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Abstract 
Deadlock is a common phenomenon in software applications, yet it is ignored by 

most operating systems. Although the occurrence of a deadlocks in systems is not 

frequent , in some cases , the effects are drastic when deadlock occurs. The ongoing 

trend in processor technology indicates that future systems will have hundreds and 

thousands of cores. Due to this imminent trend in hardware development , the problem 

of deadlock has gained renewed attention in research. Deadlock handling techniques 

that are developed for earlier processors and distributed systems might not work well 

with multicore systems, due to their architectural differences. Hence, to maximize the 

utility of multicore systems, new programs have to be carefully designed and tested 

before they can be adopted for practical use. Many approaches have been developed 

to handle deadlock in multicore systems, but very little attention has been paid to 

comparing the performance of those approaches with respect to different performance 

parameters. 

To fulfil the above mentioned shortfalls, we need a flexible simulation testbed to 

study deadlock handling algorithms and to observe their performance differences in 

multicore systems. The development of such a framework is the main goal of this 

thesis. In the framework, we implemented a general a scenario, scenario for the Din-

ing Philosopher 's problem and scenario for the Banker's algorithm. In addition to 

these scenarios, we demonstrate the flexibility, soundness, and use of the proposed 

framework by simulating two different deadlock handling strategies - deadlock avoid-

ance (the Banker 's algorithm) and deadlock detection (Dreadlocks). The deadlock 

detection is followed by deadlock recovery to resolve the detected deadlock. We also 

present result analysis for the different set of experiments performed on the imple-

mented strategies. The proposed simulation testbed to study deadlocks in multicore 

systems is developed using Java. 
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Chapter 1 

Introduction 

Deadlock was introduced and studied in the mid-1960s by Dijktra [11], originally 

referred to as "Deadly Embrace". Additional work was done in late 1960s and early 

1970s by Coffman [9], Habermann [16], Holt [20] and others. In this chapter, we 

start by introducing the problem of deadlock, necessary conditions for deadlock to 

happen, and techniques to deal with deadlock. A discussion about changing trends 

in hardware, the rationale behind this thesis, and the contribution it lends to the 

knowledge will be discussed further on. 

1.1 Overview 

Deadlock is a situation in a resource allocation system in which two or more processes 

are in a simultaneous wait state, each one waiting for one of the others to release a 

resource before it can proceed [4]. In the above definition of deadlock, processes are 

the active entities in a system that share resources such as data items in a database, 

a data structure, a file etc. Figure 1.1 shows a system in a deadlocked state. 
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Figure 1.1: Deadlock Situation 

In the figure above, ellipses represent processes while rectangles represent re-

sources. An arrow going towards a resource from a process shows that a request 

is made by the process to acquire the resource, while an arrow going towards a pro-

cess from a resource shows that the resource is held by the process. Moreover, a 

resource may have several instances and in that case a process can request one or 

more instances of a resource. 

Presence of four conditions is necessary for deadlock to occur in any system. These 

conditions are known as Coffman's conditions as they are from a 1971 publication by 

Coffman et al. [9]. Coffman's conditions are Mutual exclusion, Hold and Wait , No 

preemption and Circular wait. 

• Mutual exclusion means that only one process may use a resource at a time, in 

a given system. 

• Hold and wait describes that a process may hold allocated resources while wait-
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ing for the requested resources to be allocated. 

• No preemption indicates that no resources can be forcefully taken back from a 

process holding it , unless a process releases the held resources upon completion. 

If the first three conditions hold, as a consequence, a system may end up in the 

fourth condition of circular wait. 

• Circular wait is defined as, a closed chain of processes, such that each process 

holds at least one resource needed by the next process in the chain [31 J. 

In Figure 1.1 , process Pl has exclusive access to resource R2 and process P2 has 

exclusive access to resource Rl (Mutual Exclusion). To complete their executions, 

process Pl needs resource Rl and process P2 needs resource R2 (Hold and wait). 

Any process can not release the resources that they hold before finishing their execu-

tions (No preemption). Thus both processes wait for the resources that are held by 

other processes ( Circular wait) and hence they stay in waiting state forever. In this 

situation, the system is deadlocked. 

Knapp [22] and Singhal [30] discuss two types of deadlock: resource deadlocks and 

communication deadlocks. Resource deadlocks involve reusable resources while com-

munication deadlocks involve consumable resources. A reusable resource is one that 

can be safely used by only one process at a time and is not depleted by that use such 

as CPU, printer, disk etc. whereas a consumable resource is one that can be created 

and consumed such as messages or signals used between processes to communicate 

[31 J. This thesis focus only on resource deadlock, referred to as deadlock further. 

There are three general strategies to deal with deadlock ( i) Deadlock prevention, 

( ii) Deadlock avoidance and ( iii) Deadlock detection and recovery. 
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• Deadlock prevention: A deadlock prevention technique breaks at least one 

of the four Coffman's conditions [9]. Breaking one of the first three conditions 

is hard because it is difficult to determine which of the conditions may lead the 

system to deadlock. Moreover, satisfying these conditions is the fundamental 

requirement for most of the systems. Hence , most of the deadlock prevention 

techniques work by preventing circular waiting of processes. 

• Deadlock Avoidance: If some specific information, such as all required re-

sources, about processes in a system are known in advance, deadlock can be 

avoided by always keeping the system in a safe state. A system is considered 

to be in a safe state if all the processes can complete their execution without 

forming a deadlock [17]. All the systems are in a safe state at the beginning 

because the processes can always be executed sequentially. Deadlock can never 

occur in a sequential execution as there is no competition for resources. A safe 

state never ends in a deadlock. Also not all unsafe states result in a deadlock. 

Safe or unsafe states only determine the probability that a system might enter a 

deadlock. One of the limitations of this strategy is that knowing all the required 

resources in advance is unrealistic. Determining that information in advance is 

not possible for modern systems due to their dynamic behaviour. The Banker 's 

algorithm is a popular method for deadlock avoidance which is explained in 

Chapter 3. 

• Deadlock Detection and Recovery: Due to the limitation of prevention and 

avoidance algorithms as discussed above, detection and recovery techniques are 

more popular in practical systems. They allow processes to acquire resources 

whenever possible and a check can be done periodically to detect if deadlock 

has occurred in the system. Upon detection of deadlock, a recovery strategy 

is applied. Typically, a recovery strategy includes aborting all or some of the 
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deadlocked processes. These techniques are suitable in systems where deadlocks 

are not frequent, and recovery cost is not very expensive. We have implemented 

a deadlock detection technique known as Dreadlocks [23] in our system. This 

technique is explained in Chapter 3. 

Once a deadlock is formed and detected in the system, the next step is deadlock 

recovery. Deadlock recovery involves t he system taking corrective actions by se-

lecting some processes to forcefully terminate and make their acquired resources 

available. The terminated processes can be re-init iated later. If t he selection of 

victim processes is not done carefully, abort ing can lead to livelocks. " Livelock 

is a sit uation in which two or more processes cont inuously change their states 

in response to changes in the other process(es) without doing any useful work" 

[31 J. The selection criteria to choose one or more processes to terminate are 

discussed in Chapter 3. 

Most of the modern operating systems- including Windows and the UNIX family-

ignore deadlock [32]. In these systems, if the user observe that t he system is slowing 

down or freezes due to some problem, probably deadlock, it is simply restarted. There 

are some reasons to ignore a deadlock: ( i) If the occurrence of deadlock is very rare, 

and prevent ion, avoidance or detection and recovery overhead is very high, ( ii) If 

restart ing jobs does not incur significant ly high costs, and (iii) If other deadlock 

handling techniques make the system slow, or are restrictive and complex, ignoring 

deadlock is preferred. Ignoring deadlock is chosen assuming that most users would 

prefer t he occasional occurrence of deadlock rather than living with the limitations of 

deadlock handling strategies. 
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1.2 Thends in Hardware Development 

There has been a significant change in computer systems hardware in the past couple of 

decades. Initially, most systems were standalone using single cores. Later, distributed 

systems were developed, followed recently by multicore systems becoming popular for 

both personal and commercial purposes. Hardware developments in turn demand 

changes in programming for effective use of multicore systems. So, multithreaded 

programs designed to frequently share resources is expected to become a norm for 

program development in the future . 

1.2.1 Distributed Systems vs Multicore Systems 

Distributed systems consist of geographically distant , separate, autonomous comput-

ers, connected through a network, communicating with each other by passing mes-

sages. They could often coordinate their activities to solve a common problem or 

to share the computing resources and storage devices of the systems. System or ap-

plication processes executing on any network node can use both local and remote 

sha red resources , simultaneously and exclusively. A multicore processor is an inte-

grated circuit (IC) to which two or more processors have been attached for enhanced 

performance, reduced power consumption, and more efficient simultaneous processing 

of multiple tasks. 

Distributed and multicore systems share two similarities: concurrency and resource 

sharing. To achieve these, nodes in distributed systems and cores in multicore systems 

have to coordinate with each other. For the purposes of communication and coordi-
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nation, message passing is used in distributed systems, whereas reading and writing 

through shared memory is used in multicore systems. Each node in distributed sys-

tems is an autonomous system while in multicore systems a core is not. Concurrency 

and resource sharing can lead to deadlock in both the systems. 

1.2.2 Deadlock: Distributed Systems vs Multicore Systems 

Two types of deadlock can occur in distributed systems, either resource deadlock 

or communication deadlock. Resource deadlock happens mainly because of circular 

dependencies of processes on each other for resources. Communication deadlock pri-

marily occurs due to lost or delayed messages. Because of the architectural differences 

discussed above, resource deadlocks are more common than communication deadlocks 

in multicore systems. 

Deadlocks are dealt with either in a centralized way or a distributed way in dis-

tributed systems. In centralized deadlock handling algorithms, a single node keeps list 

of all other nodes and has complete authority to allocate and preempt resources from 

all other nodes. In distributed deadlock handling algorithms all the nodes keep list of 

other nodes and update the list frequently, whereas in multicore systems, deadlocks 

are mostly dealt with in a centralized way because cores are not autonomous and are 

typically managed by a single operating system. Distributed deadlock handling algo-

rithms are developed keeping communication overhead in mind. Multicore systems 

do not have to deal with the overhead of keeping the node address-lists and different 

topologies among the nodes. Moreover , to the best of our knowledge, no performance 

evaluation studies have been performed for multicore systems. 

Multicore systems use locks to avoid data races in programs. Improper use of these 
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locks can create deadlock in t he system. Improper lock acquisit ion can happen due 

to following reasons: ( i) It becomes difficult to follow t he lock order discipline that 

could avoid deadlock as most of t he t ime software systems are written by multiple 

programmers. (ii) As stated before, adding new locks to fix race conditions introduces 

deadlock. ( iii) Sometimes third-party software, such as plugins, are incorporated in 

software systems; such t hird-party software may not follow t he locking order discipline 

followed by t he software systems and t his could result in deadlock. 

Due to the uncertainty of deadlock and its occurrence in modern systems, re-

searchers have come up with different approaches to deal wit h deadlock in mult icore 

systems. The approaches are classified as follows: Language-level [5 , 18], Static anal-

ysis [12, 14, 27], Dynamic analysis [1, 21, 29], Model checking [15] and Type and 

annotation based techniques [7]. 

Language-level approaches strive to make concurrency control easier by providing 

higher level constructs that do not allow uses that can cause errors. Even though 

languages alleviate some of t he complexity of concurrency, the problem is not com-

pletely eliminated. Static program analysis techniques do not require any execution 

of t he application as t hey directly work wit h source code. They examine all the 

possible deadlocks and often give no false negatives, but they report many false pos-

it ives. Dynamic program analysis techniques find all potential deadlocks during t he 

program execution. As they operate at runtime, t hey only visit feasible paths and 

have accurate views of the values of variables. 

