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ABSTRACT 

This thesis presents and discusses a potential method for solving the dynamic 
obstacle avoidance problem using contemporary work with artificial neural 
networks (ANNs) and genetic algorithms (GAs) in combination with an imitation 
of a biological genetic process called segmental duplication. ANNs, GAs and 
segmental duplication are merged in the project to form SDNEAT, a type of 
evolutionary artificial neural network (EANN) system based on NeuroEvolution 
of Augmenting Topologies, or NEAT. The system is then used to develop an 
artificial neural network system that attempts to navigate environments 
incorporating both static and dynamic obstacles. 
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Chapter 1 

NEURAL NETWORKS AND GENETIC ALGORITHMS: AN INTRODUCTION 

Human beings are extremely complex systems that move about performing tasks 

in the real world without much care for other entities. They are capable of setting 

a goal, planning to achieve that goal, carrying out the tasks involved in the plan 

while adapting to changes in the environment and finally achieving their goal. 

Computer systems have yet to achieve this level of ability in simulated or real-

world systems. Currendy even the most advanced systems cannot adapt to major 

changes in their environments. These changes can cause the entire system to fail 

completely. In order for computer systems to be able to integrate more fully into 

the real world they clearly need to learn how to adapt to drastic environmental 

changes. 

The challenge of complete integration into a real-world environment is 

enormous. The complexities of the problem quickly become apparent when one 

attempts to define how a robotic system should behave when confronted with 

dynamic obstacles. A robot should not be incapacitated if a person moves in 

front of it and refuses to get out of the way. Similarly, if a large crowd moving at 

a quick pace is coming towards the robot and blocking its planned path, the 

robot should be able to manoeuvre through it. These are just two examples of 

what a robot may have to handle in a real-world environment; the number of 

possible scenarios is too large to count. Therefore a robust system must be 

developed to help robots handle complex and unforeseen situations. The 

problem can be explored in a virtual environment using virtual robots called 

"agents". Using neuroevolutionary programming, the agents' control systems can 

be evolved to navigate in environments that include both static and dynamic 

obstacles. This project's purpose is to use machine learning techniques to evolve 



an agent control system that can cope with a dynamic environment such as the 

one in the example below. 

Figure 1.1 Example Environment: Autonomous Agent obstacle 
avoidance example situation. 

This project explores this problem using a combination of artificial neural 

networks and genetic algorithms, both of which are machine learning systems, to 

evolve a simulated autonomous agent that can navigate in various test 

environments from its starting point to a goal while perceiving said environment 

through a predefined sensor package and avoiding all static and dynamic objects 

in its way. 

In order to develop such a system, a control architecture that efficiently handles 

changes to the environment is necessary. It must be relatively easy to train and 

not overly complex. An artificial neural network is the ideal tool for this task. 

However, the optimal solution will also incorporate an optimal neural network 

topology. Therefore an evolutionary approach to artificial neural network 

construction should be employed to create a relatively efficient autonomous 

agent controller. 
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An evolutionary artificial neural network (EANN) is a union of two different 

branches of computer science: Artificial Neural Networks (ANNs) and 

evolutionary algorithms or genetic algorithms (GAs). In essence, EANNs are a 

specific type of artificial neural network that use a different method for learning 

in addition to the standard ANN methods. While standard ANNs can adapt to 

dynamic environments, EANNs' combination of evolutionary and neural 

learning allows them to adapt more quickly (Yao, 1999) and take advantage of 

temporal information as well (Nelson, Grant, Galeotti, & Rhody, 2004). In this 

regard, EANNs can be considered generic adaptive systems, which means they 

can change their architectures and learning methods to suit the problem without 

human involvement. 

This project's autonomous agent controllers require an environment in which to 

learn. Since the required amount of machine learning would take prohibitively 

longer to achieve in the real world, a simulated world must developed for the 

autonomous agents. This environment must incorporate static obstacles, dynamic 

obstacles and real-world physics. It must also be capable of providing accurate 

sensor information for the simulated sensors. This sensor information is 

attenuated using a sensor noise value so that the simulated autonomous agents 

would be more likely to perform well in a real-world environment in which the 

hardware-based sensors are imperfect and would be incapable of providing ideal 

data. 

Among the issues investigated in this project is whether or not an autonomous 

agent using EANNs can learn to avoid static as well as dynamic obstacles and still 

manoeuvre. This project's primary goal is to develop a system to evolve an 

efficient neural network controller that can learn to effectively operate an 

autonomous agent in multiple different dynamic environments. 
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1.1 Requisite Knowledge 

To implement an EANN, several different types of technology are required. The 

first requirement is an artificial neural network which functions as the controller 

and learning component of the agent. The second requirement is a genetic 

algorithm that performs the optimization procedure on the agents. The third 

component is the concept of a virtual autonomous agent, or alternatively, a 

system that can function in a real-world environment without human 

intervention. Finally, due to the problem at hand, it is also necessary to 

understand the concept of a dynamic environment and the unique problems that 

occur in such an environment. A discussion of these basic concepts will follow 

before an examination of current work in the field. 

1.1.1 Artificial Neural Networks 

Artificial Neural Networks are a very common technology used in many 

production systems today. They are currendy the leading electronic simulation of 

the way a living neural system functions and as such they will probably remain in 

common use for some time. Since their conception they have been developed for 

several practical applications in the real world; some are discussed in (Knoblock, 

1996), such as voice recognition and biometric systems. 

An A N N is a mathematical model for information processing that uses a 

connectionist approach to computation. It is based on the neuroelectric systems 

of the human brain. The smallest unit of a neural network is a neuron, which 

stores a small portion of data about information to which the neural network has 

been exposed. This small portion of data can be referred to as the neuron's 

"weight". These neurons are interconnected to form a network of nodes that can 
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perform complex recognition based on the set of inputs with which they have 

been trained. 

ANNs are widely thought of as a black box form of machine learning. The term 

black box refers to the idea that, once information is captured in an ANN, it 

cannot be readily retrieved from the same ANN in a useable form. This is not 

entirely accurate, as the information can be retrieved and understood. The 

mathematics of ANNs are extremely complex and can be difficult to decipher. 

However, there are several methods of rule extraction for ANNs (Tsukimoto & 

Hatano, 2003) as well as methods for visualization of the information stored in an 

ANN. 

Today, ANNs are considered one of the best methods for solving complex 

nonlinear multidimensional problems (Tsukimoto & Hatano, 2003). ANNs lend 

themselves well to solving difficult real-world problems that cannot be solved 

using a straightforward algorithmic method (Knoblock, 1996). A simple 

multilayer perceptron with one hidden layer is provably capable of approximating 

any continuous function with arbitrary accuracy (Cybenko, 1989). ANNs are also 

computationally complete; they are equivalent in class to Turing machines. ANNs 

can do anything a computer can (Cybenko, 1989), and do not require a complete 

set of data to learn to accomplish a task (Knoblock, 1996). Usually, only a small 

amount of input data is necessary to train the network to approximate whatever is 

required of it. ANNs are used in several fields today including aerospace, 

banking, robotics and linguistics (Knoblock, 1996). 

This project does not consider ANNs alone; they are used here in conjunction 

with another advanced problem-solving system known as a genetic algorithm. 
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1.1.2 Genetic Algorithms and Evolutionary Methods 

Genetic Algorithms are among the most advanced search algorithms available 

today. They are capable of searching extremely convoluted and complex 

multidimensional search spaces and finding optimal solutions in an acceptable 

amount of time (Janson & Frenzel, 1993). GAs were invented by John Holland 

(Koza, 1998; Srinivas & Patnaik, 1994). Holland developed GAs in cooperation 

widi his students and coworkers in the early 1970s. Genetic programming, which 

is a variation of GAs, was developed in the early 1990s by John Koza (Koza, 

1998). 

Genetic algorithms are a type of evolutionary computing and are inspired by 

Darwin's theory of evolution (Srinivas & Patnaik, 1994). Genetic algorithms are 

direcdy based on biological systems; terms used in relation to them include gene, 

chromosome, recombination, mutation and crossover. In a GA, a gene is a representation 

of the data being evolved by the GA. Working with a GA involves the 

management of a population consisting of a set of genes. Each set of genes can 

serve as a parent generation for the next set of genes. Crossover and mutation are 

the two operators that a GA employs. Crossover occurs when two genes are split 

at related locations and their respective elements switch places with each other to 

form offspring. Mutation occurs when smaller portions of those genes change to 

form a new gene with different characteristics from the original. 
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All GAs follow the same basic algorithm: 

Start - Generate a random population of n chromosomes. 

Fitness -Evaluate the fitness f(x) of each chromosome x in the population. 

N e w Population — Create a new population by repeating these steps: 

Selection — Select two parent chromosomes from a population based on 

their level of fitness. 

Crossover — If determined by the defined crossover probability, 

crossover the parents to form a new offspring. If there is no crossover, 

the offspring is an exact copy of the most fit parent. 

Mutation — If determined by the defined mutation probability, mutate 

the offspring. 

Accepting - Place offspring in the new population. 

Replace - Use the newly generated population for the next run of the algorithm. 

Test - Test for the end condition. If it is found, output the solution. Otherwise, 

return to the Fitness stage. 

When developing a GA a programmer must carefully consider several issues, 

such as how to create genes from the data. If the genes are poorly encoded, the 

algorithm may be extremely inefficient or unable to use both the crossover and 

the mutation functions. At the same time, a method for performing mutations 

and crossovers must be developed. The programmer must also choose the size of 

population to use. Typically, a modest population works well, but this is not 

always the case. 

Among the most important issues the programmer must manage is the 

development of a fitness function. The function that determines the fitness level 

of each gene must be neither too simple nor too complex. If the function is too 

simple, the networks may not effectively localize. If it is too complex, they may 
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not localize at all ot may reach a non-optimal solution. The programmer must 

also choose how many parent genes will be selected from the population to 

create a new generation, and whether or not elitism should be used. Elitism can 

be thought of as "survival of the fittest"; when it is used, the fittest genes from a 

generation are passed on to the next generation without undergoing any 

crossover or mutation. 

In a sense, a GA is a directed search in that there is a goal and the algorithm 

checks many possible solutions to see if any of them work. The GA expands its 

search in the direction of whichever possible solutions have been determined to 

be closest to a working solution. GAs are capable of searching spaces that cannot 

be visualized or perceived, and are used in various fields today including 

automated design, distributed computing, protein folding and scheduling. 

This project integrates GAs with ANNs. This presents a problem, as ANNs store 

very complex information. There are several different methods for encoding the 

information in an ANN and applying a GA effectively to an ANN system. These 

methods will be discussed later in this paper. 

1.1.3 Autonomous Agents 

Autonomous agents are software and robotic entities that are capable of 

independent action such as reacting to their environments, interpreting and 

planning in an open and unpredictable environment. Autonomous agents are an 

extremely important field of research today in computer science and robotics. 

An autonomous agent can set out to perform a complex task and complete that 

task without any human intervention. Because programming an agent to perform 

these tasks is a very complex problem, researchers have been using evolutionary 
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programming to solve it and they have met with some great initial success 

(Sharkey, 1997). 

Currently, most autonomous agents are small robots designed to do simple tasks 

like find their way through a maze (Floreano & Mondada, 1994) or pick up paper 

balls in a certain area (Mondada & Floreano, 1995). Other autonomous agents are 

large robots working in a production environment and are extremely complex 

systems capable of performing several tasks completely independently of human 

intervention (Xu, Van Brussel, Nuttin, & Moreas, 2003). 

Some of the problems with autonomous agent systems in existence today can 

present serious obstacles to development. Currendy most of the training of 

autonomous agents occurs in simulation; however, these simulated environments 

are not as demanding as the real world. A great deal of current research focuses 

on creating effective means of training autonomous agents in simulation so that 

minimal training is required in the real world (Miglino, Lund, & Nolfi, 1995). The 

generational systems that train these agents would take far too long to complete 

their training in real-world time. 

Another problem that researchers have encountered is that several of their 

systems are developed for small robots which are not capable of performing 

significant physical tasks. These robots are limited to pushing small light objects 

that serve no practical purpose (Mondada & Floreano, 1995). When these robots 

are scaled up to a larger size, new problems are presented that presented no 

difficulty to a smaller robot. For example, a robot that is five centimetres in 

diameter might not damage itself badly if it impacts a wall at full speed. A robot 

with a two metre diameter colliding with the same wall at the same speed might 

be likely to destroy both itself and the wall. 
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Despite these problems autonomous agents are an extremely popular research 

topic; the benefits of having effective autonomous agents greatly outweigh the 

costs of their initial training. 

1.1.4 Dynamic Environments 

In a static environment, nothing ever changes. In a dynamic environment, things 

can change unpredictably. Even people who are unfamiliar with how an 

autonomous agent works can see that navigating through a static environment 

would be much easier for a robot than navigating through a dynamic 

environment. In a static environment every object can be used as a landmark for 

navigation. In a dynamic environment no feature can be considered static; even 

the walls could move. Therefore a different approach must be used for 

navigation. 

An autonomous agent navigating through a dynamic environment must 

reconsider everything in its movement plan every time it considers a change of 

course. This increases computational time for any system that does significant 

planning work. This computational time can be prohibitive even with the 

powerful computer hardware of today. A system working in a dynamic 

environment should be able consider the current state of the environment and 

choose a new course extemporaneously. The calculation should not be dependent 

on some far-off landmark, but should be based on the current situation the 

autonomous agent perceives in its immediate vicinity. 

Some of the inherent problems in a dynamic environment present significant 

challenges to an autonomous agent. The agent has to be able to calculate 

expected trajectories of dynamic obstacles in its environment so that it can plan 

early for avoidance and thus plan an efficient route to its goal or avoid danger. 
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However, the agent must also be highly adaptive; if it plans too early, the dynamic 

obstacle may change its trajectory and the agent's plan will no longer be viable. If 

the agent can plan its course extemporaneously it will be able to adapt quickly to 

such changes. An agent that cannot consider course changes extemporaneously 

would also be quickly overwhelmed by large numbers of dynamic obstacles that 

present a danger of collision. An adaptive agent would only be concerned with 

dynamic obstacles in its immediate vicinity, and would ignore more distant 

obstacles. Through machine learning methods and a properly honed fitness 

function, adaptive behaviour should emerge from highly-evolved autonomous 

agents. 

Dynamic environments present a challenge that is beyond the capabilities of 

existing autonomous agent control systems. There is great potential for research 

in this field; to date, the relevant research is limited. I believe that EANNs can 

provide an effective means for the creation of a control structure that can handle 

this problem. 
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Chapter 2 

CURRENT PRACTICE 

Among researchers there is presently a great deal of interest in EANNs. There 

have been many recent breakthroughs and several new types of EANNs have 

emerged from research projects (Yao, 1999). Some of this research has been 

applied to the areas of autonomous agents and obstacle avoidance (Floreano & 

Mondada, 1994; Floreano & Mondada, 1998). There has been very litde research 

concerning dynamic obstacle avoidance with autonomous agents using EANNs 

(Aguilar & Jose, 1994). The current state of the field suggests that these 

components may work well together to reach this research project's goal of 

evolving an agent control system that can cope with a dynamic environment. To 

show how GAs and ANNs can be brought together to solve this problem, this 

section will review the current research in the relevant fields. 

