
Evolving Artificial Neural Network Controllers for
Autonomous Agents Navigat ing Dynamic

Environments

Robert A. Lucas

B.Sc, University of Northern British Columbia, 2002

Thesis Submitted In Partial Fulfillment Of

The Requirements For The Degree Of

Master of Mathematical, Computer, and Physical Sciences

in

Computer Science

University of Northern British Columbia

2008

©Robert A. Lucas, 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by British Columbia's network of post-secondary digital repositories

https://core.ac.uk/display/84872554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-48781-5
Our file Notre reference
ISBN: 978-0-494-48781-5

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

This thesis presents and discusses a potential method for solving the dynamic
obstacle avoidance problem using contemporary work with artificial neural
networks (ANNs) and genetic algorithms (GAs) in combination with an imitation
of a biological genetic process called segmental duplication. ANNs, GAs and
segmental duplication are merged in the project to form SDNEAT, a type of
evolutionary artificial neural network (EANN) system based on NeuroEvolution
of Augmenting Topologies, or NEAT. The system is then used to develop an
artificial neural network system that attempts to navigate environments
incorporating both static and dynamic obstacles.

T A B L E O F C O N T E N T S

Contents
List of Tables ii
List of Figures iii
Acknowledgments iv
Chapter 1 Neural networks and genetic algorithms: an introduction 1
1.1 Requisite Knowledge 4

1.1.1 Artificial Neural Networks 4
1.1.2 Genetic Algorithms and Evolutionary Methods 6
1.1.3 Autonomous Agents 8
1.1.4 Dynamic Environments 10

Chapter 2 Current Practice 12
2.1 Evolution of Artificial Neural Network Systems 12

2.1.1 Weight-Evolving Algorithms (WEAs) 14
2.1.2 Topology-Evolving Algorithms (TEAs) 17
2.1.3 Hybrid Evolutionary Algorithms (HEAs) 20
2.1.4 Other Methods 21

2.2 EANNs for Autonomous Mobile Agents 22
2.2.1 Artificial Neural Network Configurations 23
2.2.2 Simulated Environments and RealWorld Environments 24
2.2.3 Obstacle Avoidance 26

2.2.3.1 Static obstacles 27
2.2.3.2 Dynamic obstacles 27

2.3 EANNs as Autonomous Agent Controllers in Dynamic Environments 29
2.4 Conclusions 30
Chapter 3 Methods and approaches 31
3.1 Algorithms 31
3.2 NeuroEvolution of Augmenting Topologies (NEAT) 32

3.2.1 Genetic Encoding for NEAT 33
3.2.2 NEAT mutation operations 36
3.2.3 Crossover in NEAT 39
3.2.4 Speciation 40

3.3 Segmental Duplication NEAT (SDNEAT) 42
3.3.1 A Segment 44
3.3.2 Segmental Duplication 45

3.4 Neuroevolutionary Solver 48
3.4.1 Requirements 48
3.4.2 Chosen components 49
3.4.3 High Level Overview 51

3.4.4 SIMBAD 53
3.4.5 Agents 55
3.4.6 Environments 57
3.4.7 Holodeck 61
3.4.8 Extensions to PicoEvo 61
3.4.9 Extensions to PicoNode 65
3.4.10 Neuroevolutionary Solver Applications 65

Chapter 4 Implementation and results 67
4.1 XOR 67

4.1.1 Evaluation 69
4.1.2 Experimentation 69

4.2 Dynamic Obstacle Avoidance 73
4.2.1 Problem Domain 74
4.2.2 Evaluation 75
4.2.3 Experimentation 77
4.2.4 Solutions 83

4.2.4.1 Category 1: 83
4.2.4.2 Category 2: 84
4.2.4.3 Category 3: 85
4.2.4.4 Category 4: 86
4.2.4.5 Category 5: 87
4.2.4.6 Category 6: 87
4.2.4.7 Category 7: 88
4.2.4.8 Category 8: 89

4.2.5 The NEAT Solution 90
4.2.6 The SDNEAT Solution 93

Chapter 5 Discussion and conclusion 99
5.1 Segmental Duplications 99

5.1.1 Increasing performance of SDNEAT 100
5.2 Dynamic obstacle avoidance 102

5.2.1 Improving the simulation 104
5.2.2 Future improvements 105

5.3 Future direction and Component SDNEAT 105
5.4 Conclusion 108
Appendix A Experiment parameter values 109

A.l Definitions 109
A.2 Common Parameters I l l
A.3 Variable Parameters 112

Bibliography 114

LIST O F TABLES

Table A.l Common parameter settings 112
Table A.2 Variable parameter settings 113

11

LIST O F F I G U R E S

Figure 1.1 Example Environment 2
Figure 3.1: Genotype and Phenotype Example for the NEAT Algorithm 35
Figure 3.2: Mutation Example: 37
Figure 3.3 Crossover Operation 39
Figure 3.4 Distance Between Genomes 41
Figure 3.5 Segmental Duplication 46
Figure 3.6: NS Component Structure 52
Figure 3.7 SIMBAD Graphical User Interface 54
Figure 3.8 Neural Agent Top Down View 56
Figure 3.9: Maze Environment 58
Figure 3.10: Busy Hallway Environment 59
Figure 3.11: Busy Room Environment 60
Figure 4.1: Truth Table for XOR 68
Figure 4.2: Two-Node NEAT Solution 70
Figure 4.3: Two-node SDNEAT solution 71
Figure 4.4: NEAT XOR Performance 72
Figure 4.5: SDNEAT XOR Performance 73
Figure 4.6: Fitness Function 77
Figure 4.7: NEAT's Best Generation Fitness versus Generation 79
Figure 4.8: SDNEAT's Best Generation Fitness versus Generation 80
Figure 4.9: Number of High-Fitness Solutions versus Experiment Number 82
Figure 4.10: Category 1 Solution 84
Figure 4.11: Category 2 Solution 85
Figure 4.12: Category 3 Solution 86
Figure 4.13: Category 5 Solution 87
Figure 4.14: Category 7 Solution 88
Figure 4.15: Number of Solutions versus Category 90
Figure 4.16: NEAT Solution Topology 92
Figure 4.17: NEAT Species History 93
Figure 4.18: SDNEAT Solution Topology 94
Figure 4.19: SDNEAT Solution 96
Figure 4.20: SDNEAT Species History 97

in

A C K N O W L E D G M E N T S

First I would like to thank Dr. Charles Brown. He was always supportive of me

during my unsteady progression through this thesis. He was always interested in

my thoughts and excited about my research, and he kept me on the path when I

wandered off. I would like to thank my friends and co-workers for being patient

with me, and offering kind words and keen insights. Hopefully I can return the

kindness and support, should you need it one day.

I would like to thank my parents; I wouldn't be here without them. They taught

me to think about a situation rather than take it at face value and to work hard for

something I want, since nothing is ever free.

Finally I would like to thank my fiancee Naomi. I never would have finished this

without you. You were my sounding board for ideas and frustrations, and you

took it all in stride. You supported me the entire time, even when you were more

frustrated than I was. Your incredible literary skills shine in this document and

your intelligence helped me find solutions that should have been obvious.

I have achieved something with this thesis that I wasn't sure I could. I consider

this a solid foundation for my future, and I look forward to continuing my

research.

IV

Chapter 1

NEURAL NETWORKS AND GENETIC ALGORITHMS: AN INTRODUCTION

Human beings are extremely complex systems that move about performing tasks

in the real world without much care for other entities. They are capable of setting

a goal, planning to achieve that goal, carrying out the tasks involved in the plan

while adapting to changes in the environment and finally achieving their goal.

Computer systems have yet to achieve this level of ability in simulated or real-

world systems. Currendy even the most advanced systems cannot adapt to major

changes in their environments. These changes can cause the entire system to fail

completely. In order for computer systems to be able to integrate more fully into

the real world they clearly need to learn how to adapt to drastic environmental

changes.

The challenge of complete integration into a real-world environment is

enormous. The complexities of the problem quickly become apparent when one

attempts to define how a robotic system should behave when confronted with

dynamic obstacles. A robot should not be incapacitated if a person moves in

front of it and refuses to get out of the way. Similarly, if a large crowd moving at

a quick pace is coming towards the robot and blocking its planned path, the

robot should be able to manoeuvre through it. These are just two examples of

what a robot may have to handle in a real-world environment; the number of

possible scenarios is too large to count. Therefore a robust system must be

developed to help robots handle complex and unforeseen situations. The

problem can be explored in a virtual environment using virtual robots called

"agents". Using neuroevolutionary programming, the agents' control systems can

be evolved to navigate in environments that include both static and dynamic

obstacles. This project's purpose is to use machine learning techniques to evolve

an agent control system that can cope with a dynamic environment such as the

one in the example below.

Figure 1.1 Example Environment: Autonomous Agent obstacle
avoidance example situation.

This project explores this problem using a combination of artificial neural

networks and genetic algorithms, both of which are machine learning systems, to

evolve a simulated autonomous agent that can navigate in various test

environments from its starting point to a goal while perceiving said environment

through a predefined sensor package and avoiding all static and dynamic objects

in its way.

In order to develop such a system, a control architecture that efficiently handles

changes to the environment is necessary. It must be relatively easy to train and

not overly complex. An artificial neural network is the ideal tool for this task.

However, the optimal solution will also incorporate an optimal neural network

topology. Therefore an evolutionary approach to artificial neural network

construction should be employed to create a relatively efficient autonomous

agent controller.

2

An evolutionary artificial neural network (EANN) is a union of two different

branches of computer science: Artificial Neural Networks (ANNs) and

evolutionary algorithms or genetic algorithms (GAs). In essence, EANNs are a

specific type of artificial neural network that use a different method for learning

in addition to the standard ANN methods. While standard ANNs can adapt to

dynamic environments, EANNs' combination of evolutionary and neural

learning allows them to adapt more quickly (Yao, 1999) and take advantage of

temporal information as well (Nelson, Grant, Galeotti, & Rhody, 2004). In this

regard, EANNs can be considered generic adaptive systems, which means they

can change their architectures and learning methods to suit the problem without

human involvement.

This project's autonomous agent controllers require an environment in which to

learn. Since the required amount of machine learning would take prohibitively

longer to achieve in the real world, a simulated world must developed for the

autonomous agents. This environment must incorporate static obstacles, dynamic

obstacles and real-world physics. It must also be capable of providing accurate

sensor information for the simulated sensors. This sensor information is

attenuated using a sensor noise value so that the simulated autonomous agents

would be more likely to perform well in a real-world environment in which the

hardware-based sensors are imperfect and would be incapable of providing ideal

data.

Among the issues investigated in this project is whether or not an autonomous

agent using EANNs can learn to avoid static as well as dynamic obstacles and still

manoeuvre. This project's primary goal is to develop a system to evolve an

efficient neural network controller that can learn to effectively operate an

autonomous agent in multiple different dynamic environments.

3

1.1 Requisite Knowledge

To implement an EANN, several different types of technology are required. The

first requirement is an artificial neural network which functions as the controller

and learning component of the agent. The second requirement is a genetic

algorithm that performs the optimization procedure on the agents. The third

component is the concept of a virtual autonomous agent, or alternatively, a

system that can function in a real-world environment without human

intervention. Finally, due to the problem at hand, it is also necessary to

understand the concept of a dynamic environment and the unique problems that

occur in such an environment. A discussion of these basic concepts will follow

before an examination of current work in the field.

1.1.1 Artificial Neural Networks

Artificial Neural Networks are a very common technology used in many

production systems today. They are currendy the leading electronic simulation of

the way a living neural system functions and as such they will probably remain in

common use for some time. Since their conception they have been developed for

several practical applications in the real world; some are discussed in (Knoblock,

1996), such as voice recognition and biometric systems.

An A N N is a mathematical model for information processing that uses a

connectionist approach to computation. It is based on the neuroelectric systems

of the human brain. The smallest unit of a neural network is a neuron, which

stores a small portion of data about information to which the neural network has

been exposed. This small portion of data can be referred to as the neuron's

"weight". These neurons are interconnected to form a network of nodes that can

4

perform complex recognition based on the set of inputs with which they have

been trained.

ANNs are widely thought of as a black box form of machine learning. The term

black box refers to the idea that, once information is captured in an ANN, it

cannot be readily retrieved from the same ANN in a useable form. This is not

entirely accurate, as the information can be retrieved and understood. The

mathematics of ANNs are extremely complex and can be difficult to decipher.

However, there are several methods of rule extraction for ANNs (Tsukimoto &

Hatano, 2003) as well as methods for visualization of the information stored in an

ANN.

Today, ANNs are considered one of the best methods for solving complex

nonlinear multidimensional problems (Tsukimoto & Hatano, 2003). ANNs lend

themselves well to solving difficult real-world problems that cannot be solved

using a straightforward algorithmic method (Knoblock, 1996). A simple

multilayer perceptron with one hidden layer is provably capable of approximating

any continuous function with arbitrary accuracy (Cybenko, 1989). ANNs are also

computationally complete; they are equivalent in class to Turing machines. ANNs

can do anything a computer can (Cybenko, 1989), and do not require a complete

set of data to learn to accomplish a task (Knoblock, 1996). Usually, only a small

amount of input data is necessary to train the network to approximate whatever is

required of it. ANNs are used in several fields today including aerospace,

banking, robotics and linguistics (Knoblock, 1996).

This project does not consider ANNs alone; they are used here in conjunction

with another advanced problem-solving system known as a genetic algorithm.

5

1.1.2 Genetic Algorithms and Evolutionary Methods

Genetic Algorithms are among the most advanced search algorithms available

today. They are capable of searching extremely convoluted and complex

multidimensional search spaces and finding optimal solutions in an acceptable

amount of time (Janson & Frenzel, 1993). GAs were invented by John Holland

(Koza, 1998; Srinivas & Patnaik, 1994). Holland developed GAs in cooperation

widi his students and coworkers in the early 1970s. Genetic programming, which

is a variation of GAs, was developed in the early 1990s by John Koza (Koza,

1998).

Genetic algorithms are a type of evolutionary computing and are inspired by

Darwin's theory of evolution (Srinivas & Patnaik, 1994). Genetic algorithms are

direcdy based on biological systems; terms used in relation to them include gene,

chromosome, recombination, mutation and crossover. In a GA, a gene is a representation

of the data being evolved by the GA. Working with a GA involves the

management of a population consisting of a set of genes. Each set of genes can

serve as a parent generation for the next set of genes. Crossover and mutation are

the two operators that a GA employs. Crossover occurs when two genes are split

at related locations and their respective elements switch places with each other to

form offspring. Mutation occurs when smaller portions of those genes change to

form a new gene with different characteristics from the original.

6

All GAs follow the same basic algorithm:

Start - Generate a random population of n chromosomes.

Fitness -Evaluate the fitness f(x) of each chromosome x in the population.

N e w Population — Create a new population by repeating these steps:

Selection — Select two parent chromosomes from a population based on

their level of fitness.

Crossover — If determined by the defined crossover probability,

crossover the parents to form a new offspring. If there is no crossover,

the offspring is an exact copy of the most fit parent.

Mutation — If determined by the defined mutation probability, mutate

the offspring.

Accepting - Place offspring in the new population.

Replace - Use the newly generated population for the next run of the algorithm.

Test - Test for the end condition. If it is found, output the solution. Otherwise,

return to the Fitness stage.

When developing a GA a programmer must carefully consider several issues,

such as how to create genes from the data. If the genes are poorly encoded, the

algorithm may be extremely inefficient or unable to use both the crossover and

the mutation functions. At the same time, a method for performing mutations

and crossovers must be developed. The programmer must also choose the size of

population to use. Typically, a modest population works well, but this is not

always the case.

Among the most important issues the programmer must manage is the

development of a fitness function. The function that determines the fitness level

of each gene must be neither too simple nor too complex. If the function is too

simple, the networks may not effectively localize. If it is too complex, they may

7

not localize at all ot may reach a non-optimal solution. The programmer must

also choose how many parent genes will be selected from the population to

create a new generation, and whether or not elitism should be used. Elitism can

be thought of as "survival of the fittest"; when it is used, the fittest genes from a

generation are passed on to the next generation without undergoing any

crossover or mutation.

In a sense, a GA is a directed search in that there is a goal and the algorithm

checks many possible solutions to see if any of them work. The GA expands its

search in the direction of whichever possible solutions have been determined to

be closest to a working solution. GAs are capable of searching spaces that cannot

be visualized or perceived, and are used in various fields today including

automated design, distributed computing, protein folding and scheduling.

This project integrates GAs with ANNs. This presents a problem, as ANNs store

very complex information. There are several different methods for encoding the

information in an ANN and applying a GA effectively to an ANN system. These

methods will be discussed later in this paper.

1.1.3 Autonomous Agents

Autonomous agents are software and robotic entities that are capable of

independent action such as reacting to their environments, interpreting and

planning in an open and unpredictable environment. Autonomous agents are an

extremely important field of research today in computer science and robotics.

An autonomous agent can set out to perform a complex task and complete that

task without any human intervention. Because programming an agent to perform

these tasks is a very complex problem, researchers have been using evolutionary

8

programming to solve it and they have met with some great initial success

(Sharkey, 1997).

Currently, most autonomous agents are small robots designed to do simple tasks

like find their way through a maze (Floreano & Mondada, 1994) or pick up paper

balls in a certain area (Mondada & Floreano, 1995). Other autonomous agents are

large robots working in a production environment and are extremely complex

systems capable of performing several tasks completely independently of human

intervention (Xu, Van Brussel, Nuttin, & Moreas, 2003).

Some of the problems with autonomous agent systems in existence today can

present serious obstacles to development. Currendy most of the training of

autonomous agents occurs in simulation; however, these simulated environments

are not as demanding as the real world. A great deal of current research focuses

on creating effective means of training autonomous agents in simulation so that

minimal training is required in the real world (Miglino, Lund, & Nolfi, 1995). The

generational systems that train these agents would take far too long to complete

their training in real-world time.