Model checking takes simplified descriptions of t he code and uses techniques to 

explore vast state spaces efficient ly as it systematically tests t he code on all inputs . 

Because of this, this approach does not need to explore massive state spaces in order 

to find deadlocks. Type and annotation based techniques help to avoid deadlocks 
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during coding by allowing programmers to specify a partial order among locks. Also, 

t he type checker statically ensures that the part ial order among locks is maintained, 

and well-typed programs are deadlock-free. We discuss these approaches in detail in 

Chapter 2. 

Parallel systems share more similarit ies with mult icore systems than distributed 

systems. But due to t heir architectural and functional level differences, deadlock han-

dling techniques for parallel systems cannot be directly applied to mult icore systems. 

The differences between parallel and mult icore system are as follows: 

• Large tasks are divided into several, similar , smaller subtasks to carry out com-

putations in parallel systems. Then , each of the smaller subtask is solved in-

dependently and at the same t ime. The results of the smaller subtasks are 

combined upon completion. In multicore systems, the tasks are often not re-

lated to each other. Also, they often do not work at t he same t ime rather 

multicore systems use concept of interleaving. 

• Parallel systems are basically designed for speed hence they have well defined 

bases such as switching context. They also share less of controllers and cache 

memory. Context switching depends on type of scheduler in mult icore systems. 

Multicore systems also share more of controllers and cache t han parallel systems. 

Another type of hardware system, that is similar to multicore systems, is mult i-

processor systems. There are mult iple ICs in single processor of mult icore systems 

whereas mult iprocessor systems consist of more than one processors. Each of the pro-

cessor in multiprocessor systems may contain one or more ICs in t hem. In terms of 

efficiency, mult icore systems perform better on a single program because t he cores can 
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execute multiple instructions at the same time but not multiple programs. When us-

ing multiple programs, multiprocessor system perform better than multicore systems. 

Due to the differences in their architectures, multicore system is more favourable 

system for ordinary users. Any extra support or configuration is not required for 

multicore systems and they cost less too. Multiprocessor systems are more favourable 

for special purpose uses. Often they require extra support or configuration based on 

the purpose, and they are expensive too. 

1.3 Motivation 

Deadlock is a very common phenomenon in software applications. Lu et al. showed 

that out of 105 randomly selected real world concurrency bugs that are collected 

from 4 large open-source applications: MySQL, Apache, Mozilla and OpenOffice -

representing both server and client applications, 31 are deadlock bugs [26]. Also, 

a report produced by Oracle's bug database shows that roughly 6500 out of 198,000 

reports, or 3%, contain the keyword 'deadlock' [27]. Although occurrence of deadlocks 

in systems is not frequent in some cases, the effect are drastic when deadlock occurs. 

During the testing phase, deadlocks can be easily created and detected stati-

cally but detecting deadlocks dynamically is difficult because concurrent applications 

are non-deterministic. Deadlocks happen under certain intricate sequences of low-

probability events, and producing with this subtle sequence of low-probability events 

is not guaranteed during execution of the application. Stress testing or random testing 

may not always show the existence of deadlocks in an application, but the probability 

of their occurrence increases greatly when an application is released to thousands of 

users. Therefore, deadlock detection tools are required to analyze and find real and 
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potential deadlocks in application. 

From the discussion in the previous section, we observe that a lot of research has 

been conducted to develop techniques to handle deadlocks. But very little attention 

has been paid towards comparing the performance of those approaches to deal with 

deadlock. To the best of our knowledge , no research has been pursued to compare 

the performance of different algorithms in multicore systems. All of the performance 

comparisons that we could find were done on distributed systems, distributed database 

systems, flexible manufacturing systems and others. Moreover, only a few of the 

performance studies use simulation testbeds to analyze the performances. The ongoing 

trend in processor technology indicates that future systems will have hundreds and 

thousands of cores. To maximize their utility, new programs have to be carefully 

designed and tested using a large number of cores and a proper set of experiments 

before they can be adopted for practical use. 

Thus the significant presence of deadlocks in large-scale, real-world applications, 

the uncertainty around their occurrence, their crucial effect and lack of research work 

towards performance study in multicore systems are the main motivating factors for 

this research. Awareness that the field of multicore systems is quite new and emerging 

compared to other well-established computer systems also provides rationale for this 

study. 

1.4 Contributions 

As discussed before, deadlock handling techniques that are developed for earlier pro-

cessors and distributed systems will not work well with multicore systems, mainly 
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because of the difference in the architecture of these systems. Moreover, communica-

tion overhead is one of the most influencing factors for deadlock handling techniques 

that are used in distributed systems. As multicore systems use shared memory, the 

effect of communication overhead is rare. Hence, there is a need to explore more 

deadlock handling techniques that are efficient in multicore systems. However , there 

is also lack of availability of tools to study deadlock handling techniques with respect 

to different performance parameters in multicore systems. 

This thesis helps to fulfil the above mentioned shortfalls in the field of computer 

science research. Studying performance of the implemented deadlock handling tech-

niques and its effect in multicore systems is very important. Developing a flexible 

simulation testbed would be very useful to study deadlock handling algorithms and 

also to observe different performance parameters for those algorithms in multicore sys-

tems. Development of such a flexible framework is one of the primary contributions 

of this thesis. All the primary contributions of this thesis are listed as follows: 

• A flexible simulation framework to incorporate different types of deadlock han-

dling algorithms 

• Three different scenarios implemented to simulate different type of deadlock han-

dling techniques. The scenarios are: General scenario , scenario for the Dining 

Philosopher's problem, scenario for the Banker's algorithm 

• Two different deadlock handling strategies are simulated in the framework with 

the above mentioned scenarios. The deadlock avoidance strategy is the Banker's 

algorithm and deadlock detection strategy is Dreadlocks. Deadlock detection is 

followed by deadlock recovery- termination of one of the victim processes to end 

the deadlock. 
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• Result analysis of experiments performed on implemented algorithms with re-

spect to various performance metrics 

1.5 Thesis Organization 

The overview of the problem of deadlock, necessary conditions that are required for 

the formation of deadlock and different approaches to handle deadlocks were briefly 

explained in this chapter. In Chapter 2, a detailed literature review of the current 

methods to deal with the problem of deadlock in multicore system is presented. The 

review and the methods are categorized by different types. At the end of this chapter 

we present a comprehensive survey of all the performance evaluation studies done 

on deadlock handling techniques in different systems. In Chapter 3, we present the 

details about design and implementation of the simulation framework for deadlock 

in multicore systems; the primary contributions of this thesis are explained in this 

chapter. Later in this chapter , we explain different deadlock handling strategies that 

are implemented in our framework. We discuss various traces generated from the 

simulation run and the calculation of performance metrics from these traces in Chapter 

4. Results and experimentation are described in Chapter 5. Lastly, we conclude in 

Chapter 6 with discussing possible future work that can be conducted to extend the 

research carried out in this thesis. 
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Chapter 2 

Background and Related Work 

Research for this t hesis began with a paper t hat my supervisor gave me, about a 

deadlock detection algorit hm, called "Dreadlocks: Efficient Deadlock Detection" [23], 

developed by Eric Koskinen and Maurice Herlihy. This algorit hm to detect dead-

locks in mult it hreaded programs gained our attent ion and we began to look for other 

approaches that have been developed to deal wit h deadlocks in mult icore systems. 

We explain Dreadlocks in detail in Chapter 3. Here, we discuss t he other interesting 

approaches in t he literature. 

2.1 Deadlock Handling Approaches in Multicore 

Systems 

As briefly discussed in Chapter 1, many different approaches have been developed to 

handle deadlocks in mult icore systems. The approaches are classified in five categories 

(i) Language-level approaches , (ii) Static Analysis, (iii) Dynamic Analysis, (iv) Model 

Checking and ( v) Type and annotation based techniques. They are explained in detail 

as follows: 
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2 .1.1 Language-level A pp roaches 

Language level approaches make concurrency control easier by providing higher level 

constructs t hat do not allow error-prone uses . This can be achieved by statically 

binding shared variables to t he locks in order to protect them. Two different language-

level approaches are discussed here. 

First, we discuss a framework implemented in J ava which is presented by Bensalem 

et al. [5]. This framework confirms deadlock potent ials, detected by runt ime analysis 

of a single run of a multit hreaded program. The mult it hreaded program under exam-

ination is implemented to produce lock and unlock events. A trace is generated when 

t he implemented program is executed. The trace consists of the lock and unlock oper-

ations performed during the specific run. An observer is constructed using each cycle 

that can detect t he occurrence of the corresponding real deadlock. Here, an observer 

is a data structure that characterizes all possible interleavings that lead to a deadlock 

state [5] . It also checks t he possibility of t he deadlock reoccurring during subsequent 

test runs. In t his framework, a controller determines the optimal scheduling strategy 

that will maximize t he probability for the corresponding real deadlock to occur, when 

composed with the program. 

The methodology of the approach involves four phases: ( i) By examining a single 

execut ion t race, deadlock potent ials in multithreaded program and t he system under 

test (SUT ) are automatically detected , ( ii) Automatic generation of an observer for 

each cycle in t he result ing lock graph , ( iii) Implementation of t he system under test 

in order to confirm deadlock potent ials and (iv) By performing multiple "controlled 

" h" ". t t· t " [5] runs searc mg mcorrec execu 1011 races . 
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Elaborating on these phases, the first step involves detecting deadlock potentials in 

the SUT. Then, the instrumentation module automatically implements the bytecode 

class files of the multithreaded program under test. This is done by adding new 

instructions that, when executed, generate the execution trace consisting of lock and 

unlock events. The observer module reads the event stream and performs the deadlock 

analysis. While the lock and unlock events are observed, the implemented program 

under observation is executed. Then a graph is constructed with the edges between 

locks suggesting lock orders. Any cycle in the graph signals a deadlock. Once the 

lock graph is generated , an observer for each cycle in the lock graph is generated 

automatically. The observer observes the SUT. In the last step , execution of SUT is 

controlled. This execution contains deadlock if it is "accepted" by the observer [5]. 

The second approach works for parallel programs that use message passing for 

communication. One of the common problems in such programs is the detection of 

deadlocks. Haque presented a deadlock detector, Message Passing Interface Deadlock 

Detector (MPIDD) , to dynamically detect deadlocks in parallel programs that are 

written using C++ and Message Passing Interface (MPI) [18]. There are two main 

parts of the MPIDD system, the detector and the MPIDD wrappers. 

The detector receives input from the client program about MPI commands being 

used. Then by using this information, the detector constructs a state and determines 

if there is a deadlock in the client programs. The MPI function call wrappers stimulate 

the client program's original calls and provide the information to the detector. MPI's 

profiling layer requires no significant modification of the user 's code and incurs very 

little overhead when invoked. This property of the MPI's profiling layer is used by the 

detector. A wrapper containing information needed by the detector is created using 

the MPI 's profiling layer. The actual function call is embedded inside this wrapper. 
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The new wrapped routines relay the information of what commands are being issued 

to the deadlock detector program. 

The key advantages of this tool are its portability, very low overhead and the use 

of MPI's profiling layer that allows use of this tool without modification of the source 

code. By including the file 'MPIDD .h' in the original source code, the client can 

obtain all the functionality transparently [18]. Since MPI is a widely used library, 

it is a useful approach. Although the main limitation of this tool is that it is MPI 

specific, it can also be easily adoptable to other libraries. 

Even though language level approach alleviates some of the complexity of con-

currency, the problem is not completely eliminated. Also, to get any benefits from 

this approach, all the code has to be written in a particular language. These limita-

tions prevent programmers from using other languages that might better suit their 

requirements. 

