
A FLEX IBLE SIM U L A T IO N F R A M E W O R K F O R P R O C E SSO R
SC H E D U L IN G A L G O R IT H M S IN M U L T IC O R E SY ST E M S

by

V isw anathan M anickam

B.E., Anna University, Chennai, India, 2006

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
IN

MATHEMATICAL, COMPUTER AND PHYSICAL SCIENCES

THE UNIVERSITY OF NORTHERN BRITISH COLUMBIA

April 2012

© Viswanathan Manickam, 2012

1+1
Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-94438-7

Our file Notre reference
ISBN: 978-0-494-94438-7

NOTICE:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

A bstract

In traditional uniprocessor systems, processor scheduling is the responsibility of
the operating system. In high performance computing (HPC) domains th a t largely
involve parallel processors, the responsibility of scheduling is usually left to the appli
cations. So far, parallel computing has been confined to a small group of specialized
HPC users. In this context, the hardware, operating system, and the applications
have been mostly designed independently with minimal interactions. As the multi
core processors are becoming the norm, parallel programming is expected to emerge
as the mainstream software development approach. This new trend poses several chal
lenges including performance, power management, system utilization, and predictable
response. Such a demand is hard to meet without the cooperation from hardware,
operating system, and applications. Particularly, an efficient scheduling of cores to
the application threads is fundamentally im portant in assuring the above mentioned
characteristics. We believe, operating system requires to take a larger responsibility
in ensuring efficient multicore scheduling of application threads.

To study the performance of a new scheduling algorithm for the future multicore
systems with hundreds and thousands of cores, we need a flexible scheduling simula
tion testbed. Designing such a multicore scheduling simulation testbed and illustrat
ing its functionality by studying some well known scheduling algorithms Linux and
Solaris are the main contributions of this thesis. In addition to studying Linux and
Solaris scheduling algorithms, we demonstrate the power, flexibility, and use of the
proposed scheduling testbed by simulating two popular gang scheduling algorithms -
adaptive first-come-first-served (AFCFS) and largest gang first served (LGFS). As a
result of this performance study, we designed a new gang scheduling algorithm and we
compared its performance with AFCFS. The proposed scheduling simulation testbed
is developed using Java and expected to be released for public use.

A cknow ledgem ents

Throughout my time as graduate student a t UNBC, I came across many people
who have encouraged me in one way or another. I would like to thank them all.
Among them, some deserve special thanks.

First of all, I would like to thank my supervisor Dr. Alex Aravind for his continuous
support and encouragement. Alex has been a mentor, a well wisher, and a friend. I
thoroughly enjoyed working with him, his style and ideas inspired me in getting into
research and I enjoy doing that. Next to my supervisor, the people who contributed
to my thesis are Dr. Waqar Haque and Dr. Andrea Gorrell. I thank them for their
valuable time, effort, suggestions, and encouragement. In addition, I would like to
thank the external examiner Dr. Balbinder Deo and Dr. Ajit Dayanandan, chair of
my defence for reading my thesis.

I would like to thank my peers and friends who supported me and involved me in
informative discussions. First of all, I want to specially thank Hassan Tahir for all
his support starting from the day I arrived to Prince George, till I get settled, and
also for his brilliant programming ideas which helped me a lot. I thank my fellow
graduate students Baldeep, Adiba Mahjabin Nitu, Azizur Rahman, Manoj Nambiar,
Narek Nalbandyan, Nahid Mahmud, Fakhar U1 Islam, and Behnish Mann for their
support. I thank our computer adm inistrator Heinrich Butow for his continuous
support. Finally, I would like to sincerely thank Dr. Mahi Aravind, for the wonderful
family dinners and parties on various events and occasions.

Finally, much of the credit goes to my family, especially, my parents who supported
me right to the end. A special thanks to my sister Kavitha and my brother in law
Ramasamy for encouraging me to apply UNBC. Once again, I thank them all. Thanks
Guys!

C' j / ' Y r

Contents

A bstract i

A cknow ledgem ents ii

C ontents iii

List o f F igures vii

List o f Tables ix

1 Introduction 1

1.1 Hardware T re n d .. 2

1.1.1 Multicore Processors vs. Parallel C o m p u te rs 3

1.2 Computing T re n d ... 4

1.3 Applications T r e n d ... 4

1.4 Operating Systems Trend .. 5

1.5 Schedulers T r e n d ... 7

1.6 Where do the contributions of this thesis fit i n ? 8

1.7 Thesis O rganization.. 9

2 M ulticore Scheduling 10

2.1 Load B a la n c in g .. 11

iii

2.2 Scheduling A p proaches .. 12

2.2.1 Gang Scheduling in Multicore and Cloud C o m p u t in g 14

2.3 Related W o r k ... 15

2.3.1 Scheduler S im u la to rs ... 16

2.3.2 Fairness and Performance Issues in Gang Scheduling 19

2.3.3 Performance S t u d y .. 20

2.4 Summary .. 21

3 M otivation and C ontributions 22

3.1 Multicore Scheduler Simulation Fram ew ork.. 22

3.2 A New Gang Scheduling A lg o r ith m ... 25

3.3 C o n trib u tio n s .. 26

3.4 Research M eth o d o lo g y ... 28

3.5 S u m m a r y .. 29

4 M ulticore Scheduler S im ulation Fram ework 30

4.1 S im ulation .. 30

4.2 Multicore Scheduler S im u la tio n .. 32

4.3 Architecture of MSS F ram ew ork.. 34

4.3.1 Term inology.. 34

4.3.2 Workload G e n e r a to r ... 36

4.3.3 Multicore M a c h in e .. 36

4.3.4 Multicore Scheduler.. 37

4.3.5 Execution T rac e .. 38

4.3.6 Performance Calculation E n g in e ... 39

4.3.7 Statistical M easures... 42

4.4 Activity Profile G e n e ra to r .. 43

iv

4.5 User In te r fa c e .. 43

4.5.1 Performance Param eter Setting W in d o w 43

4.5.2 Performance Observation W indow ... 45

4.5.3 Activity Monitor W in d o w ... 46

4.6 Summary ... 48

5 C ase S tudies - Linux and Solaris Scheduling A lgorithm s 49

5.1 Load B a la n c in g ... 50

5.1.1 Real Time S c h e d u le r ... 51

5.2 Linux Scheduler - Completely Fair Scheduler (C F S) 51

5.2.1 Calculation of Q u a n t a .. 51

5.2.2 Calculation of v r u n t i m e ... 53

5.3 Solaris S c h e d u le r .. 53

5.3.1 The Default Solaris S c h e d u le r .. 54

5.4 Simulation E x p e r im e n ts .. 56

5.4.1 Observations on Experiment 1 ... 57

5.4.2 Observations on Experiment 2 ... 60

5.5 S u m m a r y ... 64

6 A Fair and Efficient G ang Scheduling A lgorithm 65

6.1 Popular Gang Scheduling A lg o rith m s.. 65

6.1.1 AFCFS ... 66

6.1.2 LGFS .. 66

6.1.3 Simulation E x p e r im e n ts ... 67

6.2 A New Gang Scheduling A lg o rith m .. 70

6.3 The Algorithm ... 71

6.4 Simulation Experiments........... ... 72

v

6.4.1 Simulation S e t u p ... 73

6.5 Summary .. 76

7 C onclusion and Future D irections 77

7.1 Future D irec tio n s .. 78

Bibliography 93

vi

List of Figures

4.1 The S cheduler.. 33

4.2 Architecture of MSS F ram ew ork .. 35

4.3 A Multicore M ach in e ... 37

4.4 Sample Execution T r a c e .. 38

4.5 Sample I/O T ra c e ... 39

4.6 Parameter Setting W indow ... 44

4.7 Simulations Run Window .. 45

4.8 Performance Observation W indow ... 46

4.9 Activity Monitor W in d o w ... 47

4.10 Core Monitor W in d o w ... 47

5.1 Average Turnaround time: Linux and Solaris Scheduling Algorithms
(by varying the number of cores) .. 58

5.2 Standard deviation of Turnaround time: Linux and Solaris Scheduling
Algorithms (by varying the number of c o re s) 59

5.3 Average Interactive Response time : Linux and Solaris Scheduling Al
gorithms (by varying the number of c o r e s) 60

5.4 Standard deviation of Interactive Response time: Linux and Solaris
Scheduling Algorithms (by varying the number of cores)............... 61

5.5 Average Turnaround time: Linux and Solaris Scheduling Algorithms
(by varying the w o rk lo a d) .. 62

vii

5.6 Standard deviation of Turnaround time: Linux and Solaris Scheduling
Algorithms (by varying the w orkload)... 62

5.7 Average Interactive Response time: Linux and Solaris Scheduling Al
gorithms (by varying the w w k lo a d) ... 63

5.8 Standard deviation of Interactive Response time: Linux and Solaris
Scheduling Algorithms (by varying the workload) 63

6.1 Average Response Time for AFCFS and LGFS A lg o rith m s 68

6.2 Standard deviation of Response Time for AFCFS and LGFS Algorithms 69

6.3 Core Utilization of AFCFS and LGFS A lg o rith m s................................. 69

6.4 Average Response Time of AFCFS and Proposed A lgo rithm s............. 74

6.5 Standard deviation of Response Time of AFCFS and Proposed Algo
rithms .. 75

6.6 Average Core Utilization of AFCFS and Proposed Algorithms 75

6.7 Bypass Count of Gangs of AFCFS and Proposed A lg o rith m s............. 76

viii

List of Tables

5.1 Completely Fair Scheduling A lg o r i th m .. 52

5.2 Solaris 10 Scheduling A lg o rith m .. 56

5.3 Simulation P a ra m e te rs ... 56

5.4 Simulation P a ra m e te rs ... 57

6.1 AFCFS Gang Scheduling A lgorithm ... 66

6.2 LGFS Gang Scheduling A lgorithm ... 67

6.3 Simulation P a ra m e te rs ... 67

6.4 New Gang Scheduling Algorithm ... 72

6.5 Simulation P a ra m e te rs ... 73

7.1 Solaris 10 Scheduling Classes Priority R a n g e ... 81

7.2 Dispatch Table for RT Scheduling C lass... 81

7.3 Dispatch Table for FX Scheduling Class .. 81

7.4 Dispatch Table for TS and IA Scheduling C la s s e s 82

7.5 Tick Processing of Solaris Scheduling A lg o rith m 83

7.6 Update Processing of Solaris Scheduling Algorithm 84

ix

Chapter 1

Introduction

The scheduling problem in computing systems has been studied in the last several

decades. W ith the recent arrival of multicore processors, the scheduling problem has

gained renewed interest. The contribution of this thesis is related to the scheduling

problem in multicore computer systems.

The primary goal of computer systems is to execute applications safely, securely,

correctly, and efficiently. The hardware and system software have been designed to

work together to achieve this goal. Until recently, the developments in hardware and

system software have kept pace with each other to meet this goal. Operating system,

which has scheduling as its central component, is the major part of system software.

Hence, scheduling plays a pivotal role in effective use of computer systems.

A paradigm shift in hardware technology has happened very recently. Instead of

increasing speed, the chip designers are starting to put a number of execution cores

within a single processor. Such processors are called multicore processors. To exploit

the capabilities of multicore processors effectively, the software community requires

to make at least two main changes: (i) a new way of designing software for multi

1

core processors, and (ii) system software must be redesigned with new capabilities

to manage multicore processors. The proposal of this thesis is related to the efforts

in meeting the latter demand. Particularly, this thesis proposes to develop a flexible

simulation framework to study the performance of scheduling algorithms for multi-

core processors. The purpose of this chapter is to explain why multicore scheduling is

interesting and worthy of investigation. For that, we first briefly describe the recent

trends in hardware, computing, applications, operating system, and scheduler.

1.1 Hardware Trend

Nearly forty five years ago, Intel co-founder Gordon Moore predicted tha t transis

tor density on integrated circuits will be doubled about every two years. In term s of

speed, this law is equivalent to: processor speed will be doubled about every eighteen

months. Ever since Moore’s prediction, the hardware technology has been driven to

produce processors with highest possible speed by increasing the clock rate.

As limited by the laws of physics, the microprocessor design hit the clock cycle

wall, and therefore the chip designers had to come up with a new way of exploiting the

benefit of Moore’s law. The new way is to use the extra transistors to add multiple

execution units (referred to as cores) within a single processor. Each core is capable

of executing independently of other cores in the processor. This trend in multicore

processors indicates that all future processors will be multieore [1],

As Intel, AMD, Fujitsu, IBM, and Sun Microsystems are already shipping their

desktops and workstations with multicore processors [2J, multicore systems are rapidly

emerging as the mainstream computing platforms. This hardware trend seems to

continue, and we will have hundreds and even thousands of cores in a single processor

in the near future [lj. The abundant availability of execution cores is expected to

2

revolutionize the way we will design software for these systems in the future.

Another hardware trend, driven by high performance computing groups, has been

introduction of various parallel computers. A parallel computer is a single computer

with multiple internal processors or multiple computers interconnected to form a co

herent high-performance computing platform [3]. Multicore processors have similarity

to some parallel computers in structure and functionality, bu t they differ in several

other aspects.

1.1.1 M ulticore P rocessors vs. P ara lle l C om puters

Parallel processors or parallel computers were around as early as single processor

systems. In terms of execution units, parallel processors and multicore processors

are similar. Multicore processors and parallel processors have two or more execution

units. They differ mainly in their purpose, other resources, and application domains.

The main purpose of parallel computers is to increase the performance of applications

which have longer run times. Parallel processors are often designed for certain types of

applications and usually run them in static partitions. In order to utilize the parallel

processors effectively, the applications must be parallelized.

In parallel processors, the scheduling is mostly done at the user level rather than

taken care by the operating system. Typically, users of parallel computing design their

application programs incorporating the logic of scheduling and synchronization. Of

ten, compilers or libraries like OpenMP [4] and MPI [5] help the application designers

in achieving this task.

Multicore systems are emerging as general purpose computers, and they are ex

pected to be used in a wide range of domains - from desktop, workstations, and

servers. That is, multicore systems are expected to handle multiple types of applica

3

tions including interactive workloads, realtime tasks, and normal workloads. There

fore, unlike parallel computers, the task of scheduling in multicore processors cannot

be left to applications. The operating system requires to take a major responsibility of

scheduling applications to multicore processors. So, there are fundamental differences

between parallel processor systems and multicore processor systems [6], and multi

core processor systems require redesign of scheduling algorithms. Designing efficient

scheduling algorithm for multicore processor systems, we believe, is a complex task.

1.2 Com puting Trend

Until recently, most general purpose computing are desktop based and most high

performance computing are based on parallel computing and cluster computing [3j.

Parallel computing often divides the tasks into smaller ones and uses parallel com put

ers to execute them simultaneously. Cluster computing has the same objective, but

the computing infrastructure is a set of loosely connected computers with a suitable

software module to coordinate the computers in executing parallel programs. Another

computing paradigm called grid computing [7] has taken this trend one step further

by pooling computing resources from multiple administrative domain to solve a single

problem. The most recent trend is cloud computing. Cloud is a computing infrastruc

ture paradigm tha t offers computation and storage as web-based services [8]. Cloud

computing typically has parallel computers and /or cluster computers as its server

nodes. W ith the emergence of multicore processors, the future clouds are expected to

have multicore blades as their servers [8,9].