Another problem that researchers have encountered is that several of their

systems are developed for small robots which are not capable of performing

significant physical tasks. These robots are limited to pushing small light objects

that serve no practical purpose (Mondada & Floreano, 1995). When these robots

are scaled up to a larger size, new problems are presented that presented no

difficulty to a smaller robot. For example, a robot that is five centimetres in

diameter might not damage itself badly if it impacts a wall at full speed. A robot

with a two metre diameter colliding with the same wall at the same speed might

be likely to destroy both itself and the wall.

9

Despite these problems autonomous agents are an extremely popular research

topic; the benefits of having effective autonomous agents greatly outweigh the

costs of their initial training.

1.1.4 Dynamic Environments

In a static environment, nothing ever changes. In a dynamic environment, things

can change unpredictably. Even people who are unfamiliar with how an

autonomous agent works can see that navigating through a static environment

would be much easier for a robot than navigating through a dynamic

environment. In a static environment every object can be used as a landmark for

navigation. In a dynamic environment no feature can be considered static; even

the walls could move. Therefore a different approach must be used for

navigation.

An autonomous agent navigating through a dynamic environment must

reconsider everything in its movement plan every time it considers a change of

course. This increases computational time for any system that does significant

planning work. This computational time can be prohibitive even with the

powerful computer hardware of today. A system working in a dynamic

environment should be able consider the current state of the environment and

choose a new course extemporaneously. The calculation should not be dependent

on some far-off landmark, but should be based on the current situation the

autonomous agent perceives in its immediate vicinity.

Some of the inherent problems in a dynamic environment present significant

challenges to an autonomous agent. The agent has to be able to calculate

expected trajectories of dynamic obstacles in its environment so that it can plan

early for avoidance and thus plan an efficient route to its goal or avoid danger.

10

However, the agent must also be highly adaptive; if it plans too early, the dynamic

obstacle may change its trajectory and the agent's plan will no longer be viable. If

the agent can plan its course extemporaneously it will be able to adapt quickly to

such changes. An agent that cannot consider course changes extemporaneously

would also be quickly overwhelmed by large numbers of dynamic obstacles that

present a danger of collision. An adaptive agent would only be concerned with

dynamic obstacles in its immediate vicinity, and would ignore more distant

obstacles. Through machine learning methods and a properly honed fitness

function, adaptive behaviour should emerge from highly-evolved autonomous

agents.

Dynamic environments present a challenge that is beyond the capabilities of

existing autonomous agent control systems. There is great potential for research

in this field; to date, the relevant research is limited. I believe that EANNs can

provide an effective means for the creation of a control structure that can handle

this problem.

11

Chapter 2

CURRENT PRACTICE

Among researchers there is presently a great deal of interest in EANNs. There

have been many recent breakthroughs and several new types of EANNs have

emerged from research projects (Yao, 1999). Some of this research has been

applied to the areas of autonomous agents and obstacle avoidance (Floreano &

Mondada, 1994; Floreano & Mondada, 1998). There has been very litde research

concerning dynamic obstacle avoidance with autonomous agents using EANNs

(Aguilar & Jose, 1994). The current state of the field suggests that these

components may work well together to reach this research project's goal of

evolving an agent control system that can cope with a dynamic environment. To

show how GAs and ANNs can be brought together to solve this problem, this

section will review the current research in the relevant fields.

2.1 Evolution of Artificial Neural Network Systems

While standard ANNs are powerful tools for problem solving, they do present

difficulties as was discussed in Chapter 1. In an attempt to circumvent these

problems various methods have been investigated for the creation and honing of

new types of ANN systems. These new systems are known as Evolutionary

Artificial Neural Networks, or EANNs (Yao, 1999). EANNs differ from

standard ANNs in that they have an extra stage of adaptation and learning based

on an evolutionary or genetic system (Yao, 1999). There is a variety of types of

EANN systems available for use, and they can be broken down into four

categories (Yao, 1999). For the sake of simplicity the first three of these four

categories of EANN, which were defined by Xin Yao, (Yao, 1999) will be

referred here as weight-evolving algorithms (WEAs), topology-evolving

12

algorithms (TEAs) and hybrid evolving algorithms (HEAs). The fourth category

incorporates a wide variety of other types of EANNs.

One type of EANN system involves the evolution of network weights. As was

explained in Chapter 1, an ANN is a set of weighted nodes and connections

between those nodes. The weights contained in the nodes are in the form of

matrices that contain information from prior input data. Through

backpropagation, these weights are updated and the overall network is trained to

recognize certain patterns. The process of backpropagation can be long and

computationally intensive, and in some cases it does not result in an effective

solution. In such a case a weight-evolving algorithm (WEA) can be applied,

which may speed up the search for a solution Qanson & Frenzel, 1993).

A second type of EANN involves the evolution of architectures or topologies of

ANNs. Instead of modifying the learning algorithm the ANN uses or augments it

with a GA, the topology-evolving algorithm (TEA) relies on standard

backpropagation while attempting to find the best ANN structure for the

problem. An ANN with a better structure can learn faster or result in a more

optimal solution in less time than a less well-structured counterpart. This method

is particularly well suited to an EANN algorithm and appears to be a more

popular method (Yao, 1999).

Hybrid evolutionary systems are a third type of EANN. Hybrid evolutionary

algorithms (HEAs) are an attempt to merge the first and second methods of

evolving weights and structure into one algorithm (Yao, 1999). Hybrid

evolutionary EANN algorithms are typically more complex than the first and

second types of EANNs and need to take into account more variables in the

systems they are designed for. However they can be extremely efficient and

powerful in finding an efficient ANN structure and weight set (Nissinen, Koivo,

13

& Koivisto, 1999; Stanley, Bryant, & Miikkulainen, Evolving Adaptive Neural

Networks with and without Adaptive Synapses., 2003).

Finally, some researchers have taken novel approaches to developing EANNs

and have created radically different systems that are sometimes similar to the

three methods discussed earlier but diverge enough from them to be a considered

a different type of system altogether (Aliev, Fazlollahi, & Vahidov, 2001; Arifovic

& Gencay, 2001; Golubski & Feuring, 1999; Tsukimoto & Hatano, 2003; Capi &

Doya, 2005). Some of these systems will be discussed here but they will not be a

major focus of this section.

The various types of EANNs have been extensively studied; many of the

following points stem from the work of prior researchers. This chapter discusses

and summarizes the prior research as well as presents some examples of

algorithms that can be applied to the problem of mobile object avoidance in

autonomous robotic agents.

2.1.1 Weight-Evolving Algorithms (WEAs)

Weight-evolving algorithms, or WEAs, use genetic algorithms to evolve the

weights of an EANN's nodes. Most systems that take this approach use a

method that minimizes an error function such as the mean squared error (Yao,

1999). This is how an A N N is trained; backpropagation and conjugate gradient

algorithms, which are standard ANN training algorithms, already take the mean

squared error into account. This is a difficulty with ANNs, as they can often

become trapped in a local minimum of the problem space. Standard GAs are less

likely to become trapped in these local minima unless the search space of the

ANN is extremely convoluted.

14

In such a case, a WEA can help overcome this problem without sacrificing the

power of an ANN. In a WEA system, the set of weights in the network nodes is

evolutionarily adapted. Standard backpropagation would perform the same feat,

but also could become trapped in a non-optimal solution. Using a GA, this is less

likely to occur. In order to use a WEA, first a representation of the data must be

chosen. There are two popular formats: binary and real number. The second

phase of developing the WEA involves choosing the operators for mutation and

crossover and deciding whether or not either or both will be used. In addition,

different representation schemes can lead to radically different performance and

as such should be selected carefully.

Binary representation is commonly used to represent data in GAs. It makes the

operations of mutation and crossover easy to perform but consistency checking

must be applied so that offspring are functional rather than illegal or inoperable.

It is simple to use binary representation of the data. First, an algorithm is defined

to extract the weights from the ANN in a specific order. Then the weights are

converted into a fixed length binary string. Once the data is converted, the GA is

performed on the dataset and the information is converted back to its standard

form with a reversal algorithm. Finally, the information is placed in an offspring

for the next iteration of the GA (Janson & Frenzel, 1993; Tsukimoto & Hatano,

2003; Yao, 1999).

Real number representations can also be used to encode the weights of an ANN.

The same method is used as in binary representation to extract and then re-

encode information back into the ANN. However in real number

representations, instead of changing the extracted weights to binary, they are

represented by a single real number (Alsultanny & Aqel, 2003; Yao, 1999). While

this scheme is easy to encode and decode, its primary operator is mutation and

crossover is considerably harder to implement here than in a binary

15

representation. This can hinder the efficiency of the algorithm but will not

completely halt its progress; it has been shown that GAs can operate effectively

using only one of their two major operations (Siebel, Krause, & Sommer, 2007).

WEAs have been used effectively in many circumstances. Training neural

networks to identify the most efficient width of a CMOS circuit has been a

problem that is not easily programmed but it can be accomplished using a WEA

(Janson & Frenzel, 1993). When this was achieved the ANN used did not initially

appear to solve the problem. Upon further investigation it was found that the

search space was extremely convoluted and could not easily be searched even

using a GA. Therefore a penalty function was employed to force the GA to

search in areas that were closer to a solution. This involved manipulation of the

problem, which required domain knowledge. Such knowledge may not always be

available.

WEAs have also been effectively used in image pattern recognition. In that case

the network was large and complex but the WEA was nevertheless able to adapt

relatively quickly. It offered excellent results when detecting the orientation of a

picture of a jet airplane (Alsultanny & Aqel, 2003).

Using a slightly different method, WEAs have also been used to increase the

functional localization of an ANN (Sexton & Gupta, Comparative evaluation of

genetic algorithm and backpropagation for training neural networks., 2000). In

some cases an ANN can be developed and trained, and may give excellent results,

but can be functionally localized and therefore is not the most efficient

implementation of that network. To detect this problem, an algorithm can be

implemented that extracts Boolean functions for each of the hidden layer nodes

of an ANN. If the extracted function is too convoluted it can be deemed non-

16

localized and the WEA can be used to localize the function further (Tsukimoto &

Hatano, 2003).

There are many different types of WEAs and they seem to be effective methods

for learning.

2.1.2 Topology-Evolving Algorithms (TEAs)

The next type of EANN is the TEA, which evolves ANN architectures or

topologies. An ANN can be accurately represented by a graph. An ANN is a

graph-like structure and has an architecture or topology that can be modified.

Changing an ANN's topology can drastically improve or deteriorate its

performance. In the past, engineering the topology of an ANN has been a job for

a human being; this was a trial-and-error procedure. Since there is an infinite set

of possible network structures available to solve each problem, a human being

may not be able to find an efficient architecture. However, a TEA can be

employed to find an efficient A N N topology that solves the problem.

This system can be more complex than the WEA method. This is because the

entire structure of the network may be changed by the TEA and then must be

completely retrained. However, it can also be more robust. The changed

structures of the network may be capable of retaining very different patterns of

information. The algorithm may find a structure that performs excellendy that the

human designers may never have conceived.

Similarly to WEAs, there are two main things to consider when implementing a

TEA: the representation of the ANN or the genotype, and the GA method used

to evolve the ANN architecture. When deciding how to represent the ANN in its

genome there are two different extremes that may be considered. In one extreme,

17

all the information in the ANN is precisely encoded. This is referred to as direct

encoding. The other extreme involves the encoding of only the information about

the structure of the network that is deemed important, such as how many hidden

layers there are, how many inputs there are, how many outputs there are and so

on. Once the encoding scheme is chosen the programmer must decide whether

to use mutation, crossover or both in die GA. Finally, as applicable, mutation and

crossover must be defined so that they can operate on the genome. Once these

two points have been settled, the TEA can operate until an effective ANN

structure is found (Yao, 1999).

TEAs seem to be more popular than WEAs. This may be because they can be

easier to comprehend if a straightforward type of encoding is used. TEAs have

been effectively employed in several different situations (Boozarjomehry &

Svrcek, 2001; Castillo, Merelo, Prieto, Rivas, & Romero, 2000; Janson & Frenzel,

1993). TEAs have also been modified to perform optimization as well as

topographical evolution (Sexton, Dorsey, & Sikander, Simultaneous optimization

of neural network function and architecture algorithm., 2004). One of the

problems with TEAs is that the ANNs developed with them can grow to be

extremely large and convoluted. Fortunately the algorithm can be adapted to

perform self-pruning as it is evolving more efficient ANNs. Unnecessary weights

and hidden nodes can thus be identified and removed from the ANN, which

keeps the network smaller and more efficient (Blanco, Delgado, & Pegalajar,

2000; Castillo, Merelo, Prieto, Rivas, & Romero, 2000; Sexton, Dorsey, &

Sikander, Simultaneous optimization of neural network function and architecture

algorithm., 2004).

Other modifications of TEAs allow the algorithm a broad capability to adapt to

their problems, even allowing the algorithms to define their inputs to the

constructed ANNs. While this is a complex problem it allows for an extremely

18

efficient ANN to develop (Arifovic & Gencay, 2001; Nissinen, Koivo, &

Koivisto, 1999).

Some other implementations use a graphical representation of the ANN as an

encoding scheme for its GA. This method has some similarities to genetic

programming and can result in ANNs that are extremely large and inefficient.

This method can be modified to restrict the size of the evolved ANNs and

eventually evolve an efficient ANN for the problem (Golubski & Feuring, 1999).

Some EANNs use drastically different encoding methods when implemented

rather than using direct or indirect encoding. These systems are more akin to a

programming language than an EANN but can be used as a basis for the TEA.

These languages can be convoluted and difficult to apply to certain domains.

However they can also be very efficient in describing the information in an ANN,

and they scale well to handle large problems. (Boozarjomehry & Svrcek, 2001;

Ilakovac, 1995).

19

2.1.3 Hybrid Evolutionary Algorithms (HEAs)

The third type of EANN systems, HEAs, is a unification of the two systems

described above. These systems adapt both the weight and topology of an ANN.

This can be a complex process, but it can also be extremely effective. Both the

adaptation of ANN weights and the adaptation of their topologies are effective

means for searching a problem space. Combining these two techniques can result

in a faster method for finding a solution (Stanley, Efficient Evolution of Neural

Networks through Complexification, 2004).

When planning the development of a hybrid evolutionary system one must

consider the problems presented by both WEAs and TEAs. In some ways these

problems are quite similar. Like WEAs and TEAs, HEAs require a genome

representation for which both the mutation and crossover operators are well

defined. This representation is critical for a functional HEA.

HEAs have been implemented effectively and they show some very good results

which are at least on par with results demonstrated by TEAs and WEAs (Stanley,

Bryant, & Miikkulainen, Evolving Adaptive Neural Networks with and without

Adaptive Synapses., 2003; Abbass, 2003). One type of HEA involves what is

called neurogenetic learning Qanson & Frenzel, 1993; Kitano, 1994). This type is

a standard GA combined with ANNs but it uses the GA to develop the structure

of the network simultaneously with the weights of the network, rather than

randomly inserting weights in the network after its structure is defined by

crossover and mutation. A few complex systems are used to determine the values

for each stage of the GA: a graph grammar interpreter for structural evolution

and a CAM (Cell Adhesion Molecule) matrix for weight evolution. This method

is heavily based on biological techniques (Kitano, 1994).

20

A method similar to neurogenetic learning refers to the problem as a

multiobjective optimization problem, or MOP. An ANN is described as a MOP

and presented to a mimetic, which is a GA augmented with a local search, to

develop an effective HEA (Abbass, 2003).

Another algorithm designed to work as a hybrid EANN is NEAT, or

NeuroEvolution of Augmenting Topologies. This algorithm uses a GA to evolve

topologies of ANNs and to develop initial weights for the evolved ANNs.

NEAT defines an effective method for crossover and mutation while maintaining

a fairly simple representation of the ANNs adapted by the system. It also offers

some very effective results (Stanley & Miikkulainen, Efficient Evolution of

Neural Network Topologies, 2002; Stanley & Miikkulainen, Evolving Neural

Networks through Augmenting Topologies, 2002).

There is little research done in the field of hybrid EANN systems, as they are

complex. However they do offer effective and efficient search results for

EANNs.

2.1.4 Other Methods

Finally, some EANNs do not fit neatly into any of the three described categories,

but do share some characteristics with WEAs, TEAs and HEAs. These other

EANNs take a more novel approach to one or more of the previous systems and

are only mentioned here to indicate the wide range of possible solutions that are

being researched.

One method involves the use of co-evolution to speed up the EANN process. In

this method there are two GAs competing against each other in the same

21

domain, which drives them both to reach their respective solutions faster than a

standard GA would (Sato & Furuya, 1996).

Another method which could be considered an EANN uses fuzzy neural

networks (FNNs) instead of ANNs. An F N N differs from a standard ANN in

that it can have fuzzy weights or fuzzy inputs, or both. This can present a

problem for training as all common ANN training algorithms require static values

for weights and inputs, not the range of values a fuzzy variable can represent.

However a GA can be used to effectively train an FNN (Aliev, Fazlollahi, &

Vahidov, 2001). GAs are very effective training mechanisms; they have been

shown to be more effective at training ANNs than standard backpropagation

methods (Sexton & Gupta, Comparative evaluation of genetic algorithm and

backpropagation for training neural networks., 2000), and have also been shown

to train cellular neural networks effectively (Zamparbelli, 1997). Cellular neural

networks are a type of distributed neural network, which means they are another

variety of EANN (Zamparbelli, 1997).

2.2 EANNs for Autonomous Mobile Agents

As mentioned, autonomous agents are a leading research area in computer

science and robotics. However, these systems are inconvenient to program; it is

difficult to predict the problems that an agent will encounter when attempting to

perform a task in the real world. Unpredictable factors can lead to undesired

emergent behaviour. Sensor noise and echoes can greatly affect how a robot

perceives its environment. The way light casts a shadow on a wall can affect how

a visualization system interprets a corner. It is for this reason that most research

into autonomous mobile agents today involves evolved artificial neural networks.

Using EANNs, autonomous agents can be developed and tested in a simulated

22

environment and then exported to a non-virtual robot. Then they can be tested

again in the real world before being deployed.