2.1.2 Static Analysis 

Static program analysis techniques do not require any execution of the application as 

they directly work with source code. Here, we discuss three different static program 

analysis techniques as follows: 

The first technique is called RacerX [12]. It is a static tool that uses flow sensitive, 

interprocedural analysis to detect deadlocks. This technique checks information such 

as which locks protect which operations , which shared accesses are dangerous and 

which code contexts are multithreaded. On higher level, checking a system with Rac-

erX involves five phases [12] ( i) Retargeting RacerX to system-specific locking func-
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tion, ( ii) Obtaining a control flow graph from the checked system, ( iii) Running the 

deadlock and race checkers over the obtained flow graph, (iv) Subsequent-processing 

and ranking the results , and ( v) Examining the results. Out of all these phases, the 

first and the last phases are done by the user , RacerX does the middle three. 

The second technique is an effective static deadlock detection algorithm for Java, 

presented by Naik et al. [27]. The key idea behind this is to show the complex 

property of deadlock freedom for a pair of threads/locks in terms of six conditions: 

reachable, aliasing, escaping, parallel, non-reentrant and non-guarded [27]. 

Effectively approximating these conditions requires precise call-graph and points-

to information. This algorithm uses the combined call-graph and may-alias analysis 

for effective approximation. This combination of analysis is called k-object-sensitive 

analysis. It reliably approximates the first four conditions using well-known static 

analysis, a call-graph analysis, a may-alias analysis, a thread-escape analysis, and 

a may-happen analysis respectively. In order to soundly approximate the last two 

conditions , it requires a must-alias analysis which is much harder than a may-alias 

analysis. This technique addresses this difficulty using an unsound solution of using 

may-alias analysis to pose as a must-alias analysis. Hence, this algorithm failed to 

report some real deadlocks [27]. 

All of the deadlock detection tools helped to find deadlock in concurrent programs. 

The problem of detecting deadlock in libraries has not been investigated much. The 

third approach, developed by Williams et al. helps with that [34]. This problem is 

vital as library writers may wish to ensure their library is deadlock-free for any calling 

pattern. This method checks if it is possible to deadlock the library by randomly 

calling some set of its public methods. On detecting the possibility of deadlock, it 

provides the name of the methods and variables involved. The deadlock detector in 
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this method utilizes an interprocedural dataflow analysis. 

By using this method, it is possible to track possible sequences of lock acquisitions 

inside a Java library. The analysis is flow-sensitive and context-sensitive. At each 

program point, the analysis computes a symbolic state modeling execution state of 

the library. At the end of a method, this symbolic state serves as a method summary. 

The analysis is executed frequently over all methods until a fixed point is reached [34]. 

One of the limitations of static analysis approaches is that they examine all the 

possible deadlocks and often give no false negatives, but they report many false posi-

tives. For example, the static deadlock detector developed by Williams et al. reports 

100,000 deadlocks in Sun 's JDK 1.4, while only 7 are real deadlocks [34] . 

2.1.3 Dynamic Analysis 

Dynamic program analysis techniques use an execution of program to find all potential 

deadlocks. They only visit feasible paths and have precise views of the values of 

variables because they operate at runtime. Here, we discuss three different dynamic 

analysis techniques as follows: 

Agarwal and Stoller describe a runtime notion of potential deadlock in programs, 

written in any languages that use synchronization mechanism like locks, semaphores 

and condition variables [l]. They test the potential for deadlock by checking if there 

is any feasible permutation of the execution results in deadlock. The viability of such 

permutations is determined by ordering constraints amongst events in the execution. 

Havelund proposed the GoodLock Algorithm that detects potential deadlocks involv-

ing two threads [19]. This was later generalized to have any number of threads by 
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Bensalem et al. [6] and Agarwal et al. [2]. The algorithm presented Agarwal et al. 

[1] is extended in [2] to handle non block structured locking as well. 

The second dynamic analysis technique we discuss is DEADLOCKFUZZER, de-

veloped by Joshi, Park and Naik [21]. This technique has two stages. In the first stage, 

a multithreaded program is executed and observed to find potential deadlocks that 

could happen in some executions of the program. This phase uses an informative and 

a simple variant of the Goodlock algorithm, called informative Goodlock or iGoodlock 

[19]. iGoodlock identifies potential deadlocks even if the observed execution does not 

end in a deadlock state. It provides debugging information suitable for identifying 

the cause of deadlock. The second stage uses debugging information provided by the 

first stage to create a real deadlock with a high probability. In the second stage, 

a scheduler is favored to generate an execution that creates a real deadlock that is 

reported in the previous stage with high probability of occurrence. A limitation of 

iGoodlock is that it can give false positives because it does not consider the happens-

before relationship between lock acquisition and release into account. As a result , the 

user has to manually go through such potential deadlocks. This burden is removed 

from users by the second stage of DEADLOCKFUZZER [21]. 

Qi et al. presented an efficient dynamic deadlock detection tool called Multi-

coreSDK [29].The algorithm works in two phases: In the first phase, a reduced lock 

graph is constructed to identify program locations where lock operations may cause 

deadlocks. This phase examines the execution trace and constructs a lock graph based 

on the program locations of lock events. Once the lock graph is built, the algorithm 

finds cycles in it to compute a program locations set comprising of deadlock cycles. 

This set signifies program locations that may associate with deadlocks and is used in 

the second phase to filter deadlock free lock events. 
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In the second phase, an analysis report from the first phase is used to determine 

deadlocks in the lock graph with filtered locks. This phase examines the execution 

trace again, and constructs another lock graph based on the lock id of lock events. 

Particularly only lock events from the set derived from the first phase are recorded 

in the second lock graph. Finally cycles in this lock graph are found to determine 

potential deadlocks. By using two passes over the program trace and filtering out the 

locks that are not involved in deadlock, MulticoreSDK efficiently removes multiple 

lock nodes and edges which do not take part in deadlock formation [29]. Thus, it is 

more scalable for large real-world applications and more efficient in terms of memory 

utilization and time. 

The downsides of dynamic deadlock detection techniques are that they suffer from 

lack of scalability and performance problems due to the large size of the lock graphs 

of large industrial strength applications and cannot handle them. Moreover, they 

can only find errors on a small number of execution paths as the number of feasible 

paths grows exponentially with the size of code. This renders the use of dynamic 

analysis impractical due to a lack of scalability. Another limitation of this approach 

is that dynamic deadlock detection has a very high computational price which causes 

runtime overhead. Hence, it is time consuming to run test cases, which makes this 

approach impossible for the programs with strict timing requirements. In theory, 

dynamic deadlock detection can compute arbitrarily accurate information, but in 

practice, they highly depend on the availability of computing resources. 
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2.1.4 Model Checking 

Model checking is another way to find deadlocks in an application. Model checking 

takes a simplified description of the code and uses techniques to explore vast state 

spaces efficiently as it systematically tests the code on all inputs. Because of this , this 

approach does not need to explore massive state spaces in hardware circuits in order 

to find deadlocks. It analyses the correctness of concurrent reactive systems doing 

verification by state-space exploration. 

An extension of model checking, VeriSoft, is presented by Godefroid [15]. VeriSoft 

directly deals with implementations of communication protocols written in program-

ming languages such as C or C++. Thus it extends the state space exploration from 

modeling languages to programming languages. It is a tool to systematically explore 

the state space of systems composed of several concurrent processes executing arbi-

trary code written in full-fledged programming languages such as C or C++. 

The algorithm can be used for detecting deadlocks and assertion violations without 

incurring the risk of any incompleteness in the verification results for finite acyclic 

state spaces. In addition to that, VeriSoft also checks for divergence and livelocks. A 

divergence occurs when a process does not attempt to execute any visible operation 

for more than a specified amount of time. A livelock occurs when a process has no 

enabled transition during a sequence of more than a specified number of successive 

global states. In practice, the algorithm can be used for systematically and efficiently 

testing the correctness of any concurrent system with or without acyclic state space 

[15]. 

Unfortunately, model checking fails to scale for large systems as it requires sig-
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nificant effort both to specify the system, and in scaling it down enough to execute 

in the model checking environment. Due to the huge size of current Operating Sys-

tems, model checking an entire system of the size of an Operating System is still not 

possible. Hence, model checking techniques are only restricted to the verification of 

properties of models. 

2.1.5 Type and Annotation Based Techniques 

Type and annotation based techniques help to avoid deadlocks during coding by 

allowing programmers to specify a partial order among locks . Also the type checker 

statically ensures that the partial order among locks is maintained and well-typed 

programs are deadlock-free. 

Boyapati , Lee and Rinard presented an ownership type system for multithreaded 

programs that allows programmers to specify a partial order among locks [7]. It 

allows them to partition the locks into a fixed number of equivalence classes and 

specify a partial order among equivalence classes. The type checker then statically 

ensures that whenever more than one lock is held by a thread, the thread acquires the 

lock in descending order. Well-typed programs in this system are guaranteed to be 

deadlock-free. The type system also allows programmers to use recursive tree-based 

data structures to describe the partial order. 

This system allows changes to partial order through mutation to data structure at 

runtime. The basic idea for this system is that the programmers keep locking discipline 

in mind while writing multithreaded programs. It allows programmers to declare this 

locking discipline in the form of type declarations in their programs. It also statically 

verifies consistency of a program with its type declaration. The prototype of this 
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system is implemented in Java including threads, arrays, constructors, static fields, 

dynamic class loading, runtime downcasts , exceptions and interfaces. 

Some limitations of this approach are that it imposes the burden of annotation on 

programmers and scaling it to larger systems is also not feasible. 

2.2 Performance Evaluation Studies of Deadlock 

Handling Algorithms · 

Deadlock is one of the key issues faced in many different fields like routing, databases, 

operating systems, manufacturing systems and others. Most of the research carried 

out in this field focuses on solving the problem of deadlock. Some of the proposed 

solutions have also undergone comparative performance evaluations but there has not 

been any research done on comprehensive performance comparisons of those solutions. 

Studies [8, 24, 25 , 13] and [35] , entail comparative performance analyses. Among these, 

[25] and [35] talk about the detection of deadlock in distributed systems, [8] and [24] 

provide a performance analysis for the solutions of deadlock detection techniques in 

Distributed Database Systems and [13] details a comparative performance analysis of 

a deadlock avoidance control algorithm for Flexible Manufacturing Systems. 

A probabilistic performance analysis of a deadlock detection algorithm in dis-

tributed systems is presented by Lee and Kim [25]. The distributed deadlock detec-

tion algorithm declares deadlock upon finding back edges in a distributed search tree 

constructed by the propagation of probes. The tree is built as follows: The initiator 

of the algorithm becomes the root of a tree. Then it sends out probes, called ASK , to 

all of its successors at once. If a node receives the probe for the first time, it becomes 

24 



the child of the sender of the probe. The probe is then further propagated until it 

reaches an executing node or a tree node that has already received a probe. Each tree 

is assigned a unique path string to represent the level of the node in the tree and to 

distinguish one branch from another in the tree. With the help of path strings, not 

only back edges are identified, but other types of edges are also found , such as cross 

and forward edges. The ASK probe carries the candidate victim identifier which has 

the lowest priority among those nodes visited. If the candidate victim is inside the 

detected deadlock cycle, it will receive an abort message [25]. 

The performance of this algorithm is evaluated on measures such as deadlock 

duration, number of algorithms initiated, and mean waiting time of a blocked process. 

Deadlock duration is the elapsed time until a deadlock is detected after it is formed. 

For distributed systems, a detection algorithm can be started and executed by several 

sites simultaneously. That may degrade performance of the system by generating 

too many messages. So the expected number of algorithm initiations throughout the 

system is also an important measure. 