1.3 Applications Trend

In the 1980s, only a small group of people knew about computers, and even a

smaller group of people used one. Now, almost everyone knows what a computer is,

4

most of us use it on a daily basis for reading news, listening to music, etc. Thus,

the use of computing continues to infiltrate every aspect of our life and autom ation

in the practical world continues to increase. W ith the recent computing trends of

cloud computing and mobile accesses, and the access to social media and Internet,

the need for more autom ated services are expected to be accelerated. T hat means

more software for applications are expected to be developed, and they have to be

developed in a way to effectively run on the future computing platforms.

1.4 Operating System s Trend

Operating systems is one of the core areas in computer science, and has accumu

lated a large body of literature. However, most of the work in the past was done either

in the domain of uniprocessor systems, where the scheduler has the full responsibility

of managing applications including scheduling, or in the domain of parallel processing,

where the responsibility of task scheduling is largely left to application designers1.

Operating system is one of the most complex software systems, and designing one

is a challenging task. It has an influence on almost all other systems, both hardware

and software tha t involve computing. Operating systems spend a huge portion of

their time in executing applications [10].

Generally, the functionalities of operating systems add and evolve constantly to

meet the needs of new technologies and applications. However, the operating system

design related to processor management has not been changed much in the last several

years as the number of processors has not been changed much. Current operating

systems were designed for single or few cores. Thus, most developments have been

'P ara lle l processing typically involves complex problem s requiring high com putational time.
Based on the software specifically designed for parallel program m ing, the program designers di
vide a complex problem into com ponent parts and then assign the com ponent p a rts to be executed
on individual processors [3J.

5

in the domain of file system, security, device management, and user interface. These

developments are not aimed to meet the demand of multicore processors.

The traditional approach of building an operating system for every individual hard

ware model is no more acceptable, because it will be out of date once new hardware

arrives [11]. Some of the main issues of current operating system are:

1. Scalability: Current operating systems are not designed to be scalable for

multicore processors. Therefore, adding hardware resource would requires re

designing of operating system, as the current operating system cannot utilize

the newly added hardware to increase its efficiency [1],

2. R esource allocation: Current operating systems are designed for com putation

with limited resources. This may not be the case of multicore systems. Since

multicores require abundant resources for their computation, such resources are

expected to be added accordingly for effective execution. For example, with

the recent advancements of hardware multilevel caches, inefficient allocation of

cache will result in performance degradation [12].

3. Parallelism : If the current trend of multicore processor continues, the workload

of an operating system managing the number of cores will continue to increase.

Dividing the core management workload and handling concurrently require par

allelism in kernel level. Parallelizing the kernel is difficult and marginally suc

cessful. This pushes us to seek new approaches [13]. Simply tuning applications

to get advantage of the available cores may not be good enough when there is a

mass deployment of cores. Therefore, the operating systems for the future mul

ticore systems have to be redesigned or developed to effectively manage the cores

among the applications to achieve/exceed the expectations of the users [14j.

6

As multicore systems offer more cores, handling these cores to serve the applica

tions is becoming more challenging.

1.5 Schedulers Trend

To meet the requirement of multicore systems, the most im portant component of

operating system that might need a radical change is the processor scheduler. Most

developments in the operating system domain in the last several years have been

on file system, security, device management, and user interface, and only minimal

changes have been proposed for schedulers. These schedulers have been focusing on

effectively multiplexing the CPU among the competing processes to assure fairness,

quick response, and minimize the turnaround time.

The traditional operating systems such as Linux, Windows, and Solaris schedule

the processes using time multiplexing. The approach of tim e multiplexing alone is

not suitable for multicore schedulers for several reasons. F irst of all, with the ad

vancements of hardware and the availability of multilevel cache hierarchy, scheduling

a core to a thread exclusively could reduce the latency and hence increase the perfor

mance. That is. the thread scheduled alone in a core can effectively use the cache to

reduce its execution time. Secondly, time multiplexing does not effectively deal with

distributing the work among different cores so th a t no core sits idle when there is

heavy workload on peer cores. Finally, time multiplexing does not reduce the impact

of access to cache and DRAM, which are considered expensive operations. Rather,

it could increase the overhead on accessing shared resources such as cache, memory,

and network. These reasons force us to re-think the scheduler design.

The operating system literature on multicore systems is relatively limited and

most of the publications are within the last five years [1,6,8,10,12-36]. In tha t, only

7

a small portion is related to multicore scheduling algorithms [12]. Most of them are

related to effectively dealing with resource contention.

The proposed approaches to design scheduling algorithms for multicore systems

vary greatly and differ in their recommendations. One view is that multicore systems

have in fact simplified the scheduling. That is, since we have plenty of cores, there is no

need to worry about intricate time multiplexing strategies, simply giving enough cores

to applications will simplify the scheduling. On the other extreme, several researchers

feel tha t multicore systems have complicated the scheduling task, as it needs to con

sider several factors such as cores, caches, networks, and application requirements

together in offering best possible service. A number of work suggest ideas in between

these extreme cases. Most of these ideas are related to cache contention. Again,

related to resource contention, there are two views. One group strongly advocates to

incorporate contention aspects into the scheduling algorithms [12,23]. Another group

argues to decouple contention management from scheduling [34,36]. There is another

direction of research tha t explores the question of whether to keep operating systems

and applications together or separately [13,22].

Overall, the field of multicore scheduling is very young and the proposed ideas on

multicore scheduling are preliminary.

1.6 W here do the contributions of th is thesis fit in?

From the above discussion, we infer th a t the software systems th a t worked well

for sequential systems might not effectively work with the multicore systems. There

fore, there is a gap between the rapidly emerging hardware technology and relatively

slow software technology. The recent research trend indicates that the software sys

tems, particularly the operating system must be redesigned to reduce this gap. More

importantly, new scheduling algorithms must be developed to utilize the multiple re

sources offered by multicore systems. This thesis is an effort to help achieve this goal.

More specifically, this thesis contributes to help develop new scheduling algorithms

for multicore systems.

The most difficult aspects of developing a novel scheduling algorithm are imple

menting and testing its performance [25]. We believe a flexible multicore scheduler

simulator framework with proper support for simulation and testing would be very

useful. Developing such a comprehensive framework is the primary goal of this thesis.

1.7 Thesis Organization

The fundamentals of multicore scheduling and the related work are presented in

Chapter 2. Next, in Chapter 3, we present the motivation, contributions, and re

search methodology. In Chapter 4, we present the design and the implementation of

the multicore scheduler simulation framework. The framework and its implementa

tion are the major contributions of this thesis. We present the implementation and

simulation study of Linux and Solaris scheduling algorithms in Chapter 5, and a new

gang scheduling algorithm is presented and its performance compared to two well

known gang scheduling algorithms in Chapter 6. Finally, in Chapter 7, we conclude

the thesis and list some future directions to extend the work carried out in this thesis.

9

Chapter 2

Multicore Scheduling

Scheduling is a fundamental problem in several systems. In processor scheduling,

threads are assigned to processors for execution with the objective of optimizing cer

tain performance metrics such as maximum throughput, minimum average response

time, minimum average waiting time, and /o r maximum CPU utilization. Threads

are schedulable entities which achieve the intended tasks by their execution. Cores

are physical execution units. In a multicore context, scheduling can be viewed at

two levels: balancing the system load among the cores and multiplexing threads on

a single core. In actual implementations, these two tasks could be integrated as one

scheduling module.

A scheduling algorithm is a set of rules th a t define how to select the next thread for

execution. This problem is well studied in single processor(eore) context and numerous

scheduling algorithms exist in the literature [37,38]. Present multiprocessor operating

systems such as Linux and Solaris use a two-level scheduling approach [12]. In one

level the scheduler balances the load across cores, and in another level the scheduler

uses a distributed run queue model with per core queues and local scheduling policies

10

to manage each core.

2.1 Load Balancing

In general, load balancing in multicore or homogeneous multiprocessor systems

can be done in several ways [12,39]. In one extreme, all the jobs can be kept in one

shared global queue and schedule a job from this queue whenever a core becomes free.

This approach is simple and balances the workload effectively, and lienee appears to

increase the core utilization. But, in reality, this approach degrades the performance

due to cache pollution as there is a high probability of jobs frequently migrating

from one core to another. Modern systems achieve high performance by effectively

exploiting the locality of reference, and by keeping frequently accessed data in local

cache. Job migrations rarely utilize this benefit, and hence a significant amount of

time is spent on accessing data from farthest locations such as last level cache and

memory.

On the other extreme, each core can m aintain its own queue of jobs to better m an

age cache affinity and other local resources. This case allows several load balancing

strategies by migrating jobs from one local queue to another [39]. There are four sim

ple approaches. The first one is called sender-initiated policy in which lightly loaded

cores initiate requests for jobs from other cores. This technique is also referred to as

work stealing from other cores. In the second approach, called receiver-initiated pol

icy, the heavily loaded cores request other lightly loaded cores to take jobs. The third

approach is the combination of both sender-initiated policy and receiver-initiated pol

icy, and therefore called symmetric policy. The fourth one is that the heavily loaded

core simply chooses a random destinations to migrate some of its jobs. This simple

strategy is found to be working well in practice.

11

The above general load balancing schemes are applicable only for systems with

homogeneous processors, and are not suitable for parallel applications or the types of

jobs which are heterogeneous with differing priorities.

2.2 Scheduling Approaches

In single processor system, scheduling of different jobs on a processor is typically

done by time sharing. The basic idea of time sharing scheduling is th a t the processor

time is divided into chunks of time called time quanta, and each application executes

in different, time quanta to complete its task. The critical factor affecting this tech

nique is the time quanta, say, q. When a q is set very large, the applications run

longer to complete their executions. When q is set smaller, the applications interleave

frequently. The popular time sharing technique with effective interleaving executions

is round robin scheduling [37,38].

Almost all uniprocessor scheduling algorithms used in modern operating systems

are time sharing. Among the time sharing algorithms, the most practical algorithms

use multilevel feedback scheduling strategy. The basic idea behind multilevel feedback

algorithms is th a t they use different priority queues to manage jobs with varying

importance, and the jobs move between queues as their priorities change. The jobs

with a lower priority will be served only if the higher priority queues are empty.

The scheduling algorithms used by popular operating systems such as Linux, So

laris, Mac OS, and Windows are some sort of multilevel feedback algorithms. These

algorithms with suitable load balancing technique have been adapted for multicore

processors. (For this thesis, we have simulated Linux and Solaris schedulers.)

The orthogonal technique to time sharing is space sharing, and it is applicable only

in multiprocessor systems. It is an effective generic approach of scheduling multi

12

threaded applications on multiprocessor systems. The basic idea is th a t different

applications use different sets of processors during their lifetime. That is, the scheduler

dedicates a set of processors to an application for its entire lifetime. Although this

technique might offer excellent service to the applications, it may not be good for the

utilization of system resources. In this approach, the processor will be idle when the

application goes for I/O , or waiting for an event or synchronization.

An effective variant of space sharing approach to parallel applications is that,

instead of dedicating a set of processors to an application for its lifetime, parallel

threads of an application are scheduled together for a fixed period of time. This

technique, originally called co-scheduling later referred to in the literature as gang

scheduling, was introduced by Ousterhout [40]. Gang scheduling efficiently uses busy

waiting for frequent synchronization. In the literature, frequent synchronization is

also referred to as fine-grained synchronization. The idea behind gang scheduling is

simple th a t threads of a same process are scheduled together as a ‘gang’ on distinct

processors so tha t they can progress in parallel and synchronize with minimal busy

waiting involved. A gang is an application containing a set of parallel threads that

frequently communicate with each other.

During their executions, threads in a gang communicate for synchronization and

data exchange. Often, a thread in a gang cannot proceed further w ithout sufficient

progress from other threads. Such threads either do busy waiting or block themselves

by suspending from execution until other threads progressed enough. A long busy wait

on a processor wastes its execution time. On the other hand, suspending and resuming

processes often are also not good, when only a small wait is needed. Blocking results

in context switches, which are costly. For several applications inducing small waits,

research shows tha t a busy wait is better than blocking. Gang scheduling algorithms

are typically designed to exploit the above observation.

13

In gang scheduling approach, different applications can use the same set of proces

sors in different time quanta, and same application can use different sets of processors

in different time quanta. This is an effective technique th a t provides an excellent

service to parallel applications with threads involving similar loads and fine-grained

synchronization.

Using our scheduling simulator developed for this thesis, we study two popular

gang scheduling algorithms and propose an improved gang scheduling algorithm. We

believe th a t the proposed algorithm can be used for scheduling gangs in cloud com

puting, as explained next.

2.2 .1 G ang Schedu ling in M u lticore an d C loud C om p u tin g

Recently, it is predicted tha t the next decade will bring microprocessors contain

ing hundreds, thousands, or even tens of thousands of computing cores, and com

putational clusters and clouds built out of these multicore processors will offer un

precedented quantities of computational resources [8,22,41]. We discuss the relevance

of multicore scheduling in cloud computing assuming tha t the above prediction will

come true.

Cloud computing is a service oriented computing paradigm. It is designed to

provide services such as computation, software applications, data access, data man

agement and storage resources to customers through internet transparently [8]. As

cloud computing offers computing as a service, customer satisfaction about the ser

vices they receive is extremely important. Customer satisfaction is mainly related to

cost, fairness, and quality of service. In that, fairness and quality of service are often

related to system performance. Particularly, these metrics are primarily influenced

by the execution of applications in the cloud. That, in turn, heavily depend on the

14

processor scheduling in the cloud. T hat is, to offer services effectively to customers,

the service requests must be properly mapped to the available computing resources

in the cloud. This is simply a scheduling problem, and it generally involves sequenc

ing and assigning a set of applications on one or more processors (servers) so tha t

the intended criterion is met, while maintaining the maximum possible utilization of

system resources. Therefore, processor scheduling is a fundamental problem in cloud

computing as it is involved in almost all services th a t the cloud can offer. As the

servers of the cloud are expected to be built from multicore processors, scheduling of

multicore processors is an integral component of cloud scheduling [8,22,41],

Among the applications of cloud computing, a considerable portion of applica

tions are expected to be from high performance computing groups. Such applications

require huge computational resources. Some of these applications are typically de

signed as parallel threads with frequent synchronization among themselves. These

applications are basically gangs. A recent research suggests th a t gang scheduling can

be effective in cloud computing |42].

2.3 R elated Work

To set the context for our work, we reviewed the work on operating systems for

multicore processors. In this section, we review the work specifically related to our

contributions. This thesis has contributions relating to multicore scheduling simu

lation, performance study of Linux and Solaris scheduling algorithms, performance

study of three gang scheduling algorithms, and fairness aspect of gang scheduling

algorithms. Next, we review the work related to these contributions.

15

2 .3 .1 Scheduler S im u lators

A number of simulators for multiprocessors have been proposed in the literature

[25,26,28,43-47]. Among them, Simics [28], SimOS [46], SimpleScalar [43], and

AMD SimNow [47] emulate the processor at the instruction set level. They differ in

emulating different architectures and simulating other components such as I/O and

network.