Many modern autonomous agent systems have one of two different types of

EANNs at their cores: either a WEA or a TEA. Most of today's autonomous

systems are also initially developed in a simulated environment before being

deployed in the real world.

This section will discuss some of the implemented EANN systems and contrast

the problems inherent in simulated and real-world training environments. Finally,

this section will review some of the current research involving the application of

EANN systems to autonomous mobile agents.

2.2.1 Artificial Neural Network Configurations

The two most commonly used types of EANNs are WEAs (Floreano &

Mondada, 1998; Lee, 2003; Miglino, Lund, & Nolfi, 1995; Mondada & Floreano,

1995) and TEAs (Nelson, Grant, Galeotti, & Rhody, 2004; Ward, Zelinsky, &

McKerrow, Learning to Avoid Objects and Dock with a Mobile Robot, 1999;

Xu, Van Brussel, Nuttin, & Moreas, 2003). These are also the most common

types used for the evolution of autonomous agents. Typically if a robotic agent is

small and simple it will be controlled by a basic ANN that is only modified

through a WEA. A basic A N N is appropriate for such a problem because small

robots generally have limited processing capacities and would not be able to

handle the processing required by a more complex ANN (Floreano & Mondada,

1998; Miglino, Lund, & Nolfi, 1995; Mondada & Floreano, 1995). There are also

robotic systems implemented with far more complex onboard processing systems

which could easily handle an adaptive ANN structure outside of a simulated

environment. However, typically the topologies of robotic systems are developed

23

in a simulated environment before deployment into non-virtual robotic systems

(Nelson, Grant, Galeotti, & Rhody, 2004; Ward, Zelinsky, & McKerrow,

Learning to Avoid Objects and Dock with a Mobile Robot, 1999; Xu, Van

Brussel, Nuttin, & Moreas, 2003).

2.2.2 Simulated Environments and Real-World Environments

There are two ways to develop and train an EANN. One is to develop the entire

system, including both the autonomous agents and their training environment, in

a software simulation. Simulated environments are used to evolve most

autonomous agent EANN systems because simulated environments are not

limited by the constraints of real-world time. A full EANN training simulation

and then a full generational cycle can take mere minutes to complete on a

sufficiently powerful computer. The second way to develop and train an EANN

involves running a similar generational cycle on a computer, then transferring the

agents to their robotic bodies, performing the training cycle and finally

transferring the agents' control systems back to the generational system. This

method could take more than an hour to complete one generational training

cycle. Because a true EANN system typically requires several hundred

generations to sufficiently evolve, the length of time required to perform each

training cycle is extremely important.

Whether an autonomous agent system can effectively be trained in a simulated

environment and then deployed in a real-world environment without needing to

be retrained in the real world is a matter of much debate. Some systems that are

evolved in simulation are subsequently implemented in real-world hardware to

prove that the resulting system is realistically functional (Floreano & Mondada,

1998; Miglino, Lund, & Nolfi, 1995; Mondada & Floreano, 1995; Nelson, Grant,

Galeotti, & Rhody, 2004; Ward, Zelinsky, & McKerrow, Learning to Avoid

24

Objects and Dock with a Mobile Robot, 1999; Xu, Van Brussel, Nuttin, &

Moreas, 2003). It is effectively impossible for a virtual environment to simulate all

of the subtle details and variations of a real-world environment. However,

programmers creating a simulation can partially compensate for unpredictable

real-world environmental factors by adding noise to the simulated sensors. They

can also perform tests on non-virtual system sensors to see how they behave in

the real world, and then incorporate their results into their simulations. (Miglino,

Lund, & Nolfi, 1995). When the simulated autonomous agents are transferred to

their physical robotic systems, a few more training cycles are performed to adapt

the networks to their new sensor inputs. It has been shown that only a few more

training cycles are required for the ANNs to adapt and begin behaving as they did

in the simulation (Floreano & Mondada, 1998). The major learning was already

done in the simulation and they only needed to adapt to the changes in their

sensory input (Floreano & Mondada, 1998; Mondada & Floreano, 1995).

In some cases, it is absolutely necessary to train an EANN in a simulated

environment instead of in the real world. One existing EANN system is a set of

large and powerful robots designed to move palettes of products around in a

warehouse. If this system had been completely trained in its real-world

environment, several of these inordinately expensive machines would have been

required to undergo generational learning and the systems that were poorly

adapted to the environment could have destroyed themselves, other autonomous

agents or large portions of the building (Xu, Van Brussel, Nuttin, & Moreas,

2003). This shows that simulated environments are necessary for training some

types of autonomous agents; if simulated environments were unavailable then

certain problems might never be solved.

Although EANNs can be trained in either the real world or a simulated world,

the two types of training can complement each other and some real-world

25

problems would not be solved with EANNs if both training options were not

available.

2.2.3 Obstacle Avoidance

The problem of obstacle avoidance with respect to EANNs and autonomous

agents is not frequently studied. Most research focuses more on goal finding and

path finding than on obstacle avoidance. This may be because robots evolved

using EANNs learn to avoid hitting walls as a part of their training (Floreano &

Mondada, 1996; Floreano & Mondada, 1994).

Other papers directly focus on dealing with obstacle avoidance (Kluge, Kohler, &

Prassler, Fast and Robust Tracking of Multiple Moving Objects with a Laser

Range Finder., 2001; Kluge, Bank, & Prassler, Motion Coordination in Dynamic

Environments: Reaching a Moving Goal while Avoiding Moving Obstacles.,

2002). Since obstacle avoidance is at least somewhat important for all EANNs

that handle autonomous agents, it is essential to closely examine exactly what is

meant by "obstacle avoidance" in this context and to survey the various types of

obstacle avoidance systems.

In this context, "obstacle avoidance" means "to avoid a collision with an object

that is blocking the path of a planned direction of motion". There are two basic

kinds of blocking objects, or obstacles: static and dynamic. Because static

obstacles do not move they are relatively easy for an autonomous agent to avoid.

Dynamic obstacles are more complex because the agent cannot predict with

certainty where the obstacle will be in the next time frame. The motivation for

dealing with dynamic obstacles comes from observing that humans easily avoid

each other in crowded environments (Kluge, Illmann, & Prassler, Situation

Assessment in Crowded Public Environments., 2001).

26

2.2.3.1 Static obstacles

As mentioned, static obstacle avoidance is an easier problem to solve than

dynamic obstacle avoidance. Many implemented systems attempt to move

around obstacles in their paths (Floreano & Mondada, 1994; Floreano &

Mondada, 1996). Others simply halt and wait for obstacles to get out of the way

(Kluge, Kohler, & Prassler, Fast and Robust Tracking of Multiple Moving

Objects with a Laser Range Finder., 2001; Kluge, Bank, & Prassler, Motion

Coordination in Dynamic Environments: Reaching a Moving Goal while

Avoiding Moving Obstacles., 2002).

Some obstacle avoidance systems are designed to move toward a goal or follow

another moving object or agent (Kluge, Bank, & Prassler, Motion Coordination

in Dynamic Environments: Reaching a Moving Goal while Avoiding Moving

Obstacles., 2002; Neruda, 2007). While following is a complex task to train an

agent to do, it is easier for an agent to avoid obstacles when following because

the obstacle avoidance tasks are passed on to the agent or other object being

followed. In research, static object avoidance is not heavily studied, presumably

because it is considered to be a consequence of agents learning to do their other

tasks.

2.2.3.2 Dynamic obstacles

Dynamic obstacle avoidance is more complex than static obstacle avoidance. For

an agent to avoid dynamic obstacles, it must be able to predict where an obstacle

may be next; an agent must use strategic planning to avoid dynamic obstacles.

Much of the work that has involved agents learning to follow has contributed to

the search for a solution to the dynamic obstacle avoidance problem. This is

27

because agents that can follow must be capable of tracking a dynamic object, and

for an agent to avoid a dynamic obstacle, it must be able to track it. (Floreano &

Mondada, 1994; Floreano & Mondada, 1996).

Other research that is relevant to this project focuses on detecting moving

obstacles (Kluge, Kohler, & Prassler, Fast and Robust Tracking of Multiple

Moving Objects with a Laser Range Finder., 2001). A variation on this theme

direcdy focuses on a situation in which the dynamic obstacles are people

(Scheutz, Cserey, & McRaven, 2004). Such research is critically important to the

goal of implementing an autonomous agent in a real-world environment. One

research project used a very complex mathematical approach to enabling agents

to avoid dynamic obstacles while proceeding towards a moving goal (Kluge,

Bank, & Prassler, Motion Coordination in Dynamic Environments: Reaching a

Moving Goal while Avoiding Moving Obstacles., 2002). The agents described in

that paper used a system that tracked and predicted where objects were going to

be in the next timeframe while planning their motion towards their moving goals.

This was a very complex system but it worked well.

While several systems exist to track and/or avoid static and dynamic obstacles,

few of these systems use an agent controller that was developed using an

evolutionary approach (Neruda, 2007). Only one of these systems is specifically

designed to deal with the problem of dynamic obstacle avoidance, and the agents

of that system do not operate in a busy environment (Kluge, Bank, & Prassler,

Motion Coordination in Dynamic Environments: Reaching a Moving Goal while

Avoiding Moving Obstacles., 2002).

28

23 EANNs as Autonomous Agent Controllers in Dynamic Environments

Several of the required components for solving the problem of autonomous

agents seeking goals in dynamic environments have already been researched and

proven in the research projects surveyed here. Neural networks can be trained in

a simulated system. There are effective ways to negate the problematic perfection

of information provided by simulated sensors. Neural network topologies can be

evolved using genetic algorithms although the process may require extension to

include more complex topological structure. Even extremely convoluted problem

spaces can be searched relatively effectively using genetic algorithms. It is

possible to create a neural network that can handle obstacle avoidance. It is also

possible to create an autonomous agent that is capable of avoiding dynamic

obstacles while tracking a dynamic goal. In addition since multilayer neural

networks are provably equivalent to Turing machines (Cybenko, 1989) it is likely

that multilayer neural networks can be used to solve the problem of autonomous

agent dynamic obstacle avoidance.

Neural networks can be trained to control robots. However, the networks that

are required to control the robots in an unpredictable and dynamic environment

have not yet been developed and may be difficult to create. Dynamic obstacle

avoidance has not been extensively studied in robotics. Robots have been created

that can avoid obstacles, but their ability to avoid moving obstacles is limited or

nonexistent (Neruda, 2007). This may be because it is a difficult problem to

solve.

Many ANN systems have been effectively developed by EANN systems. Some

ANN systems are used in real-world environments (Sharkey, 1997). One robotic

system using ANNs functions effectively in a static real-world environment

(Ward, Zelinsky, & McKerrow, Learning to Avoid Objects and Dock with a

29

Mobile Robot, 1999). This suggests that it may be possible to use EANNs to

evolve autonomous agents that can reach a goal in a dynamic environment.

However at present there has been very little research about this particular type

of robotic obstacle avoidance.

2.4 Conclusions

Despite the lack of practical research in this particular field of robotics and

EANN development, the literature suggests that it might be possible to combine

EANNs and simulated environments to evolve agents that can reach a goal in a

dynamic environment. It is critical that the machine learning technique both

evolves an efficient topology and works towards this solution efficiency. If the

EANN does not use an efficient approach, producing an evolved solution may

take an excessive amount of time. In order for an EANN to produce a set of

solutions it must be run several times, and each run can take days to complete. If

the algorithm does not produce efficient solutions, the necessary computational

time can increase dramatically. Therefore it is essential that any approach using

EANNs must be efficient. This dissertation describes an attempt to develop an

efficient approach to solving the dynamic obstacle avoidance problem.

30

Chapter 3

METHODS AND APPROACHES

This chapter describes the system developed for this project. The project uses a

neuroevolutionary system that develops an initial set of agents. This population

of agents is trained on a benchmark set of scenarios designed to teach the agents

basic static and dynamic obstacle avoidance. The trained set of agents is then

used to evolve a new generation of agents, which is placed in a simulated

environment and evaluated. This process is repeated until the population of

agents has reached a satisfactory level of performance without improvement or

has completed a predetermined number of epochs. The project employs genetic

algorithms using the well-known neuroevolutionary method NEAT to create a

new generation of autonomous agents. The performance of this algorithm will

then be compared and contrasted against Segmental Duplication NEAT, the new

neuroevolutionary algorithm this thesis introduces.

This chapter begins with a discussion of NEAT and SDNEAT, the algorithms

which will be implemented in the Neuroevolutionary System. It also reviews the

construction of this system using the components SIMBAD, PicoEvo and

PicoNeuro to form an EANN-based autonomous agent simulation system which

supports the experiments described in Chapter 4.

3.1 Algorithms

Because the problem of dynamic obstacle avoidance in dynamic environments is

so complex, a new neuroevolutionary algorithm designed to allow evolution of

more complex solutions in a shorter time span was developed for this project.

The new strategies introduced in this innovative neuroevolutionary algorithm do

31

not affect the existing genomes' learned behaviour and offer the possibility that

more complex behaviours may arise quickly from low levels of complexity. This

new algorithm is called Segmental Duplication NEAT (SDNEAT). It is

predominantly based on the methods that NEAT employs but introduces a new

mutation method called segmental duplication. This method is based on the

process of segmental duplication in biological life forms. Segmental duplications

can be an advantage to evolution in biological life forms by facilitating high

amounts of mutation and innovation while maintaining a low probability that the

existing genome will be completely disabled (Bailey & Eichler, 2006).

Testing the performance of the new SDNEAT algorithm will entail comparing its

performance with the original NEAT algorithm developed by Kenneth O.

Stanley and Risto Miikulainen (Stanley & Miikkulainen, Evolving Neural

Networks through Augmenting Topologies, 2002). The following section

discusses NEAT as it is described in Stanley's dissertation (Stanley, Efficient

Evolution of Neural Networks through Complexification, 2004) and how it

works as a genetic algorithm. It then reviews how SDNEAT extends the existing

NEAT algorithm.

3.2 NeuroEvolution of Augmenting Topologies (NEAT)

NEAT is an efficient system for evolving artificial neural networks in a genetic

algorithm. Pardy because like all HEAs it modifies both structure and weights,

NEAT can evolve extremely complex minimalist solutions to a variety of

problems (Stanley, Efficient Evolution of Neural Networks through

Complexification, 2004). NEAT is also one of the few neuroevolutionary systems

that can perform evolution using both mutation and crossover operators. It is not

always obvious how to perform a crossover operation in a neural network

because the structures of different neural networks are not necessarily related.

32

Therefore crossover operators have to perform complex analysis of the network

structure to find appropriate points for crossover of the neural networks or

phenomes. This problem is compounded by the fact that the genomic

representation of the phenome does not clearly indicate where crossover can and

cannot occur.

NEAT solves this problem by using historical markings in each element of each

genome. Each node and link in NEAT added after the initial population of

genomes is created has a historical marking attached to it. This guarantees that

new innovations in structure are identifiable and recorded. This is just one of the

ways in which NEAT is an innovative neuroevolutionary algorithm.

3.2.1 Genetic Encoding for N E A T

This section explains how genetic encoding works in NEAT. The genetic

encoding for NEAT is slightly more complex than for some other

neuroevolutionary algorithms simply because a NEAT gene encodes more

information.

Each genome in NEAT contains a list of links and a list of nodes. Each link and

node in these lists is referred to as a gene of the genome, and a genome

comprises the entire set of hereditary information for an individual. Each link

contains values for its input node and output node, the connection weight,

information about whether the link is enabled or disabled and an innovation

number. The innovation number serves as the link's historical marking, denoting

hereditary information about the gene. The innovation number allows the

crossover algorithm to detect if its gene is similar to another innovation in a

different genome. A node contains slighdy less information than a link, including

a unique node identification number, an activation response value, a disable bit

33

variable and an innovation number. When the genome is converted to its neural

network manifestation, it is referred to as a phenome. A phenome is the virtually-

physical interpretation of the genotypes of the genome. Proper phenome

structure must be conserved stringently during mutation and crossover

operations. The link and node connectivity information comprise the physical

characteristic, or genotype, information of the genome. When the genotype

information is expressed physically, the observable characteristics are called the

phenotypes.

34

Genome (Genotype)

Node Genes

Node ID: 1
Type: input
Enabled bit; On
Innovation: 1

Nods ID: 2
Type: Input
Enabled bit: On
Innovation: 2

Node ID: 3
Type: Input
Enabled bit: On
Innovation: 3

Node !D: 4
Type: Output
Enabled bit: On
Innovation: A

Node ID: 5
Type: Hidden
Enabled bit On
Innovation: 6

Node ID: 6
Type: Hidden
Enabled bit On
Innovation: 6

UnKQeftes

Input Node: 1
Output Node: 5
Weight: 0.6
Enabled bit: On
Innovation: 7

Input Node: 2
Output Node: 5
Weight: 0.2
Enabled bit On
Innovation: 8

Input Node: 2
Output Node: 4
Weight -0.3
Enabled bit: On
Innovation: 9

Input Node: 3
Output Node: 6
Weight: 0.7
Enabled bit: On
Innovation: 10

Input Node: 5
Output Node: 5
Weight: 0.5
Enabled bit: On
Innovation: 11

Input Node: 5
Output Node: 4
Weight: 0.24
Enabled bit Off
Innovation: 12

Input Node: 5
Output Node: 6
Weight 0.67
Enabled bit: On
Innovation: 14

Input Node: 6
Output Node: 3
Weight: -0.23
Enabled bit On
Innovation: 1G

Input Node: 6
Output Node: 4
Weight; -0.12
Enabled bit: On
Innovation: 17

Artificial Neural Network (Phenotype)

Figure 3.1: Genotype and Phenotype Example for the NEAT
Algorithm. Above is an example of a genotype that represents the
displayed phenotype. There are six nodes: three input, two hidden
and one output. There are nine links, two of which are recurrent
and one of which is disabled. The disabled gene (connecting nodes
5 and 4) is not displayed.