2.1 Evolution of Artificial Neural Network Systems 

While standard ANNs are powerful tools for problem solving, they do present 

difficulties as was discussed in Chapter 1. In an attempt to circumvent these 

problems various methods have been investigated for the creation and honing of 

new types of ANN systems. These new systems are known as Evolutionary 

Artificial Neural Networks, or EANNs (Yao, 1999). EANNs differ from 

standard ANNs in that they have an extra stage of adaptation and learning based 

on an evolutionary or genetic system (Yao, 1999). There is a variety of types of 

EANN systems available for use, and they can be broken down into four 

categories (Yao, 1999). For the sake of simplicity the first three of these four 

categories of EANN, which were defined by Xin Yao, (Yao, 1999) will be 

referred here as weight-evolving algorithms (WEAs), topology-evolving 
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algorithms (TEAs) and hybrid evolving algorithms (HEAs). The fourth category 

incorporates a wide variety of other types of EANNs. 

One type of EANN system involves the evolution of network weights. As was 

explained in Chapter 1, an ANN is a set of weighted nodes and connections 

between those nodes. The weights contained in the nodes are in the form of 

matrices that contain information from prior input data. Through 

backpropagation, these weights are updated and the overall network is trained to 

recognize certain patterns. The process of backpropagation can be long and 

computationally intensive, and in some cases it does not result in an effective 

solution. In such a case a weight-evolving algorithm (WEA) can be applied, 

which may speed up the search for a solution Qanson & Frenzel, 1993). 

A second type of EANN involves the evolution of architectures or topologies of 

ANNs. Instead of modifying the learning algorithm the ANN uses or augments it 

with a GA, the topology-evolving algorithm (TEA) relies on standard 

backpropagation while attempting to find the best ANN structure for the 

problem. An ANN with a better structure can learn faster or result in a more 

optimal solution in less time than a less well-structured counterpart. This method 

is particularly well suited to an EANN algorithm and appears to be a more 

popular method (Yao, 1999). 

Hybrid evolutionary systems are a third type of EANN. Hybrid evolutionary 

algorithms (HEAs) are an attempt to merge the first and second methods of 

evolving weights and structure into one algorithm (Yao, 1999). Hybrid 

evolutionary EANN algorithms are typically more complex than the first and 

second types of EANNs and need to take into account more variables in the 

systems they are designed for. However they can be extremely efficient and 

powerful in finding an efficient ANN structure and weight set (Nissinen, Koivo, 
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& Koivisto, 1999; Stanley, Bryant, & Miikkulainen, Evolving Adaptive Neural 

Networks with and without Adaptive Synapses., 2003). 

Finally, some researchers have taken novel approaches to developing EANNs 

and have created radically different systems that are sometimes similar to the 

three methods discussed earlier but diverge enough from them to be a considered 

a different type of system altogether (Aliev, Fazlollahi, & Vahidov, 2001; Arifovic 

& Gencay, 2001; Golubski & Feuring, 1999; Tsukimoto & Hatano, 2003; Capi & 

Doya, 2005). Some of these systems will be discussed here but they will not be a 

major focus of this section. 

The various types of EANNs have been extensively studied; many of the 

following points stem from the work of prior researchers. This chapter discusses 

and summarizes the prior research as well as presents some examples of 

algorithms that can be applied to the problem of mobile object avoidance in 

autonomous robotic agents. 

2.1.1 Weight-Evolving Algorithms (WEAs) 

Weight-evolving algorithms, or WEAs, use genetic algorithms to evolve the 

weights of an EANN's nodes. Most systems that take this approach use a 

method that minimizes an error function such as the mean squared error (Yao, 

1999). This is how an A N N is trained; backpropagation and conjugate gradient 

algorithms, which are standard ANN training algorithms, already take the mean 

squared error into account. This is a difficulty with ANNs, as they can often 

become trapped in a local minimum of the problem space. Standard GAs are less 

likely to become trapped in these local minima unless the search space of the 

ANN is extremely convoluted. 
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In such a case, a WEA can help overcome this problem without sacrificing the 

power of an ANN. In a WEA system, the set of weights in the network nodes is 

evolutionarily adapted. Standard backpropagation would perform the same feat, 

but also could become trapped in a non-optimal solution. Using a GA, this is less 

likely to occur. In order to use a WEA, first a representation of the data must be 

chosen. There are two popular formats: binary and real number. The second 

phase of developing the WEA involves choosing the operators for mutation and 

crossover and deciding whether or not either or both will be used. In addition, 

different representation schemes can lead to radically different performance and 

as such should be selected carefully. 

Binary representation is commonly used to represent data in GAs. It makes the 

operations of mutation and crossover easy to perform but consistency checking 

must be applied so that offspring are functional rather than illegal or inoperable. 

It is simple to use binary representation of the data. First, an algorithm is defined 

to extract the weights from the ANN in a specific order. Then the weights are 

converted into a fixed length binary string. Once the data is converted, the GA is 

performed on the dataset and the information is converted back to its standard 

form with a reversal algorithm. Finally, the information is placed in an offspring 

for the next iteration of the GA (Janson & Frenzel, 1993; Tsukimoto & Hatano, 

2003; Yao, 1999). 

Real number representations can also be used to encode the weights of an ANN. 

The same method is used as in binary representation to extract and then re-

encode information back into the ANN. However in real number 

representations, instead of changing the extracted weights to binary, they are 

represented by a single real number (Alsultanny & Aqel, 2003; Yao, 1999). While 

this scheme is easy to encode and decode, its primary operator is mutation and 

crossover is considerably harder to implement here than in a binary 
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representation. This can hinder the efficiency of the algorithm but will not 

completely halt its progress; it has been shown that GAs can operate effectively 

using only one of their two major operations (Siebel, Krause, & Sommer, 2007). 

WEAs have been used effectively in many circumstances. Training neural 

networks to identify the most efficient width of a CMOS circuit has been a 

problem that is not easily programmed but it can be accomplished using a WEA 

(Janson & Frenzel, 1993). When this was achieved the ANN used did not initially 

appear to solve the problem. Upon further investigation it was found that the 

search space was extremely convoluted and could not easily be searched even 

using a GA. Therefore a penalty function was employed to force the GA to 

search in areas that were closer to a solution. This involved manipulation of the 

problem, which required domain knowledge. Such knowledge may not always be 

available. 

WEAs have also been effectively used in image pattern recognition. In that case 

the network was large and complex but the WEA was nevertheless able to adapt 

relatively quickly. It offered excellent results when detecting the orientation of a 

picture of a jet airplane (Alsultanny & Aqel, 2003). 

Using a slightly different method, WEAs have also been used to increase the 

functional localization of an ANN (Sexton & Gupta, Comparative evaluation of 

genetic algorithm and backpropagation for training neural networks., 2000). In 

some cases an ANN can be developed and trained, and may give excellent results, 

but can be functionally localized and therefore is not the most efficient 

implementation of that network. To detect this problem, an algorithm can be 

implemented that extracts Boolean functions for each of the hidden layer nodes 

of an ANN. If the extracted function is too convoluted it can be deemed non-
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localized and the WEA can be used to localize the function further (Tsukimoto & 

Hatano, 2003). 

There are many different types of WEAs and they seem to be effective methods 

for learning. 

2.1.2 Topology-Evolving Algorithms (TEAs) 

The next type of EANN is the TEA, which evolves ANN architectures or 

topologies. An ANN can be accurately represented by a graph. An ANN is a 

graph-like structure and has an architecture or topology that can be modified. 

Changing an ANN's topology can drastically improve or deteriorate its 

performance. In the past, engineering the topology of an ANN has been a job for 

a human being; this was a trial-and-error procedure. Since there is an infinite set 

of possible network structures available to solve each problem, a human being 

may not be able to find an efficient architecture. However, a TEA can be 

employed to find an efficient A N N topology that solves the problem. 

This system can be more complex than the WEA method. This is because the 

entire structure of the network may be changed by the TEA and then must be 

completely retrained. However, it can also be more robust. The changed 

structures of the network may be capable of retaining very different patterns of 

information. The algorithm may find a structure that performs excellendy that the 

human designers may never have conceived. 

Similarly to WEAs, there are two main things to consider when implementing a 

TEA: the representation of the ANN or the genotype, and the GA method used 

to evolve the ANN architecture. When deciding how to represent the ANN in its 

genome there are two different extremes that may be considered. In one extreme, 
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all the information in the ANN is precisely encoded. This is referred to as direct 

encoding. The other extreme involves the encoding of only the information about 

the structure of the network that is deemed important, such as how many hidden 

layers there are, how many inputs there are, how many outputs there are and so 

on. Once the encoding scheme is chosen the programmer must decide whether 

to use mutation, crossover or both in die GA. Finally, as applicable, mutation and 

crossover must be defined so that they can operate on the genome. Once these 

two points have been settled, the TEA can operate until an effective ANN 

structure is found (Yao, 1999). 

TEAs seem to be more popular than WEAs. This may be because they can be 

easier to comprehend if a straightforward type of encoding is used. TEAs have 

been effectively employed in several different situations (Boozarjomehry & 

Svrcek, 2001; Castillo, Merelo, Prieto, Rivas, & Romero, 2000; Janson & Frenzel, 

1993). TEAs have also been modified to perform optimization as well as 

topographical evolution (Sexton, Dorsey, & Sikander, Simultaneous optimization 

of neural network function and architecture algorithm., 2004). One of the 

problems with TEAs is that the ANNs developed with them can grow to be 

extremely large and convoluted. Fortunately the algorithm can be adapted to 

perform self-pruning as it is evolving more efficient ANNs. Unnecessary weights 

and hidden nodes can thus be identified and removed from the ANN, which 

keeps the network smaller and more efficient (Blanco, Delgado, & Pegalajar, 

2000; Castillo, Merelo, Prieto, Rivas, & Romero, 2000; Sexton, Dorsey, & 

Sikander, Simultaneous optimization of neural network function and architecture 

algorithm., 2004). 

Other modifications of TEAs allow the algorithm a broad capability to adapt to 

their problems, even allowing the algorithms to define their inputs to the 

constructed ANNs. While this is a complex problem it allows for an extremely 
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efficient ANN to develop (Arifovic & Gencay, 2001; Nissinen, Koivo, & 

Koivisto, 1999). 

Some other implementations use a graphical representation of the ANN as an 

encoding scheme for its GA. This method has some similarities to genetic 

programming and can result in ANNs that are extremely large and inefficient. 

This method can be modified to restrict the size of the evolved ANNs and 

eventually evolve an efficient ANN for the problem (Golubski & Feuring, 1999). 

Some EANNs use drastically different encoding methods when implemented 

rather than using direct or indirect encoding. These systems are more akin to a 

programming language than an EANN but can be used as a basis for the TEA. 

These languages can be convoluted and difficult to apply to certain domains. 

However they can also be very efficient in describing the information in an ANN, 

and they scale well to handle large problems. (Boozarjomehry & Svrcek, 2001; 

Ilakovac, 1995). 
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2.1.3 Hybrid Evolutionary Algorithms (HEAs) 

The third type of EANN systems, HEAs, is a unification of the two systems 

described above. These systems adapt both the weight and topology of an ANN. 

This can be a complex process, but it can also be extremely effective. Both the 

adaptation of ANN weights and the adaptation of their topologies are effective 

means for searching a problem space. Combining these two techniques can result 

in a faster method for finding a solution (Stanley, Efficient Evolution of Neural 

Networks through Complexification, 2004). 

When planning the development of a hybrid evolutionary system one must 

consider the problems presented by both WEAs and TEAs. In some ways these 

problems are quite similar. Like WEAs and TEAs, HEAs require a genome 

representation for which both the mutation and crossover operators are well 

defined. This representation is critical for a functional HEA. 

HEAs have been implemented effectively and they show some very good results 

which are at least on par with results demonstrated by TEAs and WEAs (Stanley, 

Bryant, & Miikkulainen, Evolving Adaptive Neural Networks with and without 

Adaptive Synapses., 2003; Abbass, 2003). One type of HEA involves what is 

called neurogenetic learning Qanson & Frenzel, 1993; Kitano, 1994). This type is 

a standard GA combined with ANNs but it uses the GA to develop the structure 

of the network simultaneously with the weights of the network, rather than 

randomly inserting weights in the network after its structure is defined by 

crossover and mutation. A few complex systems are used to determine the values 

for each stage of the GA: a graph grammar interpreter for structural evolution 

and a CAM (Cell Adhesion Molecule) matrix for weight evolution. This method 

is heavily based on biological techniques (Kitano, 1994). 
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A method similar to neurogenetic learning refers to the problem as a 

multiobjective optimization problem, or MOP. An ANN is described as a MOP 

and presented to a mimetic, which is a GA augmented with a local search, to 

develop an effective HEA (Abbass, 2003). 

Another algorithm designed to work as a hybrid EANN is NEAT, or 

NeuroEvolution of Augmenting Topologies. This algorithm uses a GA to evolve 

topologies of ANNs and to develop initial weights for the evolved ANNs. 

NEAT defines an effective method for crossover and mutation while maintaining 

a fairly simple representation of the ANNs adapted by the system. It also offers 

some very effective results (Stanley & Miikkulainen, Efficient Evolution of 

Neural Network Topologies, 2002; Stanley & Miikkulainen, Evolving Neural 

Networks through Augmenting Topologies, 2002). 

There is little research done in the field of hybrid EANN systems, as they are 

complex. However they do offer effective and efficient search results for 

EANNs. 

2.1.4 Other Methods 

Finally, some EANNs do not fit neatly into any of the three described categories, 

but do share some characteristics with WEAs, TEAs and HEAs. These other 

EANNs take a more novel approach to one or more of the previous systems and 

are only mentioned here to indicate the wide range of possible solutions that are 

being researched. 

One method involves the use of co-evolution to speed up the EANN process. In 

this method there are two GAs competing against each other in the same 
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domain, which drives them both to reach their respective solutions faster than a 

standard GA would (Sato & Furuya, 1996). 

Another method which could be considered an EANN uses fuzzy neural 

networks (FNNs) instead of ANNs. An F N N differs from a standard ANN in 

that it can have fuzzy weights or fuzzy inputs, or both. This can present a 

problem for training as all common ANN training algorithms require static values 

for weights and inputs, not the range of values a fuzzy variable can represent. 

However a GA can be used to effectively train an FNN (Aliev, Fazlollahi, & 

Vahidov, 2001). GAs are very effective training mechanisms; they have been 

shown to be more effective at training ANNs than standard backpropagation 

methods (Sexton & Gupta, Comparative evaluation of genetic algorithm and 

backpropagation for training neural networks., 2000), and have also been shown 

to train cellular neural networks effectively (Zamparbelli, 1997). Cellular neural 

networks are a type of distributed neural network, which means they are another 

variety of EANN (Zamparbelli, 1997). 