Bukhres compared two distributed deadlock detection algorithms for distributed 

database systems [8]. The algorithms are from two different categories, one is central-

ized and the other is distributed. Centralized algorithms maintain the wait-for-graph 

(WFG) at the control site. Control site is designated to perform a deadlock detection 

activity by gathering the relevant information from all the other sites. At this site 

the graph is updated and the search for the cycle involving deadlock is carried out. 

In distributed algorithms, the WFG is maintained at a different site in the system. 

A cycle may be composed of different transactions at different sites, and several sites 

participate in deadlock detection. 

Centralized algorithms have poor reliability compared to distributed algorithms 
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because the whole system fails if the control site fails in the centralized system. How-

ever, distributed algorithms are difficult to design and implement as detection of 

deadlock can be initiated from any site. Simulation studies presented by Bukhres 

show that the centralized algorithms perform a little better than the distributed algo-

rithms under a lightly-loaded condition. Whereas under a heavily-loaded condition, 

the distributed algorithms perform better than the centralized algorithms [8]. The 

measures taken in to consideration to compare performances are throughput, restart 

rate, deadlock life time and the effect of request pattern against throughput and num-

ber of messages. The conclusion for this study is that the choice of the best deadlock 

detection algorithm is dependent upon the operating region of the system. 

The problem of evaluating and comparing the performance of deadlock avoidance 

control policies applied to Flexible Manufacturing Systems (FMS) is addressed by 

Ferrarini [13]. The problem is discussed with both timed and untimed models. For 

both models the problem is considered with and without deadlock avoidance con-

trol policies. Some of the key metrics measured are deadlock percentage, frequency 

of occurrence, deadlock rejection percentage, unreachable stage percentage, product 

survival rate and blocking capacity [13]. 

From the above discussion , we observe that there is no simulation tool available to 

study and compare performance of different deadlock handling approaches in multicore 

systems. Moreover , the studies mentioned above are very old and not available to 

further extend their work on. Hence, we believe that our simulation testbed will 

be really useful to study and compare performance of different deadlock handling 

approaches in multicore systems. 
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2.3 Summary 

In this chapter, various approaches that have been developed to handle deadlock in 

multicore systems were discussed. Then, we presented a brief survey on different 

performance evaluation studies done on deadlock in distributed systems, distributed 

database systems, and a flexible manufacturing. In the next chapter , we discuss 

implementation detail of simulation testbed to study deadlock handling approaches 

in multicore systems. 
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Chapter 3 

Simulation Framework for Deadlock 

in Multicore Systems 

This chapter describes the current implementation of simulation framework for dead-

lock handling algorithms in multicore systems. The implementation is done by using 

Discrete Event Simulation (DES). Before describing the actual framework, DES is 

briefly explained. 

3.1 Simulation 

A computer simulation is a technique that attempts to model and observe the behavior 

of an abstract module of a particular system. A simulator is a computer program to 

transform the states of a system in discrete time points over a specific period of time. 

Simulation is a very effective tool to study the dynamic behavior of complex systems. 

Computer Simulations can be classified in two types , either discrete or continuous , 

based on how the system state is modeled and simulated. In the continuous simula-

tion, the state variables of the system change continuously over time while in discrete 

simulation the state variables change only at discrete times. Based on the advance-

ment of simulation time and the updates of the system state, discrete simulation can 
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be further divided into two types: time-stepped and event-driven. As names suggest, 

in time-stepped simulation the system state is updated at every time step while in 

event-driven simulation, the states of the system are updated at the occurrence of 

events. 

Ozgun and Barlas presented a comparison between approaches of discrete event 

simulation and continuous simulation on a simple queuing system [28]. Discrete event 

simulation comprises an event list , a simulation clock and an event scheduler. The 

simulator maintains a queue of events sorted according to the occurrence of their 

simulation time. The simulation time is advanced to the time of occurrence of the 

next event in the event list by a Simulation clock. The system states are changed by 

each execution of events, which is done by an event scheduler. 

For example, in simulating the behavior of university students, the number of 

students enrolled and the number of students graduated are state variables and they 

will be updated on the occurrence of the events in the system. The number of students 

enrolled will be updated at the start of 8rach semester and the number of students 

graduated will be updated when the students graduate at the end of academic year. 

Simulation ends at the time when the event list is empty or simulation time is up. The 

advancement of a simulation time can be the same, faster or slower than real-time as 

it is not important to execute simulation in real-time. For example, in the university 

example, the simulation does not have to wait for an entire year length and it can be 

faster than real-time. Using the example of a driving test , simulation can be exhibited 

in real-time speed. On the other hand, protein synthesis in a cell can be simulated 

slower than real-time. 

We mainly use discrete event simulation to implement different components of our 

framework. Next, we move onto a discussion of the building processes of our frame-
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work. As we expanded the multicore scheduling framework , developed by Manickam 

under the guidance of Aravind, to simulate and study deadlocks. We first explain the 

architecture of the Multicore Scheduler System framework. 

3.2 Architecture of Multicore Scheduler System 

Framework 

To observe deadlock in multicore systems, first , we need a framework that simulates 

the behavior of multicore systems. For that purpose, we are using an architecture de-

veloped by Aravind and Manickam [3]. We first briefly explain the architecture of the 

multicore scheduling simulation (MSS) framework. Later, we explain the expansion 

to this framework , that is , what are the added components and how they are inserted 

into MSS. Although the MSS framework consists of different scheduling algorithms, 

we are using only Linux Completely Fair Scheduling in our system. 
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Figure 3.1: Architecture of MSS Framework 

Source: A Flexible Simulation Framework for Mult icore Schedulers [3] 

The higher level architecture of MSS is shown in Figure 3.1. There are five key 

components in it: workload generator , machine, scheduler , execution trace and per-

formance calculation engine. We explain t hem next . 

3.2.1 Workload Generator 

The workload generator is implemented to generate threads. We have to give t he 

number of threads, thread 's mean arrival rate, and thread 's mean service rate as 

input to generate a workload. In t he output, each thread will have a unique id, 
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arrival time, execution time, I/0 points, priority and application class. The t imes 

when a thread will go for I/Os are determined by its I/0 points. For our system, we 

added three scenarios to workload generator: (i) General scenario , (ii) Scenario for 

Dining Philosopher's problem, and (iii) Scenario for t he Banker's algorithm. We also 

added more numerical inputs for resources and instances per resource. 

3.2.2 Machine 

All the computations are done in the machine which is also called a multicore ma-

chine. The machine has a hierarchical structure with the machine at the highest level, 

followed by chips and cores. One or more chips can fit on a machine and two or more 

cores can be in each chip. In the simulation context, each core is capable of executing 

one thread at a time. Cache memory is also an important part of machine, which is 

also structured in a hierarchical manner. Current multicore system have three - 11, 

12 and 13 levels of cache memories. 11 cache is a core level local cache, 12 cache is 

shared among the cores in a chip and all the cores in the machine share the 13 cache. 

3.2.3 Scheduler 

The implemented framework for a scheduler has two tasks: maintaining the load 

among the cores and multitasking threads in each core. According to their functions , 

the first task is referred to as load balancing and the second task as load scheduling, 

hence the components in the implementation are called load balancer and load sched-

uler. The load balancer is responsible for dispatching the new jobs to the appropriate 

local scheduler, and for migrating jobs from one to another local scheduler. The task 

of local scheduler involves scheduling jobs to the cores for execution. The simulation 
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gives the local scheduler centralized control. From the simulation point of view, the 

tasks of the local scheduler are to make a decision to choose a job for execution, to 

determine the amount of execution time, to calculate the progress rate and to produce 

the trace. The progress rate of is a crucial design factor as it can also affect the accu-

racy of execution. The progress rate of a job is dependent on factors such as execution 

speed of the core and the contention for shared resources. The implementation uses a 

simple cache contention model which can easily be replaced with the implementation 

of a more refined model. 

3.2.4 Execution Trace and I/0 Trace 

During the simulation, two types of traces are recorded: the execution trace and 

the I/ 0 trace. In order to generate an activity profile and to calculate performance 

metrics , the execution trace is collected at every context switch. The format of the 

execution trace is a quintuplet: <core id, thread id, execution start time, scheduling 

end time, status>. The status can have values between 0-3 where status is O if the 

thread is preempted by quanta expiration, 1 if by a thread with a higher priority, 2 if 

the thread is going for 1/0 and 3 if completed. The format of 1/0 thread is a triple: 

<thread id, I/ 0 start time, I/ 0 end time>. The performance calculation engine cal-

culates the values of criteria such as response time, fairness and utilization of resources 

for a given set of data, and the result can be passed to the performance observation 

window. The users can then study results from the performance observation window. 
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3.2.5 P erformance Calculation Engine 

The performance study mainly focuses on determining how well the algorithm at-

tempts to fulfil criteria such as response time fairness and utilization of resources. 

Users can study algorithms based on these criteria, calculated and passed to the 

performance observation windows by the performance calculation engine. The perfor-

mance criteria involve wide range of metrics such as interactive response time, CPU 

utilization, throughput, turnaround time , waiting time and response time. 

Next , we will discuss the actual simulation and architecture aspects of Deadlock 

in Multicore Systems. 

3.3 Simulation of Deadlock in Multicore Systems 

The basic deadlock environment involves processes and resources in it. Resources can 

have one or more instances and processes can request up to a maximum number of 

instances of resources available. If the requested resources are available, they could 

be granted access to the process that requested them otherwise that process can wait 

until the resources are available, meanwhile holding on to current resources. 

The simulation of deadlock in multicore systems has three main components: en-

tities, events, and states, in addition to the components of the Multicore Scheduler 

Simulation framework (an event list, a simulation clock and an event scheduler) de-

scribed in the previous sections. The event scheduler manages all of the events from 

an event list according to the simulation clock. Each event from an event list occurs 

at a particular instance of time and changes the state of the entity. Here we consider 
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a system as an entity as well. For our system, entities, states, and events are shown 

in Table 3.1. We define these terminologies first, and then we discuss the simulation 

aspect of the system. 

Process 

Resource 

System 

Waiting 
Running 
Blocked 
Completed 
Acquired 
Free 
Deadlocked 
Deadlock Free 

Request 
Acquire 
Release 
Going for I/ 0 

Table 3.1: Entities, States and Events 

• Processes: Processes are the main entities in the system. A process requires 

resources while executing in its critical section. A critical section is a part of the 

executing process which uses shared resources exclusively. A process can have 

different states such as running, waiting, blocked or completed. Due to their 

concurrent access to finite resources, deadlock could occur in the system. 

• Resources: Resource can be virtual entities such as memory, data structures 

and CPU time or physical entities such as printers, scanners and other I/ 0 

devices. A resource can have one or more units of the same type, which are 

called instances of a resource. Different instances of a resource can be shared 

among different processes but an instance of a resource can be held by only one 

process at a time. A resource can be either free or held by a process. 

• System: A system consist of all the processes, resources and their instances 

and techniques to handle deadlock. 
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• Deadlock[4] : "Deadlock is a sit uation in a resource allocation system in which 

two or more processes are in a simultaneous wait state, each one wait ing for one 

of the others to release a resource before it can proceed.' 

The main events are request, acquire and release of resources by processes. These 

events change states of the system as either deadlocked or deadlock free. For pro-

cesses t he state changes affiliated with these events are waiting, running, blocked or 

completed. If a process acquires all the requested resources then it is in the running 

state, if the process can not acquire all t he requested resources due to unavailability 

of them, then the process is in a waiting state, holding its current resources. Though 

1/ 0 is a physical type of resources that can be accessed by processes, we consider 1/ 0 

as a special case of resources, hence events associated with processes accessing 1/ 0 

are: going for and coming back to a wait ing state from 1/ 0 . When a process goes 

to 1/ 0 the state is changed to blocked and when all t he requests for a process are 

satisfied, its state is changed to completed. 