35

3.2.2 N E A T mutation operations

Mutation operations in NEAT can change connection weights, node activation

values and network topology. All these mutations occur randomly, constrained by

a fixed probability which is defined for each individual simulation. Weight and

activation value mutations occur when a random node or link is chosen and its

weight is perturbed by a constrained random value. NEAT mutation operations

change network topology by adding links and nodes. When the GA mutates a

link, it randomly chooses two nodes and inserts a new link gene with an initial

weight of one. If a link already existed between the chosen nodes but was

disabled, the GA re-enables it. Finally if there is no link between the chosen

nodes and an equivalent link has already been created by another genome in this

population this link is created with the same innovation number as the previously

created link as it is not a newly emergent innovation. A node mutation is similar

to a link mutation but differs from it in that instead of choosing two nodes and

inserting a link, the GA chooses and disables an existing link and inserts a node.

The GA inserts this new node with a random activation value, as well as two link

genes to connect the node to the now-disabled link's previous input and output

nodes. The GA then transfers the weight from the disabled link gene to the new

link gene, which is connected to the old output neuron. The weight of the link

gene inserted between the new neuron and the old input node is set to one so as

not to disturb any learning that has already occurred in this connection.

Introducing a new node where a link once existed may fragment some evolved

knowledge in the phenome. Copying the original link weight to one of the new

node's links while setting the other connecting link weight to one minimizes the

disturbance in learning.

36

ted Genome (Genotype)

NID:1
Type: input
HD:1

NID:2
Type: Input
IID:2

NID:3
Type: Input
IID: 3

NID:4
Type: Output
IID: 4

NID:5
Type: Hidden
IID: 5

NID:6
Type: Hidden
IID: 6

NID:9
Type: Hidden
IID: 19

f ' Link Genes >.

In Node: 1
Out Node: 5
IID: 7

In Node: 2
Out Node: 5
IID: 8

In Node: 2
Out Node: 4
IID: 9

In Node: 3
Out Node: 6
IID: 10

In Node: 5
Out Node: 5
IID: 11

In Node: 5
Out Node: 4
Enabled; Off
IID: 12

In Node; 5
Out Node; 6
IID: 14

In Node; 6
Out Node: 3
IID: 16

In Node: 6
Out Node: 4
Enabled; Off
IID: 17

In Node: 2
Out Node: 6
IID: 18

In Node: 6
Out Node; 7
IID; 20

In Node: 7
Out Node; 4
IID; 21

0

/
(1 \

(TV

Wutated Pfjenetype

"X
J^C

^

)—\'Y

Figure 3.2: Mutation Example: A mutated form of the original
genome displayed in figure 3.1 is shown here. Both a link and a node
mutation have occurred to create a new phenotype. A link genome
has been added to connect node 2 and 6. During the node mutation
the link between node 6 and 4 was disabled and a new node (node 7)
was added. In the definition of the link genes, the values once
contained in the now-disabled link have been added to the link
between nodes 7 and 4 and the link between nodes 6 and 7 has been
set to a value of one to preserve the original learned value.

These mutat ion functions introduce complexity into the initial population,

referred to as base genomes, and gradually g row a solution to the given fitness

function. Since the processes are pseudo r andom a diverse populat ion of

genomes will evolve. T h e crossover function mus t be able to recombine these

inherently different topologies efficiently. I t does this using historical markings

also known as innovation numbers .

Because the innovation numbers are unique to innovations and no t to genes, it is

possible to compare any two genomes in the populat ion and determine which

genes they share. If two genes share the same innovation number they also share

37

the same manifestation, or phenotype. Innovations are preserved among genomes

in the same population. In order for mutation and crossover to function in

NEAT, the system must maintain a database of all the innovations that have

occurred since the first generation of each simulation. When a new innovation

occurs it is checked against the database of innovations to ensure that it is not

identical to an existing innovation. If its originality is confirmed, a global

innovation number is incremented and assigned to it and it is recorded in the

innovation database. This guarantees that while each genome might have a

different structure with different weights, all related genes are identical. When a

crossover operator is applied to two genomes the offspring inherits the same

innovation number in each gene. This preserves the historical markings through

generations. This preservation of historical markings prevents the crossover

operation from becoming too computationally intensive and the networks from

exploding in size because of crossover.

38

3.2.3 Crossover in N E A T

DTI I INTO?
I M | |np. 2

tttflC GENES

l:1->0:S
W:0.8
IID: 7

:2->0:6
N.0.2
ID: 8

1 3 >0 6 a M * 0 ^
W:0.7
IID: 10

l:5->0 8
ffi$&t W 0 67
$ • « IID 14

:6->0:4
N: -0.12
ID: 17

r H60B0EHES \
|NID: 1
IID: 1

|NID:2
IID: 2

I |NID: 3
| |llD: 3

I |NID:4 |NID:5
| | l lD:4 ||ID:5

I]NID: 6
| |IID: S

I [NID: 9 I
J HID: 19

/
:1->0:5 l:2->0:5 l:3->0:6 l:6->0:5

fcv fcv b j ten
S->0:6

JW: 0.67
IID: 14

l:2->0:6
W:1.0
IID: 15 pbttr i

;6->0:7
|W 1 0
IID 2D

Perform Crossover
l:1->0:5
W-.O.B
IID: 7

l:2->0:5
W:0.2
IID: 8

i:3->0:6
W: 0.7
IID: 10

m&t?t% I5-WJ6
" WW W:0.07

%$ IID 14

:6->0:4
|W: -0.12
IID: 17

2->0:5
|W: 0.2
IID: B

5->0:5
|W: 0.5
110:11

5->0:6
W; 0.67
IID: 14

:7->0:4
|W: -0.12
IID: 21

Excess Excess Excess

f HOPEQEHES >
|NID: 1
|llD:1

|N1D:2
|I1D:2

] INID: 3 ||NID:4 1 INID: 5
}|llD:3 | | l lD:4 | |llD: 5

| INID: 6
J |ll0: 6

1 INID: 9 1
IID: 19 J

J
/ «SK«EN6S

l:1->0:5
W;0.6
IID: 7

l:2->0:6
W:0.2
IID: 8

l:3->0 e
W:0.7
IID: 10

l:5->0:5
W:0.5
IID: 11

mux*
l:6->0:6
W: 0.87
IID: 14

l:2->0:6
W:1.0
IID: 15

l:6->0:4
W: -0.12
IID: 17

l:B-X):7
W:1 0
IID: 20

:7->0:4
W: -0.12
ID: 21

"N

Figure 3.3 Crossover Operation: Although the parents are
structurally different, their innovation numbers show that they are
very closely related. Crossover happens easily without requiring
structural analysis.

During a crossover operation, NEAT can quickly determine how to line up the

two parents' genes. Once they are aligned it is easy to see which portions are

similar and which are different. Any genes that do not share innovation numbers

with genes in the other parent's genome are referred to as disjoint and are added to

the child during crossover. If either parent has genes that are newer than any of

39

the genes in the other parent, they are considered excess and are also added to the

child during crossover. All genes mat are shared by both parents are inherited by

the child from the parent with the highest fitness. A gene that is disabled in one

parent but enabled the other has a chance of being re-enabled in the offspring.

This method of crossover allows NEAT to build increasingly complex ANN

structures without restricting compatibility between genomes. Unfortunately this

level of complexity works against the genetic algorithm as it cannot support such

diversity in its population. A structural innovation that could exceptionally

improve performance in a later generation may introduce a major change in a

given genome, but since it requires a few generations to reach its full potential it

may be erased from the population before it has a chance to affect performance.

This is why NEAT employs speciation: to protect genomic innovation.

3.2.4 Speciation

In natural evolution entities that once shared a common genome sometimes

diverge so much that they can no longer mate with one another. This divergence

is known as speciation. In NEAT, as the genomes in a population grow

complexity a new innovation in their topology may result in greater performance

for the population's agents. NEAT uses speciation to protect such innovations.

When an agent's structure diverges far enough from that of the other agents in

the population NEAT identifies it and places it in its own species. Using

innovation numbers NEAT can calculate the distance between two genomes.

The distance is defined by the following function:

40

CiE c?D _
S = ^ - + ^ - + c3-W

N N 6

Figure 3.4 Distance Between Genomes: The distance 8 between
two genomes is the sum of the number of excess (E) and disjoint
(D) genes, and the average of the weight differences of the two
genomes (W). The coefficients ch c2, and c3 modify the weights of
each of the variables and N is the number of genes in the larger of
the two genomes.

Initially one species is formed from the entire first generation. The first genome

in the generation becomes the champion of that species since the population is

uniform. As the algorithm proceeds and more complexity is introduced distances

between genomes will increase until they are larger than the distance threshold.

At this point, NEAT designates this structurally different genome a new species

and names it as the species champion. As other genomes' distances from their

species champion increases, they may be placed in a different existing species if

their distance from that species champion becomes small enough.

NEAT maintains species through generations to protect innovation and as an

evaluation method for the effectiveness of an innovation. If no members of a

species rise above their existing champion in fitness for a set number of

generations, the entire species is terminated, unless its champion is the population

champion.

To determine the number of genomes each species can introduce into the next

generation, NEAT uses explicit fitness sharing. Each species is assigned a certain

number of reproduction spots based on the sum of the species' adjusted fitness

values. Each genome's adjusted fitness score is based on its distance from every

other genome in the population. The lowest-performing fraction of each species

does not reproduce, and the highest performer from each species carries over to

41

the next generation via per-species elitism. Any remaining reproduction spots are

filled through random selection.

If a species becomes too large, its genomes cannot reproduce productively

because they do not have enough reproduction spots in the next genome. This

keeps the species' sizes reasonable and is necessary for speciation-based evolution

systems. If species size were not restricted one species could grow to dominate

the entire population and the benefit of speciation would be lost. Most genomes

in a species are structurally similar because new structural innovations are slowly

added to the phenotypes, reducing the generation by generation structural

variation. Hence speciation protects innovation.

The NEAT algorithm is a robust EANN. It uses speciation to protect

innovation, and it uses innovation numbers to perform all GA operations

efficiently. The efficiency of the GA operators helps NEAT limit increasing

complexity. This combination allows NEAT to search a broad solution space

efficienuy while minimizing the complexity of its solutions.

3.3 Segmental Duplication NEAT (SDNEAT)

Segmental Duplication NEAT is based on NEAT and inspired by recent research

of the human genome. This recent research claims to show that large segments of

the human genome that are purely duplicate genetic information may be critical

requirements for the advancement of the species (Bailey & Eichler, 2006).

Nearly 14% of the human genome consists of segmental duplications. In

comparison, the mouse genome is approximately 7% segmental duplications and

the chimpanzee genome is only about 5% segmental duplications (Bailey &

Eichler, 2006). These segmental duplications also appear to be at least somewhat

42

non-random. Segmental duplications show a higher rate of copy variation, or

mutation. They appear to be favoured in gene selection and several functional

categories that are reali2ed in human beings appear to be enriched by segmental

duplications (Bailey & Eichler, 2006). One example of this enrichment is the

human immune system (Bailey & Eichler, 2006). The high percentage of

segmental duplications in the human genome seems to imply that they are key to

faster innovation through genetic processes. They protect the genome from

harmful mutations because they are duplicates, and most mutations to them will

not affect the existing genomic functionality. The human male gender

chromosome (the Tf chromosome), shows a very high amount of segmental

duplications; approximately 50% of its genes are segmental duplications. This

may imply that segmental duplications prevent genetic stagnation in the male of

the species; the V chromosome routinely undergoes mutation (Bailey & Eichler,

2006). This amount of mutation is required as the 'Y' chromosome never

performs crossover with other chromosomes.

All these reasons support the development of a new version of the NEAT

algorithm. Segmental Duplication NEAT (SDNEAT) is be based on the NEAT

algorithm but includes a new mutation operator which will identify a segment of

genetic information, duplicate that segment, heavily mutate it, and integrate it

back into the genome. This duplicated segment may offer an evolutionary leap,

and cause the algorithm to find new solutions to the problem. Using SDNEAT,

innovations are still protected by speciation so all the advantages of the NEAT

algorithm are preserved. It is important to note that NEAT would be capable of

evolving any solution SDNEAT can evolve. However the chances of NEAT

evolving exactly the same segmental duplication are quite low as it would require

multiple new node innovations in a particular sequence.

43

3.3.1 A Segment

In order to develop a segmental duplication operation a segment must first be

defined, because the concept of segments does not exist in the original NEAT

algorithm.

Definition: A segment is an array of n nodes and m links:

S n : (n > 0)

Lm'.(m> 1)

S contains only hidden nodes.

5* : Sx is not an input or output node.

The segment is connected to both an input and output node.

L0 : arrives from an input node

Lm •• connects to an output node

The segment is not recurrent.

L™_1 : Lx connects Sn to Sn+1

This definition states that all segments for SDNEAT begin at an input node, end

at an output node and must contain at least one hidden node to a maximum of n

hidden nodes. There are no recurrent or loopback connections in a valid

44

segment. Some of the problems of identifying a valid segment algorithmically are

eliminated by limiting a valid segment to this subset. The portion of the algorithm

that identifies a valid segment need only walk a path through the neural network

from an input node to an output node. It can ignore recurrent connections along

the way.

3.3.2 Segmental Duplication

Because identification of a segment is simple and the beginning and endpoint of a

segment is limited to an input node and an output node, inserting the duplicated

segment is also straightforward. The identified segment is already a valid path in

the neural network so duplicating it and inserting it between the same input and

output nodes does not destroy the genome, but it does modify a substantial

portion of the genome's genetic code. This enhanced rate of growth does not

significantly increase complexity as it relies on the original NEAT methods for

topological growth and cannot evolve any structure that NEAT could not. It

simply causes generational leaps to happen faster. In fact, no segmental

duplications can occur without original NEAT node mutations. The initial

genomes contain only input and output nodes and because, by definition, a

segment cannot contain an input and output node.

45

GENOME 1

NODE GENES

NID:1
110:1

iNID:2
|||D:2

NID:3
IID:3

NID:4
IID:4

NID:5
IID:5

NID:6
IID:6

l:1->0:5 l:2->0:5
W: 0.6 W: 0.2
IID:7 IID:8

l:3->0:6
W:0.7
IID:10

!:S->0;4
fi: 0.24
!ICM2 .

l:5->0:6 l:6->0:4
W:0.67 W:-0.12
IID:14 IID:17

Identify segment
f PHENOME1 \

PENOME 1 IDENTIFIED SEGMENT .

NID:5
IID:5

NID:6
IID:6

l:2->0:5
W:0.2
IID:8

l:5->0:6
W: 0.67
IID:14

l:6->0:4
W: -0.12
IID:17

Create New Innovations for Segment

NID:10
IID:25

NID:11
IID:26

l:2->O:10
W:0.2
IID:27

l:10->O:11
W: 0.67
IID:28

l:11->0:4
W: -0.12
IID:29

Insert into Genome
GFNOME 1 MUTATFD

NID:1
IID:1

NID:2
IID:2

NID:3
IID:3

NID:4
IID:4

NID:5
IID:5

NID:6
IID:6

NID:10
|HD:25

NID:11
IID:26

Iw^5

IID:7

2->0:5
W:0.2
IID:8

3->0:6
W:0.7
IID:10

I.S >0 4
W 0 24
110 12

l:5->0:6
W: 0.67
IID:14

l:6->0:4
W: -0.12

2->O:10
W:0.2
IID:27

10->O:11>
W: 0.67
UD:28

l:11->0:4
W: -0.12
IID:29

/ " PHENOME1 MUTATES N

Figure 3.5 Segmental Duplication. In Genome One at the top of
this diagram, a segment has been identified. The nodes with solid
circles are added to Sn and the highlighted links connecting the
nodes with broken circles surrounding them are added to Lm. This
segment is then duplicated and new innovation numbers are created
for all the components, the node identifiers are properly
incremented and the links are adjusted to connect to the new nodes.
These nodes and links are then appended to Genome One and the
new phenome is displayed at bottom right.

The historical markings or innovation numbers are an important aspect of

NEAT. When SDNEAT inserts a new segmental duplication, it is creating a copy

of active genes. In SDNEAT, all segmental duplications are treated as new

innovations. In the original NEAT algorithm, if a node mutation occurs which

disables a link, then later that link is re-enabled and an equivalent node mutation

occurs on the same link the innovation list identifies this as an old innovation.

46

Although the innovation list has identified it as an old innovation, NEAT

considers it to be a new innovation and has the innovation list assign it a new

innovation number. This is the base case of a segmental duplication, and

consequently all segmental duplications are treated as new innovations.

To identify a segment, the SDNEAT algorithm first randomly selects an input

node from the genomes set of input nodes. Then the algorithm attempts to find a

path to an output node, randomly chooses an output link from its current node

and, if the output link is not recurrent, the algorithm follows that link to the next

node and repeats the previous steps. Each time the algorithm steps to a new node

it copies the link and node to its arrays for duplication. If a step from an input

node arrives at an output node of the neural network, a new input node is

randomly chosen and the algorithm starts again, as by definition a segmental

duplication cannot consist of one link. If the algorithm finds an output node, it

has found a vakd segment. The algorithm duplicates the valid segment by creating

new innovations for each link and node in the segment's link and node arrays.

The weights from the original nodes and links are duplicated but the innovation

numbers are updated. The segment's weights are then mutated at a higher than

average mutation rate. Once mutation of the segment is complete the new links

and nodes are appended to the genome being mutated.

SDNEAT maintains the efficiencies and capabilities of NEAT, including all

operations and speciation, but it introduces a new operator: the segmental

duplication mutation. This new operator can drastically mutate an existing

genome without affecting the capabilities of the existing NEAT algorithm. This

drastic mutation has the potential to broaden the search area of NEAT to include

elements that would not otherwise be searched for several generations. This

mimics the genetic behaviour recently identified in the human genome. In order

to evaluate this new algorithm and its ability to evolve an efficient neural network

47

controller that can learn to effectively operate an autonomous agent in multiple

different dynamic environments, a neuroevolutionary simulation system must be

built.