2.2 EANNs for Autonomous Mobile Agents 

As mentioned, autonomous agents are a leading research area in computer 

science and robotics. However, these systems are inconvenient to program; it is 

difficult to predict the problems that an agent will encounter when attempting to 

perform a task in the real world. Unpredictable factors can lead to undesired 

emergent behaviour. Sensor noise and echoes can greatly affect how a robot 

perceives its environment. The way light casts a shadow on a wall can affect how 

a visualization system interprets a corner. It is for this reason that most research 

into autonomous mobile agents today involves evolved artificial neural networks. 

Using EANNs, autonomous agents can be developed and tested in a simulated 
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environment and then exported to a non-virtual robot. Then they can be tested 

again in the real world before being deployed. 

Many modern autonomous agent systems have one of two different types of 

EANNs at their cores: either a WEA or a TEA. Most of today's autonomous 

systems are also initially developed in a simulated environment before being 

deployed in the real world. 

This section will discuss some of the implemented EANN systems and contrast 

the problems inherent in simulated and real-world training environments. Finally, 

this section will review some of the current research involving the application of 

EANN systems to autonomous mobile agents. 

2.2.1 Artificial Neural Network Configurations 

The two most commonly used types of EANNs are WEAs (Floreano & 

Mondada, 1998; Lee, 2003; Miglino, Lund, & Nolfi, 1995; Mondada & Floreano, 

1995) and TEAs (Nelson, Grant, Galeotti, & Rhody, 2004; Ward, Zelinsky, & 

McKerrow, Learning to Avoid Objects and Dock with a Mobile Robot, 1999; 

Xu, Van Brussel, Nuttin, & Moreas, 2003). These are also the most common 

types used for the evolution of autonomous agents. Typically if a robotic agent is 

small and simple it will be controlled by a basic ANN that is only modified 

through a WEA. A basic A N N is appropriate for such a problem because small 

robots generally have limited processing capacities and would not be able to 

handle the processing required by a more complex ANN (Floreano & Mondada, 

1998; Miglino, Lund, & Nolfi, 1995; Mondada & Floreano, 1995). There are also 

robotic systems implemented with far more complex onboard processing systems 

which could easily handle an adaptive ANN structure outside of a simulated 

environment. However, typically the topologies of robotic systems are developed 
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in a simulated environment before deployment into non-virtual robotic systems 

(Nelson, Grant, Galeotti, & Rhody, 2004; Ward, Zelinsky, & McKerrow, 

Learning to Avoid Objects and Dock with a Mobile Robot, 1999; Xu, Van 

Brussel, Nuttin, & Moreas, 2003). 

2.2.2 Simulated Environments and Real-World Environments 

There are two ways to develop and train an EANN. One is to develop the entire 

system, including both the autonomous agents and their training environment, in 

a software simulation. Simulated environments are used to evolve most 

autonomous agent EANN systems because simulated environments are not 

limited by the constraints of real-world time. A full EANN training simulation 

and then a full generational cycle can take mere minutes to complete on a 

sufficiently powerful computer. The second way to develop and train an EANN 

involves running a similar generational cycle on a computer, then transferring the 

agents to their robotic bodies, performing the training cycle and finally 

transferring the agents' control systems back to the generational system. This 

method could take more than an hour to complete one generational training 

cycle. Because a true EANN system typically requires several hundred 

generations to sufficiently evolve, the length of time required to perform each 

training cycle is extremely important. 

Whether an autonomous agent system can effectively be trained in a simulated 

environment and then deployed in a real-world environment without needing to 

be retrained in the real world is a matter of much debate. Some systems that are 

evolved in simulation are subsequently implemented in real-world hardware to 

prove that the resulting system is realistically functional (Floreano & Mondada, 

1998; Miglino, Lund, & Nolfi, 1995; Mondada & Floreano, 1995; Nelson, Grant, 

Galeotti, & Rhody, 2004; Ward, Zelinsky, & McKerrow, Learning to Avoid 
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Objects and Dock with a Mobile Robot, 1999; Xu, Van Brussel, Nuttin, & 

Moreas, 2003). It is effectively impossible for a virtual environment to simulate all 

of the subtle details and variations of a real-world environment. However, 

programmers creating a simulation can partially compensate for unpredictable 

real-world environmental factors by adding noise to the simulated sensors. They 

can also perform tests on non-virtual system sensors to see how they behave in 

the real world, and then incorporate their results into their simulations. (Miglino, 

Lund, & Nolfi, 1995). When the simulated autonomous agents are transferred to 

their physical robotic systems, a few more training cycles are performed to adapt 

the networks to their new sensor inputs. It has been shown that only a few more 

training cycles are required for the ANNs to adapt and begin behaving as they did 

in the simulation (Floreano & Mondada, 1998). The major learning was already 

done in the simulation and they only needed to adapt to the changes in their 

sensory input (Floreano & Mondada, 1998; Mondada & Floreano, 1995). 

In some cases, it is absolutely necessary to train an EANN in a simulated 

environment instead of in the real world. One existing EANN system is a set of 

large and powerful robots designed to move palettes of products around in a 

warehouse. If this system had been completely trained in its real-world 

environment, several of these inordinately expensive machines would have been 

required to undergo generational learning and the systems that were poorly 

adapted to the environment could have destroyed themselves, other autonomous 

agents or large portions of the building (Xu, Van Brussel, Nuttin, & Moreas, 

2003). This shows that simulated environments are necessary for training some 

types of autonomous agents; if simulated environments were unavailable then 

certain problems might never be solved. 

Although EANNs can be trained in either the real world or a simulated world, 

the two types of training can complement each other and some real-world 
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problems would not be solved with EANNs if both training options were not 

available. 

2.2.3 Obstacle Avoidance 

The problem of obstacle avoidance with respect to EANNs and autonomous 

agents is not frequently studied. Most research focuses more on goal finding and 

path finding than on obstacle avoidance. This may be because robots evolved 

using EANNs learn to avoid hitting walls as a part of their training (Floreano & 

Mondada, 1996; Floreano & Mondada, 1994). 

Other papers directly focus on dealing with obstacle avoidance (Kluge, Kohler, & 

Prassler, Fast and Robust Tracking of Multiple Moving Objects with a Laser 

Range Finder., 2001; Kluge, Bank, & Prassler, Motion Coordination in Dynamic 

Environments: Reaching a Moving Goal while Avoiding Moving Obstacles., 

2002). Since obstacle avoidance is at least somewhat important for all EANNs 

that handle autonomous agents, it is essential to closely examine exactly what is 

meant by "obstacle avoidance" in this context and to survey the various types of 

obstacle avoidance systems. 

In this context, "obstacle avoidance" means "to avoid a collision with an object 

that is blocking the path of a planned direction of motion". There are two basic 

kinds of blocking objects, or obstacles: static and dynamic. Because static 

obstacles do not move they are relatively easy for an autonomous agent to avoid. 

Dynamic obstacles are more complex because the agent cannot predict with 

certainty where the obstacle will be in the next time frame. The motivation for 

dealing with dynamic obstacles comes from observing that humans easily avoid 

each other in crowded environments (Kluge, Illmann, & Prassler, Situation 

Assessment in Crowded Public Environments., 2001). 
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2.2.3.1 Static obstacles 

As mentioned, static obstacle avoidance is an easier problem to solve than 

dynamic obstacle avoidance. Many implemented systems attempt to move 

around obstacles in their paths (Floreano & Mondada, 1994; Floreano & 

Mondada, 1996). Others simply halt and wait for obstacles to get out of the way 

(Kluge, Kohler, & Prassler, Fast and Robust Tracking of Multiple Moving 

Objects with a Laser Range Finder., 2001; Kluge, Bank, & Prassler, Motion 

Coordination in Dynamic Environments: Reaching a Moving Goal while 

Avoiding Moving Obstacles., 2002). 

Some obstacle avoidance systems are designed to move toward a goal or follow 

another moving object or agent (Kluge, Bank, & Prassler, Motion Coordination 

in Dynamic Environments: Reaching a Moving Goal while Avoiding Moving 

Obstacles., 2002; Neruda, 2007). While following is a complex task to train an 

agent to do, it is easier for an agent to avoid obstacles when following because 

the obstacle avoidance tasks are passed on to the agent or other object being 

followed. In research, static object avoidance is not heavily studied, presumably 

because it is considered to be a consequence of agents learning to do their other 

tasks. 

2.2.3.2 Dynamic obstacles 

Dynamic obstacle avoidance is more complex than static obstacle avoidance. For 

an agent to avoid dynamic obstacles, it must be able to predict where an obstacle 

may be next; an agent must use strategic planning to avoid dynamic obstacles. 

Much of the work that has involved agents learning to follow has contributed to 

the search for a solution to the dynamic obstacle avoidance problem. This is 
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because agents that can follow must be capable of tracking a dynamic object, and 

for an agent to avoid a dynamic obstacle, it must be able to track it. (Floreano & 

Mondada, 1994; Floreano & Mondada, 1996). 

Other research that is relevant to this project focuses on detecting moving 

obstacles (Kluge, Kohler, & Prassler, Fast and Robust Tracking of Multiple 

Moving Objects with a Laser Range Finder., 2001). A variation on this theme 

direcdy focuses on a situation in which the dynamic obstacles are people 

(Scheutz, Cserey, & McRaven, 2004). Such research is critically important to the 

goal of implementing an autonomous agent in a real-world environment. One 

research project used a very complex mathematical approach to enabling agents 

to avoid dynamic obstacles while proceeding towards a moving goal (Kluge, 

Bank, & Prassler, Motion Coordination in Dynamic Environments: Reaching a 

Moving Goal while Avoiding Moving Obstacles., 2002). The agents described in 

that paper used a system that tracked and predicted where objects were going to 

be in the next timeframe while planning their motion towards their moving goals. 

This was a very complex system but it worked well. 

While several systems exist to track and/or avoid static and dynamic obstacles, 

few of these systems use an agent controller that was developed using an 

evolutionary approach (Neruda, 2007). Only one of these systems is specifically 

designed to deal with the problem of dynamic obstacle avoidance, and the agents 

of that system do not operate in a busy environment (Kluge, Bank, & Prassler, 

Motion Coordination in Dynamic Environments: Reaching a Moving Goal while 

Avoiding Moving Obstacles., 2002). 
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23 EANNs as Autonomous Agent Controllers in Dynamic Environments 

Several of the required components for solving the problem of autonomous 

agents seeking goals in dynamic environments have already been researched and 

proven in the research projects surveyed here. Neural networks can be trained in 

a simulated system. There are effective ways to negate the problematic perfection 

of information provided by simulated sensors. Neural network topologies can be 

evolved using genetic algorithms although the process may require extension to 

include more complex topological structure. Even extremely convoluted problem 

spaces can be searched relatively effectively using genetic algorithms. It is 

possible to create a neural network that can handle obstacle avoidance. It is also 

possible to create an autonomous agent that is capable of avoiding dynamic 

obstacles while tracking a dynamic goal. In addition since multilayer neural 

networks are provably equivalent to Turing machines (Cybenko, 1989) it is likely 

that multilayer neural networks can be used to solve the problem of autonomous 

agent dynamic obstacle avoidance. 

Neural networks can be trained to control robots. However, the networks that 

are required to control the robots in an unpredictable and dynamic environment 

have not yet been developed and may be difficult to create. Dynamic obstacle 

avoidance has not been extensively studied in robotics. Robots have been created 

that can avoid obstacles, but their ability to avoid moving obstacles is limited or 

nonexistent (Neruda, 2007). This may be because it is a difficult problem to 

solve. 

Many ANN systems have been effectively developed by EANN systems. Some 

ANN systems are used in real-world environments (Sharkey, 1997). One robotic 

system using ANNs functions effectively in a static real-world environment 

(Ward, Zelinsky, & McKerrow, Learning to Avoid Objects and Dock with a 
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Mobile Robot, 1999). This suggests that it may be possible to use EANNs to 

evolve autonomous agents that can reach a goal in a dynamic environment. 

However at present there has been very little research about this particular type 

of robotic obstacle avoidance. 

2.4 Conclusions 

Despite the lack of practical research in this particular field of robotics and 

EANN development, the literature suggests that it might be possible to combine 

EANNs and simulated environments to evolve agents that can reach a goal in a 

dynamic environment. It is critical that the machine learning technique both 

evolves an efficient topology and works towards this solution efficiency. If the 

EANN does not use an efficient approach, producing an evolved solution may 

take an excessive amount of time. In order for an EANN to produce a set of 

solutions it must be run several times, and each run can take days to complete. If 

the algorithm does not produce efficient solutions, the necessary computational 

time can increase dramatically. Therefore it is essential that any approach using 

EANNs must be efficient. This dissertation describes an attempt to develop an 

efficient approach to solving the dynamic obstacle avoidance problem. 
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Chapter 3 

METHODS AND APPROACHES 

This chapter describes the system developed for this project. The project uses a 

neuroevolutionary system that develops an initial set of agents. This population 

of agents is trained on a benchmark set of scenarios designed to teach the agents 

basic static and dynamic obstacle avoidance. The trained set of agents is then 

used to evolve a new generation of agents, which is placed in a simulated 

environment and evaluated. This process is repeated until the population of 

agents has reached a satisfactory level of performance without improvement or 

has completed a predetermined number of epochs. The project employs genetic 

algorithms using the well-known neuroevolutionary method NEAT to create a 

new generation of autonomous agents. The performance of this algorithm will 

then be compared and contrasted against Segmental Duplication NEAT, the new 

neuroevolutionary algorithm this thesis introduces. 

This chapter begins with a discussion of NEAT and SDNEAT, the algorithms 

which will be implemented in the Neuroevolutionary System. It also reviews the 

construction of this system using the components SIMBAD, PicoEvo and 

PicoNeuro to form an EANN-based autonomous agent simulation system which 

supports the experiments described in Chapter 4. 

3.1 Algorithms 

Because the problem of dynamic obstacle avoidance in dynamic environments is 

so complex, a new neuroevolutionary algorithm designed to allow evolution of 

more complex solutions in a shorter time span was developed for this project. 

The new strategies introduced in this innovative neuroevolutionary algorithm do 
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not affect the existing genomes' learned behaviour and offer the possibility that 

more complex behaviours may arise quickly from low levels of complexity. This 

new algorithm is called Segmental Duplication NEAT (SDNEAT). It is 

predominantly based on the methods that NEAT employs but introduces a new 

mutation method called segmental duplication. This method is based on the 

process of segmental duplication in biological life forms. Segmental duplications 

can be an advantage to evolution in biological life forms by facilitating high 

amounts of mutation and innovation while maintaining a low probability that the 

existing genome will be completely disabled (Bailey & Eichler, 2006). 

Testing the performance of the new SDNEAT algorithm will entail comparing its 

performance with the original NEAT algorithm developed by Kenneth O. 

