. The 
error bars represent one standard deviation among monthly precipitations of 2020 to 2040.
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Figure 4.9 Projected mean monthly precipitations under B1 scenario from 2020 to 2040. The 
error bars represent one standard deviation among monthly precipitations of 2020 to 2040.
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Figure 4.10 Comparison of projected mean monthly precipitations under A2 and B1 
scenarios from 2020 to 2040 with respect to the mean monthly precipitations of 2000-2011

Similar to the short-term period, the mean seasonal precipitations are also expected to 

increase in the long-term period with respect to the mean seasonal precipitations from 2000 

to 2011 due to the anthropogenic increases in the atmospheric concentrations o f greenhouse 

gases (IPCC, 2000, 2007). On average, the mean winter, spring, summer, and fall 

precipitations from 2020 to 2040 under the A2 scenario will be 112 mm (o=12 mm), 95 mm 

(o=l 1 mm), 173 mm (a=17 mm), and 145 mm (o=9 mm), respectively, which is increased by 

3 mm (3%), 2 mm (2%), 15 mm (9.5%), and 7 mm (5%), respectively, with respect to the 

period from 2000 to 2011. On the other hand, under the B1 scenario, on average, the mean 

winter, spring, summer, and fall precipitations from 2020 to 2040 will be 114 mm (a=13 

mm), 96 mm (a=9 mm), 165 mm (o=18 mm), and 141 mm (0=13 mm), respectively, which
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corresponds to an increase by 5 mm (4.5%), 3 mm (3%), 7 mm (4.5%), and 3 mm (2%), 

respectively, as compared to the period from 2000 to 2011. Similarly, the mean annual 

precipitation is expected to increase in the long-term period as compared to the period of 

2000-2011. The mean annual precipitation from 2020 to 2040 under the A2 and B1 scenarios 

are expected to be 525 mm (ct= 19 mm) and 516 mm (o=22 mm), respectively, and these 

numbers are above the mean annual precipitation of 2000-2011 by 27 mm (5.5%) and 18 mm 

(3.5%), respectively.

4.2.3.2 Temperature

4.2.3.2.1 Short-term

The predicted mean monthly temperatures of KRW in the short-term period (2012-2016) 

under the A2 and B1 GHG emission scenarios using the delta change method are shown in 

Figs. 4.11 and 4.12, respectively. Fig. 4.11 shows that the trend o f mean monthly 

temperatures is similar in every year under the A2 scenario, with the highest and lowest mean 

monthly temperatures occurring in July and January, respectively, which are similar to those 

of 2000-2011. Under the B1 scenario (Fig. 4.12), a similar trend of mean monthly 

temperatures is found. From the comparison of mean monthly temperatures under both 

scenarios from 2012 to 2016 with respect to those of 2000-2031 (Fig. 4.13), it is found that 

the A2 scenario is associated with higher values than the B1 scenario for most of the months, 

except in August and December.
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Figure 4.11 Projected mean monthly temperatures of KRW from 2012 to 2016 under A2 
scenario
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Figure 4.12 Projected mean monthly temperatures of KRW from 2012 to 2016 under B1
scenario
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Figure 4.13 Comparison of mean monthly temperatures of 2012-2016 under A2 and B1 
scenarios with respect to mean monthly temperatures of 2000-2011

It is found that the mean annual temperatures from 2012 to 2016 under both scenarios 

increase as compared to that of 2000-2011 (Fig. 4.14). This occurs due to the increase of the 

greenhouse gases concentrations in the atmosphere (IPCC, 2000, 2007). The increase of 

temperature under the A2 scenario is between 0.35°C and 0.92°C, while the most and least 

increases are expected in 2016 and 2014, respectively. On the other hand, under the B1 

scenario, the increase is between 0.05°C and 0.39°C, while the most and least increases are 

expected in 2016 and 2014, respectively. On average, the mean annual temperature from 

2012 to 2016 under the A2 and B1 scenarios are 3.27°C (a=0.23°C) and 2.99°C (a=0.18°C), 

respectively, while the mean annual temperature from 2000 to 2011 is 2.7°C.

124



g
tse
I

A 2

-  -  M e a n  (2 0 0 0 -2 0 1  1)

0.5 ■

20162014 20152 0 1 2 2013
Y e a r

Figure 4.14 Projected mean annual temperature of KRW from 2012 to 2016 under A2 and 
B1 scenarios

When the mean seasonal temperatures from 2012 to 2016 under the A2 scenario are 

compared to those of 2000-2011, it is found that the mean summer temperature increases 

every year within a range of 0.18°C to 0.36°C as compared to that of 2000-2011 (Fig. 4.15). 

The most and least increases are expected in 2014 and 2016, respectively. The mean 

temperatures from 2000 to 2011 in winter, spring, summer, and fall are -13.56°C, 3.16°C, 

17.43°C, and 4°C, respectively. In winter, the mean temperature increases in 2012 (by 

0.64°C), and decreases in 2013 (by 0.11°C), and then increases again from 2014 to 2016 by a 

magnitude of 0.26°C (i.e., in 2015) to 1.71°C (i.e., in 2014). The mean spring temperature 

increases from 2012 (by 0.9°C) to 2013 (by 1.39°C), and then decreases in 2014 (by 0.52°C), 

and increases again from 2015 (by 0.1 °C) to 2016 (by 1.21°C). The mean fall temperature
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follows a similar trend of the mean spring temperature, with an increase from 2012 (by 

0.23°C) to 2013 (by 0.3°C), and then a decrease in 2014 (by 0.3°C), and an increase again 

from 2015 (by 1.25°C) to 2016 (by 0.26°C). On average, the mean winter, spring, summer, 

and fall temperatures from 2012 to 2016 under the A2 scenario are -12.72°C (o=0.83°C), 

3.78°C (o=0.8°C), 17.71°C (o=0.25°C), and 4.35°C (o=0.51°C), respectively, which 

corresponds to an increase by 0.84°C, 0.62°C, 0.28°C, and 0.35°C, respectively, as compared 

to those of 2000-2011. Due to the anthropogenic increases in the atmospheric concentrations 

of greenhouse gases, these types of variable trends are found (IPCC, 2000, 2007).
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Figure 4.15 Projected mean seasonal temperatures of KRW from 2012 to 2016 under A2 
scenario with respect to the mean seasonal temperatures of 2000-2011
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Comparing the mean seasonal temperatures from 2012 to 2016 under the B1 scenario to 

those of 2000-2011 (Fig. 4.16), it is found that the mean winter temperature increases in 2012 

(by 0.17°C), and decreases in 2013 (by 0.48°C), and then increases again from 2014 to 2016 

with a magnitude of 0.33°C (i.e., in 2014) to 1.91°C (i.e., in 2015). The mean spring 

temperature decreases in 2012 (by 0.46°C), and increases in 2013 (by 0.49°C), and then 

decreases again from 2014 (by 0.67°C) to 2015 (by 0.1 °C). In 2016, the mean spring 

temperature increases by 0.06°C. The mean summer temperature also follows a decrease- 

increase cyclic pattern from 2012 to 2016. The most and least increases are found in 2013 

(i.e., 0.56°C) and 2016 (i.e., 0.29°C), respectively, while the most and least decreases are 

found in 2012 (i.e., 0.49°C), and 2015 (i.e., 0.11°C), respectively. The mean fall temperature 

increases from 2012 (by 0.42°C) to 2013 (by 0.13°C), and then decreases from 2014 (by 

0.02°C) to 2015 (by 0.28°C), and finally increases in 2016 (by 0.38°C). On average, the 

mean winter, spring, summer, and fall temperatures from 2012 to 2016 under the B1 scenario 

are -13.03°C (a=0.89°C), 3.19°C (a=0.45°C), 17.54°C (ct=0.42°C), and 4.12°C (o=0.29°C), 

respectively, which are corresponding to an increase by 0.53°C, 0.03°C, 0.11°C, and 0.12°C, 

respectively, as compared to those of 2000-2011. Similarly, due to the anthropogenic 

increases in the atmospheric concentrations of greenhouse gases, these types of variable 

trends are found (IPCC, 2000,2007).
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Figure 4.16 Projected mean seasonal temperatures of KRW from 2012 to 2016 under B1 
scenario with respect to the mean seasonal temperatures of 2000-2011

Based on the above seasonal figures, it can be concluded that the mean seasonal 

temperature from 2012 to 2016 increases in all seasons under both scenarios with respect to 

those of 2000-2011. It is also found that the increase of the mean temperature is greater in 

winter than in summer. Similar predictions were obtained in northern British Columbia by 

British Columbia Ministry of Forests and Range (2008).
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4.2.3.2.2 Long-term

The future mean monthly temperatures of KRW in the long-term period (2020-2040) 

under the A2 and B1 scenarios show similar patterns of the short-term period. Figs. 4.17 and 

4.18 present the mean monthly temperatures from 2020 to 2040 under the A2 and B1 

scenarios, respectively. Similar trends are expected in the long-term period when the 

projected mean monthly temperatures under both scenarios from 2020 to 2040 are compared 

to those of 2000-2011 (Fig. 4.19). The mean seasonal temperatures are expected to increase 

in the long-term period. On average, the mean winter, spring, summer, and fall temperatures 

from 2020 to 2040 under the A2 scenario are expected to be -12.42°C (o=1.46°C), 3.52°C 

(a=0.69°C), 18.03°C (a=0.45°C), and 4.55°C (o=0.66°C), respectively, which corresponds to 

an increase by 1.15°C, 0.36°C, 0.60°C, and 0.55°C, respectively, as compared to those of 

2000-2011. On the other hand, under the B1 scenario, on average, the mean winter, spring, 

summer, and fall temperatures from 2020 to 2040 are expected to be -13.03°C (c=1.15°C), 

3.40°C (ct=0.55°C), 17.84°C (a=0.62°C), and 4.32°C (o=0.49°C), respectively, which 

corresponds to an increase by 0.52°C, 0.24°C, 0.40°C, and 0.32°C, respectively, as compared 

to those of 2000-2011. Similarly, the mean annual temperature is also expected to increase in 

the long-term period. On average, the mean annual temperature from 2020 to 2040 under the 

A2 and B1 scenarios is expected to be 3.46°C (o=0.60°C) and 3.27°C (a=0.41°C), 

respectively, which is increased by 0.76°C and 0.57°C from that of 2000-2011, respectively. 

This occurs due to the anthropogenic increases in the atmospheric concentrations of 

greenhouse gases (IPCC, 2000, 2007).
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Figure 4.17 Projected mean monthly temperatures from 2020 to 2040 under A2 scenario. 
The error bars represent one standard deviation among mean monthly temperatures of 2020 
to 2040.
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Figure 4.18 Projected mean monthly temperatures from 2020 to 2040 under B1 scenario. 
The error bars represent one standard deviation among mean monthly temperatures of 2020 
to 2040.
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Figure 4.19 Comparison of projected mean monthly temperatures under A2 and B1 
scenarios from 2020 to 2040 with respect to those of 2000-2011
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4.3 Generation of future land use/land cover scenarios

4.3.1 Land use/land cover change analysis

The land use/land cover changes in the study area between 1999 and 2010 are shown in 

Table 4.2. In this table, land use change per year was calculated considering linear land use 

change in every year due to limited information available. The results show that the major 

land use changes occurred in forest clear cut and wetland. As compared to that in 1999, forest 

clear cut area increased by about 735% in 2010, while wetland area decreased by about 59%. 

The rapid change in forest clear cut area was due to a large scale of oil/gas exploration and 

production, while the rapid change in wetland area may have occurred due to the shift of 

vegetation and oil/gas exploration/production in the study area. It is also found that river 

(including small channels) and built up area (e.g., road, house, industrial infrastructures) 

increased by about 20% and 96%, respectively, from 1999 to 2010, while agriculture (e.g., 

cropland and pasture) and forest decreased by 44% and 11%, respectively. The decrease in 

agriculture area did not impact the local economy and population because large-scale shale 

gas exploration/production activities started in the KRW since 2005 and have enhanced the 

local economy. However, due to limited available information, the verification of these land 

use types changes was not possible. It is to be noted that pasture occupies the major part of 

the agricultural area in this study area of the Mainstem sub-watershed, while cropland 

occupies the major part of the agricultural area in the Brassey sub-watershed, which is not 

included in this study.
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Table 4.2 Land use changes from 1999 to 2010 in the study area. Change (%) = [(Area of 
2010 land use - Area of 1999 land use)/ Area of 1999 land use] * 100 (taken from Paul, 
2013)

Land use type Area (km2) 
in 1999

Area (km2) 
in 2010

Change
(km2)

Change
(%)

Change/year
(km2/year)

Forest 163.36 145.35 -18.01 -11 -1.64

Agriculture 31.42 17.74 -13.68 -44 -1.24

Forest clear cut 4.78 39.89 35.11 735 3.19

Wetland 9.58 3.94 -5.64 -59 -0.51

River 3 3.6 0.6 20 0.05

Built up area 1.68 3.3 1.62 96 0.15

Total 213.82

4.3.2 Future land use/land cover scenarios

Based on land use/land cover change analysis between 1999 and 2010, future annual land 

use index maps from 2012 to 2016 were generated using Arc GIS and GSSHA through the 

following considerations:

- Future annual land use index map considers the annual change of only forest clear 

cut, forest and agriculture areas because they cover 18%, 68%, and 8% of the study 

area, respectively, based on the 2010 land use map. It is to be noted that large-scale 

shale gas exploration/production activities have started in the KRW since 2005 

(British Columbia Ministry of Energy and Mines, 2012). In addition, Forest Practices 

Board (2011) also predicted an increase of forest clear cut area in the KRW until 

2017.
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Due to limited data availability, the future annual land use index map was developed 

by assuming that the forest and agriculture areas are converted into forest clear cut 

area at the conversion rate shown in Table 4.2 (i.e., forest and agricultural area will be 

reduced by 1.64 km and 1.24 km annually, respectively). The summation of annual 

forest and agricultural areas reduction was added to the annual increase of forest clear 

cut area. Drohan et al. (2012) also found a similar conversion of agricultural and 

forest areas in Pennsylvania into gas well pads, which is a part of forest clear cut area 

in this study. Typically, gas companies prefer to secure land for gas well development 

in agricultural areas because agricultural land is less expensive and relatively easy to 

clear for gas well development (Kubach et al., 2011). The projected land use types 

from 2012 to 2016 are then presented in Table 4.3. A similar rate of linear land use 

changes from 2000 to 2020 was also used in Dams et al. (2008).

In this study, the annual conversion of forest and agriculture areas into forest clear cut 

area was assumed in May of every year since in the study area, most of the snowmelt 

occurs in April. In addition, temporal land use changes during the year are difficult to 

detect due to lack of proper information (e.g., clear monthly satellite images).