Simics simulates the hardware which can run unmodified operating systems such

as Solaris, Linux, Windows XP, and Tru64. Simics supports the following processor

models: Ultrasparc, Alpha, x86, x86-64, PowerPC, MIPS, IPF, and ARM. In addition,

Simics simulates the device models well enough to execute the device drivers.

SimOS simulates the hardware components to boot, study, and run IRIX oper

ating system and the application tha t runs on IRIX. SimOS fastens the simulation

by changing the mode of execution. There are three modes of execution proposed

in SimOS - emulation, rough characterization, and accurate mode. Emulation mode

models the hardware tha t are required to execute the workloads, leaving other unin

teresting execution such as booting the operating system, reading from the disk, and

initializing the workload. This is the fastest mode. The rough characterization mode

approximate the behavior of the system by simulating those uninterested executions.

This mode is two or three times slower than the emulation mode. The accurate mode

emulates the complete system, and therefore it is the slowest and very time consum

ing. The accurate mode can be used for measuring the accuracy of the system under

simulation.

AMD SimNow simualtes the AMD family processors. SimpleScalar simulates a

close derivative of MIPS architecture. Turandot [44] emulates PowerPC. A recent

16

simulator called COTSon [45] uses AMD SimNow, and employs a statistical sampling

technique th a t can selectively turn on and off the simulation to reduce the overall

simulation time.

Since all these simulators emulate machine instructions completely, they all have

fine grained accuracy at instruction level. Some of them are used as virtual machines.

However, they are very slow as they have to interpret each machine instruction at

software level. For example, SimOS - the fastest among the group - can execute

workloads only less than 10 times slower than the underlying hardware. Note tha t

SimOS simulates other components to attain this speed. Also, as these simulators will

run on host operating system, the scheduling of host operating system will further

slow down the execution time of the instruction. Such fine-grained simulators are

more suitable for studying low level functionalities of the processors.

These simulators are not suitable for rapid simulations aiming to get quick insight

and guidance to develop new scheduling algorithms for future multicore processors.

They are machine dependent and emulates only existing hardware. Implementing a

scheduling algorithm in a system supported by a regular operating system is hard.

Therefore, simulating a new scheduling algorithm for performance study in these

simulators is time consuming and hard.

A simulator of Linux scheduler called Linshed was proposed in [26]. This simulator

was designed by making changes to original Linux kernel and it runs in user mode.

The objective of Linshed was to study the Linux scheduler in depth and was not

intended to implement any new scheduling algorithm or comparing with any existing

scheduling algorithm.

Recently, a toolset called AKULA [25] was proposed to study scheduling of threads

on multicores so as to reduce their cache contention. AKULA toolset assumes the

17

availability of the task profile termed as bootstrap data on cache behavior. Such

cache behavior can be obtained only through actual execution on a dedicated multi

core system. The bootstrap data contains two information: solo execution time and

degradation matrix. Solo execution time is measured when the thread runs alone in

the real machine and the degradation matrix is the degradation value from their solo

execution time when a thread is scheduled with other threads in different cores which

share the cache. For example, there are two threads A and B which are scheduled

in two core system. The degradation matrix contains degradation value of of thread

A when thread B is scheduled in another core and vice versa. Suppose the degra

dation value of thread A when scheduled with thread B is 0.75, then the slow down

percentage is 75.

Threads on a multicore system can be scheduled in a number of ways. Consider a

system with two cores and two level cache memories LI - local to each core, and L2

shared by both. In this system, all threads can be scheduled to one core or they can

be distributed between two cores in several ways. These different ways of scheduling

will have different influence on both LI and L2 level caches. To observe the cache

behavior, we need to collect the cache data in all possible ways of scheduling, which

will result in large number of combinations.

AKULA collects the cache behavior for a limited set of scheduling combinations.

It assumes tha t the threads scheduled in the cores are allotted with full LI cache and

observes the L2 level cache effect. T hat is, time sharing on a core is not allowed. For

example, there are four threads, say A, B, C, and D. need to be scheduled and there

are two cores in the system which share L2 cache. The degradation m atrix will have

the degradation value for the following 12 combinations of threads: AB, AC, AD, BA,

BC, BD, CA, CB, CD, DA, DB, and DC.

18

If the number of cores is increased to 3, then a total of 24 combination of data

have to be collected. So, the size of the data increases drastically with increasing

number of cores as well as increasing number of threads. Also, executing these tasks

in real machine to collect the bootstrap trace is tedious and very time consuming

task. More importantly, AKULA only runs on the profile data created by actual

executions, it cannot be used for testing new workloads. Therefore, it limits its usage

only to the system and the workload for which the trace is collected. Even changing a

single param eter such as speed, number of cores, cache, workload will make the trace

unusable. Due to this restriction, the use of AKULA is very limited.

2.3 .2 Fairness and P erform ance Issu es in G ang Schedu lin g

Gang scheduling has been extensively analysed and several studies have concluded

tha t gang scheduling is one of the best approaches for parallel applications, and hence

several gang scheduling algorithms under different conditions have been proposed

in the literature [40,42,48-55]. Among them First F it (or First-Come-First-Served

(FCFS)) and Best Fit (or Largest-Gang-First-Served (LGFS)) are popular [53].

When enough processors are free, FCFS chooses the job at the head of the queue

to schedule and LGFS chooses the largest job in the queue to schedule. FCFS assures

high fairness, bu t does not guarantee the best processor utilization. Consider th a t a

larger gang G is in the head of the queue, and several other smaller gangs are waiting

behind G. Assume that there are not enough processors to schedule G, but several

other processes from the queue can be scheduled. Now, in FCFS, these processors will

be idle until enough processors become free and G is scheduled. Such situations will

not only make the processor utilization low, but also have the potential to increase

the average waiting time. To avoid such situations, a modification called adaptive

FCFS (AFCFS) was introduced [53]. When a gang in the head of the queue cannot

19

be scheduled, AFCFS schedules other gangs behind in the queue. All these algorithms

are susceptible to starvation. To avoid starvation, these algorithms adopt the policy

of migrating jobs from processor to processor [53]. Such task migration may not be

effective for multicorc systems.

Task migration is hardly possible between two heterogeneous multicore systems,

and generally expensive even between two homogeneous systems [39,56]. Also, an

efficient task migration can reduce the wait time, but it does not guarantee to eliminate

starvation. Therefore, a simple solution to avoid starvation in gang scheduling is an

interesting open problem.

Avoiding starvation is an interesting theoretical problem. But, for practical appli

cations, a better fairness measure than free of starvation is most desirable. We found

tha t no such fairness metric has been introduced and used in this context.

Regarding performance, the most widely used metric in the processor schedul

ing context is average response time. We believe a predictable performance is more

valuable than better average response tim e1.

2.3 .3 P erform ance S tu d y

We have conducted performance studies on two sets of scheduling algorithms.

Next, we discuss the work related those studies.

2.3.3.1 Linux vs. Solaris Scheduling A lgorithm s

Linux and Solaris schedulers have been constantly tuned and updated [12,57].

Even the most popular 0(1) Linux scheduler introduced in version 2.6 was initially

luit is more im portant to minimize va ria n ce in the response tim e th a n to minimize th e average
response tim e. A system w ith reasonable and p red ic ta b le response tim e may be considered more
desirable th an a system th a t is faster on the average bu t highly variable. However, little work has
been done on CPU scheduling algorithm s to minimize the variance." [37]

20

expected to be used for a long time, has been overshadowed by the introduction of

a completely fair scheduler (CFS) [12,58]. We decided to study the performance

comparison between Linux CFS and the Solaris 10 scheduler.

To the best of our knowledge, we could not find a performance comparison between

Linux and Solaris schedulers. Even the complete description of the scheduling algo

rithms of these operating systems are not comprehensively described in one place. We

put a lot of effort to construct the complete algorithm in bits and pieces from various

sources for our simulation study.

2.3.3.2 A FC FS vs. LGFS G ang Scheduling A lgorithm s

Among the popular gang scheduling algorithms, AFCFS alleviates the problem

of low processor utilization, and performs better than LGFS under light loads. The

performance of these two algorithms have been studied in [51-53]. LGFS, on the

other hand performs better than AFCFS under heavy loads.

2.4 Summary

In this chapter, we explained multicore scheduling in a higher level, and looked

at load balancing and scheduling approaches. Then, we discussed an interesting class

of parallel job scheduling called gang scheduling and its relevance to multicore and

cloud computing. W ith this background, we are ready to present the motivation and

contributions of the thesis.

21

Chapter 3

Motivation and Contributions

This chapter presents the motivation and contributions of this thesis, and the m ethod

ology used. This thesis contains three main contributions: (i) a multicore scheduler

simulation framework and its implementation; (ii) simulation studies of two popu

lar scheduling algorithms to illustrate the use of the proposed scheduler simulation

framework; and (iii) a new scheduling algorithm and its performance study. We start

with the motivation for the first contribution.

3.1 M ulticore Scheduler Sim ulation Framework

From the literature study presented in Chapter 2, we identify two potential choices

for our thesis work: (a) design and propose a new or improved multicore scheduling

algorithm; and (b) design and propose a multicore scheduler simulation testbed where

any new scheduling algorithm can be easily simulated and analysed.

The first choice is from the observation that, as the field is young, and there are

no widely accepted concrete multicore scheduling algorithms have been proposed in

the literature, there is a good possibility of inventing an efficient multicore scheduling

22

algorithm. The second choice is from the observation that, as the trend in processor

technology indicates that the future systems will have hundreds and thousands of

cores, any new algorithm proposed for such systems must be studied carefully using

a large number of cores using proper set of experiments before it can be adopted for

practical use.

After several brainstorming discussions, we started to realize th a t both choices

are risky and challenging as they have open ended goals. However, we felt the sec

ond choice has the potential to impact widely, and therefore we chose to proceed in

designing and implementing a flexible multicore scheduler simulation framework.

Designing and implementing a multicore scheduler simulation framework involve

several research questions to be explored, and some of them are:

• W hat would be the main purpose of the framework?

• W hat would be the components of the framework?

• How accurately can the components be modeled?

• W hat is the level of accuracy th a t we want in modeling the components of the

framework?

• To illustrate the use and flexibility of the framework, which scheduling algo

rithms can we implement and study?

• W hat kind of simulation experiments we would like to conduct?

From the literature, we understood that no simulator could replace a real system.

However, the design and implementation choices vary greatly depending on the cost

and accuracy. Here, the cost is a function of effort, time, complexity, and performance.

23

The accuracy depends on the purpose of the simulation. Our design choice of the

scheduler simulation framework is mainly motivated from the following observations:

• “Simplicity is the key to understanding. ... Simplified simulations provide the

best grounds for extracting major properties quickly. ... Simulations done with

realistic physical layers normally lead to investigating phenomena with too many

variables, too many puzzles, leading to too few explanations, and too few hints

for future progress.” [59].

• “So, in practice, models tha t attem pt to be highly accurate end up running very

small “toy” workloads.” [28].

• “... the biggest difficulties in scheduling algorithm development: the difficulty

of implementation and the duration of testing. The difficulty of implementation

refers to the time and effort needed to convert an idea into the actual code ...

The difficulty of implementation and the duration of testing make it infeasible

to explore many different scheduling algorithms.” [25].

These observations motivated us to design a multicore scheduler simulation frame

work tha t is simple but flexible and comprehensive, so th a t the design space of the

scheduling algorithms for multicore systems can be explored rapidly.

Our design objective of the framework is mainly to provide accuracy sufficient to

gain initial insights into the performance of the scheduling algorithm under study.

We believe such insights will be valuable to guide the researchers in developing new

scheduling algorithms with specific objective in mind. As a m atter of fact, we en

countered such an opportunity of developing an improved scheduling algorithm for a

specific class of parallel applications called gangs. Next, we briefly explain how we

24

were motivated to study gang scheduling algorithms and propose an improved gang

scheduling algorithm.

3.2 A N ew Gang Scheduling Algorithm

Cloud computing is an emerging class of computational platform th a t has the

potential to provide unprecedented compute capacity to future organizations and

average users [8]. The trend in multicore processors indicates tha t all future processors

will be multicore, and hence the future cloud systems are expected to have their

nodes and clusters based on multicore processors [60]. So the processor scheduling in

the future systems will most likely be all multicore processor scheduling. Therefore,

multicore scheduling is fundamental to future cloud computing performance. Also,

due to multicore revolution, a considerable portion of large applications will be parallel

programs. From the literature, we can see tha t gang scheduling is a dominant strategy

to schedule parallel programs with the requirement of frequent synchronization.

Among the popular gang scheduling algorithms, AFCFS alleviates the problem of

low processor utilization, but is susceptible to starvation. LGFS, as claimed in the

literature [42], outperforms AFCFS in large loads, bu t again is susceptible to starva

tion. To avoid starvation, these algorithms adopt a process migration policy. Process

migration in this context is migrating gangs between multicore systems. Migrating

gangs may not be even possible between two heterogeneous multicore systems, and

generally expensive even between two homogeneous systems [39,56]. Gang migration

could reduce the overall wait time of the migrating gang, but it does not guarantee

to eliminate starvation.

These observations raise a question. Can we design a gang scheduling algorithm

with the following characteristics?

25

1. Freedom from starvation.

2. Predictable and acceptable response.

3. Better processor utilization.

Since LGFS favors large gangs, the smaller gangs are susceptible to starvation or

will have longer wait time. This is unacceptable particularly in cloud environment

where customer satisfaction hugely depends on fairness and predictable response time.

In practice, the customers who receive a little faster service (at the expense of oth

ers’ long wait) may not be overly satisfied [61]. But, the customers who experience

unpredictably long delay, on the other hand, will readily notice the unfairness and

unpredictable response and that could potentially drive the cloud business in a nega

tive direction. Therefore, in addition to fast response and high processor utilization,

minimal variance in response time is extremely im portant for quality of service in

cloud systems.

3.3 Contributions

This thesis has contributions in the following three categories:

1. Inventive

• A new multicore scheduler simulation framework

• A new gang scheduling algorithm with increased fairness

2. C reative

• A multicore scheduler simulator (expected to be released as open source

software)

26

3. E xperim ental

• Performance study of Linux and Solaris scheduling algorithms

• Performance study of two popular gang scheduling algorithms AFCFS and

LGFS

• Performance study of a new gang scheduling algorithm and comparison

with AFCFS

At another angle, this thesis has contributions in theory, algorithm, implementa

tion, and experiments. The scheduling framework is a theoretical abstraction of the

scheduling system. The new gang scheduling algorithm is an algorithmic contribu

tion. The scheduling simulator is an implementation of the framework. Finally, the

experimental study are the performance study of five scheduling algorithms - Linux

and Solaris scheduling algorithms, and three gang scheduling algorithms.

These contributions have several benefits. The insights obtained from the experi

mental evaluation will help: (i) the users to effectively exploit the hidden power of the

above mentioned schedulers, and (ii) the researchers to design new efficient multicore

scheduling algorithms, by combining the best ideas of the above studied algorithms,

and perhaps adding new ideas. The simulation tool can be used to evaluate any newly

designed multicore scheduling algorithm under various conditions before it is adopted

for real systems.

The proposed gang scheduling algorithm is simple, fair, and gives predictable per

formance. Such a predictable performance is attractive from the service point of view.