Stanley and Risto Miikulainen (Stanley & Miikkulainen, Evolving Neural 

Networks through Augmenting Topologies, 2002). The following section 

discusses NEAT as it is described in Stanley's dissertation (Stanley, Efficient 

Evolution of Neural Networks through Complexification, 2004) and how it 

works as a genetic algorithm. It then reviews how SDNEAT extends the existing 

NEAT algorithm. 

3.2 NeuroEvolution of Augmenting Topologies (NEAT) 

NEAT is an efficient system for evolving artificial neural networks in a genetic 

algorithm. Pardy because like all HEAs it modifies both structure and weights, 

NEAT can evolve extremely complex minimalist solutions to a variety of 

problems (Stanley, Efficient Evolution of Neural Networks through 

Complexification, 2004). NEAT is also one of the few neuroevolutionary systems 

that can perform evolution using both mutation and crossover operators. It is not 

always obvious how to perform a crossover operation in a neural network 

because the structures of different neural networks are not necessarily related. 
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Therefore crossover operators have to perform complex analysis of the network 

structure to find appropriate points for crossover of the neural networks or 

phenomes. This problem is compounded by the fact that the genomic 

representation of the phenome does not clearly indicate where crossover can and 

cannot occur. 

NEAT solves this problem by using historical markings in each element of each 

genome. Each node and link in NEAT added after the initial population of 

genomes is created has a historical marking attached to it. This guarantees that 

new innovations in structure are identifiable and recorded. This is just one of the 

ways in which NEAT is an innovative neuroevolutionary algorithm. 

3.2.1 Genetic Encoding for N E A T 

This section explains how genetic encoding works in NEAT. The genetic 

encoding for NEAT is slightly more complex than for some other 

neuroevolutionary algorithms simply because a NEAT gene encodes more 

information. 

Each genome in NEAT contains a list of links and a list of nodes. Each link and 

node in these lists is referred to as a gene of the genome, and a genome 

comprises the entire set of hereditary information for an individual. Each link 

contains values for its input node and output node, the connection weight, 

information about whether the link is enabled or disabled and an innovation 

number. The innovation number serves as the link's historical marking, denoting 

hereditary information about the gene. The innovation number allows the 

crossover algorithm to detect if its gene is similar to another innovation in a 

different genome. A node contains slighdy less information than a link, including 

a unique node identification number, an activation response value, a disable bit 
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variable and an innovation number. When the genome is converted to its neural 

network manifestation, it is referred to as a phenome. A phenome is the virtually-

physical interpretation of the genotypes of the genome. Proper phenome 

structure must be conserved stringently during mutation and crossover 

operations. The link and node connectivity information comprise the physical 

characteristic, or genotype, information of the genome. When the genotype 

information is expressed physically, the observable characteristics are called the 

phenotypes. 
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Genome (Genotype) 

Node Genes 

Node ID: 1 
Type: input 
Enabled bit; On 
Innovation: 1 

Nods ID: 2 
Type: Input 
Enabled bit: On 
Innovation: 2 

Node ID: 3 
Type: Input 
Enabled bit: On 
Innovation: 3 

Node !D: 4 
Type: Output 
Enabled bit: On 
Innovation: A 

Node ID: 5 
Type: Hidden 
Enabled bit On 
Innovation: 6 

Node ID: 6 
Type: Hidden 
Enabled bit On 
Innovation: 6 

UnKQeftes 

Input Node: 1 
Output Node: 5 
Weight: 0.6 
Enabled bit: On 
Innovation: 7 

Input Node: 2 
Output Node: 5 
Weight: 0.2 
Enabled bit On 
Innovation: 8 

Input Node: 2 
Output Node: 4 
Weight -0.3 
Enabled bit: On 
Innovation: 9 

Input Node: 3 
Output Node: 6 
Weight: 0.7 
Enabled bit: On 
Innovation: 10 

Input Node: 5 
Output Node: 5 
Weight: 0.5 
Enabled bit: On 
Innovation: 11 

Input Node: 5 
Output Node: 4 
Weight: 0.24 
Enabled bit Off 
Innovation: 12 

Input Node: 5 
Output Node: 6 
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Artificial Neural Network (Phenotype) 

Figure 3.1: Genotype and Phenotype Example for the NEAT 
Algorithm. Above is an example of a genotype that represents the 
displayed phenotype. There are six nodes: three input, two hidden 
and one output. There are nine links, two of which are recurrent 
and one of which is disabled. The disabled gene (connecting nodes 
5 and 4) is not displayed. 
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3.2.2 N E A T mutation operations 

Mutation operations in NEAT can change connection weights, node activation 

values and network topology. All these mutations occur randomly, constrained by 

a fixed probability which is defined for each individual simulation. Weight and 

activation value mutations occur when a random node or link is chosen and its 

weight is perturbed by a constrained random value. NEAT mutation operations 

change network topology by adding links and nodes. When the GA mutates a 

link, it randomly chooses two nodes and inserts a new link gene with an initial 

weight of one. If a link already existed between the chosen nodes but was 

disabled, the GA re-enables it. Finally if there is no link between the chosen 

nodes and an equivalent link has already been created by another genome in this 

population this link is created with the same innovation number as the previously 

created link as it is not a newly emergent innovation. A node mutation is similar 

to a link mutation but differs from it in that instead of choosing two nodes and 

inserting a link, the GA chooses and disables an existing link and inserts a node. 

The GA inserts this new node with a random activation value, as well as two link 

genes to connect the node to the now-disabled link's previous input and output 

nodes. The GA then transfers the weight from the disabled link gene to the new 

link gene, which is connected to the old output neuron. The weight of the link 

gene inserted between the new neuron and the old input node is set to one so as 

not to disturb any learning that has already occurred in this connection. 

Introducing a new node where a link once existed may fragment some evolved 

knowledge in the phenome. Copying the original link weight to one of the new 

node's links while setting the other connecting link weight to one minimizes the 

disturbance in learning. 
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Figure 3.2: Mutation Example: A mutated form of the original 
genome displayed in figure 3.1 is shown here. Both a link and a node 
mutation have occurred to create a new phenotype. A link genome 
has been added to connect node 2 and 6. During the node mutation 
the link between node 6 and 4 was disabled and a new node (node 7) 
was added. In the definition of the link genes, the values once 
contained in the now-disabled link have been added to the link 
between nodes 7 and 4 and the link between nodes 6 and 7 has been 
set to a value of one to preserve the original learned value. 

These mutat ion functions introduce complexity into the initial population, 

referred to as base genomes, and gradually g row a solution to the given fitness 

function. Since the processes are pseudo r andom a diverse populat ion of 

genomes will evolve. T h e crossover function mus t be able to recombine these 

inherently different topologies efficiently. I t does this using historical markings 

also known as innovation numbers . 

Because the innovation numbers are unique to innovations and no t to genes, it is 

possible to compare any two genomes in the populat ion and determine which 

genes they share. If two genes share the same innovation number they also share 
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the same manifestation, or phenotype. Innovations are preserved among genomes 

in the same population. In order for mutation and crossover to function in 

NEAT, the system must maintain a database of all the innovations that have 

occurred since the first generation of each simulation. When a new innovation 

occurs it is checked against the database of innovations to ensure that it is not 

identical to an existing innovation. If its originality is confirmed, a global 

innovation number is incremented and assigned to it and it is recorded in the 

innovation database. This guarantees that while each genome might have a 

different structure with different weights, all related genes are identical. When a 

crossover operator is applied to two genomes the offspring inherits the same 

innovation number in each gene. This preserves the historical markings through 

generations. This preservation of historical markings prevents the crossover 

operation from becoming too computationally intensive and the networks from 

exploding in size because of crossover. 
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3.2.3 Crossover in N E A T 
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Figure 3.3 Crossover Operation: Although the parents are 
structurally different, their innovation numbers show that they are 
very closely related. Crossover happens easily without requiring 
structural analysis. 

During a crossover operation, NEAT can quickly determine how to line up the 

two parents' genes. Once they are aligned it is easy to see which portions are 

similar and which are different. Any genes that do not share innovation numbers 

with genes in the other parent's genome are referred to as disjoint and are added to 

the child during crossover. If either parent has genes that are newer than any of 
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the genes in the other parent, they are considered excess and are also added to the 

child during crossover. All genes mat are shared by both parents are inherited by 

the child from the parent with the highest fitness. A gene that is disabled in one 

parent but enabled the other has a chance of being re-enabled in the offspring. 

This method of crossover allows NEAT to build increasingly complex ANN 

structures without restricting compatibility between genomes. Unfortunately this 

level of complexity works against the genetic algorithm as it cannot support such 

diversity in its population. A structural innovation that could exceptionally 

improve performance in a later generation may introduce a major change in a 

given genome, but since it requires a few generations to reach its full potential it 

may be erased from the population before it has a chance to affect performance. 

This is why NEAT employs speciation: to protect genomic innovation. 

3.2.4 Speciation 

In natural evolution entities that once shared a common genome sometimes 

diverge so much that they can no longer mate with one another. This divergence 

is known as speciation. In NEAT, as the genomes in a population grow 

complexity a new innovation in their topology may result in greater performance 

for the population's agents. NEAT uses speciation to protect such innovations. 

When an agent's structure diverges far enough from that of the other agents in 

the population NEAT identifies it and places it in its own species. Using 

innovation numbers NEAT can calculate the distance between two genomes. 

The distance is defined by the following function: 
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Figure 3.4 Distance Between Genomes: The distance 8 between 
two genomes is the sum of the number of excess (E) and disjoint 
(D) genes, and the average of the weight differences of the two 
genomes (W). The coefficients ch c2, and c3 modify the weights of 
each of the variables and N is the number of genes in the larger of 
the two genomes. 

Initially one species is formed from the entire first generation. The first genome 

in the generation becomes the champion of that species since the population is 

uniform. As the algorithm proceeds and more complexity is introduced distances 

between genomes will increase until they are larger than the distance threshold. 

At this point, NEAT designates this structurally different genome a new species 

and names it as the species champion. As other genomes' distances from their 

species champion increases, they may be placed in a different existing species if 

their distance from that species champion becomes small enough. 

NEAT maintains species through generations to protect innovation and as an 

evaluation method for the effectiveness of an innovation. If no members of a 

species rise above their existing champion in fitness for a set number of 

generations, the entire species is terminated, unless its champion is the population 

champion. 

To determine the number of genomes each species can introduce into the next 

generation, NEAT uses explicit fitness sharing. Each species is assigned a certain 

number of reproduction spots based on the sum of the species' adjusted fitness 

values. Each genome's adjusted fitness score is based on its distance from every 

other genome in the population. The lowest-performing fraction of each species 

does not reproduce, and the highest performer from each species carries over to 
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the next generation via per-species elitism. Any remaining reproduction spots are 

filled through random selection. 

If a species becomes too large, its genomes cannot reproduce productively 

because they do not have enough reproduction spots in the next genome. This 

keeps the species' sizes reasonable and is necessary for speciation-based evolution 

systems. If species size were not restricted one species could grow to dominate 

the entire population and the benefit of speciation would be lost. Most genomes 

in a species are structurally similar because new structural innovations are slowly 

added to the phenotypes, reducing the generation by generation structural 

variation. Hence speciation protects innovation. 

The NEAT algorithm is a robust EANN. It uses speciation to protect 

innovation, and it uses innovation numbers to perform all GA operations 

efficiently. The efficiency of the GA operators helps NEAT limit increasing 

complexity. This combination allows NEAT to search a broad solution space 

efficienuy while minimizing the complexity of its solutions. 

3.3 Segmental Duplication NEAT (SDNEAT) 

Segmental Duplication NEAT is based on NEAT and inspired by recent research 

of the human genome. This recent research claims to show that large segments of 

the human genome that are purely duplicate genetic information may be critical 

requirements for the advancement of the species (Bailey & Eichler, 2006). 

Nearly 14% of the human genome consists of segmental duplications. In 

comparison, the mouse genome is approximately 7% segmental duplications and 

the chimpanzee genome is only about 5% segmental duplications (Bailey & 

Eichler, 2006). These segmental duplications also appear to be at least somewhat 
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non-random. Segmental duplications show a higher rate of copy variation, or 

mutation. They appear to be favoured in gene selection and several functional 

categories that are reali2ed in human beings appear to be enriched by segmental 

duplications (Bailey & Eichler, 2006). One example of this enrichment is the 

human immune system (Bailey & Eichler, 2006). The high percentage of 

segmental duplications in the human genome seems to imply that they are key to 

faster innovation through genetic processes. They protect the genome from 

harmful mutations because they are duplicates, and most mutations to them will 

not affect the existing genomic functionality. The human male gender 

chromosome (the Tf chromosome), shows a very high amount of segmental 

duplications; approximately 50% of its genes are segmental duplications. This 

may imply that segmental duplications prevent genetic stagnation in the male of 

the species; the V chromosome routinely undergoes mutation (Bailey & Eichler, 

2006). This amount of mutation is required as the 'Y' chromosome never 

performs crossover with other chromosomes. 

All these reasons support the development of a new version of the NEAT 

algorithm. Segmental Duplication NEAT (SDNEAT) is be based on the NEAT 

algorithm but includes a new mutation operator which will identify a segment of 

genetic information, duplicate that segment, heavily mutate it, and integrate it 

back into the genome. This duplicated segment may offer an evolutionary leap, 

and cause the algorithm to find new solutions to the problem. Using SDNEAT, 

innovations are still protected by speciation so all the advantages of the NEAT 

algorithm are preserved. It is important to note that NEAT would be capable of 

evolving any solution SDNEAT can evolve. However the chances of NEAT 

evolving exactly the same segmental duplication are quite low as it would require 

multiple new node innovations in a particular sequence. 
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3.3.1 A Segment 

In order to develop a segmental duplication operation a segment must first be 

defined, because the concept of segments does not exist in the original NEAT 

algorithm. 

Definition: A segment is an array of n nodes and m links: 

S n : ( n > 0 ) 

Lm'.(m> 1) 

S contains only hidden nodes. 

5* : Sx is not an input or output node. 

The segment is connected to both an input and output node. 

L0 : arrives from an input node 

Lm •• connects to an output node 

The segment is not recurrent. 

L™_1 : Lx connects Sn to Sn+1 

This definition states that all segments for SDNEAT begin at an input node, end 

at an output node and must contain at least one hidden node to a maximum of n 

hidden nodes. There are no recurrent or loopback connections in a valid 
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segment. Some of the problems of identifying a valid segment algorithmically are 

eliminated by limiting a valid segment to this subset. The portion of the algorithm 

that identifies a valid segment need only walk a path through the neural network 

from an input node to an output node. It can ignore recurrent connections along 

the way. 