The spatial allocation of future land use changes was determined based on the change 

of a particular land use type and how much o f that particular land use type has 

changed spatially between 1999 and 2010. For example, the reduced agriculture area 

at a particular site between 1999 and 2010 was used to calculate the future annual 

agriculture area reduction around that site. Special attentions were paid to allocate 

future land use types as per the guidelines of Kiskatinaw River Watershed 

Management Plan by Dobson Engineering Ltd. et al. (2003), especially in the areas
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that are close to Kiskatinaw River. In addition, the major land use changes occurred 

in 0 -  4.6% slope areas in the study area because topography also plays a major role 

in soil erosion, for example, steeper slope area is more susceptible to higher soil 

erosion during heavy rainfall events than milder slope area (Whisenant, 2008; Blanco 

et al., 2010). The future annual land use index maps (Fig. 4.20-4.24) considering 

seasonal tributary drains of the study area were generated in GSSHA based on its 

digital elevation map and the above considerations. In these land use index maps, 

different types of land uses overlap river networks, especially seasonal tributary 

drains. This occurs because only the main river was considered in the original land 

use map (Fig. 3.16-3.17) due to the resolution of remote sensing images (i.e., 30 m by 

30 m), and the seasonal tributary drains are very narrow compared to Kiskatinaw 

river.

Table 4.3 Projected land use types from 2012 to 2016 with respect to base line of 2011. Due 
to the unavailability of land use map for year 2011, year 2010 land use data were assumed for 
year 2011.

Year Forest
(km2)

Agriculture
(km2)

Forest Clear 
cut (km2)

2011 145.35 17.74 39.89

2012 143.71 16.5 42.77

2013 142.07 15.26 45.65
2014 140.43 14.02 48.53

2015 138.79 12.78 51.41

2016 137.15 11.54 54.29
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Figure 4.20 Land use index map of 2012
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Figure 4.21 Land use index map of 2013
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Figure 4.22 Land use index map of 2014
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CHAPTER 5

CLIMATE CHANGE EFFECTS ON GW-SW INTERACTION

5.1 Background

This research attempts to investigate GW-SW interaction under climate change effects in 

the study area through the developed GSSHA model using the future climate scenarios that 

were presented in Chapter 4 of this dissertation. The monthly, seasonal and annual 

groundwater contributions to surface water flow under the A2 and B1 GHG emission 

scenarios were investigated for a short-term period of 5 years (2012 to 2016) and a long-term 

period of 21 years (2020-2040). During the study of climate change effects on GW-SW 

interaction, land use/land cover of the study area was kept constant, and the land use map of 

year 2010 was used.

5.2 GW-SW interaction under A2 scenario

Fig. 5.1 shows the mean monthly groundwater contributions to stream flow under climate

change condition of A2 GHG emission scenario using the developed GW-SW interaction

model (i.e., GSSHA) for 2012-2016 (short-term period). In the GSSHA model, the mean

monthly groundwater contribution to stream flow was calculated based on the estimated

monthly total volume of stream flow and groundwater discharge (Downer et al., 2006). A

sample calculation of mean monthly groundwater contribution to stream flow in 2012 under
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the A2 scenario using the GSSHA model is presented in Table 5.1. It is shown that the mean 

monthly groundwater contribution patterns vary annually due to monthly precipitation 

fluctuations, which result in variable monthly stream and groundwater discharges (Cannon et 

al., 2002; Van Roosmalen et al., 2007; Xu et al., 2008a, b; Xu et al., 2009; Xu et al., 2011). 

Therefore, climate change significantly affects stream and groundwater discharges, as well as 

the patterns of mean monthly groundwater contribution to stream flow.
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Figure 5.1 Mean monthly groundwater contributions to stream flow under climate change of 
A2 GHG emission scenario for 2012-2016 simulated by the GSSHA model
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Table 5.1 Mean monthly groundwater contribution to stream flow in 2012 under the A2 
scenario using the GSSHA model

Month Total volume of 
stream flow (m3)

Total volume of 
groundwater 

discharge (m3)

Mean monthly 
groundwater 

contribution to 
stream flow (%)

Jan 496250.5 456351.9 91.96

Feb 524647.6 487292.7 92.88

Mar 680312.9 651807.8 95.81
Apr 9991218.6 6494292.1 65.02

May 37010227.9 15607213.1 42.17
Jun 17583374.6 8255394.4 46.95

Jul 23691273.9 13494549.7 56.96
Aug 3175509.6 2245402.9 70.71
Sep 1365986.8 1079539.3 79.03
Oct 1479021.5 1441010.6 97.43
Nov 1123999.0 850754.9 75.69
Dec 838180.2 743382.1 88.69

The 2012 mean monthly groundwater contribution to stream flow ranges between 42% in 

May and 98% in October. The remaining portion comes from surface runoff. Table 5.2 

shows the detailed list of the mean monthly contribution of groundwater and surface runoff 

to stream flow in 2012 under the A2 scenario as an illustrative example. Similar trends are 

expected for years 2013 to 2016. These results demonstrate that stream flow depends mostly 

on groundwater flow in those months when there is highest groundwater contribution to 

stream flow, and vice versa (Washington State Department of Ecology, 1999). Since the 

regional groundwater flow field in the study area is a mixture of gaining and flow-through 

systems (Fig. 3.22), the river gets water from groundwater at both sides of the river bank 

where the groundwater flow field is a gaining system, whereas the river gets water from
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groundwater at one side of the river bank, and recharges groundwater aquifer at the other side 

of the river bank where the groundwater flow field is a flow-through system. However, 

overall groundwater contributes a major portion to the stream flow in the study area.

Table 5.2 Mean monthly stream flow, groundwater discharge and surface runoff, and their 
contributions to stream flow in 2012 under the A2 scenario

Month Mean stream 
flow

(m3/s)

Mean
groundwater

discharge
(m3/s)

Mean
surface
runoff
(m3/s)

Mean 
groundwater 

contribution to 
stream flow

(%)

Mean surface 
runoff 

contribution 
to stream 
flow (%)

Jan 0.185 0.170 0.015 91.96 8.04

Feb 0.209 0.194 0.015 92.88 7.12

Mar 0.254 0.243 0.011 95.81 4.19

Apr 3.854 2.505 1.349 65.02 34.98

May 13.818 5.827 7.991 42.17 57.83

Jun 6.783 3.184 3.599 46.95 53.05

Jul 8.845 5.038 3.807 56.96 43.04

Aug 1.185 0.837 0.348 70.71 29.29

Sep 0.527 0.416 0.111 79.03 20.97

Oct 0.552 0.537 0.015 97.43 2.57

Nov 0.433 0.327 0.106 75.69 24.31

Dec 0.312 0.276 0.036 88.69 11.31
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The comparison of mean groundwater contributions to stream flow during different 

seasons under the A2 scenario for 2012-2016 is presented in Fig. 5.2. From Fig. 5.2 and 

projected seasonal precipitation under the A2 scenario (Fig. 4.6), it can be concluded that the 

mean groundwater contribution to stream flow decreases when the seasonal precipitation 

increases, and vice versa during summer and fall seasons, because increasing precipitation 

results in greater increase of surface runoff (Clow et al., 2003; Van Roosmalen et al., 2007; 

Koeniger et al., 2009) compared to that of groundwater discharge. However, in the winter 

and spring seasons, the mean groundwater contribution to stream flow does not increase 

when the seasonal precipitation only decreases because in these seasons, the precipitation 

occurs mainly as snow. This snow accumulates, and results in low surface runoff before 

complete snow melt, and therefore, the trend of mean groundwater contribution to stream 

flow increases or decreases regardless of precipitation during these seasons (Covert, 1999; 

Walvoord et al., 2007). On average, the mean groundwater contribution to stream flow 

during winter, spring, summer, and fall from 2012 to 2016 is 95% (0=2.9%), 71% (o=2.8%), 

55% (o=2.7%), and 86% (o=3.3%), respectively. These results demonstrate that the mean 

groundwater contribution to stream flow is the lowest and highest during summer and winter, 

respectively. Hence, stream flow depends mostly on groundwater flow during winter, but at a 

lesser extent during summer. Consequently, the highest and lowest water extraction from the 

river, and allocation to the stakeholders for future water supply could be possible during 

summer and winter, respectively, due to the highest (i.e., on average 6.26 m3/s) and lowest 

(i.e., on average 0.25 m3/s) mean stream flow rates during summer and winter, respectively. 

Similar seasonal variations of mean groundwater contribution to stream flow were found in 

other studies (Clow et al., 2003; Welderufael et al., 2010). However, these variations differ
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from area to area depending on the type and temporal pattern of precipitation around the 

year. For example, in western and northern Europe (e.g., United Kingdom, Belgium, 

Denmark) more precipitation occurs during winter as rainfall, and therefore, results in higher 

surface runoff compared to groundwater discharge (Van Roosmalen et al., 2007; Dams et al., 

2012), and lower groundwater contribution to stream flow during winter than other seasons, 

which is opposite to the finding of this study. Therefore, the seasonal variations of mean 

groundwater contribution to stream flow depend on the type and temporal pattern of annual 

precipitation in the particular area.
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Figure 5.2 Comparison of mean groundwater contributions to stream flow during different 
seasons under A2 GHG emission scenario for 2012-2016
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Fig. 5.3 shows the comparison of the mean daily groundwater levels for year 2011 and 

climate change of A2 GHG emission scenario for 2012-2016 simulated by the GSSHA 

model. Here, mean daily groundwater levels of the study area was analyzed, and the year 

2011 (annual precipitation 552 mm) was of mild winter and flooding summer in the study 

area. The mean daily groundwater levels of the study area were calculated using the 

simulated daily groundwater levels at each grid cell of the study area. Since the GSSHA 

model has no provision to show the spatial difference of daily groundwater level changes, the 

mean daily groundwater levels of the study area were considered to show the way in which 

the mean daily groundwater level responds yearly. However, the patterns would be spatially 

different in the study area. It is found that the mean daily groundwater levels in the study area 

show almost similar profiles in every year due to the almost similar temporal pattern of 

annual precipitation. Due to high infiltration rate during snow melting and heavy rainfall 

events in the summer, the mean daily groundwater levels increase the most, but this high 

groundwater level does not increase groundwater contribution to stream flow during those 

times because of high stream flow generated by high surface runoff during snowmelt and 

heavy rainfall (Covert, 1999; Clow et al., 2003), as well as the steep topography of the study 

area (Vivoni et al., 2007). The peak of mean daily groundwater level hydrograph varies 

depending on the amount of rainfall. The mean daily groundwater levels gradually decrease 

during the end of summer and continue until the winter and before snow melting (i.e., before 

April) due to less infiltration rate, and this lower groundwater level results in lower 

groundwater discharge, and higher groundwater contribution to stream flow because of low 

stream flow during those times. However, these temporal variations of mean daily 

groundwater levels also differ from area to area depending on the type and temporal pattern
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of precipitation around the year. For example, in western and northern Europe (e.g., United 

Kingdom, Belgium, Denmark) more precipitation occurs during winter as rainfall, and 

results in higher groundwater levels during winter than other seasons (Van Roosmalen et al., 

2007; Godemiaux, 2010; Dams et al., 2012), which is opposite to the finding of this study. 

Therefore, similar to the seasonal variations of mean groundwater contribution to stream 

flow, the temporal variations of mean daily groundwater levels also depend on the type and 

temporal pattern of annual precipitation in the particular area.
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Figure 5.3 Comparison of mean daily groundwater levels of the study area for year 2011 and 
climate change of A2 GHG emission scenario for 2012-2016 simulated by the GSSHA 
model
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Fig. 5.4 shows the temporal variation of the mean daily groundwater levels of the study 

area for year 2011 and climate change of A2 GHG emission scenario for 2012-2016. It is 

found that the mean daily groundwater levels are expected to increase at the end of year 2016 

due to increased precipitation under the A2 scenario. Overall, the mean annual groundwater 

level of the study area is expected to increase by 2 cm, 1.2 cm, 2 cm, 2.4 cm, and 3 cm in 

2012, 2013, 2014, 2015, and 2016, respectively, compared to the mean annual groundwater 

level in 2011. The mean annual groundwater level increases yearly due to consecutive years 

of above-normal precipitation of the study area. Therefore, climate change has a significant 

impact on the mean daily and annual groundwater levels. Scibek et al. (2006b) and Van 

Roosmalen et al. (2007) also found increased mean annual groundwater levels due to 

increased precipitation. However, the increase of mean annual groundwater levels varies 

from area to area depending on the amount of increased annual precipitation. Therefore, the 

increased mean annual groundwater levels in the study area will provide more groundwater 

discharge to stream flow for future water supply in the study area compared to year 2011.

149



7 1 3

712.9

a,
■35
£

712.8

712.7

9
SM
S  712.65

712.5

712.4  I------------    1------------ ■...........................................................           i-1---------
v \  v \  <V < v  s >  S> v *  Nb  v b

V v  V N V V V V* v '  S' 1 V* V

D ate

Figure 5.4 Mean daily groundwater levels of the study area for year 2011 and climate change 
of A2 GHG emission scenario for 2012-2016 simulated by the GSSHA model

Similar to the short-term period, the mean monthly groundwater contributions to stream 

flow under the A2 scenario will show variable annual patterns in the long-term period (2020- 

2040) due to monthly precipitation fluctuations. Fig 5.5 shows the mean monthly 

groundwater contributions to stream flow from 2020 to 2040 under the A2 scenario. The 

results also indicate the significant influences of climate change on the patterns of mean 

monthly groundwater contribution to stream flow.
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Figure 5.5 Mean monthly groundwater contributions to stream flow under A2 scenario from 
2020 to 2040. The error bars represent one standard deviation among mean monthly 
groundwater contributions to stream flow of 2020 to 2040.

As in the short-term period, the mean groundwater contributions to stream flow during 

different seasons under the A2 scenario will show similar trends in the long-term period. On 

average, the mean groundwater contribution to stream flow during winter, spring, summer, 

and fall from 2020 to 2040 under the A2 scenario will be 93% (a=3%), 69% (a=4.5%), 50% 

(a=3.5%), and 85% (a=2.5%), respectively. Similarly, the mean daily groundwater levels in 

the study area will show almost identical responses annually in the long-term period due to 

the similar temporal pattern of annual precipitation. Fig 5.6 shows the mean daily 

groundwater levels of the study area of 2020-2040 under the A2 scenario.
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Figure 5.6 Mean daily groundwater levels of the study area under A2 scenario from 2020 to 
2040. The error bars represent one standard deviation among mean daily groundwater levels 
of 2020 to 2040.

