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A bstract

In traditional uniprocessor systems, processor scheduling is the responsibility of 
the operating system. In high performance computing (HPC) domains th a t largely 
involve parallel processors, the responsibility of scheduling is usually left to the appli
cations. So far, parallel computing has been confined to a small group of specialized 
HPC users. In this context, the hardware, operating system, and the applications 
have been mostly designed independently with minimal interactions. As the multi
core processors are becoming the norm, parallel programming is expected to emerge 
as the mainstream software development approach. This new trend poses several chal
lenges including performance, power management, system utilization, and predictable 
response. Such a demand is hard to meet without the cooperation from hardware, 
operating system, and applications. Particularly, an  efficient scheduling of cores to 
the application threads is fundamentally im portant in assuring the above mentioned 
characteristics. We believe, operating system requires to take a larger responsibility 
in ensuring efficient multicore scheduling of application threads.

To study the performance of a new scheduling algorithm for the future multicore 
systems with hundreds and thousands of cores, we need a flexible scheduling simula
tion testbed. Designing such a multicore scheduling simulation testbed and illustrat
ing its functionality by studying some well known scheduling algorithms Linux and 
Solaris are the main contributions of this thesis. In addition to studying Linux and 
Solaris scheduling algorithms, we demonstrate the power, flexibility, and use of the 
proposed scheduling testbed by simulating two popular gang scheduling algorithms - 
adaptive first-come-first-served (AFCFS) and largest gang first served (LGFS). As a 
result of this performance study, we designed a new gang scheduling algorithm and we 
compared its performance with AFCFS. The proposed scheduling simulation testbed 
is developed using Java and expected to be released for public use.





A cknow ledgem ents

Throughout my time as graduate student a t UNBC, I came across many people 
who have encouraged me in one way or another. I would like to thank them all. 
Among them, some deserve special thanks.

First of all, I would like to thank my supervisor Dr. Alex Aravind for his continuous 
support and encouragement. Alex has been a mentor, a well wisher, and a friend. I 
thoroughly enjoyed working with him, his style and ideas inspired me in getting into 
research and I enjoy doing that. Next to my supervisor, the people who contributed 
to my thesis are Dr. Waqar Haque and Dr. Andrea Gorrell. I thank them  for their 
valuable time, effort, suggestions, and encouragement. In addition, I would like to 
thank the external examiner Dr. Balbinder Deo and Dr. Ajit Dayanandan, chair of 
my defence for reading my thesis.

I would like to thank my peers and friends who supported me and involved me in 
informative discussions. First of all, I want to specially thank Hassan Tahir for all 
his support starting from the day I arrived to  Prince George, till I get settled, and 
also for his brilliant programming ideas which helped me a lot. I thank my fellow 
graduate students Baldeep, Adiba Mahjabin Nitu, Azizur Rahman, Manoj Nambiar, 
Narek Nalbandyan, Nahid Mahmud, Fakhar U1 Islam, and Behnish Mann for their 
support. I thank our computer adm inistrator Heinrich Butow for his continuous 
support. Finally, I would like to sincerely thank Dr. Mahi Aravind, for the wonderful 
family dinners and parties on various events and occasions.

Finally, much of the credit goes to my family, especially, my parents who supported 
me right to the end. A special thanks to my sister Kavitha and my brother in law 
Ramasamy for encouraging me to apply UNBC. Once again, I thank them all. Thanks 
Guys!

C' j / ' Y r



Contents

A bstract i

A cknow ledgem ents ii

C ontents iii

List o f F igures vii

List o f Tables ix

1 Introduction  1

1.1 Hardware T re n d ................................................................................................  2

1.1.1 Multicore Processors vs. Parallel C o m p u te rs .................................  3

1.2 Computing T re n d ............................................................................................. 4

1.3 Applications T r e n d .........................................................................................  4

1.4 Operating Systems Trend ............................................................................  5

1.5 Schedulers T r e n d .............................................................................................  7

1.6 Where do the contributions of this thesis fit i n ? ...................................... 8

1.7 Thesis O rganization..........................................................................................  9

2 M ulticore Scheduling 10

2.1 Load B a la n c in g ................................................................................................  11

iii



2.2 Scheduling A p proaches ....................................................................................  12

2.2.1 Gang Scheduling in Multicore and Cloud C o m p u t in g .............. 14

2.3 Related W o r k ...................................................................................................  15

2.3.1 Scheduler S im u la to rs ......................................................................... 16

2.3.2 Fairness and Performance Issues in Gang Scheduling ...............  19

2.3.3 Performance S t u d y ............................................................................  20

2.4 Summary ..........................................................................................................  21

3 M otivation  and C ontributions 22

3.1 Multicore Scheduler Simulation Fram ew ork.............................................. 22

3.2 A New Gang Scheduling A lg o r ith m ...........................................................  25

3.3 C o n trib u tio n s .................................................................................................... 26

3.4 Research M eth o d o lo g y ................................................................................... 28

3.5 S u m m a r y ..........................................................................................................  29

4 M ulticore Scheduler S im ulation  Fram ework 30

4.1 S im ulation ..........................................................................................................  30

4.2 Multicore Scheduler S im u la tio n ..................................................................  32

4.3 Architecture of MSS F ram ew ork..................................................................  34

4.3.1 Term inology..........................................................................................  34

4.3.2 Workload G e n e r a to r ...........................................................................  36

4.3.3 Multicore M a c h in e ..............................................................................  36

4.3.4 Multicore Scheduler..............................................................................  37

4.3.5 Execution T rac e ...................................................................................... 38

4.3.6 Performance Calculation E n g in e .....................................................  39

4.3.7 Statistical M easures............................................................................. 42

4.4 Activity Profile G e n e ra to r ............................................................................  43

iv



4.5 User In te r fa c e .................................................................................................... 43

4.5.1 Performance Param eter Setting W in d o w ....................................  43

4.5.2 Performance Observation W indow .................................................  45

4.5.3 Activity Monitor W in d o w ............................................................... 46

4.6 Summary ........................................................................................................... 48

5 C ase S tudies - Linux and Solaris Scheduling A lgorithm s 49

5.1 Load B a la n c in g ................................................................................................. 50

5.1.1 Real Time S c h e d u le r .........................................................................  51

5.2 Linux Scheduler - Completely Fair Scheduler ( C F S ) ...............................  51

5.2.1 Calculation of Q u a n t a ...................................................................... 51

5.2.2 Calculation of v r u n t i m e ................................................................... 53

5.3 Solaris S c h e d u le r ..............................................................................................  53

5.3.1 The Default Solaris S c h e d u le r ........................................................  54

5.4 Simulation E x p e r im e n ts ................................................................................  56

5.4.1 Observations on Experiment 1 ......................................................... 57

5.4.2 Observations on Experiment 2 ......................................................... 60

5.5 S u m m a r y ...........................................................................................................  64

6 A Fair and Efficient G ang Scheduling A lgorithm  65

6.1 Popular Gang Scheduling A lg o rith m s..........................................................  65

6.1.1 AFCFS ................................................................................................. 66

6.1.2 LGFS ....................................................................................................  66

6.1.3 Simulation E x p e r im e n ts ...................................................................  67

6.2 A New Gang Scheduling A lg o rith m ............................................................  70

6.3 The Algorithm .................................................................................................  71

6.4 Simulation Experiments........... .........................................................................  72

v



6.4.1 Simulation S e t u p ................................................................................. 73

6.5 Summary ............................................................................................................ 76

7 C onclusion and Future D irections 77

7.1 Future D irec tio n s ..............................................................................................  78

Bibliography 93

vi



List of Figures

4.1 The S cheduler...................................................................................... 33

4.2 Architecture of MSS F ram ew ork ....................................................  35

4.3 A Multicore M ach in e ......................................................................... 37

4.4 Sample Execution T r a c e ..................................................................  38

4.5 Sample I/O  T ra c e ...............................................................................  39

4.6 Parameter Setting W indow ............................................................... 44

4.7 Simulations Run Window ..............................................................................  45

4.8 Performance Observation W indow .................................................  46

4.9 Activity Monitor W in d o w ............................................................... 47

4.10 Core Monitor W in d o w .....................................................................  47

5.1 Average Turnaround time: Linux and Solaris Scheduling Algorithms
(by varying the number of cores) ................................................................ 58

5.2 Standard deviation of Turnaround time: Linux and Solaris Scheduling
Algorithms (by varying the number of c o re s ) ............................  59

5.3 Average Interactive Response time : Linux and Solaris Scheduling Al
gorithms (by varying the number of c o r e s ) ...............................  60

5.4 Standard deviation of Interactive Response time: Linux and Solaris
Scheduling Algorithms (by varying the number of cores)............... .........  61

5.5 Average Turnaround time: Linux and Solaris Scheduling Algorithms
(by varying the w o rk lo a d ) .............................................................. 62

vii



5.6 Standard deviation of Turnaround time: Linux and Solaris Scheduling
Algorithms (by varying the w orkload).........................................................  62

5.7 Average Interactive Response time: Linux and Solaris Scheduling Al
gorithms (by varying the w w k lo a d ) ............................................................. 63

5.8 Standard deviation of Interactive Response time: Linux and Solaris
Scheduling Algorithms (by varying the workload) .................................. 63

6.1 Average Response Time for AFCFS and LGFS A lg o rith m s ................  68

6.2 Standard deviation of Response Time for AFCFS and LGFS Algorithms 69

6.3 Core Utilization of AFCFS and LGFS A lg o rith m s................................. 69

6.4 Average Response Time of AFCFS and Proposed A lgo rithm s............. 74

6.5 Standard deviation of Response Time of AFCFS and Proposed Algo
rithms ..................................................................................................................  75

6.6 Average Core Utilization of AFCFS and Proposed Algorithms . . . .  75

6.7 Bypass Count of Gangs of AFCFS and Proposed A lg o rith m s.............  76

viii



List of Tables

5.1 Completely Fair Scheduling A lg o r i th m ......................................................  52

5.2 Solaris 10 Scheduling A lg o rith m .................................................................... 56

5.3 Simulation P a ra m e te rs ..................................................................................... 56

5.4 Simulation P a ra m e te rs ..................................................................................... 57

6.1 AFCFS Gang Scheduling A lgorithm .............................................................  66

6.2 LGFS Gang Scheduling A lgorithm ................................................................. 67

6.3 Simulation P a ra m e te rs .....................................................................................  67

6.4 New Gang Scheduling Algorithm ................................................................. 72

6.5 Simulation P a ra m e te rs .....................................................................................  73

7.1 Solaris 10 Scheduling Classes Priority R a n g e ............................................. 81

7.2 Dispatch Table for RT Scheduling C lass.....................................................  81

7.3 Dispatch Table for FX Scheduling Class .................................................. 81

7.4 Dispatch Table for TS and IA Scheduling C la s s e s ................................. 82

7.5 Tick Processing of Solaris Scheduling A lg o rith m ....................................  83

7.6 Update Processing of Solaris Scheduling Algorithm .............................. 84

ix



Chapter 1

Introduction

The scheduling problem in computing systems has been studied in the last several 

decades. W ith the recent arrival of multicore processors, the scheduling problem has 

gained renewed interest. The contribution of this thesis is related to the scheduling 

problem in multicore computer systems.

The primary goal of computer systems is to execute applications safely, securely, 

correctly, and efficiently. The hardware and system software have been designed to 

work together to achieve this goal. Until recently, the developments in hardware and 

system software have kept pace with each other to meet this goal. Operating system, 

which has scheduling as its central component, is the major part of system software. 

Hence, scheduling plays a pivotal role in effective use of computer systems.

A paradigm shift in hardware technology has happened very recently. Instead of 

increasing speed, the chip designers are starting to put a number of execution cores 

within a single processor. Such processors are called multicore processors. To exploit 

the capabilities of multicore processors effectively, the software community requires 

to make at least two main changes: (i) a new way of designing software for multi
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core processors, and (ii) system software must be redesigned with new capabilities 

to manage multicore processors. The proposal of this thesis is related to the efforts 

in meeting the latter demand. Particularly, this thesis proposes to develop a flexible 

simulation framework to study the performance of scheduling algorithms for multi- 

core processors. The purpose of this chapter is to explain why multicore scheduling is 

interesting and worthy of investigation. For that, we first briefly describe the recent 

trends in hardware, computing, applications, operating system, and scheduler.

1.1 Hardware Trend

Nearly forty five years ago, Intel co-founder Gordon Moore predicted tha t transis

tor density on integrated circuits will be doubled about every two years. In term s of 

speed, this law is equivalent to: processor speed will be doubled about every eighteen 

months. Ever since Moore’s prediction, the hardware technology has been driven to 

produce processors with highest possible speed by increasing the clock rate.