3.3.2 Segmental Duplication 

Because identification of a segment is simple and the beginning and endpoint of a 

segment is limited to an input node and an output node, inserting the duplicated 

segment is also straightforward. The identified segment is already a valid path in 

the neural network so duplicating it and inserting it between the same input and 

output nodes does not destroy the genome, but it does modify a substantial 

portion of the genome's genetic code. This enhanced rate of growth does not 

significantly increase complexity as it relies on the original NEAT methods for 

topological growth and cannot evolve any structure that NEAT could not. It 

simply causes generational leaps to happen faster. In fact, no segmental 

duplications can occur without original NEAT node mutations. The initial 

genomes contain only input and output nodes and because, by definition, a 

segment cannot contain an input and output node. 
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Figure 3.5 Segmental Duplication. In Genome One at the top of 
this diagram, a segment has been identified. The nodes with solid 
circles are added to Sn and the highlighted links connecting the 
nodes with broken circles surrounding them are added to Lm. This 
segment is then duplicated and new innovation numbers are created 
for all the components, the node identifiers are properly 
incremented and the links are adjusted to connect to the new nodes. 
These nodes and links are then appended to Genome One and the 
new phenome is displayed at bottom right. 

The historical markings or innovation numbers are an important aspect of 

NEAT. When SDNEAT inserts a new segmental duplication, it is creating a copy 

of active genes. In SDNEAT, all segmental duplications are treated as new 

innovations. In the original NEAT algorithm, if a node mutation occurs which 

disables a link, then later that link is re-enabled and an equivalent node mutation 

occurs on the same link the innovation list identifies this as an old innovation. 
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Although the innovation list has identified it as an old innovation, NEAT 

considers it to be a new innovation and has the innovation list assign it a new 

innovation number. This is the base case of a segmental duplication, and 

consequently all segmental duplications are treated as new innovations. 

To identify a segment, the SDNEAT algorithm first randomly selects an input 

node from the genomes set of input nodes. Then the algorithm attempts to find a 

path to an output node, randomly chooses an output link from its current node 

and, if the output link is not recurrent, the algorithm follows that link to the next 

node and repeats the previous steps. Each time the algorithm steps to a new node 

it copies the link and node to its arrays for duplication. If a step from an input 

node arrives at an output node of the neural network, a new input node is 

randomly chosen and the algorithm starts again, as by definition a segmental 

duplication cannot consist of one link. If the algorithm finds an output node, it 

has found a vakd segment. The algorithm duplicates the valid segment by creating 

new innovations for each link and node in the segment's link and node arrays. 

The weights from the original nodes and links are duplicated but the innovation 

numbers are updated. The segment's weights are then mutated at a higher than 

average mutation rate. Once mutation of the segment is complete the new links 

and nodes are appended to the genome being mutated. 

SDNEAT maintains the efficiencies and capabilities of NEAT, including all 

operations and speciation, but it introduces a new operator: the segmental 

duplication mutation. This new operator can drastically mutate an existing 

genome without affecting the capabilities of the existing NEAT algorithm. This 

drastic mutation has the potential to broaden the search area of NEAT to include 

elements that would not otherwise be searched for several generations. This 

mimics the genetic behaviour recently identified in the human genome. In order 

to evaluate this new algorithm and its ability to evolve an efficient neural network 
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controller that can learn to effectively operate an autonomous agent in multiple 

different dynamic environments, a neuroevolutionary simulation system must be 

built. 

3.4 Neuroevolutionary Solver 

There are several systems available that use the NEAT algorithm to solve various 

problems. There are also various robot simulation packages. Systems that 

combine NEAT with robot simulation environments appear to not exist or are 

scarce. A system that combines these components and is flexible enough to 

support various simulation platforms and the addition of the SDNEAT 

algorithm had to be developed for this project. A combination of available open 

source simulation software and NEAT demonstration code is used to develop a 

neuroevolutionary solver (NS) with the described requirements. This section will 

review the various software packages and the modifications made to them to 

form the simulation system. 

3.4.1 Requirements 

The NS is a large and complex system, but as mentioned, some of the 

components have already been developed, which can decrease development time 

for this project. It is important to have an effective simulation system that works 

on a time slice basis, meaning that each instant of computation is one frame of 

animation. A system that works in this way is effective for robot simulation as 

each agent is given time to analyze its environment in simulated real time. When 

an evolved system is removed from the simulated environment and deployed in 

the real world, it no longer learns and its computational requirements decrease. 

This allows its reaction time to increase; if the agent were required to learn in the 
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real world, real time behaviour would not be possible. This is die benefit of using 

a time sliced simulated environment. 

The simulation system must also be easy to integrate with a neural network 

package and an evolutionary algorithm package. The methods behind both neural 

networks and evolutionary algorithms are well known and software packages that 

implement them are common. An open source solution is favourable, as the 

evolutionary algorithm package must be combined with the NEAT and 

SDNEAT algorithms. 

Effective visualisation of both the simulation and the neural network 

components is also necessary. Visual inspection of evolution as it is occurring and 

the ability to review agents and neural networks after they have been evolved is 

essential to evaluation of die performance of the system. It is also necessary to 

record statistics about each evolutionary experiment. 

3.4.2 Chosen components 

The SIMBAD robot simulation system developed by Louis Hughes and Nicolas 

Bredeche (Hughes & Bredeche, 2007) was chosen to act as the core of the NS. 

SIMBAD is a Java 3D-based robot simulator. It is an open source system and 

was designed for research and learning so some of the requirements listed above 

are integrated into it. SIMBAD is a time sliced system. Each frame of simulation 

is a distinct computational time slice. All components of the simulation that 

require computational time share the computational pipeline; it is not a multi

threaded system. If it were, there would be more unpredictable behaviour with 

respect to simulated computation. 
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The SIMBAD system allows users to quickly develop their own test 

environments and robotic agent control systems. Agents with various control 

systems are easily integrated into different environments. There is a variety of 

sensors and actuators available to the simulated agents. The system is even 

capable of simulating Khepera, a common hardware platform for evolutionary 

robotics experiments. SIMBAD provides a three-dimensional simulation 

environment for single and multiple agent simulations. It also provides a batch 

mode simulation environment designed for high throughput of simulations. Since 

the dynamic obstacle avoidance problem will require large amounts of simulation 

and large quantities of tests with several generations must be run to mlly realize 

the capabilities of an EANN, the required computation time is enormous. The 

batch mode of SIMBAD will significantly decrease the computation time 

requirements. 

Because the SIMBAD system was specifically built for machine learning and 

autonomous robot simulation, its developers recommend a neural network 

package and evolutionary algorithm package for EANN simulation. 

The PicoEvo and PicoNeuro packages were developed by Nicolas Bredeche and 

they are designed to be integrated with the SIMBAD system. PicoEvo is a GA 

system that implements the standard GA algorithmic method discussed in 

Chapter One. It is a very robust and modular system. It was designed with future 

expansion in mind and it supports the use of static and dynamic arrays of values 

as genetic encoding. It does not support any encoding of neural network 

topology. 

PicoNeuro is a complete neural network system. It supports several well-known 

network architectures including perceptions, multi-layer perceptrons, feed

forward neural networks, backpropagation neural networks, recurrent neural 
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networks, and self-organizing maps. It provides a visualization system for viewing 

the topology of neural networks as well as investigating the adjusted weights of 

both the nodes and links. Importantly, PicoNeuro supports recurrent neural 

networks; this is the type of network required by NEAT and consequently by the 

NS. PicoNeuro is also a modular system designed for expansion and it directly 

integrates with PicoEvo. PicoEvo does support using PicoNeuro for EANN 

research but the system is limited to a WEA type of EANN. 

These three components combine to form an effective and extensible EANN 

system. Integration of the NEAT and SDNEAT algorithms into PicoEvo is not 

difficult as the system is easily extensible, but the amount of modification 

required is large. The modifications to PicoEvo and PicoNeuro elevate the 

system from a WEA to an HEA. The HEA-capable PicoEvo and PicoNeuro 

integrate with SIMBAD to complete the NS system. 

3.4.3 High Level Overview 

The core of the NS is comprised of two artificial intelligence systems and one 

simulation system. Applications of the NS are built on top of this core 

component. These applications include experiments and simulation playback 

systems. The two artificial intelligence components the simulation component 

and the NS applications are contained within the NS. The AI components are 

contained within the simulation system, SIMBAD. This defines a component 

hierarchy for the NS. 
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Figure 3.6: NS Component Structure: This is the hierarchical 
class structure of the Neuroevolutionary Solver. The simulation 
system, SIMBAD, is the highest level component of the core 
system. PicoNeuro and PicoEvo are integrated into it. NEAT and 
SDNEAT are implemented at the extension layer of PicoEvo. The 
simulation applications and the visualization system for simulation 
playback (Holodeck) are built at the NS application layer. 
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3.4.4 SIMBAD 

The SIMBAD simulation system is the core component of the NS system. In 

order to function as an effective robotic simulation system SIMBAD implements 

several components: 

• A graphical user interface (GUI), for visualization of autonomous robot 

and virtual environment simulations 

• The simulator, which acts as the time slice simulation processor as well as 

handling agent computation, world computation and limited physics 

• The batch processor, a component of the GUI which is separate from 

normal simulation. 

The batch processor performs fast simulation with limited rendering and is 

required to complete EANN simulations in a reasonable amount of time. The 

GUI handles most of the visualization processing of the system. It also renders 

the onscreen controls and agent inspector displays. The GUI customizes itself to 

the simulation, displaying as many agent inspector displays as are required for a 

particular simulation. 
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Figure 3.7 SIMBAD Graphical User Interface: In the SIMBAD 
GUI shown above, several agent inspector displays appear on the 
right. The main virtual world display is shown at die top left and the 
simulation controls are visible at the bottom left. 

The SIMBAD simulator performs most of the computation and simulation. All 

the built-in agents are available through the simulator package. The simulated 

sensor packages and actuators that the agents use in their respective simulations 

are also implemented in the simulator package. The simulator package includes 

time slice management and simulated world physics. As such, the data 

representation for the simulated world is handled by the simulator package. The 

SIMBAD batch processor is implemented in the GUI package but it implements 

its own GUI; it uses a light version of the SIMBAD GUI. The light SIMBAD 

GUI visualizes the world but it only displays one in several hundred frames of 

computation. It does not implement any controls or agent interface displays; it is 

designed to perform autonomous robotic simulations as quickly as possible. 

54 



3.4.5 Agents 

The SIMBAD simulation system already supports several agents and is easily 

extended to include other autonomous agent designs. There are several sensors 

and actuators implemented for use in autonomous agents, including: 

• A camera sensor for visualizing the three-dimensional world at the agent 

level 

• A gripper actuator that allows agents to grapple objects in the simulated 

environment 

• A lamp actuator that can be switched on and off by the agent or be set to 

a flashing state 

• A light sensor, which allows agents to detect sources of light 

• The range sensor belt, which can be configured to simulate laser range 

finders, sonar, radar and bump sensors. 

In the NS system extra agents are implemented to perform required tasks. Since 

the system uses ANNs for the control systems of the learning autonomous 

agents, the NS supports a neural agent. This neural agent is used as the model for 

all the learning robots attempting to solve the dynamic obstacle avoidance 

problem in this project. 
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Figure 3.8: Neural Agent Top Down View. The SIMBAD neural 
agent is configured with twelve laser range finders distributed evenly 
around the circumference of the agent. The top of the agent is 
equipped with a lamp actuator that lights up when the agent detects 
incoming collisions. The agent uses two stepping motors for 
movement; these are not visible. 

The extra agents implemented in the NS also use limited global positioning 

system (GPS) devices. These devices allow each agent to know how far it is from 

a given goal coordinate. The simulated agents must have a goal to move towards 

in order to engage in path-finding and obstacle avoidance. The neural network 

controllers for the neural agents each have thirteen input nodes and two output 

nodes. The input nodes take readings from the twelve laser range finders and the 

GPS as their inputs and the output nodes control the agent's translational and 

rotational velocity. Because this is a simulation the agents have ideal conditions to 

learn in. Simulations mat are evolved in ideal environments do not fare as well in 

real-world environments. To help mitigate this problem the neural agent 

introduces random noise into its input sensor data, which can be equivalent to 

several centimetres of variance in range and distance readings. 

Not all the agents in the simulated environment are neural agents. Several dumb 

agents are implemented to introduce a dynamic element to the training 

environments. Straight-to-goal agents start at one location, turn towards their 
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goal, and move directly towards it. They avoid obstacles using rudimentary turn-

to-avoid protocols. Once an obstacle has been avoided the dumb agent resumes 

its direct course to its goal and stops when it reaches it. Straight-to-goal loop 

agents work exactly the same way as straight-to-goal agents except that once they 

arrive at their goals, their goal points are changed to their original start points and 

they turn to move towards their new goals. Chaos agents randomly move around 

the environment in an erratic manner; they have no goals and do not stop 

moving unless they get stuck. 

3.4.6 Environments 

Several simulation environments are available in the SIMBAD simulator. For the 

dynamic obstacle avoidance problem, the development of the NS required the 

addition of three specific environments to this selection. These include a maze, a 

busy hallway, and a busy room environment. 
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Maze 

Figure 3.9: Maze Environment. The maze environment is 
designed to help develop the agents' ability to avoid static obstacles 
and perform rudimentary path-finding. The agent starts in the 
bottom left corner of the environment and its goal is located at the 
top right corner of the maze. 
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Busy Hallway 

Figure 3.10: Busy Hallway Environment. The busy hallway is 
used to introduce the agents to path-finding through a dynamically 
changing environment. The straight-to-goal loop agents in the 
middle hallway move diagonally to the opposite end of the hallway. 
The neural agent starts in the middle of the left room and its goal is 
located in the middle of the right room. 
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Busy Room 

Figure 3.11: Busy Room Environment. The busy room is a more 
difficult version of the busy hallway. The four dumb agents in the 
middle behave the same way as the busy hallway agents. The two 
dumb agents to the far right are straight-to-goal loop agents. Their 
goals are located in the middle of the north and south ends of the 
left room. They move diagonally towards those goals. The neural 
agent's goal is in the same location as it was in the busy hallway 
environment. 

The maze environment is meant to help the agents evolve rudimentary path-

finding and wall avoidance behaviour. The busy hallway and busy room 

environments are designed to help them evolve dynamic obstacle avoidance 

behaviour. These environments are meant to increase in difficulty as the agent 

attempts them in order. The maze environment requires no dynamic obstacle 

avoidance behaviour of the agent, the busy hallway requires the agent to dodge 

obstacles that are moving perpendicular to its goal direction and finally the busy 

room environment has several agents that all collide near the opening between 

the neural agent's starting room and its goal location in the adjacent room. 
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3.4.7 Holodeck 

SIMBAD includes a virtual environment that can be viewed as experiments are 

running. However, there is nothing in die system that can replay experiments 

after they have taken place. For this project, the holodeck application was added 

to the NS to solve this problem. Code components that store and retrieve trained 

neural networks from disk were also added. The experiments that the NS 

performs for this project span several hundred generations; without a method to 

restore these trained networks there would be no practical way to evaluate how 

the agents perform. A visualization of how the agents perform given a certain 

level of fitness is valuable for tuning the fitness function. 