5.3 GW-SW interaction under B1 scenario

Fig. 5.7 illustrates the mean monthly groundwater contributions to stream flow under 

climate change condition of B1 GHG emission scenario for 2012-2016. Similar to those 

under the A2 scenario, the mean monthly groundwater contributions to stream flow under the 

B1 scenario also demonstrate variable annual patterns.
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Figure 5.7 Mean monthly groundwater contributions to stream flow under climate change of 
B1 GHG emission scenario for 2012-2016 simulated by the GSSHA model

The comparison of mean groundwater contributions to stream flow during different 

seasons under the B1 GHG emission scenario for 2012-2016 is illustrated in Fig. 5.8. From 

this figure and projected seasonal precipitation under the B1 scenario (Fig. 4.7), it can be 

concluded that the mean groundwater contribution to stream flow decreases when the 

seasonal precipitation increases, and vice versa during the fall season only. Similar to the A2 

scenario, during winter and spring seasons, the mean groundwater contribution to stream 

flow increases or decreases regardless of precipitation. During summer, the mean 

groundwater contribution to stream flow decreases when the seasonal precipitation increases, 

and vice versa for most of the years between 2012 and 2016. The discrepancy occurs because
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under the B1 scenario, most of the summer precipitation occurs in June and July with low 

precipitation occurring in August, which results in higher groundwater contribution to stream 

flow in August than that of June and July. Consequently, this high groundwater contribution 

to stream flow (i.e., 84%) in August results in high mean groundwater contribution to stream 

flow during summer even though there is high precipitation in the summer. On average, the 

mean groundwater contribution to stream flow during winter, spring, summer, and fall from 

2012 to 2016 is 97% (o=2.4%), 70% (o=4.3%), 61% (o=4.8%), and 88% (ct=5.1%), 

respectively. These results also demonstrate that the mean groundwater contribution to 

stream flow is the lowest and highest during summer and winter, respectively. Hence, similar 

to the A2 scenario, stream flow depends mostly on groundwater flow during winter, but at a 

lesser extent during summer. Consequently, the highest and lowest water extraction from the 

river for future water supply could be possible during summer and winter, respectively, due 

to the highest (i.e., on average 6.06 m3/s) and lowest (i.e., on average 0.23 m3/s) mean stream 

flow rates during summer and winter, respectively.
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Figure 5.8 Comparison of mean groundwater contributions to stream flow during different 
seasons under B1 GHG emission scenario for 2012-2016

Fig. 5.9 compares the mean daily groundwater levels of the study area for year 2011 and

those under climate change of B1 GHG emission scenario for 2012-2016. The results

illustrate that the mean daily groundwater levels in the study area show almost similar

profiles annually as those under the A2 GHG emission scenario due to the almost similar

temporal pattern of annual precipitation. The mean daily groundwater levels, however, do

increase at a lesser rate due to less infiltration resulting from less precipitation predicted

under the B1 scenario in comparison to the A2 scenario. Fig. 5.10 illustrates the temporal

variation of the mean daily groundwater levels of the study area for year 2011 and under the

climate change of B1 GHG emission scenario for 2012-2016. It is also found that in

comparison to 2011, the mean daily groundwater levels are expected to increase at the end of
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2016 by a lesser amount than under the A2 scenario since there is less precipitation predicted 

under the B1 scenario. Overall, the mean annual groundwater level is expected to increase by 

1 cm, 1.2 cm, 1.5 cm, and 2 cm in 2013, 2014,2015, and 2016, respectively, compared to the 

mean annual groundwater level in 2011. In 2012, this water level was expected to decrease 

by 0.6 cm compared to the 2011 condition. Therefore, the increased mean annual 

groundwater levels in the study area will provide more groundwater discharge to stream flow 

for future water supply in the study area, except 2012, compared to year 2011. However, less 

groundwater discharge to stream flow will occur in the study area under the B1 scenario 

compared to the A2 scenario.
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Figure 5.9 Comparison of mean daily groundwater levels of the study area for year 2011 and 
climate change of B1 GHG emission scenario for 2012-2016 simulated by the GSSHA model
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Figure 5.10 Mean daily groundwater levels of the study area for year 2011 and climate 
change of B1 GHG emission scenario for 2012-2016 simulated by the GSSHA model

Similar to the short-term period, the mean monthly groundwater contributions to stream 

flow under the B1 scenario will show variable annual patterns in the long-term period (Fig 

5.11).

157



1 0 0

-T  9 0  ■

80  •

7 0  ■

6 0  ■

5 0  ■

«  4 0  ■o>
I•S 30  ■

M ean  (2 0 2 0 -2 0 4 0 )

o* 20 ■ a a  a>
Ss io ■

0 I------------1 I----------- 1----------- 1............... 1------------1 I  I ■'">.....  T...............
Jan  F eb  M a r A p r M ay  Ju n  Ju l A u g  S ep  O c t N o v  D ec

M o n th

Figure 5.11 Mean monthly groundwater contributions to stream flow under B1 scenario 
from 2020 to 2040. The error bars represent one standard deviation among mean monthly 
groundwater contributions to stream flow of 2020 to 2040.

As in the short-term period, the mean groundwater contributions to stream flow during 

different seasons under the B 1 scenario will show similar trends in the long-term period. On 

average, this number during winter, spring, summer, and fall from 2020 to 2040 under the B1 

scenario will be 94% (a=2%), 68% (a=5%), 54% (a=4%), and 86% (a=7%), respectively. 

Similarly, the mean daily groundwater levels in the study area under the B1 scenario will 

show almost identical responses in the long-term period (Fig 5.12).
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Figure 5.12 Mean daily groundwater levels of the study area under B1 scenario from 2020 to 
2040. The error bars represent one standard deviation among mean daily groundwater levels 
of 2020 to 2040.

5.4 Comparison of GW-SW interaction between A2 and B1 scenarios

Fig. 5.13 shows the comparison of mean monthly groundwater contributions to stream 

flow of 2012-2016 under climate change of A2 and B1 GHG emission scenarios with respect 

to the reference period (2007-2011). Here, the period of 2007-2011 was used as reference 

period because the calibration and validation of the model was done during that time period. 

The results illustrate that the mean monthly groundwater contributions to stream flow of 

2012-2016 are lower during most of the months under the A2 scenario than under the B1 

scenario due to a higher amount of precipitation and temperature increase predicted
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Figure 5.13 Comparison of mean monthly groundwater contributions to stream flow of 
2012-2016 under climate change of A2 and B1 GHG emission scenarios with respect to 
reference period (2007-2011)

under the A2 scenario. The lowest and highest mean monthly groundwater contributions to 

stream flow of 2012-2016 under the A2 scenario are found in June (i.e., 45%), and January 

and December (i.e., 96%), respectively. On the other hand, under the B1 scenario, the lowest 

and highest mean monthly groundwater contributions to stream flow of 2012-2016 are found 

in May (i.e., 46%) and December (i.e., 99%), respectively. On average, stream flow is mostly 

dependent on groundwater flow during December under both scenarios. On the other hand, 

stream flow is least dependent on groundwater flow during May and June under the B1 and 

A2 scenarios, respectively. The results also show that the mean monthly groundwater 

contributions to stream flow of 2012-2016 under the A2 and B1 scenarios are lower in late
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spring and summer than under the reference period (2007-2011) due to increased 

precipitation and temperature predicted under those scenarios during those seasons with 

respect to the reference period. During other months, especially in winter and early spring, 

however, the mean monthly groundwater contributions to stream flow of 2012-2016 under 

both scenarios are almost higher than that under the reference period due to variable 

precipitation observed in those months of reference period. Therefore, climate change 

influences the patterns of mean monthly groundwater contribution to stream flow 

significantly.

The comparison of the mean annual groundwater contributions to stream flow from 2012 

to 2016 under climate change of the A2 and B1 scenarios with respect to year 2011 is 

presented in Fig. 5.14. The results illustrate that the A2 scenario shows an increase-decrease 

cyclic pattern of mean annual groundwater contribution to stream flow from 2012 to 2016. 

On the other hand, the B1 scenario shows a decrease-increase cyclic pattern of mean annual 

groundwater contribution to stream flow from 2012 to 2016. The highest and lowest mean 

annual groundwater contributions during 2012-2016 under the A2 scenario are found in 2013 

(i.e., 78.1%) and 2012 (i.e., 75.2%), respectively, due to the lowest (i.e., 509 mm) and 

highest (i.e., 530 mm) precipitation predicted in those years between 2012 and 2016. On the 

other hand, under the B1 scenario, the highest and lowest mean annual groundwater 

contributions during 2012-2016 are found in 2012 (i.e., 80.2%) and 2013 (i.e., 77%), 

respectively, due to the lowest (i.e., 494 mm) and highest (i.e., 524 mm) precipitation 

predicted in those years. On average, the mean annual groundwater contribution to stream 

flow of 2012-2016 under the A2 and B1 scenarios is 76.7% (a= 1.1 %) and 78.2% (a=1.25%), 

respectively. This variation occurs due to a higher precipitation and temperature increase
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Figure 5.14 Comparison of mean annual groundwater contributions to stream flow from 
2012 to 2016 under climate change of A2 and B1 GHG emission scenarios with respect to 
year 2011

predicted under the A2 scenario than under the B1 scenario during 2012 to 2016. On average, 

it was found that the mean annual groundwater contribution to stream flow during the 

reference period (2007-2011) is approximately 80%. These results also correspond to the 

finding in other studies of similar mean annual groundwater contribution to stream flow 

(Clow et al., 2003 (75%); Hughes, 2004 (74-80%); Hood et al., 2006 (67-74%); Hannah et 

al„ 2007 (70%); Stewart et al., 2007 (87%); Bidwell et al., 2008 (78-93%); Koeniger et al., 

2009 (60-70%); Yimam, 2010 (71.9%)). In general, surface runoff and base flow, which 

determine groundwater contribution to stream flow, are influenced by geographic 

environment, catchment geology, topography, soils and vegetation (Soulsby et al., 2006;
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Price, 2011). In addition, climate also influences the groundwater contribution to stream flow 

(Price, 2011). For example, in Arctic and subarctic watersheds, where permafrost is the main 

characteristic of climate, the mean annual groundwater contribution to stream flow ranges 

from 31% to 38% (Walvoord et al., 2007); in western and northern Europe (e.g., United 

Kingdom, Germany, Belgium), where more precipitation occurs during winter as rainfall, the 

mean annual groundwater contribution to stream flow is 30% - 40% (Soulsby et al., 2006), 

30% (Krause et al., 2007), 60% - 70% (Koeniger et al., 2009), and 71.9% Yimam (2010); in 

the mountainous region, where snowmelt and glacier melt provide a significant surface 

runoff, the mean annual groundwater contribution to stream flow is 75% (Clow et al., 2003), 

and 67% - 74% (Hood et al., 2006), 70% (Hannah et al., 2007); in Cuito River watershed in 

Angola, where the terrain is hilly and the climate is arid, the mean annual groundwater 

contribution to stream flow ranges from 74% to 80% (Hughes, 2004); in a steep headwater 

catchment in New Zealand in humid climate, the mean annual groundwater contribution to 

stream flow is 87% (Stewart et al., 2007), and 78% - 93% (Bidwell et al., 2008). With 

respect to the mean annual groundwater contribution to stream flow during the reference 

period, the mean annual groundwater contribution to stream flow from 2012 to 2016 under 

the A2 and B1 scenarios is expected to decrease by 3.3% and 1.8%, respectively, due to the 

increased precipitation (on average 6.1% under the A2 and 3.6% under the B1 scenarios) and 

temperature (on average 0.64°C under the A2 and 0.36°C under the B1 scenarios) predicted, 

with respect to that under the reference period. This would result in increased stream flow 

(on average 6.7% under the A2 and 3% under the B1 scenarios) and groundwater discharge 

(on average 2.8% under the A2 and 1.2% under the B1 scenarios), but the major increases 

occurred in surface runoff (on average 22.5% under the A2 and 11.2% under the B1
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scenarios). Therefore, climate change significantly affects stream and groundwater 

discharges, and surface runoff, as well as the mean annual groundwater contribution to 

stream flow. Table 5.3 presents a summary of mean annual stream flow, surface runoff, and 

groundwater discharge under the reference period and both scenarios for the short-term 

period. Walvoord et al. (2007) also found similar type of change in the mean annual 

groundwater contribution to stream flow in the Yukon River basin. This decreased 

groundwater contribution to stream flow under both scenarios may result in warmer stream 

temperature, lower dissolved oxygen in stream, and increased nutrient concentrations in 

stream (e.g., Dissolved organic carbon (DOC) and nitrogen (DON)) that may promote 

excessive growth of habitat-choking algae by increasing surface runoff and soil erosion 

(Price et al., 2006; Leigh, 2010). These results demonstrate that under the B1 scenario those 

above mentioned impacts will be lower as compared to the A2 scenario due to higher annual 

groundwater contribution to stream flow under the B1 scenario. These results also 

demonstrate that stream flow is more dependent on groundwater flow under the B1 scenario 

than under the A2 scenario. Therefore, more annual water extraction from the river, and 

allocation to the stakeholders for future water supply could be possible under the A2 scenario 

than under the B1 scenario without causing a negative impact on regional groundwater level.
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Table 5.3 Mean annual precipitation, temperature, stream flow, surface runoff, and 
groundwater discharge under the reference period (2007-2011) and A2 and B1 scenarios for 
the short-term period (2012-2016). The values within the parentheses are relative changes 
except for temperature, where absolute changes were calculated.

Scenario Mean annual 
precipitation 

(mm)

Mean annual 
temperature

(°C)

Mean annual 
stream flow 

(m3/s)

Mean annual 
groundwater 

discharge
(m3/s)

Mean annual 
surface 
runoff
(m3/s)

Reference
period

492 2.63 3.08 2.46 0.62

A2 522 (6.1%) 3.27 (0.64) 3.29 (6.7%) 2.53 (2.8%) 0.76 (22.5%)

B1 510(3.6%) 2.99 (0.36) 3.18(3%) 2.49(1.2%) 0.69(11.2%)

When the mean monthly groundwater contributions to stream flow of 2020-2040 (long

term period) under the A2 and B1 scenarios are compared to that under the reference period 

(2007-2011), results similar to the short term period are found (Fig. 5.15). The lowest and 

highest mean monthly groundwater contributions to stream flow of 2020-2040 are expected 

in June (i.e., 37%) and December (i.e., 92%) under the A2 scenario, and also in June (i.e., 

46%) and December (i.e., 95%) under the B1 scenario, respectively. On average, stream flow 

is expected to be mostly dependent on groundwater flow during December, but least 

dependent during June under both scenarios.
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Figure 5.15 Comparison of mean monthly groundwater contributions to stream flow of 
2020-2040 under climate change of A2 and B1 GHG emission scenarios with respect to 
reference period (2007-2011)

The mean annual groundwater contribution to stream flow, on average, during 2020-2040

under the A2 and B1 scenarios is expected to be 74.5% (o=2%), and 75.6% (a=3%),

respectively, representing a decrease by 5.5% and 4.4%, respectively, with respect to that

under the reference period (2007-2011). This variation occurs due to the increased

precipitation (on average 6.7% under the A2 and 4.8% under the B1 scenarios) and

temperature (on average 0.83°C under the A2 and 0.64°C under the B1 scenarios) predicted,

with respect to that under the reference period. The climate change would result in increased

stream flow (on average 10.9% under the A2 and 7.9% under the B1 scenarios), groundwater

discharge (on average 3.7% under the A2 and 2.3% under the B1 scenarios), and surface
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runoff (on average 40.3% under the A2 and 30.5% under the B1 scenarios). Table 5.4 shows 

a summary of mean annual stream flow, surface runoff, and groundwater discharge under the 

reference period and both scenarios for the long-term period.