The simulation of t he system basically includes updating t he state of the ent it ies 

at every simulation point as well as increasing the simulation clock. It involves various 

interactions between these entit ies and occurrence the of deadlocks due to t hat. With 

the help of t hese components , various scenarios and solutions of deadlock can be 

simulated using DES. The simulation records the execut ions as a simulation t race, 

and they are recorded at every occurrence of an event. With this background we 

further int roduce t he architecture of deadlock in mult icore system. 
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3.4 Architecture of Simulation Framework for 

Deadlock in Multicore Systems 

To simulate a basic deadlock prone environment, we need resources, processes that 

can request these resources and a system (Resource Manager) to manage the resources 

for the requests made by processes. From the point of view of the system, processes 

communicate with each other through shared memory using read and write operations 

in a multicore system. During execution, processes require resources. A process 

requests resources, acquire them if granted , access and then release after using them. 

As explained above, the MSS Framework has threads, machine and scheduler. The 

functions of processes and threads are the same, so hereafter we use the term "process" 

in general. 

In order to simulate deadlock on top of the MSS framework , we added extra 

components such as resources, a Resource Manager, and the ability for the processes 

to request resources as well as to communicate with each other. Alongside these 

additional components, architectural level changes are also required for some existing 

components to fulfil the criteria of simulating deadlock. Later, in this chapter, we 

explain in detail the components related to the implementation of deadlock scenarios 

and viable handling techniques. 

The higher level architecture of the Multicore Scheduler Simulation (MSS) frame-

work has five main logical components as shown in Figure 3.1: workload generator, 

multicore machine, multicore scheduler, execution trace and performance calculation 

engine. Out of those, the core simulation engine involves three basic components as 

shown in Figure 3.2: workload generator, multicore scheduler and multicore machine. 
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Figure 3.2 : Core Architecture of MSS Framework 

As discussed above, we need resources t hat can be accessed by processes to simulate 

a system compatible for deadlock. In order to manage t hese resources, we need a 

module, what we refer to as the Resource Manager (RM). The above mentioned 

system can be port rayed as shown in Figure 3.3. A det ailed explanation of RM and 

its implementation details are as follows: 

Resource Manager: For t he smooth and flawless execut ion of system, multiple 

requests by processes to access different resources have to be managed well . Im-

proper management of resources may lead t he system to an unwanted situation 

called deadlock. To prevent t he system from deadlock or to avoid this situation 

of deadlock in t he system, grant ing resources to mult iple processes according to 

t heir requests and availability of resources is managed by a Resource Manager 

(RM). 
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Figure 3.3: Basic System Requirements for Deadlock 

The notations of Figure 3.3 are same as Figure L 1 with additional notation of 

small, dark rectangles inside resources that represent instances of t hat resource. 

The basic function of RM is to manage resources - grant resources to the processes 

based on availability of resources and according to t he requests they make in a way 

that t he system does not go into a deadlock state. If RM functions properly, dead-

lock can be avoided but improper functioning of RM can lead t he system towards a 

deadlock sit uation. The implementation of RM depends on what strategy needs to 

be implemented to handle deadlock. For deadlock prevention and deadlock avoid-

ance, the logic to handle deadlock can be incorporated into RM. On the other hand, 

deadlock detection and resolution may require a separate implementation than RM 
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to handle deadlock. 
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Figure 3.4: Architecture of Simulation Framework for Deadlock in Multicore Systems 

The resultant architecture after incorporation of resources and Resource Manager 

to the core MSS framework of Figure 3.2 is shown in Figure 3.4., which has components 

from both Figure 3.2 and Figure 3.3. Now, we discuss the addit ional and modified 

components of the architecture of Deadlock in Multicore Systems in detail. 

3.4.1 Workload Generator 

A workload generator is mainly used to generate processes and resources while set-

ting parameters that are necessary for simulation. We can generate three types of 
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simulation scenarios using the workload generator: (i) General scenario (ii) Scenario 

for Dining Philosopher 's problem (iii ) Scenario for Banker 's algorithm. Based on the 

selected scenario, criteria such as limit ing resource counts to equal as process counts, 

instance count per resource, and runtime are set for the given workload . Requests 

pattern by processes also depends on t he scenario type. These scenarios are simulated 

on Linux Completely Fair Scheduler. 

• General Scenario: To generate a general scenario workload , required input 

parameters are: t he number of processes, the number of resources, instances 

per resource type, mean arrival rate and t ask period range. Also, there are no 

restrictions on input values of any parameter. The generated workload will have 

a set of processes and resources . Each process will have a unique id, arrival time, 

execut ion t ime, 1/ 0 points , priority, application class, request counts and other 

parameters required for simulation. Likewise, each resource will have a unique 

id , inst ance count and various other parameters. All the parameters that do not 

require manual input are generated randomly, set t ing an upper bound on them 

through the workload generator. 

• Scenario for the Dining Philosopher's problem: This scenario implements 

t he Dining Philosopher 's problem, which can be considered a special case of 

general scenario. Dining philosopher 's problem was introduced by Dijkstra [10]. 

Five philosophers [Pl , ... ,P 5] sitting around a table as shown in Figure 3.5. The 

table has a large serving bowl of spaghetti , one small bowl for each philosopher 

and five forks. A philosopher wishing to eat can t ake and eat some only if 

he or she has two forks on eit her side of t he bowl. The problem states that , 

considering the above scenario, devise a solut ion that will allow the philosophers 

to eat by satisfying mutual exclusion while avoiding deadlock and starvation. 
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Figure 3.5: Dining Philosopher 's Scenario 

Here, we limit ourselves only until simulating t he scenario and not t he solution. 

Any solution that is implemented for a general scenario can also be used to solve 

the dining philosopher 's problem as it is a special case of general scenario. To 

simulate this, we put a limit on the number of resources, that is, the number 

of resources have to be same as the number of processes. Also, we limit the 

instances per resource type to one. We also have to input runtime beforehand 

to specify how long the simulation should run . Further requirements to simulate 

a scenario for the Dining Philosopher 's problem include limit ing each process to 

request only its neighbor resources and limiting the maximum count for requests 

per process to two. 

• Scenario for Banker's Algorithm: This scenario requires the same input 
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parameters as t he general scenario but parameters such as maximum need for 

each resource are generated differently than a general scenario to satisfy the 

requirements of the Banker 's algorithm. A Banker 's algorit hm requires advanced 

information about processes to execute such as the maximum claimed instances 

of resources by each process. This information is generated with the workload. 

The generated workload will have a set of processes and resources. Each process 

will have the usual parameters set such as a unique id , arrival time, execution 

time, 1/ 0 points, priority, application class , request counts and other parameters 

required for simulation, with additional parameters such as maximum claim and 

need . The resources have t he same parameters generated as a general scenario 

with t he workload. 

There is one more a notable difference between all the scenarios in execution. The 

general scenario and the scenario for t he Banker 's algorit hm run until all the processes 

finish their executions. That is, all of the requests are satisfied for all of the processes . 

For the Dining Philosopher 's problem, execut ion runs until the runtime is reached. 

3.4.2 Scheduler and Machine 

The implementation of a scheduler is not primary goal for our system. Hence we have 

used Linux Completely Fair Scheduler , implemented by Manickam V. [3]. Simulation 

of a machine simply reflects the simulation of t he multicore system in it, therefore we 

have used that component with our system. 
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3.4.3 Resource Manager 

As explained earlier , management of resources can be done in this part of the system 

so we call it Resource Manager (as shown in Figure 3.4). Solution strategies for 

deadlocks can also be implemented here. There are three types of solutions to a 

deadlock problem: deadlock prevention , deadlock avoidance or deadlock detection 

and resolution. Deadlock prevention works by preventing one of the four Coffman 

conditions [9] from occurring in the system, as discussed in Chapter 1. Deadlock 

avoidance makes sure that for every resource request, the system does not enter into 

an unsafe state and grants the requests that will lead to safe states. An unsafe 

state is a state that could result in deadlock. Deadlock detection and recovery allows 

deadlocks to occur, on occurrence of deadlock the state of the system is examined 

and the deadlock is resolved either by termination of one or more processes or by 

preempting resources. 

We have implemented a deadlock avoidance technique, a deadlock detection tech-

nique, and deadlock recovery techniques in our system . The avoidance technique is 

the Banker 's algorithm and the implemented det ection technique is Dreadlocks [23], 

whereas we use different criteria to select and terminate one or more processes involved 

in deadlock. 

3.5 Algorithms Implemented 

In this section, we explain the Banker 's algorithm and Dreadlocks in detail. The 

banker 's algorithm is deadlock detection technique and Dreadlocks is used for deadlock 

detections. 
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3.5 .1 D eadlock Avoidance : Banker's Algorithm 

The Banker's deadlock avoidance algorithm was developed by Dijkstra in mid-1960s 

[11]. This algorit hm requires all processes to declare their maximum requirements for 

all t he resources at t he start of execut ion. A process need not request all of its required 

resources at t he beginning as t he requests are made sequentially. Once a process 

requests t he maximum declared resources, it will acquire t hem for a finite t ime and 

then release t hem. Now, t hese released resources are also available for allocation to 

other processes. At every new request, t he algorit hm checks whether t he system stays 

in a safe state or not . A safe state of a system is when all t he processes can complete 

their execution without forming a deadlock [1 7] . It is determined by simulating t he 

allocation of maximum possible instances of all resources to a process and then by 

finding a sequence of such processes t hat can finish their execut ion without forming 

a deadlock. A request is granted if on allowing the request, t he system stays in a safe 

state, otherwise t he request is denied. Further , t he system also determines a dynamic 

order of processes to execute in order to avoid deadlock. 
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PO 

Pl 

P2 

P3 

P4 

Table 3.2: System in a Safe State 

(a) Max[i,j] 

Rl R2 

7 5 

3 2 

9 0 

2 2 

4 3 

R3 

3 

2 

2 

2 

3 

(c) A vail [j] 

Rl R2 R3 

2 3 0 

(b) Alloc[ i, j] 

Rl R2 

PO 0 1 

Pl 3 0 

P2 3 0 

P3 2 1 

P4 0 0 

R3 

0 

2 

2 

1 

2 

Now we explain the Banker 's algorithm with an example. Consider a resource 

allocation system with five processes PO , Pl , P2, P3 and P4 and three resources 

Rl , R2 and R3. The maximum need for resources j for processes i is represented by 

Max[i,j]. Alloc[i,j] represents the current allocation of resource j to process i and 

Avail[j] represents currently available instances of resource j. The current safe state 

of the system is shown in Table 3.2 for (a) M ax[i, j], (b) Alloc[i, jJ and (c) Avail[j]. 

The system is in safe state because all the processes can finish their execution in order 

of Pl , P3, P4, PO and P2. Once completed , Pl can release the acquired resources. 

These resources are then added to the available resources, which in turn can be used 

by process P3. In the same way processes P4, PO and P2 can finish their executions. 
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P2 

P 3 

P4 

Table 3.3: System in An Unsafe State 

(a) Max[i , j] 

Rl R2 

7 5 

3 2 

9 0 

2 2 

4 3 

R3 

3 

2 

2 

2 

3 

(c) Avai l [j ] 

Rl R2 R3 

2 1 0 

(b) Alloc[i, j] 

Rl R2 

PO 0 3 

Pl 3 0 

P2 3 0 

P3 2 1 

P4 0 0 

R3 

0 

2 

2 

1 

2 

Now, suppose the system grants request (0, 2, 0) of process PO. The resultant 

st ate of t he system is shown in Table 3.3. This is an unsafe st ate as t here is no 

such sequence available for processes t hat can finish t heir execut ions. In t his case t he 

request (0, 2, 0) of Pl is denied by t he Banker 's Algorit hm. 

