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A bstract

This thesis introduces the generalized Tutor-Student learning algorithm, which is 

designed to extend an existing robot controller in order to improve its performance and 

adaptability. The prototype 2 controller was developed for the tasks of obstacle avoidance 

and attractor path planning with predator avoidance, in partially observable static and 

dynamic environments. A version of this learning algorithm has been implemented to 

extend the prototype 2 robot controller, a behavior based robot controller. This extended 

controller is called the prototype 2A robot controller. The performance of this learning 

algorithm was evaluated by deploying the prototype 2 robot controller and the prototype 

2A robot controller in the same environments and comparing their results. It has been 

shown that the prototype 2A robot controller has superior performance over the prototype 

2 robot controller due to its usage of a Tutor-Student learning algorithm. This thesis 

will provide a complete description of the generalized Tutor-Student learning algorithm 

and an application of this algorithm.
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Chapter 1 

Introduction

This thesis introduces the generalized Tutor-Student learning algorithm for mobile 

robot controllers. The learning algorithm is used to extend an existing robot controller 

in order to give the controller learning capabilities. This chapter will explain some of the 

problems with conventional robot controllers, as well as explain how the Tutor-Student 

learning algorithm can help overcome some of these problems.

1.1 Problem  Statem ent

A robot controller is, in essence, the brain of the robot. The job of the robot controller 

is to map the robot’s perceptions to actions. In this paper the terms agent and robot 

will be used interchangeably. The term agent applies to any entity tha t is self contained, 

independent and can interact with its environment. A mobile robot is an independent 

agent that has the ability to make decisions based upon a given situation without the 

influence or interference of a human operator.

Since the 1960s, research has been conducted in furthering the development of robot 

controllers. Three primary robot paradigms have been developed. The deliberative robot 

controller paradigm was developed in the 1960s. These types of controllers follow a sense

— > p la n  *• act control cycle. The reactive robot controller paradigm was developed in

the mid 1980s. Reactive controllers follow a sense — act control cycle. The hybrid robot 

controllers are a combination of the deliberative controllers and the reactive controllers. 

In all of the above paradigms, actions are produced by the robot controller through



either reaction or planning or both. As a consequence learning does not happen in any of 

the paradigms. These robot controllers are incapable of learning from past experiences, 

which results in the performance of the robot controller being solely dictated by the robot 

designer.

As a result the held of robot learning was founded. Robot learning is a branch of 

machine learning, which is concerned with developing techniques that allow machines to 

learn. The held of robot learning has focused on two areas of learning in robot controllers:

C om petence Acquisition: The robot controller tries to learn a new competence. For 

example, a robot controller may not know how to make the robot walk, but it is 

able to learn how through negative and positive feedback.

C om petence A daptation: The robot controller tries to positively modify a compe­

tence through interaction with its environment. For example, if the robot con­

troller knows how to fetch frisbees, can the same robot controller learn to gather 

more frisbees faster?

This thesis looks at the problem of competence adaptation. We ask the question, how 

can we convert an existing robot controller into a learning robot controller?

1.2 Our C ontribution

In answering the question of how to convert an existing robot controller into a 

learning robot controller, we developed the generalized Tutor-Student learning algorithm. 

The generalized learning algorithm is a method tha t specifies how to add adaptability to 

the behaviors of a pre-existing robot controller. As well we have constructed a possible



implementation of the learning algorithm and have evaluated its performance in four 

different simulated environments.

All four of the simulated environments test a robot controller’s ability to avoid obsta­

cles and to determine paths to attractors while avoiding predators. A robot controller’s 

performance in all of these environments is judged by the number of times the robot 

controller was able to successfully complete its tasks (i.e. how many times it avoided 

obstacles, as well as how many times it found attractors). The experiments that we have 

conducted in these environments have shown that a robot controller using the Tutor- 

Student learning algorithm can achieve between almost two to over five times better 

performance (depending on the environment) in the task of attractor path planning with 

predator avoidance, than the same controller not using this learning algorithm. There­

fore, we can claim that the Tutor-Student learning algorithm is successful since it allows 

a robot controller to automatically tune its actions according to its environment.

1.3 Overview

There are four remaining chapters in this thesis. Chapter 2 is the literature survey, 

which will focus on conventional robot controllers and robot learning with several case 

examples. Chapter 3 explains the principles of the Tutor-Student learning algorithm 

and offers some guidelines on its implementation. Chapter 4 describes the experimental 

procedures and results. Finally, Chapter 5 will present our conclusions and open questions 

regarding future research with the Tutor-Student learning algorithm.



Chapter 2 

R eview  o f Control A rchitectures

This literature survey will discuss the evolution of robot controllers and how robot 

learning integrates with robot controllers. In this literature survey, we will examine the 

three primary robot controller paradigms. As well, we will briefly look at the field of 

robot learning along with three learning robot controller case studies.

2.1 R obot Controllers

A robot controller maps how perceptions from sensors are translated into actions to 

be executed by actuators. Robot controllers can be implemented as either software or 

hardware, or as a combination of both. The study of robot controllers is quite diverse, 

consequently this paper will only be covering three of the primary paradigms in robot 

control architectures: deliberative, reactive and hybrid controllers.

2.1.1 A utonom ous A gents

The term agent is an important concept in robotics. The definition of an autonomous 

agent can be defined iteratively. Maes does this [Mae94] as follows:

“An agent is a system that tries to fulfill a set of goals in a complex, dynamic 

environment.”

“An agent is called autonomous if it operates completely autonomously, i.e. 

if it decides itself how to relate its sensor data to motor commands in such a 

way tha t its goals are attended to successfully.”



The term agent in this paper is used to describe any entity with the capacity to act 

intelligently and purposefully in its environment in order to achieve its goals, specifically 

the term agent will refer to robotic agents.

2.1.2 D eliberative Controller Paradigm

Deliberative controllers were first developed in the 60s, and dominated the the field 

of robot controllers until about the mid 80s. In deliberative controllers the flow of control 

is unidirectional in the general case [GatOS]. Deliberative controllers decompose an agent 

in one decomposition. The decomposition in deliberative controllers is commonly called 

a horizontal decomposition due to the unidirectional flow of information through its 

modules.

Environment

Model
Module

Planning
Module

Act
Module

Sensor
Module

Fig. 1: Deliberative Controller Model 1

Environment

Planning
Module

Sensor
Module

Act
Module

Fig. 2: Deliberative Controller Model 2

Figure 1 and Figure 2 present two types of deliberative controllers. Deliberative 

controllers usually are decomposed into the following modules;



Sensor M odule: This module’s job is to globally collect all the sensor signals from the 

agent’s sensors. These signals are usually, but not necessarily, preprocessed into a 

knowledge representation (e.g., symbolic representation or fuzzy logic representa­

tion). This information is then passed onto either the model module or the planning 

module.

M odel M odule: This module translates the inputs from the sensor module into a rep­

resentation of the agent’s environment. This model representation of the environ­

ment, however, is only as accurate as the sensors sensing the actual environment 

[Bro91]. This information is then made accessible to the planning module.

Planning M odule: This module is also called the planner. Its job is to formulate plans 

based on the agent’s internal world model and current goal. Once a plan has been 

formulated, the plan is then given to the act module to execute. It should be noted 

that the model module and the planning module are sometimes combined into one 

module and referred to as the planning module.

A ct M odule: This module is also called the executive. The job of this module is to 

execute the plan given to it by the planning module. This plan is executed as a 

computer program is executed [Gat98], by carrying out a sequence of instructions 

or actions.

Prom the description of the above modules the deliberative controllers can be seen as 

modified general problem solvers in artificial intelligence [Bro91]. The limitations of 

deliberative controllers are discussed in section 2.1.5.1.



2.1.3 R eactive Controller Paradigm

Reactive controllers are characterized by their tight coupling of perception and action 

[Ark98, Bro86, Bro89]. In reactive controllers, the flow of control is explicitly or implicitly 

parallel [Bro86, NHS89], which can be seen in Figure 3. The parallel nature of a reactive 

controller is done for modularity, multiple goals and robustness [Ark98, Bro86]. The 

reactive controller paradigm decomposes an agent in several decompositions. Reactive 

controllers typically follow an incremental design and test philosophy [Ark98, Bro86]. An 

incrementally designed agent is designed and tested on a small set of behaviors. Once 

the agent has been tested successfully, more behaviors can then be added.

Environment

Behavior

Behavior

Behavior ActuatorsSensors
Action

Selection
Mechanism

Fig. 3: Generalized Reactive Architecture

A reactive controller is usually decomposed into a set of behaviors and an action 

selection mechanism [Ark98, Bro86]. The job of a behavior module is to map perceptions 

into an action. This mapping is typically done so tha t there is very little or no planning 

involved in generating the action. Each behavior module runs concurrently with other 

behavior modules. A behavior module can be decomposed in the same manner as a 

deliberative controller [Bro86]; however, planning is typically kept to a minimum as
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emphasis is put on the speed of the behavior module. Behavior modules can receive 

perceptual information in several ways [Ark98, Bro86, Bro89]. According to Arkin there 

are three ways in which perceptual information can be received by a behavior module 

[Ark98] :

Sensor Fission: Sensor fission occurs when a behavior specific stimulus is used to pro­

duce a response, and thus a dedicated perceptual module (sensor) is used to channel 

its output directly into the behavior module [Ark98].

A ction-O riented Sensor Fusion: Action-oriented sensor fusion occurs when transi­

tory representations local to a behavior are constructed from multiple perceptual 

modules (sensors) [Ark98]. These transitory representations restrict the sensor in­

put to the requirements of a behavior modules [Ark98].

Perceptual Sequencing: Perceptual sequencing occurs when the behavior module al­

lows for the coordination of multiple perceptual algorithms over time in support of 

a single behavioral activity [Ark98]. These perceptual algorithms are sequenced in 

and out, based on the agent’s needs and the environmental context in which the 

agent is situated [Ark98].

The job of the action selection mechanism is to determine which action to select 

from the set of actions generated by the set of behavior modules [Bro86, Ark98, NHS89]. 

Once an action has been selected by the action selection mechanism, the action is then 

executed. Action selection mechanisms can be divided into two branches: arbitration 

and command fusion [Pir99]. Arbitration is a competitive approach where behaviors



compete for control of the robot’s actuators [Pir99], whereas, command fusion is where 

each behavior contributes to the final action that is selected to be executed by the robot’s 

actuators [Pir99].