Table 5.4 Mean annual precipitation, temperature, stream flow, surface runoff, and 
groundwater discharge under the reference period (2007-2011) and A2 and B1 scenarios for 
the long-term period (2020-2040). The values within the parentheses are relative changes 
except for temperature, where absolute changes were calculated.

Scenario Mean annual 
precipitation 

(mm)

Mean annual 
temperature 

(°C)

Mean annual 
stream flow 

(m3/s)

Mean annual 
groundwater 

discharge 
(m3/s)

Mean annual 
surface 
runoff
(m3/s)

Reference
period

492 2.63 3.08 2.46 0.62

A2 525 (6.7%) 3.46 (0.83) 3.42 (10.9%) 2.55 (3.7%) 0.87 (40.3%)

B1 516(4.8%) 3.27 (0.64) 3.32 (7.9%) 2.51 (2.3%) 0.81 (30.5%)

Fig. 5.16 shows the comparison of mean daily groundwater levels of the study area 

between A2 and B1 GHG emission scenarios for 2012-2016. The results show that during 

most of the time, the mean daily groundwater levels under the A2 scenario are higher than 

those under the B1 scenario due to an increased infiltration resulting from a higher amount o f 

precipitation and temperature increase predicted to occur under the A2 scenario. As a result, 

for most of the years between 2012 and 2016, except 2013, more groundwater discharge to 

stream flow occurs in the A2 scenario in the study area. When the precipitation under the B 1
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scenario is higher than that under the A2 scenario (e.g., in 2013), the mean daily groundwater 

levels under the B1 scenario are higher than those under the A2 scenario.
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Figure 5.16 Comparison of mean daily groundwater levels of the study area between A2 and 
B1 GHG emission scenarios for 2012-2016 simulated by the GSSHA model

Fig. 5.17 presents the comparison of 2012-2016’s mean daily groundwater levels of the

study area under climate change of A2 and B1 GHG emission scenarios with respect to the

reference period (2007-2011). Similar to the results obtained from Fig. 5.16, the mean daily

groundwater levels of 2012-2016 are higher during most of the months under the A2 scenario

than under the B1 scenario, with the highest and lowest mean daily groundwater levels under

both scenarios occurring in July and March, respectively. Under both scenarios, however, the
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mean daily groundwater levels are higher than those under the reference period (2007-2011) 

due to increased precipitation and temperature predicted. On average, the mean annual 

groundwater level under the A2 and B1 scenarios is expected to increase by 4.5 cm (ct= 1.9 

cm) and 3.5 cm (o=1.5 cm), respectively, compared to that under the reference period. These 

results indicate that climate change has a significant impact on the mean daily and annual 

groundwater levels. Therefore, the increased mean annual groundwater levels in the study 

area will provide more groundwater discharge to stream flow (on average 2.8% in the A2 and 

1.2% in the B1 scenarios) under both scenarios in the study area. However, less groundwater 

discharge will be available under the B1 scenario compared to the A2 scenario due to low 

groundwater levels under the B1 scenario. These high groundwater levels under the A2 

scenario also support the more annual water extraction from the river, and allocation to the 

stakeholders for future water supply under the A2 scenario than under the B1 scenario 

without causing a negative impact on regional groundwater level, compared to the reference 

period.
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Figure 5.17 Comparison of mean daily groundwater levels of the study area of 2012-2016 
under A2 and B1 GHG emission scenarios with respect to the reference period (2007-2011)

When the mean daily groundwater levels of the study area of 2020-2040 under climate 

change of both emission scenarios are compared to those during the reference period (2007- 

2011), results almost similar to those during the short-term period are found, except for the 

peak groundwater levels due to the shift of peak monthly precipitation (Fig. 5.18). Compared 

to the mean annual groundwater level under the reference period, the mean annual 

groundwater level under the A2 and B1 scenarios during 2020-2040 is expected to increase, 

on average, by 5.5 cm (o=2.5 cm) and 4.3 cm (a=2 cm), respectively. Therefore, these 

increased mean annual groundwater levels in the study area under both scenarios in the long

term period will result in similar impacts as in the short-term period.
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Figure 5.18 Comparison of mean daily groundwater levels of the study area of 2020-2040 
under A2 and B1 GHG emission scenarios with respect to the reference period (2007-2011)

Figs. 5.19-5.22 illustrate the comparison of mean groundwater contributions to stream 

flow between A2 and B1 GHG emission scenarios during different seasons from 2012 to 

2016 with respect to year 2011. It can be found that during winter, the mean groundwater 

contributions are lower for most of the years under the A2 scenario than under the B1 

scenario (Fig. 5.19). This variation occurs because more precipitation is predicted during fall 

under the A2 scenario which results in higher groundwater levels and stream flow. In 

addition, during winter, precipitation occurs as snow which cannot completely infiltrate, but 

having higher groundwater levels resulting from fall season under the A2 scenario generates



higher groundwater discharge as well as stream flow in winter than under the B1 scenario. As 

a result, the mean groundwater contributions to stream flow during winter under the A2 

scenario are lower than under the B1 scenario. These results also demonstrate that the mean 

groundwater contribution to stream flow during winter depends on the antecedent season’s 

precipitation amount. On average, the mean groundwater contribution to stream flow during 

2012-2016 winters under the A2 and B1 scenarios is 95% and 97%, respectively. During the 

spring of most of the years between 2012 and 2016, the mean groundwater contributions to 

stream flow are lower under the B1 scenario than under the A2 scenario (Fig. 5.20). This 

discrepancy may occur due to the fact that more precipitation is predicted during winter 

under the B1 scenario than under the A2 scenario, and during spring, almost equal 

precipitation is predicted under both scenarios. When snow melts in April, higher surface 

runoff occurs under the B1 scenario which results in lower mean groundwater contribution to 

stream flow. These results also indicate that the mean groundwater contribution to stream 

flow during spring depends on the amount of the antecedent season’s precipitation. On 

average, the mean groundwater contribution to stream flow during spring under the A2 and 

B1 scenarios of 2012-2016 is 71% and 70%, respectively. During summer, the contributions 

are lower under the A2 scenario than under the B1 scenario due to more precipitation 

increase being predicted under this scenario (Fig. 5.21). On average, the mean groundwater 

contribution to stream flow during summer under 2012-2016’s A2 and B1 scenarios is 55% 

and 61%, respectively. During fall, the contributions under both scenarios show variable 

patterns annually because variable annual precipitation patterns are predicted during fall 

under both scenarios (Fig. 5.22). On average, the contribution during fall under the A2 and 

B1 scenarios of 2012-2016 is 86% and 88%, respectively.
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Figure 5.19 Comparison of mean groundwater contributions to stream flow between A2 and 
B1 scenarios during winter from 2012 to 2016 with respect to year 2011
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Figure 5.20 Comparison of mean groundwater contributions to stream flow between A2 and 
Bl scenarios during spring from 2012 to 2016 with respect to year 2011
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Figure 5.21 Comparison of mean groundwater contributions to stream flow between A2 and 
Bl scenarios during summer from 2012 to 2016 with respect to year 2011
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Figure 5.22 Comparison of mean groundwater contributions to stream flow between A2 and 
Bl scenarios during fall from 2012 to 2016 with respect to year 2011
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Similar to the short-term period, the mean groundwater contributions to stream flow 

during various seasons follow similar trends in the long-term period. On average, under the 

A2 scenario, this contribution during winter, spring, summer, and fall from 2020 to 2040 will 

be 93% (o=3%), 69% (o=4.5%), 50% (o=3.5%), and 85% (o=2.5%), respectively. On the 

other hand, under the Bl scenario, this contribution will be 94% (a=2%), 68% (a=5%), 54% 

(a=4%), and 86% (o=7%), respectively. On average, the corresponding contribution during 

2007-2011 (reference period) is 98% (a=2.6%), 72% (a=2.9%), 62% (a=5.9%), and 89% 

(a=4.2%), respectively. As compared to the period of 2007 to 2011, the mean groundwater 

contribution to stream flow during winter, spring, summer, and fall from 2020 to 2040 is 

expected to decrease by 5%, 3%, 12%, and 4% under the A2 scenario, respectively, and 

decrease by 4%, 4%, 8%, and 3% under the Bl scenario, respectively. This is due to 

increased precipitation and temperature predicted under both scenarios as compared to the 

reference period. Therefore, the effect of climate change on the mean seasonal groundwater 

contributions to stream flow is significant.

These decreased seasonal groundwater contributions to stream flow under both scenarios 

will result in seasonal warmer stream temperature, lower dissolved oxygen in stream, and 

increased nutrient concentrations in stream. These impacts will be expected more during 

summer among other seasons due to higher decrease of groundwater contribution to stream 

flow during summer. These results also demonstrate that under the Bl scenario these impacts 

will be expected less, except in spring, as compared to that under the A2 scenario due to 

higher groundwater contribution to stream flow in the B 1 scenario.
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5.5 Summary

In this study, the impacts of climate change on GW-SW interaction were investigated

using a study area along the river of the Mainstem sub-watershed of KRW as a case study for

a short-term period (2012-2016) and a long-term period (2020-2040) by using the developed

GW-SW interaction model (i.e., GSSHA). Two types of IPCC climate change scenarios (A2:

heterogeneous world with self-reliance and preservation of local identities, and Bl: more

integrated and environmental friendly world) were chosen. Based on the simulation results

for the short-term period, it was found that groundwater contributes significantly to stream

flow in the study area under both climate change scenarios. These contributions showed

monthly, seasonal, and annual variations due to precipitation variability. On average, stream

flow is mostly dependent on groundwater flow during December under both scenarios, while

least dependent on groundwater flow during May and June under the Bl and A2 scenarios,

respectively. The mean annual groundwater contribution to stream flow during 2012-2016

under both scenarios is 76.7% (o=l.l% ) and 78.2% (cr=1.25%), respectively. This

contribution is lower under the A2 scenario because of higher annual precipitation and

temperature increase predicted under the A2 scenario. As compared to that during the

reference period (2007-2011), the mean annual groundwater contribution to stream flow

during 2012-2016 under the A2 and Bl scenarios is expected to decrease by 3.3% and 1.8%,

respectively, due to increased precipitation (on average 6.1% under A2 and 3.6% under Bl

scenarios) and temperature (on average 0.64°C under A2 and 0.36°C under Bl scenarios).

From the seasonal point of view, the mean groundwater contribution to stream flow under

both scenarios is the lowest and highest during summer and winter, respectively. In addition,

the mean daily groundwater levels were analyzed in this study. Under both scenarios, the
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mean daily groundwater level increases the most due to high infiltration rate during snow 

melt and high rainfall events in summer, but it gradually decreases during the end of summer 

until winter and before snow melting due to less infiltration rate. The highest and lowest 

mean daily groundwater levels during 2012-2016 under both scenarios were found in July 

and March, respectively. It was also found that the groundwater levels are generally higher 

under the A2 scenario than under the B1 scenario. The results for the long-term period (2020- 

2040) are similar to those for the short-term period. On average, the mean annual 

groundwater contribution to stream flow during 2020-2040 under the A2 and B 1 scenarios is 

expected to be 74.5% (a=2%) and 75.6% (a=3%), respectively. As compared to the reference 

period (2007-2011), the groundwater contribution during 2020-2040 under the A2 and B1 

scenarios is expected to decrease by 5.5% and 4.4%, respectively, due to the increased 

precipitation (on average 6.7% under the A2 and 4.8% under the B1 scenarios) and 

temperature (on average 0.83°C under the A2 and 0.64°C under the B1 scenarios). Therefore, 

climate change influences significantly the temporal patterns of mean groundwater 

contribution to stream flow. In general, the modeling results represent a new way to 

understand the temporal dynamics of GW-SW interaction under climate change. The results 

obtained from this study will provide useful information for effective short-term and long

term water resources decision making in terms of monthly, seasonal and annual water 

extractions from the river. The US Army Corps of Engineers and the Bureau of Reclamation 

have also used short-term water management strategies in the last few decades to solve 

numerous constraints before making long-term management decisions, which always 

requires more resources and are therefore, more expensive (USACE et al., 2013). The results
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will also provide ecological conditions of the stream, which will be beneficial to aquatic 

ecosystems. They will be useful for the planning of regional water resources management.
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CHAPTER 6

EFFECTS OF CLIMATE AND LAND USE CHANGES ON GW-SW INTERACTION

6.1 Background

It has been known that ongoing climate change will significantly impact the hydrologic 

cycle (Kundzewicz et al., 2008). Due to the importance of groundwater resources in the 

hydrologic cycle, climate change impact studies on groundwater have received increasing 

attention during the last decade. Most of the previous studies reported how the mean annual 

groundwater level and groundwater recharge or discharge (i.e., mean of 20 to 40 years) 

would change under different climate change scenarios. Only a few studies (Van Roosmalen 

et al., 2007; Jackson et al., 2011; Dams et al., 2012; Vansteenkiste et al., 2012) reported how 

these variables show monthly variation between current and projected future climates. There 

is little knowledge regarding how the mean monthly groundwater contribution to stream flow 

will change under different climate change scenarios. In addition, land use changes can also 

significantly affect groundwater recharge and discharge, and surface water flow patterns by 

altering soils’ infiltration rate (Jinno et al., 2009). For example, increasing urban area 

resulted in decreasing groundwater discharge, and increasing stream flow and surface runoff 

(Klocking et al., 2002; Chang, 2007; Lin et al., 2007; Dams et al., 2008; Zhou et al., 2013); 

the conversion of perennial vegetation to seasonal growing crops in the Mississippi River 

Basin resulted in increased groundwater discharge and stream flow, and decreased surface 

runoff (Zhang et al., 2006b; Schilling et al., 2010); changing agricultural area into grasslands
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in a sub catchment of Havel River, Germany, resulted in decreased groundwater discharge 

(Krause et al., 2004); the conversion of grassland into forest in the western part of Jutland, 

Denmark, resulted in decreased groundwater discharge (Van Roosmalen et al., 2009); a 

decrease of grassland area with concurrent increases of shrub land rain-fed agriculture, bare 

ground irrigated agriculture and urban area led to an increase in the surface runoff and a 

decrease in the groundwater discharge and stream flow (Ghaffari et al., 2010). A number of 

studies (Klocking et al., 2002; Batelaan et al., 2003; Krause et al., 2004; Dams et al., 2008; 

Van Roosmalen et al., 2009; Wijesekara et al., 2012; Zhou et al., 2013) have investigated 

watershed hydrology under the combined impacts of climate and land use changes. Many of 

the previous studies reported how the mean annual groundwater recharge and discharge, 

stream flow, as well as groundwater level would change under different land use change 

scenarios. However, little attention was paid to investigate how the mean monthly, seasonal 

and annual groundwater contributions to stream flow will change under both changing land 

use and climatic conditions. In fact, such information could determine the monthly status of 

groundwater resources and site conditions for groundwater-dependent terrestrial ecosystems 

(Naumburg et al., 2005). They will also determine the monthly, seasonal and annual 

variations of stream flow dependency on groundwater, and these will provide useful 

information for both short and long-term water supply decisions making.