Also, the algorithm is scalable as it solves the starvation problem locally without using

process migration. High performance, fairness, and scalability are attractive proper

ties for cloud computing. Therefore, the algorithm is applicable for cloud systems

27

built from multicore processors.

3.4 Research M ethodology

The methodology we followed is generally referred to as constructive research

methodology, where the construct could be a new theory, algorithm, model, software,

system or a framework. This methodology is most common in engineering and com

puter science, particularly in systems research. Constructive research methodology

involves innovative modeling, design, implementation, and experimentation.

Multicore scheduling is a challenging problem, and we determined to explore the

problem in a systematic fashion, using a combination of theory and practice, with an

experimental approach. First, the focus is on thoroughly understanding the theory

behind processor scheduling by studying and evaluating existing scheduling schemes.

Second, based on this understanding of the literature, a multicore scheduler simula

tion framework with components tha t can be useful in implementing a new multicore

scheduling algorithm is designed and implemented. Third, the components neces

sary for studying the performance of multicore scheduling algorithm are determined

and added to the framework. Finally, the functionality of the proposed framework

is demonstrated by simulating five scheduling algorithms, and then illustrating the

performance of the simulated scheduling algorithms through performance monitoring

and performance metrics. The five major steps involved in the methodology are:

1. Literature survey

2. Design and implementation of the multicore scheduler simulation framework

3. Identification and implementation of performance monitoring components and

performance metrics

28

4. Implementation of three popular classes of scheduling algorithms: Linux, Solaris,

and Gang scheduling

5. Conducting simulation experiments on five scheduling algorithms and illustrat

ing their performance results

3.5 Summary

In this chapter, we presented the motivation for our contributions and listed the

contributions. It also contains the research methodology th a t we followed. W ith this

background, we are ready to present the major contribution of thesis - the multicore

scheduler simulation framework in the next chapter.

29

Chapter 4

Multicore Scheduler Simulation

Framework

This chapter presents the architecture of the multicore scheduling simulation (MSS)

framework, which is the major contribution of this thesis. The primary use of

this framework is to facilitate researchers in implementing and simulating multicore

scheduling algorithms to evaluate the performance visually and statistically. Before

presenting the framework, we briefly explain the simulation technique we used.

4.1 Simulation

Computer simulation is a technique to model and observe the behavior of some

real or imagined system over time [62]. A simulator is simply a computer program

tha t transforms the state o f the system in discrete time points over a specified period

of time. Simulation is widely used to study the dynamic behavior of complex systems.

Based on how the system state is modeled and simulated, computer simulations are

classified either as continuous or discrete. If the state variables change continuously

30

over time, then it is called a continuous simulation, and if the state variables change

only at discrete times, then it is called a discrete simulation. In reality most systems

are a combination of both. However, depending on the purpose, most systems are

simulated either as continuous or discrete, and rarely as hybrid of both.

Discrete simulation is further divided into time-stepped and event-driven, based

on the advancement of simulation time and the update of the system state. In time-

stepped simulation, the system state is updated at every tim e step. In event-driven

simulation, the system state is updated at the occurrence of events.

Discrete event simulation consists of an events list, a simulation clock, and an event

scheduler. For instance, in simulating the behavior of a queue at the bank-teller, the

number of customers arrived and the number of customers served are sta te variables

and they will be updated on the occurrence of the events in the system. The number

of customers arrived will be updated when the customer arrives in the bank, and the

number of customers served will be updated when the bank-teller serves the customer.

Simulation continues until either the events list becomes empty or the simulation time

ends.

In discrete event simulation, the simulator maintains a queue of events (also called

event list) sorted by the simulated time they should occur. Simulation clock maintains

the simulation time and it is advanced to the time of occurrence of next event in the

event list. Since, it is not im portant to execute the simulation in real-time, the

advancement of the simulation time can be the same, faster, or slower than real-time.

For example, in the simulation of humans evacuating a building, the queues buildup

can be visualized faster than real-time. The current flow through an electric circuit can

be simulated slower than real-time, and in-training simulations (for example, flight,

simulators) can be exhibited real-time speed. An Event scheduler executes events

31

from the events list and the system state changes a t the occurrence of each event in

the system.

We use both discrete time stepped and discrete event simulation to implement

different components of our framework.

4.2 M ulticore Scheduler Sim ulation

From systems point of view, multicore scheduling essentially has two tasks - main

taining the load among the cores and multitasking threads in each core. Generally,

the first task is referred to as load balancing and the second task is referred to as local

scheduling. We maintain these abstractions in our scheduling framework.

Load balancing manages the jobs across the cores, and local scheduling directs the

core to switch between threads. Thread switching (or context switching), say from

Ti to Tj, requires saving the context of Tj and loading or restoring the context of Tv

Also, certain tasks must be performed when a thread completes its execution. In the

simulation context, these tasks are basically updating the simulation system state. In

our framework, we provide generic routines to do these tasks.

In essence, implementing the routines of load balancing and local scheduling are

the programming effort needed to use our simulator to study the performance of a

new scheduling algorithm. Again, to reduce the effort of implementing the scheduler

further, we provide a default load balancing routine and sample local scheduling

algorithm routines. These routines can be suitably modified to implement the new

scheduling algorithm, unless the new scheduling algorithm is completely novel and

does not follow the structure of load balancer and local scheduler combination. Even

in that case, the entire scheduling can be designed from scratch with little effort to use

our framework. In any case, from our experience, we are confident that, once the logic

32

Arrival queue

Scheduler

updates adds

advances

amulaticaa do ck

O
&

State

Sim ulation
M anager

TracePQ

Figure 4,1: The Scheduler

of the new scheduling algorithm is completely understood, then implementing it in

our simulator is straightforward. W ith this background on multicore scheduler, next

we explain the overall multicore scheduler simulator, which is a part of the framework.

The simulator is illustrated in Fig. 4.1. It has seven components: simulation clock,

simulation manager, arrival handler, arrival queue, scheduler, state, and trace. The

scheduler has four routines: load balancer, local scheduler, context switch handler,

and completion handler.

The simulation of the system basically involves updating the state of the system

at every simulation time point, and incrementing the simulation clock. Simulation

clock advancement and state update could be done in an integrated fashion. But, for

the modular design of the scheduling framework, we decided to keep these two tasks

separate.

33

In our framework, we designed a component called Simulation Manager to do

the task of advancing the simulation clock and initiating the appropriate routines

to update the system state. Updating the simulation system state typically involves

recording the arrival of new jobs, and updating the state related to scheduling. To

implement the arrival of new jobs, we introduced a queue called arrival queue, and

implemented a routine to register the newly arrived jobs in the arrival queue. U pdat

ing the state related to scheduling is dependent on the scheduler logic, and it must

be done as part of the implementation of the scheduler.

The simulation of the executions of jobs are recorded as simulation trace, and it is

recorded at every scheduling point. To make this task generic, we have standardized

the format of the execution trace and implemented a routine to add the trace appro

priately during the simulation. Actually, this task of updating the trace is taken care

of automatically by the context switch handler routine. W ith this background, we

now introduce the architecture of the multicore scheduler simulation framework.

4.3 Architecture of M SS Framework

First we introduce some basic terminology used in our framework. Hereafter, to

avoid confusion of what really refers to processor1 in the simulation context, we avoid

its usage in the rest of the thesis.

4 .3 .1 T erm inology

• Core: The hardware execution unit.

• Chip: An integrated circuit containing one or more cores.

b e f o r e m ulticore era, the te rm processor was used to refer to as an execution un it. Therefore,
it was used synonymous with central processing un it (CPU). Now', w'ith m ulticore technolog}-, a
processor has several execution units.

34

W orkload
G en erator

Scheduler M achine

Chip l Cl^ip 2 Chip n

(̂ Coarê) cS> <S>
w-*-* v ----------

/ Core j f Covet \

© @

P erform ance
C alculation Engine

✓1--------- E x e c u tio n --------- NSI--------- T ra c e
--------- ^ A ctiv ity Profile

G en erator

Figure 4.2: Architecture of MSS Framework

• Machine: A collection of chips designed to work together.

• Thread: The smallest unit tha t can be scheduled to a core for execution.

• Gang: A set of parallel threads th a t can be executed to achieve a task.

A higher level architecture of MSS framework is given in Fig. 4.2. The framework

has five main logical components: workload generator, multicore machine, multicore

scheduler, execution trace, and performance calculation engine. We explain them

next.

35

4 .3 .2 W orkload G en erator

We have implemented the workload generator to generate two types of workloads:

threads and gangs. Threads are generated for traditional applications and gangs are

generated for parallel applications. The gangs of parallel threads typically execute in

a synchronized manner.

The input to generate a workload of threads are: the numbers of threads, mean

arrival rate, and mean service rate. To generate the workload of gangs, instead of the

number of threads, the number of gangs is given. The number of threads within each

gang is generated uniformly between the range 2 to M , where M is the number of

cores.

The output will be a set of threads or gangs depending on the generator chosen.

Each thread will have a unique id, arrival time, execution time, I/O points, priority,

and application class. Similarly, each gang will have a gang id, arrival time, execution

time, and a set of parallel threads with their own ids.

The I/O points of a thread are the times when the thread will go for I/O s. For

example, assume that a thread has an execution time 50, and will go for I/O at time

5, 20, 30. In this case, I/O requests will be invoked after the thread is executed for

5 units, 20 units, and 30 units. The number of I/O points are generated uniformly

within the execution time range, and the I/O wait time is generated uniformly within

a range specified in the configuration.

4 .3 .3 M ulticore M achine

The Multicore machine is the computing unit tha t is organized in a hierarchy,

starting with machine at the highest level, as shown in Fig. 4.3.

36

Machine
Chip 1

Core
I L1 I—

Core
—I L1 I—

L2 cache

Chip 2

Core
—I L1 1

Core
i L l I

L2 cache

L3 cache

Main Memory

Figure 4.3: A Multicore Machine

A multicore machine contains one or more chips, and each chip contains two or

more cores. The core is the physical execution unit. In practice, a core is capable of

executing one or more threads in an interleaved way, referred to as hyper-threading.

In our simulator we model a core to execute one thread at a time. We believe that,

with a suitable scheduling policy, the performance of hyper-threading effect can be

approximately simulated using single threaded cores.

A multicore machine has hierarchy of cache memories. Current multicore systems

have three levels of cache memories, referred to as L l, L2, and L3. L l is core level,

L2 is chip level, and L3 is machine level. As shown in Fig. 4.3, L l is local to each

core, cores in a chip share L2 of tha t chip, and L3 is shared by all the cores in the

machine.

4 .3 .4 M ulticore Scheduler

As explained earlier, our framework implements a multicore scheduler having two

logical components - load balancer and local scheduler. The load balancer is re

sponsible for maintaining a desired balance of the system load. This task involves

dispatching the new jobs to the appropriate local scheduler, and migrating jobs from

one local scheduler to another when necessary. The local scheduler is responsible

37

<cid, t id , E x-start, Ex-end, S>
< 0 ,0 ,4 ,12 ,0>
< 1 ,1 ,9 ,13 ,0>
< 1,1 ,13 ,17 ,2>
< 3 ,4 ,1 6 ,1 9 ,2>
<0 , 2 , 12 , 22 , 0>

<4,354,12459,12459,3>

Figure 4.4: Sample Execution Trace

for scheduling jobs to the cores for execution. Generally, each core is assigned a lo

cal scheduler, but other choices are possible. In our simulation, local scheduling is

implemented to have centralized control.

In simulation context, the local scheduler primarily makes a decision to choose a

job for execution, determines the amount of execution time, calculates its progress

rate, and produces the trace. The progress rate of a job is the crucial design factor

affecting the accuracy of execution, and it is dependent on several factors such as

execution speed of the core and the contention for shared resources. We have used a

simple cache contention model, but it can be easily replaced with an implementation

of a more refined model.

4 .3 .5 E xecu tion Trace

During the simulation, the execution trace is recorded at every context switch to

generate the activity profile and to compute the performance metrics. There are two

types of traces collected: execution trace and I/O trace. The execution trace is a

collection of quintuple, as shown in Fig. 4.4.

In the execution trace, each quintuple has a core id (cid), thread id (tid), execution

start, time (Ex-start), scheduling end time (Ex-end), and a status (S). S tatus is 0 if

preempted by quanta expiration, 1 if preempted by higher priority thread, 2 if going

38

< tid , I /O -sta r t, I/0-end>
<4,19,49>
<4,52,69>
<19,52,76>
<13,43,83>
<34,85,87>

<681,12045,12070>

Figure 4.5: Sample I/O Trace

for I/O , and 3 if completed. The I/O trace is a collection of triples, as shown in Fig.

4.5, each triple has thread id, I/O start time (I/O -start), and I/O end time (I/O-end).

4.3 .6 P erform ance C a lcu la tion E n gin e

The performance study primarily aims to determine how well the algorithm re

sponds to satisfy certain criteria such as response time, fairness, and utilization of

resources. The performance calculation engine calculates these values for a given set

of data, and the result can be passed to the performance observation window for the

users to study. The performance criteria widely used to study scheduling algorithms

are the five metrics: throughput, CPU utilization, turnaround time, waiting time,

and response time [37,38].

In addition, we have included three more measures: (i) interactive response time,

(ii) bypass count, and (iii) slow down factor. Interactive response tim e is introduced

to observe the interactive response of tasks. It is defined as the tim e from when a

thread is ready for execution to the subsequent start of execution. To avoid starvation,

wre introduce the metric of bypass count. Bypass count will indicate the number of

threads which bypassed a waiting thread in scheduling, and it is an indication of

unfair scheduling. We use a bypass count graph to see the level of fairness tha t a

scheduling algorithm can assure. Finally, a relative performance would be interesting

39

for resource allocation purpose. For tha t, we include slow down factor.

The following list of performance metrics is supported in the proposed framework.

1. Throughput: The to tal number of jobs completed execution in one unit of time.

Assuming the simulation starts at time 0, and n jobs complete in Ts period, the

throughput T P is computed as follows:

T P = — (4.1)
n

2. Core utilization: This is the percentage of time the core spends on executing

jobs. Let Ts be the total simulation time and Tb be the amount of time the core

is busy. Then, the utilization (Uc) of core c is computed as follows:

Uc = x 100% (4.2)
S

3. Core idle time: This is the percentage of time the core is idle w ithout jobs to

execute. The idle time (Id lec) of core c is computed as follows:

Id lec = (l - ^) x 100% (4.3)
S

4. Core wait time: The total time tha t the thread waits for core.

5. I /O Wait time: The total time taken for all I/O waits of the thread.

6. Wait time: The sum of core wait time and I/O wait tim e of the thread.

7. Turnaround time: The sum of wait time and execution time of the thread.

8. First response time: The time from submission to start of execution of the

thread.

40

9. Interactive response time: The time from when the thread is ready for execution

to the subsequent start of execution.

10. Slow down factor: Slow down factor of a thread is defined as the ratio between its

turnaround time and execution time. This metric is used to measure the delay

suffered by a job against its actual execution time. If wti and exj, respectively,

are the wait and execution times of i, then the slowdown factor .Sj of the thread

i is computed as follows:

11. Bypass Count Graph: Every thread is associated with a bypass counter. This

counter is incremented whenever it is bypassed another thread in scheduling.