The most notable and popular reactive architecture is Brook’s subsumption architec­

ture [Bro86]. It was developed in response to the difficulties and limitations (see page 12) 

associated with the deliberative controller paradigm [Bro86]. The limitations of reactive 

controllers are discussed in section 2.1.5.2.

2.1.4 T he H ybrid Controller Paradigm

Hybrid controllers attem pt to capture the reactivity of reactive controllers and the 

deliberative planning of deliberative controllers [Ark98]. Unlike reactive and deliberative 

controllers, there is no clear breakdown of modules used in hybrid controllers [Ark98]. 

Hybrid controllers are usually described in terms of layers, where each layer is really a 

controller in its own right. At the very least, an agent implementing the hybrid controller 

paradigm requires a deliberative layer and a reactive layer [Ark98]. In fact these are called 

two level architectures [SRK93a]. In two level architectures, a deliberative planner is used 

to generate guidelines for the reactive controller [SRK93a]. The two level architectures 

follow Agre and Chapman’s [AC90] philosophy of using plans as being a resource for 

the agent as opposed to explicit execution. Some notable two level architectures are the 

Theo-agent architecture[Mit90], the DAMN architecture [Pir99] and the fuzzy controller 

architecture in [SRK93b, SRK93a].

The other popular class of hybrid architectures, that have been relatively well de­

fined are the three layer architectures. Figure 4, shows a diagram representation of this

9



Environment

Sensors

Controller

Actuators

Sequencer Deliberator

Fig. 4: Three Layer Architecture

architecture, which consists of the following three layers:

• A reactive feedback control mechanism called the controller. Gat [Gat98] describes 

the controller as follows:

“The controller consists of one or more threads of computation that im­

plement one or more feedback loops, tightly coupling sensors to actuators.

The transfer function(s) computed by the controller can be changed at 

run time. Usually the controller contains a library of hand-crafted trans­

fer functions (called primitive behaviors or skills). Which ones are active 

at any given time is determined by an external input to the controller.”

The controller is in essence a reactive controller tha t implements a set of behaviors.

• A slow deliberate planner, which is called the deliberator. Gat [Gat98] describes it 

as follows:

“The deliberator is the locus of time-consuming computations. Usually 

this means such things as planning and other exponential search-based 

algorithms, but as noted before, it could include polynomial-time algo­

rithms with large constants such as certain vision processing algorithms

10



in the face of limited computational resources. The key architectural 

feature of the deliberator is that several Behavior transitions can occur 

between the time a deliberative algorithm is invoked and the time it pro­

duces a result. The deliberator runs as one or more separate threads 

of control. There are no architectural constraints on algorithms in the 

deliberator, which are invariably written using standard programming 

languages.”

The deliberator is basically a deliberative controller.

• A sequencing mechanism called the sequencer is used to connect the controller and

the deliberator. Gat [Gat98] describes it as follows:

“The sequencer’s job is to select which primitive Behavior (i.e. which 

transfer function) the controller should use at a given time, and to sup­

ply parameters for the Behavior. By changing primitive Behaviors at 

strategic moments the robot can be coaxed into performing useful tasks.

The problem, of course, is that the outcome of selecting a particular 

primitive in a particular situation might not be the intended one, and 

so a simple linear sequence of primitives is unreliable. The sequencer 

must be able to respond conditionally to the current situation, whatever 

it might be.”

The sequencer is more of an action selection mechanism than a robot controller.

Its primary purpose is to interface the controller and the deliberator.

11



Some notable three layer architectures are Connell’s SSS architecture [Con92], G at’s 

Atlantis architecture [Gat98] and 3T architecture [BK96]. The limitations of hybrid 

controllers are discussed in section 2.1.5.3.

2.1.5 D iscussions o f Different R obot Controller Paradigm s

This section will discuss the advantages and disadvantages associated with the three 

primary robot controller paradigms.

2.1.5.1 D eliberative Controllers

The major advantage of deliberative controllers over reactive controller (Section 2.1.3 

on page 7) is their ability to globally plan a course of actions for the agent to perform. 

The reactive controller’s designer typically focuses on carefully designing the behaviors 

of the agent in order to achieve a task. Planning in deliberative controllers provides a 

higher level of control and task execution as compared to the reactive controllers.

While planning is a major advantage to the deliberative controllers, it is also the 

source of most of the deliberative controller’s disadvantages. Planners in deliberative 

controllers rely heavily on an accurate world model to formulate plans. However, it is 

impossible to take any sensor data and create an accurate representation of the world 

[Bro91]. All sensors have margins of error. As well, the environment may not allow 

sensors to perform optimally. Not to mention, actuators are not accurate enough to 

precisely carry out actions dictated by the planning module. This kind of error in the 

actuators can cause an invalidation of the plan and the need for re-planning. Planners 

in deliberative controllers prevent the agent from being a part of its environment. The

12



executive will execute a plan regardless of whether it is still relevant. Some executives 

are programmed to stop executing the plan if the plan can not succeed. Then control 

is given back to the planner so that it can formulate a new plan [AC90]. In dynamic 

environments, the formulation of a plan is time consuming and costly of the robot’s 

resources. If the agent has to rethink plans continually due to a changing environment, 

then the agent will be slow to react to situations tha t call for immediate action. Hybrid 

controllers (Section 2.1.4 on page 9) attem pt to alleviate this problem by combining the 

deliberative controller paradigm and the reactive controller paradigm together. Agre and 

Chapman [AC90], alternatively, propose that a plan be used more as a resource than as 

explicit instructions. This appears to be one of the primary ideas in hybrid controller 

design. Another disadvantage of deliberative controllers is that they are not robust. A 

single failure in any module will cause either an error in all proceeding modules, or the 

complete system failure of the agent.

2.1.5.2 R eactive Controllers

The reactive controllers have several advantages. They are able to react almost 

immediately to situations. However, immediate reaction may be a disadvantage, in that 

the robot may blindly act and miss opportunities presented to it by its environment. 

Reactive controllers have the ability to contend with multiple (possibly conflicting) goals 

due to the parallel nature of their behaviors and action selection mechanisms. Reactive 

controllers are robust in tha t a single failure will not cause the whole system to fail. This 

robustness is achieved through the parallelization of behaviors in reactive controllers.

The biggest difficulty in reactive controllers is their blind reaction to different situa-

13



tions. The robot’s reaction to stimuli is mapped out by the robot designer who assumes 

what will be important stimuli for the robot and how the robot will react to that stimuli 

[Neh92], The problem is that the way humans perceive things is not necessarily the same 

way a robot should perceive things [Neh92], A solution to the problem of robot percep­

tion is to have the robot learn a behavior and determine the stimuli tha t are important 

for tha t behavior (see section 2.2.2 on page 21). Since explicit planning is discouraged in 

reactive controllers, implicit planning usually takes place through the controller’s action 

selection mechanism. The vast majority of these implicit plans are hand designed by the 

designer of the robot, according to the designer’s perceptions as opposed to the robot’s. 

Another disadvantage in reactive controllers is that they do not scale up well to complex 

tasks [Gat98]. As well reactive controllers typically are unable to adapt from one envi­

ronment to another, as a result of the specificity of the behaviors in reactive controllers 

for particular environmental cues.

2.1.5.3 H ybrid Controllers

The major advantage of hybrid controllers is tha t they provide the best features 

of both deliberative controllers and reactive controllers. They are able to react when 

necessary and to formulate plans when they have to.

The major difficulty with hybrid systems is that there is no definitive way of inter­

facing a deliberative planner with a reactive controller. Under the two level architec­

tures, there are a variety of ways of interfacing the deliberative planner with the reactive 

controller, each of which has its own advantages and disadvantages. The three layer 

architectures are a bit more defined as to what layers are needed. However, there is not

14



a lot of literature on the sequencer layer and more specifically how it interfaces with the 

deliberator and the controller.

2.2 Learning in R obot Controllers

The field of robot learning tries to tackle the question of how to make a robot acquire 

knowledge in order to perform certain tasks within an environment successfully [NSM93] 

and how to adapt existing behaviors in order to gain improved task performance from the 

robot [Ark98]. In this section, we present learning algorithms as well as case examples 

of learning in robot controllers.

2.2.1 Learning A lgorithm s

This section will present a selection of learning algorithms from cybernetics, neural 

networks and reinforcement learning. All of the presented learning algorithms learn 

incrementally through trial and error.

2.2.1.1 C ybernetics

Robotic controllers are designed to map perception to action. The first held to study 

this mapping from perceptions to action is cybernetics, which can be described in the 

following manner:

“Cybernetics is the application of control theory to complex systems.” [Neh99].

“A marriage of control theory, information science, and biology tha t seeks to 

explain the common principles of control and communication in both animals 

and machines.” [Ark98]
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Both of the above descriptions include the field of control theory, which is the mathe­

matical study of how to manipulate the parameters affecting the behavior of a system in 

order to produce an optimal outcome.

f(Error)Error

Environment

ControllerSensors Monitor Actuators

Fig. 5; Cybernetic Controller Model

A cybernetic control model is shown in Figure 5. It uses a function called the monitor 

to compare the actual status of a system Xt at time t with a desired system status Tt 

[Neh99]. The monitor returns the error between the actual system state and the desired 

system state which is defined as Cf = - Tt [Neh99]. The error is then used as an input

signal to a controller module [Neh99]. The job of the controller is to minimize the error 

between the actual system state and the desired system state [Neh99]. Therefore, the 

controller will choose an action yt+k such that yt+k =  f{^t) =  f {xt  — "p) at the next time 

step t+k [Neh99]. Thus, the next action selected by the controller is based on a function 

of the error Cj. The function /  in cybernetics is defined as the control function  [Neh99], 

where learning takes place. The main focus in cybernetics is to define the control function 

/  and minimize its parameter [Neh99].

2.2.1.2 N eural N etw orks

The field of neural networks attem pts to emulate the neural networks found in bi­

ological creatures. Neural network learning fall into two categories: supervised and
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non-supervised learning. In supervised learning, we already know the inputs and outputs 

that are used to train the neural network. In non-supervised learning, the neural network 

attem pts to cluster inputs into categories.