This research attempts to investigate GW-SW interaction under combined climate and 

land use/land cover (LULC) changes effects in the study area through the developed GSSHA 

model. The monthly, seasonal and annual groundwater contributions to stream flow under the 

A2 and B1 GHG emission scenarios with LULC changes were investigated for a short-term
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period of 5 years (2012 to 2016) due to limited future projected land uses data. The annual 

land use maps from 2012 to 2016 were used in the developed GSSHA model.

6.2 GW-SW interaction under A2 scenario with LULC changes

Fig. 6.1 presents the mean monthly groundwater contributions to stream flow under the 

A2 GHG emission scenario with land use and land cover (LULC) changes during 2012-2016. 

Similar to the climate change effects, the groundwater contributions under the combined 

effects show variable annual patterns (Cannon et al., 2002; Van Roosmalen et al., 2007; Lin 

et al., 2007; Xu et al., 2011). The mean monthly groundwater contribution to stream flow in 

2012 ranges from 42% in May to 96% in October. Similar trends are found for years 2013 to 

2016. However, this range is lower than that under the climate change effects (no land use 

change). This variation occurs due to land use changes, which result in increasing surface 

runoff and stream flow, and decreasing groundwater discharge due to increasing forest clear 

cut area of low hydraulic conductivity soil. Klocking et al. (2002), Chang (2007), Lin et al. 

(2007), Dams et al. (2008), and Zhou et al. (2013) also found decreasing groundwater 

discharge and increasing surface runoff and stream flow due to increasing built up area of 

low hydraulic conductivity soils. Therefore, combined climate and land use changes have 

offsetting and additive impacts on water resources systems. Similar to the climate change 

effects, stream flow depends mostly on groundwater flow in those months when there is the 

highest groundwater contribution to stream flow (Washington State Department of Ecology, 

1999), but at a lesser extent during the months when there is the lowest groundwater 

contribution.
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Figure 6.1 Mean monthly groundwater contributions to stream flow during 2012-2016 under 
the combined effects of A2 GHG emission scenario and LULC changes

Fig. 6.2 shows the comparison of mean groundwater contributions to stream flow during 

different seasons under the effects of A2 GHG emission scenario and LULC changes for 

2012-2016. These results show similar trends that are found for the sole effects of A2 GHG 

emission scenario (Fig. 5.2). On average, the mean groundwater contribution to stream flow 

during winter, spring, summer, and fall of 2012-2016 is 93% (a=1.9%), 68% (a=3.5%), 50% 

(a=4.5%), and 84% (<r=3.1%), respectively. Hence, stream flow depends mostly on 

groundwater flow during winter, while at a lesser extent during summer. Consequently, the 

highest and lowest water extraction from the river, and allocation to the stakeholders for 

future water supply could be possible during summer and winter, respectively, due to the
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highest (i.e., on average 6.57 m3/s) and lowest (i.e., on average 0.26 m3/s) mean stream flow 

rates during summer and winter, respectively. Clow et al. (2003) and Welderufael et al. 

(2010) found similar seasonal variations of mean groundwater contribution to stream flow. 

Compared to only climate change effects, these contributions are lowered by 2%, 3%, 5%, 

and 2%  during winter, spring, summer, and fall, respectively. These variations occur due to 

decreasing groundwater discharge and increasing stream flow and surface runoff resulted 

from increasing forest clear cut area. These results indicate the significant role of LULC
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Figure 6.2 Comparison of mean groundwater contributions to stream flow during different 
seasons under the combined effects of A2 GHG emission scenario and LULC changes for 
2012-2016
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change in stream flow, surface runoff, groundwater discharge, as well as the mean seasonal 

groundwater contributions to stream flow. Klocking et al. (2002), Chang (2007), Lin et al. 

(2007), Dams et al. (2008), and Zhou et al. (2013) found similar decreasing groundwater 

discharge, and increasing stream flow and surface runoff due to urbanization (area of low 

hydraulic conductivity soils). Therefore, this decreased groundwater contribution to stream 

flow may result in more warmer stream temperature, lower dissolved oxygen in stream, and 

increased nutrient concentrations in stream (e.g., Dissolved organic carbon (DOC) and 

nitrogen (DON)) that may promote excessive growth of habitat-choking algae by increasing 

surface runoff and soil erosion (Price et al., 2006; Leigh, 2010) than those under the sole 

climate change effects. It should be noted that the variations differ from area to area 

depending on the type and temporal pattern of precipitation around the year, for example, in 

western and northern Europe (e.g., United Kingdom, Belgium, Denmark) more precipitation 

occurs during winter as rainfall, and therefore, results in higher surface runoff compared to 

groundwater discharge (Van Roosmalen et al., 2007; Dams et al., 2012) and lower 

groundwater contribution to stream flow during winter than other seasons, which is opposite 

to the finding of this study. In addition, different types of annual land use changes also play a 

vital role in these variations, for example, changing perennial vegetation into seasonal 

growing crops in the Mississippi River Basin increased groundwater discharge and stream 

flow, and decreased surface runoff (Zhang et al., 2006b; Schilling et al., 2010); altering 

agricultural area into grasslands in a sub catchment of Havel River, Germany, decreased 

groundwater discharge (Krause et al., 2004); changing grassland into forest in the western 

part of Jutland, Denmark, decreased groundwater discharge (Van Roosmalen et al., 2009). 

Therefore, the seasonal variations of mean groundwater contribution to stream flow depend
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on the type and temporal pattern of annual precipitation, and the types of annual land use 

changes in the particular area. It is found that the groundwater contribution decreases the 

most in summer due to increasing forest clear cut area of low hydraulic conductivity soil and 

more precipitation. Zhou et al. (2013) found similar variations of surface runoff and stream 

flow during wet season due to urbanization.
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Figure 6.3 Comparison of mean daily groundwater levels of the study area for year 2011 and 
under the combined effects of A2 scenario and LULC changes for 2012-2016

Fig. 6.3 shows the comparison of mean daily groundwater levels of the study area in 2011 

and those during 2012-2016 under the combined effects of the A2 scenario and LULC
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changes. The year 2011 (with annual precipitation of 552 mm) was of mild winter and 

flooding summer in the study area. It is found that the mean daily groundwater levels in the 

study area show almost similar profiles in every year due to the almost similar temporal 

pattern of annual precipitation. Due to high infiltration rate during snow melting and heavy 

rainfall events in the summer, the mean daily groundwater levels increase the most. 

However, the high groundwater level does not increase groundwater contribution to stream 

flow during those seasons as a result of the high surface runoff caused by snowmelt, heavy 

rainfall, (Covert, 1999; Clow et al., 2003), steep topography (Vivoni et al., 2007) and land 

use changes. The mean daily groundwater levels gradually decrease during the end of 

summer and continue until the winter and before snow melting (i.e., before April), and this 

lower groundwater level results in lower groundwater discharge, and higher groundwater 

contribution to stream flow because of low stream flow during those times. Similar variation 

patterns were found for the sole climate change effects, but the mean daily groundwater 

levels increase at a lesser rate than the sole climate change effects due to increasing surface 

runoff and decreasing infiltration resulting from LULC changes. These temporal variations of 

mean daily groundwater levels also vary with area based on the type and temporal pattern of 

precipitation around the year, for example, more precipitation occurs during winter as rainfall 

in western and northern Europe (e.g., United Kingdom, Belgium, Denmark), and causes 

higher groundwater levels during winter than other seasons (Van Roosmalen et al., 2007; 

Godemiaux, 2010; Dams et al., 2012), which is opposite to the finding of this study. In 

addition, different types of annual land use changes also influence these variations for 

example, shifting agricultural area into grasslands in a sub catchment of Havel River, 

Germany, caused decreasing groundwater levels (Krause et al., 2004); the conversion of
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forest to paddy field resulted in lower groundwater levels in Jambi Province, Indonesia 

(Furukawa et al., 2005). As discussed before, the temporal variations of groundwater levels 

depend on the type and temporal pattern of annual precipitation as well as the types of annual 

land use changes in the particular area.
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Figure 6.4 Mean daily groundwater levels of the study area for year 2011 and under the 
combined effects of A2 scenario and LULC changes for 2012-2016

The mean daily groundwater levels of the study area in 2011 and those during 2012-2016 

under the effect of A2 scenario and LULC changes are presented in Fig. 6.4. The results 

show that the mean daily groundwater levels are expected to increase at the end of year 2016 

due to increased precipitation under the A2 scenario. Overall, the mean annual groundwater
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level is expected to increase by 1.8 cm, 0.5 cm, 1 cm, 1.2 cm, and 1.5 cm in 2012, 2013, 

2014, 2015, and 2016, respectively, as compared to that in 2011. The groundwater level 

increases yearly due to consecutive years of above-normal precipitation in the study area. 

This indicates that climate change has a significant effect on the mean daily and annual 

groundwater levels. Scibek et al. (2006b) and Van Roosmalen et al. (2007) also found 

increased mean annual groundwater levels due to increased precipitation. However, the 

increase of mean annual groundwater levels varies from area to area depending on the 

amount of increased annual precipitation. It is also found that the mean annual groundwater 

level decreases annually as compared to that under the sole climate change (A2 scenario) 

effects because of increasing forest clear cut area which results in decreasing infiltration. As 

compared to only climate change effects, the mean annual groundwater level under the 

combined effects of A2 scenario and LULC changes is expected to decrease by 0.2 cm, 0.7 

cm, 1 cm, 1.2 cm, and 1.5 cm in 2012, 2013, 2014, 2015, and 2016, respectively. These 

results indicate that land use change has an important impact on the mean daily and annual 

groundwater levels. Dams et al. (2008) also found similar decreasing mean annual 

groundwater levels due to increasing urban area. Therefore, less groundwater discharge to 

stream flow will occur in the study area under the combined effects of A2 scenario and 

LULC changes. This annual pattern of decreasing groundwater levels in the study area due to 

this type of land use change also indicate one of the possible reasons of depleting wetlands in 

the KRW due to extensive oil/gas exploration activities (Paul, 2013), along with climate 

change.
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6.3 GW-SW interaction under B1 scenario with LULC changes

Fig. 6.5 illustrates the mean monthly groundwater contributions to stream flow during 

2012-2016 under the combined effects of B1 GHG emission scenario and LULC changes. 

Similar to those under the effect of only climate change, the patterns also vary annually due 

to land use changes and monthly precipitation fluctuations (Cannon et al., 2002; Van 

Roosmalen et al., 2007; Lin et al., 2007). The mean monthly groundwater contribution to 

stream flow decreases almost every year as compared to that with only climate change effect.
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Figure 6.5 Mean monthly groundwater contributions to stream flow during 2012-2016 under 
the combined effects of B1 GHG emission scenario and LULC changes
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Fig. 6.6 presents the comparison of mean groundwater contributions to stream flow 

during different seasons between 2012-2016 under the combined effects of B1 GHG 

emission scenario and LULC changes. Similar types of trends are found as those under the 

effects of B1 scenario (Fig. 5.8). On average, the mean groundwater contribution to stream 

flow during winter, spring, summer, and fall from 2012 to 2016 is 96% (a=2.1%), 66% 

(a-4.1%), 57% (a=5.5%), and 86% (a=6.5%), respectively. Hence, similar to the results 

under the effects of A2 scenario and LULC changes, stream flow depends mostly on 

groundwater flow during winter, but at a lesser extent during summer. Consequently, the 

highest and lowest water extraction from the river, and allocation to the stakeholders
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Figure 6.6 Comparison of mean groundwater contributions to stream flow during different 
seasons under the combined effects of B1 GHG emission scenario and LULC changes for 
2012-2016
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for future water supply could be possible during summer and winter, respectively, due to the 

highest (i.e., on average 6.30 m3/s) and lowest (i.e., on average 0.235 m3/s) mean stream flow 

rates during summer and winter, respectively. Compared to the results under the effect of 

only climate change, these contributions are reduced by 1%, 4%, 4%, and 2% during winter, 

spring, summer, and fall, respectively. The mean groundwater contribution to stream flow of 

2012-2016 also decreases most during the summer due to increasing forest clear cut area of 

low hydraulic conductivity soil and more precipitation predicted during summer.
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Figure 6.7 Comparison of mean daily groundwater levels of the study area for year 2011 and 
under the combined effects of B1 scenario and LULC changes for 2012-2016

Fig. 6.7 compares the mean daily groundwater levels of the study area in year 2011 and 

those in 2012-2016 under the combined effects of B1 scenario and LULC changes. Similar to 

those under the effect of only climate change, the mean daily groundwater levels in the study
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area show almost similar profiles due to the almost similar temporal pattern of annual 

precipitation, but they increase at a lesser rate as compared to the results under the effects of 

A2 scenario and LULC changes.