The bypass count graph reflects how many threads have bypassed a waiting

thread in scheduling. It gives the sense of fairness that the scheduling algorithm

can assure.

Let x i ,x 2, x u be the values, the average x and standard deviation a are com

puted as follows:

Wti
(4.4)'i exi

(4.5)
n

and

n

(4.6)
n

41

4 .3 .7 S ta tistica l M easu res

For these metrics, when applicable, we calculated minimum, maximum, average,

and standard deviation. Traditionally, average and percentage are used to study

the performance in this context. T hat is, typically, throughput and utilization are

computed in percentage, and average is computed for turnaround time, waiting time,

and response time. We believe better measures than average m ust be used in analysing

these metrics.

As cloud computing is fundamentally a service oriented system, its primary goal

is to provide quality service to its customers. Although the term quality of service is

often used and directly related with response time, it is not well interpreted in the

context of computing and communication systems. As indicated in [61], perceived

quality of customers need not be directly related with minimal response time. The

study indicates tha t users are often unaware of the quality differences until it crosses

certain threshold. Therefore, quality of service need not always be related to the

widely used metrics such as minimal response time or minimal average response time.

Thus, we believe tha t a predictable response time is a more appropriate measure for

the quality of service in the cloud computing context than other measures such as

average response time and resource utilization.

One such measure we discussed earlier is predictable response time. Predictable

response could be measured using variance or standard deviation. Therefore, we

decided to include the metric of standard deviation (i.e., square root of variance) in our

framework. We believe tha t standard deviation is a better measure of predictability

than average value.

42

4.4 A ctivity Profile Generator

Activity monitor provides visualization of how the algorithm schedules the threads

among the cores. Activity profile generator is responsible for providing the data for

the visualization. It basically derives the data from the execution trace. From the

trace, it generates data for every clock tick. The data contains the core status as idle

or occupied. Also, if occupied, the data contains the information about the thread

and its status, whether it is a newly arrived thread or preempted thread or migrated

thread from a different core. Activity profile generator differentiates these different

states of the core by assigns different colors. The activity monitor window visualizes

the derived data of core to thread allocation. Using this component, we can visually

observe core utilization, load balancing, and the individual core statistics.

4.5 User Interface

The multicore scheduling simulator has three main user windows, and the interface

within each window is organized as hierarchical panels. We explain these windows

next.

4.5 .1 P erform ance P aram eter S e ttin g W ind ow

Performance parameter setting window is used to configure the param eters for the

simulation. It consists of two screens. First screen, shown in Fig. 4.6, is used to set

the workload generation parameters. The input for the workload generator are the

number of jobs, arrival time distribution, mean arrival rate, and job execution time

range.

The parameter setting window has the provision to create more than one work-

43

. ...fwipimpik far SLMtyal niaanrtwr * o* lAuMcotn ^

ferfarmaoc* f v w w n l a w ; WrKtaw

Workload generator

Mi— k c r a (p i»t*** iW O

Arrival xkn*4lnribM hm P«**cm ^

50 *» 1&U

Gang Job generator

) N « « -»

Figure 4.6: Param eter Setting Window

load. The window takes number of process, arrival rate distribution, arrival rate, and

execution range as the parameters for each workload. Once you configure the above

mentioned parameters, you can add it to the workload list by pressing the ;Add to

Load’ button which will add to the list of workloads and will display it in the right

side of the window. Using this option, we can configure more than one workload.

The simulations run window, shown in Fig. 4.7, is designed to get input for creating

simulation runs. Using this window, several simulation runs can be configured. The

parameters required for each run are the number of cores, workload selection, and

scheduling algorithm. Using the simulation run window, we will be able to create

simulation runs with different combinations are listed below:

1. number of cores vs workload with the same scheduling policy

2 . number of cores vs scheduling policy under the same workload

44

.............. . r - ..x..... , i ’tpmmark h* U ffr pf >iBcfn*w i g»

j N f t o e w o O b s e n r tw W W e w j r t r tnrwu n ci h n a w t k m n w i | ACMr MOMHT VMM*

Configuration

.■iwatNfrafcer** 12* W w U a * _____ ■MortiostfO__________ <*j C u e Arrttnri Bate j i .4 ;*Ej

& Ati __
Sdw tfaitiig Policy iSoU rtotO J j | j | A da to sim ulation nm i]

Kutnfrtr sir c are t : Schedule* Pete* W arttead j
i&4...Linus 2.6 2 4 ...Wofdoadfl
64 U nux 2.6 26 W oftftu d i
U 8 SoUri* IQ W «kk>»40
iiH Sol-iru td WontlwuU

Figure 4.7: Simulations Run Window

3. workload vs scheduling policy when executing with same number of cores

This simulations run setting feature simplifies the effort involved in simulating the

scheduling algorithms under various conditions.

4 .5 .2 P erform ance O bservation W ind ow

Performance observation window, shown in Fig. 4.8, offers various performance

metrics that can be represented in charts. The window has a list of performance met

rics which can be chosen to see the computed values. Additionally, there is an option

to choose two different simulation run and compare the results. The performance

metrics can be analysed by varying the number of cores and arrival rate.

45

Charts
CfcMMCbantypt t-TUca* ttittnatyw

Aiutyw pcrtarmaiK* •£*»«

Figure 4.8: Performance Observation Window

4 .5 .3 A ctiv ity M on itor W in d ow

Activity monitor window is an interesting component in this simulator. This screen

shows the core usage in a graphical representation. W ith this screen, shown in Fig.

4.9, we can to analyse the following:

1. Core utilization

2. Thread migration

3. Execution thread list

Using Activity monitor window, we can visualizes how the threads are distributed

among the cores and how effectively the load is balanced. To see the individual

core performance, a core monitor child window is attached to each core to show its

statistics. The child window is shown in Fig. 4.10

46

 Mmk. ;»£»'..... '"̂ «*» * 1m*mma+ HHH "■r *M*M jaw «*M MM

w]; f~[." i .. "J [..- “J |nl" “ 1 ’ » ^ ^ L -
H I i ^ H _ _ _ B iB - B J H : I H i I H I H

____ i i l wj’iiii i t j l X 7 - ^ y ^ -

i M f T i i ...W i z g i U f m M m w m f t r
- “ i ĵ ĵjj ̂ m 7*̂ a h i B sis

1 _ ' m m ■ ■ ; a m h b i _ W M ■ ■
m m g £ |j | *t^*" ^"""^‘ " - H H | H |M i l ' ’

»[{,,»i f.J L..**' .L.** :,..) •._“* |J_1* “ - .n ..r * ** C “ * I..[r
H E H I H I t m ! I H H H ' H I I H I

m k 1 ^ t n "j j ^ r a l i r

Figure 4.9: Activity Monitor Window

■■--i.X '^ . - c .£■ ■■: t Cow

Thread status
New
P'empiec
PremptttJPfempwd
Prempttd
Prempwd

summary

Figure 4.10: Core Monitor Window

47

The core monitor window has three parts. The first part (left part) is to display

the threads running in that core using different colors. The second part (right upper

part) is to display the statistics of busy and idle time of the core. A thread scheduled

in tha t core could be new, preempted, or migrated from another core. The ratio of

these three types of threads scheduled in tha t core is displayed in the th ird part (right

lower part) of the window. This part shows how many threads are migrated from

other cores due to load balancing. Such visual analysis is sometimes useful to capture

unusual behavior and patterns.

4.6 Summary

In this chapter, we presented a new framework for simulation of multicore schedul

ing algorithms. The framework is flexible, and serves as a base for designing new

scheduling algorithms and conducting experimental study on existing scheduling al

gorithms for multicore processors.

48

Chapter 5

Case Studies - Linux and Solaris

Scheduling Algorithms

To test and illustrate the functionality of the proposed simulator, we implemented

the recent versions of Linux and Solaris 10 scheduling algorithms. We first present

the algorithms, and then describe the simulation experiments and observations. The

recent version of Linux scheduler is called completely fair scheduler (CFS)1, and the

Solaris scheduler is referred to as kernel dispatcher.

Although Linux and Solaris are popularly used operating systems, the documen

tations precisely describing the scheduling algorithms are rarely published. We had

to reconstruct the algorithms using information obtained from different sources.

Both schedulers have two logical components - a load balancer and a local sched

uler. The load balancer is responsible for maintaining a desired balance of the system

load. This task involves dispatching new threads to the appropriate local scheduler,

and migrating threads from one local scheduler to another when necessary. The local

'C F S has been implemented sta rting from Linux 2.6.23.

49

scheduler is responsible for scheduling threads to the cores for execution. We first

present the load balancer of these two algorithms together first, and then the local

scheduling algorithms separately.

5.1 Load Balancing

Load balancing involves four factors: (i) initial placement; (ii) migration criteria;

(iii) migration policy; and (iv) frequency of balancing.

• Initial Thread P lacem ent - Initial thread placement in both Linux and Solaris

is the same: the new threads are dispatched to the lightly loaded cores.

• Load B alancing C riteria - The difference in the number of threads between

any two cores is less than one.

• M igration P olicy - Linux migrates threads from heavily loaded cores to lightly

loaded cores to satisfy the load balancing criteria. Solaris, when the choice

occurs, moves the thread to the core in different chip t-lian to the core in the

same chip, to reduce the cache conflict.

• Balancing frequency - Load balancing in Linux is done every 200ms, and the

load balancing in Solaris is done every 100ms.

Next, we present the local scheduling algorithms of Linux and Solaris. The threads

in both algorithms are classified as real-time2 thread and normal thread. Here, real

time implies tha t these threads have higher priorities than the normal threads, and

therefore real-time threads are always executed before normal threads. We first

present how the real-time threads are handled in both Linux and Solaris.

2 The term real-tim e in th is context is m isnom er th a t it does not associate any specific deadline
to meet, and no trad itional scheduling algorithm s like rate m onotonic (RM) or earliest deadline first
(EDF) have been used to schedule these threads.

50

5.1.1 R eal T im e Schedu ler

Whenever a real-time thread arrives, it preempts the normal thread and the real

time thread is scheduled to run. WThen a real-time thread is executing, if another

real-time thread with higher priority arrives, then the current thread is preempted

and the higher priority thread is scheduled. W ithin the same priority level of real-time

threads, Linux uses either the First-In-First-Out (FIFO) or the Round Robin (RR)

scheduling policy, and Solaris uses FIFO.

5.2 Linux Scheduler - C om pletely Fair Scheduler (CFS)

The basic idea behind CFS is to ensure fair share among threads in the overall

execution. This is achieved by quanta allocation. The execution time plays a key role

in quanta computation. CFS maintains the amount of time th a t a thread has utilized

the core before, referred to as vruntime. The thread with the smallest vruntime has

the highest preference to be selected next for execution. Calculation of quanta and

vruntime is given later.

Instead of run queue, for efficiency, CFS maintains a data structure called Red-

Black tree, sorted by vruntime key. The scheduler picks from the left-most child of

the tree which is the smallest vruntime thread for execution. The pseudocode of CFS

algorithm is given in Table. 5.1.

5.2.1 C alcu la tion o f Q uanta

The quanta value calculation plays a key role in CFS. The time quanta Q \Ti\ of a

thread TJ is calculated using the following formula:

51

D ata Structures: Red-Black tree - R B T , Thread X,

1. w hile (R B T 7̂ empty) do
2. select leftmost thread 7) from R B T
3. compute time quanta
4. schedule T
5. end w hile

Table 5.1: Completely Fair Scheduling Algorithm

m \ = J ; MKl9ht x P (5 .1)
} Tj. weight

j e R B T

where,

Ti.weight is the weight value corresponds to nice 3 value of 7). (Every nice value

is mapped to a weight value.)

sched latency if n > nr latency
P = { ~ ~ (5-2)

m in _granu lar ity x n otherwise

where n is the number of threads in RBT, and sched ̂ latency, nr _latency, and

m in _gran u lar i ty are constants. In the current implementation, these values,

respectively are 6 , 8 and 0.75 [63]. The details of how these values are determined

and their significance are not known.

3In Linux, the priority of the th read is controlled w ith th e nice value. Nice value ranges between
-20 and 19. Lower value corresponds to higher priority. T he user level command nice can be used
to lower the priority of a th read (i.e.. to be nice to other users).

52

5 .2 .2 C alcu lation o f vruntim e

For every clock tick, the scheduler calculates vruntime of the executing thread and

also decreases its time quanta. Preemption of a thread occurs when quanta expires

or RBT has a thread with smaller vruntime. The virtual vruntime of a thread 7) is

computed as follows:

Ti.vruntim e — x Ti.runtim e (5.3)
li.w eigh t

where, weight0 is the value corresponding to the nice value of 0 and 7).run tim e

is the execution time consumed so far by the thread 7).

5.3 Solaris Scheduler

Solaris 10 kernel dispatcher does both load balancing and local scheduling. Solaris

has implemented two schedulers - fair share scheduler and a default scheduler. The

fair share scheduler is typically used in server environments. We have implemented

the default scheduler, that we will describe next.

For simplicity, in Solaris, w'e consider just threads are scheduled for execution4.

Solaris maintains the priority range of 0 - 169. Priority range of 160-169 is reserved

for Interrupts, and the rest of the priorities are assigned to different scheduling classes

(see Appendix).

Solaris manages the threads in the following six different scheduling classes.

4In actual im plem entation, each application process in Solaris may contain one or m ore application
threads and each application th read is scheduled (m apped) to a v irtual core called light weight process
(LW P). Each LWP is implemented using a kernel thread, and these kernel th reads are eventually
scheduled and executed by the physical core.

53

1. Time share (TS)

2. Interactive (IA)

3. Fair share scheduling (FSS)

4. Fixed priority(FX)

5. Real Time (RT)

6 . System (SYS)

By default, threads created by the window manager are assigned to IA class for

better interactivity, and the rest are assigned to TS class. System threads are created

by the operating system. Other threads are created using different levels of system

privileges. FSS class is used when the fair share scheduler is invoked.

Priority of a thread may be specified or inherited from the parent. In fixed priority

class, threads have the same priority throughout their execution. RT class is the

highest priority thread class which requires attention right away, and needs to be

scheduled immediately. Next to the threads in real time class, the kernel threads get

attention. Finally, the threads in the classes TA, IA, and FX are scheduled. The

scheduler always chooses the highest priority thread for execution. The scheduling

classes priority ranges are summarised in Table 7.1 (see Appendix).

5.3.1 T he D efau lt Solaris Scheduler

In Solaris, except RT, every scheduling class has a local scheduling queue for every

core. For RT class, a global level kernel preemption queue is maintained for every

chip.

54

After choosing a thread for scheduling, the next task is to obtain the quanta value.

For that, Solaris maintains a set of tables, called dispatch tables (see Appendix), from

which the quanta value is obtained. Also, the scheduler provides the fairness among

the threads by boosting the priority up/down, in response to the following events.

• A thread successfully completes its execution for specified time quanta. Here,

the thread priority has to be boosted down to give fairness to other threads.

• A thread comes back from an I/O wait. Here, its priority has to be boosted up,

so tha t it will execute soon.

• A thread is waiting in its ready queue beyond certain threshold time period.