The neural network learning algorithm that we will examine is a supervised learning 

algorithm called the incremental backpropagation learning algorithm. This learning algo­

rithm works on a neural network with a multilayer feed forward network topology, whose 

hidden layer and output layer employ sigmoid transfer functions [Mit97]. The learning 

algorithm employed by a backpropagation neural network allows it to learn non linearly 

separable functions [Fau94]. The algorithm for the incremental backpropagation learning 

algorithm is given in Appendix C (page 80).

2.2.1.3 R einforcem ent Learning

Reinforcement learning occurs when an agent learns through trial and error inter­

actions with its environment [SB98]. In order to adequately describe how reinforcement 

learning is connected with competence acquisition and competence adaption, four main 

elements to reinforcement learning need to be defined. A description of these four ele­

ments is given below:

Policy:

“A policy defines the learning agent’s way of behaving at a given time. 

Roughly speaking, a policy is a mapping from perceived states of the 

environment to actions to be taken when in those states.” [SB98]

A policy is a way for choosing an action based upon numerical values. A typical
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policy used in reinforcement learning is if an agent is in state i, all the values 

of actions tha t can be performed in state i are recalled and the action with the 

maximum value is performed [SB98]. This process is known as exploitation in 

that the agent is exploiting previous knowledge [SB98]. Exploration occurs when a 

random action in state i is chosen. The policy of an agent usually chooses between 

actions that exploit the agent’s knowledge or expand the agent’s knowledge [SB98]. 

This is done so that the agent can have a balance between exploiting already know 

good actions and exploring actions tha t have the potential of being good.

Reward Function:

“A reward function  defines the goal in a reinforcement learning problem. 

Roughly speaking, it maps each perceived state (or state-action pair) of 

the environment to a single number, a reward, indicating the intrinsic 

desirability of that state. A reinforcement learning agent’s sole objective 

is to maximize the total reward it receives in the long run. The reward 

function defines what are the good and bad events for the agent.” [SB98]

The reward function gives an immediate numerical reward to the agent for transi­

tioning from one state to another state [GosOS]. The immediate reward received by 

an agent can be positive or negative. If the reward is negative, it is typically referred 

to as a cost. In dynamic programming (which is a precursor to reinforcement learn­

ing), each state is given a immediate reward [GosOS]. However, in reinforcement 

learning only a subset of all the states in the agent’s world are given immediate 

rewards, whereas the rest of the states are assumed to have an immediate reward
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of zero [GosOS]. Thus, only states tha t are considered to be significant are given 

immediate rewards.

Value Function:

"... a value function  specifies what is good in the long run. Roughly 

speaking, the value of a state is the total amount of reward an agent can 

expect to accumulate over the future, starting from that state.” [SB98]

The value function is used to compute the value of a state or state-action pair. It 

is a way of looking ahead and judging how valuable it is for an agent to perform an 

action or enter a certain state. Typically, a value function is defined in a tabular 

format tha t maps state-action pairs to numerical values. These numerical values 

provide the basis for selecting which action to perform. Usually a value function can 

also be defined in a neural network with an incremental style updating rule [GosOS]. 

An incrementally trained neural network is one tha t is updated in increments rather 

than in batches. A neural network has the property that it can generalize output 

values across different input values, even input values that it has not seen before. 

By incrementally teaching the neural network, it becomes a function approximator.

M odel:

“This is something that mimics the behavior of the environment.” [SB98]

A model is a simulation, which allows the agent to learn quicker than if it had to 

learn in the actual environment [GosOS]. A simulation allows the agent to experience
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more states in less time than in its actual environment. In essence the model is a 

training world for the agent.

The reinforcement learning algorithm that we will examine in this section is the 

Q-learning algorithm. Q-learning has a learning component called the value function 

Q(state, action) and a decision component called the policy. The learning in Q-learning 

works by shaping a value function as the agent interacts with its environment [SB98]. 

Decision making in Q-learning is accomplished through the policy [SB98], which is a 

function that chooses an action based on the results of the value function for all combi­

nations of the current state i and the set of possible actions that can be executed in state 

i [SB98]. If the chosen action causes the robot to be in an undesirable state, then that 

action’s expected reward for the previous state is deceased. Otherwise, the action’s ex­

pected reward for the previous state is increased. By repeating this process, the agent’s 

policy will eventually converge to the actual optimal policy [SB98]. An algorithm for 

standard Q-learning is given in Appendix A (page 78).

Typically a value function of Q-learning is defined in a tabular format that maps state- 

action pairs to numerical values. These numerical values provide the basis of selecting 

which action to perform for a particular state. A value function can also be defined 

in a neural network with an incremental style updating rule [GosOS]. In a Q-learning 

algorithm that is coupled with neural networks, each action is associated with its own 

neural network. Each of these action neural networks takes a state as their input and 

outputs the value of taking that action from the input state. The algorithm for this form 

of Q-learning is given in Appendix B (page 79).

20



2.2.2 Case Studies

In this section, we will analyze some representative cases of learning algorithms ap­

plied to robotics. A competence acquisition learning algorithm can be defined as the 

process used for an agent to acquire a new behavior through interacting with its environ­

ment [Neh92]. And a competence adaptation learning algorithm can be defined as the 

process used by an agent to modify an existing behavior so that the behavior’s perfor­

mance improves with respect to the agent’s interactions with its environment [Ark98]. 

In both competence acquisition and competence adaptation, the goal for the learning 

algorithm is to improve a behavior’s performance [Ark98].

2.2.2.1 E xam ple o f C om petence A cquisition

The Really Useful Robot (RUR) project conducted at the University of Edinburgh 

provides a good example of competence acquisition learning in a robot agent [NHS89]. In 

the classification of robot controllers discussed earlier, this architecture would be classified 

as a reactive controller since it just reacts to situations without any planning. The 

RUR control architecture was developed in order to explore the question of competence 

acquisition learning in a robot agent [NHS89]. This control architecture uses a set of 

instinct rules to determine when the architecture trains an association between an input 

vector and an action to its associative memory. Instinct rules act as conditions placed on 

the robot’s sensor readings (e.g. a reading on a distance sensor). This usage of instinct 

rules shapes the perceptron network of the agent. Moves that violate the agent’s instinct 

rules are not learned by the robot’s associative memory, whereas moves tha t do not
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violate the agent’s instinct rules are learned by the robot.

The process of learning in this architecture is accomplished by pushing the outputs 

of a feed forward perceptron neural network towards a desired output value. It should 

be pointed out tha t the output value generated by the neural network for a particular 

state may not be the desired output. The learning by the perceptron network in this 

architecture does not go on until the desired output has been achieved but rather for a 

certain number of iterations.

The learning algorithm [Neh95] in this architecture works by checking the current 

state of the robot against the robot’s instinct rules. If any of the instinct rules are 

violated, an input vector of the current state of the robot is generated. This input 

vector is then sent into the robots associative memory. A vector of possible actions 

is generated by the associative memory for the architecture to execute. The choice of 

possible actions from the action vector proceeds by choosing the first action in the vector 

to execute first. The retrieved action is executed and if the resulting state satisfies the 

robot’s violated instinct rule, then the association between the input vector and action 

is taught to the robot’s associative memory. Otherwise, if the robot’s violated instinct 

rule is still violated, the next action in the action vector is then executed for a longer 

period of time than the first unsatisfactory action. According to the authors [Neh95], 

the execution of an action for a longer period of time is done so tha t the robot can 

get itself out of “deep problems” . The architecture repeats this process until an action 

that satisfies the robot’s violated instinct rule is found. If a satisfactory action cannot 

be found within the action vector, then a random action is generated from the robot’s 

set of possible actions. If the randomly generated action satisfies the robot’s violated
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instinct rule, then the association between the input vector and the action is taught 

to the robot’s associative memory. Otherwise, if the robot’s violated instinct rule is 

still violated, another random action is generated and is executed for a slightly longer 

period of time than the first unsatisfactory action. This process of generating and testing 

random actions continues until an executed action satisfies the robot’s violated instinct 

rule. Once tire robot’s instinct rule has been satisfied, the last executed actions continues 

to be performed until one of the robot’s instinct rules becomes violated. When an instinct 

rule becomes violated, the architecture executes the above learning algorithm until the 

violated instinct rule becomes satisfied.

The RUR control architecture has several difficulties. In the RUR controller, the 

associative memory is where the robot’s learning of competences is dynamically and 

incrementally shaped via the robot’s interactions with its environment. Actions tha t are 

considered good cause the associative memory to be pushed towards choosing an action 

in a particular state. This architecture picks actions incrementally from the action vector 

[Neh92]. Thus it does not exploit the knowledge stored in the neural network as much 

as it should. Another problem with this architecture is tha t when it exhausts all of the 

suggested actions in the action vector, it will then choose actions at random for different 

durations until the robot goes into a non-violated instinct rule state. When the control 

architecture gets into the phase of the learning algorithm where solely random actions are 

chosen, the architecture is no longer exploiting prior knowledge tha t it has learned about 

a state. In this case, the architecture is just randomly exploring. Once it has found an 

action that satisfies its instinct rules, it then teaches this action to the associate memory 

for the first instinct rule violated state. However, this action could be inappropriate for
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the first instinct rule violated state.

Despite the above difficulties, the RUR controller was able to learn and perform the 

tasks of obstacle avoidance, wall following, corridor following, phototaxis and box pushing 

[Neh94]. These tasks were accomplished through modifying the RUR controller’s set of 

instinct rules for each task. As stated above instinct rules are conditions that are put 

on the robots sensors. When an instinct rule is violated, actions are performed until the 

instinct rule is satisfied. For example, say we have a robot with a forward sensor and 

two front whisker sensors (one to the left and one to the right). A possible set of instinct 

rules for wall following could be:

1. Forward sensor is true.

2. Front left whisker sensor is true XOR front right whisker sensor is true.

3. Front left whisker is false or front right whisker is false.

It should be noted that the order of the instinct rules is important. W ith this set of 

instinct rules the robot will operate in the following manner. When the robot is turned 

on it will initially be stationary, thus instinct rule #1  is violated, which causes the RUR 

controller to try  actions until the robot is moving forward. After satisfying instinct rule 

# 1 , instinct rule # 2  is violated, because none of the robot’s whisker sensors are in contact 

with any objects. This causes the robot to try  actions until it hits an obstacle (in our 

case a wall). Instinct rule # 2  becomes satisfied once the robot has hit an obstacle with 

one of its whisker sensors. Now the robot is violating instinct rule # 3 , because one of its 

whisker sensors is tonching the wall. In order, to satisfy instinct rule # 3  the robot must 

try  actions until it has moved away from the wall. After instinct rule # 3  is satisfied the
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first instinct rule is tried again.