Fig. 6.8 shows the temporal variation of the mean daily groundwater levels of the study 

area in 2011 and those in 2012-2016 under the combined effects of B1 scenario and LULC 

changes. It can be found that the groundwater levels are expected to increase at the end of 

year 2016 by a lesser amount than under the combined effects of A2 scenario and LULC 

changes. This occurs due to less precipitation predicted under the B1 scenario than under the 

A2 scenario. Overall, the mean annual groundwater level is expected to increase by 0.4 cm, 

0.3 cm, 0.4 cm, and 0.7 cm in 2013, 2014, 2015, and 2016, respectively, but decrease by 1 

cm in 2012, as compared to that in 2011. It is also found that the mean annual groundwater 

level decreases annually as compared to that under the effect of only climate change (B1 

scenario), with a decrease of 0.4 cm, 0.6 cm, 0.9 cm, 1.1 cm, and 1.3 cm occurring in 2012, 

2013, 2014, 2015, and 2016, respectively. Therefore, less groundwater discharge to stream 

flow will occur in the study area under the combined effects of B1 scenario and LULC 

changes. However, the decrease of mean annual groundwater level under the effect of B1 

scenario and LULC changes was less than that under the effect of A2 scenario and LULC 

changes because less precipitation results in less surface runoff under the effect of B1 

scenario and LULC changes.
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Figure 6.8 Mean daily groundwater levels of the study area for year 2011 and under the 
combined effects of B1 scenario and LULC changes for 2012-2016

6.4 Comparison of GW-SW interaction between A2 and B1 scenarios with LULC 

changes

When the mean monthly groundwater contributions to stream flow in 2012-2016 under 

the combined effects of A2 or B1 GHG emission scenario and LULC changes are compared 

to those during the reference period (2007-2011) (Fig. 6.9), similar trends are found as those 

under the effect of only climate change (Fig. 5.13). The lowest and highest mean monthly 

groundwater contributions to stream flow in 2012-2016 are found in June (i.e., 39%) and 

January (i.e., 95%), respectively, under the combined effects of A2 scenario and LULC
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changes, but are found in May (i.e., 40%) and December (i.e., 97%), respectively, under the 

combined effects of B1 scenario and LULC changes.
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Figure 6.9 Comparison of mean monthly groundwater contributions to stream flow during 
2012-2016 under the combined effects of A2 or B1 GHG emission scenario and LULC 
changes with respect to reference period (2007-2011)
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Figure 6.10 Comparison of mean annual groundwater contributions to stream flow from 
2012 to 2016 under the combined effects of A2 or B1 GHG emission scenario and LULC 
changes with respect to year 2011

Fig. 6.10 illustrates the comparison of mean annual groundwater contributions to stream 

flow in 2012-2016 under the combined effects of A2 or B1 GHG emission scenario and 

LULC changes with respect to year 2011. It is found that both scenarios show an opposite 

pattern from 2012 to 2014, but a similar pattern from 2014 to 2016. The highest and lowest 

groundwater contributions to stream flow during 2012-2016 are found in 2013 (i.e., 76.5%), 

and 2016 (i.e., 72%), respectively, under the combined effects of A2 scenario and LULC 

changes, but are found in 2012 (i.e., 79.3%), and 2016 (i.e., 72.9%), respectively, under the 

combined effects of B1 scenario and LULC changes. On average, the mean annual 

groundwater contribution to stream flow of 2012-2016 under the effect of A2 or B1 scenario 

and LULC changes is 73.6% (o=1.6%) and 75.7% (o=2.4%), respectively. This variation
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occurs due to a higher precipitation and temperature increase predicted under the A2 scenario 

than under the B1 scenario, which results in more surface runoff and stream flow, and less 

groundwater discharge. Compared to the climate change effects only, these contributions are 

lowered by 3.1% and 2.5% (i.e., absolute value) under the A2 and B1 scenario with LULC 

changes, respectively, while the stream flow increased averagely 3.4% and 2.8%, 

respectively. In addition, surface runoff increased averagely 19.5% and 17.8%, respectively, 

under the combined effects of A2 or B1 scenario and LULC changes, but groundwater 

discharge decreased averagely 0.7% and 0.5%, respectively, under the combined effects of 

A2 or B1 scenario and LULC changes. Therefore, LULC change plays a significant role in 

stream flow, surface runoff, groundwater discharge, as well as the mean annual groundwater 

contribution to stream flow. However, under the effect of B1 scenario and LULC changes, 

the mean annual groundwater contribution to stream flow decreases at a lesser extent as 

compared to that under the effect of A2 scenario and LULC changes. In addition, as 

compared to the reference period, the mean annual groundwater contribution to stream flow 

from 2012 to 2016 under the combined effects of A2 or B1 scenario and LULC changes is 

expected to decrease by 6.4% and 4.3%, respectively due to land use changes and increased 

precipitation (on average 6.1% under the A2 and 3.6% under the B1 scenarios) and 

temperature (on average 0.64°C under the A2 and 0.36°C under the B1 scenarios). These 

changes result in increased stream flow (on average 10.1% under the A2 and 5.8% under the 

B1 scenarios with LULC changes), groundwater discharge (on average 2.1% under the A2 

and 0.7% under the B1 scenarios with LULC changes), and surface runoff (on average 42% 

under the A2 and 29% under the B1 scenarios with LULC changes). Table 6.1 presents a 

summary of mean annual stream flow, surface runoff, and groundwater discharge under the
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reference period and the combined effects of A2 or B1 climate change scenario and LULC 

changes for the short-term period. These results demonstrate that stream flow is more 

dependent on groundwater flow under the effect of B1 scenario and LULC changes than 

under the effect of A2 scenario and LULC changes. Therefore, more annual water extraction 

from the river, and allocation to the stakeholders for future water supply could be possible 

under the effects of A2 scenario and LULC changes than under the effects of B1 scenario and 

LULC changes without causing a negative impact on regional groundwater level as well as 

aquatic ecosystems, compared to the reference period.

Table 6.1 Mean annual precipitation, temperature, stream flow, surface runoff, and 
groundwater discharge under the reference period (2007-2011) and the combined effects of 
A2 or B1 scenario and LULC changes for the short-term period (2012-2016). The values 
within the parentheses are relative changes except for temperature, where absolute changes 
were calculated.

Scenario Mean annual 
precipitation 

(mm)

Mean annual 
temperature

(°C)

Mean annual 
stream flow

(m3/s)

Mean annual 
groundwater 

discharge
(m3/s)

Mean annual 
surface 
runoff
(m3/s)

Reference
period

492 2.63 3.08 2.46 0.62

A2 and 
LULC

522 (6.1%) 3.27 (0.64) 3.40(10.1%) 2.51 (2.1%) 0.89 (42%)

B1 and 
LULC

510(3.6%) 2.99 (0.36) 3.27 (5.8%) 2.47 (0.7%) 0.80 (29%)
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The comparison of mean daily groundwater levels of the study area in 2012-2016 under 

the effect of A2 or B1 scenario and LULC changes is shown in Fig. 6.11. The results show 

that the groundwater levels under the effect of A2 scenario and LULC changes are higher 

most of the time than those under the effect of B1 scenario and LULC changes due to a 

higher amount of precipitation and temperature increase predicted under the A2 scenario.
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Figure 6.11 Comparison of mean daily groundwater levels of the study area between A2 and 
B1 GHG emission scenarios with LULC changes for 2012-2016

Fig. 6.12 demonstrates the comparison of the mean daily groundwater levels of the study 

area of 2012-2016 under the A2 and B1 scenarios with LULC changes with respect to the 

reference period (2007-2011). Similar to the results obtained from Fig. 6.11, the mean daily
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groundwater levels of 2012-2016 are higher most of the months under the A2 scenario than 

under the B1 scenario. The highest and lowest mean daily groundwater levels of 2012-2016 

under both scenarios are found in July and March, respectively. When compared to those 

during the reference period (2007-2011), the mean daily groundwater levels of 2012-2016 

under both scenarios are higher during most of the months due to a higher amount of 

precipitation and temperature increase. However, the mean daily groundwater levels under 

the B1 scenario with LULC changes are lower in a few months of the year than those during 

the reference period (2007-2011) because of increasing forest clear cut area predicted to 

occur under the B1 scenario with LULC changes during 2012 to 2016. On average, the mean 

annual groundwater level under the A2 and B1 scenarios with LULC changes is expected to 

increase by 3.8 cm (o=2.1 cm) and 2.9 cm (a=1.3 cm), respectively, compared to that during 

the reference period. In addition to this, the mean annual groundwater level decreases by 0.7 

cm and 0.6 cm (i.e., absolute value) under the A2 and B1 scenarios with LULC changes, 

respectively, compared to the climate change effects only (no land use change). These results 

indicate that LULC change has a significant impact on the mean daily and annual 

groundwater levels. Therefore, less groundwater discharge to stream flow (on average 0.7% 

and 0.5%, respectively, in the A2 and B1 scenarios with LULC changes) will be available in 

the study area under the A2 and B1 scenarios with LULC changes, as compared to those in 

climate change effects only.
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Figure 6.12 Comparison of mean daily groundwater levels of the study area of 2012-2016 
under the combined effects of A2 or B1 GHG emission scenarios and LULC changes with 
respect to reference period (2007-2011)

Figs. 6.13-6.16 present the comparison of mean groundwater contributions to stream flow 

between the A2 and B1 GHG emission scenarios with LULC changes during different 

seasons from 2012 to 2016 with respect to year 2011. The results during various seasons 

follow similar trends as those under the effect of only climate change. On average, under the 

effect of A2 scenario and LULC changes, the mean groundwater contribution to stream flow 

during winter, spring, summer, and fall of 2012-2016 is 93% (a=1.9%), 68% (a=3.5%), 50% 

(a=4.5%), and 84% (c=3.1%), respectively. These numbers changed to 96% (a=2.1%), 66% 

(a=4.1%), 57% (a=5.5%), and 86% (ct=6.5%), respectively, under the effect of B1 scenario 

and LULC changes. The mean groundwater contribution to stream flow during all seasons 

under the combined effects of A2 or B1 scenario and LULC changes is lower than that under 

the effect of only climate change by 2%-5% and l%-4% (i.e., absolute values), respectively.
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This occurs due to increasing surface runoff and stream flow, and decreasing groundwater 

discharge resulting from annual increasing forest clear cut area of low hydraulic conductivity 

soil from 2012 to 2016. The most decrease occurs in summer under the A2 scenario with 

LULC changes, but in spring and summer under the B1 scenario with LULC changes. The 

least decrease occurs in fall and winter under the A2 scenario with LULC changes, but in 

winter under the B1 scenario with LULC changes. Therefore, land use change has also an 

important impact on the mean seasonal groundwater contributions to stream flow.
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Figure 6.13 Comparison of mean groundwater contributions to stream flow between A2 and 
B1 scenarios with LULC changes during winter from 2012 to 2016 with respect to year 2011
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Figure 6.14 Comparison of mean groundwater contributions to stream flow between A2 and 
B1 scenarios with LULC changes during spring from 2012 to 2016 with respect to year 2011
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Figure 6.15 Comparison of mean groundwater contributions to stream flow between A2 and 
B1 scenarios with LULC changes during summer from 2012 to 2016 with respect to year 
2011
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Figure 6.16 Comparison of mean groundwater contributions to stream flow between A2 and 
B1 scenarios with LULC changes during fall from 2012 to 2016 with respect to year 2011

6.5 Summary

The impact of combined climate and land use changes on GW-SW interaction was

examined using a study area along the river of the Mainstem sub-watershed of KRW as a

case study using the developed GW-SW interaction model (i.e., GSSHA) for the short-term

period (2012 to 2016). The future land use conditions were generated based on the changes

of land use types between 1999 and 2010, and two types of climate change scenarios (A2:

heterogeneous world with self-reliance and preservation of local identities, and B l: more

integrated and environmental friendly world) were chosen. Under the combined effects of

climate and land use changes, similar results to those under the effect of only climate change
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were found, but with a decreasing rate in the mean groundwater contribution to stream flow 

and mean groundwater levels. On average, the mean annual groundwater contribution to 

stream flow of 2012-2016 under the A2 and B1 scenarios with LULC changes is 73.6% 

(0=1.6%) and 75.7% (o=2.4%), respectively. As compared to climate change effects only, 

these contributions were lowered by 3.1% and 2.5%, respectively. This indicates that land 

use change has an important role in the groundwater contribution to stream flow by shifting 

the flow patterns to the regime with more surface runoff and stream flow, but less 

groundwater discharge. The mean daily groundwater levels increase under both scenarios in 

every year during snow melt and high rainfall events in summer, but at a lesser rate than 

those under the effect of only climate change due to increasing surface runoff and decreasing 

infiltration resulted from LULC changes. It was also found that the mean annual groundwater 

level under the combined effects of climate and land use changes decreases every year 

compared to only climate change effects. These results also indicate that land use change has 

an important impact on the mean daily and annual groundwater levels. In general, the 

inclusion of annual climate and LULC changes scenarios in the developed model represents a 

new attempt to assess GW-SW interaction under combined climate and LULC changes. In 

addition, the modeling results also represent a new way to understand the temporal dynamics 

of GW-SW interaction under combined climate and LULC changes. The results obtained 

from this study will provide useful information for seasonal and annual water extractions 

from the river and allocation to the stakeholders for future water supply, as well as ecological 

conditions of the stream, which will be beneficial to aquatic ecosystems. They will also 

provide how LULC changes can impact the groundwater contribution to stream flow and 

regional groundwater levels, which will be useful for planning of regional groundwater
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resource management, as well as water resources management considering future climate and

land use changes.

205



CHAPTER 7

UNCERTAINTY ANALYSIS OF GW-SW INTERACTION

7.1 Background

Groundwater-surface water (GW-SW) interaction plays a vital role in the functioning of 

riparian ecosystem (Kalbus et al., 2006). During flooding season, surface water can recharge 

groundwater, but during drought season groundwater acts as an important source to feed the 

surface water flow. As a result, groundwater and surface water are closely linked components 

of the hydrologic system due to their interdependency to each other. The development and 

exploitation of any one component can affect the other component. Therefore, for sustainable 

water resources management, it is crucial to quantify the exchange processes between these 

two components (Sophocleous, 2002). During the last decade, many researchers used 

different hydrologic models to quantify these exchange processes. Most of the parameters 

(e.g., precipitation, soil properties, surface roughness) in hydrologic models used for GW- 

SW interaction simulation require intensive field measurements (Benke et al., 2008), and 

they are always associated with uncertainty. Such uncertainty would also lead to uncertainty 

in modeling outputs (Muleta et al., 2004), which would jeopardize decision making of water 

resource management. This uncertainty analysis results could provide a range of outputs 

instead of one output, and enable the watershed manager to take proper action about water 

withdrawal from the river, and allocation to the stakeholders for future water supply 

depending on month and season.
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Due to the importance of parameter uncertainty in hydrologic models, many researchers 

used different uncertainty analysis methods in different hydrologic models to conduct 

uncertainty analysis of modeling outputs during the last several decades. For example, Beven 

et al. (1992) used Generalized Likelihood Uncertainty Estimation (GLUE) method in the 

Institute of Hydrology Distributed Model (IHDM) to investigate how the stream flow 

hydrograph varies under the parameter uncertainty during a number o f storms in the Gwy 

catchment, Wales. Kuczera et al. (1998) assessed the use of multinormal approximation to 

parameter uncertainty for the exploration of multiresponse data (i.e., stream flow, stream 

chloride concentration, groundwater level) in the CATPRO model in the Wights catchment 

in the Western Australia. Vrugt et al. (2003) used Markov Chain Monte Carlo (MCMC) 

method in the HYMOD model to find out the variation of stream flow under the parameter 

uncertainty in the Leaf River watershed, Mississippi. Benke et al. (2008) used the Monte 

Carlo simulation (MCS) method as an uncertainty analysis method in 2C hydrological model 

to investigate the impacts of parameter uncertainty on the prediction of stream flow in eastern 

Australia. Mishra (2009) used first-order second-moment (FOSM) and MCS methods in the 

Natural Systems Regional Simulation Model (NSRSM) to compare the impacts o f parameter 

uncertainty on stream flow prediction in south Florida. Shen et al. (2012, 2013) used GLUE 

and MCS methods, respectively, in the SWAT model to quantify the effects of parameter 

uncertainty on the stream flow and sediment in the Daning River watershed of the Three 

Gorges Reservoir Region, China. However, few studies have reported regarding the 

uncertainty analysis of the mean monthly, seasonal and annual groundwater contributions to 

stream flow in a watershed. These contributions information could determine the temporal
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variations of stream flow dependency on groundwater, and these will provide useful

information for both short and long-term water supply decisions making.

This study attempts to conduct uncertainty analysis of GW-SW interaction under the A2 

and B1 GHG emission scenarios to find out the variation of mean monthly, seasonal and 

annual groundwater contributions to stream flow with respect to the parameter uncertainty. 