As limited by the laws of physics, the microprocessor design hit the clock cycle 

wall, and therefore the chip designers had to come up with a new way of exploiting the 

benefit of Moore’s law. The new way is to  use the extra transistors to  add multiple 

execution units (referred to  as cores) within a single processor. Each core is capable 

of executing independently of other cores in the processor. This trend in multicore 

processors indicates that all future processors will be multieore [1],

As Intel, AMD, Fujitsu, IBM, and Sun Microsystems are already shipping their 

desktops and workstations with multicore processors [2J, multicore systems are rapidly 

emerging as the mainstream computing platforms. This hardware trend seems to 

continue, and we will have hundreds and even thousands of cores in a single processor 

in the near future [lj. The abundant availability of execution cores is expected to
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revolutionize the way we will design software for these systems in the future.

Another hardware trend, driven by high performance computing groups, has been 

introduction of various parallel computers. A parallel computer is a single computer 

with multiple internal processors or multiple computers interconnected to form a co

herent high-performance computing platform [3]. Multicore processors have similarity 

to  some parallel computers in structure and functionality, bu t they differ in several 

other aspects.

1.1.1 M ulticore  P rocessors vs. P ara lle l C om puters

Parallel processors or parallel computers were around as early as single processor 

systems. In terms of execution units, parallel processors and multicore processors 

are similar. Multicore processors and parallel processors have two or more execution 

units. They differ mainly in their purpose, other resources, and application domains. 

The main purpose of parallel computers is to  increase the performance of applications 

which have longer run times. Parallel processors are often designed for certain types of 

applications and usually run them in static partitions. In order to utilize the parallel 

processors effectively, the applications must be parallelized.

In parallel processors, the scheduling is mostly done at the user level rather than 

taken care by the operating system. Typically, users of parallel computing design their 

application programs incorporating the logic of scheduling and synchronization. Of

ten, compilers or libraries like OpenMP [4] and MPI [5] help the application designers 

in achieving this task.

Multicore systems are emerging as general purpose computers, and they are ex

pected to be used in a wide range of domains - from desktop, workstations, and 

servers. That is, multicore systems are expected to  handle multiple types of applica
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tions including interactive workloads, realtime tasks, and normal workloads. There

fore, unlike parallel computers, the task of scheduling in multicore processors cannot 

be left to applications. The operating system requires to take a major responsibility of 

scheduling applications to multicore processors. So, there are fundamental differences 

between parallel processor systems and multicore processor systems [6], and multi

core processor systems require redesign of scheduling algorithms. Designing efficient 

scheduling algorithm for multicore processor systems, we believe, is a complex task.

1.2 Com puting Trend

Until recently, most general purpose computing are desktop based and most high 

performance computing are based on parallel computing and cluster computing [3j. 

Parallel computing often divides the tasks into smaller ones and uses parallel com put

ers to execute them simultaneously. Cluster computing has the same objective, but 

the computing infrastructure is a set of loosely connected computers with a suitable 

software module to coordinate the computers in executing parallel programs. Another 

computing paradigm called grid computing [7] has taken this trend one step further 

by pooling computing resources from multiple administrative domain to  solve a single 

problem. The most recent trend is cloud computing. Cloud is a computing infrastruc

ture paradigm tha t offers computation and storage as web-based services [8]. Cloud 

computing typically has parallel computers and /or cluster computers as its server 

nodes. W ith the emergence of multicore processors, the future clouds are expected to 

have multicore blades as their servers [8,9].

1.3 Applications Trend

In the 1980s, only a small group of people knew about computers, and even a 

smaller group of people used one. Now, almost everyone knows what a computer is,
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most of us use it on a daily basis for reading news, listening to music, etc. Thus, 

the use of computing continues to infiltrate every aspect of our life and autom ation 

in the practical world continues to increase. W ith the recent computing trends of 

cloud computing and mobile accesses, and the access to social media and Internet, 

the need for more autom ated services are expected to be accelerated. T hat means 

more software for applications are expected to  be developed, and they have to be 

developed in a way to effectively run on the future computing platforms.

1.4 Operating System s Trend

Operating systems is one of the core areas in computer science, and has accumu

lated a large body of literature. However, most of the work in the past was done either 

in the domain of uniprocessor systems, where the scheduler has the full responsibility 

of managing applications including scheduling, or in the domain of parallel processing, 

where the responsibility of task scheduling is largely left to application designers1.

Operating system is one of the most complex software systems, and designing one 

is a challenging task. It has an influence on almost all other systems, both hardware 

and software tha t involve computing. Operating systems spend a huge portion of 

their time in executing applications [10].

Generally, the functionalities of operating systems add and evolve constantly to 

meet the needs of new technologies and applications. However, the operating system 

design related to processor management has not been changed much in the last several 

years as the number of processors has not been changed much. Current operating 

systems were designed for single or few cores. Thus, most developments have been

'P ara lle l processing typically involves complex problem s requiring high com putational time. 
Based on the software specifically designed for parallel program m ing, the program  designers di
vide a complex problem into com ponent parts  and then  assign the com ponent p a rts  to  be executed 
on individual processors [3J.
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in the domain of file system, security, device management, and user interface. These 

developments are not aimed to meet the demand of multicore processors.

The traditional approach of building an operating system for every individual hard

ware model is no more acceptable, because it will be out of date once new hardware 

arrives [11]. Some of the main issues of current operating system are:

1. Scalability: Current operating systems are not designed to be scalable for 

multicore processors. Therefore, adding hardware resource would requires re

designing of operating system, as the current operating system cannot utilize 

the newly added hardware to increase its efficiency [1],

2. R esource allocation: Current operating systems are designed for com putation 

with limited resources. This may not be the case of multicore systems. Since 

multicores require abundant resources for their computation, such resources are 

expected to be added accordingly for effective execution. For example, with 

the recent advancements of hardware multilevel caches, inefficient allocation of 

cache will result in performance degradation [12].

3. Parallelism : If the current trend of multicore processor continues, the workload 

of an operating system managing the number of cores will continue to increase. 

Dividing the core management workload and handling concurrently require par

allelism in kernel level. Parallelizing the kernel is difficult and marginally suc

cessful. This pushes us to seek new approaches [13]. Simply tuning applications 

to get advantage of the available cores may not be good enough when there is a 

mass deployment of cores. Therefore, the operating systems for the future mul

ticore systems have to be redesigned or developed to effectively manage the cores 

among the applications to achieve/exceed the expectations of the users [14j.
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As multicore systems offer more cores, handling these cores to serve the applica

tions is becoming more challenging.

1.5 Schedulers Trend

To meet the requirement of multicore systems, the most im portant component of 

operating system that might need a radical change is the processor scheduler. Most 

developments in the operating system domain in the last several years have been 

on file system, security, device management, and user interface, and only minimal 

changes have been proposed for schedulers. These schedulers have been focusing on 

effectively multiplexing the CPU among the competing processes to assure fairness, 

quick response, and minimize the turnaround time.

The traditional operating systems such as Linux, Windows, and Solaris schedule 

the processes using time multiplexing. The approach of tim e multiplexing alone is 

not suitable for multicore schedulers for several reasons. F irst of all, with the ad

vancements of hardware and the availability of multilevel cache hierarchy, scheduling 

a core to a thread exclusively could reduce the latency and hence increase the perfor

mance. That is. the thread scheduled alone in a core can effectively use the cache to 

reduce its execution time. Secondly, time multiplexing does not effectively deal with 

distributing the work among different cores so th a t no core sits idle when there is 

heavy workload on peer cores. Finally, time multiplexing does not reduce the impact 

of access to cache and DRAM, which are considered expensive operations. Rather, 

it could increase the overhead on accessing shared resources such as cache, memory, 

and network. These reasons force us to re-think the scheduler design.

The operating system literature on multicore systems is relatively limited and 

most of the publications are within the last five years [1,6,8,10,12-36]. In tha t, only
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a small portion is related to multicore scheduling algorithms [12]. Most of them are 

related to effectively dealing with resource contention.

The proposed approaches to design scheduling algorithms for multicore systems 

vary greatly and differ in their recommendations. One view is that multicore systems 

have in fact simplified the scheduling. That is, since we have plenty of cores, there is no 

need to worry about intricate time multiplexing strategies, simply giving enough cores 

to applications will simplify the scheduling. On the other extreme, several researchers 

feel tha t multicore systems have complicated the scheduling task, as it needs to con

sider several factors such as cores, caches, networks, and application requirements 

together in offering best possible service. A number of work suggest ideas in between 

these extreme cases. Most of these ideas are related to cache contention. Again, 

related to resource contention, there are two views. One group strongly advocates to 

incorporate contention aspects into the scheduling algorithms [12,23]. Another group 

argues to  decouple contention management from scheduling [34,36]. There is another 

direction of research tha t explores the question of whether to keep operating systems 

and applications together or separately [13,22].

Overall, the field of multicore scheduling is very young and the proposed ideas on 

multicore scheduling are preliminary.

1.6 W here do the contributions of th is thesis fit in?

From the above discussion, we infer th a t the software systems th a t worked well 

for sequential systems might not effectively work with the multicore systems. There

fore, there is a gap between the rapidly emerging hardware technology and relatively 

slow software technology. The recent research trend indicates that the software sys

tems, particularly the operating system must be redesigned to  reduce this gap. More



importantly, new scheduling algorithms must be developed to  utilize the multiple re

sources offered by multicore systems. This thesis is an effort to  help achieve this goal. 

More specifically, this thesis contributes to help develop new scheduling algorithms 

for multicore systems.

The most difficult aspects of developing a novel scheduling algorithm are imple

menting and testing its performance [25]. We believe a flexible multicore scheduler 

simulator framework with proper support for simulation and testing would be very 

useful. Developing such a comprehensive framework is the primary goal of this thesis.

1.7 Thesis Organization

The fundamentals of multicore scheduling and the related work are presented in 

Chapter 2. Next, in Chapter 3, we present the motivation, contributions, and re

search methodology. In Chapter 4, we present the design and the implementation of 

the multicore scheduler simulation framework. The framework and its implementa

tion are the major contributions of this thesis. We present the implementation and 

simulation study of Linux and Solaris scheduling algorithms in Chapter 5, and a new 

gang scheduling algorithm is presented and its performance compared to two well 

known gang scheduling algorithms in Chapter 6. Finally, in Chapter 7, we conclude 

the thesis and list some future directions to extend the work carried out in this thesis.
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Chapter 2

Multicore Scheduling

Scheduling is a fundamental problem in several systems. In processor scheduling, 

threads are assigned to processors for execution with the objective of optimizing cer

tain performance metrics such as maximum throughput, minimum average response 

time, minimum average waiting time, and /o r maximum CPU utilization. Threads 

are schedulable entities which achieve the intended tasks by their execution. Cores 

are physical execution units. In a multicore context, scheduling can be viewed at 

two levels: balancing the system load among the cores and multiplexing threads on 

a single core. In actual implementations, these two tasks could be integrated as one 

scheduling module.

A scheduling algorithm is a set of rules th a t define how to select the next thread for 

execution. This problem is well studied in single processor(eore) context and numerous 

scheduling algorithms exist in the literature [37,38]. Present multiprocessor operating 

systems such as Linux and Solaris use a two-level scheduling approach [12]. In one 

level the scheduler balances the load across cores, and in another level the scheduler 

uses a distributed run queue model with per core queues and local scheduling policies
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to manage each core.

2.1 Load Balancing

In general, load balancing in multicore or homogeneous multiprocessor systems 

can be done in several ways [12,39]. In one extreme, all the jobs can be kept in one 

shared global queue and schedule a job from this queue whenever a core becomes free. 

This approach is simple and balances the workload effectively, and lienee appears to 

increase the core utilization. But, in reality, this approach degrades the performance 

due to cache pollution as there is a high probability of jobs frequently migrating 

from one core to another. Modern systems achieve high performance by effectively 

exploiting the locality of reference, and by keeping frequently accessed data  in local 

cache. Job migrations rarely utilize this benefit, and hence a significant amount of 

time is spent on accessing data from farthest locations such as last level cache and 

memory.

On the other extreme, each core can m aintain its own queue of jobs to better m an

age cache affinity and other local resources. This case allows several load balancing 

strategies by migrating jobs from one local queue to another [39]. There are four sim

ple approaches. The first one is called sender-initiated policy in which lightly loaded 

cores initiate requests for jobs from other cores. This technique is also referred to as 

work stealing from other cores. In the second approach, called receiver-initiated pol

icy, the heavily loaded cores request other lightly loaded cores to take jobs. The third 

approach is the combination of both sender-initiated policy and receiver-initiated pol

icy, and therefore called symmetric policy. The fourth one is that the heavily loaded 

core simply chooses a random destinations to  migrate some of its jobs. This simple 

strategy is found to be working well in practice.
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The above general load balancing schemes are applicable only for systems with 

homogeneous processors, and are not suitable for parallel applications or the types of 

jobs which are heterogeneous with differing priorities.