The downside of t he Banker 's algorit hm is t hat it is quite expensive as it may take 

O(n 2m) t ime for each execut ion , where n is number of processes and m is number 

of resources [17]. It also needs some information in advance such as t he maximum 

number of required resources. In most of t he current systems, this information is not 

available. 
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3.5 .2 D eadlock D etection: Dreadlocks 

Dreadlocks is a deadlock detection technique for shared memory multiprocessors [23]. 

In Dreadlocks, each process maintains a digest of t he waits-for graphs. A digest 

of Process P , denoted TJp , is the set of other processes upon which P is wait ing, 

directly or indirectly. If a process is not t rying to acquire any resources t hen t he 

digest of t hat process contains only itself. If a process is t rying to acquire a resource, 

then t he digest of that process includes itself as well as the digest of the processes 

that are current ly holding t he requested resources. Changes to t his digest of waits-

for graphs are propagated as processes acquire and release resources, and a process 

detects deadlock when it finds own appearance the digest. Due to t his approach, a 

probing mechanism and the maintenance of explicit waits-for graphs can be avoided. 

To explain this with an example, consider Figure 3.6. 

,' 

Figure 3.6: Example of Dreadlocks 
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The notations for Figure 3.6 are t he same as Figure 3.3 and Figure 1.1 , with addi-

t ion of a dashed arrow, which indicates t hat a process is t rying to acquire a resource. 

Process Pl is requesting for resource Rl , held by process P3, that is requesting re-
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sources R3 which is held by process P4. Also, process P2 is requesting resource R2, 

held by process P3 that is requesting resources R3 which is held by process P4. In 

this case, digests for these processes are as follows: 

V PI = {Pl ,P3,P4} 

V p 2 = {P2,P3,P4} 

V p3 = {P3,P4} 

V p4 = {P4} 

In the next state, the dotted line, from process P4 to resource R2, indicates that 

P4 is trying to acquire R2. But according to the algorithm, P4 finds itself in the 

digest of P3 which is current ly holding R2, detects a deadlock and aborts. Once 

a deadlock is detected , the next step is to resolve the deadlock. We used process 

termination techniques to resolve the deadlock situation. This procedure is explained 

next . 

3.5.3 Deadlock Recovery: Process Termination 

Deadlock recovery can be achieved by aborting one or more processes involved in the 

deadlock. To select these processes, we have certain criteria described as follows: 
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Process Termination Criteria 

Once the existence of the deadlock is detected by Dreadlocks, victim selection is 

required to select one or more processes to terminate. We select either of the two 

processes - the process that is requesting resources or t he process whose digest contains 

the requesting process, to be terminated in order to resolve deadlock. The criteria to 

select which process to terminate are as follows: 

11 

iii 

lV 

Random: The selection criteria 1s random. Any process can selected to be 

aborted randomly. 

First In First Out: The process which entered the system the first is selected 

to be terminated. 

Least Recently Used: The process that has utilized t he system the last is selected 

to be terminated. 

Minimum Runtime: The process that has spent the least t ime in the system is 

selected to be aborted. 

v Maximum Runtime: The process that has spent the most time in t he system is 

selected to be aborted . 

v1 Smallest Digest: The process with the smallest digest is selected for termination. 

vii Largest Digest: The process with the largest digest is selected for termination. 

User can enable or disable option for the algorithm to detect the deadlock. Process 

termination option is available only if deadlock detection is enabled for the particular 

simulation run. If users select scenario for t he Banker 's algorithm then the detection 
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and termination opt ions are not made visible. ext , we show how to operate t he 

system by showing and explaining t he user interface of it. 

3. 6 User Interface 

Our simulator has two main windows: a Performance Parameter Setting Window and 

a Performance Observation Window as shown in Figure 3.7. 

I Perfom1¥1te Paramettar Seltng Window' / 

Figure 3. 7: Main Window of t he Simulator 

A user can click on eit her t he 'Performance Parameter Setting Window' or 'Per-

formance Observation Window'. Each of t he windows has different panels in them, to 

set different parameters for simulation. We now explain t hese windows. 
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Figure 3.8: Workload Parameter Setting Window 

3.6.1 P erformance Parameter Setting Window 

The Performance Parameter Setting Window has t hree panels in it. One panel is used 

to input parameters t hat are required to generate workloads. The second panel is used 

to set configuration of mult icore machine and deadlock detection algorit hm parame-

ters . The third panel is used to start a simulation after all t he required parameters 

are set. 

The workload generator panel shown in Figure 3.8 takes t he scenario type, t he 

number of processes , number of resources, instances per resource type, arrival type, 

arrival rate and the task period range as input . Users can also create more t han one 

workload at t he same t ime. The input parameters depend on t he selected scenario 

type, for example, in a general deadlock scenario and a scenario involving the Banker 's 
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Figure 3.9: Configuration Parameter Setting Window 

algorithm, users have t o enter a value for inst ances per resource count, and there is no 

restriction for t he number of processes or resources . On the other hand , for a scenario 

involving t he Dining Philosopher 's problem, users have to enter runt ime instead of 

instances per resource count. Also, t he number of processes and resources have to 

be t he same to satisfy t he scenario criteria. After entering t he above ment ioned 

parameters for each workload, users have to click on 'Add to Load ' button. The 

added workload can be seen on t he right side of t he panel. If more t han one workload 

is added , t he addit ional workload is appended to t he existing list of workloads. After 

all t he workloads are added , by clicking on t he 'Next ' button at t he bottom of t he 

panel, users can go to t he configuration panel. 

The configuration panel in t he Performance Parameter Setting Window is shown 

in Figure 3.9. This panel is used to configure t he mult icore machine and deadlock 
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Figure 3. 10: Simulation Run Window 

algorit hm to create simulation runs. Several simulation runs can be configured using 

this panel. The parameters required to configure the machine include setting the 

number of cores for each workload. To set parameters for the deadlock algorithm, users 

can either enable or disable Dreadlocks' deadlock detection using different workloads. 

Furthermore, if Dreadlocks is enabled , users can set a criteria to select processes for 

termination from those involved in t he deadlock. These options are not visible if users 

have selected the Banker 's algorithm scenario from the Workload Generator window. 

After entering all t he parameters , by clicking t he 'Add to simulation run ' button, the 

simulation run is added using the selected workload. If the 'Select All Workloads' 

option is enabled , mult iple simulation runs are added using all the workloads. Once 

all the simulation runs are added , pressing the ' ext ' button at the bottom of the 

panel will bring t he next panel to start the simulation. 
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The t hird panel is shown in Figure 3.10. By clicking on t he 'Start Simulation ' 

button, users can start simulation for all the simulation runs t hat are added in t he 

previous panel. 

3.6.2 Performance Observation Window 

Using the Performance Observation Window, as shown in Figure 3.11 , various per-

formance metrics can be represented in charts. To select a performance metric, the 

Chart Type drop-down menu can be used. 

Pe1tormant1 Obsenoat1D11 WindoW 

Charts 
Choose Chart typt 

Show 
Arwyse JM!rformance •mist Arrival Rate 

Figure 3.11 : Performance Observation Window 

Also, t he results can be analyzed with respect to the arrival rate or number of cores, 
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depending on t he different parameters selected while creating workloads or configuring 

simulation runs. After selecting t he appropriate choices, pressing the 'Show' button 

will display a results chart in the chart display area. 

3.7 Summary 

First , we explained the core components of the framework for simulation of the multi-

core scheduling algorithms, developed by Manickam and Aravind. We, then presented 

an expanded MSS framework for t he simulation of deadlock handling algorithms in 

mult icore systems. The framework is flexible and competent to incorporate different 

deadlock handling algorithms for multicore systems in it . In the next chapter , we dis-

cuss traces generated during execution and the computation of performance metrics 

from traces. 

56 



Chapter 4 

Execution Trace and Performance 

Evaluation 

The previous chapter explained the entire procedure from operating t he framework 

for deadlock in multicore systems to starting the simulation. During the simulation, 

we record different types of traces for t he purposes of performance evaluation. Here, 

we discuss traces and performance evaluation in detail. 

4 .1 Traces 

There are four types of traces in our system. They are execution trace, I/ 0 trace, 

request trace and deadlock (DL) trace. Execution trace has format of a quintuplet: 

<core id, thread id , execution start time, scheduling end time, status> . 

The status can have a value between 0-3. Value O means that thread is preempted by 

quanta expiration. Value 1 means the thread is preempted by other higher priority 

t hread . The value of status as 2 indicates that the thread is going for I/ 0 and 3 means 

that the thread is completed. The I/ 0 trace has formate of a triplet: <thread id, 

1/0 start time, 1/0 end time> . The execution trace and I/ 0 trace are retained 

same as described in the framework of the MSS framework. This was done in order to 
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preserve mult icore propert ies and to calculate performance metrics t hat are related to 

mult icore systems but are affected by deadlock algorithms, such as Turnaround t ime 

and Throughput. 

Request Trace: The format of the request t race is <rid, req-wait, req-

grant, reg-release>. The request id is denoted by rid, the time a request 

started to wait is denoted by req-wait , the t ime a request is granted is denoted 

by req-grant and the t ime when a request ends or a process releases occupied 

resources is denoted by req-release. 

The request t race helps in observing t he performance metrics of t he whole sys-

tem which includes t he effects of t he addit ional components such as Resource 

Manager and resources as well as the implemented deadlock algorithm. The 

deadlock trace part icularly helps in computing performance metrics pertaining 

to implemented deadlock algorithms. From this trace type we can calculate 

performance metrics such as request wait t imes which are eventually used in 

comput ing t he total wait t ime for a process or a system. 

Deadlock Trace: The deadlock (DL) trace has a quintuple format as shown in 

Figure 4.1. This includes the process id (pld), deadlock id ( dld), deadlock start 

t ime (DLStart) , deadlock end t ime (DLEnd) and status (Status) . The process 

id refers to t he id of t he process that is involved in t he deadlock. The deadlock id 

is set to distinguish different deadlocks, t hat occur in t he system. The deadlock 

start t ime and deadlock end t ime correspond to t he t ime a deadlock is started 

and the t ime a deadlock ends respectively. The deadlock status can have values 

eit her O or 1. If the involved process is selected to abort , t hen this value is set 

to 1. All other processes involved in deadlock will have t his value set to 0. 

DL trace helps us in calculating very important performance metrics directly 
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<pld, did, DLStart, DLEnd, Status> 

<27, 2, 86 , 109 , 0> 

<34, 4, 258,475 , 1> 

<100 , 9, 2486 , 6971 , O> 

Figure 4.1: Sample DL Trace 

related to the implemented deadlock algorithm such as Deadlock count , Dura-

tion of Deadlock etc.. In the next section, we explain the calculation of these 

performance metrics in detail. 

4.2 Performance Evaluation 

The performance metrics related to deadlocks are mainly aimed at measuring the cost 

(computation and communication) of deadlocks and the techniques to handle them. 

A deadlock handling technique could be avoidance, prevention or detection followed 

by recovery. The cost of deadlock detection and recovery depends on the kind of 

strategy used . We compute performance metrics mainly from two perspectives: (i) 

From the perspective of an individual process; and (ii) From the perspective of the 

system. First we will review the metrics used in the distributed systems context , 

where processes communicate through messages [8 , 13, 24, 25 , 33, 35]. 
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Prevention of deadlocks is the most desirable option. However, due to the com-

plexity involved, distributed deadlock prevention methods are rarely considered and 

studied for distributed systems. Maintaining up to date information is almost impos-

sible, due to the absence of a global clock and unpredictable message delays and/or 

losses. Even with centralized approaches to maintaining the global state with reason-

able consistency, the message cost would be prohibitively high , and on most systems 

such message traffic could easily choke their underlying communication networks. 