Here, the priority has to be boosted up to give chance to execute soon.

These scheduling subtasks are performed by specific routines called tick processing

and update processing (see Appendix). Tick processing is responsible for managing

quanta and invoking preemption. U pdate processing is responsible for boosting the

priority up/down. Dispatch tables are used to obtain new quanta, waiting threshold,

and new priority.

With this set up, the scheduling policy is: a t any scheduling time point, choose the

highest priority thread in the system and schedule for execution. If a higher priority

thread arrives when a lower priority thread is executing, then it will be preempted to

allow the higher priority to execute. A higher level description of Solaris scheduling

algorithm is given in Table 5.2.

55

Data Structures: Scheduling queues - D Q T S , D Q IA, D Q F X , K P Q R T ,
Thread T\

1. w h ile (K P Q R T V D Q T S V DQ IA V D Q F X ^ empty) do
2. if (K P Q R T 7̂ empty)
3. select highest priority thread T from K P Q R T
4. get the time quantum Q[T,] from dispatch table
5. schedule 7)
6. e lse
7. pick highest priority thread T) from D Q _ T S , D Q IA , D Q F X
8 . get the time quantum Q[Ti\ from dispatch table
9. schedule T
10. en d if
11. en d w h ile

Table 5.2: Solaris 10 Scheduling Algorithm

5.4 Simulation Experim ents

To illustrate the functionality and use of the proposed simulator, we conducted

two sets of experiments:

1. E xperim ent 1: In this experiment, the workload is fixed and the number of

cores is varied. The simulation parameters used for this experiment are given

in Table 5.3.

Param eter Value
Number of Threads 5000
Mean Arrival rate3 2.5
Arrival distribution Poisson
Execution time distribution Exponential
Number of cores 10, 50, 100, 200, 500

Table 5.3: Simulation Parameters

5We use generic unit for arrival rate . T he inter arrival tim es derived from the d istribu tion are real
num bers. They are then scaled to integer units of sim ulation clock. For example, th e in ter arrival
tim e 0.4 is scaled to 4 sim ulation clock units.

56

2. E xperim ent 2: In this experiment, the number of cores is fixed and the work

load is varied. The simulation param eters used for this experiment are given in

Table 5.4.

Param eter Value
Mean Arrival rate 2.5, 3.5, 4, 5
Time period 1 minute
Arrival distribution Poisson
Execution time distribution Exponential
Number of cores 50, 100, 150, 200

Table 5.4: Simulation Parameters

Linux schedules threads based on how much execution time it is consumed and

Solaris does by how long a thread waits without execution. We believe scheduling

thread based on wait time would give better response time and predictability than

scheduling done based on execution time. Based on this observation, we make the

following hypothesis.

Hypothesis: Solaris scheduler will have better and predictable response time than

Linux scheduler.

Predictable response time is studied using standard deviation of response time.

We computed the core utilization, turnaround time, standard deviation of turnaround

time, and interactive response time and its standard deviation for both experiments

and we explain our observations next.

5.4.1 O bservations on E xp erim en t 1

• Observation on Core Utilization: We observe that both algorithms keep the

cores 99% busy. In terms of core utilization, there is no significant difference

between these two scheduling algorithms. The consistent behavior is due to

their load balancing which periodically runs to evenly distribute the workload

57

j — Unu< A vyapeT-j^ atsyr-d *Jne - -Solans A v y ^ T u n ; a r j j r g t r a j

:;3,ooo .

ho.om- V-,
\

lOO.OCtfl ■ n
n
«

S3.SJO- ')

\
J£ 60000 \

0 5) 000 . \

40,000- \

% 75
o f cores

Figure 5.1: Average Turnaround time: Linux and Solaris Scheduling Algorithms (by
varying the number of cores)

among the cores.

• Observation on Average Turnaround Time: The average turnaround time graphs

of Linux and Solaris scheduling algorithms are shown in Fig. 5.1. The average

turnaround time gradually decreases as the number of cores increases. Both

Linux and Solaris algorithms show almost same behavior until 200 cores, and

after 200 cores, Solaris performs better than Linux by a factor of 10 when the

number of cores is 500. This is due to the fact th a t Solaris boosts up the thread’s

priority when the thread is waiting in the ready queue longer.

• Observation on Standard deviation of Turnaround Time: The standard devia

tion of turnaround time graphs of Linux and Solaris scheduling algorithms are

shown in Fig. 5.2. We observe that Solaris and Linux show similar behavior

between 10 and 200 cores. As we increase the number of cores, Solaris shows

58

Figure 5 .2 : Standard deviation of Turnaround time: Linux and Solaris Scheduling
Algorithms (by varying the number of cores)

better predictability than Linux.

• Observation on Interactive Response Time: The average interactive response

time graphs of Linux and Solaris scheduling algorithms are shown in Fig.5.3. We

observe tha t Solaris outperforms Linux consistently providing better interactive

response time. This is because, whenever a thread stays in ready queue and

reaches the maximum wait time, Solaris boosts up the thread priority. Also,

whenever a thread returns from I/O , the thread priority is boosted up so that

it can be scheduled soon.

• Observation on Standard deviation of Interactive Response Time: The standard

deviation of interactive response time graphs of Linux and Solaris scheduling

algorithms are given in Fig. 5.4. The prediction of how soon the thread will be

scheduled for execution, when it is ready, is measured by computing the standard

C
lo

ck

(t
ic

k
s)

45.000.000 ••

4 2 ,500 ,000 ;

40.000.090 •

37-500,000

35 .000 .000;

32.500.000-|

30 .000 .000 ;

\
27;509;000-;

25,000,030

22 500,000 • \
20.000,000

15,009.000

17.500,000 ■
\

12.500,000 •; \

10;000;000

2,500.000

5 000,000 -

’,500,000

25 50 75 ICO 125 150 1 75 2SC 225 250 275 303 325 350 375 400 425 450 475 500
Number of cores

Figure 5.3: Average Interactive Response time : Linux and Solaris Scheduling Algo
rithms (by varying the number of cores)

deviation in interactive response time. It is clearly visible that Solaris performs

better than Linux by assuring better fairness to the threads. As mentioned

before, the boosting of the priority by Solaris influences the predictability better

than Linux.

5.4.2 O bservations on E xp erim en t 2

• Observation on Core Utilization: We observed tha t both algorithms keep the

cores busy and there is no significant difference.

• Observation on Turnaround Time: The average turnaround time graphs of

Linux and Solaris scheduling algorithms are shown in Fig. 5.5. The average

turnaround time constantly increases when the arrival rate increases. From

these experiments, it is clearly seen tha t Solaris performs better then Linux,

60

— Ufi‘jx Standard deviation r- htgracdve response line ‘ -Solaris S t a n d s dewatffir= -r Intaactlve response time

- 22.500,030 •

2 20.000,000
0 17,500.000 •

15 000 000 -

12 “» OH)

5 003 a

325 350 375 400 425 450 475 50025 50

Figure 5.4: Standard deviation of Interactive Response time: Linux and Solaris
Scheduling Algorithms (by varying the number of cores)

when the number of cores is 50, but the trend gradually converges as the num

ber of cores increases.

• Observation on Standard deviation in Turnaround Time: The standard devi

ation of turnaround time graphs of Linux and Solaris scheduling algorithms

are shown in Fig. 5.6. We observe th a t the predictability also increases when

the arrival rate increases. Compared to Linux, Solaris predictability is always

better.

• Observation on Interactive Response Time: The average interactive response

time graphs of Linux and Solaris scheduling algorithms are shown in Fig. 5.7.

Solaris outperforms Linux consistently providing low interactive response time.

As explained earlier, the priority boosting of Solaris heavily impacts the inter

active response time. This is an expected behavior.

61

j—So&is 1050 10100 --Soiy;s 1020C — 10150 — u-u* 2.6.265-3 - Ur=ut; 6 26100 — Urui 2 6 26200 — L-mjT2.6 26150-j

0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7-5 8.0 S.S 9 0 9.5 1G.G

Arrival rate

Figure 5.5: Average Turnaround time: Linux and Solaris Scheduling Algorithms (by
varying the workload)

— Solaris 1050 Sharis 1D100 — So^ns 10200 — Sote 's 10150 — _ny« 2,6.2650 Ur^x 2.6.26100 — Unux 2 6.26200 — unu* 2.6 2615C

32 500

27.500

2.5 5 5 8.04.5 6.0 7.0 9 0 9.5 10.0
Arrival rate

Figure 5.6: Standard deviation of Turnaround time: Linux and Solaris Scheduling
Algorithms (by varying the workload)

62

I—’ Solaris 1050 Solans 10100 — Solars 10200 — Solars 10150 — L m i 2.6.2650 b to x 2.6.26100 — b rux 2.6.26230 — bmjx 2.6 2615C!

■ 000,030-

.000

,500.000

3.02.5 3.5 4.0 5.0 ss 5.54.5 6.0 7.0 7.5 $.0 8.5 9-0 9.5 1C.Q
Arrival rate

Figure 5.7: Average Interactive Response time: Linux and Solaris Scheduling Algo
rithms (by varying the workload)

•Solans 1050 — Solaris 1Q1GC — Solans 1020C — Solars 10150 — unux 2.6.265D U *ux2.6.26100 — L irux2 6.26200 — bfiu* 2 .6 261SC

20 ,0 00 .000 ;

4.0 4,5 5.0 5 5 6.0 6.5 7.0 7,5 S.O 8.5 9.0 9.5 lC.fl

Arrival rate

Figure 5.8: Standard deviation of Interactive Response time: Linux and Solaris
Scheduling Algorithms (by varying the workload)

63

• Observation on Standard deviation of Interactive Response Time: The standard

deviation of interactive response time graphs of Linux and Solaris scheduling

algorithms are shown in Fig. 5.8. We observe tha t Solaris predictability is

much better compared to Linux. The trend is consistent.

These observations confirm our hypothesis, which is an evidence th a t the imple

mentation of the scheduler is fairly accurate.

5.5 Summary

In this chapter, we have presented the simulation experiments of Linux and Solaris

scheduling algorithms. As we expected from our hypothesis, the simulation experi

ments prove tha t Solaris scheduler offers better and predictable response time than

Linux scheduler. From these experiments, we are confident th a t our scheduler simu

lator implementation is fairly sound.

64

Chapter 6

A Fair and Efficient Gang Scheduling

Algorithm

The trend in multicore processors indicates tha t all future processors will be mul

ticore, and hence the future cloud systems are expected to have their nodes and

clusters based on multicore processors. So the processor scheduling in the future sys

tems will most likely be all multicore processor scheduling. Therefore, we believe,

multicore scheduling is fundamental to future cloud computing performance. Also,

due to multicore revolution, a considerable portion of large applications will be par

allel programs. From the literature, we can see th a t gang scheduling is a dominant

strategy to schedule parallel programs.

6.1 Popular Gang Scheduling Algorithm s

Among the gang scheduling algorithms, AFCFS and LGFS are the most popular

algorithms and we present them next.

65

6 .1 .1 A F C F S

The scheduling algorithm AFCFS places the gangs in the run queue in order of

their arrival. The scheduling starts from the head of the queue and the gang which

can fit into the available cores are scheduled for execution. Unlike FCFS which stops

scheduling when it finds the gang which cannot fit into the free cores, AFCFS iterates

over the whole run queue and schedules all gangs which can fit into the free cores.

The AFCFS algorithm is given in Table. 6.1.

Data Structures: RQ: Queue of gangs

1. w hile (RQ ^ empty) do
2. for i = 1 to size of RQ do
3. if RQ[i] fits in free cores then schedule RQ[i]
4. end for
5. end w hile

Table 6.1: AFCFS Gang Scheduling Algorithm

6.1 .2 LG FS

Largest gang first scheduling algorithm orders the run queue based on the size

of the gangs. The size of the gang is determined by the number of threads. LGFS

schedules the gang from the head of the queue(largest gang) until the gang which can

fit into the available free cores. LGFS favors the large sized gang over the small sized

gang. This will influence the response time of small sized gangs, and th a t makes the

small gangs to wait for longer time to get their turn. Also, when a large size gang

arrives, it may overtake these small gangs. The algorithm of LGFS is given in Table.

6 .2 .

66

Data Structures: RQ: Queue of gangs

1. w hile (RQ ^ empty) do
2. sort RQ based on largest gang first
3. for i = 1 to size of RQ do
4. if RQ[i] fits in free cores then schedule RQ\i\
5. end for
6. end w hile

Table 6.2: LGFS Gang Scheduling Algorithm

Param eter V alue(s)
Number of cores 200
Time period 1 minute
Tasks per gang Uniformly distributed over [2..200]
Mean Arrival rate 1.5, 2, 2.5
Arrival distribution Poisson
Execution rate 2
Execution time distribution Exponential

Table 6.3: Simulation Parameters

From the literature [53), we note tha t AFCFS performs better than LGFS in

response time in case of lighter workloads with small gangs. Our experiment using

the proposed simulation confirms the result.

6.1 .3 S im u lation E xp erim en ts

The parameters used in our simulation are listed in Table. 6.3. We conducted sim

ulation experiments to compute average response time, standard deviation of response

time, and average core utilization of AFCFS and LGFS algorithms. The observations

are presented next.

• Observation on Average Response time: The average response time graphs of

AFCFS and LGFS algorithms are shown in Fig. 6.1. The average response

time of AFCFS outperforms LGFS for small sized gangs. Since LGFS favors

67

— AFCFS ■ LGFS

13.0SC

17.000

16.000

15,000

„ 14-000
| 13,000

“ 17.000 | 11,000

* 1 3 ,0 0 0

| 3,000

i X
| «»»
3 5,050

4.000

3.000

2.000

1,45 1,50 1.55 1.50 1.65 1.73 1.75 1,85 1.90 1.95 2.00 2.05 2 ,10 2 .15 2.20 2.25 230 2 3 5 2,40 2,45 2,50

Figure 6.1: Average Response Time for AFCFS and LGFS Algorithms

the large size gangs, it pushes the small sized gangs for longer wait times which

is reflected in their average response time. This result confirms the observation

from the literature.

Observation on Standard deviation in Response time: The standard deviation

response time graphs of AFCFS and LGFS algorithms are shown in Fig. 6.2.

The predictability of AFCFS is worse than LGFS. Since the AFCFS favors

the small size gang, the large size gangs have to wait longer for their turn for

execution which in turn increase the deviation in response time.

Observation on Average Core Utilization: The average core utilization graphs

of AFCFS and LGFS algorithms are shown in Fig. 6.3. LGFS performs better

than AFCFS, because it favors large jobs which fits into more number of cores

and makes the core busy executing these larger jobs. As AFCFS favors smaller

jobs, the possibility of core to stay idle is higher.

68

-A FC FS LGFS

12 .000 <

11,000 j ;

1 0 ,0 0 0 -i;

I 5.000 |i
v
| S.COC i:

a 7.000 |!