Year 2013 was chosen as a case study because in 2013, the mean annual groundwater 

contribution to stream flow is lower under the B1 scenario than under the A2 scenario. 

Before conducting uncertainty analysis, sensitivity analysis was performed to find out the 

most sensitive parameters to the model output. Then 50 Monte Carlo realizations of the most 

sensitive modeling parameters were generated for the GSSHA model to conduct uncertainty 

analysis of GW-SW interaction.

7.2 Sensitivity analysis

Before conducting uncertainty analysis of any hydrological model, it is important to do 

sensitivity analysis of the modeling input parameters because sensitivity analysis indicates 

the assessment of uncertainty importance (Mishra, 2009). Sensitivity analysis is an important 

tool for identifying the important modeling input parameters, testing the model 

conceptualization, and improving the model structure (Sieber et al., 2005). Modeling input 

parameters always contain some degree of uncertainty because of spatial variability, budget 

constraints, and access difficulties. A modeler, however, has to assign values to each input 

parameter to run the model. Then the model is calibrated against the limited measured data 

by adjusting the modeling parameters’ values based on certain criteria. Therefore, the 

modeler has to have a clear understanding of all the input parameters and of the processes

208



represented in the model. Without knowing the sensitivity of parameters of the model could 

results in wastage of time for further research using the same model. Therefore, sensitive 

analysis is a useful tool for better understanding the impact of the modeling input parameters 

on the model output, and thus, reduced uncertainty (Hamby 1994; Lenhart et al. 2002). It also 

helps to enable a focused planning of future research and field measurements.

7.3 Sensitivity analysis of GW-SW interaction

In this study, sensitivity analysis was conducted using the OAT (One-factor-At-a-Time) 

method (Saltelli et al., 2000). The OAT method is chosen because it is the simplest method 

for conducting sensitivity analysis (Hamby, 1994), and three are 28 calibrated parameters in 

the developed GSSHA model which requires lots of runs for conducting sensitivity analysis 

using other methods (e.g., factorial design). Using the OAT method, each calibrated 

parameter was changed by a small amount at a time from a reference (i.e., base) value while 

keeping the remaining parameters constant, and then the corresponding change in the 

modeling output (i.e., mean monthly groundwater contributions to stream flow) was 

computed. This procedure was repeated for three times, and every time the calibrated 

parameter was increased and decreased by a factor of 20% of the reference value. Based on 

these computed changes, relative sensitivity of each parameter was determined by calculating 

the normalized sensitivity coefficient (NSC) or relative sensitivity coefficient. This 

sensitivity coefficient is dimensionless and calculated using the following formula (Hamby, 

1994).

NSC= i S ^  <7 I )
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Where NSC is the normalized sensitivity coefficient, Ra and Pa are the model output and 

parameter values after a particular model run using the changing parameter’s value, 

respectively, and Rn and Pn are the model output and parameter nominal values, respectively. 

Table 7.1 lists all the parameters’ relative sensitivities, as well as their sensitivity rankings. 

Here, relative sensitivity and ranking were evaluated based on the change of mean monthly 

groundwater contributions to stream flow.

Table 7.1 Calibrated parameters’ relative sensitivities and their sensitivity rankings

Parameter Unit Relative
sensitivity

Rank

Manning’s n (river) - 0.39 1

Soil moisture depth m 0.32 2

Initial soil moisture (clay loam) - 0.29 3
Ks (clay loam-forest) cm/hr 0.24 4

Porosity (clay loam) - 0.12 5

Ks (clay loam-forest clear cut cm/hr 0.08 6
area)

Ks (clay loam-agriculture) cm/hr 0.006 7

Ks (sandy loam-forest) cm/hr 0.0052 8

Ks (clay loam-built up area) cm/hr 0.005 9

Ks (clay loam-wetland) cm/hr 0.003 10

porosity (silt loam) - 0.002 11

Ks (silt loam-forest) cm/hr 0.0001 12
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Table 7.1 shows that 12 parameters out of 28 calibrated parameters of the developed 

model, as shown in Table 3.8, have little to large impacts on the modeling output. 11 of these 

12 parameters control infiltration and soil moisture, which, in turn, control groundwater flow, 

whereas the other parameter controls stream (i.e., channel) flow routing. Manning’s n (river), 

which controls stream flow routing, has the highest relative sensitivity. Two criteria (mean 

and standard deviation) of the normalized sensitivity coefficients were selected to identify the 

most sensitive parameters, which influence the modeling output (Nejadhashemi et al., 2011). 

Mean and standard deviation were calculated based on the estimated NSC values of the four 

runs in the OAT method. Soil moisture depth, initial soil moisture (clay loam), Ks (clay 

loam-forest), porosity (clay loam), and Ks (clay loam-forest clear cut area) ranked second, 

third, fourth, fifth, and sixth, respectively, based on their relative sensitivities’ values. The 

parameters (i.e., Ks (clay loam-agriculture), Ks (sandy loam-forest), Ks (clay loam-built up 

area), Ks (clay loam-wetland), porosity (silt loam), and Ks (silt loam-forest)), ranked from 

seventh to twelfth, and their changes had very little impact on the change o f mean monthly 

groundwater contributions to stream flow as well as relative sensitivity because clay loam- 

agriculture, sandy loam- forest, clay loam-built up area, clay loam-wetland, silt loam, and silt 

loam-forest cover 8%, 2%, 1%, 2%, 6%, and 6% of the study area, respectively. As a result, 

these six parameters (i.e., ranked seventh to twelfth) were not considered for uncertainty 

analysis in this study. Benke et al. (2008) also noted that when parameters have little impact 

on the modeling output value, they can be easily ignored for simplification of the model 

structure.
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7.4 Uncertainty analysis of GW-SW interaction

Uncertainty analysis of GW-SW interaction was conducted using the six most sensitive 

calibrated parameters. These input parameters’ values were obtained from text books, 

journals, and other field collected results conducted by scientific institutes under similar 

conditions (Gaiser, 1952; Chow, 1959; Clapp et al., 1978; Rawls et al., 1982; Rawls et al., 

1983; Smedema et al., 1983; Minhas et al., 1986; Miller et al., 1998; Western et al., 2002; 

Bora et al., 2003; Celik, 2005; Choi et al., 2007; Reynolds et al., 2007; Saskatchewan 

Ministry of Agriculture, 2008; Hatch et al., 2010). The values of these parameters were 

assumed to be normally distributed. Table 7.2 lists all these parameters’ mean and standard 

deviation values which were used for generating 50 Monte Carlo realizations of these 

parameters based on the assumed probabilistic distributions. In this study, the Monte Carlo 

simulation was used as the uncertainty analysis method because it is the most popular 

reliability-analysis-based stochastic method for evaluating uncertainties in hydrology studies 

(Lahkim et al., 1999). In this method a number of realizations of the uncertain parameters are 

generated and using those realizations same numbers of final outputs are produced. The final 

outputs are generally presented in the form of a probability distribution or a cumulative 

frequency distribution. 50 realizations of the most sensitive parameters were selected because 

of computational constraint. Using these realizations, uncertainty analysis of GW-SW 

interaction was conducted for the A2 and B1 GHG emission scenarios for year 2013. In this 

study, year 2013 was chosen as a case study to see the variation of GW-SW interactions with 

respect to parameter uncertainty due to lower mean annual groundwater contribution to 

stream flow under the B1 scenario than under the A2 scenario in 2013.

212



Table 7.2 Mean and standard deviation values of the most sensitive parameters used for 
uncertainty analysis

Parameter Unit Mean Standard
deviation

Manning’s n (river) - 0.032 0.01

Soil moisture depth m 0.60 0.125

Initial soil moisture (clay 
loam)

- 0.18 0.04

Ks (clay loam-forest) cm/hr 0.20 0.08

Porosity (clay loam) - 0.45 0.02

Ks (clay loam-forest clear 
cut area)

cm/hr 0.12 0.05

7.4.1 Uncertainty analysis of GW-SW interaction under A2 scenario

The uncertainty analysis results of GW-SW interaction under the A2 GHG emission 

scenario in different months of 2013 are shown in Fig. 7.1. The cumulative relative 

frequency distribution of the mean monthly groundwater contributions to stream flow is 

presented. The results show that the patterns of mean monthly groundwater contributions to 

stream flow vary monthly due to the model nonlinearity to input data (i.e., precipitation 

amount, and temperature), and the modeling parameter uncertainty. Table 7.3 lists the 

detailed uncertainty analysis results (i.e., range, mean and standard deviation) of the mean 

monthly groundwater contributions to stream flow in different months of 2013 under the A2 

scenario against the simulated value for the corresponding month using the calibrated 

parameters’ values that were used in model calibration and validation. These results indicate 

the necessity of using uncertainty analysis in modeling parameters rather than point
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estimates. The results also illustrate that the output generated by the calibrated model using 

the calibrated parameters’ values, falls within the range of modeling outputs from uncertainty 

analysis. It is also found that the calculated highest range of mean monthly groundwater 

contributions to stream flow occurs during low flow months in fall, winter, and early spring.
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Figure 7.1 Cumulative relative frequency distribution of mean groundwater contributions to 
stream flow in different months of 2013 under A2 GHG emission scenario
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Table 7.3 Uncertainty analysis results of mean monthly groundwater contributions to stream
flow under A2 GHG emission scenario in 2013 against the simulated value for corresponding
month using the calibrated parameters’ values

Month Range of 
mean 

groundwater 
contribution 

to stream 
flow (%)

Mean
(%)

Standard
deviation

(%)

Output using 
the calibrated 
parameters’ 

values 
(%)

Jan 86-100 94.19 5.74 93.16

Feb 83-100 93.22 6.32 90.79
Mar 85-100 92.44 5.63 93.53
Apr 51-69 58.19 6.08 54.26
May 51-65 56.78 4.71 57.23
Jun 32-48 41.10 4.45 44.04
Jul 53-76 64.40 5.55 59.20

Aug 63-88 76.76 10.0 71.89
Sep 82-99 90.41 6.33 88.94
Oct 81-99 90.06 5.53 93.81
Nov 89-100 94.73 4.35 95.90
Dec 88-100 95.23 4.55 97.50

Fig. 7.2 shows the cumulative relative frequency distribution of the mean groundwater 

contributions to stream flow in different seasons of 2013 under the A2 scenario. Similar to 

the monthly variations, the mean groundwater contributions to stream flow also show the 

seasonal variation patterns. Table 7.4 lists the detailed uncertainty analysis results for 

different seasons of 2013. The maximum and minimum ranges are found in winter and 

summer, respectively.
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Figure 7.2 Cumulative relative frequency distribution of mean groundwater contributions to 
stream flow in different seasons of 2013 under A2 GHG emission scenario

Table 7.4 Uncertainty analysis results of mean groundwater contributions to stream flow 
under A2 GHG emission scenario in different seasons of 2013 against the simulated value for 
corresponding season using the calibrated parameters’ values

Season Range of 
mean 

groundwater 
contribution 

to stream 
flow (%)

Mean
(%)

Standard
deviation

(%)

Output using 
the calibrated 
parameters’ 

values 
(%)

Winter 86-100 93.88 5.47 96.78

Spring 63-77 69.14 5.32 68.61

Summer 54-70 60.82 6.28 59.16
Fall 78-94 88.04 4.08 87.36
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Figure 7.3 Cumulative relative frequency distribution of mean annual groundwater 
contributions to stream flow in 2013 under A2 GHG emission scenario.

Fig. 7.3 illustrates the cumulative relative frequency distribution of the mean annual 

groundwater contributions to stream flow in 2013 under the A2 scenario. The mean annual 

groundwater contributions to stream flow range from 72% to 87%, with a mean of 79% and a 

standard deviation of 4%. On the other hand, the mean annual groundwater contribution to 

stream flow in 2013 is 78%, using the calibrated parameters’ values. Therefore, these 

uncertainty analysis results will provide a range of outputs instead of one output, and using a 

specific confidence interval (e.g., 95%) with this range of outputs would provide more 

information to the watershed manager to take particular action with certain degree of risks 

regarding water withdrawal from the river and allocation to stakeholder for future water
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supply. However, the range of outputs and predication will differ from year to year

depending on the patterns of annual precipitation and temperature.

7.4.2 Uncertainty analysis of GW-SW interaction under B1 scenario

Fig. 7.4 demonstrates the uncertainty analysis results of GW-SW interaction under the B1 

GHG emission scenario in different months of 2013. Table 7.5 lists the detailed uncertainty 

analysis results (i.e., range, mean and standard deviation) of the mean monthly groundwater 

contributions to stream flow under the B1 scenario in 2013 against the simulated value for 

the corresponding month using the calibrated parameters’ values. Similar to the A2 scenario, 

the output of a particular month, generated using the calibrated parameters’ values, falls 

within the range of the modeling outputs from uncertainty analysis. It is also found that the 

calculated highest range of mean monthly groundwater contribution to stream flow occurs 

during low flow months in winter and early spring.
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Figure 7.4 Cumulative relative frequency distribution of mean groundwater contributions to 
stream flow in different months of 2013 under B1 GHG emission scenario
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Table 7.5 Uncertainty analysis results of mean monthly groundwater contributions to stream
flow under B1 GHG emission scenario in 2013 against simulated value for corresponding
month by using the calibrated parameters’ values

Month Range of 
mean 

groundwater 
contribution 

to stream 
flow (%)

Mean (%) Standard
deviation

(%)

Output using 
the calibrated 
parameters’ 

values 
(%)

Jan 87-100 94.29 5.56 99.79
Feb 86-100 93.53 4.94 98.32
Mar 85-100 93.27 5.82 98.46
Apr 57-75 64.15 6.35 63.16
May 25-46 35.67 7.97 28.30
Jun 33-50 41.35 6.36 47.21
Jul 53-74 60.53 6.43 61.30

Aug 84-99 91.64 5.19 96.20
Sep 74-91 81.99 6.91 87.70
Oct 53-80 66.02 10.10 56.48
Nov 85-99 91.15 5.49 87.82
Dec 85-100 92.65 5.64 97.89

Fig. 7.5 presents the cumulative relative frequency distribution of the mean groundwater 

contributions to stream flow in different seasons of 2013 under the B1 GHG emission 

scenario. Table 7.6 lists the detailed uncertainty analysis results. Similar to the A2 scenario, 

the maximum and minimum ranges under the B1 scenario are found in winter and summer, 

respectively. Fig. 7.6 shows the cumulative relative frequency distribution of the mean 

annual groundwater contributions to stream flow in 2013 under the B1 scenario. The mean 

annual groundwater contributions to stream flow range from 70% to 82%, with a mean of
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75% and a standard deviation of 3.5%. On the other hand, the mean annual groundwater 

contribution to stream flow in 2013 is close to 77%, using the calibrated parameters’ values. 