3.4 Neuroevolutionary Solver

There are several systems available that use the NEAT algorithm to solve various

problems. There are also various robot simulation packages. Systems that

combine NEAT with robot simulation environments appear to not exist or are

scarce. A system that combines these components and is flexible enough to

support various simulation platforms and the addition of the SDNEAT

algorithm had to be developed for this project. A combination of available open

source simulation software and NEAT demonstration code is used to develop a

neuroevolutionary solver (NS) with the described requirements. This section will

review the various software packages and the modifications made to them to

form the simulation system.

3.4.1 Requirements

The NS is a large and complex system, but as mentioned, some of the

components have already been developed, which can decrease development time

for this project. It is important to have an effective simulation system that works

on a time slice basis, meaning that each instant of computation is one frame of

animation. A system that works in this way is effective for robot simulation as

each agent is given time to analyze its environment in simulated real time. When

an evolved system is removed from the simulated environment and deployed in

the real world, it no longer learns and its computational requirements decrease.

This allows its reaction time to increase; if the agent were required to learn in the

48

real world, real time behaviour would not be possible. This is die benefit of using

a time sliced simulated environment.

The simulation system must also be easy to integrate with a neural network

package and an evolutionary algorithm package. The methods behind both neural

networks and evolutionary algorithms are well known and software packages that

implement them are common. An open source solution is favourable, as the

evolutionary algorithm package must be combined with the NEAT and

SDNEAT algorithms.

Effective visualisation of both the simulation and the neural network

components is also necessary. Visual inspection of evolution as it is occurring and

the ability to review agents and neural networks after they have been evolved is

essential to evaluation of die performance of the system. It is also necessary to

record statistics about each evolutionary experiment.

3.4.2 Chosen components

The SIMBAD robot simulation system developed by Louis Hughes and Nicolas

Bredeche (Hughes & Bredeche, 2007) was chosen to act as the core of the NS.

SIMBAD is a Java 3D-based robot simulator. It is an open source system and

was designed for research and learning so some of the requirements listed above

are integrated into it. SIMBAD is a time sliced system. Each frame of simulation

is a distinct computational time slice. All components of the simulation that

require computational time share the computational pipeline; it is not a multi

threaded system. If it were, there would be more unpredictable behaviour with

respect to simulated computation.

49

The SIMBAD system allows users to quickly develop their own test

environments and robotic agent control systems. Agents with various control

systems are easily integrated into different environments. There is a variety of

sensors and actuators available to the simulated agents. The system is even

capable of simulating Khepera, a common hardware platform for evolutionary

robotics experiments. SIMBAD provides a three-dimensional simulation

environment for single and multiple agent simulations. It also provides a batch

mode simulation environment designed for high throughput of simulations. Since

the dynamic obstacle avoidance problem will require large amounts of simulation

and large quantities of tests with several generations must be run to mlly realize

the capabilities of an EANN, the required computation time is enormous. The

batch mode of SIMBAD will significantly decrease the computation time

requirements.

Because the SIMBAD system was specifically built for machine learning and

autonomous robot simulation, its developers recommend a neural network

package and evolutionary algorithm package for EANN simulation.

The PicoEvo and PicoNeuro packages were developed by Nicolas Bredeche and

they are designed to be integrated with the SIMBAD system. PicoEvo is a GA

system that implements the standard GA algorithmic method discussed in

Chapter One. It is a very robust and modular system. It was designed with future

expansion in mind and it supports the use of static and dynamic arrays of values

as genetic encoding. It does not support any encoding of neural network

topology.

PicoNeuro is a complete neural network system. It supports several well-known

network architectures including perceptions, multi-layer perceptrons, feed

forward neural networks, backpropagation neural networks, recurrent neural

50

networks, and self-organizing maps. It provides a visualization system for viewing

the topology of neural networks as well as investigating the adjusted weights of

both the nodes and links. Importantly, PicoNeuro supports recurrent neural

networks; this is the type of network required by NEAT and consequently by the

NS. PicoNeuro is also a modular system designed for expansion and it directly

integrates with PicoEvo. PicoEvo does support using PicoNeuro for EANN

research but the system is limited to a WEA type of EANN.

These three components combine to form an effective and extensible EANN

system. Integration of the NEAT and SDNEAT algorithms into PicoEvo is not

difficult as the system is easily extensible, but the amount of modification

required is large. The modifications to PicoEvo and PicoNeuro elevate the

system from a WEA to an HEA. The HEA-capable PicoEvo and PicoNeuro

integrate with SIMBAD to complete the NS system.

3.4.3 High Level Overview

The core of the NS is comprised of two artificial intelligence systems and one

simulation system. Applications of the NS are built on top of this core

component. These applications include experiments and simulation playback

systems. The two artificial intelligence components the simulation component

and the NS applications are contained within the NS. The AI components are

contained within the simulation system, SIMBAD. This defines a component

hierarchy for the NS.

51

Figure 3.6: NS Component Structure: This is the hierarchical
class structure of the Neuroevolutionary Solver. The simulation
system, SIMBAD, is the highest level component of the core
system. PicoNeuro and PicoEvo are integrated into it. NEAT and
SDNEAT are implemented at the extension layer of PicoEvo. The
simulation applications and the visualization system for simulation
playback (Holodeck) are built at the NS application layer.

52

3.4.4 SIMBAD

The SIMBAD simulation system is the core component of the NS system. In

order to function as an effective robotic simulation system SIMBAD implements

several components:

• A graphical user interface (GUI), for visualization of autonomous robot

and virtual environment simulations

• The simulator, which acts as the time slice simulation processor as well as

handling agent computation, world computation and limited physics

• The batch processor, a component of the GUI which is separate from

normal simulation.

The batch processor performs fast simulation with limited rendering and is

required to complete EANN simulations in a reasonable amount of time. The

GUI handles most of the visualization processing of the system. It also renders

the onscreen controls and agent inspector displays. The GUI customizes itself to

the simulation, displaying as many agent inspector displays as are required for a

particular simulation.

53

»

, 1 < < . . -r -&&B."\ '"

* 't
1 * T ,

" via

Figure 3.7 SIMBAD Graphical User Interface: In the SIMBAD
GUI shown above, several agent inspector displays appear on the
right. The main virtual world display is shown at die top left and the
simulation controls are visible at the bottom left.

The SIMBAD simulator performs most of the computation and simulation. All

the built-in agents are available through the simulator package. The simulated

sensor packages and actuators that the agents use in their respective simulations

are also implemented in the simulator package. The simulator package includes

time slice management and simulated world physics. As such, the data

representation for the simulated world is handled by the simulator package. The

SIMBAD batch processor is implemented in the GUI package but it implements

its own GUI; it uses a light version of the SIMBAD GUI. The light SIMBAD

GUI visualizes the world but it only displays one in several hundred frames of

computation. It does not implement any controls or agent interface displays; it is

designed to perform autonomous robotic simulations as quickly as possible.

54

3.4.5 Agents

The SIMBAD simulation system already supports several agents and is easily

extended to include other autonomous agent designs. There are several sensors

and actuators implemented for use in autonomous agents, including:

• A camera sensor for visualizing the three-dimensional world at the agent

level

• A gripper actuator that allows agents to grapple objects in the simulated

environment

• A lamp actuator that can be switched on and off by the agent or be set to

a flashing state

• A light sensor, which allows agents to detect sources of light

• The range sensor belt, which can be configured to simulate laser range

finders, sonar, radar and bump sensors.

In the NS system extra agents are implemented to perform required tasks. Since

the system uses ANNs for the control systems of the learning autonomous

agents, the NS supports a neural agent. This neural agent is used as the model for

all the learning robots attempting to solve the dynamic obstacle avoidance

problem in this project.

55

Figure 3.8: Neural Agent Top Down View. The SIMBAD neural
agent is configured with twelve laser range finders distributed evenly
around the circumference of the agent. The top of the agent is
equipped with a lamp actuator that lights up when the agent detects
incoming collisions. The agent uses two stepping motors for
movement; these are not visible.

The extra agents implemented in the NS also use limited global positioning

system (GPS) devices. These devices allow each agent to know how far it is from

a given goal coordinate. The simulated agents must have a goal to move towards

in order to engage in path-finding and obstacle avoidance. The neural network

controllers for the neural agents each have thirteen input nodes and two output

nodes. The input nodes take readings from the twelve laser range finders and the

GPS as their inputs and the output nodes control the agent's translational and

rotational velocity. Because this is a simulation the agents have ideal conditions to

learn in. Simulations mat are evolved in ideal environments do not fare as well in

real-world environments. To help mitigate this problem the neural agent

introduces random noise into its input sensor data, which can be equivalent to

several centimetres of variance in range and distance readings.

Not all the agents in the simulated environment are neural agents. Several dumb

agents are implemented to introduce a dynamic element to the training

environments. Straight-to-goal agents start at one location, turn towards their

56

goal, and move directly towards it. They avoid obstacles using rudimentary turn-

to-avoid protocols. Once an obstacle has been avoided the dumb agent resumes

its direct course to its goal and stops when it reaches it. Straight-to-goal loop

agents work exactly the same way as straight-to-goal agents except that once they

arrive at their goals, their goal points are changed to their original start points and

they turn to move towards their new goals. Chaos agents randomly move around

the environment in an erratic manner; they have no goals and do not stop

moving unless they get stuck.

3.4.6 Environments

Several simulation environments are available in the SIMBAD simulator. For the

dynamic obstacle avoidance problem, the development of the NS required the

addition of three specific environments to this selection. These include a maze, a

busy hallway, and a busy room environment.

57

Maze

Figure 3.9: Maze Environment. The maze environment is
designed to help develop the agents' ability to avoid static obstacles
and perform rudimentary path-finding. The agent starts in the
bottom left corner of the environment and its goal is located at the
top right corner of the maze.

58

V'w w v V^«4irJ£v|

Busy Hallway

Figure 3.10: Busy Hallway Environment. The busy hallway is
used to introduce the agents to path-finding through a dynamically
changing environment. The straight-to-goal loop agents in the
middle hallway move diagonally to the opposite end of the hallway.
The neural agent starts in the middle of the left room and its goal is
located in the middle of the right room.

59

i-awj, riTSBfrsKCTfflffiSsrr*

Busy Room

Figure 3.11: Busy Room Environment. The busy room is a more
difficult version of the busy hallway. The four dumb agents in the
middle behave the same way as the busy hallway agents. The two
dumb agents to the far right are straight-to-goal loop agents. Their
goals are located in the middle of the north and south ends of the
left room. They move diagonally towards those goals. The neural
agent's goal is in the same location as it was in the busy hallway
environment.

The maze environment is meant to help the agents evolve rudimentary path-

finding and wall avoidance behaviour. The busy hallway and busy room

environments are designed to help them evolve dynamic obstacle avoidance

behaviour. These environments are meant to increase in difficulty as the agent

attempts them in order. The maze environment requires no dynamic obstacle

avoidance behaviour of the agent, the busy hallway requires the agent to dodge

obstacles that are moving perpendicular to its goal direction and finally the busy

room environment has several agents that all collide near the opening between

the neural agent's starting room and its goal location in the adjacent room.

60

3.4.7 Holodeck

SIMBAD includes a virtual environment that can be viewed as experiments are

running. However, there is nothing in die system that can replay experiments

after they have taken place. For this project, the holodeck application was added

to the NS to solve this problem. Code components that store and retrieve trained

neural networks from disk were also added. The experiments that the NS

performs for this project span several hundred generations; without a method to

restore these trained networks there would be no practical way to evaluate how

the agents perform. A visualization of how the agents perform given a certain

level of fitness is valuable for tuning the fitness function.

The holodeck is very similar to the SIMBAD simulator environment. It differs

from SIMBAD's simulator in that its specific purpose is to simulate trained

agents in any environment that the holodeck supports. If the environment does

not specifically support neural agents as well as load neural networks from the

stored neural agents, it will not work in the holodeck. The holodeck could easily

be extended to support more simulation environments. It could also load trained

agents into environments into which they have never been introduced, provided

the environment supports this. This tool speeds analysis of the neural agents as

the experiments of an EANN cannot all be viewed simultaneously. The holodeck

allows targeted viewing of agents.

3.4.8 Extensions to PicoEvo

As has been mentioned, the PicoEvo system initially only supported WEA-style

EANNs. In this project's NS, PicoEvo was extended to support components to

implement NEAT and SDNEAT, HEA-style EANNs, and a statistics-gathering

61

package. The components added or modified to support this more complex form

of EANN include:

the NEAT Gene

the NEAT individual

the NEAT population

the NEAT population innovation list

the NEAT population species list

NEAT and SDNEAT parameter sets

the NEAT and SDNEAT statistics package

NEAT and SDNEAT selection operators

the NEAT element variation operator

the NEAT individual variation add-link operator

the NEAT individual variation add-node operator

the NEAT population variation crossover mutation operator

the SDNEAT individual variation segmental duplication operator

The NEAT Gene serves as the basic gene for the genetic encoding of the

PicoNode-based ANNs. There are two types of gene in NEAT and SDNEAT.

They have some matching characteristics. For example, they both use innovation

numbers. NEAT Gene stores these values. The two types of gene are as follows:

• The NEAT LGene is the extension to the NEAT gene that allows the

storage of link gene-specific information in NEAT and SDNEAT.

• The NEAT NGene is similar to the LGene in that it is the extension to

the NEAT gene that allows storage of, in this case, node-specific

information.

62

The NEAT individual serves as the actual genome. This component contains all

the NGenes and LGenes that compose one NEAT or SDNEAT genome. It also

provides the function to convert genomes into phenomes.

The NEAT population includes all the individuals that move through the GA.

The number of individuals in a population is limited only by the hardware's

capability. NEAT populations are compatible with SDNEAT populations.

The NEAT population innovation list works in conjunction with the NEAT

population. It tracks all die genomic innovations that happen through link and

node mutation, or in the case of SDNEAT through segmental duplication

mutation.

The NEAT population species list handles speciation of the population. The

population does not direcdy separate all the genomes into their different

populations; instead, the population species list keeps track of which agents are in

which species population and presents that data as required to the GA.

NEAT and SDNEAT parameter sets are the sets of variables that control how

the algorithm executes. They control all the probabilities of crossover and

mutation operations. The parameter sets define the size of die population, the

number of generations, the degree of mutation, the range of weight perturbations

that can occur during a link or node mutation, and other parameters that are fully

defined for each experiment. In the case of SDNEAT, extra parameters are

required to control how often a segmental duplication occurs and by how far to

exceed the normal mutation rate during a segmental duplication.

63

The NEAT and SDNEAT statistics package records statistical data for each

generation of every experiment performed in the NS. The statistics include:

• Generation versus Fitness: Maximum, Minimum, Mean, Median, Best

Current, and Best Ever.

• Generation versus Connections: Maximum, Minimum, Mean, Median,

Best Current, and Best Ever.

• Generation versus Innovation: Number of Innovations and Number of

New Innovations.

• Generation versus Nodes: Maximum, Minimum, Mean, Median, Best

Current and Best Ever.

• Generation versus Species Size: This statistic keeps track of all species

from the beginning of an experiment and logs their size versus the

generation. This information is valuable as it shows which species

performed the best, which had the most population at any point, and

how long that species lived.

NEAT and SDNEAT selection operators are separate classes in the PicoEvo

implementation. The selection operator chooses which genomes are allowed to

mate and handles all operations, including crossover and mutation. Since

SDNEAT implements an extra mutation operator there must be a separate

selection operator for it.

The NEAT element variation operator perturbs the weights in both links and

nodes when a weight mutation occurs. The NEAT individual variation add-link

operator performs a link mutation when the selection operator performs the

mutation, and the NEAT individual variation add-node operator performs a node

mutation when the selection operator performs the mutation.

64

The NEAT population variation crossover mutation operator performs

crossover on two genomes as defined by the NEAT algorithm. Crossover is the

same in NEAT and SDNEAT.

Finally, the SDNEAT individual variation segmental duplication operator

performs a segmental duplication, as defined in the SDNEAT algorithm, on a

random segment of a genome chosen by the selection operator.

3.4.9 Extensions to PicoNode

The original PicoNode supports almost all ANN operations required by the

EANNs NEAT and SDNEAT. The one operation added to the original

PicoNode package for this project is a function that serves to update a genotype.

When performing a NEAT or SDNEAT experiment the genomes must be

converted to phenotypes in order to be evaluated in the SIMBAD virtual

environment. Once the evaluation is complete the update-genotype function

updates the original genome from the trained phenome.

3.4.10 Neuroevolutionary Solver Applications

The combined components of SIMBAD, PicoEvo and PicoNeuro, with the

added implementations of NEAT and SDNEAT, allow for the development of

several test applications.

The XOR simulation uses the simple problem of evolving a neural network to

approximate the XOR function as a benchmark for the performance of

implemented versions of NEAT and SDNEAT. Since the XOR function can be

solved by a neural network with a minimum of one hidden node, both NEAT

and SDNEAT should find a solution easily and efficiently. SDNEAT will not

65

perform any better than NEAT at this task as SDNEAT does not gain any

benefit over NEAT until multiple hidden nodes have been introduced to the

population of genomes.

The avoider robot application is explicitiy created for this research project. It

implements several test environments using a batch simulation method, moving

the agent being evaluated between the different test environments before

calculating a final fitness score for the agent. This system takes full advantage of

the capabilities of the NS and can be run in both the NEAT and SDNEAT

versions.

The complete NS system allows for broad experimentation using both the XOR

simulation and the avoider robot application. Several experiments that attempt to

solve the dynamic obstacle avoidance problem are evaluated in the next chapter.

These experiments also allow for an objective comparison of NEAT's and

SDNEAT's performances.

66

Chapter 4

IMPLEMENTATION AND RESULTS

This chapter explores a set of experiments performed in both the XOR

application and the avoider robot application in an attempt to solve the dynamic

obstacle avoidance problem. To establish a benchmark for performance, both the

NEAT and SDNEAT algorithm implementations in the NS system are evaluated

with multiple experiments using the XOR application. In a second set of

experiments the NEAT and SDNEAT algorithms are used in conjunction with

the avoider robot application of the NS to search for a solution to the dynamic

obstacle avoidance problem. The results of this set of experiments are also

explored in detail in this chapter.