I 5 ,0 0 0 1!

i* 4 ,0 j0 i :
11 3,oao-;

2.000 jj
1.000 ji

1.45 1.50 1.55 1.60 1.65 1.7D 1.75 1.60 1,65 1.90 1.95 2.00 2.05 2 .10 2 15 2 20 2 25 2.30 2.35 2 40 2,45 2.5C
Arrival R a te (A)

Figure 6.2 : Standard deviation of Response Time for AFCFS and LGFS Algorithms

I — AFCFS ■ LGFS I

i

1.45 ISO 1.55 1.60 1.55 1.70 1.75 I K 1.S5 l .M 1.9S 2,00 2 05 2.10 2,15 2,20 2 25 2.30 2.35 2.40 2.45 2,50

Figure 6.3: Core Utilization of AFCFS and LGFS Algorithms

69

From the observations shown in Fig. 6.2 and Fig. 6.3, we can see tha t LGFS is

a preferred algorithm, despite AFCFS7 low average response time. This is because

LGFS utilizes the system resources better and offers better predictability in response

time. This proves our earlier point tha t the average response time is not a desirable

metric.

Fairness and predictability are particularly im portant tha t the expectation of users

under light load is normally high, and failure to provide such guarantee even under

light load could expose the system very badly. Therefore, it would be nice to have an

algorithm which yields low average response time and standard deviation with high

processor utilization. This is the motivation for our algorithm presented next.

6.2 A N ew Gang Scheduling Algorithm

The gang scheduling algorithms AFCFS and LGFS are susceptible to starvation.

To avoid starvation, these algorithms adopt a process migration policy. Process mi

gration may not be even possible between two heterogeneous multicore systems, and

is generally expensive even between two homogeneous systems [39,56]. Also, although

it alleviates, process migration does not eliminate starvation.

These observations bring us a question: Can we design a gang scheduling algorithm

with the following characteristics?

1. Freedom from starvation.

2. Predictable and acceptable response time.

3. Better processor utilization.

4. Simple.

70

Since AFCFS favors small gangs, the larger gangs are susceptible to starvation or

to longer wait times. This is unacceptable particularly in cloud environment where

customer satisfaction hugely depends on fairness and predictable response time. In

practice, the customers who receive a little faster service (at the expense of oth

ers’ long wait) may not be overly satisfied [61]. But, the customers who experience

unpredictably long delay, on the other hand, will readily notice the unfairness and

unpredictable response and that could potentially drive the cloud business in a nega

tive direction. Therefore, in addition to fast response and high processor utilization,

minimal variance in response is extremely im portant for better cloud services.

6.3 The Algorithm

The gang scheduling algorithm proposed in this thesis combines the ideas of

AFCFS and priority boosting. In the AFCFS algorithm proposed for multicore clus

ters in [53], each multicore has a run queue and all gangs stay in the run queue until it

gets a chance to execute. The scheduler always chooses the next fit gang from the run

queue so tha t overall response time is reduced. Such behavior degrades the overall

core utilization which in turn increases the variation in response time as seen in the

experiments.

The proposed algorithm uses an additional variable for each gang which stores the

information about how many gangs bypassed it for execution when it stayed in run

queue. We call tha t variable ‘Bypass count’. When the gang’s bypass count reaches

the threshold value T. it gets the highest priority to schedule next. This pushes other

gangs to force wait until the highest priority gang gets scheduled. The proposed

algorithm is given in Table. 6.4.

A new gang joins RQ, and its bypass count is set to zero. Whenever a gang

71

is scheduled, the bypass count of gangs precedes the scheduled gang in RQ will be

incremented by 1. At any time, gang in RQ with bypass count greater or equal to the

threshold value has the highest priority over other gangs. This guarantees th a t the

gangs will be served in a predictable time period. When there is no gang writh bypass

count greater or equal to the threshold value, it acts as AFCFS algorithm.

When enough cores are not available to schedule the highest priority gang, the

system has to wait for some of the currently executing gangs to leave, and this delay

is unavoidable to assure fairness and predictable response. The simulation results

show tha t such a wait rarely happens.

Data Structures: RQ: Queue of gangs;T: Threshold value; i.bpc: bypass count
of gang i

1. w hile (RQ ^ empty) do
2. for i = 1 to size of RQ do
3. if RQ(i) .bpc > T th en wait until RQ[i] fits in free cores
4. if RQ[i\ fits in free cores th en
5. for k = 1 to i — 1 do RQ[k\.bpc + + end for
6 . schedule RQ[i\
7. end if
8. end for
9. end w hile

Table 6.4: New Gang Scheduling Algorithm

N ote: The proposed algorithm becomes AFCFS if the threshold is set to oo.

When the threshold is 0, it emulates FCFS algorithm. So, choosing a proper threshold

is the key of the proposed algorithm.

6.4 Simulation Experim ents

As explained earlier, the proposed algorithm tries to achieve predictable and fast

response for gangs (users) and better utilization for the system.

72

Param eter V alue(s)
Number of cores 200
Time period 1 minute
Tasks per gang Uniformly distributed over [2..200]
Mean Arrival rate 5, 7.5, 10
Arrival rate distribution Poisson
Execution rate 2
Execution rate distribution Exponential
Threshold 700

Table 6.5: Simulation Parameters

6.4 .1 S im u lation S etu p

We used the simulation param eters listed in Table 6.5 for our experiments. To keep

the results generic, the execution is shown in terms of simulation clock ticks. Through

simulation study, we computed average response time, standard deviation in response

time, average core utilization, and bypass count for the gangs. The observations are

presented next.

• Observation on Average Response Time: The average response time graphs

of AFCFS and the proposed algorithms are shown in Fig. 6.4. The average

response time of the proposed algorithm is better than that of AFCFS. This is

because, whenever the gangs’ bypass count reaches the threshold, it guarantees

the gang to schedule next which reduces the response time of long waiting gangs.

Choosing a proper threshold value is crucial. Choosing a small number will

unnecessarily make others gangs to wait more often, which will in turn increase

the average response time. For our experiments, we have chosen 7001 bypass

count as the threshold value. From the Fig. 6.4, it is clear tha t the average

response time of proposed algorithm performs better than AFCFS consistently.

1 The threshold value is derived from the repetitive experim ents for consistent behavior.

73

tim
e

(d
oc

k
ti

ck
s)

|— AFCFS F a ir AfCPs|

95.000;
90 .000-

85.000 •

86-000 i

75 000

70.000

65.000
60.000 •

55.000
50.000
45 0 0 0

% 40,000

0 35.-000
» 30,000

* 25,000

20.000

15.000

10.000

5,-000

0
4.75 S.DO 5.25 5 5 0 5.75 6.00 6.25 6-50 6.75 7 00 7.25 7.50 7.75 8 .30 6.25 S.50 8.75 9.20 9.25 9.50 9.75 10.00 10.2!

Arrival Rate (A)

Figure 6.4: Average Response Time of AFCFS and Proposed Algorithms

• Observation on Standard deviation of Response time: The average turnaround

time graphs of AFCFS and the proposed algorithms are shown in Fig. 6.5. The

proposed algorithm offers better predictability in response time than AFCFS

algorithm. Since, the proposed algorithm avoids the longer wait times, the

predictability in response time will be lower than AFCFS. By controlling the

bypass threshold value, better predictability may be assured.

• Observation on Average Core Utilization: The average core utilization graphs

of AFCFS and the proposed algorithms are shown in Fig. 6.5. The proposed

algorithm outperforms AFCFS algorithm. This is because, AFCFS favors only

small gangs but the proposed algorithm favors all sized gangs once the threshold

is reached.

• Observation on Bypass count graph: The bypass count graphs of AFCFS and

the proposed algorithm are shown in Fig. 6.7. The proposed algorithm shows

74

fi
■§ 35.000 i:

| 30.000-.
3
Jl 25.000-C
1 20.000 i!

* 15.000-

10.000-

5 000

4.7S 5.00 5.25 S.50 5.75 6.00 6 .25 6.50 6 .75 7 0 0 7 25 7. S3 7.75 3 .03 S.25 S.50 S, 75 S .00 9.25 9 .53 9.75 10.00 10.21
Arrival Rate (A)

Figure 6.5: Standard deviation of Response Time of AFCFS and Proposed Algorithms

|- A F C F S f a r A K B |

75-

7 0 -p

65-

^ 6 0 -

5 5 - ;

* 45 i;

|*0-
3
g 3 5 l i

3 3 0 ’.

2 5 -

20 ■

5 i|

5.25 5.50 5.75 S.C3 6.2S 6.50 6.75 7.3C U S 7.50 7.75 3.00 8-25 6.50 8 .75 5.00 5 .25 5.50 5 75 10.00 10.2!
Arrival Rate {X)

Figure 6 .6: Average Core Utilization of AFCFS and Proposed Algorithms

75

the fairness among gangs, once it reaches the threshold, it starts giving the

priority for long waited gangs. The longer wait time is completely avoided in

the proposed algorithm, which makes our algorithm interesting.

4 .7 5 0 ; '

0 250 500 750 1.000 S.230 1.500 1.750 2.000 2.250 2.500 2.750 5.000 5.250 3 ,500 J / v 4 ' . 0 4 ,253 4 .530 4.730

Job

[~~ AFC3S -10.0 f t ; r7K r e - 1 00 |

Figure 6.7: Bypass Count of Gangs of AFCFS and Proposed Algorithms

From these observations, we conclude that, the proposed algorithm outperforms

AFCFS in all three metrics, and of course solves the starvation problem completely.

6.5 Summary

In this chapter, we proposed a fair and efficient gang scheduling algorithm for

multicore processors. The algorithm is simple, fair, and gives predictable performance.

Such a predictable performance is attractive from the service point of view. Since this

algorithm solves the starvation problem locally without using process migration, it

is highly scalable and attractive for cloud computing involving a large number of

multicore processors.

76

Chapter 7

Conclusion and Future Directions

Recently, multicore processors and software development for multicore systems have

received increasing attention from the research community. The contributions of this

thesis are: (i) the design and implementation of a flexible multicore scheduler simula

tion framework; (ii) illustration of the power and flexibility of the proposed framework

by simulating the scheduling algorithms of Linux and Solaris, and a simulation study

of two gang scheduling algorithms; and (iii) a new gang scheduling algorithm and

its performance study. The experience gained by developing this simulator is very

rich. It involved software design, implementation, algorithm discovery and design,

and performance analysis.

The proposed simulator can be used for rapid simulation studies of multicore

scheduling algorithms, and tha t can provide initial insights on how the proposed

algorithm will perform in practical multicore systems. These insights will be helpful,

not only in testing the performance of the proposed algorithm, but also to identify

the bottlenecks and offer guidelines for improvements. Also, from our experience,

we believe tha t the simulator can be used to develop new scheduling algorithms by

77

experimenting and identifying the limitations of the existing algorithms.

Although, initially we did not expect to propose a new multicore scheduling algo

rithm, we finally ended up designing one for an im portant class of parallel applications

called gangs. We compared the performance of the new gang scheduling algorithm

with the known best algorithm in its category. The proposed algorithm seems to

perform better.

7.1 Future Directions

We believe the proposed scheduling framework for multicore systems is an impor

tan t first step in the performance study of multicore scheduling algorithms. There are

many directions in which the work presented in this thesis can be expanded to study

the performance of scheduling algorithms deeper and more accurately. We outline

some of them next.

• Modeling workload could be refined and improved.

• Modeling I/O waits could be refined and improved.

• The modeling of cache can be refined and improved.

• The framework can be expanded to model heterogeneous cores.

• Cache effect can be inferred from the values of hardware performance counters

available in the recent multicore machines, and used in scheduling simulations.

• More statistical metrics can be included.

• In cloud computing context, modeling clusters with many chips and its associ

ated cores would be more interesting.

78

• The proposed gang scheduling algorithm works better for light loads. Is there

a gang scheduling algorithm th a t can perform better under all workload condi

tions? This is an interesting research question to be explored.

I would like to continue to work on some of these directions in the future.

79

Appendix

Tables used by Solaris Scheduler

Solaris scheduler uses the information given in the following four tables -

1. P riority R ange Table (Table 7.1) - specifies the priority range for the schedul

ing classes.

2. D ispatch Table for R ea l-tim e Tasks (Table 7.2) - defines the time quanta

of real time scheduling class.

3. D ispatch Table for F ixed P riority Tasks (Table 7.3) - defines the time

quanta of fixed priority scheduling class.

4. D ispatch Table for N orm al Tasks (Table 7.4) - defines the time quanta of

time sharing and interactive scheduling classes.

8 0

Scheduling class G lobal priority range U ser level priority range
Realtime 100 - 159 -
System 6 0 -9 9 -

Fair share 0 - 5 9 0 - 59
Fixed priority 0 - 59 0 - 60

Time share 0 - 59 -60 - 60
Interactive 0 - 59 -60 - 60

Table 7.1: Solaris 10 Scheduling Classes Priority Range

Q uanta P riority
100 100
80 110
60 120
40 130
20 140
10 150
10 159

Table 7.2: Dispatch Table for RT Scheduling Class

Q uanta P riority
0 20
10 16
20 12
30 8
40 4
59 2

Table 7.3: Dispatch Table for FX Scheduling Class

81

Q uanta P riority on
Q uanta Expiry

P riority on
IO R eturn

W ait
T hreshold

P riority
on W ait

P riority

20 0 50 0 50 0
16 0 51 0 51 10
12 10 52 0 52 20
8 20 53 0 53 30
4 30 55 0 55 40
2 49 59 3200 59 59

Table 7.4: Dispatch Table for TS and IA Scheduling Classes

Tick Processing and U pdate Processing

Here we present two key routines used in Solaris scheduling.

T ick P rocessin g

Tick processing will be executed for every scheduling tick. This method is mainly

responsible for managing the time quanta and preemption control. The overview of

what tick processing is doing is given in Table. 7.5. When the tick processing method

is invoked, it first checks whether the executing thread is in system mode. This

is because, system threads are scheduled for its full execution time and preemption

of system threads are not allowed. O ther than system threads, all other scheduling

classes are preemption enabled. The main task of the tick processing is to manage the

allocated time quanta. First, it decrements the quanta allocated for the thread and

checks whether the thread executed for i t ’s whole time quanta. If so, it additionally

checks whether the preemption control is enabled for the thread. The preemption

control is a variable to give few more time for a thread when it finishes it allotted

time quanta if preemption control is enabled. This variable can be configured. If the

preemption control is not enabled for the thread, then the first task is to re-assign

the priority of thread from their dispatch table in case of TS and IA class thread.

82

RT and FX class threads are maintained with the same priority. Then, it invokes

the preemption and places the thread in their dispatch queue based on their priority.

When the time quanta is not over, then it checks whether the thread is going for I/O

and places the thread in the sleep queue. The method also checks for any highest

priority thread in the dispatch queues and preempts the current thread. W hen the

thread is preempted by a high priority thread, then the priority of the current thread

won’t change.

Data Structures: Thread t

1. if thread t is not in system priority th en
2. decrement the time quanta t.quanta
3. if (t.quanta < 0) then
4. check thread preemption control enabled then
5. give additional time quanta for execution
6. else
7. if / £ T S or IA scheduling class then
8. re assign t.priority from d ispatch_ tab le_ ts with the value of ts tqexp
9. end if
10. enable preemption and place thread t in their dispatch queues
11. end if
12. if t going for I/O then
13. enable preemption and place thread t in sleep queue
14. end if
15. if t.priority < highest th read’s priority in dispatch queues th en
16. enable preemption and place the thread t in dispatch queue
17. end if
18. end if

Table 7.5: Tick Processing of Solaris Scheduling Algorithm

83

U p d a te P rocessin g

Update processing method is invoked only for tim e sharing and interactive schedul

ing classes. The main purpose of this method is to boost up the priority. The higher

level implementation of update processing is given in Table. 7.6.