2.2 Scheduling Approaches

In single processor system, scheduling of different jobs on a processor is typically 

done by time sharing. The basic idea of time sharing scheduling is th a t the processor 

time is divided into chunks of time called time quanta, and each application executes 

in different, time quanta to complete its task. The critical factor affecting this tech

nique is the time quanta, say, q. When a q is set very large, the applications run 

longer to complete their executions. When q is set smaller, the applications interleave 

frequently. The popular time sharing technique with effective interleaving executions 

is round robin scheduling [37,38].

Almost all uniprocessor scheduling algorithms used in modern operating systems 

are time sharing. Among the time sharing algorithms, the most practical algorithms 

use multilevel feedback scheduling strategy. The basic idea behind multilevel feedback 

algorithms is th a t they use different priority queues to manage jobs with varying 

importance, and the jobs move between queues as their priorities change. The jobs 

with a lower priority will be served only if the higher priority queues are empty.

The scheduling algorithms used by popular operating systems such as Linux, So

laris, Mac OS, and Windows are some sort of multilevel feedback algorithms. These 

algorithms with suitable load balancing technique have been adapted for multicore 

processors. (For this thesis, we have simulated Linux and Solaris schedulers.)

The orthogonal technique to time sharing is space sharing, and it is applicable only 

in multiprocessor systems. It is an effective generic approach of scheduling multi
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threaded applications on multiprocessor systems. The basic idea is th a t different 

applications use different sets of processors during their lifetime. That is, the scheduler 

dedicates a set of processors to an application for its entire lifetime. Although this 

technique might offer excellent service to the applications, it may not be good for the 

utilization of system resources. In this approach, the processor will be idle when the 

application goes for I/O , or waiting for an event or synchronization.

An effective variant of space sharing approach to  parallel applications is that, 

instead of dedicating a set of processors to an application for its lifetime, parallel 

threads of an application are scheduled together for a fixed period of time. This 

technique, originally called co-scheduling later referred to in the literature as gang 

scheduling, was introduced by Ousterhout [40]. Gang scheduling efficiently uses busy 

waiting for frequent synchronization. In the literature, frequent synchronization is 

also referred to as fine-grained synchronization. The idea behind gang scheduling is 

simple th a t threads of a same process are scheduled together as a ‘gang’ on distinct 

processors so tha t they can progress in parallel and synchronize with minimal busy 

waiting involved. A gang is an application containing a set of parallel threads that 

frequently communicate with each other.

During their executions, threads in a gang communicate for synchronization and 

data exchange. Often, a thread in a gang cannot proceed further w ithout sufficient 

progress from other threads. Such threads either do busy waiting or block themselves 

by suspending from execution until other threads progressed enough. A long busy wait 

on a processor wastes its execution time. On the other hand, suspending and resuming 

processes often are also not good, when only a small wait is needed. Blocking results 

in context switches, which are costly. For several applications inducing small waits, 

research shows tha t a busy wait is better than  blocking. Gang scheduling algorithms 

are typically designed to exploit the above observation.
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In gang scheduling approach, different applications can use the same set of proces

sors in different time quanta, and same application can use different sets of processors 

in different time quanta. This is an effective technique th a t provides an excellent 

service to parallel applications with threads involving similar loads and fine-grained 

synchronization.

Using our scheduling simulator developed for this thesis, we study two popular 

gang scheduling algorithms and propose an improved gang scheduling algorithm. We 

believe th a t the proposed algorithm can be used for scheduling gangs in cloud com

puting, as explained next.

2.2 .1  G ang Schedu ling  in M u lticore  an d  C loud  C om p u tin g

Recently, it is predicted tha t the next decade will bring microprocessors contain

ing hundreds, thousands, or even tens of thousands of computing cores, and com

putational clusters and clouds built out of these multicore processors will offer un

precedented quantities of computational resources [8,22,41]. We discuss the relevance 

of multicore scheduling in cloud computing assuming tha t the above prediction will 

come true.

Cloud computing is a service oriented computing paradigm. It is designed to 

provide services such as computation, software applications, data access, data  man

agement and storage resources to customers through internet transparently [8]. As 

cloud computing offers computing as a service, customer satisfaction about the ser

vices they receive is extremely important. Customer satisfaction is mainly related to 

cost, fairness, and quality of service. In that, fairness and quality of service are often 

related to system performance. Particularly, these metrics are primarily influenced 

by the execution of applications in the cloud. That, in turn, heavily depend on the
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processor scheduling in the cloud. T hat is, to offer services effectively to customers, 

the service requests must be properly mapped to the available computing resources 

in the cloud. This is simply a scheduling problem, and it generally involves sequenc

ing and assigning a set of applications on one or more processors (servers) so tha t 

the intended criterion is met, while maintaining the maximum possible utilization of 

system resources. Therefore, processor scheduling is a fundamental problem in cloud 

computing as it is involved in almost all services th a t the cloud can offer. As the 

servers of the cloud are expected to be built from multicore processors, scheduling of 

multicore processors is an integral component of cloud scheduling [8,22,41],

Among the applications of cloud computing, a considerable portion of applica

tions are expected to  be from high performance computing groups. Such applications 

require huge computational resources. Some of these applications are typically de

signed as parallel threads with frequent synchronization among themselves. These 

applications are basically gangs. A recent research suggests th a t gang scheduling can 

be effective in cloud computing |42].

2.3 R elated Work

To set the context for our work, we reviewed the work on operating systems for 

multicore processors. In this section, we review the work specifically related to  our 

contributions. This thesis has contributions relating to multicore scheduling simu

lation, performance study of Linux and Solaris scheduling algorithms, performance 

study of three gang scheduling algorithms, and fairness aspect of gang scheduling 

algorithms. Next, we review the work related to these contributions.
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2 .3 .1  Scheduler S im u lators

A number of simulators for multiprocessors have been proposed in the literature 

[25,26,28,43-47]. Among them, Simics [28], SimOS [46], SimpleScalar [43], and 

AMD SimNow [47] emulate the processor at the instruction set level. They differ in 

emulating different architectures and simulating other components such as I/O  and 

network.

Simics simulates the hardware which can run unmodified operating systems such 

as Solaris, Linux, Windows XP, and Tru64. Simics supports the following processor 

models: Ultrasparc, Alpha, x86, x86-64, PowerPC, MIPS, IPF, and ARM. In addition, 

Simics simulates the device models well enough to execute the device drivers.

SimOS simulates the hardware components to boot, study, and run IRIX oper

ating system and the application tha t runs on IRIX. SimOS fastens the simulation 

by changing the mode of execution. There are three modes of execution proposed 

in SimOS - emulation, rough characterization, and accurate mode. Emulation mode 

models the hardware tha t are required to execute the workloads, leaving other unin

teresting execution such as booting the operating system, reading from the disk, and 

initializing the workload. This is the fastest mode. The rough characterization mode 

approximate the behavior of the system by simulating those uninterested executions. 

This mode is two or three times slower than the emulation mode. The accurate mode 

emulates the complete system, and therefore it is the slowest and very time consum

ing. The accurate mode can be used for measuring the accuracy of the system under 

simulation.

AMD SimNow simualtes the AMD family processors. SimpleScalar simulates a 

close derivative of MIPS architecture. Turandot [44] emulates PowerPC. A recent
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simulator called COTSon [45] uses AMD SimNow, and employs a statistical sampling 

technique th a t can selectively turn  on and off the simulation to reduce the overall 

simulation time.

Since all these simulators emulate machine instructions completely, they all have 

fine grained accuracy at instruction level. Some of them  are used as virtual machines. 

However, they are very slow as they have to interpret each machine instruction at 

software level. For example, SimOS - the fastest among the group - can execute 

workloads only less than 10 times slower than  the underlying hardware. Note tha t 

SimOS simulates other components to  attain  this speed. Also, as these simulators will 

run on host operating system, the scheduling of host operating system will further 

slow down the execution time of the instruction. Such fine-grained simulators are 

more suitable for studying low level functionalities of the processors.

These simulators are not suitable for rapid simulations aiming to get quick insight 

and guidance to develop new scheduling algorithms for future multicore processors. 

They are machine dependent and emulates only existing hardware. Implementing a 

scheduling algorithm in a system supported by a regular operating system is hard. 

Therefore, simulating a new scheduling algorithm for performance study in these 

simulators is time consuming and hard.

A simulator of Linux scheduler called Linshed was proposed in [26]. This simulator 

was designed by making changes to original Linux kernel and it runs in user mode. 

The objective of Linshed was to study the Linux scheduler in depth and was not 

intended to implement any new scheduling algorithm or comparing with any existing 

scheduling algorithm.

Recently, a toolset called AKULA [25] was proposed to study scheduling of threads 

on multicores so as to reduce their cache contention. AKULA toolset assumes the
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availability of the task profile termed as bootstrap data on cache behavior. Such 

cache behavior can be obtained only through actual execution on a dedicated multi

core system. The bootstrap data  contains two information: solo execution time and 

degradation matrix. Solo execution time is measured when the thread runs alone in 

the real machine and the degradation matrix is the degradation value from their solo 

execution time when a thread is scheduled with other threads in different cores which 

share the cache. For example, there are two threads A and B which are scheduled 

in two core system. The degradation matrix contains degradation value of of thread 

A when thread B is scheduled in another core and vice versa. Suppose the degra

dation value of thread A when scheduled with thread B is 0.75, then the slow down 

percentage is 75.

Threads on a multicore system can be scheduled in a number of ways. Consider a 

system with two cores and two level cache memories LI - local to each core, and L2 

shared by both. In this system, all threads can be scheduled to one core or they can 

be distributed between two cores in several ways. These different ways of scheduling 

will have different influence on both LI and L2 level caches. To observe the cache 

behavior, we need to collect the cache data in all possible ways of scheduling, which 

will result in large number of combinations.

AKULA collects the cache behavior for a limited set of scheduling combinations. 

It assumes tha t the threads scheduled in the cores are allotted with full LI cache and 

observes the L2 level cache effect. T hat is, time sharing on a core is not allowed. For 

example, there are four threads, say A, B, C, and D. need to  be scheduled and there 

are two cores in the system which share L2 cache. The degradation m atrix will have 

the degradation value for the following 12 combinations of threads: AB, AC, AD, BA, 

BC, BD, CA, CB, CD, DA, DB, and DC.
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If the number of cores is increased to 3, then a total of 24 combination of data 

have to be collected. So, the size of the data  increases drastically with increasing 

number of cores as well as increasing number of threads. Also, executing these tasks 

in real machine to collect the bootstrap trace is tedious and very time consuming 

task. More importantly, AKULA only runs on the profile data created by actual 

executions, it cannot be used for testing new workloads. Therefore, it limits its usage 

only to the system and the workload for which the trace is collected. Even changing a 

single param eter such as speed, number of cores, cache, workload will make the trace 

unusable. Due to  this restriction, the use of AKULA is very limited.

2.3 .2  Fairness and  P erform ance Issu es in G ang Schedu lin g

Gang scheduling has been extensively analysed and several studies have concluded 

tha t gang scheduling is one of the best approaches for parallel applications, and hence 

several gang scheduling algorithms under different conditions have been proposed 

in the literature [40,42,48-55]. Among them First F it (or First-Come-First-Served 

(FCFS)) and Best Fit (or Largest-Gang-First-Served (LGFS)) are popular [53].

When enough processors are free, FCFS chooses the job at the head of the queue 

to schedule and LGFS chooses the largest job in the queue to  schedule. FCFS assures 

high fairness, bu t does not guarantee the best processor utilization. Consider th a t a 

larger gang G is in the head of the queue, and several other smaller gangs are waiting 

behind G. Assume that there are not enough processors to schedule G, but several 

other processes from the queue can be scheduled. Now, in FCFS, these processors will 

be idle until enough processors become free and G is scheduled. Such situations will 

not only make the processor utilization low, but also have the potential to increase 

the average waiting time. To avoid such situations, a modification called adaptive 

FCFS (AFCFS) was introduced [53]. When a gang in the head of the queue cannot

19



be scheduled, AFCFS schedules other gangs behind in the queue. All these algorithms 

are susceptible to starvation. To avoid starvation, these algorithms adopt the policy 

of migrating jobs from processor to  processor [53]. Such task migration may not be 

effective for multicorc systems.

Task migration is hardly possible between two heterogeneous multicore systems, 

and generally expensive even between two homogeneous systems [39,56]. Also, an 

efficient task migration can reduce the wait time, but it does not guarantee to eliminate 

starvation. Therefore, a simple solution to avoid starvation in gang scheduling is an 

interesting open problem.

Avoiding starvation is an interesting theoretical problem. But, for practical appli

cations, a better fairness measure than  free of starvation is most desirable. We found 

tha t no such fairness metric has been introduced and used in this context.

Regarding performance, the most widely used metric in the processor schedul

ing context is average response time. We believe a predictable performance is more 

valuable than better average response tim e1.