The Edinburgh researchers that created the RUR controller [Neh94] primarily used 

simple push button and whisker sensors for all their robots that used the RUR controller. 

By using simple sensors the RUR creators made it easy to check if an instinct rule had 

been violated since the sensors had only two discrete states. Unfortunately, we were 

unable to find research on how the RUR controller would scale up to sensors tha t return 

continuous states (e.g. Sonar or IR sensors).

R, appears that the RUR researchers in designing their architecture have taken some 

ideas from the fields of Cybernetics, Neural Networks and Reinforcement learning. The 

idea of using functions as couplings between sensors and motors in the RUR controller 

is a very common idea in Cybernetics [Bra86]. The RUR researchers used an associative 

memory (neural network) as a dynamic function that uses sensor values as inputs and 

outputs actions for the motors to execute. In this architecture the instinct rules act as a 

means of determining which actions to learn (reward) and which actions to throw away 

(punish). The RUR researchers use the controller’s associate memory almost like a value 

function from reinforcement learning in that it outputs a set of actions for a particular 

sensor state. However, it differs from a reinforcement learning value function in that it 

does not determine the value of an action for a state. The RUR associate memory only 

creates a vector of possible actions for the robot to execute and not a particular value 

associated with those actions.

2.2.2.2 Exam ples o f C om petence A cquisition and C om petence A daptation  

Carbot A rchitecture
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A good example of a competence acquisition and competence adaptation learning 

algorithm is shown in the Carbot architecture that was designed by Meeden, McGraw 

and Blank [MMB93]. In this architecture, the robot has to learn the value function for 

the task of navigation in a simple environment [MMB93].

Like in the RUR project [Neh92], the Carbot architecture combines elements of con- 

nectionist methods and reinforcement learning into the architecture. In this architecture, 

the neural network is trained with a sophisticated learning algorithm called ComplemeM- 

tary Reinforcement Back-Propagation (CRBP) [MMB93], Meeden, McGraw, and Blank 

[MMB93] use conditions on the robots sensors in order to indicate when the robot should 

either be rewarded or punished. This use of conditions placed on the robot’s sensors is 

similar to instinct rules in the RUR project [Neh92]. This architecture works by using its 

neural network to generate an action to be executed based on the robot’s current state. If 

the action does not violate any of the conditions put on its sensors, then the prior state 

and successful action are updated in the neural network by using the CRBP learning 

algorithm with a step size set at 0.3. If an action is unsuccessful, then the prior state 

and unsuccessful action are updated to the neural network by using the CRBP learning 

algorithm with a step size of 0.1. Thus, if an action is successful (the action satisfied the 

robot’s sensor conditions), the neural network is pushed towards tha t action, otherwise 

the neural network is pushed away from that action [MMB93]. This process of generating 

actions repeats for the entire run of the robot.

An interesting thing about this architecture is that it does not limit the robot’s moves 

to a certain set of moves like the RUR architecture, because the Carbot architecture has 

neural networks directly connected to its motor inputs. The number of states for the
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Carbot architecture to learn is limited by the number of sensors and types of sensors 

that are employed. The Carbot architecture employs touch sensors and light sensors. As 

well, the environment used to evaluate the Carbot architecture was a simplified partially 

observable static environment [MMB93]. The Carbot architecture does not randomly 

generate moves in the same sense as the RUR architecture. The neural network used 

by the Carbot architecture is initially untrained; thus its output values are going to be 

random values. The training of the architecture’s neural network as stated above shapes 

the values that are outputted by the neural network. Thus, the Carbot architecture 

has an implicit random move component. The actions generated by the architecture for 

unknown states will be essentially random.

This architecture has proven to be successful in learning and adapting the compe­

tences of phototaxis and obstacle avoidance [MMB93]. However, the Carbot architecture 

has two significant drawbacks. The first difficulty with this architecture is tha t it requires 

a learning phase of 3000 decisions [MMB93] before it is able to perform its tasks compe­

tently within its environment. This leads to the second drawback; the robot’s learning 

is tailored specifically to the environment in which it has been trained. Unfortunately, 

we have been unable to find any research involving this architecture where the controller 

has been trained in one environment and then moved into another environment; thus 

the adaptability of the architecture is questionable. Finally, the Carbot architecture has 

only been used in simplified static environments. We have been unable to find any re­

search where the Carbot controller has been deployed in more complex environments. It 

is therefore questionable whether the architecture would operate well in more complex 

environments.
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Subsum ption-based A rchitecture

Another good example of learning algorithms for competence acquisition and com­

petence adaptation is found in the architecture designed by Mahadevan and Connell 

[MC92]. In this architecture, the robot has to learn a value function for box pushing 

in a simple environment. Their architecture was based on the subsumption architecture 

[Bro86], so tha t the box pushing task could be split into the following behaviors for the 

robot to acquire and adapt [MC92]:

Finding a Box: This behavior is used by the agent in order to find a box.

Pushing a Box: This behavior is used by the agent in order to push a box.

G etting unwedged: This behavior is used by the agent in order to get unwedged from 

an immovable obstacle.

These behaviors are prioritized in the subsumption architecture such that the get­

ting unwedged behavior has the highest priority, the pushing a box behavior has the 

second highest priority and finding a box has the lowest priority [MC92]. By splitting 

up the box pushing task into the above behaviors, Mahadevan and Connell have effec­

tively parallelized the reinforcement learning algorithm used in this architecture. In this 

architecture, sensors are used to determine the state of the agent and the applicability 

of the agent’s behaviors. As well, the sensors are used by the reward function of the 

agent [MC92]. Q-learning is used by this architecture in order to train the agent in the 

competence of box pushing [MC92].

The designers of this architecture point out that it is a non-trivial task to decompose 

the learning task into subtasks and reward functions [MC92], in that, there are no guide­
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lines on how to setup a reward function for each learning task[MC92]. Another problem 

that the designers of this architecture point out is that the number of states and actions 

can easily make the reinforcement learning problem with Q-learning intractable [MC92], 

The reason for this is tha t it is not possible to store the value of every state-action pair 

when there are a large number of states and actions. The designers of this architecture 

also point out tha t the generalization of states the agent can significantly reduce the 

number of states tha t need to be considered [MC92].

2.3 Sum m ary

In this chapter, we have reviewed the three primary robot controller paradigms. As well 

we have briefly examined the field of robot learning. We have also reviewed learning 

algorithms used in cybernetics, neural networks and reinforcement learning. Finally we 

studied three representative robot learning controllers.

All three of the example robot learning architectures have common drawbacks. The 

first drawback is tha t these architectures are unable to function with any degree of com­

petence when they are first deployed in an environment. A second difficulty with regard 

to the Carbot architecture [MMB93] and the subsumption-based architecture [MC92] is 

that learning in these architectures takes a great deal of time. The RUR architecture, 

however, does possess the ability to learn quickly due to its use of a perceptron network 

for its associative memory. The RUR architecture suffers a drawback due to its use of 

a perceptron network in tha t it acts erratically since the perceptron network can not 

approximate non-linearly separable functions. As well, all of these architectures have 

been used only in partially observable static environments. We have been unable to find

29



any research tha t would indicate if any of these architectures would scale up to more 

dynamic environments.

The generalized Tutor-Student learning algorithm that we have proposed in this thesis 

allows us to deploy a robot, which is able to function competently in an environment as 

soon as it is deployed. The Tntor-Student learning algorithm learns quickly and does not 

make the robot act erratically. As well, onr learning algorithm works in both partially 

observable static and dynamic environments. More importantly this learning algorithm 

can be used to extend any of the three primary robot controller paradigms, where as, the 

three example architectures have only been able to add learning capabilities to reactive 

controllers.

30



Chapter 3 

M ethodology

This chapter presents the methodology of the Tutor-Student learning algorithm, 

which attem pts to imitate the interactions between a tutor and a student. The job of 

the tutor is to teach and guide the student, which also includes correcting the student 

when the student is wrong. The job of the student is to absorb the teachings of the tu tor 

and try  to improve upon those teachings. Through this learning algorithm, an existing 

robot controller can become more attuned to its environment, as well as becoming more 

adaptable to changes in its environment. In this chapter, we will start with a review of 

some prior research tha t has inspired this approach. We will also present the generalized 

Tutor-Student learning algorithm as well as an application based upon this method.

3.1 Inspirations

The Tutor-Student learning algorithm was inspired by prior experiments with our 

earlier prototype 1 robot controller, as well as some ideas from the fields of reinforce­

ment learning and cybernetics. In the following sections, we will briefly present these 

inspirations.

3.1.1 T he P rototyp e 1 R obot Controller

3.1.1.1 Overview

The prototype 1 controller was designed to acquire behaviors based upon a set of 

evaluation conditions. This controller is basically a modified subsumption controller,
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where each behavior is given a rule system, a learning system and a set of conditions. 

The goal of this robot controller is to teach each behavior’s learning system how to act 

through a combination of the behavior’s rule system and through interaction with the 

robot’s environment.

The rule system in each behavior is a non-deterministic rule system, in tha t it ran­

domly chooses from a set of situation applicable rules. A non-deterministic rule system 

was chosen in order to allow equally applicable rules a chance to be activated. For ex­

ample, if there is a fork in the path and no other knowledge is known about which path 

is better, then taking the left fork is as good as taking the right fork.

The learning system for each behavior uses a modified Q-learning algorithm, which is 

different from the standard Q-learning approach. The main difference between them is 

in our use of the function approximator, which is a method used to generalize a desired 

function from only a subset of known inputs and outputs. For each possible action, we 

used several incremental backpropagation neural networks to approximate the action’s 

value function. By using multiple neural networks for each action and averaging their 

outputs, the modified Q-learning can estimate the value function more accurately.

The set of conditions for each behavior is used to indicate when the behavior is 

applicable, as well as when to reward or punish the learning system.

3.1.1.2 Lim itations

In experiments, the prototype 1 robot controller failed to show any long term com­

petence acquisition. The experimental results for the controller were in fact quite erratic 

for experiments with long decision runs. There are several possible reasons for this. How­
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ever, in this section we will only focus on the limitations that became apparent with this 

controller.