The holodeck is very similar to the SIMBAD simulator environment. It differs 

from SIMBAD's simulator in that its specific purpose is to simulate trained 

agents in any environment that the holodeck supports. If the environment does 

not specifically support neural agents as well as load neural networks from the 

stored neural agents, it will not work in the holodeck. The holodeck could easily 

be extended to support more simulation environments. It could also load trained 

agents into environments into which they have never been introduced, provided 

the environment supports this. This tool speeds analysis of the neural agents as 

the experiments of an EANN cannot all be viewed simultaneously. The holodeck 

allows targeted viewing of agents. 

3.4.8 Extensions to PicoEvo 

As has been mentioned, the PicoEvo system initially only supported WEA-style 

EANNs. In this project's NS, PicoEvo was extended to support components to 

implement NEAT and SDNEAT, HEA-style EANNs, and a statistics-gathering 
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package. The components added or modified to support this more complex form 

of EANN include: 

the NEAT Gene 

the NEAT individual 

the NEAT population 

the NEAT population innovation list 

the NEAT population species list 

NEAT and SDNEAT parameter sets 

the NEAT and SDNEAT statistics package 

NEAT and SDNEAT selection operators 

the NEAT element variation operator 

the NEAT individual variation add-link operator 

the NEAT individual variation add-node operator 

the NEAT population variation crossover mutation operator 

the SDNEAT individual variation segmental duplication operator 

The NEAT Gene serves as the basic gene for the genetic encoding of the 

PicoNode-based ANNs. There are two types of gene in NEAT and SDNEAT. 

They have some matching characteristics. For example, they both use innovation 

numbers. NEAT Gene stores these values. The two types of gene are as follows: 

• The NEAT LGene is the extension to the NEAT gene that allows the 

storage of link gene-specific information in NEAT and SDNEAT. 

• The NEAT NGene is similar to the LGene in that it is the extension to 

the NEAT gene that allows storage of, in this case, node-specific 

information. 
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The NEAT individual serves as the actual genome. This component contains all 

the NGenes and LGenes that compose one NEAT or SDNEAT genome. It also 

provides the function to convert genomes into phenomes. 

The NEAT population includes all the individuals that move through the GA. 

The number of individuals in a population is limited only by the hardware's 

capability. NEAT populations are compatible with SDNEAT populations. 

The NEAT population innovation list works in conjunction with the NEAT 

population. It tracks all die genomic innovations that happen through link and 

node mutation, or in the case of SDNEAT through segmental duplication 

mutation. 

The NEAT population species list handles speciation of the population. The 

population does not direcdy separate all the genomes into their different 

populations; instead, the population species list keeps track of which agents are in 

which species population and presents that data as required to the GA. 

NEAT and SDNEAT parameter sets are the sets of variables that control how 

the algorithm executes. They control all the probabilities of crossover and 

mutation operations. The parameter sets define the size of die population, the 

number of generations, the degree of mutation, the range of weight perturbations 

that can occur during a link or node mutation, and other parameters that are fully 

defined for each experiment. In the case of SDNEAT, extra parameters are 

required to control how often a segmental duplication occurs and by how far to 

exceed the normal mutation rate during a segmental duplication. 
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The NEAT and SDNEAT statistics package records statistical data for each 

generation of every experiment performed in the NS. The statistics include: 

• Generation versus Fitness: Maximum, Minimum, Mean, Median, Best 

Current, and Best Ever. 

• Generation versus Connections: Maximum, Minimum, Mean, Median, 

Best Current, and Best Ever. 

• Generation versus Innovation: Number of Innovations and Number of 

New Innovations. 

• Generation versus Nodes: Maximum, Minimum, Mean, Median, Best 

Current and Best Ever. 

• Generation versus Species Size: This statistic keeps track of all species 

from the beginning of an experiment and logs their size versus the 

generation. This information is valuable as it shows which species 

performed the best, which had the most population at any point, and 

how long that species lived. 

NEAT and SDNEAT selection operators are separate classes in the PicoEvo 

implementation. The selection operator chooses which genomes are allowed to 

mate and handles all operations, including crossover and mutation. Since 

SDNEAT implements an extra mutation operator there must be a separate 

selection operator for it. 

The NEAT element variation operator perturbs the weights in both links and 

nodes when a weight mutation occurs. The NEAT individual variation add-link 

operator performs a link mutation when the selection operator performs the 

mutation, and the NEAT individual variation add-node operator performs a node 

mutation when the selection operator performs the mutation. 
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The NEAT population variation crossover mutation operator performs 

crossover on two genomes as defined by the NEAT algorithm. Crossover is the 

same in NEAT and SDNEAT. 

Finally, the SDNEAT individual variation segmental duplication operator 

performs a segmental duplication, as defined in the SDNEAT algorithm, on a 

random segment of a genome chosen by the selection operator. 

3.4.9 Extensions to PicoNode 

The original PicoNode supports almost all ANN operations required by the 

EANNs NEAT and SDNEAT. The one operation added to the original 

PicoNode package for this project is a function that serves to update a genotype. 

When performing a NEAT or SDNEAT experiment the genomes must be 

converted to phenotypes in order to be evaluated in the SIMBAD virtual 

environment. Once the evaluation is complete the update-genotype function 

updates the original genome from the trained phenome. 

3.4.10 Neuroevolutionary Solver Applications 

The combined components of SIMBAD, PicoEvo and PicoNeuro, with the 

added implementations of NEAT and SDNEAT, allow for the development of 

several test applications. 

The XOR simulation uses the simple problem of evolving a neural network to 

approximate the XOR function as a benchmark for the performance of 

implemented versions of NEAT and SDNEAT. Since the XOR function can be 

solved by a neural network with a minimum of one hidden node, both NEAT 

and SDNEAT should find a solution easily and efficiently. SDNEAT will not 
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perform any better than NEAT at this task as SDNEAT does not gain any 

benefit over NEAT until multiple hidden nodes have been introduced to the 

population of genomes. 

The avoider robot application is explicitiy created for this research project. It 

implements several test environments using a batch simulation method, moving 

the agent being evaluated between the different test environments before 

calculating a final fitness score for the agent. This system takes full advantage of 

the capabilities of the NS and can be run in both the NEAT and SDNEAT 

versions. 

The complete NS system allows for broad experimentation using both the XOR 

simulation and the avoider robot application. Several experiments that attempt to 

solve the dynamic obstacle avoidance problem are evaluated in the next chapter. 

These experiments also allow for an objective comparison of NEAT's and 

SDNEAT's performances. 
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Chapter 4 

IMPLEMENTATION AND RESULTS 

This chapter explores a set of experiments performed in both the XOR 

application and the avoider robot application in an attempt to solve the dynamic 

obstacle avoidance problem. To establish a benchmark for performance, both the 

NEAT and SDNEAT algorithm implementations in the NS system are evaluated 

with multiple experiments using the XOR application. In a second set of 

experiments the NEAT and SDNEAT algorithms are used in conjunction with 

the avoider robot application of the NS to search for a solution to the dynamic 

obstacle avoidance problem. The results of this set of experiments are also 

explored in detail in this chapter. 

4.1 XOR 

The XOR problem can be used as a basic benchmark for the capability of a TEA 

or HEA to solve complex problems using neural networks. XOR is a binary logic 

function. Logic functions are used in both computer software and hardware to 

solve logic problems. 
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Figure 4.1: Truth Table for XOR. Since XOR is a logic function, 
the only possible input values for it are true (1) and false (0). This 
table shows that XOR's output value is false whenever its two 
inputs are equivalent and true when its inputs are different. 

XOR's output values are not linearly separable. This means that the two types of 

output values, one and zero, cannot be separated by a single linear function. The 

XOR function cannot be solved by neural networks that have no hidden nodes. 

This makes XOR a good function with which to evaluate a TEA's or HEA's 

ability to solve problems that require topological growth. 

The XOR experiment shows that the implementations of NEAT and SDNEAT 

later used in this project have the capacity to find solutions with efficient 

topological structure. The rninknal neural network structure required to 

implement (but not solve) the XOR problem comprises one output node and 

two input nodes. The minimal structure required to solve the XOR problem 

requires the addition of one hidden node that is connected to both input nodes 

and the output node. 

NEAT has been shown to solve the XOR problem efficiently (Stanley, Efficient 

Evolution of Neural Networks through Complexification, 2004). The goal of this 

experiment is to show that SDNEAT can solve XOR equally efficiently, or nearly 

so. Since SDNEAT is based on the NEAT algorithm it should be able to solve 

XOR. However, the addition of the segmental duplication mutation may hinder 

the algorithm's capacity to find simple solutions due to its increased rate of node 
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mutations. The optimal XOR solution may not evolve before a segmental 

duplication needlessly complicates the network's structure. 

4.1.1 Evaluation 

The fitness of the XOR networks was evaluated based on the output they 

delivered. All possible inputs were tested against the trained networks and the 

output was evaluated based on expected values. If the output value of the output 

node was at or above 0.50 it was deemed to be a one and if the output value was 

less than 0.50 it was deemed to be a zero. This evaluation of output was 

appropriate because this implementation of NEAT and SDNEAT used only log-

sigmoid activation functions in the neural network nodes. 

The initial population of agent neural networks had no hidden nodes and only 

had links from the input nodes to the output node. The weights of the links were 

all set to one. The bias value of each node in the neural networks was set to one. 

The bias was not allowed to mutate during evolution, nor was it adjusted through 

training. 

The sums of the distances of the output values from their respective correct 

output values were subtracted from four and then squared to obtain the fitness 

values of solutions. The sums of the distances were subtracted from four so that 

higher fitness values equated to better fitness, and squared so that the relative 

values of the solutions were represented. 

4.1.2 Experimentat ion 

Fifty experiments were performed using XOR, twenty five using NEAT, and 

twenty five using SDNEAT. Neither algorithm found the optimal solution of one 
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hidden node. It has been shown in the past that NEAT can evolve the optimal 

solution (Stanley, Efficient Evolution of Neural Networks through 

Complexification, 2004) but it does not always find it. On average NEAT found 

a solution in 30.2 generations and SDNEAT found a solution in 24.52 

generations. On average, the NEAT solutions used 3.64 hidden nodes and the 

SDNEAT solutions used 4.4. It is not surprising that SDNEAT found solutions 

in a shorter amount of time. There are several solutions for the XOR problem 

that use multiple hidden nodes. SDNEAT's solutions are larger in structure, and 

these more complex solutions, while less efficient than their simpler counterparts, 

still effectively solve the XOR problem. A comparison of the two algorithms' 

solutions suggests that SDNEAT can find efficient solutions to complex 

problems as well as NEAT. 

• • - — • • I I . | , | , , I j 

Q.492 

Figure 4.2: Two-Node NEAT Solution. The simplest topology 
found in the twenty five NEAT experiments used two nodes: one 
between each input, leading to the output node. 
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Figure 4.3: Two-node SDNEAT solution. The simplest topology 
found by SDNEAT used two nodes and one recurrent link. 
SDNEAT essentially found the same minimum structure as the 
NEAT implementation with the random introduction of one extra 
link. 

NEAT and SDNEAT found similar minimal topologies to solve the XOR 

problem. The average number of generations it took for the algorithms to solve 

the problem indicates that SDNEAT can find efficient topologies for complex 

problems faster than NEAT can. 
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Figure 4.4: NEAT XOR Performance. NEAT found several 
solutions ranging in complexity from two to five hidden nodes. The 
shortest time-to-solution was seven generations and the longest was 
nearly eighty generations. 
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Figure 4.5: SDNEAT XOR Performance. The SDNEAT 
algorithm found solutions ranging in complexity from two to six 
hidden nodes. The length of time it took to find those solutions was 
more consistent; the shortest length of time was eleven generations 
and the longest was nearly 50. 

The NEAT and SDNEAT implementations used in the NS quickly found 

relatively efficient topologies for solutions to problems that required introduction 

of new topological structure. This reliably shows that NEAT and SDNEAT can 

probably be used to solve complex problems. 

4.2 Dynamic Obstacle Avoidance 

The primary goal of this thesis is to show that the dynamic obstacle avoidance 

problem can be solved using a neuroevolutionary algorithm. Because the problem 

of dynamic obstacle avoidance is so broad and the possible solution methods are 

so diverse, a small subset of the problem was defined as the problem area for this 

thesis. A solution for this subset was sought using the NS system and both the 
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NEAT and SDNEAT algorithms. This section includes a definition of the 

experiment, a description of the process used to achieve results and a discussion 

of the results of the experiments. 

4.2.1 Problem Domain 

The problem of dynamic obstacle avoidance is huge. It can vary enormously in 

scale, involving small simulated autonomous agents avoiding tiny obstacles in a 

maze, or powerful non-virtual robots moving pallets around in a warehouse. To 

attempt this problem effectively, a domain must be defined to perform 

experiments in and gather results from. 

The problem domain used in this thesis is a simulated set of static and dynamic 

environments, which were described in Chapter Three. The environments 

include a maze, a busy hallway and a busy room. The three environments are 

designed to require an increased level of complexity in the avoidance behaviour 

required to master them. During an experiment, the agent being trained is placed 

in the maze environment first, then the busy hallway environment and finally the 

busy room environment. Training takes place in all the environments and the 

agents' fitness is based on their performance in all three environments. 

The maze environment does not require dynamic obstacle avoidance. Agents that 

solve the maze must be able to navigate from the south west corner to the north 

east corner where a goal has been placed. An efficient solution in this 

environment would take a direct line past the center walls of the maze and 

through a gap in the north east interior wall to reach the goal. 

The busy hallway environment requires dynamic obstacle avoidance where the 

obstacles are not likely to be in the way most of the time. The dumb agents in the 
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busy hallway scenario move from one end of the hallway to the other, crossing 

each other's paths diagonally. This can create complex agent traffic patterns in 

the opening through the hallway, but an optimal solution would simply move 

through the hallway while the dumb agents are not obstructing the opening. 

The busy room environment is similar to the busy hallway environment since the 

northern and southern agents move in exactly the same pattern. However, this 

last environment adds another level of complexity. There are two agents in the 

east room that move to goals in die west room. These are timed to arrive at the 

hallway at the same time as the hallway agents converge at the opening. This 

creates a complex random traffic pattern as all six agents attempt to avoid each 

other. Their turning avoidance algorithms result in numerous collisions. This 

environment is designed to force the learning agent to collide with other agents. 

4.2.2 Evaluation 

The evaluation function for the avoider robot application is defined as the set of 

environments the agents perform training in. This means that the evaluation 

method for each individual in the population of genomes in each experiment is 

the set of environments containing the maze, the busy hallway and the busy 

room. For these experiments each genome in each population is placed in each 

environment for thirty thousand time slices and is allowed to train its neural 

network controller for that amount of simulation time. A population being 

evaluated for a specific number of generations is referred to as an experiment. 

An agent moving at full speed from one end of an evaluation environment can 

arrive at the other end of the environment in approximately one thousand time 

slices of simulated time. This amount of time was increased by thirty times during 

the training scenarios to allow the agents ample time to arrive at any goal in the 
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simulated environment. Since the agents are evaluated for their performance in 

three separate environments, the total amount of training time per agent is ninety 

thousand time slices. 