2.3 .3  P erform ance S tu d y

We have conducted performance studies on two sets of scheduling algorithms. 

Next, we discuss the work related those studies.

2.3.3.1 Linux vs. Solaris Scheduling A lgorithm s

Linux and Solaris schedulers have been constantly tuned and updated [12,57]. 

Even the most popular 0(1) Linux scheduler introduced in version 2.6 was initially

luit is more im portant to  minimize va ria n ce  in the  response tim e th a n  to minimize th e  average 
response tim e. A system w ith reasonable and p red ic ta b le  response tim e may be considered more 
desirable th an  a system  th a t is faster on the  average bu t highly variable. However, little  work has 
been done on CPU  scheduling algorithm s to  minimize the variance." [37]

20



expected to be used for a long time, has been overshadowed by the introduction of 

a completely fair scheduler (CFS) [12,58]. We decided to  study the performance 

comparison between Linux CFS and the Solaris 10 scheduler.

To the best of our knowledge, we could not find a performance comparison between 

Linux and Solaris schedulers. Even the complete description of the scheduling algo

rithms of these operating systems are not comprehensively described in one place. We 

put a lot of effort to construct the complete algorithm in bits and pieces from various 

sources for our simulation study.

2.3.3.2 A FC FS vs. LGFS G ang Scheduling A lgorithm s

Among the popular gang scheduling algorithms, AFCFS alleviates the problem 

of low processor utilization, and performs better than  LGFS under light loads. The 

performance of these two algorithms have been studied in [51-53]. LGFS, on the 

other hand performs better than AFCFS under heavy loads.

2.4 Summary

In this chapter, we explained multicore scheduling in a higher level, and looked 

at load balancing and scheduling approaches. Then, we discussed an interesting class 

of parallel job scheduling called gang scheduling and its relevance to multicore and 

cloud computing. W ith this background, we are ready to present the motivation and 

contributions of the thesis.
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Chapter 3

Motivation and Contributions

This chapter presents the motivation and contributions of this thesis, and the m ethod

ology used. This thesis contains three main contributions: (i) a multicore scheduler 

simulation framework and its implementation; (ii) simulation studies of two popu

lar scheduling algorithms to illustrate the use of the proposed scheduler simulation 

framework; and (iii) a new scheduling algorithm and its performance study. We start 

with the motivation for the first contribution.

3.1 M ulticore Scheduler Sim ulation Framework

From the literature study presented in Chapter 2, we identify two potential choices 

for our thesis work: (a) design and propose a new or improved multicore scheduling 

algorithm; and (b) design and propose a multicore scheduler simulation testbed where 

any new scheduling algorithm can be easily simulated and analysed.

The first choice is from the observation that, as the field is young, and there are 

no widely accepted concrete multicore scheduling algorithms have been proposed in 

the literature, there is a good possibility of inventing an efficient multicore scheduling
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algorithm. The second choice is from the observation that, as the trend in processor 

technology indicates that the future systems will have hundreds and thousands of 

cores, any new algorithm proposed for such systems must be studied carefully using 

a large number of cores using proper set of experiments before it can be adopted for 

practical use.

After several brainstorming discussions, we started to realize th a t both choices 

are risky and challenging as they have open ended goals. However, we felt the sec

ond choice has the potential to impact widely, and therefore we chose to proceed in 

designing and implementing a flexible multicore scheduler simulation framework.

Designing and implementing a multicore scheduler simulation framework involve 

several research questions to be explored, and some of them are:

•  W hat would be the main purpose of the framework?

• W hat would be the components of the framework?

• How accurately can the components be modeled?

• W hat is the level of accuracy th a t we want in modeling the components of the 

framework?

• To illustrate the use and flexibility of the framework, which scheduling algo

rithms can we implement and study?

•  W hat kind of simulation experiments we would like to conduct?

From the literature, we understood that no simulator could replace a real system. 

However, the design and implementation choices vary greatly depending on the cost 

and accuracy. Here, the cost is a function of effort, time, complexity, and performance.
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The accuracy depends on the purpose of the simulation. Our design choice of the 

scheduler simulation framework is mainly motivated from the following observations:

• “Simplicity is the key to understanding. ... Simplified simulations provide the 

best grounds for extracting major properties quickly. ... Simulations done with 

realistic physical layers normally lead to investigating phenomena with too many 

variables, too many puzzles, leading to too few explanations, and too few hints 

for future progress.” [59].

• “So, in practice, models tha t attem pt to  be highly accurate end up running very 

small “toy” workloads.” [28].

•  “... the biggest difficulties in scheduling algorithm development: the difficulty 

of implementation and the duration of testing. The difficulty of implementation 

refers to the time and effort needed to convert an idea into the actual code ... 

The difficulty of implementation and the duration of testing make it infeasible 

to explore many different scheduling algorithms.” [25].

These observations motivated us to design a multicore scheduler simulation frame

work tha t is simple but flexible and comprehensive, so th a t the design space of the 

scheduling algorithms for multicore systems can be explored rapidly.

Our design objective of the framework is mainly to provide accuracy sufficient to 

gain initial insights into the performance of the scheduling algorithm under study. 

We believe such insights will be valuable to guide the researchers in developing new 

scheduling algorithms with specific objective in mind. As a m atter of fact, we en

countered such an opportunity of developing an improved scheduling algorithm for a 

specific class of parallel applications called gangs. Next, we briefly explain how we
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were motivated to study gang scheduling algorithms and propose an improved gang 

scheduling algorithm.

3.2 A N ew  Gang Scheduling Algorithm

Cloud computing is an emerging class of computational platform th a t has the 

potential to provide unprecedented compute capacity to future organizations and 

average users [8]. The trend in multicore processors indicates tha t all future processors 

will be multicore, and hence the future cloud systems are expected to have their 

nodes and clusters based on multicore processors [60]. So the processor scheduling in 

the future systems will most likely be all multicore processor scheduling. Therefore, 

multicore scheduling is fundamental to  future cloud computing performance. Also, 

due to multicore revolution, a considerable portion of large applications will be parallel 

programs. From the literature, we can see tha t gang scheduling is a dominant strategy 

to schedule parallel programs with the requirement of frequent synchronization.

Among the popular gang scheduling algorithms, AFCFS alleviates the problem of 

low processor utilization, but is susceptible to  starvation. LGFS, as claimed in the 

literature [42], outperforms AFCFS in large loads, bu t again is susceptible to starva

tion. To avoid starvation, these algorithms adopt a process migration policy. Process 

migration in this context is migrating gangs between multicore systems. Migrating 

gangs may not be even possible between two heterogeneous multicore systems, and 

generally expensive even between two homogeneous systems [39,56]. Gang migration 

could reduce the overall wait time of the migrating gang, but it does not guarantee 

to eliminate starvation.

These observations raise a question. Can we design a gang scheduling algorithm 

with the following characteristics?
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1. Freedom from starvation.

2. Predictable and acceptable response.

3. Better processor utilization.

Since LGFS favors large gangs, the smaller gangs are susceptible to starvation or 

will have longer wait time. This is unacceptable particularly in cloud environment 

where customer satisfaction hugely depends on fairness and predictable response time. 

In practice, the customers who receive a little faster service (at the expense of oth

ers’ long wait) may not be overly satisfied [61]. But, the customers who experience 

unpredictably long delay, on the other hand, will readily notice the unfairness and 

unpredictable response and that could potentially drive the cloud business in a nega

tive direction. Therefore, in addition to fast response and high processor utilization, 

minimal variance in response time is extremely im portant for quality of service in 

cloud systems.

3.3 Contributions

This thesis has contributions in the following three categories:

1. Inventive

•  A new multicore scheduler simulation framework

•  A new gang scheduling algorithm with increased fairness

2. C reative

•  A multicore scheduler simulator (expected to be released as open source 

software)
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3. E xperim ental

• Performance study of Linux and Solaris scheduling algorithms

•  Performance study of two popular gang scheduling algorithms AFCFS and 

LGFS

• Performance study of a new gang scheduling algorithm and comparison 

with AFCFS

At another angle, this thesis has contributions in theory, algorithm, implementa

tion, and experiments. The scheduling framework is a theoretical abstraction of the 

scheduling system. The new gang scheduling algorithm is an algorithmic contribu

tion. The scheduling simulator is an implementation of the framework. Finally, the 

experimental study are the performance study of five scheduling algorithms - Linux 

and Solaris scheduling algorithms, and three gang scheduling algorithms.

These contributions have several benefits. The insights obtained from the experi

mental evaluation will help: (i) the users to effectively exploit the hidden power of the 

above mentioned schedulers, and (ii) the researchers to design new efficient multicore 

scheduling algorithms, by combining the best ideas of the above studied algorithms, 

and perhaps adding new ideas. The simulation tool can be used to evaluate any newly 

designed multicore scheduling algorithm under various conditions before it is adopted 

for real systems.

The proposed gang scheduling algorithm is simple, fair, and gives predictable per

formance. Such a predictable performance is attractive from the service point of view. 

Also, the algorithm is scalable as it solves the starvation problem locally without using 

process migration. High performance, fairness, and scalability are attractive proper

ties for cloud computing. Therefore, the algorithm is applicable for cloud systems
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built from multicore processors.

3.4 Research M ethodology

The methodology we followed is generally referred to as constructive research 

methodology, where the construct could be a new theory, algorithm, model, software, 

system or a framework. This methodology is most common in engineering and com

puter science, particularly in systems research. Constructive research methodology 

involves innovative modeling, design, implementation, and experimentation.

Multicore scheduling is a challenging problem, and we determined to explore the 

problem in a systematic fashion, using a combination of theory and practice, with an 

experimental approach. First, the focus is on thoroughly understanding the theory 

behind processor scheduling by studying and evaluating existing scheduling schemes. 

Second, based on this understanding of the literature, a multicore scheduler simula

tion framework with components tha t can be useful in implementing a new multicore 

scheduling algorithm is designed and implemented. Third, the components neces

sary for studying the performance of multicore scheduling algorithm are determined 

and added to the framework. Finally, the functionality of the proposed framework 

is demonstrated by simulating five scheduling algorithms, and then illustrating the 

performance of the simulated scheduling algorithms through performance monitoring 

and performance metrics. The five major steps involved in the methodology are:

1. Literature survey

2. Design and implementation of the multicore scheduler simulation framework

3. Identification and implementation of performance monitoring components and 

performance metrics
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4. Implementation of three popular classes of scheduling algorithms: Linux, Solaris, 

and Gang scheduling

5. Conducting simulation experiments on five scheduling algorithms and illustrat

ing their performance results

3.5 Summary

In this chapter, we presented the motivation for our contributions and listed the 

contributions. It also contains the research methodology th a t we followed. W ith this 

background, we are ready to present the major contribution of thesis - the multicore 

scheduler simulation framework in the next chapter.
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Chapter 4

Multicore Scheduler Simulation 

Framework

This chapter presents the architecture of the multicore scheduling simulation (MSS) 

framework, which is the major contribution of this thesis. The primary use of 

this framework is to facilitate researchers in implementing and simulating multicore 

scheduling algorithms to evaluate the performance visually and statistically. Before 

presenting the framework, we briefly explain the simulation technique we used.

4.1 Simulation

Computer simulation is a technique to model and observe the behavior of some 

real or imagined system over time [62]. A simulator is simply a computer program 

tha t transforms the state o f the system  in discrete time points over a specified period 

of time. Simulation is widely used to study the dynamic behavior of complex systems.

Based on how the system state is modeled and simulated, computer simulations are 

classified either as continuous or discrete. If the state variables change continuously

30



over time, then it is called a continuous simulation, and if the  state variables change 

only at discrete times, then it is called a discrete simulation. In reality most systems 

are a combination of both. However, depending on the purpose, most systems are 

simulated either as continuous or discrete, and rarely as hybrid of both.

Discrete simulation is further divided into time-stepped and event-driven, based 

on the advancement of simulation time and the update of the system state. In time- 

stepped simulation, the system state is updated at every tim e step. In event-driven 

simulation, the system state is updated at the occurrence of events.

Discrete event simulation consists of an events list, a simulation clock, and an event 

scheduler. For instance, in simulating the behavior of a queue at the bank-teller, the 

number of customers arrived and the number of customers served are sta te  variables 

and they will be updated on the occurrence of the events in the  system. The number 

of customers arrived will be updated when the customer arrives in the bank, and the 

number of customers served will be updated when the bank-teller serves the customer. 

Simulation continues until either the events list becomes empty or the simulation time 

ends.

In discrete event simulation, the simulator maintains a queue of events (also called 

event list) sorted by the simulated time they should occur. Simulation clock maintains 

the simulation time and it is advanced to the time of occurrence of next event in the 

event list. Since, it is not im portant to execute the simulation in real-time, the 

advancement of the simulation time can be the same, faster, or slower than  real-time. 