One of the main limitations is its inability to construct a sequence of actions for 

getting out of bad situations. The primary reason is that both the Q-learning algorithm 

and the rule system choose actions based on the current situation. Consequently, the 

rule system has no proper sequencing of actions that the Q-learner could learn from. As 

well, it takes a lot of time and experiences for the Q-learner to build up a sequence of 

actions for its value function.

Another limitation that the prototype 1 controller has is that the rule system and 

the Q-learner often disagree with each other. A common example of such a situation 

occurs when the robot hits an obstacle and rule system causes the robot to back up and 

then the Q-learner has the robot go forward again. The reason why this disagreement 

occurs can be explained as follows. In each behavior, the Q-learner makes decisions until 

a behavioral condition is violated. Then on the behavior’s next decision, the rule system 

chooses an action. However, when the modified Q-learner punishes an action, it does not 

punish it enough so that even though the action’s value is decreased, it is not less than 

any of the other actions’ values. In this case, insufficient punishment by the Q-learner 

leads to a repeat of the punished action for tha t state, (i.e., the Q-learner would undo 

the action previously chosen by the rule system).

3.1.2 Inspirations from R einforcem ent Learning

In the field of reinforcement learning, the value function is used to store the values 

of state-action pairs [SB98]. Typically a function approximator is used instead of an
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explicit table to represent the value function [GosOS]. The reason for this is that a 

function approximator allows for the generalization of the value for state-action pairs 

and uses less memory to store those values [GosOS]. This means that the learner does 

not necessarily have to experience every state in its environment, because the value of 

state-action pairs can be generalized by the function approximator [GosOS].

3.1.3 Inspirations from C ybernetics

The field of cybernetics has shown that the behavior of a machine can be modified 

through the amplification of its actions [Ash64]. This means that it is possible to change 

the behaviors of an existing machine without changing the rules governing tha t machine.

3.2 G eneralized Tutor-Student Learning A lgorithm

3.2.1 O verview

In the Tutor-Student learning algorithm, the tutor is an existing proven robot con­

troller and the student is a function approximator, which is charged with learning state- 

action pairs. This learning algorithm attem pts to improve the actions of either the tutor 

or the student by amplifying either of those actions.

A generalized version of this algorithm works in the following way. The robot’s sensors 

retrieve the current state of the robot and its environment. The current state is then 

supplied to both the tutor and student modules. Each of these modules then generates 

an action based upon the current state. The generated actions, which we call the tutor 

action and student action respectively, are then outputted to the action selector module,
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which chooses an action. This selected action is then given to the amplifier component 

for possible amplification. The amplifier produces an action called the resulting action, 

which is sent to the robot’s actuators for execution. This entire process is called the 

propagation phase of the algorithm. Note that the student’s actions are based upon 

previously evaluated actions. The evaluation of an action for a state happens during the 

pre-evaluation phase and evaluation phase of the algorithm. The pre-evaluation phase 

is used to gather information needed for the evaluation phase and happens during the 

same time period as the propagation phase. During the evaluation phase the resulting 

action is evaluated by the evaluator module based on the resulting state of the robot and 

its environment. The resulting state is produced by executing the resulting action from 

the propagation phase of the algorithm.

The following sections will discuss the components used by the Tutor-Student learning 

algorithm as well as the three phases of the algorithm.

3.2.2 C om ponents

The Tutor-Student learning algorithm utilizes the following modules: tutor, student, 

action selector, amplifier, and evaluator. The robot’s sensors and actuators are not 

included in this discussion since they are components that are provided by the robot.

3.2.2.1 Tutor

The tu tor is the name given to the existing robot controller. This component is 

responsible for providing basic behaviors in order, to guide the learning of the student. 

As well the tu tor provides behaviors that allow the robot to operate in critical situations.
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3.2.2.2 Student

The student is the learning component for the Tutor-Student learning algorithm. It 

can be any type of function approximator. The job of the student is to learn actions for 

given situations.

3.2.2.3 A ction  Selector

The action selector module is used to select either an action generated by the tutor 

or the student. This module works by comparing the types of actions generated by the 

tutor and the student. If both actions have the same type, then the student action is 

selected, otherwise the tutor action is selected. In this way the selected action is always 

of the same type as the tu to r’s action in order to guarantee the basic behavior of the 

robot.

3.2.2.4 Am plifier

The amplifier module’s job is to decide if the components of an action are to be 

modified through amplification by a preset amount. Amplification is used to modify 

the actions of either the tu tor or the student. By using amplification as a quantity for 

learning, we are able to modify the behaviors of the tu tor without changing the rules 

governing the tutor.

3.2.2.5 Evaluator

The evaluator module is used to determine if the previous action performed by the 

agent was appropriate for the previous state. The appropriateness of an action is decided
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by checking if the state resulting from the execution of the action has violated any of 

the agent’s operational conditions. An operational condition is an assertion based on the 

current state of the agent. Operational conditions are used to determine which action 

the student is taught for the previous state. An example of such condition is “If the 

robot hits an obstacle” . The evaluator module evaluates an action using the procedure 

outlined in the evaluation phase of the learning algorithm (see page 39 for details).

3.2.3 A lgorithm

The Tutor-Student learning algorithm is split into three different phases: the propa­

gation phase, the pre-evaluation phase and the evaluation phase. The propagation phase 

and the pre-evaluation phase happen in parallel during the same time period. These 

two phases are separately described in two diagrams and in each diagram only modules 

relating to the corresponding phase are illustrated. This is done in order to facilitate the 

understanding of the algorithm. The evaluation phase happens one time period after the 

propagation and pre-evaluation phases.
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Fig. 6: Tutor-Student Propagation Phase

Figure 6, shows the propagation phase of the Tutor-Student learning algorithm. The 

numerical labels in Figure 6 refer to the steps in the following procedure for the propa-
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gation phase.

1. Get the current state from the agent’s sensors.

2. The agent’s sensors send the current state to the tutor and student modules.

3. The tu tor and student modules each generate an action based on the current state.

4. The tu tor and student modules send their actions to the action selector module.

5. The action selector module selects an action from its inputs.

6. The action selector module outputs the selected action to the amplifier module.

7. The amplifier module possibly amplifies the selected action.

8. The amplifier module sends its resulting action to the agent’s actuators.

9. The agent’s actuators execute the resulting action.
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Fig. 7: Tutor-Student Pre-Evaluation Phase

Figure 7, demonstrates the pre-evaluation phase, which is a preparation process for the 

evaluation phase. The information stored in the evaluator can be seen as the evaluator’s
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model of the robot’s current situation. The letter labels in Figure 7, correspond to the

steps for the following pre-evaluation procedure.

a. Get the current state from the agent’s sensors.

b. The agent’s sensors send the current state to the evaluator module and the evaluator 

module stores the current state as the previous state.

c. The tutor sends its action to the evaluator module and the evaluator module stores 

the tutor action.

d. The action selector sends its selected action to the evaluator module and the evaluator 

module stores the selected action.

e. The amplifier sends its resulting action to the evaluator module and the evaluator 

module stores the resulting action.
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Fig. 8: Tutor-Student Evaluation Phase

The evaluation phase happens one time period after the propagation and pre-evaluation 

phases. Its process is shown in Figure 8, whose labels correspond to the steps for the 

following evaluation procedure.
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A. Get the current state from the agent’s sensors.

B. The agent’s sensors send the current state to the evaluator module and the evaluator 

module stores the current state as the resulting state.

C. The evaluator module checks if the stored resulting action was amplified.

(a) If it was amplified, then the evaluator tests the agent’s operational conditions 

with the stored resulting state.

i. If any of the agent’s operational conditions are true, then the evaluator 

module teaches the student module the stored previous state and the stored 

selected action.

ii. Otherwise, the evaluator module teaches the student module the stored 

previous state and the stored resulting action.

(b) Otherwise, the evaluator module tests the agent’s operational conditions with 

the stored resulting state.

i. If any of the agent’s operational conditions are true, then the evaluator 

module teaches the student module the stored previous state and the stored 

tutor action.

ii. Otherwise, the evaluator module teaches the student module the stored 

previous state and the stored selected action.

The essence of the evaluation phase is to choose an action stored during the pre­

evaluation phase of the learning algorithm, which is to be taught to the student with the 

previous state. The choice of action taught to the student is based upon whether the
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stored resulting action was amplified during the previous propagation phase and whether 

the resulting action was successful. The criterion of a successful action is tha t none of 

the robot’s operational conditions has been violated. In this algorithm if any of the 

operational conditions is true, then a violation has occurred.

If the resulting action was amplified, then the evaluator checks the robot’s operational 

conditions. If any operational conditions are true, then the resulting action should not 

be taught to the student. Instead the selected action should be taught to the student. 

However, if none of the operational conditions are true, then the resulting action is taught 

to the student.

If the resulting action was not amplified, then the evaluator checks the robot’s opera­

tional conditions. If any of these conditions are true then the resulting action should not 

be taught to student. The tutor action is then taught to the student because the tutor 

action is assumed to always be a successful action. Otherwise, if none of the operational 

conditions is true then the resulting action is taught to the student.

3.3 A pplication

This section presents the details of an implemented version of the generalized Tutor- 

Student learning algorithm. This version uses a behavior based robot controller called 

prototype 2 as the tutor and an incremental backpropagation neural network as the stu­

dent. The robot controller resulting from applying the Tutor-Student learning algorithm 

to the prototype 2 robot controller is called prototype 2A.
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3.3.1 Tutor

The prototype 2 robot controller is designed for the tasks of obstacle avoidance 

and attractor path planning with predator avoidance in partially observable static and 

dynamic environments.

The task of obstacle avoidance is for the agent to wander around its environment 

without hitting any obstacles. The task of attractor path planning with predator avoid­

ance is one in which the agent has three subtasks: The first subtask is to avoid hitting 

obstacles in its environment; The second subtask is for the agent to move towards a prey 

(also called attractors) and to move away from the prey after it gets within a certain 

range of the prey; the third subtask is for the agent to detect predators (also called 

repulsers) and flee from them when they get within a certain range.

A partially observable environment is an environment where the agent does not have 

full knowledge about its environment. A static environment is an environment that does 

not change while the agent is deciding what to do next and a dynamic environment is 

an environment tha t has the ability to change as the agent is making decisions.