4.1 XOR

The XOR problem can be used as a basic benchmark for the capability of a TEA

or HEA to solve complex problems using neural networks. XOR is a binary logic

function. Logic functions are used in both computer software and hardware to

solve logic problems.

67

X

0

0

1

1

y

0

I

0

1

x + y

0

1

1

0

Figure 4.1: Truth Table for XOR. Since XOR is a logic function,
the only possible input values for it are true (1) and false (0). This
table shows that XOR's output value is false whenever its two
inputs are equivalent and true when its inputs are different.

XOR's output values are not linearly separable. This means that the two types of

output values, one and zero, cannot be separated by a single linear function. The

XOR function cannot be solved by neural networks that have no hidden nodes.

This makes XOR a good function with which to evaluate a TEA's or HEA's

ability to solve problems that require topological growth.

The XOR experiment shows that the implementations of NEAT and SDNEAT

later used in this project have the capacity to find solutions with efficient

topological structure. The rninknal neural network structure required to

implement (but not solve) the XOR problem comprises one output node and

two input nodes. The minimal structure required to solve the XOR problem

requires the addition of one hidden node that is connected to both input nodes

and the output node.

NEAT has been shown to solve the XOR problem efficiently (Stanley, Efficient

Evolution of Neural Networks through Complexification, 2004). The goal of this

experiment is to show that SDNEAT can solve XOR equally efficiently, or nearly

so. Since SDNEAT is based on the NEAT algorithm it should be able to solve

XOR. However, the addition of the segmental duplication mutation may hinder

the algorithm's capacity to find simple solutions due to its increased rate of node

68

mutations. The optimal XOR solution may not evolve before a segmental

duplication needlessly complicates the network's structure.

4.1.1 Evaluation

The fitness of the XOR networks was evaluated based on the output they

delivered. All possible inputs were tested against the trained networks and the

output was evaluated based on expected values. If the output value of the output

node was at or above 0.50 it was deemed to be a one and if the output value was

less than 0.50 it was deemed to be a zero. This evaluation of output was

appropriate because this implementation of NEAT and SDNEAT used only log-

sigmoid activation functions in the neural network nodes.

The initial population of agent neural networks had no hidden nodes and only

had links from the input nodes to the output node. The weights of the links were

all set to one. The bias value of each node in the neural networks was set to one.

The bias was not allowed to mutate during evolution, nor was it adjusted through

training.

The sums of the distances of the output values from their respective correct

output values were subtracted from four and then squared to obtain the fitness

values of solutions. The sums of the distances were subtracted from four so that

higher fitness values equated to better fitness, and squared so that the relative

values of the solutions were represented.

4.1.2 Experimentat ion

Fifty experiments were performed using XOR, twenty five using NEAT, and

twenty five using SDNEAT. Neither algorithm found the optimal solution of one

69

hidden node. It has been shown in the past that NEAT can evolve the optimal

solution (Stanley, Efficient Evolution of Neural Networks through

Complexification, 2004) but it does not always find it. On average NEAT found

a solution in 30.2 generations and SDNEAT found a solution in 24.52

generations. On average, the NEAT solutions used 3.64 hidden nodes and the

SDNEAT solutions used 4.4. It is not surprising that SDNEAT found solutions

in a shorter amount of time. There are several solutions for the XOR problem

that use multiple hidden nodes. SDNEAT's solutions are larger in structure, and

these more complex solutions, while less efficient than their simpler counterparts,

still effectively solve the XOR problem. A comparison of the two algorithms'

solutions suggests that SDNEAT can find efficient solutions to complex

problems as well as NEAT.

• • - — • • I I . | , | , , I j

Q.492

Figure 4.2: Two-Node NEAT Solution. The simplest topology
found in the twenty five NEAT experiments used two nodes: one
between each input, leading to the output node.

70

Figure 4.3: Two-node SDNEAT solution. The simplest topology
found by SDNEAT used two nodes and one recurrent link.
SDNEAT essentially found the same minimum structure as the
NEAT implementation with the random introduction of one extra
link.

NEAT and SDNEAT found similar minimal topologies to solve the XOR

problem. The average number of generations it took for the algorithms to solve

the problem indicates that SDNEAT can find efficient topologies for complex

problems faster than NEAT can.

71

c
o

a
ti

»-

s ai
13

90

80

70

60

50

40

30

20

10

0

I NEAT XOR Solution Generation Number

I NEAT XOR Number of Hidden Nodes

. JKJWI.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Experiment

Figure 4.4: NEAT XOR Performance. NEAT found several
solutions ranging in complexity from two to five hidden nodes. The
shortest time-to-solution was seven generations and the longest was
nearly eighty generations.

72

Figure 4.5: SDNEAT XOR Performance. The SDNEAT
algorithm found solutions ranging in complexity from two to six
hidden nodes. The length of time it took to find those solutions was
more consistent; the shortest length of time was eleven generations
and the longest was nearly 50.

The NEAT and SDNEAT implementations used in the NS quickly found

relatively efficient topologies for solutions to problems that required introduction

of new topological structure. This reliably shows that NEAT and SDNEAT can

probably be used to solve complex problems.

4.2 Dynamic Obstacle Avoidance

The primary goal of this thesis is to show that the dynamic obstacle avoidance

problem can be solved using a neuroevolutionary algorithm. Because the problem

of dynamic obstacle avoidance is so broad and the possible solution methods are

so diverse, a small subset of the problem was defined as the problem area for this

thesis. A solution for this subset was sought using the NS system and both the

73

NEAT and SDNEAT algorithms. This section includes a definition of the

experiment, a description of the process used to achieve results and a discussion

of the results of the experiments.

4.2.1 Problem Domain

The problem of dynamic obstacle avoidance is huge. It can vary enormously in

scale, involving small simulated autonomous agents avoiding tiny obstacles in a

maze, or powerful non-virtual robots moving pallets around in a warehouse. To

attempt this problem effectively, a domain must be defined to perform

experiments in and gather results from.

The problem domain used in this thesis is a simulated set of static and dynamic

environments, which were described in Chapter Three. The environments

include a maze, a busy hallway and a busy room. The three environments are

designed to require an increased level of complexity in the avoidance behaviour

required to master them. During an experiment, the agent being trained is placed

in the maze environment first, then the busy hallway environment and finally the

busy room environment. Training takes place in all the environments and the

agents' fitness is based on their performance in all three environments.

The maze environment does not require dynamic obstacle avoidance. Agents that

solve the maze must be able to navigate from the south west corner to the north

east corner where a goal has been placed. An efficient solution in this

environment would take a direct line past the center walls of the maze and

through a gap in the north east interior wall to reach the goal.

The busy hallway environment requires dynamic obstacle avoidance where the

obstacles are not likely to be in the way most of the time. The dumb agents in the

74

busy hallway scenario move from one end of the hallway to the other, crossing

each other's paths diagonally. This can create complex agent traffic patterns in

the opening through the hallway, but an optimal solution would simply move

through the hallway while the dumb agents are not obstructing the opening.

The busy room environment is similar to the busy hallway environment since the

northern and southern agents move in exactly the same pattern. However, this

last environment adds another level of complexity. There are two agents in the

east room that move to goals in die west room. These are timed to arrive at the

hallway at the same time as the hallway agents converge at the opening. This

creates a complex random traffic pattern as all six agents attempt to avoid each

other. Their turning avoidance algorithms result in numerous collisions. This

environment is designed to force the learning agent to collide with other agents.

4.2.2 Evaluation

The evaluation function for the avoider robot application is defined as the set of

environments the agents perform training in. This means that the evaluation

method for each individual in the population of genomes in each experiment is

the set of environments containing the maze, the busy hallway and the busy

room. For these experiments each genome in each population is placed in each

environment for thirty thousand time slices and is allowed to train its neural

network controller for that amount of simulation time. A population being

evaluated for a specific number of generations is referred to as an experiment.

An agent moving at full speed from one end of an evaluation environment can

arrive at the other end of the environment in approximately one thousand time

slices of simulated time. This amount of time was increased by thirty times during

the training scenarios to allow the agents ample time to arrive at any goal in the

75

simulated environment. Since the agents are evaluated for their performance in

three separate environments, the total amount of training time per agent is ninety

thousand time slices.

The initial population of genomes in each experiment was comprised of identical

genomes. Each genome had thirteen input node genes, two output node genes

and twenty six link node genes, and their initial weights were set to one. All of the

nodes used log-sigmoid activation functions and their bias values were set to one.

The bias values could not be changed by mutation or neural network training.

The input nodes accepted values from their simulated neural agent's twelve laser

range finders and single GPS range measurement. The output nodes provided

values to the simulated agents for translational and rotational velocity.

Each individual in each generation's population was evaluated in sequence; there

was no parallelization of evaluation, only parallelization of experiments. Each

experiment was run in a separate instance of the NS with a separate population.

The fitness of each genome in each population was defined as the sum of its

calculated fitnesses in each evaluation environment. The fitness function was

based on an original fitness function developed by Floreano and Mondada

(Floreano & Mondada, 1998) for a WEA system. The fitness function used in the

NS was adapted to include several factors that were important to the

development of agents in the three evaluation environments.

76

/ = s • (cj - \a\) • (c2 - m) • (-j)

Figure 4.6: Fitness Function. This function was used for fitness
evaluation in all the experiments performed using the autonomous
agent system. The variable S is the speed of the neural agent, a is
the angular velocity of the neural agent, m is the maximum sensor
value currently detected by a laser range finder and d is the current
distance from goal. The constants c1# C2 and C3 were set to 1.0, 1.6
and 1.0 respectively. The maximum sensor value from a laser range
finder is 1.5. However, because the sensor readings may incorporate
random noise with a maximum value of 0.1, the value of C2 is 1.6 so
as to preclude negative fitness values.

The fitness function used in the NS incorporates a distance variable. This variable

causes fitness to rise sharply as the agent approaches its goal and keeps fitness

low when the agent is far from its goal. The function is replaced by a static fitness

value of five when the agent has arrived at its goal. This value is substantially

higher than any fitness value that can be generated by the fitness function and

serves to dramatically increase the fitness values of agents that reach their goals.

The static value also mitigates the problem of division by zero when the agent is

exactly on top of its goal. The agent is considered to have arrived at its goal when

it is within 0.5 simulated meters of it.

The fitness function evaluates the fitness of an individual genome for one time

slice. The genome's fitness values for each time slice are summed over the course

of its navigation through each simulation environment to produce the overall

fitness value for that generation of the genome.

4.2.3 Experimentation

Eighty experiments were performed to solve the dynamic obstacle avoidance

problem. Forty were performed using NEAT and forty using SDNEAT. Neither

77

algorithm found a complete solution to all three simulated environments, but

SDNEAT succeeded in finding solutions for all three environments. NEAT did

find solutions for the busy hallway and busy room scenarios but failed to evolve a

solution for the maze. SDNEAT evolved a solution for the busy hallway and

busy room scenarios that nearly solves the maze problem as well. A few

generations after this solution was evolved, a solution that navigates the maze

environment was found. That agent was direcuy related to the best SDNEAT

solution agent but unfortunately the agent that solved the maze had lost its ability

to solve the busy hallway and busy room scenarios.

SDNEAT found substantially more high-fitness genomes than NEAT did using

the same given GA parameters and the same number of experiments. A fit

genome was defined as any genome that scored above 1000. The average score

for an unfit genome was approximately 350. Most genomes that scored over

1000 did approach their goals to some extent. Agents that scored above 20,000

were considered high-fitness genomes. These genomes kept their speed high,

their angular velocity low, received very litde sensory input and approached their

goals somewhat. A fitness of 20,000 could not be achieved otherwise and is a

good benchmark fitness for agents that performed well in the dynamic obstacle

avoidance experiments.

78

100000

10000

1000

• > *
m>

. »» , i

,K ,• » •*;•

ioo !•

10
w

l f i s s

K
i

I 20

0.1

0.01 *

40 60 80 100 120 140 160 180 200

Generation

Figure 4.7: NEAT's Best Generation Fitness versus
Generation. This graph charts the fitness values of the highest
fitness genomes in each generation for all forty NEAT dynamic
obstacle avoidance experiments. The various colours and shapes are
representative of each of these unique experiment data series. The y-
axis is a logarithmic scale. NEAT does evolve some very high
fitness solutions quickly.

79

Fi
tn

es
s

100000 I

1

10000

1000

Ipf"
100 p

H
10 I

1 ^

(

0.1

0.01

1

1

1-

20 40 60

\

80 100 120

Generation

,

140 160

m

180 200

Figure 4.8: SDNEAT's Best Generation Fitness versus
Generation. This graph shows the fitness values of the highest-
fitness genomes in each generation for all forty SDNEAT dynamic
obstacle avoidance experiments. The various colours and shapes are
representative of each of these unique experiment data series. The y-
axis is a logarithmic scale. SDNEAT evolves a substantial number
of high-fitness solutions.

Both NEAT and SDNEAT produce a substantial number of basic solutions. The

above graphs show a significant grouping of solutions with fitness values

between ten and one thousand. This is representative of the simplest solution in

the dynamic obstacle avoidance problem search space. The solutions with fitness

scores scattered between one thousand and ninety thousand represent localized

maximum solutions in the search space. Most of these genomes produce

solutions for one of the three evaluation environments. The third major grouping

of solutions represents genomes with fitness values of almost one hundred

thousand. These solutions succeed in solving two of the evaluation environments

and in some cases nearly solve all three. If this subset of the dynamic obstacle

80

avoidance problem is solvable by one neural agent then there is a third tier of

solutions in the solution space with fitnesses above one hundred thousand.

The following comparisons of NEAT to SDNEAT are limited to experiments

that successfully evolved multiple high-fitness solutions. Any experiment with

less than two high-fitness solutions is excluded as it does not significantly

contribute to the solutions of the dynamic obstacle avoidance problem. When

only experiments with high-fitness solutions are taken into account, NEAT does

not appear to perform as well as SDNEAT. The set of NEAT experiments

resulted in only fifteen experiments with multiple high-fitness solutions.

SDNEAT's experiment set resulted in twenty experiments with multiple high-

fitness solutions. The high-performance NEAT experiments generated 66 high

fitness solutions for an average of 4.4 solutions per experiment; the SDNEAT

experiments generated 165 high fitness solutions for an average of 8.25 per

experiment.

A high-fitness solution here can be an individual solution or a sequence of

solutions. Sequences of solutions arise from elitism; when elitism takes effect, a

solution genome passes through to the next generation. This genome may learn

new behaviour from its training in the environment but it is considered the same

solution for the purposes of these statistics.

81

S Above 20,000 fitness NEAT I Above 20,000 fitness SDNEAT

in

c o
3

o
1/1
tfi
Ql

itn

u.
00
I
o
^ 01

- Q

E
3

45

40

35

30

25

20

15

10

SL™^^JlJ^mJ I I !

1 I I I L

* 11 u IJUJH., (.JJjiiJi ^|4JjlJ| 1 4 7 10 13 16 19 22 25 28 31 34 37 40

Experiment

Figure 4.9: Number of High-Fitness Solutions versus
Experiment Number. SDNEAT performed substantially better
than NEAT in several experiments. SDNEAT's number of high-
fitness solutions exceeded NEAT's by 250%.

These results suggest that segmental duplication mutation does increase the rate

at which high-fitness solutions can be found for a given problem. In order to

compare the relative fitness of these solutions, it is necessary to categorize the

solutions based on the behaviour generated by the evolved solutions. Upon

review of the behaviour of the agents in each of the three environments, it was

found that their solutions for the busy hallway and busy room environments were

very similar. As a result, the agents' methods of solution for both the busy

hallway and busy room environments are described here with respect only to the

busy hallway.

82

4.2.4 Solutions

All 231 high-fitness solutions were observed and categorized based on the

behaviours exhibited by the evolved neural agents in the maze and busy hallway

environments. During categorization each sequence of elite genomes was treated

as an individual solution. During each generation each genome is evaluated ninety

thousand times to form its fitness score. While it is being evaluated, it is also

learning, which can change its behaviour both during evaluation and in future

generations. These changes in behaviour can cause it to be categorized

differently. In this project, when changes in the behaviour of an elite agent were

drastic enough to warrant a different categorization, they were considered new

agents. This expanded the number of high-fitness NEAT solutions to 94 and the

number of SDNEAT solutions to 190 for a total of 284 high fitness solutions.

Eight categories of behaviour emerged from the high-fitness solutions. The

following list of categories starts with the simplest solution and progresses

towards more sophisticated and complex solutions. Category 8 is the best

solution found.

4.2.4.1 Category 1:

In the maze, the agent moves towards the nearest wall and gets stuck against it.

In the busy hallway, the agent moves in small circles in a southeast direction.

When near a wall the agent continues to turn in small circles and follows the "wall

north towards the hallway opening. Once at the hallway, it turns towards the goal

and attempts to move through the hallway, still turning in small circles, and

avoiding the dumb agents until it reaches its goal. In some variations the agent

gets stuck against the inner hallway walls while attempting to move through the

hallway. Some Category 1 agents, when performing wall-following and moving

83

towards the hallway, move next to the wall without turning in circles before

switching back to circular movement as they move through the hallway.

Busy Hallway

Figure 4.10: Category 1 Solution. This solution is the most
common in both NEAT and SDNEAT.

4.2.4.2 Category 2:

The agent spins in the corner of the maze. It may move further into the corner or

very slightly out of the corner. In the busy hallway environment the agent moves

in a northeast direction in a circular pattern. The circles may be large or small.

When the agent moves close to the north east corner of the east room it enlarges

the turning radius of its circular movements and makes a large sweeping curve

through the hallway and into the west room. The agent may or may not attain the

goal. If it does not attain the goal it gets stuck against the first wall it contacts.

84

Busy Hallway

Figure 4.11: Category 2 Solution. This solution is much less
common than the other solutions. It is also inaccurate and prone to
missing the goal.