Update processing method will be invoked periodically. This method will iterate

over the dispatch and sleep queues to increment the waiting tim e of the threads. Once

the waiting time of a thread reaches maximum wait time specified in dispatch table,

the thread’s priority will be boosted up by the ts_lw ait value. This is done to provide

fairness among the threads.

Data Structures: Dispatch queues - D Q _ T S , D Q _ IA , sleep queue - S Q , Thread t

1. for each thread t is not in D Q _ T S A DQ I A A SQ do
2 . increment t.wait value by 1
3. if (t.wait > m ax_wait) th en
4. boost up thread priority from dispatch table ts with the value of ts_ lw ait
5. end if
6. end for

Table 7.6: Update Processing of Solaris Scheduling Algorithm

84

Bibliography

[1] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the case for

a scalable operating system for multicores,” SIGOPS Operating System Review,

vol. 43, pp. 76-85. April 2009.

[2] A. Fedorova, M. Seltzer, and M. D. Smith, “Cache-fair thread scheduling for

multicore processors,” tech. rep., Harvard University, 2006.

[3] B. Wilkinson and M. Allen, Parallel Programming Techniques and Applications

Using Networked Workstations and Parallel Computers Second Edition. Pearson

Prentice Hall, 2005.

[4] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory

programming,” Computational Science Engineering, IEEE, vol. 5, pp. 46 -55,

jan-mar 1998.

[5] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman, MPI:

The Complete Reference. Cambridge, MA, USA: MIT Press, 1995.

[6] S. Peter, A. Schupbach, P. Barham, A. Baumann, R. Isaacs, T. Harris, and

T. Roscoe, “Design principles for end-to-end multicore schedulers,” in Proceedings

of the 2nd USENIX conference on Hot topics in parallelism, H otPar’10, (Berkeley,

CA, USA), pp. 10-10, USENIX Association, 2010.

85

[7| C. Kesselman and I. Foster, The Grid: Blueprint for a New Computing Infras

tructure. Morgan Kaufraann Publishers, Nov. 1998.

[8] D. Wentzlaff, C. G. Ill, N. Beckmann, K. Modzelewski, A. Belay, L. Youseff,

J. E. Miller, and A. Agarwal, “An operating system for multicore and clouds:

Mechanisms and implementation,” in SoCC, pp. 3-14, 2010.

[9| “The future accelerated: Multi-core goes mainstream, computing pushed to ex

tremes.” Intel Newsroom, September 2011.

[10] J. C. Mogul, A. Baumann, T. Roscoe, and L. Soares, “Mind the gap: reconnecting

architecture and os research,” in Proceedings o f the 13th USENIX conference

on Hot topics in operating systems, HotOS’13, (Berkeley, CA, USA), pp. 1- 1,

USENIX Association, 2011.

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,

A. Sclhipbach, and A. Singhania, “The multikernel: a new os architecture for

scalable multieore systems,” in Proceedings of the AC M SIGOPS 22nd symposium

on Operating systems principles, SOSP '09, (New York, NY, USA), pp. 29-44,

ACM, 2009.

[12] S. Zhuravlev, J. C. Saez, A. Fedorova, and M. Prieto, “Survey of scheduling tech

niques for addressing shared resources in multicore processors,” A C M Computing

Surveys, In Press.

[13] D. Wentzlaff, C. G. Ill, N. Beckmann, A. Belay, H. Kasture, K. Modzelewski,

L. Youseff, .1. E. Miller, and A. Agarwal, “Fleets: Scalable services in a fac

tored operating system.” tech. rep., CSAIL Massachusetts Institute of Technol

ogy, 2011.

86

[14] A. Schbach, S. Peter, A. Baumann, T. Roscoe, P. Barham, T. Harris, and

R. Isaacs, "Embracing diversity in the barrelfish manycore operating system,”

in In Proceedings of the Workshop on Managed Many-Core Systems, 2008.

[15] A. Belay, D. Wentzlaff, and A. Agarwal, “Vote the os off your core,” tech. rep.,

CSAIL Massachusetts Institute of Technology, 2011.

[16] A. Baumann, S. Peter, A. Schiipbach, A. Singhania, T. Roscoe, P. Barham, and

R. Isaacs, “Your computer is already a distributed system, why isn’t your os?,” in

Proceedings of the 12th conference on Hot topics in operating systems, HotOS’09,

(Berkeley, CA, USA), pp. 12-12, USENIX Association, 2009.

[17] S. Panneerselvam and M. M. Swift, “Dynamic processors demand dynamic op

erating systems,” in Proceedings o f the 2nd USENIX conference on Hot topics

in parallelism, H otPar’lO, (Berkeley, CA, USA), pp. 9-9, USENIX Association,

2010 .

[18] I. Kuz, Z. Anderson, P. Shinde, and T. Roscoe, “Multicore os benchmarks: we can

do better,” in Proceedings o f the 13th USENIX conference on Hot topics in oper

ating systems, HotOS’13, (Berkeley, CA, USA), pp. 10-10, USENIX Association,

2011 .

[19] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,

A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, “Corey: an

operating system for many cores,” in Proceedings o f the 8th USENIX confer

ence on Operating systems design and implementation, OSDI’08, (Berkeley, CA,

USA), pp. 43-57, USENIX Association, 2008.

[20] S. Boyd-Wickizer, R. Morris, and M. F. Kaashoek, “Reinventing scheduling for

multicore systems,” in Proceedings of the 12th conference on Hot topics in oper

87

ating systems, HotOS'09, (Berkeley, CA, USA), pp. 21-21, USENIX Association,

2009.

[21| R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and J. Kubiatowicz, “Tes

sellation: space-time partitioning in a manycore client os,” in Proceedings o f the

First USENIX conference on Hot topics m parallelism, H otPar’09, (Berkeley, CA,

USA), pp. 10-10, USENIX Association, 2009.

[22] D. Wentzlaff, C. G. Ill, N. Beckmann, K. Modzelewski, A. Belay, L. Youseff,

J. Miller, and A. Agarwal, “A unified operating system for clouds and manycore:

fos,” 1st Workshop on Computer Architecture and Operating System co-design

(CAOS), 2010.

[23] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware scheduling on

multicore systems,” ACM Transactions on Computer Systems, vol. 28, pp. 8:1-

8:45, December 2010.

[24] A. Fedorova, C. Small, D. Nussbaum, and M. Seltzer, “Chip m ultithreading sys

tems need a new operating system scheduler,” in Proceedings of the 11th workshop

on AC M SIGOPS European workshop, EW 11, (New York, NY, USA), ACM,

2004.

[25] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Akula: a toolset for experi

menting and developing thread placement algorithms on multicore systems,” in

Proceedings of the 19th international conference on Parallel architectures and

compilation techniques, PACT TO, (New York, NY, USA), pp. 249-260. ACM,

2010 .

88

[26] J. M. Calandrino, D. P. Baumberger, T. Li, J. C. Young, and S. Hahn, “Linsched:

The linux scheduler simulator.” in ISCA PDCCS (J. Jacob and D. N. Serpanos,

cds.), pp. 171-176, ISCA, 2008.

[27] M. Rosenblum, S. A. Herrod, E. Witchel, and A. G upta, “Complete computer

system simulation: the simos approach,” Parallel Distributed Technology: Sys

tems Applications, IEEE, vol. 3, pp. 34 -43, winter 1995.

[28] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation

platform,” Computer, vol. 35, pp. 50 -58, feb 2002.

[29] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, “Analysis and approximation of

optimal co-scheduling on chip multiprocessors,” in Proceedings of the 17th inter

national conference on Parallel architectures and compilation techniques, PACT

’08, (New York, NY, USA), pp. 220-229, ACM, 2008.

[30] T. C. Xu, P. Liljeberg, and H. Tenhunen, “Process scheduling for future multicore

processors,” in Proceedings o f the Fifth International Workshop on Interconnec

tion Network Architecture: On-Chip, Multi-Chip, INA-OCMC ’11, (New York,

NY, USA), pp. 15-18, ACM, 2011.

[31] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, “A comprehensive sched

uler for asymmetric multicore systems,” in Proceedings o f the 5th European con

ference on Computer systems, EuroSys TO, (New York, NY, USA), pp. 139-152,

ACM, 2010.

[32] V. Kazempour, A. Kamali, and A. Fedorova, “Aash: an asymmetry-aware sched

uler for hypervisors,” in Proceedings of the 6th ACM SIG PLAN /SIG O PS inter

89

national conference on Virtual execution environments, VEE ’10, (New York,

NY, USA), pp. 85-96, ACM, 2010.

[33] S. Hofmeyr, C. Iancu, and F. Blagojevic, “Load balancing on speed,” in Pro

ceedings of the 15th ACM SIG PLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’10, (New York, NY, USA), pp. 147-158, ACM,

2010 .

[34] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry, “Decoupling contention

management from scheduling,” in Proceedings o f the fifteenth edition of ASPLO S

on Architectural support for programming languages and operating systems, AS

PLOS ’10, (New York, NY, USA), pp. 117-128. ACM, 2010.

[35] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and analysis

for multicores,” in Proceedings of the seventh AC M international conference on

Embedded software, EM SOFT ’09. (New York, NY, USA), pp. 245-254, ACM,

2009.

[36] L. Tang, J. Mars, and M. L. Soffa, “Contentiousness vs. sensitivity: improving

contention aware runtime systems on multicore architectures,” in Proceedings of

the 1st International Workshop on Adaptive Self-Tuning Computing Systems for

the Exaflop Era (co-located with PLD I 2011), (New York, NY, USA), pp. 12-21,

ACM, 2011.

]37] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,. John

Wiley & Sons. Inc., 2010.

[38] S. Haidar and A. Aravind, Operating Systems. Pearson Education, 2010.

[39] D. S. Milojicic, F. Doughs, Y. Paindaveine, R. Wheeler, and S. Zhou, “Process

migration,” ACM Computing Surveys, vol. 32. pp. 241-299, Sept. 2000.

90

[40] J. K. Ousterhout, “Scheduling techniques for concurrent systems," in Proceedings

of the IEEE Distributed Computing Systems, pp. 22 - 30, 1982.

[41] L. Chai, Q. Gao, and D. K. Panda, “Understanding the impact of multi-core

architecture in cluster computing: A case study with intel dual-core system," in

Proceedings o f the Seventh IEEE International Symposium on Cluster Comput

ing and the Grid, CCGRID ’07, (Washington, DC, USA), pp. 471-478, IEEE

Computer Society, 2007.

[42] I. A. Moschakis and H. D. Karatza, “Evaluation of gang scheduling performance

and cost in a cloud computing system,” Journal of Supercomputing, vol. 59,

pp. 975-992, Feb. 2012.

[43] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” tech. rep.,

1997.

[44] M. Moudgill, P. Bose, and J. Moreno, “Validation of turandot, a fast proces

sor model for microarchitecture exploration,” in Performance, Computing and

Communications Conference, 1999 IEEE International, pp. 451 -457, feb 1999.

[45] E. Argollo, A. Falcon, P. Faraboschi, M. Monchicro, and D. Ortega, “Cotson:

infrastructure for full system simulation,” SIGOPS Operating System Review,

vol. 43, pp. 52-61, Jan. 2009.

[46] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, “Using the simos ma

chine simulator to study complex computer systems,” ACM Trans. Model. Corn-

put. S im ui. vol. 7, pp. 78-103, Jan. 1997.

[47] AM D Developer Central. AMD SimNow Simulator,

http:// developer. amd. com/'tools/simnow/pages/default. aspx.

91

http://developer

[48] A. B atat and D. G. Feitelson, ‘"Gang scheduling with memory considerations,”

in in Proc. o f the 14th Intl. Parallel and Distributed Processing Symp., 2000,

pp. 109-114, 2000.

[49] K. Hyoudou, Y. Kozakai, and Y. Nakayama, “An implementation of a concurrent

gang scheduler for a pc-based cluster system,” Systems and Computers in Japan,

vol. 38, pp. 39-48, Mar. 2007.

[50] H. D. Karatza, “Scheuling gangs in a distributed system,” International Journal

of Simulation, vol. 7(1), pp. 15-22, 2006.

[51] Z. C. Papazachos and H. D. Karatza, “The impact of task service tim e variability

on gang scheduling performance in a two-cluster system,” Simulation Modelling

Practice and Theory, vol. 17, no. 7, pp. 1276 - 1289, 2009.

[52] Z. C. Papazachos and H. D. Karatza, “Gang scheduling in a two-cluster system

implementing migrations and periodic feedback,” SIMULATION, 2010.

[53] Z. C. Papazachos and H. D. Karatza, “Gang scheduling in multi-core clusters

implementing migrations,” Future Generation Computer Systems, vol. 27, no. 8 ,

pp. 1153 - 1165, 2011.

[54] Y. Wiseman and D. G. Feitelson, “Paired gang scheduling,” IEEE Transactions

on Parallel and Distributed Systems, vol. 14, pp. 581-592, June 2003.

[55] Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam, “An integrated

approach to parallel scheduling using gang-scheduling, backfilling, and migra

tion,” in Revised Papers from the 7th International Workshop on Job Schedul

ing Strategies for Parallel Processing, JSSPP ’01, (London, UK), pp. 133-158,

Springer-Verlag, 2001.

92

[56] S. Frechette and D. R. Avresky, "Method for task migration in grid environments,”

in Proceedings of the Fourth IEEE International Symposium on Network Com

puting and Applications. NCA ’05, (Washington, DC, USA), pp. 49-58. IEEE

Computer Society, 2005.

[57] R. McDougall and J. M. and, Solaris Internals (2nd Edition). Upper Saddle

River, NJ, USA: Prentice Hall PTR, 2006.

[58] C. S. Pabla, Completely Fair Scheduler, h t t p : / /www. l in u x jo u r n a l. com/

m a q a z i n e / c o arp l e t e I y - f a i r - s c h e d u I er , 2009.

[59] I. Stojmenovic. “Simulations in wireless sensor and ad hoc networks: match

ing and advancing models, metrics, and solutions,” Communications Magazine,

IEEE, vol. 46, pp. 102 -107, december 2008.

[60] K. Sankaralingam and R. H. Arpaci-Dusseau, “Get the parallelism out of my

clouds,” in Proceedings of the 2nd USENIX conference on Hot topics in paral

lelism, HotPar'10, (Berkeley, CA, USA), pp. 8- 8 . USENIX Association, 2010.

[61] G. Ghinca and S. Chen, “Perceived quality of multimedia educational content:

A cognitive style approach.” Multimedia Systems, vol. 11, pp. 271-279, 2006.

10.1007/s00530-005-0007-8.

[62] R. M. Fujimoto, Parallel and Distributed Simulation Systems. John Wiley &

Sons, Inc., 2000.

[63] Completely Fair Scheduling (CFS) Class, h t t p : / / Ixr . l inux. no / Linux* v 3 .

■ 1 . J / K' €', 'CTi £ I / A 0 h C. d / f Q . ’l T . C .

93