The heart of the prototype 2 robot controller is a state planner tha t acts as the 

sequencing rule system for the controller. A state planner consists of a set of states 

where each state in the state planner possesses its own set of rules. All the rules in the 

state planner have three components: condition, action and transition. The condition 

component of a rule is used to indicate if the state rule is applicable. If it is applicable, 

then the action component gives an action for the robot to execute; as well the transition 

component gives the next state transition for the state planner. The state rules within
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each state are tested for applicability from the first rule to the last in the state. Therefore 

there is a priority ordering of state rules in each state. The state planner used by the 

prototype 2 robot controller consists of the following states:

Subsum ption State: This state consists of a priority ordering of the following types of

state rules:

O bstacle A voidance Rules: These rules govern how the robot controller avoids 

hitting obstacles in its environment.

Predator A voidance Rules: These rules govern how the robot avoids predators. 

A predators for the prototype 2 robot controller is any blue object found in the 

controller’s environment. These blue objects come in two varieties: a static 

blue box and a moving blue robot.

Fleeing Rules: These rules govern how the robot flees after it gets too close to 

prey. A prey for the prototype 2 robot controller is any red object found in 

the controller’s environment. These red objects come in two varieties: a static 

red box and a moving red robot.

Seeking Rules: These rules govern how the robot locates and tracks prey in its 

environment.

W ander Rules: These rules govern how the robot wanders about its environment. 

These rules consider open areas in the robot’s environment good areas for the 

robot to wander to.

Note tha t the subsumption state rules are not necessarily grouped together by type
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in the state’s list of rules.

Forward State: This state provides the forward behavior of the robot.

Avoid Spin State: This state provides a spin behavior for obstacle avoidance. This 

spin behavior happens when the robot is close to obstacles on its front side, left 

side and right side.

Prey Spin State: This state provides a spin behavior for fleeing from prey. This be­

havior is triggered when the robot gets too close to its prey, where upon the robot 

will spin until it no longer sees its prey.

Predator Spin State: This state provides a spin behavior for fleeing from predators. 

This behavior is triggered when the robot gets within a certain range of a predator. 

Once the robot is within tha t range, the robot will spin until it no longer sees the 

predator.

The actions generated by the state planner consist of three components: translation, 

rotation and duration. Translation is a continuous floating point number between -1.0 

and 1.0, which indicates whether the robot is to go forwards or backwards. Rotation is a 

continuous floating point number ranging from -1.0 to 1.0, which indicates whether the 

robot is to turn left or right. Finally, duration is a continuous floating point value greater 

than or equal to 0.0, which describes how long the robot should perform the action. The 

prototype 2 robot controller has five types of actions: stop, forward, backward, left and 

right.

The prototype 2 robot controller has been tested throughly in various environments
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and has performed its tasks successfully. The success of the prototype 2 controller made it 

a good candidate for being the tutor module for our implemented Tutor-Student learning 

algorithm.

3.3.2 Student

The student as mentioned earlier is a function approximator. We chose to use an 

incremental backpropagation neural network as a function approximator, because of its 

well known ability to approximate a multivariate function [Gos03]. The student’s sensor 

inputs were converted to a binary representation in order to improve the performance of 

the neural network. As well, the student’s outputs are in a binary representation and are 

interpreted to other values which are action description, amplification level and ampbit. 

These output values are taught to the student during the evaluation phase of the learning 

algorithm.

The action description is used to retrieve the component form of an action used by 

the tutor. The amplification level is used to compute the amplification value, which is 

then added or subtracted to the appropriate component of the retrieved action. The 

amplification value is equal to an amplification constant times the amplification level. 

For this implementation the amplification constant is equal to 0.1. The ampbit is used to 

determine if further amplification should occur on the action generated by the student. 

If the ampbit is 1 then the student’s action is a candidate for further amplification, else 

if the ampbit is 0 then the student’s action is not a candidate for further amplification.
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3.3.3 A ction  Selector

In the prototype 2A robot controller, the action selector module compares string 

descriptions of actions generated by the tutor and the student. If the tu tor action de­

scription is the same as the student action description, then the student action becomes 

the selected action along with its amplification level and ampbit, otherwise the tutor 

action becomes the selected action along with an amplification level of zero and ampbit 

set to one.

3.3.4 Am plifier

The amplifier module takes the selected action in its component form, (Translation, 

Rotation, Duration), along with a string description of the action, and the selected 

ampbit. Based on the string description of the action, the amplifier then amplifies the 

appropriate component of the action depending on the value of the ampbit or whether 

the controller is still in its learning phase.

A learning phase is employed in the amplifier module because we are using an incre­

mental backpropagation neural network as a function approximator for the student. If 

the ampbit is zero at the start of the learning algorithm then amplification may not be 

applied to the selected action.

The algorithm for the amplifier checks to see whether the ampbit is true or the robot 

controller is still in learning phase. If either of these conditions is true then the action is 

amplified, otherwise the action will not be amplified.

The amplifier for this applied Tutor-Student learning algorithm only amplifies the
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translation or rotation components of an action and not the duration component. The 

effectiveness of amplifying the duration component will be investigated in our future work 

(see section 5.2.2 on page 70).

3.3.5 Evaluator

The evaluator module works as described above in the generalized Tutor-Student 

learning algorithm (Section 3.2.2.5 on page 36), except that the evaluator teaches the 

student an action description, an amplification level and an ampbit value with the previ­

ous state. The prototype 2A robot controller has only one operational condition, which 

is “If the robot hits an obstacle” . For successful actions, the student is taught with an 

ampbit equal to 1, whereas for unsuccessful actions the student is taught with an ampbit 

equal to 0.

When the evaluator teaches a state-action pair to the student, it is done for a fixed 

number of iterations, called the teaching rate. The teaching rate for the incremental 

backpropagation neural network is how many times the state-action pair is taught to the 

neural network at one time.
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Chapter 4 

Experim ents

This chapter focuses on presenting the experiments tha t have been conducted using 

the prototype 2 and prototype 2A robot controllers that we introduced in Chapter 3. 

The parameters of the experiments will be explained, as well as the evaluation procedures 

used. The experimental results for each experiment will also be presented and discussed.

4.1 Environm ents

The prototype 2 and prototype 2A robot controllers will operate in two types of 

environments: partially observable static simulated environment and partially observable 

dynamic simulated environment. A partially observable environment is an environment 

where the robot’s sensors only have partial access to the state of the environment. For 

example a robot in an office-like environment would be unable to know what is happening 

on the other side of a wall (unless the robot has x-ray vision). A static environment is 

an environment that does not change while the robot is deciding what to do next. A 

dynamic environment is an environment tha t can change while the robot is deliberating 

what to do next.

The controller’s environment is a simulated environment generated by the Player/Stage 

simulator^, which is controlled through the Pyro^ programming environment. Pyro is a 

programming environment designed for constructing robot controllers and artificial in-

 ̂Player and Stage are freely available under the GNU General Public License from

HTTP : /  /playerstage.sourceforge.net
^Pyro is freely available under the GNU General Public License from HTTP : /  /pyrorobotics.org
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telligence programs [BKMY03].

The robot controller’s environment consists of two parts. The first part is the robot’s 

internal environment, which is a simulated Pioneer 2 DX robot^. The Pioneer 2 DX 

has a differential drive train and 16 sonar sensors positioned around its 50cm x 50cm 

body. A subset of these sonar sensors will be used in the robot controller experiments. 

The second part of the controller’s environment is its external environment, which is its 

immediate surroundings.

For the experiments involving a static environment, the prototype 2 and prototype 2A 

robot controllers will operate alone in their environments, whereas, in the experiments 

involving dynamic environments both controllers will operate in their environments along 

side predator and prey robots. A predator robot uses a subsumption-like controller to seek 

and chase the prototype 2 and prototype 2A robot controllers around its environment. 

A prey robot uses a subsumption-like controller to wander around its environment.

Generally speaking, there are several concerns about simulated environments. The 

first one is tha t simulators provide an agent with accurate sensors and actuators, which 

real robots do not possess. The second concern is that simulators usually make strong 

assumptions about the robots and environments.

W ith regard to the first concern, the Stage simulator does provide relatively accurate 

sensors and actuators. However, since we are in early developing stages, we preferred 

to take the approach of starting with accurate sensors and actuators to make sure that 

the algorithm would function properly under ideal situations. The question of how the

®The simulated Pioneer 2 DX is provided with the Flayer/Stage simulator software. The Pioneer 2 

DX itself is an actual robot realized in hardware.
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learning algorithm cooperates with real robots is left for future work.

As for the second concern, we have not been able to find any papers tha t discuss 

the assumptions made by the Stage simulator. However, we have found several papers 

[JS02, MWBDW02, VSSM02] where researchers have developed clients using the Stage 

simulator tha t work with little or no modification on real robots.

4.2 Evaluation

The prototype 2 and prototype 2A robot controllers are evaluated based upon how 

well they perform the tasks of obstacle avoidance and attractor path planning with preda­

tor avoidance in four different environments. The task of obstacle avoidance will be eval­

uated by recording how many times the robot controller experiences a collision. The task 

of attractor path planning with predator avoidance will be evaluated by recording the 

number of times the robot controller locates attractors.

The robots will be started at the same locations and in the same order. The indi­

vidual performances of the controllers in the tasks of obstacle avoidance and attractor 

path planner with predator avoidance will then be averaged over all trial runs. In each 

environment, the prototype 2 robot controller and each of three different learning phases 

of the prototype 2A robot controller will be given 10 trial runs, each of which will consist 

of 10,000 decisions. Three different learning phases of the prototype 2A robot controller 

were tested: they are 2500, 5000 and 7500 decisions.
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4.3 Experim ents

The prototype 2 and prototype 2A robot controllers are tested in four different envi­

ronments: the Chase-Avoid environment, the Cave-Box environment, the Cave-Predator- 

Prey environment, and the Cave-Predator-Prey-Box environment. All of the these envi­

ronments are modified versions of environments that come with the Player/St age soft­

ware.

4.3.1 P roto typ e  2A Controller: Param eters

In each of the following experiments, the prototype 2A robot controller is set with 

the following parameters as shown in Table 1.