4.2.4.3 Category 3:

In the maze, the agent moves towards the nearest wall and gets stuck. In the busy

hallway scenario the agent moves directly south, and while keeping its turning

radius as large as possible it turns towards the east and orients itself towards the

goal location in the west room. The agent then speeds up, decreases its turning

radius to zero and moves straight towards the goal. There are several slight

variations on dais theme. The agent may move slowly or quickly through the turn,

but it always moves quickly through the straight portion. The agent also may alter

its directional vector to avoid the edge of the southern wall but after it has passed

the •wall it straightens its course and, typically, arrives at its goal.

85

Busy Hallway

Figure 4.12: Category 3 Solution. This is the most common
solution in both NEAT and SDNEAT. The agent typically
performs slight course corrections to avoid the first soudiem wall.
Since it then usually proceeds to the goal as fast as possible, it avoids
the hallway agents completely.

4.2.4.4 Category 4:

The neural agent spins in the corner of the maze and makes some movement

outward from the maze corner, either to the north or the east. The agents in this

category behave the same way as Category 3 agents in the busy hallway and busy

room scenarios. These agents are considered separate from Category 3 agents

because they are evolutionary precursors to later solutions.

86

4.2.4.5 Category 5:

In the maze environment the neural agent either spins in the corner, or makes

small erratic movements away from the corner but gets stuck in the middles of

hallways and does not progress to its goal. In the busy hallway and busy room

scenarios Category 5 agents have an interesting solution. They move direcdy

southeast in an elongated ellipse pattern. Then they curve back towards their

starting point, adjust their trajectories when they near the western wall, and then

move along a long curve through the hallway and to the goal.

Busy Hallway

Figure 4.13: Category 5 Solution. This is one of the most
interesting solutions in both the NEAT and SDNEAT experiments.
It is accurate and may be a precursor to the Category 3 solutions.

4.2.4.6 Category 6:

These neural agents sometimes behave like Category 3 or Category 4 agents, but

they slow down to navigate past static obstacles and speed up to push dynamic

87

obstacles out of their paths. This behaviour is akin to "bullying". This was the

most advanced solution evolved by the NEAT algorithm.

4.2.4.7 Category 7:

In the maze environment, a Category 7 neural agent spins on its center point or

in tight circular movements and follows nearby walls all the way to its goal. In all

the experiments, this was the only solution to the maze evolved, and it was only

evolved in SDNEAT. In the busy hallway and busy room scenarios it has no wall

to follow near its starting point, and it simply spins.

Maze

Figure 4.14: Category 7 Solution. This is the only evolved
solution to the maze.

88

4.2.4.8 Category 8:

Similarly to Category 7 solutions, Category 8 neural agents exhibit wall following.

However as a Category 8 agent is progressing northward against the wall, it

eventually increases its turning radius too much and gets stuck. The agent solves

both the busy hallway and busy room environments using a Category 6 approach.

All of the solutions evolved by both NEAT and SDNEAT fall into one of the

described categories. NEAT evolved solutions in Categories 1, 2, 3, 4 and 6. Its

best solution fell into Category 6. It did not successfully evolve any other

solutions. SDNEAT evolved solutions that fit into all the categories. This

suggests that SDNEAT's segmental duplication mutation may cause the

populations to evolve into a more diverse set of solutions.

89

• NEAT Solutions • SDNEAT Solutions

2 3 4 5 6 7 8

Category

Figure 4.15: Number of Solutions versus Category. This chart
shows that SDNEAT outperforms NEAT in evolving complex
solutions.

In Figure 4.15 it is clear into which category each algorithm's most advanced

solutions fall. NEAT evolved a Category 6 solution that SDNEAT also evolved.

SDNEAT evolved more sophisticated solutions, including a Category 7 solution

which was a wall-follower that solved the maze problem, as well as a Category 8

solution that integrated wall following behaviour with the Category 3 and 4

solutions mat accurately and efficiendy found the goal in the busy hallway and

busy room scenarios.

4.2.5 The N E A T Solution

The Category 6 NEAT solution was evolved in the two hundredth generation of

NEAT Experiment 25. It was composed of 25 neuron genes including its input

o
I/)

01

E

100

90

80

70

60

50

40

30

20

10

0

90

and output genes, and 60 link genes. Its fitness value was only 47237.3, which

suggests that it either did not reach its goal in the busy room or the busy hallway

scenario. This also suggests that its goal finding was not as accurate as that of

other evolved solutions. This agent did exhibit behaviour that incorporated some

elements of wall following; in the maze environment it turned on its center point

and moved towards the starting corner until it got stuck. In the busy hallway and

busy room environments it proceeded towards its goal as fast as possible. It

slowed down to avoid static obstacles and sped up to push dynamic obstacles out

of its way.

91

Figure 4.16: NEAT Solution Topology. This is the NEAT
algorithm's evolved solution to the dynamic obstacle avoidance
problem.

The NEAT solution was a relatively low-scoring population; not many of its

agents evolved high fitness values until the last generation.

92

Figure 4.17: NEAT Species History. This image displays the
species information for the NEAT solution. The x-axis shows the
generation number, the y-axis shows the population size and the z-
axis shows die species. There were 47 species over 200 generations.
No species achieved significant dominance in the population until
Generation 200. The sharp spike marked with an arrow is the
population that the NEAT solution evolved in.

4.2.6 The SDNEAT Solution

The category 8 SDNEAT solution evolved in Generation 88 of SDNEAT's

fifteenth experiment. It was composed of 19 neuron genes including its input and

output genes, and 37 link genes. Its fitness value was 98875.6, which suggests that

the agent successfully reached two out of three goals. This agent's goal-finding

was quite accurate. It has only 19 neuron genes; its topological structure is

substantially less complex than the NEAT solution. Since 15 of its genes were

93

already dedicated to input and output nodes, this solution required only four

hidden genes.

Figure 4.18: SDNEAT Solution Topology. This image shows
SDNEAT's solution for the dynamic obstacle avoidance problem.
This solution is substantially less complex than the solution evolved
by NEAT, which is shown in Figure 4.16.

94

This neural agent exhibited more advanced wall following than the NEAT

solution. Like a Category 7 agent would, in the maze it initially followed the west

wall, but eventually its turning radius increased until it got stuck turning into the

wall rather than continually avoiding it. In the busy hallway scenario the agent

proceeded to the goal so rapidly that it completely avoided the dumb agents. In

the busy room environment, the agent did not avoid the east-to-west agents and

collided with one of them on the way to its goal. It did not slow down or avoid

the dumb agent; it proceeded direcuy to the goal by pushing the dumb agent out

of its path.

The best-performing SDNEAT solution was part of a series of solutions, which

continued to evolve after the best-performing solution "was attained. After several

more generations the same solution correcuy evolved wall-following and became

a Category 7 solution. Unfortunately the agent lost its ability to solve the busy

hallway and busy room scenarios as a result.

95

Busy Hallway Maze

Figure 4.19: SDNEAT Solution. The SDNEAT solution nearly
solved all three environments and eventually evolved into a solution
that solved the maze environment. Unfortunately in the process it
lost its ability to solve the busy hallway and busy room
environments. The busy room environment is not shown above as
the agent used the same solution there as it did in the busy hallway
environment.

Interestingly the best performing SDNEAT solution had no segmental

duplications in its structure. However when tracing its genetic origins, it was

found that this solution was a direct descendant of its original species champion

which was heavily mutated with segmental duplications. NEAT could have

evolved this solution, but SDNEAT ultimately caused the solution to surface

faster. Even though the final solution actually had no segmental duplications in it,

it did have genes descended from a parent that had segmental duplications.

96

100

90 I3T
80 j

70 '

60

50

40

30

20

10

0

1 .**•
i
1'" ' m '"

M «

Ir '**
i f ' ty

4 • ••

. ' Seriesl09
.• - ..- • - Series82

• V \ \ V \ ' . •' ' . ' ; . ' - ' Snries55

c ,_,
bO'ies28

oriod
3 S * \r K5 rt - i i

T-:
 M C>

Figure 4.20: SDNEAT Species History. This image displays the
species information for the SDNEAT solution. The x-axis shows
the generation number, the y-axis shows the population number and
the z-axis shows the species. There were 109 species over 200
generations. Several of the species achieved significant dominance in
the population numbers due to their solution fitness. The sharp
spike marked with an arrow is the species that evolved the best-
performing SDNEAT solution.

The SDNEAT species history displayed in Figure 4.20, when compared to the

NEAT species history shown in Figure 4.18, clearly shows that SDNEAT

evolved significantly more high-fitness solutions.

NEAT is fully capable of evolving solutions to the dynamic obstacle avoidance

problem and is capable of evolving high-fitness solutions very quickly. However,

SDNEAT evolved highly sophisticated solutions faster than NEAT in this

project. The SDNEAT solutions exhibited extremely high fitness and were not

necessarily more complex than the NEAT solutions to the problem. While this

97

project did not completely solve the dynamic obstacle avoidance problem, future

work with the SDNEAT and NEAT algorithms may complete a solution.

Chapter 5

DISCUSSION AND CONCLUSION

The difficulty of the dynamic obstacle avoidance problem varies greatly

depending on the chosen domain of implementation. Solving the problem in a

single domain with WEAs and TEAs has been attempted in prior work.

Searching for a solution to the problem in multiple training domains seems to be

a more difficult problem to solve. Both the NEAT and SDNEAT algorithms are

capable EANN systems. The NEAT algorithm can, from a base genome,

methodically develop a neural network solution to very complex problems.

SDNEAT has all the advantages of the NEAT algorithm and increases its

performance by adding segmental duplication. These algorithms, when applied to

the dynamic obstacle avoidance problem, came close to achieving an optimal

solution.

5.1 Segmental Duplications

The NEAT algorithm introduces complexity to a population of genomes with a

basic initial structure. It introduces this complexity gradually through mutation

and crossover operators that are made manageable by the addition of historical

markings to the NEAT genes. The unique solutions evolved through the gradual

addition of complexity are protected by speciation. As speciation occurs, the

structurally diverse genomes are broken into separate groups and given time to

evolve to their fullest potential. These strengths of the NEAT algorithm are

shared by the SDNEAT algorithm.

SDNEAT introduces the concept of segmental duplication within an

evolutionary artificial neural network. The idea of segmental duplication is

99

borrowed from the natural genetic processes of life on earth. Segmental

duplications are thought to speed the genetic adaption of natural life (Bailey &

Eichler, 2006). In SDNEAT, when segmental duplication occurs the mutation

function identifies a specific sequence of nodes and links in a neural network and

adds an additional segment of similar links, heavily mutated, to the same genome.

It is hoped that the segment will speed the genetic adaption of the solutions in

the SDNEAT population.

The complexity introduced to genomes through segmental duplication is

protected by NEAT speciation. This accelerated addition of complexity has the

potential to cause SDNEAT to fail to identify structurally optimal solutions that

the NEAT algorithm may identify in a shorter time. This thesis showed that

when SDNEAT was applied to the dynamic obstacle avoidance problem, it

found higher-fitness solutions more frequently than NEAT. While SDNEAT

may introduce complexity faster than NEAT, that added complexity is protected

by speciation, increasing the total number of species. Each species contains a

proportionally smaller segment of the population but is more dispersed in the

problem solution space. The added complexity speeds the search for an optimal

solution.

5.1.1 Increasing performance of SDNEAT

While SDNEAT did evolve the most effective solutions to the dynamic obstacle

avoidance problem, there is potential to improve the methodology. All of the

agent training in this project used unsupervised learning. During the initial

simulations, agents were directly punished for colliding with an object; for the

time slices during which they were in collision with another object, they received

2ero fitness. At first this appeared to be a good practice, but it was found that

several agents quickly evolved movement toward their goals and consequently

100

collided with a wall, ceased moving and also ceased gaining fitness. This attempt

at supervising the learning of the agents resulted in undesirably low fitness values

for potential solutions.

However, a more effective type of supervised learning could be implemented.

Such supervision might involve observing and recording agent behaviour and

modifying the fitness of an agent when poor behaviour is observed, while

continuing to reward agents for positive behaviours. This method may be too

complex to implement and therefore impractical. Making the training

environments more random may limit the overspecialization of the solutions.

This might increase the fitness of the overall best solution by making it

independent of its environment.

During the dynamic obstacle avoidance experiments, the biases of the agents

were set to one as a default and were not allowed to mutate or evolve.

Introducing mutation or evolution of biases into the algorithm may offer slight

improvements to the agents' overall performance and fitness.

In this project, the agents were allowed to train in every environment, during

every time slice and in every generation in which they were evaluated. It is

possible that this resulted in the neural networks becoming over-fit, and their

performance decreased as a consequence. A smarter version of SDNEAT could

halt learning and proceed with evaluation only when the observed level of

performance reaches a certain threshold. This threshold would be dependent on

the training environment and integrated as a parameter in the SDNEAT

algorithm.

101

5.2 Dynamic obstacle avoidance

While SDNEAT did find a nearly optimal solution, it did not find a perfect

solution to the defined problem of dynamic obstacle avoidance. SDNEAT also

evolved substantially more high-fitness solutions than the original NEAT

algorithm. The best SDNEAT solution was capable of efficiently solving the busy

room and busy hallway environments, and it almost solved the maze problem.

Several generations after the best solution was evolved, one of its descendants

solved the maze scenario; however, its solution was not optimal. An optimal

solution would have taken a more direct route to the goal and would have not

spun in circles on its way there.

In an effort to optimize the evolved solutions, prior to experimentation the

fitness function was carefully honed. The initial version of the fitness function

included no modification for the agent's distance from its goal.

Early variation of the function involved subtracting the distance-to-goal from the

calculated fitness. This resulted in negative fitness, which did not function

properly in the simulator. Since the function should reduce to zero for poor

fitness behaviour, using the inverse of the distance worked well. If an agent is far

from its goal this inverse is a substantially low number, and if the agent is near the

goal the number rises sharply.

After these changes, agents still did not progress effectively toward their goals.

Various modifications were made to the fitness function to reduce the

importance of speed and turning velocity in the overall fitness. None of these

modifications resulted in higher-fitness solutions. After visual inspection of

several experiments, an increase in the number of time slices per simulation

environment was attempted. This resulted in the current value of thirty thousand

102

time slices per environment The extra time in each simulation allowed the neural

networks to adapt further to their environments and to increase the calculated

difference between high- and low-fitness solutions. This improved the ratio of

high-fitness solutions to low-fitness solutions.

Further modifying the evaluation methods might result in a better selection of

solutions. The fitness function used by the autonomous agent application could

be modified further in an attempt to optimize the agents' calculated fitness. The

score of five awarded to agents that arrived at their goals, which was used in place

of the calculated fitness function in such circumstances, could be reduced to

three or two. This 'would lower the highest-fitness score and might prevent

SDNEAT from concentrating nearly all the offspring into that one high-

performing species.

As species grew old, their average fitness scores began to decrease. This decrease

in fitness may have been due to over-training of the neural network agents. In all

the experiments, the scores of the highest-performing species eventually

decreased while the scores of originally lower-performing new species increased.

This was counterintuitive; it seems that per-species elitism should have prevented

the highest-performing agents from being changed between each generation.

However, only their topology remained static; their neural networks' knowledge

and behaviour did change. The best evolved solution, which later evolved into a

solution for the maze environment, lost its ability to solve the busy room and

busy hallway environments. This was probably due to over-training of the neural

networks. If so, the problem could be corrected using a smart-learning version of

SDNEAT, as described.

103

5.2.1 Improving the simulation

The simulation environment could be changed to increase consistency between

the experiments. Random noise was introduced into each agent's laser range-

finder signals, but this noise was not normali2ed before fitness evaluation. As a

result the fitness function may have reported a small amount of fitness when

there was none. This may have skewed fitness scores slightly. This could be

corrected by normalizing the sensor readings before fitness calculation but after

neural network training.

The simulation system itself produced a lot of random noise through

mathematical inaccuracy. The multiplicative increase of decimal inaccuracy may

have led to changes in the dumb agents' behaviour between each experiment. It is

unclear if this was a positive or negative influence on the neural agent training; it

is conceivable that it might have prevented a good solution from reaching the

goal during the early stages of its evolution. However if such a solution were truly

promising, it should have avoided the random obstacles and reached the goal

anyway.

Many of the simulations demonstrated that the agents preferred to spin even if it

decreased their overall fitness. A potential solution for this problem would be to

focus the density of sensor input from one direction. Since the agents had a

uniform belt of sensors around their circumference they had no one direction

that was optimal for detecting dynamic obstacles. Increasing the sensor density in

one half of an agent's circumference might bias the agent towards moving in that

direction. This bias is exhibited in natural life forms; for example, most human

sensory inputs are focused towards one half of their surroundings.

104

5.2.2 Future improvements

It appeared to be more difficult for the agents to evolve solutions for finding

their goals in the maze environment than in the other environments. This may

have been due to the bias of having two structurally similar scenarios where

agents had to navigate through a dynamic environment towards a goal, versus

one static maze environment. Balancing the number of similar environments

would remove the bias. Randomizing the environments, including randomizing

their start and end points, might also help to evolve more robust solutions. The

solutions that were found were nevertheless local maxima as the agents

performed well in two of the three environments. A further level of evolution

would probably find a solution for all three environments but such a solution

might still not be the global maximum solution. A global solution would perform

•well in an environment it has never encountered. Randomizing the environments

and their start points and end points might serve to evolve a robust dynamic

obstacle-avoidance agent that can perform well in any environment.

5.3 Future direction and Component SDNEAT

Although NEAT and SDNEAT can evolve efficient solutions to complex

problems, they are constrained by the topological limits of a single network.

SDNEAT provides a way to increase the complexity of evolved solutions

through a new indirect encoding method. Existing biological systems are

composed of several highly-connected neural network structures that are

genetically related but may have different structures and function completely

differently. The nerves in the eye are closely related to the nerve structures in the

brain, as they all are realized from the same DNA, but functionally the cells are

quite different.