For example, in the simulation of humans evacuating a building, the queues buildup 

can be visualized faster than real-time. The current flow through an electric circuit can 

be simulated slower than real-time, and in-training simulations (for example, flight, 

simulators) can be exhibited real-time speed. An Event scheduler executes events
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from the events list and the system state changes a t the occurrence of each event in 

the system.

We use both discrete time stepped and discrete event simulation to implement 

different components of our framework.

4.2 M ulticore Scheduler Sim ulation

From systems point of view, multicore scheduling essentially has two tasks - main

taining the load among the cores and multitasking threads in each core. Generally, 

the first task is referred to as load balancing and the second task is referred to as local 

scheduling. We maintain these abstractions in our scheduling framework.

Load balancing manages the jobs across the cores, and local scheduling directs the 

core to switch between threads. Thread switching (or context switching), say from 

Ti to Tj, requires saving the context of Tj and loading or restoring the context of Tv  

Also, certain tasks must be performed when a thread completes its execution. In the 

simulation context, these tasks are basically updating the simulation system state. In 

our framework, we provide generic routines to do these tasks.

In essence, implementing the routines of load balancing and local scheduling are 

the programming effort needed to  use our simulator to study the performance of a 

new scheduling algorithm. Again, to reduce the effort of implementing the scheduler 

further, we provide a default load balancing routine and sample local scheduling 

algorithm routines. These routines can be suitably modified to implement the new 

scheduling algorithm, unless the new scheduling algorithm is completely novel and 

does not follow the structure of load balancer and local scheduler combination. Even 

in that case, the entire scheduling can be designed from scratch with little effort to  use 

our framework. In any case, from our experience, we are confident that, once the logic
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of the new scheduling algorithm is completely understood, then implementing it in 

our simulator is straightforward. W ith this background on multicore scheduler, next 

we explain the overall multicore scheduler simulator, which is a part of the framework.

The simulator is illustrated in Fig. 4.1. It has seven components: simulation clock, 

simulation manager, arrival handler, arrival queue, scheduler, state, and trace. The 

scheduler has four routines: load balancer, local scheduler, context switch handler, 

and completion handler.

The simulation of the system basically involves updating the state of the system 

at every simulation time point, and incrementing the simulation clock. Simulation 

clock advancement and state update could be done in an integrated fashion. But, for 

the modular design of the scheduling framework, we decided to keep these two tasks 

separate.
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In our framework, we designed a component called Simulation Manager to do 

the task of advancing the simulation clock and initiating the appropriate routines 

to update the system state. Updating the simulation system state typically involves 

recording the arrival of new jobs, and updating the state related to scheduling. To 

implement the arrival of new jobs, we introduced a queue called arrival queue, and 

implemented a routine to register the newly arrived jobs in the arrival queue. U pdat

ing the state related to scheduling is dependent on the scheduler logic, and it must 

be done as part of the implementation of the scheduler.

The simulation of the executions of jobs are recorded as simulation trace, and it is 

recorded at every scheduling point. To make this task generic, we have standardized 

the format of the execution trace and implemented a routine to  add the trace appro

priately during the simulation. Actually, this task of updating the trace is taken care 

of automatically by the context switch handler routine. W ith this background, we 

now introduce the architecture of the multicore scheduler simulation framework.

4.3 Architecture of M SS Framework

First we introduce some basic terminology used in our framework. Hereafter, to 

avoid confusion of what really refers to processor1 in the simulation context, we avoid 

its usage in the rest of the thesis.

4 .3 .1  T erm inology

•  Core: The hardware execution unit.

•  Chip: An integrated circuit containing one or more cores.

b e f o r e  m ulticore era, the te rm  processor was used to  refer to as an  execution un it. Therefore, 
it was used synonymous with central processing un it (CPU). Now', w'ith m ulticore technolog}-, a 
processor has several execution units.
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•  Machine: A collection of chips designed to work together.

•  Thread: The smallest unit tha t can be scheduled to a core for execution.

•  Gang: A set of parallel threads th a t can be executed to achieve a task.

A higher level architecture of MSS framework is given in Fig. 4.2. The framework 

has five main logical components: workload generator, multicore machine, multicore 

scheduler, execution trace, and performance calculation engine. We explain them 

next.
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4 .3 .2  W orkload G en erator

We have implemented the workload generator to generate two types of workloads: 

threads and gangs. Threads are generated for traditional applications and gangs are 

generated for parallel applications. The gangs of parallel threads typically execute in 

a synchronized manner.

The input to generate a workload of threads are: the numbers of threads, mean 

arrival rate, and mean service rate. To generate the workload of gangs, instead of the 

number of threads, the number of gangs is given. The number of threads within each 

gang is generated uniformly between the range 2 to M , where M  is the number of 

cores.

The output will be a set of threads or gangs depending on the generator chosen. 

Each thread will have a unique id, arrival time, execution time, I/O  points, priority, 

and application class. Similarly, each gang will have a gang id, arrival time, execution 

time, and a set of parallel threads with their own ids.

The I/O  points of a thread are the times when the thread will go for I/O s. For 

example, assume that a thread has an execution time 50, and will go for I/O  at time 

5, 20, 30. In this case, I/O  requests will be invoked after the thread is executed for 

5 units, 20 units, and 30 units. The number of I/O  points are generated uniformly 

within the execution time range, and the I/O  wait time is generated uniformly within 

a range specified in the configuration.

4 .3 .3  M ulticore  M achine

The Multicore machine is the computing unit tha t is organized in a hierarchy, 

starting with machine at the highest level, as shown in Fig. 4.3.
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Figure 4.3: A Multicore Machine

A multicore machine contains one or more chips, and each chip contains two or 

more cores. The core is the physical execution unit. In practice, a core is capable of 

executing one or more threads in an interleaved way, referred to  as hyper-threading. 

In our simulator we model a core to execute one thread at a time. We believe that, 

with a suitable scheduling policy, the performance of hyper-threading effect can be 

approximately simulated using single threaded cores.

A multicore machine has hierarchy of cache memories. Current multicore systems 

have three levels of cache memories, referred to as L l, L2, and L3. L l is core level, 

L2 is chip level, and L3 is machine level. As shown in Fig. 4.3, L l is local to each 

core, cores in a chip share L2 of tha t chip, and L3 is shared by all the cores in the 

machine.

4 .3 .4  M ulticore Scheduler

As explained earlier, our framework implements a multicore scheduler having two 

logical components - load balancer and local scheduler. The load balancer is re

sponsible for maintaining a desired balance of the system load. This task involves 

dispatching the new jobs to the appropriate local scheduler, and migrating jobs from 

one local scheduler to another when necessary. The local scheduler is responsible
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<cid, t id ,  E x-start, Ex-end, S>
< 0 ,0 ,4 ,12 ,0>
< 1 ,1 ,9 ,13 ,0>
< 1,1 ,13 ,17 ,2>
< 3 ,4 ,1 6 ,1 9 ,2>
<0 , 2 , 12 , 22 , 0>

<4,354,12459,12459,3>

Figure 4.4: Sample Execution Trace

for scheduling jobs to the cores for execution. Generally, each core is assigned a lo

cal scheduler, but other choices are possible. In our simulation, local scheduling is 

implemented to have centralized control.

In simulation context, the local scheduler primarily makes a decision to choose a 

job for execution, determines the amount of execution time, calculates its progress 

rate, and produces the trace. The progress rate of a job is the crucial design factor 

affecting the accuracy of execution, and it is dependent on several factors such as 

execution speed of the core and the contention for shared resources. We have used a 

simple cache contention model, but it can be easily replaced with an implementation 

of a more refined model.

4 .3 .5  E xecu tion  Trace

During the simulation, the execution trace is recorded at every context switch to 

generate the activity profile and to compute the performance metrics. There are two 

types of traces collected: execution trace and I/O  trace. The execution trace is a 

collection of quintuple, as shown in Fig. 4.4.

In the execution trace, each quintuple has a core id (cid), thread id (tid), execution 

start, time (Ex-start), scheduling end time (Ex-end), and a status (S). S tatus is 0 if 

preempted by quanta expiration, 1 if preempted by higher priority thread, 2 if going
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< tid , I /O -sta r t, I/0-end>
<4,19,49>
<4,52,69>
<19,52,76>
<13,43,83>
<34,85,87>

<681,12045,12070>

Figure 4.5: Sample I/O  Trace

for I/O , and 3 if completed. The I/O  trace is a collection of triples, as shown in Fig. 

4.5, each triple has thread id, I/O  start time (I/O -start), and I/O  end time (I/O-end).

4.3 .6  P erform ance C a lcu la tion  E n gin e

The performance study primarily aims to determine how well the algorithm re

sponds to satisfy certain criteria such as response time, fairness, and utilization of 

resources. The performance calculation engine calculates these values for a given set 

of data, and the result can be passed to the performance observation window for the 

users to study. The performance criteria widely used to study scheduling algorithms 

are the five metrics: throughput, CPU utilization, turnaround time, waiting time, 

and response time [37,38].

In addition, we have included three more measures: (i) interactive response time, 

(ii) bypass count, and (iii) slow down factor. Interactive response tim e is introduced 

to observe the interactive response of tasks. It is defined as the tim e from when a 

thread is ready for execution to the subsequent start of execution. To avoid starvation, 

wre introduce the metric of bypass count. Bypass count will indicate the number of 

threads which bypassed a waiting thread in scheduling, and it is an indication of 

unfair scheduling. We use a bypass count graph to see the level of fairness tha t a 

scheduling algorithm can assure. Finally, a relative performance would be interesting
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for resource allocation purpose. For tha t, we include slow down factor.

The following list of performance metrics is supported in the  proposed framework.

1. Throughput: The to tal number of jobs completed execution in one unit of time.

Assuming the simulation starts at time 0, and n  jobs complete in Ts period, the

throughput T P  is computed as follows:

T P  = —  (4.1)
n

2. Core utilization: This is the percentage of time the core spends on executing

jobs. Let Ts be the total simulation time and Tb be the amount of time the core

is busy. Then, the utilization (Uc) of core c is computed as follows:

Uc =  x 100% (4.2)
S

3. Core idle time: This is the percentage of time the core is idle w ithout jobs to 

execute. The idle time (Id lec) of core c is computed as follows:

Id lec =  (l -  ^ )  x 100% (4.3)
S

4. Core wait time: The total time tha t the thread waits for core.

5. I /O  Wait time: The total time taken for all I/O  waits of the thread.

6. Wait time: The sum of core wait time and I/O  wait tim e of the thread.

7. Turnaround time: The sum of wait time and execution time of the thread.

8. First response time: The time from submission to start of execution of the 

thread.
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9. Interactive response time: The time from when the thread is ready for execution 

to the subsequent start of execution.

10. Slow down factor: Slow down factor of a thread is defined as the ratio between its 

turnaround time and execution time. This metric is used to measure the delay 

suffered by a job against its actual execution time. If wti and exj, respectively, 

are the wait and execution times of i, then the slowdown factor .Sj of the thread 

i is computed as follows:

11. Bypass Count Graph: Every thread is associated with a bypass counter. This 

counter is incremented whenever it is bypassed another thread in scheduling. 

The bypass count graph reflects how many threads have bypassed a waiting 

thread in scheduling. It gives the sense of fairness that the scheduling algorithm 

can assure.

Let x i ,x 2, .... x u be the values, the average x  and standard deviation a  are com

puted as follows:

Wti
(4.4)'i exi

(4.5)
n

and

n

(4.6)
n
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4 .3 .7  S ta tistica l M easu res

For these metrics, when applicable, we calculated minimum, maximum, average, 

and standard deviation. Traditionally, average and percentage are used to study 

the performance in this context. T hat is, typically, throughput and utilization are 

computed in percentage, and average is computed for turnaround time, waiting time, 

and response time. We believe better measures than average m ust be used in analysing 

these metrics.

As cloud computing is fundamentally a service oriented system, its primary goal 

is to provide quality service to its customers. Although the term  quality of service is 

often used and directly related with response time, it is not well interpreted in the 

context of computing and communication systems. As indicated in [61], perceived 

quality of customers need not be directly related with minimal response time. The 

study indicates tha t users are often unaware of the quality differences until it crosses 

certain threshold. Therefore, quality of service need not always be related to the 

widely used metrics such as minimal response time or minimal average response time. 

Thus, we believe tha t a predictable response time is a more appropriate measure for 

the quality of service in the cloud computing context than other measures such as 

average response time and resource utilization.

One such measure we discussed earlier is predictable response time. Predictable 

response could be measured using variance or standard deviation. Therefore, we 

decided to include the metric of standard deviation (i.e., square root of variance) in our 

framework. We believe tha t standard deviation is a better measure of predictability 

than average value.
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4.4 A ctivity Profile Generator

Activity monitor provides visualization of how the algorithm schedules the threads 

among the cores. Activity profile generator is responsible for providing the data for 

the visualization. It basically derives the data  from the execution trace. From the 

trace, it generates data for every clock tick. The data contains the core status as idle 

or occupied. Also, if occupied, the data  contains the information about the thread 

and its status, whether it is a newly arrived thread or preempted thread or migrated 

thread from a different core. Activity profile generator differentiates these different 

states of the core by assigns different colors. The activity monitor window visualizes 

the derived data of core to thread allocation. Using this component, we can visually 

observe core utilization, load balancing, and the individual core statistics.