Parameters Values

Number of Neural Networks 1

Inputs Units 14

Hidden Units 30

Output Units 7

Learning Rate 0.3

Momentum Rate 0.9

Teaching Rate 3

Amplify Amount 0.1

Table 1: Prototype 2A Parameters
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4.3.2 T he C hase-A  void Environm ent

File View Action
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Fig. 9: The Chase-Avoid Environment

4.3.2.1 D escription

The Chase-Avoid environment shown in Figure 9 is a partially observable dynamic 

environment. This environment is designed to examine how well both controllers, 2 and 

2A, are able to avoid obstacles and locate a prey robot in a small enclosed environment, 

while avoiding a predator robot. Due to the small area of the environment, there is a 

strong possibility of collisions with other robots.

4.3.2.2 R esu lts and D iscussion

The results of the prototype 2 and prototype 2A robot controllers for their sets of 

trial runs are given in Table 2.
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Controller Obstacle Avoidance Attractor Path Planning 

with Predator Avoidance

Avg. Number 

of Collisions

Standard

Deviation

Avg. Number of 

Attractors Found

Standard

Deviation

Prototype 2 31.2 57.62 84.6 18.11

Prototype 2A 

with different 

learning phases

2500 20.6 6.82 130.1 12.93

5000 19.4 5.85 125.4 16.59

7500 31.5 17.10 125.5 18.42

Table 2: Controllers Results for the Chase-Avoid Environment

Table 3 presents the average improvement of the prototype 2A robot controller over 

the prototype 2 robot controller for the tasks of obstacle avoidance and attractor path 

planning with predator avoidance.

Learning Phase 

(Number of Decisions)

Obstacle Avoidance 

Improvement

Attractor Path Planning with 

Predator Avoidance Improvement

2500 34.0% 53.8%

5000 37.8% 48.2%

7500 -0.96% 48.3%

Table 3: Average Improvement by the Prototype 2A Controller for the Chase-Avoid 

Environment

Prom the results shown in Table 2 and Table 3, it is demonstrated that for the task of 

obstacle avoidance, the prototype 2A robot controller performed significantly better or
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almost as well as the prototype 2 robot controller. As well, the results also demonstrate, 

for the task of attractor path planning with predator avoidance, that the prototype 2A 

robot controller performed significantly better than the prototype 2 robot controller.

For the Chase-Avoid environment, we can say tha t the Tutor-Student learning algo­

rithm has greatly improved the performance of the prototype 2 robot controller for this 

environment.

4.3.3 T he C ave-Box Environm ent
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Fig. 10: The Cave-Box Environment
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4.3.3.1 D escription

The Cave-Box environment shown in Figure 10, is a partially observable static en­

vironment. It is designed to examine how well both controllers, 2 and 2A, are able 

to perform the tasks of obstacle avoidance and attractor path planning with predator 

avoidance, in a large complex environment with three static attractors and three static 

repulsers. This environment presents a challenge for both controllers in tha t they have 

to explore a complex environment in order to locate attractors.

4.3 .3 .2  R esults and D iscussion

The results of the prototype 2 and prototype 2A robot controllers for their sets of 

trial runs are given in Table 4.

Controller Obstacle Avoidance A ttractor Path Planning 

with Predator Avoidance

Avg. Number 

of Collisions

Standard

Deviation

Avg. Number of 

Attractors Found

Standard

Deviation

Prototype 2 0.0 0.0 8.1 2.02

Prototype 2A 

with different 

learning phases

2500 4.4 4.14 41.6 4.22

5000 7.1 9.80 39.1 7.20

7500 2.0 3.37 40.9 5.86

Table 4: Controllers Results for the Cave-Box Environment

From the results in Table 4, it is clear tha t for the task of obstacle avoidance, the 

prototype 2A robot controller performed slightly worse than prototype 2 robot controller.
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Despite this, the prototype 2A robot controller performed very well considering that in 

the worst case scenario, the prototype 2A controller’s average collision is 7.1 out of the

10,000 decisions made.

Table 5, presents the average improvement of the prototype 2A robot controller over 

the prototype 2 robot controller for the task of attractor path planning with predator 

avoidance.

Learning Phase 

(Number of Decisions)

A ttractor Path Planning with 

Predator Avoidance Improvement

2500 413.6%

5000 382.7%

7500 404.9%

Table 5: Average Improvement by the Prototype 2A Controller for the Cave-Box Envi­

ronment

The results shown in Table 4 and Table 5 demonstrate that for the task of attractor 

path planning with predator avoidance, the prototype 2A robot controller performed 

significantly better than the prototype 2 robot controller.

For the Cave-Box environment, we can say that the Tutor-Student learning algo­

rithm did not improve the performance of obstacle avoidance in the prototype 2 robot 

controller. However, the learning algorithm did significantly improve the prototype 2A 

robot controller at the task of attractor path planning with predator avoidance. It is 

within our expectation tha t due to the nature of this learning algorithm, (i.e. to conduct 

modification over tu to r’s actions) more collisions may occur because of this process.
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4.3.4 T he C ave-Predator-Prey Environm ent
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Fig. 11: The Cave-Predator-Prey Environment

4.3.4.1 D escription

The Cave-Predator-Prey environment shown in Figure 11, is a partially observable 

dynamic environment. This environment is designed to examine how well both con­

trollers, 2 and 2A, are able to avoid obstacles and locate prey (attractors), in a large 

complex environment with two prey robots and one predator robot. The task of attrac­

tor path planning with predator avoidance in this environment is a difficult task in that 

there are only two attractors and they are moving around a large complex environment.
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4.3.4.2 R esults and D iscussion

The results of the prototype 2 and the prototype 2A robot controllers for their sets 

of trial runs are given in Table 6.

Controller Obstacle Avoidance Attractor Path Planning 

with Predator Avoidance

Avg. Number 

of Collisions

Standard

Deviation

Avg. Number of 

Attractors Found

Standard

Deviation

Prototype 2 1.6 1.84 29.2 22.00

Prototype 2A 

with different 

learning phases

2500 7.2 4.21 68.8 29.94

5000 9.1 4.82 42.1 12.42

7500 5.7 4.85 49.7 15.09

Table 6: Controllers Results for the Cave-Predator-Prey Environment

From the results shown in Table 6, it is clear that for the task of obstacle avoidance the 

prototype 2A robot controller performed slightly worse than prototype 2 robot controller. 

Despite this, the prototype 2A robot controller performed very well considering tha t the 

most average collisions of the prototype 2A controller is 9.1 out of the 10,000 decisions 

made.

Table 7, presents the average improvement of the prototype 2A robot controller over 

the prototype 2 robot controller, for the task of attractor path planning with predator 

avoidance.
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Learning Phase 

(Number of Decisions)

Attractor Path Planning with 

Predator Avoidance Improvement

2500 135.6%

5000 44.2%

7500 70.2%

Table 7: Average Improvement by the Prototype 2A Controller for the Cave-Predator- 

Prey Environment

The results in Table 6 and Table 7 demonstrate that for the task of attractor path 

planning with predator avoidance, the prototype 2A robot controller performed signifi­

cantly better than the prototype 2 robot controller.

For the Cave-Predator-Prey environment, we can say that the Tutor-Student learning 

algorithm did not improve the performance of obstacle avoidance in the prototype 2 robot 

controller, however, the learning algorithm did significantly improve the prototype 2A 

robot controller at the task of attractor path planning with predator avoidance.

4.3.5 T he C ave-Predator-Prey-B ox Environm ent

4.3.5.1 D escription

The Cave-Predator-Prey-Box environment shown in Figure 12 is a partially observ­

able dynamic environment. This environment is designed to examine how well both 

controllers, 2 and 2A, are able to avoid obstacles and locate attractors in a large complex 

environment. In this environment, the robot will be accompanied by two prey robots
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Fig. 12: The Cave-Predator-Prey-Box Environment

and one predator robot, which adds a dynamic element to this environment. As well, 

there will be three static attractors and three static repulsers located throughout the 

environment.

4.3.5.2 R esults and D iscussion

The results of the prototype 2 and prototype 2A robot controller, for their sets of 

trial runs are given in Table 8.

The results in Table 8, demonstrate that for the task of obstacle avoidance, the 

prototype 2A robot controller performed slightly worse than prototype 2 robot controller. 

Despite this point, the prototype 2A robot controller performed very well considering that 

the highest number of average collisions with prototype 2A controller is 9.2 out of the
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Controller Obstacle Avoidance Attractor Path Planning 

with Predator Avoidance

Avg. Number 

of Collisions

Standard

Deviation

Avg. Number of 

Attractors Found

Standard

Deviation

Prototype 2 0.3 0.67 30.3 15.60

Prototype 2A 

with different 

learning phases

2500 9.2 5.47 85.1 18.13

5000 8.5 4.57 76.2 13.69

7500 4.4 1.78 78.5 9.50

Table 8: Controllers Results for the Cave-Predator-Prey-Box Environment

10,000 decisions made.

Table 9, presents the average improvement in the prototype 2A robot controller over 

the prototype 2 robot controller for the task of attractor path planning with predator 

avoidance.

Learning Phase 

(Number of Decisions)

A ttractor Path Planning with 

Predator Avoidance Improvement

2500 180.9%

5000 151.5%

7500 159.1%

Table 9: Average Improvement by the Prototype 2A Controller for the Cave-Predator- 

Prey-Box Environment

The results shown in Table 8 and 9 clearly demonstrate that for the task of attractor
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path planning with predator avoidance the prototype 2A robot controller performed 

significantly better than prototype 2 robot controller.

For the Cave-Predator-Prey-Box environment, we can say that the Tutor-Student 

learning algorithm did not improve the performance of obstacle avoidance in the pro­

totype 2 robot controller, however, the learning algorithm did significantly improve the 

prototype 2A robot controller at the task of attractor path planning with predator avoid­

ance.

4.4 Conclusions

The experiments conducted on the prototype 2 and prototype 2A robot controllers 

have presented the effectiveness of the Tutor-Student learning algorithm. For the task of 

obstacle avoidance, the learning algorithm was able to modify the actions of the proto­

type 2 robot controller so that the controller performed either better or slightly worse. 

As stated above, the prototype 2A robot controller having slightly worse results than 

the prototype 2 robot controller for the task of obstacle avoidance is expected. The 

Tutor-Student learning algorithm learns through trial and error interactions with its en­

vironment. It is expected that during this learning process the robot will make mistakes. 