Therefore, prevention is not a popular technique in distributed systems. In any case, 

the most interesting performance metrics for prevention are t he number of times dead-

lock is predicted and avoided , and t he overhead of the algorithm. Next, we look at 

the metrics suitable for deadlock detection , and resolution techniques in distributed 

systems. 

From a process perspective, t he key metrics are: wait time during deadlock, 

turnaround time (also sometimes referred to as response time), number of times in-

volved in deadlocks , and number of restarts due to deadlocks. System level per-

formance metrics vary depending on t he type of technique employed , whether it is 

centralized or distributed. For centralized techniques, the metrics are: number of dead-

locks that occurred in a specified period of t ime1, number of processes involved in a 

deadlock, number of processes needed to be aborted to resolve a deadlock, duration 

of a deadlock, number of processes completed in a specified period of time, overhead 

of deadlock processing, and number of messages used to handle a deadlock. In a dis-

tributed case, more t han one process could init iate deadlock detection. Therefore, in 

addition to the above metrics, the number of deadlock detection invocations could be 

a performance metric when a distributed deadlock handling technique is used. Based 

on these metrics, several secondary metrics such as the abort/ restart ratio, deadlock 
1 Here the specified period is normally the simulation t ime. 
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overhead (time to handle deadlock), percentage of processes involved in deadlocks, etc . 

are also used. Also, for several metrics, minimum, maximum, average, and variance 

would be desirable. 

In distributed systems , due to message delay and/or loss, and the absence of 

global knowledge, several kinds of deadlocks such as phantom deadlocks, transient 

deadlocks, and true deadlocks are possible. These complications are not present in 

a shared memory system. Multicore systems are typically shared memory systems 

and therefore deadlock handling in a mult icore system does not involve messages. 

Therefore, counting the number of messages involved in handling a deadlock is not 

applicable here. Also , we don 't deal with t he possibility of phantom or transient 

deadlocks. 

A deadlock handling technique in multicore systems could be centralized or dis-

t ributed. For a centralized implementation, one dedicated process could be assigned 

to do the job, or the responsibility could be rotated among several processes, but 

one process is responsible at any particular t ime. As indicated earlier , in distributed 

deadlock handling, several processes could initiate deadlock detection independently. 

If more than one process initiates a deadlock check, then for simplicity and efficiency, 

one must be elected to do the job. So, in a distributed case, in addition, the cost of 

an election could be a performance metric. When to initiate a deadlock check also 

influences the performance. 
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4.3 List of Performance Metrics 

We now summarize the key performance metrics of deadlock handling techniques for 

multicore systems. We assume t hat the deadlock handling technique maintains process 

states ( executing, waiting for a resource), resource status (free, used by a process), 

timestamp of key events (arrival, start of waits , exit , deadlock resolved (prevented ), 

etc.) . We refer to t he timestamp function as ts. 

4.3.1 P erformance M etrics ( for Process i) 

1. Wait time (W _ T imei( R )): The duration between t he t imes i started waiting 

for resource(s) R and t he t ime t he resources R is/are granted access to i. That 

is, W _ T imei( R ) = ts(R granted access to i) - t s(i' s request for R ). 

2. Deadlock wait time (DW _ T imei(dk)): The duration between the times i started 

waiting due to its involvement in the deadlock dk and it is resolved . That is, 

DW _ Timei(dk) = ts(dk resolved)- ts(i joined dk)-

3. Turnaround time/response time (T R_ T imei): The duration between the t imes 

i entered and exited t he system. That is, T R_ T imei = ts(i' s exit) - ts(i' s 

ent ry). 

4. Deadlock count (D_CountJ Number of times process i was involved in dead-

lock. 

5. Abort/res tarts count ( AR_CountJ Number of times i is aborted to resolve 

deadlock. 
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4.3.2 P erformance M etrics (for Syst em) 

1. Deadlock count (D_Count): The number of deadlocks occurred in the system 

in a specified period of time. 

2. System wait time (SW _ T ime): The t ime processes spend to wait for the re-

quests to be granted and the deadlock dk to be resolved. That is, SW _ T ime = 

W _ T imei(R ) + DW _ Timei(dk) , for all i . 

3. Deadlock encounter count (DP _Count): The number of times deadlocks are 

predicted in the system in a specified period of time. 

4. Deadlock size (D_Size(dk)): The number of processes involved in the deadlock 

dk. 

5. Deadlock strength (D_Strength(dk)): The number of processes needed to be 

aborted to resolve the deadlock dk . 

6. Degree of Deadlock (DD(dk)): Degree of deadlock represents the complexity of 

the deadlock, and we define it as the product of size and strength. That is, 

DD(dk) = D _ Size(dk) * D _ Strength(dk)-

7. Duration of deadlock (D_ Durat ion(dk)): The duration between the t imes the 

deadlock dk is formed and resolved . That is , D_ Duration(dk) = ts(dk resolved) 

- (dk formed). The value of ts(dk resolved) is easy to obtain, and (dk formed) 

could be computed from the ts( request) of all the processes involved in the 

deadlock dk. 

8. System Throughput (ST ): The number of processes completed in a specified 

period of time. The number processes completed per unit time may be computed 

by dividing it by t he entire duration. 
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9. Algorithm Overhead (D_ O(dk)): The read/ write count required to process the 

deadlock (prevention, avoidance or detection and recovery) dk. 

10. Total Overhead (SO): The total read/ write count of system including algo-

rithm overhead to process the deadlock (prevention, avoidance or detection and 

recovery) dk. 

11. Overhead Ratio (OHR): The ratio between the algorithm overhead to process 

t he deadlock (prevention , avoidance or detection and recovery) dk to total to-

tal overhead in terms of read/ write count of the system. That is, OHR = 

Deadlock algorithm overhead 
Total overhead 

12. Degree of Concurrent Invocations (DCCI (dk)): The number of invocations of 

deadlock detection of processes involved in the deadlock dk. 

13. Abort/ Restart Ratio (ARR): The ratio between the number processes aborted 

due to deadlock and the total number of processes in t he system. That is, 

ARR = Number of processes aborted 
Number of processes in the system· 

14. Deadlock Ratio (DR): The ratio of processes involved in deadlocks in compari-

son to the total number of processes. That is DR = Number of processes invofoed in deadlocks. ' Number of processes in the system 

Due to the solut ion technique, current system has W _ Timei (R ), DW _ T imei(dk) , 

TR_ T imei, D_ Counti and AR_ Counti implemented for Processes and D_ Count, 

SW _ T ime , D_ Size(dk) , ST , ARR, SO , DR, D_ O(dk) and OHR implemented for 

System. Average, and variance are computed for t he metrics related to processes. 

64 



4.4 Summary 

We discussed different types of traces generated and collected during execution. We 

also presented different performance metrics and the computation of those metrics 

from the traces. In t he next chapter , we present the analysis of the results from exe-

cutions for the values of different input parameters . They are analysed and compared 

based on the performance metrics . 
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Chapter 5 

Simulation Study 

We were interested in studying the performances of the Banker 's algorithm for dead-

lock avoidance and Dreadlocks for deadlock detection with process termination as a 

deadlock recovery, with respect to the metrics discussed in the previous chapter. We 

present two sets of experiments for Dreadlocks and one set of experiments for the 

Banker's algorithm, in order to study them and demonstrate the operation of the 

proposed simulator. 

5.1 Experimental Setup 

The scenarios used in the experiments are the general scenario and the scenario for 

the Banker 's algorithm. The general scenario entails a normal setup of processes, 

requests and resources. Request generation is randomized with the upper bound 

provided. There is no other restriction on the generation of requests. In the scenario 

for the Banker 's algorithm, the processes are assigned a maximum claim for each 

resource in advance while generating workloads. These scenarios are discussed in 

detail in Chapter 3. 

The first two sets of experiments pertain to Dreadlocks: deadlock detection algo-
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rithm. We compare t he results of termination types with respect to variation in either 

cores, or mean arrival rate. 

Experiment 1: In this experiment we set the workloads with fixed mean arrival 

rate and number of cores to vary. Table 5.1 shows the simulation parameters 

used for this experiment. 

Table 5.1: Simulation Parameters for Experiment 1 

Parameters Value 

Scenario Type General 

Number of Processes 700 

Number of Resources 70 

Number of Instances per Resource I 30 

Mean Arrival Rate 2.5 

Number of Cores 25 , 50, 75 , 100, 125 

Experiment 2: We set fixed number of cores and mean arrival rate of the work-

loads is varied in this experiment. Table 5.2 shows the simulation parameters 

used for this experiment . 
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Table 5.2: Simulation Parameters for Experiment 2 

Parameters Value 

Scenario Type General 

Number of Processes 700 

Number of Resources 70 

Number of Instances per Resource 30 

Mean Arrival rate 2.5 , 3.5, 5, 6.5, 7.5 

Number of cores 75 

For both experiments we enabled option of detecting deadlock using Deadlocks. In 

Chapter 3, we discussed selection criteria for processes to abort. We showed that once 

deadlock is detected , one or more processes can be selected to abort based on different 

criteria. They are: Random, Least Recently Used (LRU) , First In First Out (FIFO), 

Minimum Runtime ( min. runtime), Maximum Runtime ( max. runtime), Minimum 

Digest (min. digest) and Maximum Digest (max. digest). We believe terminating 

processes with higher runtimes would be more expensive as restarting such processes 

cost more. Based on this proposit ion, we made the following hypothesis. 

Hypothesis: Terminating processes with the minimum runtime will perform better1 

than terminating processes with the maximum runtime. 

Experiment 3: In this experiment , we show the performance of the Banker 's 
1 Here we considered overall performance of the system, that is, a termination type that shows 

better results for most of the metrics. Due to the randomness of the input and the uncertainty of 
deadlocks, the selected termination type might not always perform well with all of the performance 
metrics. Hence, if the termination type performs better for the majority of performance metrics, it 
is considered better than other termination types. 
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deadlock avoidance algorithm. The simulation parameters set for this experi-

ment are shown in Table 5.3. We set the workload with a fixed mean arrival 

rate and varied the number of cores . The scenario type chosen was scenario for 

the Banker 's algorithm. 

Table 5.3: Simulation Parameters for Experiment 3 

Parameters Value 

Scenario Type Scenario for Banker 's algorithm 

Number of Processes 500 

Number of Resources 100 

umber of Instances per Resource I 10 

Mean Arrival Rate 10 

Number of Cores 25, 50, 75 , 100, 125 

Next , we explain our observations and analysis for deadlock detection: Dreadlocks, 

deadlock recovery: termination with the minimum and the maximum runtime, and 

deadlock avoidance: the Banker 's algorithm. The observation are illustrated and 

analyses with respect to key performance metrics for the system. 

5.2 Analysis 

For the first two experiments , simulation results are mainly shown for four perfor-

mance metrics in each case. The metrics are: (i)Throughput , (ii) System Abort / Restart 

Ratio , ( iii) Deadlock Wait Time, (iv) Overhead Ratio. For the third experiment , the 
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performance metrics shown are: ( i) Turnaround t ime, ( ii) Throughput, ( iii) Process 

Wait Time and (iv) Overhead Ratio. Some of the performance metrics from the initial 

experiments are not shown for the third experiment because of limitations of the the 

deadlock handling technique. These metrics are discussed in Chapter 4. ow, we show 

our observations on the above ment ioned performance metrics for each experiment . 