4.5 User Interface

The multicore scheduling simulator has three main user windows, and the interface 

within each window is organized as hierarchical panels. We explain these windows 

next.

4.5 .1  P erform ance P aram eter  S e ttin g  W ind ow

Performance parameter setting window is used to  configure the param eters for the 

simulation. It consists of two screens. First screen, shown in Fig. 4.6, is used to set 

the workload generation parameters. The input for the workload generator are the 

number of jobs, arrival time distribution, mean arrival rate, and job execution time 

range.

The parameter setting window has the provision to create more than one work-
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Figure 4.6: Param eter Setting Window

load. The window takes number of process, arrival rate distribution, arrival rate, and 

execution range as the parameters for each workload. Once you configure the above 

mentioned parameters, you can add it to  the workload list by pressing the ;Add to 

Load’ button which will add to the list of workloads and will display it in the right 

side of the window. Using this option, we can configure more than one workload.

The simulations run window, shown in Fig. 4.7, is designed to get input for creating 

simulation runs. Using this window, several simulation runs can be configured. The 

parameters required for each run are the number of cores, workload selection, and 

scheduling algorithm. Using the simulation run window, we will be able to create 

simulation runs with different combinations are listed below:

1. number of cores vs workload with the same scheduling policy

2 . number of cores vs scheduling policy under the same workload
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Figure 4.7: Simulations Run Window 

3. workload vs scheduling policy when executing with same number of cores

This simulations run setting feature simplifies the effort involved in simulating the 

scheduling algorithms under various conditions.

4 .5 .2  P erform ance O bservation  W ind ow

Performance observation window, shown in Fig. 4.8, offers various performance 

metrics that can be represented in charts. The window has a list of performance met

rics which can be chosen to  see the computed values. Additionally, there is an option 

to choose two different simulation run and compare the results. The performance 

metrics can be analysed by varying the number of cores and arrival rate.
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Figure 4.8: Performance Observation Window 

4 .5 .3  A ctiv ity  M on itor  W in d ow

Activity monitor window is an interesting component in this simulator. This screen 

shows the core usage in a graphical representation. W ith this screen, shown in Fig. 

4.9, we can to analyse the following:

1. Core utilization

2. Thread migration

3. Execution thread list

Using Activity monitor window, we can visualizes how the threads are distributed 

among the cores and how effectively the load is balanced. To see the individual 

core performance, a core monitor child window is attached to each core to show its 

statistics. The child window is shown in Fig. 4.10

46



           Mmk. ;»£»'.....  '"̂  «*» * 1m*mma+ HHH "■r *M*M jaw «*M MM

w ] .....; f~[." i .. "J [..-  “J  |nl" “ 1 ’ » ^ ^ L -
H I  i ^ H  _ _ _  B iB  - B J H  : I H  i I H  I H

____  i i l  wj’iiii i t  j l X  7  - ^ y ^ -

i M f  T i i ...W  i z g  i U f  m  M m  w m  f t r
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The core monitor window has three parts. The first part (left part) is to  display 

the threads running in that core using different colors. The second part (right upper 

part) is to display the statistics of busy and idle time of the core. A thread scheduled 

in tha t core could be new, preempted, or migrated from another core. The ratio of 

these three types of threads scheduled in tha t core is displayed in the th ird  part (right 

lower part) of the window. This part shows how many threads are migrated from 

other cores due to load balancing. Such visual analysis is sometimes useful to  capture 

unusual behavior and patterns.

4.6 Summary

In this chapter, we presented a new framework for simulation of multicore schedul

ing algorithms. The framework is flexible, and serves as a base for designing new 

scheduling algorithms and conducting experimental study on existing scheduling al

gorithms for multicore processors.
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Chapter 5

Case Studies - Linux and Solaris 

Scheduling Algorithms

To test and illustrate the functionality of the proposed simulator, we implemented 

the recent versions of Linux and Solaris 10 scheduling algorithms. We first present 

the algorithms, and then describe the simulation experiments and observations. The 

recent version of Linux scheduler is called completely fair scheduler (CFS)1, and the 

Solaris scheduler is referred to as kernel dispatcher.

Although Linux and Solaris are popularly used operating systems, the documen

tations precisely describing the scheduling algorithms are rarely published. We had 

to reconstruct the algorithms using information obtained from different sources.

Both schedulers have two logical components - a load balancer and a local sched

uler. The load balancer is responsible for maintaining a desired balance of the system 

load. This task involves dispatching new threads to the appropriate local scheduler, 

and migrating threads from one local scheduler to another when necessary. The local

'C F S  has been implemented sta rting  from Linux 2.6.23.
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scheduler is responsible for scheduling threads to the cores for execution. We first 

present the load balancer of these two algorithms together first, and then the local 

scheduling algorithms separately.

5.1 Load Balancing

Load balancing involves four factors: (i) initial placement; (ii) migration criteria; 

(iii) migration policy; and (iv) frequency of balancing.

•  Initial Thread P lacem ent - Initial thread placement in both Linux and Solaris 

is the same: the new threads are dispatched to  the lightly loaded cores.

•  Load B alancing C riteria - The difference in the number of threads between 

any two cores is less than one.

•  M igration  P olicy  - Linux migrates threads from heavily loaded cores to lightly 

loaded cores to satisfy the load balancing criteria. Solaris, when the choice 

occurs, moves the thread to the core in different chip t-lian to the core in the 

same chip, to reduce the cache conflict.

•  Balancing frequency - Load balancing in Linux is done every 200ms, and the 

load balancing in Solaris is done every 100ms.

Next, we present the local scheduling algorithms of Linux and Solaris. The threads 

in both algorithms are classified as real-time2 thread and normal thread. Here, real

time implies tha t these threads have higher priorities than the normal threads, and 

therefore real-time threads are always executed before normal threads. We first

present how the real-time threads are handled in both  Linux and Solaris.

2 The term  real-tim e in th is context is m isnom er th a t it does not associate any specific deadline 
to  meet, and no trad itional scheduling algorithm s like rate  m onotonic (RM) or earliest deadline first 
(EDF) have been used to  schedule these threads.
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5.1.1 R eal T im e  Schedu ler

Whenever a real-time thread arrives, it preempts the normal thread and the real

time thread is scheduled to  run. WThen a real-time thread is executing, if another 

real-time thread with higher priority arrives, then the current thread is preempted 

and the higher priority thread is scheduled. W ithin the same priority level of real-time 

threads, Linux uses either the First-In-First-Out (FIFO) or the Round Robin (RR) 

scheduling policy, and Solaris uses FIFO.

5.2 Linux Scheduler - C om pletely Fair Scheduler (CFS)

The basic idea behind CFS is to  ensure fair share among threads in the overall 

execution. This is achieved by quanta allocation. The execution time plays a key role 

in quanta computation. CFS maintains the amount of time th a t a thread has utilized 

the core before, referred to  as vruntime. The thread with the smallest vruntime has 

the highest preference to be selected next for execution. Calculation of quanta and 

vruntime is given later.

Instead of run queue, for efficiency, CFS maintains a data  structure called Red- 

Black tree, sorted by vruntime key. The scheduler picks from the left-most child of 

the tree which is the smallest vruntime thread for execution. The pseudocode of CFS 

algorithm is given in Table. 5.1.

5.2.1 C alcu la tion  o f  Q uanta

The quanta value calculation plays a key role in CFS. The time quanta Q \Ti\ of a 

thread TJ is calculated using the following formula:
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D ata Structures: Red-Black tree - R B T ,  Thread X,

1. w hile (R B T  7̂  empty ) do
2. select leftmost thread 7) from R B T
3. compute time quanta
4. schedule T
5. end w hile

Table 5.1: Completely Fair Scheduling Algorithm

m \  =  J ; MKl9ht x P  (5 .1)
}  Tj. weight

j e R B T

where,

Ti.weight is the weight value corresponds to nice 3 value of 7). (Every nice value 

is mapped to  a weight value.)

sched latency  if n >  nr  latency
P = {  ~ ~  (5-2)

m in _granu lar ity  x n otherwise

where n is the number of threads in RBT, and sched ̂ latency, nr _latency, and 

m in _gran u lar i ty  are constants. In the current implementation, these values, 

respectively are 6 , 8 and 0.75 [63]. The details of how these values are determined 

and their significance are not known.

3In Linux, the priority  of the  th read  is controlled w ith th e  nice value. Nice value ranges between 
-20 and 19. Lower value corresponds to  higher priority. T he user level command nice can be used 
to  lower the priority  of a th read  (i.e.. to  be nice to  other users).
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5 .2 .2  C alcu lation  o f  vruntim e

For every clock tick, the scheduler calculates vruntime of the executing thread and 

also decreases its time quanta. Preemption of a thread occurs when quanta expires 

or RBT has a thread with smaller vruntime. The virtual vruntime of a thread 7) is 

computed as follows:

Ti.vruntim e — x Ti.runtim e  (5.3)
li.w eigh t

where, weight0 is the value corresponding to the nice value of 0 and 7).run tim e  

is the execution time consumed so far by the thread 7).

5.3 Solaris Scheduler

Solaris 10 kernel dispatcher does both load balancing and local scheduling. Solaris 

has implemented two schedulers - fair share scheduler and a default scheduler. The 

fair share scheduler is typically used in server environments. We have implemented 

the default scheduler, that we will describe next.

For simplicity, in Solaris, w'e consider just threads are scheduled for execution4. 

Solaris maintains the priority range of 0 - 169. Priority range of 160-169 is reserved 

for Interrupts, and the rest of the priorities are assigned to different scheduling classes 

(see Appendix).

Solaris manages the threads in the following six different scheduling classes.

4In actual im plem entation, each application process in Solaris may contain  one or m ore application 
threads and each application th read  is scheduled (m apped) to  a v irtual core called light weight process 
(LW P). Each LWP is implemented using a  kernel thread, and  these kernel th reads are eventually 
scheduled and executed by the physical core.
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1. Time share (TS)

2. Interactive (IA)

3. Fair share scheduling (FSS)

4. Fixed priority(FX)

5. Real Time (RT)

6 . System (SYS)

By default, threads created by the window manager are assigned to IA class for 

better interactivity, and the rest are assigned to TS class. System threads are created 

by the operating system. Other threads are created using different levels of system 

privileges. FSS class is used when the fair share scheduler is invoked.

Priority of a thread may be specified or inherited from the parent. In fixed priority 

class, threads have the same priority throughout their execution. RT class is the 

highest priority thread class which requires attention right away, and needs to be 

scheduled immediately. Next to the threads in real time class, the kernel threads get 

attention. Finally, the threads in the classes TA, IA, and FX are scheduled. The 

scheduler always chooses the highest priority thread for execution. The scheduling 

classes priority ranges are summarised in Table 7.1 (see Appendix).

5.3.1 T he D efau lt Solaris Scheduler

In Solaris, except RT, every scheduling class has a local scheduling queue for every 

core. For RT class, a global level kernel preemption queue is maintained for every 

chip.
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After choosing a thread for scheduling, the next task is to  obtain the quanta value. 

For that, Solaris maintains a set of tables, called dispatch tables (see Appendix), from 

which the quanta value is obtained. Also, the scheduler provides the fairness among 

the threads by boosting the priority up/down, in response to  the following events.

• A thread successfully completes its execution for specified time quanta. Here, 

the thread priority has to be boosted down to give fairness to other threads.

•  A thread comes back from an I/O  wait. Here, its priority has to be boosted up, 

so tha t it will execute soon.

• A thread is waiting in its ready queue beyond certain threshold time period. 

Here, the priority has to be boosted up to give chance to execute soon.

These scheduling subtasks are performed by specific routines called tick processing 

and update processing (see Appendix). Tick processing is responsible for managing 

quanta and invoking preemption. U pdate processing is responsible for boosting the 

priority up/down. Dispatch tables are used to obtain new quanta, waiting threshold, 

and new priority.