The initial population of genomes in each experiment was comprised of identical 

genomes. Each genome had thirteen input node genes, two output node genes 

and twenty six link node genes, and their initial weights were set to one. All of the 

nodes used log-sigmoid activation functions and their bias values were set to one. 

The bias values could not be changed by mutation or neural network training. 

The input nodes accepted values from their simulated neural agent's twelve laser 

range finders and single GPS range measurement. The output nodes provided 

values to the simulated agents for translational and rotational velocity. 

Each individual in each generation's population was evaluated in sequence; there 

was no parallelization of evaluation, only parallelization of experiments. Each 

experiment was run in a separate instance of the NS with a separate population. 

The fitness of each genome in each population was defined as the sum of its 

calculated fitnesses in each evaluation environment. The fitness function was 

based on an original fitness function developed by Floreano and Mondada 

(Floreano & Mondada, 1998) for a WEA system. The fitness function used in the 

NS was adapted to include several factors that were important to the 

development of agents in the three evaluation environments. 
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Figure 4.6: Fitness Function. This function was used for fitness 
evaluation in all the experiments performed using the autonomous 
agent system. The variable S is the speed of the neural agent, a is 
the angular velocity of the neural agent, m is the maximum sensor 
value currently detected by a laser range finder and d is the current 
distance from goal. The constants c1# C2 and C3 were set to 1.0, 1.6 
and 1.0 respectively. The maximum sensor value from a laser range 
finder is 1.5. However, because the sensor readings may incorporate 
random noise with a maximum value of 0.1, the value of C2 is 1.6 so 
as to preclude negative fitness values. 

The fitness function used in the NS incorporates a distance variable. This variable 

causes fitness to rise sharply as the agent approaches its goal and keeps fitness 

low when the agent is far from its goal. The function is replaced by a static fitness 

value of five when the agent has arrived at its goal. This value is substantially 

higher than any fitness value that can be generated by the fitness function and 

serves to dramatically increase the fitness values of agents that reach their goals. 

The static value also mitigates the problem of division by zero when the agent is 

exactly on top of its goal. The agent is considered to have arrived at its goal when 

it is within 0.5 simulated meters of it. 

The fitness function evaluates the fitness of an individual genome for one time 

slice. The genome's fitness values for each time slice are summed over the course 

of its navigation through each simulation environment to produce the overall 

fitness value for that generation of the genome. 

4.2.3 Experimentation 

Eighty experiments were performed to solve the dynamic obstacle avoidance 

problem. Forty were performed using NEAT and forty using SDNEAT. Neither 
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algorithm found a complete solution to all three simulated environments, but 

SDNEAT succeeded in finding solutions for all three environments. NEAT did 

find solutions for the busy hallway and busy room scenarios but failed to evolve a 

solution for the maze. SDNEAT evolved a solution for the busy hallway and 

busy room scenarios that nearly solves the maze problem as well. A few 

generations after this solution was evolved, a solution that navigates the maze 

environment was found. That agent was direcuy related to the best SDNEAT 

solution agent but unfortunately the agent that solved the maze had lost its ability 

to solve the busy hallway and busy room scenarios. 

SDNEAT found substantially more high-fitness genomes than NEAT did using 

the same given GA parameters and the same number of experiments. A fit 

genome was defined as any genome that scored above 1000. The average score 

for an unfit genome was approximately 350. Most genomes that scored over 

1000 did approach their goals to some extent. Agents that scored above 20,000 

were considered high-fitness genomes. These genomes kept their speed high, 

their angular velocity low, received very litde sensory input and approached their 

goals somewhat. A fitness of 20,000 could not be achieved otherwise and is a 

good benchmark fitness for agents that performed well in the dynamic obstacle 

avoidance experiments. 
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Figure 4.7: NEAT's Best Generation Fitness versus 
Generation. This graph charts the fitness values of the highest 
fitness genomes in each generation for all forty NEAT dynamic 
obstacle avoidance experiments. The various colours and shapes are 
representative of each of these unique experiment data series. The y-
axis is a logarithmic scale. NEAT does evolve some very high 
fitness solutions quickly. 

79 



Fi
tn

es
s 

100000 I 

1 

10000 

1000 

Ipf" 
100 p 

H 
10 I 

1 ^ 

( 

0.1 

0.01 

1 

1 

1-

20 40 60 

\ 

80 100 120 

Generation 

, 

140 160 

m 

180 200 

Figure 4.8: SDNEAT's Best Generation Fitness versus 
Generation. This graph shows the fitness values of the highest-
fitness genomes in each generation for all forty SDNEAT dynamic 
obstacle avoidance experiments. The various colours and shapes are 
representative of each of these unique experiment data series. The y-
axis is a logarithmic scale. SDNEAT evolves a substantial number 
of high-fitness solutions. 

Both NEAT and SDNEAT produce a substantial number of basic solutions. The 

above graphs show a significant grouping of solutions with fitness values 

between ten and one thousand. This is representative of the simplest solution in 

the dynamic obstacle avoidance problem search space. The solutions with fitness 

scores scattered between one thousand and ninety thousand represent localized 

maximum solutions in the search space. Most of these genomes produce 

solutions for one of the three evaluation environments. The third major grouping 

of solutions represents genomes with fitness values of almost one hundred 

thousand. These solutions succeed in solving two of the evaluation environments 

and in some cases nearly solve all three. If this subset of the dynamic obstacle 
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avoidance problem is solvable by one neural agent then there is a third tier of 

solutions in the solution space with fitnesses above one hundred thousand. 

The following comparisons of NEAT to SDNEAT are limited to experiments 

that successfully evolved multiple high-fitness solutions. Any experiment with 

less than two high-fitness solutions is excluded as it does not significantly 

contribute to the solutions of the dynamic obstacle avoidance problem. When 

only experiments with high-fitness solutions are taken into account, NEAT does 

not appear to perform as well as SDNEAT. The set of NEAT experiments 

resulted in only fifteen experiments with multiple high-fitness solutions. 

SDNEAT's experiment set resulted in twenty experiments with multiple high-

fitness solutions. The high-performance NEAT experiments generated 66 high 

fitness solutions for an average of 4.4 solutions per experiment; the SDNEAT 

experiments generated 165 high fitness solutions for an average of 8.25 per 

experiment. 

A high-fitness solution here can be an individual solution or a sequence of 

solutions. Sequences of solutions arise from elitism; when elitism takes effect, a 

solution genome passes through to the next generation. This genome may learn 

new behaviour from its training in the environment but it is considered the same 

solution for the purposes of these statistics. 
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Figure 4.9: Number of High-Fitness Solutions versus 
Experiment Number. SDNEAT performed substantially better 
than NEAT in several experiments. SDNEAT's number of high-
fitness solutions exceeded NEAT's by 250%. 

These results suggest that segmental duplication mutation does increase the rate 

at which high-fitness solutions can be found for a given problem. In order to 

compare the relative fitness of these solutions, it is necessary to categorize the 

solutions based on the behaviour generated by the evolved solutions. Upon 

review of the behaviour of the agents in each of the three environments, it was 

found that their solutions for the busy hallway and busy room environments were 

very similar. As a result, the agents' methods of solution for both the busy 

hallway and busy room environments are described here with respect only to the 

busy hallway. 
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4.2.4 Solutions 

All 231 high-fitness solutions were observed and categorized based on the 

behaviours exhibited by the evolved neural agents in the maze and busy hallway 

environments. During categorization each sequence of elite genomes was treated 

as an individual solution. During each generation each genome is evaluated ninety 

thousand times to form its fitness score. While it is being evaluated, it is also 

learning, which can change its behaviour both during evaluation and in future 

generations. These changes in behaviour can cause it to be categorized 

differently. In this project, when changes in the behaviour of an elite agent were 

drastic enough to warrant a different categorization, they were considered new 

agents. This expanded the number of high-fitness NEAT solutions to 94 and the 

number of SDNEAT solutions to 190 for a total of 284 high fitness solutions. 

Eight categories of behaviour emerged from the high-fitness solutions. The 

following list of categories starts with the simplest solution and progresses 

towards more sophisticated and complex solutions. Category 8 is the best 

solution found. 

4.2.4.1 Category 1: 

In the maze, the agent moves towards the nearest wall and gets stuck against it. 

In the busy hallway, the agent moves in small circles in a southeast direction. 

When near a wall the agent continues to turn in small circles and follows the "wall 

north towards the hallway opening. Once at the hallway, it turns towards the goal 

and attempts to move through the hallway, still turning in small circles, and 

avoiding the dumb agents until it reaches its goal. In some variations the agent 

gets stuck against the inner hallway walls while attempting to move through the 

hallway. Some Category 1 agents, when performing wall-following and moving 
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towards the hallway, move next to the wall without turning in circles before 

switching back to circular movement as they move through the hallway. 

Busy Hallway 

Figure 4.10: Category 1 Solution. This solution is the most 
common in both NEAT and SDNEAT. 

4.2.4.2 Category 2: 

The agent spins in the corner of the maze. It may move further into the corner or 

very slightly out of the corner. In the busy hallway environment the agent moves 

in a northeast direction in a circular pattern. The circles may be large or small. 

When the agent moves close to the north east corner of the east room it enlarges 

the turning radius of its circular movements and makes a large sweeping curve 

through the hallway and into the west room. The agent may or may not attain the 

goal. If it does not attain the goal it gets stuck against the first wall it contacts. 
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Busy Hallway 

Figure 4.11: Category 2 Solution. This solution is much less 
common than the other solutions. It is also inaccurate and prone to 
missing the goal. 

4.2.4.3 Category 3: 

In the maze, the agent moves towards the nearest wall and gets stuck. In the busy 

hallway scenario the agent moves directly south, and while keeping its turning 

radius as large as possible it turns towards the east and orients itself towards the 

goal location in the west room. The agent then speeds up, decreases its turning 

radius to zero and moves straight towards the goal. There are several slight 

variations on dais theme. The agent may move slowly or quickly through the turn, 

but it always moves quickly through the straight portion. The agent also may alter 

its directional vector to avoid the edge of the southern wall but after it has passed 

the •wall it straightens its course and, typically, arrives at its goal. 
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Busy Hallway 

Figure 4.12: Category 3 Solution. This is the most common 
solution in both NEAT and SDNEAT. The agent typically 
performs slight course corrections to avoid the first soudiem wall. 
Since it then usually proceeds to the goal as fast as possible, it avoids 
the hallway agents completely. 

4.2.4.4 Category 4: 

The neural agent spins in the corner of the maze and makes some movement 

outward from the maze corner, either to the north or the east. The agents in this 

category behave the same way as Category 3 agents in the busy hallway and busy 

room scenarios. These agents are considered separate from Category 3 agents 

because they are evolutionary precursors to later solutions. 
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4.2.4.5 Category 5: 

In the maze environment the neural agent either spins in the corner, or makes 

small erratic movements away from the corner but gets stuck in the middles of 

hallways and does not progress to its goal. In the busy hallway and busy room 

scenarios Category 5 agents have an interesting solution. They move direcdy 

southeast in an elongated ellipse pattern. Then they curve back towards their 

starting point, adjust their trajectories when they near the western wall, and then 

move along a long curve through the hallway and to the goal. 

Busy Hallway 

Figure 4.13: Category 5 Solution. This is one of the most 
interesting solutions in both the NEAT and SDNEAT experiments. 
It is accurate and may be a precursor to the Category 3 solutions. 

4.2.4.6 Category 6: 

These neural agents sometimes behave like Category 3 or Category 4 agents, but 

they slow down to navigate past static obstacles and speed up to push dynamic 
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obstacles out of their paths. This behaviour is akin to "bullying". This was the 

most advanced solution evolved by the NEAT algorithm. 

4.2.4.7 Category 7: 

In the maze environment, a Category 7 neural agent spins on its center point or 

in tight circular movements and follows nearby walls all the way to its goal. In all 

the experiments, this was the only solution to the maze evolved, and it was only 

evolved in SDNEAT. In the busy hallway and busy room scenarios it has no wall 

to follow near its starting point, and it simply spins. 

Maze 

Figure 4.14: Category 7 Solution. This is the only evolved 
solution to the maze. 
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4.2.4.8 Category 8: 

Similarly to Category 7 solutions, Category 8 neural agents exhibit wall following. 

However as a Category 8 agent is progressing northward against the wall, it 

eventually increases its turning radius too much and gets stuck. The agent solves 

both the busy hallway and busy room environments using a Category 6 approach. 

All of the solutions evolved by both NEAT and SDNEAT fall into one of the 

described categories. NEAT evolved solutions in Categories 1, 2, 3, 4 and 6. Its 

best solution fell into Category 6. It did not successfully evolve any other 

solutions. SDNEAT evolved solutions that fit into all the categories. This 

suggests that SDNEAT's segmental duplication mutation may cause the 

populations to evolve into a more diverse set of solutions. 
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Figure 4.15: Number of Solutions versus Category. This chart 
shows that SDNEAT outperforms NEAT in evolving complex 
solutions. 

In Figure 4.15 it is clear into which category each algorithm's most advanced 

solutions fall. NEAT evolved a Category 6 solution that SDNEAT also evolved. 

SDNEAT evolved more sophisticated solutions, including a Category 7 solution 

which was a wall-follower that solved the maze problem, as well as a Category 8 

solution that integrated wall following behaviour with the Category 3 and 4 

solutions mat accurately and efficiendy found the goal in the busy hallway and 

busy room scenarios. 

4.2.5 The N E A T Solution 

The Category 6 NEAT solution was evolved in the two hundredth generation of 

NEAT Experiment 25. It was composed of 25 neuron genes including its input 
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and output genes, and 60 link genes. Its fitness value was only 47237.3, which 

suggests that it either did not reach its goal in the busy room or the busy hallway 

scenario. This also suggests that its goal finding was not as accurate as that of 

other evolved solutions. This agent did exhibit behaviour that incorporated some 

elements of wall following; in the maze environment it turned on its center point 

and moved towards the starting corner until it got stuck. In the busy hallway and 

busy room environments it proceeded towards its goal as fast as possible. It 

slowed down to avoid static obstacles and sped up to push dynamic obstacles out 

of its way. 

91 



Figure 4.16: NEAT Solution Topology. This is the NEAT 
algorithm's evolved solution to the dynamic obstacle avoidance 
problem. 

The NEAT solution was a relatively low-scoring population; not many of its 

agents evolved high fitness values until the last generation. 
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Figure 4.17: NEAT Species History. This image displays the 
species information for the NEAT solution. The x-axis shows the 
generation number, the y-axis shows the population size and the z-
axis shows die species. There were 47 species over 200 generations. 
No species achieved significant dominance in the population until 
Generation 200. The sharp spike marked with an arrow is the 
population that the NEAT solution evolved in. 