However, for all of these experiments, the prototype 2A robot controller was involved 

in collisions for less then 0.1% of the total decisions made by the controller, which is a 

significant statistic, since as far as we know, there is no other trail and error learning 

method tha t can perform as well.

In all of our experiments, the prototype 2A robot controller obtained the best results 

when the controller’s learning phase was set to 2500 decisions. As stated previously
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(Section 3.3.4 on page 46), a learning phase is used to force the learning algorithm to 

amplify the controller’s actions, in order to ensure that the function approximator does 

not stop the amplification of the controller’s actions too early, due to an initial spurious 

output value for the ampbit. By forcing amplification of the controller’s actions for all 

of the experimental environments past 2500 decisions, it appears to have caused the 

controller to decrease its performance. This decrease in performance could be because 

tha t the student has reached a stable point where the amplification of the controller’s 

actions is no longer required and further amplification past this point may cause the 

controller to decrease in its performance.

From our experiments using the implemented Tutor-Student learning algorithm we 

are unable to say if the vast majority of learning occurs during the learning phases. 

There are two reasons that make this difficult to determine. First, it is possible that 

one function approximator may require less training than another function approximator 

(e.g. the initial weights in one neural network can be more conducive towards a particular 

task than the initial weights in another neural network of the same type). As well, the 

Tutor-Student learning algorithm is designed to allow the robot to learn throughout its 

entire set of decisions, therefore learning maybe occurring all through the trial run of 

the robot. To determining whether there is a decision interval or set of decision intervals 

where the majority of learning takes place is left for future work (see section 5.2.5 on 

page 71 for more details).

In all of our experiments, the Tutor-Student learning algorithm considerably improved 

the performance of the prototype 2 robot controller in the task of attractor path planning 

with predator avoidance. This learning algorithm improved the average performance of
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the prototype 2 robot controller’s ability to locate attractors by almost 100% to over 

400% (depending on the environment).
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Chapter 5 

Conclusion

This chapter will present a summary of this thesis, as well as open questions for 

future research with the Tutor-Student learning algorithm.

5.1 Sum m ary

This thesis has proposed the generalized Tutor-Student learning algorithm, which 

is an innovative method tha t is designed to convert an existing robot controller into a 

learning robot controller. This learning algorithm mimics the interactions between a 

human tutor and student. A sample application of the Tutor-Student learning algorithm 

has been presented.

In contrast to the learning robot controllers explored in Section 2.2.2 on page 21, the 

generalized Tutor-Student learning algorithm allows us to deploy a robot tha t is able to 

function competently in an environment. The robot controller is able to learn quickly 

and does not make the robot act erratically. As well our learning algorithm works in 

both partially observable static and dynamic environments. The Tutor-Student learning 

algorithm is able to add learning capabilities to any of the three primary robot controller 

paradigms, whereas other methods in the literature have only been able to add learning 

capabilities to reactive controllers.

Experiments have been conducted employing the generalized Tutor-Student learning 

algorithm on a behavior-based robot controller in four different test environments. The 

experimental results have shown the effectiveness of the generalized Tutor-Student learn­
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ing algorithm upon a robot controller. For the task of obstacle avoidance, the learning 

algorithm was able to modify the actions of the prototype 2 robot controller so that 

the controller performed either better or slightly worse. For all of these experiments, 

the prototype 2A robot controller was involved in collisions for less than 0.1% of the 

total decisions made by the controller, which is a significant statistic, since as far as 

we know, there is no other trail and error learning method that can perform as well. 

The Tutor-Student learning algorithm also considerably improved the performance of 

the prototype 2 robot controller in the task of attractor path planning with predator 

avoidance. This learning algorithm improved the average performance of the prototype 

2 robot controller’s ability to locate attractors by almost 100% to over 400% (depending 

on the environment).

5.2 Open Q uestions

This section presents the open questions for future research with the Tutor-Student 

learning algorithm.

5.2.1 Stream lining th e Tutor-Student Learning A lgorithm

Can the Tutor-Student learning algorithm be streamlined? Since amplification is the 

only necessary learning quantity used by this algorithm, is it possible for the student to 

just learn states-amplification level pairs instead of state-action pairs? This modifica­

tion will effect all three phases of the learning algorithm. This modified Tutor-Student 

learning algorithm is briefly described below.

Figure 13, shows this modified propagation phase.
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Fig. 13: Modified Propagation Phase

The numerical labels in Figure 13, refer to the steps in the following procedure for 

the propagation phase.

1. Get the current state from the agent’s sensors.

2. The agent’s sensors send the current state to the tutor and student modules.

3. The tutor module generates an action based on the current state.

4. The student module generates an amplification level based on the current state.

5. The tutor sends its action to the action modifier module.

6. The student sends its amplification level to the action modifier module

7. The action modifier module modifies the tu to r’s action with the student’s amplifi­

cation level.

8. The action modifier then sends the modified action to the amplifier module.

9. The amplifier module possibly amplifies the modified action.

10. The amplifier module sends its resulting action to the agent’s actuators.
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11. The agent’s actuators execute the resulting action.

As can be seen from above, the student only outputs an amplification level for a given 

state, which is then applied to the tu to r’s action. Due to this change, the action selector 

module is no longer needed. Figure 14, shows the modified pre-evaluation phase.

Current 
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Environment

Tutor 
Action (c)

Modified 
Action (d)

Resulting 
Action (e)

Tutor Action

Modified Action

Resulting State

Previous State

Resulting ActionAmplifier

Sensors

Action
Modifier

Tutor

Evaluator

Fig. 14: Modified Pre-Evaluation Phase

The letter labels in Figure 14, correspond to the steps for the following pre-evaluation

procedure.

a. Get the current state from the agent’s sensors.

b. The agent’s sensors send the current state to the evaluator module and the evaluator 

module stores the current state as the previous state.

c. The tu tor sends its action to the evaluator module and the evaluator module stores 

the tutor action.

d. The action modifier sends its modified action to the evaluator module and the evalu­

ator module stores the modified action.
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e. The amplifier sends its resulting action to the evaluator module and the evaluator 

module stores the resulting action.

Environment - Sensors
-^Current 
( 4  State (B)|

Evaluator

Resulting State

Previous State

Tutor Action

Modified Action

Resulting Action

(CXaXi) ^

_(C)(a)_(ii)l‘ 

(C)(bXi2 _ 

(C)(b)(ii)|- -

Student

Fig. 15: Modified Evaluation Phase

The evaluation phase happens one time period after the propagation and pre-evaluation 

phases. Its process is shown in Figure 15, whose labels correspond to the steps for the 

following evaluation procedure.

A. Get the current state from the agent’s sensors.

B. The agent’s sensors send the current state to the evaluator module and the evaluator 

module stores the current state as the resulting state.

C. The evaluator module checks if the stored resulting action was amplified.

(a) If it was amplified, then the evaluator tests the agent’s operational conditions 

with the stored resulting state.

i. If any of the agent’s operational conditions are true, then the evaluator 

module teaches the student module the stored previous state and the stored 

modified action.
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ii. Otherwise, the evaluator module teaches the student module the stored 

previous state and the stored resulting action.

(b) Otherwise, the evaluator module tests the agent’s operational conditions with 

the stored resulting state.

i. If any of the agent’s operational conditions are true, then the evaluator 

module teaches the student module the stored previous state and the stored 

tu tor action.

ii. Otherwise, the evaluator module teaches the student module the stored 

previous state and the stored modified action.

5.2.2 A m plification Strategies

In this thesis, amplification is handled by adding a preset amplification amount to 

the appropriate component of an action. Are there any other amplification strategies? 

As well, is it possible to amplify more than one component of an action (i.e. either the 

translation or rotation component along with the duration component)?

5.2.3 Student Transplants

Is it possible to transplant a student that is trained for a task in a partially observable 

static environment into a partially observable dynamic environment? Can it adapt more 

quickly than if the student were just trained for the same task in the partially observable 

dynamic environment? That is, is it possible to give the student a “head-start” by 

training in a partially observable static environment? Would one expect this to be true 

in human performance?
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5.2.4 R eal R obots

Experiments with the Tutor-Student learning algorithm on real robots need to be 

conducted. Will this learning algorithm perform as well in real robots as in simulated 

robots?

5.2.5 Learning Intervals

An interesting experiment would be to try  and determine if there is a decision interval 

or set of decision intervals where the majority of learning takes place.
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A ppendix A

Standard Q-learning

An algorithm for standard Q-learning is given below [SB98, GosOS].

a  =  step size 

A =  discount value

1. Initialize Q{state, action) to arbitrary values

2. Repeat:

(a) Get current state i

(b) Ghoose action a from i using a policy

(c) Execute action a, observe received reward r and next state j

(d) Update Q{i, a) =  (1 -  a)Q{i, a) +  a[r{i, a, j )  + \niaXb^A{j)Q{j, b)]

3. Until: End of the agent’s trial run
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A ppendix B

Standard Q-learning w ith  a Function A pproxim ator

An algorithm for standard Q-learning with a function approximator is given below 

[GosOS].

a  — step size

A =  discount value

1. Repeat:

(a) Get current state i

(b) Ghoose action a from i using a policy

(c) Execute action a, observe received reward r  and next state j

(d) Determine the output q of the action neural network for action a in state i

(e) Set Qnext to be equal to the maximum value of the outputs for the action neural 

networks with state j  as input to these networks.

(f) Update g =  (1 -  0 !)g -1- a[r(%, a, +  Agneit]

(g) Update the action neural network associated with action a with q

2. Until: End of the agent’s trial run
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A ppendix C

Increm ental Backpropagation Learning A lgorithm

The algorithm for the incremental backpropagation learning algorithm is given below 

[Mit97],

input vector =  x  

output vector =  o 

target vector =  t

w =  weight 

rj =  learning rate

• The input from neuron i to neuron j  is denoted by Xij.

•  The weight from neuron i to neuron j  is denoted by .

For a specified number of iterations

For all: ( x, t ) in a set of training examples

Input the X  to the network. Compute the output of each neuron.

For all: neurons k in the output layer

Calculate output-neuronkS error ôk =  0^(1 -  Ok){tk —

For all: neurons A in the hidden layer

Calculate hidden .neur ouhS error Sh =  Ok(l -  Ok)T,keoutputs'Wkhdk 

For all: Network Weights
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W j i  —  W j ;  “H T j ô j X j i

End For
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