With this set up, the scheduling policy is: a t any scheduling time point, choose the 

highest priority thread in the system and schedule for execution. If a higher priority 

thread arrives when a lower priority thread is executing, then it will be preempted to 

allow the higher priority to execute. A higher level description of Solaris scheduling 

algorithm is given in Table 5.2.
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Data Structures: Scheduling queues - D Q T S , D Q  IA,  D Q F X , K P Q R T ,  
Thread T\

1. w h ile  ( K P Q  R T  V D Q  T S  V DQ  IA  V D Q  F X  ^  empty ) do
2. if  (K P Q  R T  7̂  empty)
3. select highest priority thread T  from K P Q  R T
4. get the time quantum Q[T,] from dispatch table
5. schedule 7)
6. e lse
7. pick highest priority thread T) from D Q _ T S ,  D Q  IA , D Q  F X
8 . get the time quantum Q[Ti\ from dispatch table
9. schedule T
10. en d  if
11. en d  w h ile

Table 5.2: Solaris 10 Scheduling Algorithm

5.4 Simulation Experim ents

To illustrate the functionality and use of the proposed simulator, we conducted 

two sets of experiments:

1. E xperim ent 1: In this experiment, the workload is fixed and the number of 

cores is varied. The simulation parameters used for this experiment are given 

in Table 5.3.

Param eter Value
Number of Threads 5000
Mean Arrival rate3 2.5
Arrival distribution Poisson
Execution time distribution Exponential
Number of cores 10, 50, 100, 200, 500

Table 5.3: Simulation Parameters

5We use generic unit for arrival rate . T he inter arrival tim es derived from the d istribu tion  are real 
num bers. They are then  scaled to  integer units of sim ulation clock. For example, th e  in ter arrival 
tim e 0.4 is scaled to  4 sim ulation clock units.
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2. E xperim ent 2: In this experiment, the number of cores is fixed and the work

load is varied. The simulation param eters used for this experiment are given in 

Table 5.4.

Param eter Value
Mean Arrival rate 2.5, 3.5, 4, 5
Time period 1 minute
Arrival distribution Poisson
Execution time distribution Exponential
Number of cores 50, 100, 150, 200

Table 5.4: Simulation Parameters

Linux schedules threads based on how much execution time it is consumed and 

Solaris does by how long a thread waits without execution. We believe scheduling 

thread based on wait time would give better response time and predictability than 

scheduling done based on execution time. Based on this observation, we make the 

following hypothesis.

Hypothesis: Solaris scheduler will have better and predictable response time than 

Linux scheduler.

Predictable response time is studied using standard deviation of response time. 

We computed the core utilization, turnaround time, standard deviation of turnaround 

time, and interactive response time and its standard deviation for both experiments 

and we explain our observations next.

5.4.1 O bservations on  E xp erim en t 1

•  Observation on Core Utilization: We observe that both  algorithms keep the 

cores 99% busy. In terms of core utilization, there is no significant difference 

between these two scheduling algorithms. The consistent behavior is due to 

their load balancing which periodically runs to  evenly distribute the workload
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Figure 5.1: Average Turnaround time: Linux and Solaris Scheduling Algorithms (by 
varying the number of cores)

among the cores.

• Observation on Average Turnaround Time: The average turnaround time graphs 

of Linux and Solaris scheduling algorithms are shown in Fig. 5.1. The average 

turnaround time gradually decreases as the number of cores increases. Both 

Linux and Solaris algorithms show almost same behavior until 200 cores, and 

after 200 cores, Solaris performs better than Linux by a factor of 10 when the 

number of cores is 500. This is due to the fact th a t Solaris boosts up the thread’s 

priority when the thread is waiting in the ready queue longer.

• Observation on Standard deviation of Turnaround Time: The standard devia

tion of turnaround time graphs of Linux and Solaris scheduling algorithms are 

shown in Fig. 5.2. We observe that Solaris and Linux show similar behavior 

between 10 and 200 cores. As we increase the number of cores, Solaris shows

58



Figure 5 .2 : Standard deviation of Turnaround time: Linux and Solaris Scheduling 
Algorithms (by varying the number of cores)

better predictability than Linux.

• Observation on Interactive Response Time: The average interactive response 

time graphs of Linux and Solaris scheduling algorithms are shown in Fig.5.3. We 

observe tha t Solaris outperforms Linux consistently providing better interactive 

response time. This is because, whenever a thread stays in ready queue and 

reaches the maximum wait time, Solaris boosts up the thread priority. Also, 

whenever a thread returns from I/O , the thread priority is boosted up so that 

it can be scheduled soon.

• Observation on Standard deviation of Interactive Response Time: The standard 

deviation of interactive response time graphs of Linux and Solaris scheduling 

algorithms are given in Fig. 5.4. The prediction of how soon the thread will be 

scheduled for execution, when it is ready, is measured by computing the standard
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Figure 5.3: Average Interactive Response time : Linux and Solaris Scheduling Algo
rithms (by varying the number of cores)

deviation in interactive response time. It is clearly visible that Solaris performs 

better than Linux by assuring better fairness to the threads. As mentioned 

before, the boosting of the priority by Solaris influences the predictability better 

than Linux.

5.4.2 O bservations on E xp erim en t 2

• Observation on Core Utilization: We observed tha t both algorithms keep the 

cores busy and there is no significant difference.

•  Observation on Turnaround Time: The average turnaround time graphs of 

Linux and Solaris scheduling algorithms are shown in Fig. 5.5. The average 

turnaround time constantly increases when the arrival rate increases. From 

these experiments, it is clearly seen tha t Solaris performs better then Linux,
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when the number of cores is 50, but the trend gradually converges as the num

ber of cores increases.

•  Observation on Standard deviation in Turnaround Time: The standard devi

ation of turnaround time graphs of Linux and Solaris scheduling algorithms 

are shown in Fig. 5.6. We observe th a t the predictability also increases when 

the arrival rate increases. Compared to  Linux, Solaris predictability is always 

better.

• Observation on Interactive Response Time: The average interactive response 

time graphs of Linux and Solaris scheduling algorithms are shown in Fig. 5.7. 

Solaris outperforms Linux consistently providing low interactive response time. 

As explained earlier, the priority boosting of Solaris heavily impacts the inter

active response time. This is an expected behavior.
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• Observation on Standard deviation of Interactive Response Time: The standard 

deviation of interactive response time graphs of Linux and Solaris scheduling 

algorithms are shown in Fig. 5.8. We observe tha t Solaris predictability is 

much better compared to Linux. The trend is consistent.

These observations confirm our hypothesis, which is an evidence th a t the imple

mentation of the scheduler is fairly accurate.

5.5 Summary

In this chapter, we have presented the simulation experiments of Linux and Solaris 

scheduling algorithms. As we expected from our hypothesis, the simulation experi

ments prove tha t Solaris scheduler offers better and predictable response time than 

Linux scheduler. From these experiments, we are confident th a t our scheduler simu

lator implementation is fairly sound.
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Chapter 6

A Fair and Efficient Gang Scheduling 

Algorithm

The trend in multicore processors indicates tha t all future processors will be mul

ticore, and hence the future cloud systems are expected to  have their nodes and 

clusters based on multicore processors. So the processor scheduling in the future sys

tems will most likely be all multicore processor scheduling. Therefore, we believe, 

multicore scheduling is fundamental to future cloud computing performance. Also, 

due to multicore revolution, a considerable portion of large applications will be par

allel programs. From the literature, we can see th a t gang scheduling is a dominant 

strategy to  schedule parallel programs.

6.1 Popular Gang Scheduling Algorithm s

Among the gang scheduling algorithms, AFCFS and LGFS are the most popular 

algorithms and we present them next.
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6 .1 .1  A F C F S

The scheduling algorithm AFCFS places the gangs in the run queue in order of 

their arrival. The scheduling starts from the head of the queue and the gang which 

can fit into the available cores are scheduled for execution. Unlike FCFS which stops 

scheduling when it finds the gang which cannot fit into the free cores, AFCFS iterates 

over the whole run queue and schedules all gangs which can fit into the free cores. 

The AFCFS algorithm is given in Table. 6.1.

Data Structures: RQ: Queue of gangs

1. w hile (RQ  ^  empty ) do
2. for i = 1 to size of RQ  do
3. if RQ[i] fits in free cores then schedule RQ[i]
4. end  for
5. end w hile

Table 6.1: AFCFS Gang Scheduling Algorithm

6.1 .2  LG FS

Largest gang first scheduling algorithm orders the run queue based on the size 

of the gangs. The size of the gang is determined by the number of threads. LGFS

schedules the gang from the head of the queue(largest gang) until the gang which can

fit into the available free cores. LGFS favors the large sized gang over the small sized 

gang. This will influence the response time of small sized gangs, and th a t makes the 

small gangs to wait for longer time to get their turn. Also, when a large size gang 

arrives, it may overtake these small gangs. The algorithm of LGFS is given in Table. 

6 .2 .
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Data Structures: RQ: Queue of gangs

1. w hile (RQ  ^  empty ) do
2. sort RQ  based on largest gang first
3. for i =  1 to size of RQ  do
4. if  RQ[i] fits in free cores then schedule RQ\i\
5. end  for
6. end  w hile

Table 6.2: LGFS Gang Scheduling Algorithm

Param eter V alue(s)
Number of cores 200
Time period 1 minute
Tasks per gang Uniformly distributed over [2..200]
Mean Arrival rate 1.5, 2, 2.5
Arrival distribution Poisson
Execution rate 2
Execution time distribution Exponential

Table 6.3: Simulation Parameters

From the literature [53), we note tha t AFCFS performs better than LGFS in 

response time in case of lighter workloads with small gangs. Our experiment using 

the proposed simulation confirms the result.

6.1 .3  S im u lation  E xp erim en ts

The parameters used in our simulation are listed in Table. 6.3. We conducted sim

ulation experiments to compute average response time, standard deviation of response 

time, and average core utilization of AFCFS and LGFS algorithms. The observations 

are presented next.

• Observation on Average Response time: The average response time graphs of 

AFCFS and LGFS algorithms are shown in Fig. 6.1. The average response 

time of AFCFS outperforms LGFS for small sized gangs. Since LGFS favors
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Figure 6.1: Average Response Time for AFCFS and LGFS Algorithms

the large size gangs, it pushes the small sized gangs for longer wait times which 

is reflected in their average response time. This result confirms the observation 

from the literature.

Observation on Standard deviation in Response time: The standard deviation 

response time graphs of AFCFS and LGFS algorithms are shown in Fig. 6.2. 

The predictability of AFCFS is worse than LGFS. Since the AFCFS favors 

the small size gang, the large size gangs have to wait longer for their turn for 

execution which in turn  increase the deviation in response time.

Observation on Average Core Utilization: The average core utilization graphs 

of AFCFS and LGFS algorithms are shown in Fig. 6.3. LGFS performs better 

than AFCFS, because it favors large jobs which fits into more number of cores 

and makes the core busy executing these larger jobs. As AFCFS favors smaller 

jobs, the possibility of core to stay idle is higher.
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From the observations shown in Fig. 6.2 and Fig. 6.3, we can see tha t LGFS is 

a preferred algorithm, despite AFCFS7 low average response time. This is because 

LGFS utilizes the system resources better and offers better predictability in response 

time. This proves our earlier point tha t the average response time is not a desirable 

metric.

Fairness and predictability are particularly im portant tha t the expectation of users 

under light load is normally high, and failure to provide such guarantee even under 

light load could expose the system very badly. Therefore, it would be nice to have an 

algorithm which yields low average response time and standard deviation with high 

processor utilization. This is the motivation for our algorithm presented next.

6.2 A N ew  Gang Scheduling Algorithm

The gang scheduling algorithms AFCFS and LGFS are susceptible to starvation. 

To avoid starvation, these algorithms adopt a process migration policy. Process mi

gration may not be even possible between two heterogeneous multicore systems, and 

is generally expensive even between two homogeneous systems [39,56]. Also, although 

it alleviates, process migration does not eliminate starvation.

These observations bring us a question: Can we design a gang scheduling algorithm 

with the following characteristics?

1. Freedom from starvation.

2. Predictable and acceptable response time.

3. Better processor utilization.

4. Simple.
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Since AFCFS favors small gangs, the larger gangs are susceptible to starvation or 

to longer wait times. This is unacceptable particularly in cloud environment where 

customer satisfaction hugely depends on fairness and predictable response time. In 

practice, the customers who receive a little faster service (at the expense of oth

ers’ long wait) may not be overly satisfied [61]. But, the customers who experience 

unpredictably long delay, on the other hand, will readily notice the unfairness and 

unpredictable response and that could potentially drive the cloud business in a nega

tive direction. Therefore, in addition to fast response and high processor utilization, 

minimal variance in response is extremely im portant for better cloud services.

6.3 The Algorithm

The gang scheduling algorithm proposed in this thesis combines the ideas of 

AFCFS and priority boosting. In the AFCFS algorithm proposed for multicore clus

ters in [53], each multicore has a run queue and all gangs stay in the run queue until it 

gets a chance to  execute. The scheduler always chooses the next fit gang from the run 

queue so tha t overall response time is reduced. Such behavior degrades the overall 

core utilization which in turn  increases the variation in response time as seen in the 

experiments.

The proposed algorithm uses an additional variable for each gang which stores the 

information about how many gangs bypassed it for execution when it stayed in run 

queue. We call tha t variable ‘Bypass count’. When the gang’s bypass count reaches 

the threshold value T. it gets the highest priority to schedule next. This pushes other 

gangs to force wait until the highest priority gang gets scheduled. The proposed 

algorithm is given in Table. 6.4.