Compared to the A2 scenario, the range of mean annual groundwater contributions to stream 

flow under the B1 scenario is lower because more precipitation predicted under the B1 

scenario than under the A2 scenario in 2013.
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Figure 7.5 Cumulative relative frequency distribution of mean groundwater contributions to 
stream flow in different seasons of 2013 under B1 GHG emission scenario
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Table 7.6 Uncertainty analysis results of mean groundwater contributions to stream flow
under B1 GHG emission scenario in different seasons of 2013 against simulated value for
corresponding season using the calibrated parameters’ values

Season Range of 
mean 

groundwater 
contribution 

to stream 
flow (%)

Mean
(%)

Standard
deviation

(%)

Output using 
the calibrated 
parameters’ 

values 
(%)

Winter 86-99 94.10 4.82 98.70
Spring 59-72 65.26 3.81 63.31

Summer 57-69 64.03 4.45 68.33
Fall 73-87 80.19 4.31 77.33
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Figure 7.6 Cumulative relative frequency distribution of mean annual groundwater 
contributions to stream flow in 2013 under B1 GHG emission scenario
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7.5 Summary

The uncertainty analysis of GW-SW interaction was conducted in a study area along the 

river of the Mainstem sub-watershed of KRW for the A2 and B1 GHG emission scenarios for 

year 2013 as a case study to show the variation of output (i.e., mean groundwater 

contribution to stream flow) with respect to the parameter uncertainty. Before conducting 

uncertainty analysis, sensitivity analysis was performed to find out the most sensitive 

modeling parameters. It was found that Manning’s n (river), soil moisture depth, initial soil 

moisture (clay loam), Ks (clay loam-forest), porosity (clay loam), and Ks (clay loam-forest 

clear cut area) ranked as the top six sensitive modeling parameters based on their relative 

sensitivities. The values of these six parameters were assumed to be normally distributed, and 

their mean and standard deviation values were used for generating 50 Monte Carlo 

realizations to perform the uncertainty analysis. Based on the uncertainty analysis results, it 

was found that the mean monthly, seasonal and annual groundwater contributions to stream 

flow patterns under both scenarios showed different variation patterns due to the model 

nonlinearity and input parameter uncertainty. The results indicate that uncertainties in the six 

identified sensitive parameters have significant effects on the predicted mean groundwater 

contribution to stream flow. In general, these uncertainty analysis results represent a new 

attempt to indicate the complexities and uncertainties in GW-SW interaction system. 

Therefore, it is of necessity to use the uncertainty analysis results rather than the point 

estimates for better water resources management decision making. The uncertainty analysis 

results combined with a specific confidence interval could provide the watershed manager 

more information to take particular action with certain degree of risks regarding water
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withdrawal from the river and allocation to stakeholder for future water supply depending on

month and season.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

In this dissertation research, a GW-SW interaction model was developed through the 

Gridded Surface Subsurface Hydrologic Analysis (GSSHA) modeling system, and applied to 

a study area (213.82 km2) along the river in the Mainstem sub-watershed of KRW to (1) 

investigate climate change impacts on GW-SW interaction under different GHG emission 

scenarios (i.e., A2 and B1 scenarios of IPCC), (2) examine the combined impacts of land 

use/land cover (LULC) and climate changes on GW-SW interaction, and (3) conduct 

uncertainty analysis of GW-SW interaction under different GHG emission scenarios. A brief 

summary o f this dissertation is given as follows:

In Chapter 2, a detailed literature review of GW-SW interaction in the watershed was 

discussed. In Chapter 3, a GW-SW interaction model for the study area of the Mainstem sub

watershed of KRW was developed through the GSSHA modeling system using the field data 

(i.e., elevation, channel geometry, surficial geology, soils, land use and land cover, 

groundwater level, etc.) collected from the watershed. The model was calibrated and 

validated using observed stream flow data and climate data (i.e., precipitation and 

temperature) in the KRW by changing soil parameters (i.e., hydraulic conductivity and 

porosity), overland surface roughness, channel roughness, overland retention depth, initial 

soil moisture and soil moisture depth. In addition to stream flow, the developed model was 

also calibrated and validated using observed groundwater level data and the calculated mean
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monthly groundwater contribution to stream flow (i.e., base flow index) using the PART base 

flow separation program of the USGS. In Chapter 4, future climate scenarios (i.e., 

precipitation and temperature) data, both short-term (2012-2016) and long-term (2020-2040) 

periods, for the KRW under the A2 (heterogeneous world with self-reliance and preservation 

of local identities), and B1 (more integrated and environmental friendly world) GHG 

emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were 

downscaled by the delta change method using the CRCM 4.2 (Canadian Regional Climate 

Model) of CCCma (Canadian Centre for Climate Modeling and Analysis) output data. The 

short-term period was chosen to understand the annual dynamics of climate change, and to 

make a comparison of GW-SW interactions between the effect of climate change and the 

effect of combined climate and land use/land cover (LULC) changes, and the long-term 

period was chosen to provide long-term future climate prediction. In addition, the future land 

use/land covers scenarios in the short-term (2012-2016) period were generated using the Arc 

GIS and GSSHA based on land use/land cover change analysis between 1999 and 2010.

In Chapter 5, the impact of climate changes on GW-SW interaction was investigated for a 

short-term period of 5 years (2012 to 2016) and a long-term period of 21 years (2020-2040) 

using the developed GW-SW interaction model. The simulation results indicated that the 

mean annual groundwater contribution to stream flow during the short-term period (2012- 

2016) under the A2 and B1 greenhouse emission scenarios is expected to decrease by 3.3% 

and 1.8%, respectively, as compared to that during the reference period (2007-2011), due to 

increased precipitation (on average 6.1% under the A2 and 3.6% under the B1 scenarios) and 

temperature (on average 0.64°C under the A2 and 0.36°C under the B1 scenarios). These 

climate changes would result in increased stream flow (on average 6.7% under the A2 and
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3% under the B1 scenarios), groundwater discharge (on average 2.8% under the A2 and 1.2% 

under the B1 scenarios), and surface runoff (on average 22.5% under the A2 and 11.2% 

under the B1 scenarios). However, the major increase would occur in surface runoff 

compared to stream flow and groundwater discharge. Therefore, climate change significantly 

affects stream flow, groundwater discharge and surface runoff, as well as the annual 

dynamics of GW-SW interaction. It was also found that the mean groundwater contribution 

to stream flow varied monthly, seasonally, and annually due to monthly, seasonal, and annual 

precipitation variability, respectively. From the seasonal point of view, the mean 

groundwater contribution to stream flow under both scenarios is the lowest and highest 

during summer and winter, respectively. In addition, climate change has also a significant 

effect on the mean daily and annual groundwater levels. Results similar to the short-term 

period were found for the long-term period (2020-2040). The results obtained from this study 

will provide useful information in the short-term and long-term periods for seasonal and 

annual water extractions from the river and allocation to the stakeholders for future water 

supply, as well as for evaluating the ecological conditions of the stream, which will be 

beneficial to aquatic ecosystems. They will be useful for the planning of regional water 

resources management.

In Chapter 6, the impact of combined land use (i.e., increasing forest clear cut area, and 

decreasing forest and agricultural areas) and climate changes on GW-SW interaction was 

examined using the developed GW-SW interaction model for the short-term period (2012- 

2016) due to limited future projected land uses data. It was found that the mean annual 

groundwater contribution to stream flow during the short-term period under the combined 

effects of A2 or B1 climate change scenario and LULC changes is expected to decrease by
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6.4% and 4.3%, respectively, with respect to that under the reference period (2007-2011), 

due to land use changes and increased precipitation (on average 6.1% under the A2 and 3.6% 

under the B1 scenarios) and temperature (on average 0.64°C under the A2 and 0.36°C under 

the B1 scenarios). These changes would result in increased stream flow (on average 10.1% 

under the A2 and 5.8% under the B1 scenarios with LULC changes), groundwater discharge 

(on average 2.1% under the A2 and 0.7% under the B1 scenarios with LULC changes), and 

surface runoff (on average 42% under the A2 and 29% under the B1 scenarios with LULC 

changes). Therefore, combined climate and land use changes provide additive impacts on 

hydrological fluxes (e.g., stream flow, groundwater discharge). As compared to climate 

change effects only, these groundwater contributions to stream flow were lowered by 3.1% 

and 2.5% under the A2 and B1 scenario with LULC changes, respectively. This result also 

demonstrates that land use change has an important role in the groundwater contribution to 

stream flow by shifting the flow patterns to the regime with more surface runoff and stream 

flow, but less groundwater discharge. In addition, land use change has also a significant 

influence on the mean daily and annual groundwater levels. The results obtained from this 

study will provide useful information for seasonal and annual water extractions from the 

river and allocation to the stakeholders for future water supply, as well as for evaluating the 

ecological conditions of the stream, which will be beneficial to aquatic ecosystems. They will 

also provide how LULC changes can impact the groundwater contribution to stream flow and 

regional groundwater levels. Therefore, they will be useful for planning of regional 

groundwater resource management, as well as water resources management considering 

future climate and land use changes.
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In Chapter 7, uncertainty analysis of GW-SW interaction was conducted under the A2 

and B1 scenarios for year 2013 as a case study to show the variation of output (i.e., mean 

groundwater contribution to stream flow) with respect to the parameter uncertainty. Before 

conducting uncertainty analysis, sensitivity analysis was performed to find out the most 

sensitive parameters to the model output. The uncertainty analysis results under both 

scenarios revealed that the mean monthly, seasonal, and annual groundwater contributions to 

stream flow patterns vary monthly, seasonally, and annually, respectively, due to the model 

nonlinearity to input data (precipitation amount, and temperature), and uncertainty of the 

sensitive model parameters. In addition, the uncertainty analysis results showed that 

uncertainties in the most sensitive parameters have significant effects on the predicted mean 

groundwater contribution to stream flow, and indicate the complexities and uncertainties in 

GW-SW interaction system. Therefore, it is of necessity to use such uncertainty analysis 

results rather than the point estimates for better water resources management decision 

making.

8.2 Research Achievements

In this dissertation research, a GW-SW interaction model was developed through the 

Gridded Surface Subsurface Hydrologic Analysis (GSSHA) modeling system to investigate 

GW-SW interaction under the effects of climate and land use changes, where the key 

contribution was the inclusion of climate and LULC changes scenarios in the developed 

model to assess GW-SW interaction. The modeling results in this study represent a new way
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to understand the temporal dynamics of GW-SW interaction under climate change, as well as 

combined climate and LULC changes. In addition, the uncertainty analysis results indicate 

the complexities and uncertainties in this interaction system. The developed model, based on 

very limited data, was used to understand GW-SW interaction in a study area (213.82 km2) 

along the river of the Mainstem sub-watershed of KRW. The modeling results will provide 

useful decision support for water resources management considering climate and land use 

changes.

8.3 Recommendations

Although this GW-SW interaction model was developed based on very limited data, it 

predicts future scenarios o f groundwater contribution to stream flow under climate change 

and combined climate and LULC changes for both a short term and a long-term period. The 

following recommendations are suggested for further studies on GW-SW interaction studies 

in this study area:

1. A detailed soil map for the study area, as well as for the entire KRW, which includes 

different soil types, needs to be prepared.

2. More bank piezometers in the study area as well as the entire KRW need to be 

installed in order to get better regional groundwater flow field.

3. Stream flow at the East and West confluences during spring runoff and high flow 

during summer need to be measured so that there can be complete data sets of stream 

flow available throughout the year. In addition, cross sections of the river in the
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Mainstem area need to be measured. It could be done using tape measurement and 

boat.

4. More weather stations in the study area need to be set up so that Thiessen polygon 

method can be used for getting accurate observed precipitation.

5. Soil moisture and soil moisture depth under different land use/land covers need to be 

measured because these two parameters are very sensitive to the model output. These 

could be measured using tensiometer, electrical resistance blocks, and time domain 

reflectometer (TDR) depending on budget and accuracy. For cost and ease of use, 

tensiometer and electrical resistance blocks are effective practical devices, whereas 

TDR is very expensive but it provides accurate and more reliable data compared to 

other methods.

6. Manning’s n for river channel during different seasons of the river stage should be 

calculated because n value changes seasonally and this parameter is very sensitive to 

the model output. It could be done by measuring river depth and width using a tape, 

water-surface profile using a clinometer, and flow velocity using a velocity meter at a 

large number of river sections during different seasons, and putting those values in 

the Manning’s equation. The details of these methods can be found in Acrement et al. 

(1984). The average of the calculated manning’s n values would provide the actual 

manning’s n value of a particular season. However, it would cost a lot since extensive 

field measurement in a long river (i.e., 71.26 km long) requires time and resources. 

Therefore, the number of sections of the river needs to be determined for these 

measurements based on budget.
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7. Since future climate change scenarios are full of uncertainty (Christensen et al., 

2007), uncertainty analysis of climate change should be incorporated to assess the 

average impact of climate change scenarios on GW-SW interaction.

8. The results obtained from this study may be different in another region which has 

similar monthly precipitation trends to this study area, but different geological, land 

uses and topography conditions. In addition, the results obtained from this study also 

may be different in another region where monthly precipitation trends are different in 

comparison to this study area. Therefore, the results obtained in this study should be 

compared to another climatic and geological region in order to gain better 

understanding of the impacts of climate and land use change on GW-SW interactions 

under different climatic and watershed conditions.

9. Different climate models may give different scenarios of future precipitation and 

temperature trends under the A2 and B1 GHG emission scenarios, and therefore, 

precipitation and temperature predicted from other climate models (e.g., NCARPCM 

developed by National Center for Atmospheric Research (NCAR), USA; HADCM3 

developed by UK Meteorological Office, United Kingdom; ECHAM50M developed 

by Max Planck Institute for Meteorology, Germany) should be used for comparing 

the results obtained from this study. In addition, different downscaling method (e.g., 

dynamic downscaling) could also be used to compare the results.

10. More land use maps of the study area, as well as the whole KRW need to be prepared 

annually between 1999 and 2010 so that the change of land use type can be 

determined accurately. However, for accurate future land use projections, the land use
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change model (e.g., CLUE-S, Land use change modeling kit (LUCK)), along with 

economic model (e.g., Wonderland model, World3), should be used.

11. Due to limited available data, the understanding of complex GW-SW interaction 

processes in a large-scale area is always limited. Therefore, multiple techniques need 

to be used to assess GW-SW interaction in a large-scale area. For example, another 

watershed model (e.g., MIKE SHE) could be used to compare the findings of this 

study. In addition to piezometer studies, environmental tracer method (i.e., stable 

isotopic tracers, such as stable oxygen and hydrogen isotopes) could be used to find 

out groundwater contribution to stream flow. Since this method is applicable for 

small scale area, therefore a number of water samples need to be collected at a 

number of locations during different seasons for isotope analysis. The average of the 

isotope results would provide the seasonal and annual groundwater contributions to 

stream flow in the study area.

12. Fine resolution of DEM and LULC maps could be used for better understanding of 

GW-SW interaction in the watershed. In addition, more Monte Carlo simulations 

should be used for better results of uncertainty. However, High Performance 

Computing (HPC) as well as higher budget would be needed to achieve those goals.
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