We conducted several sets of experiments. In each experiment, we observed a 

common behavior for termination types with respect to each other. Every time, 

performances of different termination types with respect to each other resulted in a 

similar pat tern , that is, one type of termination always performed better than other 

type of t ermination. 

Also, on comparing two different executions, we observed changes in patterns 

of graphs for some performance metrics, t hat is , when the performances were com-

pared with respect to the change in t he number of cores , the graphs had increas-

ing/ decreasing lines and when t he performances were compared by changing the mean 

arrival t ime, the graphs had lines with a zig-zag pat tern. The reason behind this is 

that t he implemented deadlock handling techniques are not developed by keeping 

change in t he mean arrival rate in mind. Hence, their performances with respect to 

the mean arrival rate are arbitrary and they showed a zig-zag pattern in the results . 

5.2 .1 Observations from Experiment 1 

Observation on Throughput : While conducting experiment with various input , we ob-

serve that termination of processes based on t he minimum runtime has better through-

put t han terminating process based on the maximum runt ime. With t he increase in 

the number of cores, throughput also increases in both cases. There was always a 
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significant difference between the t hroughputs for minimum runtime and maximum 

runt ime. The result for the given input parameters is shown in Figure 5. 1. 
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Figure 5.1: Throughput: Minimum Runtime and Maximum Runt ime (by varying t he 
number of cores) 

The throughput increases with increase in number of cores because with availabil-

ity of more cores, more processes can execute per unit t ime. Hence, more processes 

can complete their execut ions per unit t ime. 

Observation on System Abort / Restart Ratio (ARR): System ARR increases with 

the increase in number of cores in both the cases. Termination with maximum runtime 

always shows better behavior t han termination with minimum runt ime. The system 

ARR chart for both termination types is shown in Figure 5.2. 
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Figure 5.2: System ARR: Minimum Runtime and Maximum Runtime (by varying the 
number of cores) 

The maximum runtime has lower System ARR because less number of processes 

are terminated when termination criteria is selected as the maximum run time. In 

the same way, with the minimum runtime, more processes are terminated. Hence, 

termination with the minimum runtime has a higher System ARR. 

Observation on Deadlock Wait Time: The graph for Deadlock wait time for both 

termination types is shown in Figure 5.3. The Deadlock wait time for termination 

with the minimum runtime is significantly lower than termination with the maximum 

runtime. The deadlock wait time increases with an increase in the number of cores 

for the termination with the maximum runtime, while it remains nearly consistent for 

termination with the minimum runtime. 
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Figure 5.3: Deadlock Wait Time: Minimum Runtime and Maximum Runtime (by 
varying the number of cores) 

With the increase in number of cores, more processes can execute per unit time. 

This results in more processes holding resources per unit time while waiting for other 

requested resources. Because of that, more time is required to resolve the deadlock. 

Hence, the Deadlock wait time increases (for the maximum runtime) or remain nearly 

consistent ( for the minimum runtime) with the increase in number of cores. 

Observation on Overhead Ratio: The graph for overhead ratio for both termina-

tion types is shown in Figure 5.4. The Overhead ratio decreases with increment in 

the number of cores. Termination with the minimum runtime always showed a lower 

overhead ratio than termination with the maximum runtime. For most of the experi-

ments, the overhead ratio varied between 0.02 to 0.4 for Dreadlocks for all termination 

types. 
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Figure 5.4: Overhead Ratio: Minimum Runtime and Maximum Runtime (by varying 
the number of cores) 

With t he decrease in number of cores , less number of processes have to wait for 

the required resources. Because of that less reads/writes are required to detect the 

deadlock at every request. Hence, the overhead ratio decreases with the increase in 

number of cores. 

5.2.2 Observations from Experiment 2 

Observation on Throughput: We observed that termination based on the minimum 

runtime always performs better than termination based on the maximum runtime. 

The graph of throughput for both termination types is shown in Figure 5.5. The 

graph demonstrates a zig-zag pattern but the values remain between a specific range 

because the number of cores is same for all the experiments and the implemented 
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algorithms do not react to the change in the mean arrival rate. 
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Figure 5.5: Throughput: Minimum Runtime and Maximum Runtime (by varying the 
mean arrival rate) 

Observation on System Abort/ Restart Ratio (ARR): For all values of the mean 

arrival rate, termination with the maximum runtime shows lower value than the min-

imum runtime. The lines are nearly consistent for all of the values of the mean arrival 

rate. The system ARR chart for both termination types is shown in Figure 5.6. 

Observation on Deadlock Wait Time: The Deadlock wait time for termination with 

the minimum runtime is always lower than termination with the maximum runtime. 

The graph demonstrating deadlock wait times for both termination types is shown 

in Figure 5. 7. For most of the experiments of this set, we observed a significant 

difference between both termination types. Termination with the maximum runtime 

shows variation while termination with the minimum runtime has almost consistent 

performance for all values of the mean arrival rate. 
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Figure 5.6: System ARR: Minimum Runtime and Maximum Runtime (by varying the 
mean arrival rate) 
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Figure 5.7: Deadlock Wait Time: Minimum Runtime and Maximum Runtime (by 
varying the mean arrival rate) 
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Observation on Overhead Ratio: The graph for the overhead ratio for both the 

termination types is shown in Figure 5.8. The overhead ratio for the termination type 

with the minimum runtime is always lower than the termination with the maximum 

runtime. For most of the experiments in this set, the overhead ratio varied between 

0.1 to 0.4 for both the termination types. 
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Figure 5.8: Overhead Ratio: Min. Runtime and Max. Runtime (by varying the mean 
arrival rate) 

5.2.3 Observations from Experiment 3 

Observation on Turnaround time: We observe that turnaround time decreases with 

increment in the number of cores for the Banker 's algorithm. The rate of decrease of 

the turnaround time is nearly constant between all the numbers of cores. The graph 

for turnaround time for the Banker 's algorithm is shown in Figure 5.9. 
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Figure 5.9: Turnaround Time: Banker 's Algorithm (by varying the number of cores) 

With the increase in number of cores, the processes have more number of cores 

available per unit time. Which results in less execution time for each process. Hence, 

the turnaround time decreases with the increase in the number of cores. 

Observation on Throughput: We observe that throughput of the system increases 

with the increase in the number of cores for Banker's algorithm for most of the times. 

The graph for throughput for the Banker 's algorithm is shown in Figure 5. 10. 
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Figure 5.10: Throughput :  Banker 's Algorithm (by  varying  t he number  of cores) 

Wit h increase in number of cores, more processes can execute per unit  time. Hence, 

t he  throughput increases with t he increase in number  of cores. Though from 100 

to 125 cores it  slightly  decreases, t he value  of t hroughput  remains higher  t han other 

numbers of cores. We can not determine t he exact reason behind this strange behavior, 

randomness of t he input can  be  one  of t he  reasons for  t hat. 

Observation on Process Wait Time: The Process wait  time decreases wit h increase 

in number  of cores. We observed consistent results for average and variance for all of 

t he different experiments of this set. The graph for  Process wait  time for t he Banker's 

algorithm is  shown in Figure 5.11. 
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Figure 5.11: P rocess Wait Time: Banker 's Algorithm (by varying the number of cores) 

With t he increase in number of cores , more processes can execute per unit t ime. 

This results in more processes holding resources per unit t ime while wait ing for other 

requested resources. Because of that, processes have to wait less for other requested 

resources . Hence, t he Process wait t ime decreases with the increase in number of 

cores . 

Observation on Overhead Ratio: The graph for overhead ratio for Banker 's al-

gorithm is shown in Figure 5. 12. The overhead ratio increases with increases in t he 

number of cores. The overhead ratio is higher t han 0.80 for t he given input parame-

ters for all cores. We observed that for all experiments of this set , the overhead ratio 

for t he Banker 's algorithm has always been higher than 0.75. 
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Figure 5. 12: Overhead Ratio: Banker 's Algorit hm (by varying the number of cores) 

For t he Banker 's algorit hm, safe state is checked for each request. With t he in-

crease in number of cores, more processes execute per unit time. Hence, more processes 

can request resources per unite t ime. The algorithm determines a safe sequence while 

checking the safe state and it assumes that the processes will finish t heir execution 

sequent ially according to t he safe sequence. This idea is not helped by increasing the 

number of cores. In som e cases, t h e increase in number of cores m a ke t h e p erforma n ce 

worse. Hence, the overhead ratio increases with the increase in number of cores for 

t he Banker 's algorit hm. 
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5.3 Summary 

We presented the simulation experimentation for termination with the minimum run-

time and the maximum runtime, in this chapter. As hypothesized , termination with 

the minimum runtime outperforms termination with the maximum runtime in most 

of the cases . We also presented simulation experiments for the Banker's deadlock 

avoidance algorithm. These experiments showed valid results for deadlock avoidance 

as well as deadlock detection and recovery. Hence we are confident that our simulation 

implementation of deadlock in multicore systems is fairly sound. 
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Chapter 6 

Conclusions and Future Work 

Deadlock is a very common bug in software applications, yet, it is ignored by most of 

the operating systems [32]. With the advent of multicore processors, the problem of 

deadlock has gained renewed attention in research. Many approaches that have been 

developed to handle deadlock in multicore systems were discussed in Chapter 2. In 

this chapter, we conclude the thesis with providing possible future work that can be 

conducted to extend the research carried our in this thesis. 

6.1 Conclusion 

The primary contributions of this thesis are: ( i) The design and implementation of a 

flexible framework to simulate deadlock in multicore systems and ( ii) Three scenarios 

implemented to incorporate different deadlock handling techniques. The scenarios 

are: general scenario, scenario for the Dining Philosopher 's problem and scenario for 

the Banker's algorithm. Two deadlock handling strategies, deadlock avoidance and 

deadlock detection & recovery, are simulated. The deadlock avoidance strategy is 

the Banker's algorithm and the deadlock detection strategy is Dreadlocks. Deadlock 

recovery follows deadlock detection , which is done by terminating one of the processes 

involved in the deadlock. The experience gained by developing this simulator involves 
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software design, implementation and performance analysis. ( iii) Demonstration of the 

soundness and validity of the proposed framework by presenting the result analysis of 

the experiments. 

The proposed simulator has the basic components required to simulate a deadlock 

handling algorithm in multicore systems. More deadlock handling techniques can be 

easily added to this simulator to study, which can furnish initial insights on behavior 

of the algorithms in practical multicore systems. These insights can really be helpful 

to study the performances of the algorithms as well as to identify their shortcomings. 

Based on the shortcomings, necessary guidelines can be offered for improvements of 

the algorithm. 

6.2 Future Directions 

The proposed framework to incorporate deadlock handling algorithms in multicore 

systems is just the beginning of research into deadlock handling algorithms in multi-

core systems. There are many directions in which the work presented in this thesis 

can be expanded. We outline some of them next. 

• The simulation can be made more sophisticated by refining and improving com-

ponents such as user interrupts. Current system simulates only I/ 0 interrupts, 

more real system interrupts can be introduced to the proposed framework. 

• Cache memory can also be simulated to the system to make the framework's 

behaviour closer to real systems. 

• More scheduling algorithms can be added to observe performance of deadlock 
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handling algorithms with them. 

• More deadlock handling algorithms can be incorporated. 

• Modelling resources and Resource Manager can be refined and improved by 

adding different types of resources with different properties. Also, function of 

Resource Manager can be improved to deal differently with various resources. 

• The current performance study has exposed some irregularities in the imple-

mented algorithms as well as some limitations of them. For example, for Dread-

locks, digest propagation is not accurate and it considers all the processes with 

equal priority. These limitations can be overcome to make the algorithms more 

efficient. For example, to overcome limitation of digest propagation, a central-

ized schema can be introduces to update digests for all the processes at regular 

intervals. 

I would like to continue working on some of these directions in the future. 
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