105

A new version of SDNEAT could implement neural controllers for agents of

much greater complexity. This "Component SDNEAT" would describe its

phenotype using indirect encoding of component genes and segment genes. Each

input or set of inputs of an autonomous agent would be given its own neural

network to train and evolve. This network would then be a component of the

phenotype and would be encoded as a component gene of the genotype. The

outputs of the agent would also be grouped by component in a similar fashion. A

final component would be added that would not be connected to the inputs or

outputs of the agent but would act as a central processing unit for the agent's

input and output components. Such a component would essentially be the agent's

brain.

These components would describe the first portion of the genome and would

have originally been composed of a base set of segment genes which describe the

other portion of the genome. Whenever complexity is added to one of the

components' phenotypes through the Component SDNEAT algorithm, the

segment would be stored in the list of unique segments and the segment gene

would be added to the individual's genotype. If the innovation is not unique it

would be treated the same way that NEAT and SDNEAT would treat a non-

innovation. Essentially the NEAT algorithm would be further extended to

support segments as an innovation. The definition of a segment would be

extended to include a single link, making all innovations segments. Through this

extension, components would be completely described by this new type of

innovation at the highest level of abstraction, which would be segments.

The phenome, which would then be comprised of several highly connected but

different specialized neural networks, could be encoded in a genome using only

components and segments. Each component could store specialized information

about the input it receives from the brain component or its set of inputs from the

106

agent. The brain component could then find new patterns of complex behaviour

based on substantially more input knowledge. Breaking up the highly complex

single controller neural network into smaller component networks could have the

added benefit of allowing the input and output networks to handle far more input

and output nodes. Component input networks, for example, could be scaled up

to handle optical information from a camera sensor and then feed that

information to the brain network with a compressed pattern-matching output,

rather than requiring the brain network to optimize optical information as well as

laser range-finder information, GPS information and any other sensor input.

Mutation operations could remain the same in Component SDNEAT as in

NEAT and SDNEAT, acting only on the segment genes. Crossover could then

be defined as an operation on the components' phenomes. Input phenomes

could crossover with other input phenomes and similarly, brain phenomes could

crossover with other brain phenomes and output phenomes could crossover with

other output phenomes. This process would superficially resemble the complex

crossover process that occurs between biological cells. Components could even

be directly tied to physical aspects of their agent. This could extend the

Component SDNEAT algorithm to evolve the structure of its agent as well as

the topological structure of its neural network controller.

Using Component SDNEAT, the complexity of the neural network solutions

could be increased along with the potential for storing specialized information,

without dramatically increasing the size of the genome. Segments could scale to

this level of abstraction because they would not break the topological rules of

neural networks and would still take full advantage of the historical markings

introduced in NEAT. A Component SDNEAT algorithm could potentially scale

to solve much more complex real-world problems than NEAT or SDNEAT

alone.

107

5.4 Conclusion

NEAT and SDNEAT were first compared in order to resolve the question of

whether or not the topological efficiency of their solutions to the XOR problem

would be similar.

Experiments showed that SDNEAT evolved solutions that were as efficient in

structure as those evolved by this implementation of NEAT. SDNEAT also

found solutions in a shorter average time than NEAT. Further experimentation

with the dynamic obstacle avoidance problem showed that SDNEAT evolved

more high-fitness solutions than NEAT in the name number of experiments, as

•well as a higher-efficiency high-performance solution. SDNEAT's solution to the

dynamic obstacle avoidance problem was the only solution to exhibit solution

behaviour in all three environments. SDNEAT was also the only algorithm to

evolve a solution to the maze environment.

NEAT is capable of evolving, from simple initial genomes, complex structures

that solve complex problems. SDNEAT empowers NEAT to optimize these

solutions much more efficiently through the use of segmental duplication,

without losing any of the benefits of the original NEAT algorithm. SDNEAT

evolves complex and nearly optimal solutions for the dynamic obstacle avoidance

problem described in this thesis. SDNEAT can potentially be upgraded to

Component SDNEAT, which could evolve complete environment-independent

solutions to complex real-world problems. Future work could result in a

complete solution to the dynamic obstacle avoidance problem.

108

Appendix A

EXPERIMENT PARAMETER VALUES

This appendix reviews the definition of the parameters used to modify the

behaviour of the NEAT and SDNEAT algorithms. It also details the values used

in each NEAT and SDNEAT experiment for both the XOR and dynamic

obstacle avoidance problems.

A.1 Definitions

There are twenty-six neuroevolutionary system parameters for NEAT and

twenty-eight for SDNEAT.

1. Initial Population Size: The number of individual genomes in the initial

population in an experiment.

2. Generations: The number of generations the experiment should run for.

3. Ci- Coefficient modifying the importance of excess genes during distance

calculation.

4. C2: Coefficient modifying the importance of disjoint genes during

distance calculation.

5. C3: Coefficient modifying the importance of the average weight

difference during distance calculation.

6. Compatibility Threshold: The distance required for a genome to be

considered structurally different from another genome.

7. Threshold Increment: The amount the compatibility threshold is

modified when no speciation is occurring. Induces speciation in lower-

complexity populations.

8. Max Number of Species: limits speciation to a maximum number of

concurrent species.

109

9. Young Bonus Threshold: If a new species is below this number of

generations its fitness is boosted by the young fitness bonus.

10. Young Fitness Bonus: The amount by which a new species' overall

fitness is boosted when it is below the young bonus threshold.

11. Old Age Threshold: If a species is over this age and is not improving its

fitness is penalized by the old age penalty.

12. Old Age Penalty: If a species is over the old age threshold, its fitness is

punished by this amount.

13. Survival Rate: The percentage of the population to survive each

generation.

14. Probability Rate Replaced: The probability a link weight is completely

replaced by a new random weight.

15. Max Weight Perturbation: The maximum amount by which a weight

will be mutated.

16. Activation Mutation Rate: The probability an activation function will

be mutated.

17. Max Activation Perturbation: The maximum amount by which an

activation function will be mutated.

18. Genome Inputs: The number of inputs in a genome.

19. Genome Outputs: The number of outputs in a genome.

20. Number of Generations Allowed with N o Improvement: After a

species reaches this number of generations, if it has not improved and it

is not the species containing the genome with the population's highest

fitness, the species is killed off.

21. Crossover Rate: The probability of crossover occurring.

22. Max Number of Neurons: The maximum number of neurons a

genome is allowed to evolve.

23. Mutation Rate: The probability of mutation occurring.

24. Chance to Add Node: The probability of a node mutation occurring.

110

25. Chance to Add Link: The probability of a link mutation occurring.

26. Chance of Looped Link: The probability of a recurrent link mutation

occurring.

These parameters are specific to the SDNEAT algorithm:

1. SD Mutation Rate: The probability of a segmental duplication mutation

occurring.

2. SD Sub-Mutation Rate: The probability that a link or node mutation

will occur in a segmental duplication.

A.2 Common Parameters

Several parameters were not changed between experiments in both NEAT and

SDNEAT they are outlined in table A.l.

111

Parameter

Cl

c2

c3

Threshold Increment

Young Bonus Age Threshold

Young Fitness Bonus

Old Age Threshold

Old Age Penalty

Initial Genome Inputs

Initial Genome Outputs

XOR

1

1

0.4

0.05

10

1.3

50

0.7

13

2

Dynamic Obstacle Avoidance

1

1

0.4

0.05

10

1.3

50

0.7

13

2

Table A.1: Common parameter settings. These parameter values
were used in every experiment.

A.3 Variable Parameters

Most parameters were varied between experiments. In XOR the experiments all

used the low range value from Table A.2.

112

Parameter

Initial Population Size

N u m b e r of Generations

Initial Compatibility Threshold

Maximum N u m b e r of Species

Survival Rate

Probability Rate Replaced

Max Weight Perturbation

Activation Mutat ion Rate

Max Activation Perturbation

N u m b e r of Generations no improvement

Crossover Rate

Max imum N u m b e r of Neurons

Mutat ion Rate

Chance of Adding N o d e

Chance of Adding Link

Chance of Looped Link

Base

100

200

0.5

30

0.2

0.1

0.5

0.1

0.1

15

0.07

25

0.3

0.04

0.07

0.05

Low

50

100

0.2

20

0.2

0.1

0.5

0.1

0.1

15

0.1

25

0.2

0.01

0.04

0.03

H i g h

200

300

0.5

30

0.5

0.3

0.8

0.3

0.3

30

0.3

50

0.4

0.1

0.14

0.11

Increment

50

100

0.1

5

0.1

0.05

0.1

0.1

0.1

5

0.1

5

0.1

0.01

0.2

0.2

Table A.2: Variable parameter settings. These parameter values
were varied in individual experiments. The base value is the default
when there is no variance, the low value is the bot tom of the range of
values while there is variance, high is the top of the range being
varied and increment is the amount by which each is varied.

113

B I B L I O G R A P H Y

Abbass, H. A. (2003). Speeding Up Backpropagation Using Multiobjective
Evolutionary Algorithms. Neural Computation (15), 2705-2726.

Aguilar, J. M., & Jose, L. C.-V. (1994). Navite: A Neural Network System for
Sensory Based Robot Navigation. Proceedings of the World Congress in Neural
Networks.

Aitkenhead, M. J., & McDonald, A. J. (2002). A neural network based obstacle
navigation animat in a virtual environment. Engineering Applications of Artificial
Intelligence (15), 229-239.

Aliev, R. A., Fazlollahi, B., & Vahidov, R. M. (2001). Genetic Algorithm based
learning of fuzzy neural networks. Part 1: feed forward fuzzy neural networks.
Fu%%y Sets and Systems (118), 351-358.

Alsultanny, Y. A., & Aqel, M. M. (2003). Pattern recognition using multilayer
neural genetic algorithm. Neurocomputing (51), 237-247.

Arifovic, J., & Gencay, R. (2001). Using genetic algorithms to select architecture
of a feedforward artificial neural network. PhysicaA (289), 574-594.

Bailey, J. A., & Eichler, E. E. (2006). Primate segmental duplications: crucibles of
evolution, diversity and disease. Nature "Reviews Genetics (7), 552-564.

Blanco, A., Delgado, M., & Pegalajar, M. C. (2000). A genetic algorithm to obtain
the optimal recurrent neural network. International Journal of Approximate Reasoning
(23), 67-83.

Boozarjomehry, R. B., & Svrcek, W. Y. (2001). Automatic Design of Neural
Network Structures. Computers and Chemical Engineering (25), 1075-1088.

Buckland, M., & Collins, M. (2002). NEAT. In M. Buckland, AI Techniques for
game programming

Capi, G., & Doya, K. (2005). Evolution of recurrent neural controllers using an
extended parallel genetic algorithm. Robotics and Autonomous Systems, 148-159.

Castillo, P. A., Merelo, J. J., Prieto, A., Rivas, V., & Romero, G. (2000). G-Prop
Global optimization of multilayer perceptions using GAs. Neurocomputing (35),
149-163.

114

Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function.
Mathematics of Control, Signals and Systems, 303-314.

Fernandez Leon, J. A., Tosini, M., Acosta, G. G., & Acosta, H. N. (2005). An
experimental study on evolutionary reactive behaviors for mobile robots
navigation. Journal of Computer Science and Technology , 183-188.

Floreano, D., & Mondada, F. (1994). Automatic Creation of Autonomous Agent:
Genetic Evolution of a Neural-Network Driven Robot. Proceedings of the Conference
on Simulation ofA.daptive Behavior.

Floreano, D., & Mondada, F. (1996). Evolution of Homing Navigation in a Real
Mobile Robot. IEEE Transactions on Systems, Man, and Cybernetics-Part B (26), 396-
407.

Floreano, D., & Mondada, F. (1998). Evolutionary neurocontrollers for
autonomous mobile robots. Neural Networks (11), 1461-1478.

Garcia-Pedrajas, N., Ortiz-Boyer, D., & Hervas-Martinez, C. (2006). An
alternative approach for neural network evolution with a genetic algorithm:
Crossover by combinatorial optimization. Neural Networks, 514-528.

Golubski, W., & Feuring, T. (1999). Evolving Neural Network Structures by
Means of Genetic Programming. Genetic Programming, Proceedings ofEuorGP (1598),
211-220.

Hughes, L., & Bredeche, N. (2007). Simbad Project Home. Retrieved from
http://simbad.sourceforge.net/

Ilakovac, T. (1995). Adaptation of Neural Networks Using Genetic Algorithms.
Croatica ChemicaActa, 29-38.

Janson, D. J., & Frenzel, J. F. (1993). Training Product Unit Neural Networks
with Genetic Algorithms. IEEE Expert, 26-33.

Kassahun, Y., & Sommer, G. (2005). Automatic Neural Robot Controller Design
using Evolutionary Acquisition of Neural Topologies. Autonome Mobile Systeme ,
315-321.

Kitano, H. (1994). Neurogenetic learning: an integrated method of designing and
training neural networks using genetic algorithms. Physica D , 225-238.

115

http://simbad.sourceforge.net/

Kluge, B., Bank, D., & Prassler, E. (2002). Motion Coordination in Dynamic
Environments: Reaching a Moving Goal while Avoiding Moving Obstacles.
IEEE Int. Workshop on Robot and Human Interactive Communication.

Kluge, B., Illmann, J., & Prassler, E. (2001). Situation Assessment in Crowded
Public Environments. Proceedings of International Conference on Field and Service Robotics

Kluge, B., Kohler, C , & Prassler, E. (2001). Fast and Robust Tracking of
Multiple Moving Objects with a Laser Range Finder. Proceedings of IEEE
International Conference on Robotics and Automation .

Knoblock, C. (Ed.). (1996). Neural Networks in real-world applications. IEEE
Expert, 4-12.

Ko2a, J. R. (1998). Genetic Programming. Encyclopedia of Computer Science and
Technology.

Lee, M. (2003). Evolution of behaviors in autonomous robot using artificial
neural network and genetic algorithm. Information Sciences (155), 43-60.

Miglino, O., Lund, H. H., & Nolfi, S. (1995). Evolving Mobile Robots in
Simulated and Real Environments. Artificial"Life (2), 417-434.

Mondada, F., & Floreano, D. (1995). Evolution of neural control structures:
some experiments on mobile robots. Robotics and Autonomous Systems (16), 183-195.

Nelson, A. L., Grant, E., & Henderson, T. C. (2004). Evolution of neural
controllers for competitive game playing with teams of mobile robots. Robotics and
Autonomous Systems, 135-150.

Nelson, A. L., Grant, E., Galeotti, J. M., & Rhody, S. (2004). Maze exploration
behaviors using an integrated evolutionary robotics environment. Robotics and
Autonomous Systems (46), 159-173.

Neruda, R. (2007). Evolving neural network which control a robotic agent. IEEE
Congress on Evolutionary Computation, 1517-1522.

Nissinen, A. S., Koivo, H. N., & Koivisto, H. (1999). Optimization of Neural
Network Topologies Using Genetic Algorithm. Intelligent Automation and Soft
Computing, 211-224.

Sato, Y., & Furuya, T. (1996). Coevolution in Recurrent Neural Networks Using
Genetic Algorithms. Systems and Computers in Japan (27), 64-73.

116

Scheutz, M., Cserey, G., & McRaven, J. (2004). Fast, Reliable, Adaptive, Bimodal
People Tracking for Indoor Environments. IEEE International Conference on
Intelligent Robots and Systems.

Sexton, R. S., & Gupta, J. N. (2000). Comparative evaluation of genetic algorithm
and backpropagation for training neural networks. Information Sciences (129), 45-59.

Sexton, R. S., Dorsey, R. E., & Sikander, N. A. (2004). Simultaneous optimization
of neural network function and architecture algorithm. Decision Support Systems
(36), 283-296.

Sharkey, N. E. (1997). The New Wave in Robot Leaning. Robotics and Autonomous
Systems (22), 179-186.

Siebel, N. T., Krause, J., & Sommer, G. (2007). Efficient Learning of Neural
Networks with Evolutionary Algorithms. Lecture Notes in Computer Science Pattern
Recognition, 466-475.

Srinivas, M., & Patnaik, L. M. (1994). Genetic Algorithms: A Survey. IEEE
Transactions, 17-26.

Stanley, K. O. (2004). Efficient Evolution of Neural Networks through Complexification.
Austin: Department of Computer Sciences: The University of Texas at Austin.

Stanley, K. O., & Miikkulainen, R. (2002). Efficient Evolution of Neural Network
Topologies. Proceedings of the 2002 Congress on Evolutionary Computing.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving Neural Networks through
Augmenting Topologies. Evolutionary Computation (10), 99-127.

Stanley, K. O., Bryant, B. D., & Miikkulainen, R. (2003). Evolving Adaptive
Neural Networks with and without Adaptive Synapses. Proceedings of the IEEE
Congress on Evolutionary Computation .

Tsukimoto, H., & Hatano, H. (2003). The functional localization of neural
networks using genetic algorithms. Neural Networks (16), 55-67.

Tzafestas, S. G., Tzamtzi, M. P., & Rigatos, G. G. (2002). Robust motion
planning and control of mobile robots for collision avoidance in terrains with
moving objects. Mathematics and Computers in Simulation (59), 279-292.

Ward, K., & Zelinsky, A. (1997). Learning Mobile Robot Behaviours by
Discovering Associations Between Input Vectors and Trajectory Velocities. Tenth
Australian Joint Conference on Artificial Intelligence, 138-143.

117

Ward, K., Zelinsky, A., & McKerrow, P. (1999). Learning to Avoid Objects and
Dock with a Mobile Robot. Proceedings of the Australian Conference on Robotics and
Automation, 132-137.

Xu, F., Van Brussel, H., Nuttin, M., & Moreas, R. (2003). Concepts for dynamic
obstacle avoidance and their extended application in underground navigation.
"Robotics and Autonomous Systems ,1-15.

Yao, X. (1999). Evolving Artificial Neural Networks. Proceedings of the IEEE ,
1423-1447.

Zamparbelli, M. (1997). Genetically Trained Cellular Neural Networks. Neural
Networks (10), 1143-1151.

118