A new gang joins RQ, and its bypass count is set to zero. Whenever a gang
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is scheduled, the bypass count of gangs precedes the scheduled gang in RQ will be 

incremented by 1. At any time, gang in RQ with bypass count greater or equal to  the 

threshold value has the highest priority over other gangs. This guarantees th a t the 

gangs will be served in a predictable time period. When there is no gang writh bypass 

count greater or equal to the threshold value, it acts as AFCFS algorithm.

When enough cores are not available to schedule the highest priority gang, the 

system has to wait for some of the currently executing gangs to leave, and this delay 

is unavoidable to assure fairness and predictable response. The simulation results 

show tha t such a wait rarely happens.

Data Structures: RQ: Queue of gangs;T: Threshold value; i.bpc: bypass count
of gang i

1. w hile (RQ  ^  empty ) do
2. for i =  1 to size of RQ  do
3. if RQ(i) .bpc > T  th en  wait until RQ[i] fits in free cores
4. if RQ[i\ fits in free cores th en
5. for k =  1 to i — 1 do RQ[k\.bpc + +  end for
6 . schedule RQ[i\
7. end if
8. end for
9. end  w hile

Table 6.4: New Gang Scheduling Algorithm

N ote: The proposed algorithm becomes AFCFS if the threshold is set to oo. 

When the threshold is 0, it emulates FCFS algorithm. So, choosing a proper threshold 

is the key of the proposed algorithm.

6.4 Simulation Experim ents

As explained earlier, the proposed algorithm tries to achieve predictable and fast 

response for gangs (users) and better utilization for the system.
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Param eter V alue(s)
Number of cores 200
Time period 1 minute
Tasks per gang Uniformly distributed over [2..200]
Mean Arrival rate 5, 7.5, 10
Arrival rate distribution Poisson
Execution rate 2
Execution rate distribution Exponential
Threshold 700

Table 6.5: Simulation Parameters

6.4 .1  S im u lation  S etu p

We used the simulation param eters listed in Table 6.5 for our experiments. To keep 

the results generic, the execution is shown in terms of simulation clock ticks. Through 

simulation study, we computed average response time, standard deviation in response 

time, average core utilization, and bypass count for the gangs. The observations are 

presented next.

•  Observation on Average Response Time: The average response time graphs 

of AFCFS and the proposed algorithms are shown in Fig. 6.4. The average 

response time of the proposed algorithm is better than that of AFCFS. This is 

because, whenever the gangs’ bypass count reaches the threshold, it guarantees 

the gang to schedule next which reduces the response time of long waiting gangs. 

Choosing a proper threshold value is crucial. Choosing a small number will 

unnecessarily make others gangs to wait more often, which will in turn  increase 

the average response time. For our experiments, we have chosen 7001 bypass 

count as the threshold value. From the Fig. 6.4, it is clear tha t the average 

response time of proposed algorithm performs better than  AFCFS consistently.

1 The threshold value is derived from the repetitive experim ents for consistent behavior.
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Figure 6.4: Average Response Time of AFCFS and Proposed Algorithms

• Observation on Standard deviation of Response time: The average turnaround 

time graphs of AFCFS and the proposed algorithms are shown in Fig. 6.5. The 

proposed algorithm offers better predictability in response time than AFCFS 

algorithm. Since, the proposed algorithm avoids the longer wait times, the 

predictability in response time will be lower than AFCFS. By controlling the 

bypass threshold value, better predictability may be assured.

•  Observation on Average Core Utilization: The average core utilization graphs 

of AFCFS and the proposed algorithms are shown in Fig. 6.5. The proposed 

algorithm outperforms AFCFS algorithm. This is because, AFCFS favors only 

small gangs but the proposed algorithm favors all sized gangs once the threshold 

is reached.

•  Observation on Bypass count graph: The bypass count graphs of AFCFS and 

the proposed algorithm are shown in Fig. 6.7. The proposed algorithm shows

74



fi
■§ 35.000 i:

|  30.000-. 
3
Jl 25.000-C
1 20.000 i!

*  15.000-

10.000-  

5 000

4.7S 5.00 5.25 S.50 5.75 6.00 6 .25 6.50 6 .75  7 0 0  7 25 7. S3 7.75 3 .03  S.25 S.50 S, 75 S .00 9.25 9 .53 9.75 10.00 10.21
Arrival Rate (A)

Figure 6.5: Standard deviation of Response Time of AFCFS and Proposed Algorithms

|- A F C F S  f a r A K B |

75- 

7 0 -p 

65- 

^ 6 0 -  

# 5 5 - ;

*  45 i;

|*0-
3
g 3 5 l i

3 3 0 ’.

2 5 -  

20 ■

5 i|

5.25 5.50 5.75 S.C3 6.2S 6.50 6.75 7.3C U S  7.50 7.75 3.00 8-25 6.50 8 .75 5.00 5 .25 5.50 5  75 10.00 10.2!
Arrival Rate {X)

Figure 6 .6: Average Core Utilization of AFCFS and Proposed Algorithms

75



the fairness among gangs, once it reaches the threshold, it starts giving the 

priority for long waited gangs. The longer wait time is completely avoided in 

the proposed algorithm, which makes our algorithm interesting.
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Figure 6.7: Bypass Count of Gangs of AFCFS and Proposed Algorithms

From these observations, we conclude that, the proposed algorithm outperforms 

AFCFS in all three metrics, and of course solves the starvation problem completely.

6.5 Summary

In this chapter, we proposed a fair and efficient gang scheduling algorithm for 

multicore processors. The algorithm is simple, fair, and gives predictable performance. 

Such a predictable performance is attractive from the service point of view. Since this 

algorithm solves the starvation problem locally without using process migration, it 

is highly scalable and attractive for cloud computing involving a large number of 

multicore processors.
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Chapter 7

Conclusion and Future Directions

Recently, multicore processors and software development for multicore systems have 

received increasing attention from the research community. The contributions of this 

thesis are: (i) the design and implementation of a flexible multicore scheduler simula

tion framework; (ii) illustration of the power and flexibility of the proposed framework 

by simulating the scheduling algorithms of Linux and Solaris, and a simulation study 

of two gang scheduling algorithms; and (iii) a new gang scheduling algorithm and 

its performance study. The experience gained by developing this simulator is very 

rich. It involved software design, implementation, algorithm discovery and design, 

and performance analysis.

The proposed simulator can be used for rapid simulation studies of multicore 

scheduling algorithms, and tha t can provide initial insights on how the proposed 

algorithm will perform in practical multicore systems. These insights will be helpful, 

not only in testing the performance of the proposed algorithm, but also to identify 

the bottlenecks and offer guidelines for improvements. Also, from our experience, 

we believe tha t the simulator can be used to develop new scheduling algorithms by
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experimenting and identifying the limitations of the existing algorithms.

Although, initially we did not expect to propose a new multicore scheduling algo

rithm, we finally ended up designing one for an im portant class of parallel applications 

called gangs. We compared the performance of the new gang scheduling algorithm 

with the known best algorithm in its category. The proposed algorithm seems to 

perform better.

7.1 Future Directions

We believe the proposed scheduling framework for multicore systems is an impor

tan t first step in the performance study of multicore scheduling algorithms. There are 

many directions in which the work presented in this thesis can be expanded to study 

the performance of scheduling algorithms deeper and more accurately. We outline 

some of them next.

•  Modeling workload could be refined and improved.

•  Modeling I/O  waits could be refined and improved.

• The modeling of cache can be refined and improved.

•  The framework can be expanded to model heterogeneous cores.

•  Cache effect can be inferred from the values of hardware performance counters 

available in the recent multicore machines, and used in scheduling simulations.

•  More statistical metrics can be included.

• In cloud computing context, modeling clusters with many chips and its associ

ated cores would be more interesting.
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• The proposed gang scheduling algorithm works better for light loads. Is there 

a gang scheduling algorithm th a t can perform better under all workload condi

tions? This is an interesting research question to be explored.

I would like to continue to work on some of these directions in the future.
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Appendix

Tables used by Solaris Scheduler

Solaris scheduler uses the information given in the following four tables -

1. P riority  R ange Table (Table 7.1) - specifies the priority range for the schedul

ing classes.

2. D ispatch  Table for R ea l-tim e Tasks (Table 7.2) - defines the time quanta 

of real time scheduling class.

3. D ispatch  Table for F ixed  P riority  Tasks (Table 7.3) - defines the time 

quanta of fixed priority scheduling class.

4. D ispatch  Table for N orm al Tasks (Table 7.4) - defines the time quanta of 

time sharing and interactive scheduling classes.

8 0



Scheduling class G lobal priority range U ser level priority range
Realtime 100 - 159 -
System 6 0 -9 9 -

Fair share 0 - 5 9 0 - 59
Fixed priority 0 - 59 0 - 60

Time share 0 - 59 -60 - 60
Interactive 0 -  59 -60 - 60

Table 7.1: Solaris 10 Scheduling Classes Priority Range

Q uanta P riority
100 100
80 110
60 120
40 130
20 140
10 150
10 159

Table 7.2: Dispatch Table for RT Scheduling Class

Q uanta P riority
0 20
10 16
20 12
30 8
40 4
59 2

Table 7.3: Dispatch Table for FX Scheduling Class

81



Q uanta P riority  on  
Q uanta Expiry

P riority  on  
IO R eturn

W ait
T hreshold

P riority  
on W ait

P riority

20 0 50 0 50 0
16 0 51 0 51 10
12 10 52 0 52 20
8 20 53 0 53 30
4 30 55 0 55 40
2 49 59 3200 59 59

Table 7.4: Dispatch Table for TS and IA Scheduling Classes

Tick Processing and U pdate Processing

Here we present two key routines used in Solaris scheduling.

T ick P rocessin g

Tick processing will be executed for every scheduling tick. This method is mainly 

responsible for managing the time quanta and preemption control. The overview of 

what tick processing is doing is given in Table. 7.5. When the tick processing method 

is invoked, it first checks whether the executing thread is in system mode. This 

is because, system threads are scheduled for its full execution time and preemption 

of system threads are not allowed. O ther than system threads, all other scheduling 

classes are preemption enabled. The main task of the tick processing is to manage the 

allocated time quanta. First, it decrements the quanta allocated for the thread and 

checks whether the thread executed for i t ’s whole time quanta. If so, it additionally 

checks whether the preemption control is enabled for the thread. The preemption 

control is a variable to give few more time for a thread when it finishes it allotted 

time quanta if preemption control is enabled. This variable can be configured. If the 

preemption control is not enabled for the thread, then the first task is to  re-assign 

the priority of thread from their dispatch table in case of TS and IA class thread.
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RT and FX class threads are maintained with the same priority. Then, it invokes 

the preemption and places the thread in their dispatch queue based on their priority. 

When the time quanta is not over, then it checks whether the thread is going for I/O  

and places the thread in the sleep queue. The method also checks for any highest 

priority thread in the dispatch queues and preempts the current thread. W hen the 

thread is preempted by a high priority thread, then the priority of the current thread 

won’t change.

Data Structures: Thread t

1. if thread t is not in system priority th en
2. decrement the time quanta t.quanta
3. if  (t.quanta < 0) then
4. check thread preemption control enabled then
5. give additional time quanta for execution
6. else
7. if / £ T S  or IA  scheduling class then
8. re assign t.priority  from d ispatch_ tab le_ ts with the value of ts  tqexp
9. end if
10. enable preemption and place thread t in their dispatch queues
11. end if
12. if t going for I/O then
13. enable preemption and place thread t in sleep queue
14. end if
15. if  t.priority < highest th read’s priority in dispatch queues th en
16. enable preemption and place the thread t in dispatch queue
17. end  if
18. end  if

Table 7.5: Tick Processing of Solaris Scheduling Algorithm
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U p d a te  P rocessin g

Update processing method is invoked only for tim e sharing and interactive schedul

ing classes. The main purpose of this method is to boost up the priority. The higher 

level implementation of update processing is given in Table. 7.6.

Update processing method will be invoked periodically. This method will iterate 

over the dispatch and sleep queues to increment the waiting tim e of the threads. Once 

the waiting time of a thread reaches maximum wait time specified in dispatch table, 

the thread’s priority will be boosted up by the ts_lw ait value. This is done to provide 

fairness among the threads.

Data Structures: Dispatch queues - D Q _ T S , D Q _ IA , sleep queue - S Q , Thread t

1. for each thread t is not in D Q _ T S  A DQ I A  A SQ  do
2 . increment t.wait value by 1
3. if (t.wait > m ax_wait) th en
4. boost up thread priority from dispatch table ts  with the value of ts_ lw ait
5. end if
6. end  for

Table 7.6: Update Processing of Solaris Scheduling Algorithm
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