4.2.6 The SDNEAT Solution 

The category 8 SDNEAT solution evolved in Generation 88 of SDNEAT's 

fifteenth experiment. It was composed of 19 neuron genes including its input and 

output genes, and 37 link genes. Its fitness value was 98875.6, which suggests that 

the agent successfully reached two out of three goals. This agent's goal-finding 

was quite accurate. It has only 19 neuron genes; its topological structure is 

substantially less complex than the NEAT solution. Since 15 of its genes were 
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already dedicated to input and output nodes, this solution required only four 

hidden genes. 

Figure 4.18: SDNEAT Solution Topology. This image shows 
SDNEAT's solution for the dynamic obstacle avoidance problem. 
This solution is substantially less complex than the solution evolved 
by NEAT, which is shown in Figure 4.16. 
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This neural agent exhibited more advanced wall following than the NEAT 

solution. Like a Category 7 agent would, in the maze it initially followed the west 

wall, but eventually its turning radius increased until it got stuck turning into the 

wall rather than continually avoiding it. In the busy hallway scenario the agent 

proceeded to the goal so rapidly that it completely avoided the dumb agents. In 

the busy room environment, the agent did not avoid the east-to-west agents and 

collided with one of them on the way to its goal. It did not slow down or avoid 

the dumb agent; it proceeded direcuy to the goal by pushing the dumb agent out 

of its path. 

The best-performing SDNEAT solution was part of a series of solutions, which 

continued to evolve after the best-performing solution "was attained. After several 

more generations the same solution correcuy evolved wall-following and became 

a Category 7 solution. Unfortunately the agent lost its ability to solve the busy 

hallway and busy room scenarios as a result. 
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Busy Hallway Maze 

Figure 4.19: SDNEAT Solution. The SDNEAT solution nearly 
solved all three environments and eventually evolved into a solution 
that solved the maze environment. Unfortunately in the process it 
lost its ability to solve the busy hallway and busy room 
environments. The busy room environment is not shown above as 
the agent used the same solution there as it did in the busy hallway 
environment. 

Interestingly the best performing SDNEAT solution had no segmental 

duplications in its structure. However when tracing its genetic origins, it was 

found that this solution was a direct descendant of its original species champion 

which was heavily mutated with segmental duplications. NEAT could have 

evolved this solution, but SDNEAT ultimately caused the solution to surface 

faster. Even though the final solution actually had no segmental duplications in it, 

it did have genes descended from a parent that had segmental duplications. 
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Figure 4.20: SDNEAT Species History. This image displays the 
species information for the SDNEAT solution. The x-axis shows 
the generation number, the y-axis shows the population number and 
the z-axis shows the species. There were 109 species over 200 
generations. Several of the species achieved significant dominance in 
the population numbers due to their solution fitness. The sharp 
spike marked with an arrow is the species that evolved the best-
performing SDNEAT solution. 

The SDNEAT species history displayed in Figure 4.20, when compared to the 

NEAT species history shown in Figure 4.18, clearly shows that SDNEAT 

evolved significantly more high-fitness solutions. 

NEAT is fully capable of evolving solutions to the dynamic obstacle avoidance 

problem and is capable of evolving high-fitness solutions very quickly. However, 

SDNEAT evolved highly sophisticated solutions faster than NEAT in this 

project. The SDNEAT solutions exhibited extremely high fitness and were not 

necessarily more complex than the NEAT solutions to the problem. While this 
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project did not completely solve the dynamic obstacle avoidance problem, future 

work with the SDNEAT and NEAT algorithms may complete a solution. 



Chapter 5 

DISCUSSION AND CONCLUSION 

The difficulty of the dynamic obstacle avoidance problem varies greatly 

depending on the chosen domain of implementation. Solving the problem in a 

single domain with WEAs and TEAs has been attempted in prior work. 

Searching for a solution to the problem in multiple training domains seems to be 

a more difficult problem to solve. Both the NEAT and SDNEAT algorithms are 

capable EANN systems. The NEAT algorithm can, from a base genome, 

methodically develop a neural network solution to very complex problems. 

SDNEAT has all the advantages of the NEAT algorithm and increases its 

performance by adding segmental duplication. These algorithms, when applied to 

the dynamic obstacle avoidance problem, came close to achieving an optimal 

solution. 

5.1 Segmental Duplications 

The NEAT algorithm introduces complexity to a population of genomes with a 

basic initial structure. It introduces this complexity gradually through mutation 

and crossover operators that are made manageable by the addition of historical 

markings to the NEAT genes. The unique solutions evolved through the gradual 

addition of complexity are protected by speciation. As speciation occurs, the 

structurally diverse genomes are broken into separate groups and given time to 

evolve to their fullest potential. These strengths of the NEAT algorithm are 

shared by the SDNEAT algorithm. 

SDNEAT introduces the concept of segmental duplication within an 

evolutionary artificial neural network. The idea of segmental duplication is 

99 



borrowed from the natural genetic processes of life on earth. Segmental 

duplications are thought to speed the genetic adaption of natural life (Bailey & 

Eichler, 2006). In SDNEAT, when segmental duplication occurs the mutation 

function identifies a specific sequence of nodes and links in a neural network and 

adds an additional segment of similar links, heavily mutated, to the same genome. 

It is hoped that the segment will speed the genetic adaption of the solutions in 

the SDNEAT population. 

The complexity introduced to genomes through segmental duplication is 

protected by NEAT speciation. This accelerated addition of complexity has the 

potential to cause SDNEAT to fail to identify structurally optimal solutions that 

the NEAT algorithm may identify in a shorter time. This thesis showed that 

when SDNEAT was applied to the dynamic obstacle avoidance problem, it 

found higher-fitness solutions more frequently than NEAT. While SDNEAT 

may introduce complexity faster than NEAT, that added complexity is protected 

by speciation, increasing the total number of species. Each species contains a 

proportionally smaller segment of the population but is more dispersed in the 

problem solution space. The added complexity speeds the search for an optimal 

solution. 

5.1.1 Increasing performance of SDNEAT 

While SDNEAT did evolve the most effective solutions to the dynamic obstacle 

avoidance problem, there is potential to improve the methodology. All of the 

agent training in this project used unsupervised learning. During the initial 

simulations, agents were directly punished for colliding with an object; for the 

time slices during which they were in collision with another object, they received 

2ero fitness. At first this appeared to be a good practice, but it was found that 

several agents quickly evolved movement toward their goals and consequently 
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collided with a wall, ceased moving and also ceased gaining fitness. This attempt 

at supervising the learning of the agents resulted in undesirably low fitness values 

for potential solutions. 

However, a more effective type of supervised learning could be implemented. 

Such supervision might involve observing and recording agent behaviour and 

modifying the fitness of an agent when poor behaviour is observed, while 

continuing to reward agents for positive behaviours. This method may be too 

complex to implement and therefore impractical. Making the training 

environments more random may limit the overspecialization of the solutions. 

This might increase the fitness of the overall best solution by making it 

independent of its environment. 

During the dynamic obstacle avoidance experiments, the biases of the agents 

were set to one as a default and were not allowed to mutate or evolve. 

Introducing mutation or evolution of biases into the algorithm may offer slight 

improvements to the agents' overall performance and fitness. 

In this project, the agents were allowed to train in every environment, during 

every time slice and in every generation in which they were evaluated. It is 

possible that this resulted in the neural networks becoming over-fit, and their 

performance decreased as a consequence. A smarter version of SDNEAT could 

halt learning and proceed with evaluation only when the observed level of 

performance reaches a certain threshold. This threshold would be dependent on 

the training environment and integrated as a parameter in the SDNEAT 

algorithm. 
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5.2 Dynamic obstacle avoidance 

While SDNEAT did find a nearly optimal solution, it did not find a perfect 

solution to the defined problem of dynamic obstacle avoidance. SDNEAT also 

evolved substantially more high-fitness solutions than the original NEAT 

algorithm. The best SDNEAT solution was capable of efficiently solving the busy 

room and busy hallway environments, and it almost solved the maze problem. 

Several generations after the best solution was evolved, one of its descendants 

solved the maze scenario; however, its solution was not optimal. An optimal 

solution would have taken a more direct route to the goal and would have not 

spun in circles on its way there. 

In an effort to optimize the evolved solutions, prior to experimentation the 

fitness function was carefully honed. The initial version of the fitness function 

included no modification for the agent's distance from its goal. 

Early variation of the function involved subtracting the distance-to-goal from the 

calculated fitness. This resulted in negative fitness, which did not function 

properly in the simulator. Since the function should reduce to zero for poor 

fitness behaviour, using the inverse of the distance worked well. If an agent is far 

from its goal this inverse is a substantially low number, and if the agent is near the 

goal the number rises sharply. 

After these changes, agents still did not progress effectively toward their goals. 

Various modifications were made to the fitness function to reduce the 

importance of speed and turning velocity in the overall fitness. None of these 

modifications resulted in higher-fitness solutions. After visual inspection of 

several experiments, an increase in the number of time slices per simulation 

environment was attempted. This resulted in the current value of thirty thousand 
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time slices per environment The extra time in each simulation allowed the neural 

networks to adapt further to their environments and to increase the calculated 

difference between high- and low-fitness solutions. This improved the ratio of 

high-fitness solutions to low-fitness solutions. 

Further modifying the evaluation methods might result in a better selection of 

solutions. The fitness function used by the autonomous agent application could 

be modified further in an attempt to optimize the agents' calculated fitness. The 

score of five awarded to agents that arrived at their goals, which was used in place 

of the calculated fitness function in such circumstances, could be reduced to 

three or two. This 'would lower the highest-fitness score and might prevent 

SDNEAT from concentrating nearly all the offspring into that one high-

performing species. 

As species grew old, their average fitness scores began to decrease. This decrease 

in fitness may have been due to over-training of the neural network agents. In all 

the experiments, the scores of the highest-performing species eventually 

decreased while the scores of originally lower-performing new species increased. 

This was counterintuitive; it seems that per-species elitism should have prevented 

the highest-performing agents from being changed between each generation. 

However, only their topology remained static; their neural networks' knowledge 

and behaviour did change. The best evolved solution, which later evolved into a 

solution for the maze environment, lost its ability to solve the busy room and 

busy hallway environments. This was probably due to over-training of the neural 

networks. If so, the problem could be corrected using a smart-learning version of 

SDNEAT, as described. 
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5.2.1 Improving the simulation 

The simulation environment could be changed to increase consistency between 

the experiments. Random noise was introduced into each agent's laser range-

finder signals, but this noise was not normali2ed before fitness evaluation. As a 

result the fitness function may have reported a small amount of fitness when 

there was none. This may have skewed fitness scores slightly. This could be 

corrected by normalizing the sensor readings before fitness calculation but after 

neural network training. 

The simulation system itself produced a lot of random noise through 

mathematical inaccuracy. The multiplicative increase of decimal inaccuracy may 

have led to changes in the dumb agents' behaviour between each experiment. It is 

unclear if this was a positive or negative influence on the neural agent training; it 

is conceivable that it might have prevented a good solution from reaching the 

goal during the early stages of its evolution. However if such a solution were truly 

promising, it should have avoided the random obstacles and reached the goal 

anyway. 

Many of the simulations demonstrated that the agents preferred to spin even if it 

decreased their overall fitness. A potential solution for this problem would be to 

focus the density of sensor input from one direction. Since the agents had a 

uniform belt of sensors around their circumference they had no one direction 

that was optimal for detecting dynamic obstacles. Increasing the sensor density in 

one half of an agent's circumference might bias the agent towards moving in that 

direction. This bias is exhibited in natural life forms; for example, most human 

sensory inputs are focused towards one half of their surroundings. 
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5.2.2 Future improvements 

It appeared to be more difficult for the agents to evolve solutions for finding 

their goals in the maze environment than in the other environments. This may 

have been due to the bias of having two structurally similar scenarios where 

agents had to navigate through a dynamic environment towards a goal, versus 

one static maze environment. Balancing the number of similar environments 

would remove the bias. Randomizing the environments, including randomizing 

their start and end points, might also help to evolve more robust solutions. The 

solutions that were found were nevertheless local maxima as the agents 

performed well in two of the three environments. A further level of evolution 

would probably find a solution for all three environments but such a solution 

might still not be the global maximum solution. A global solution would perform 

•well in an environment it has never encountered. Randomizing the environments 

and their start points and end points might serve to evolve a robust dynamic 

obstacle-avoidance agent that can perform well in any environment. 

5.3 Future direction and Component SDNEAT 

Although NEAT and SDNEAT can evolve efficient solutions to complex 

problems, they are constrained by the topological limits of a single network. 

SDNEAT provides a way to increase the complexity of evolved solutions 

through a new indirect encoding method. Existing biological systems are 

composed of several highly-connected neural network structures that are 

genetically related but may have different structures and function completely 

differently. The nerves in the eye are closely related to the nerve structures in the 

brain, as they all are realized from the same DNA, but functionally the cells are 

quite different. 
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A new version of SDNEAT could implement neural controllers for agents of 

much greater complexity. This "Component SDNEAT" would describe its 

phenotype using indirect encoding of component genes and segment genes. Each 

input or set of inputs of an autonomous agent would be given its own neural 

network to train and evolve. This network would then be a component of the 

phenotype and would be encoded as a component gene of the genotype. The 

outputs of the agent would also be grouped by component in a similar fashion. A 

final component would be added that would not be connected to the inputs or 

outputs of the agent but would act as a central processing unit for the agent's 

input and output components. Such a component would essentially be the agent's 

brain. 

These components would describe the first portion of the genome and would 

have originally been composed of a base set of segment genes which describe the 

other portion of the genome. Whenever complexity is added to one of the 

components' phenotypes through the Component SDNEAT algorithm, the 

segment would be stored in the list of unique segments and the segment gene 

would be added to the individual's genotype. If the innovation is not unique it 

would be treated the same way that NEAT and SDNEAT would treat a non-

innovation. Essentially the NEAT algorithm would be further extended to 

support segments as an innovation. The definition of a segment would be 

extended to include a single link, making all innovations segments. Through this 

extension, components would be completely described by this new type of 

innovation at the highest level of abstraction, which would be segments. 

The phenome, which would then be comprised of several highly connected but 

different specialized neural networks, could be encoded in a genome using only 

components and segments. Each component could store specialized information 

about the input it receives from the brain component or its set of inputs from the 
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agent. The brain component could then find new patterns of complex behaviour 

based on substantially more input knowledge. Breaking up the highly complex 

single controller neural network into smaller component networks could have the 

added benefit of allowing the input and output networks to handle far more input 

and output nodes. Component input networks, for example, could be scaled up 

to handle optical information from a camera sensor and then feed that 

information to the brain network with a compressed pattern-matching output, 

rather than requiring the brain network to optimize optical information as well as 

laser range-finder information, GPS information and any other sensor input. 

Mutation operations could remain the same in Component SDNEAT as in 

NEAT and SDNEAT, acting only on the segment genes. Crossover could then 

be defined as an operation on the components' phenomes. Input phenomes 

could crossover with other input phenomes and similarly, brain phenomes could 

crossover with other brain phenomes and output phenomes could crossover with 

other output phenomes. This process would superficially resemble the complex 

crossover process that occurs between biological cells. Components could even 

be directly tied to physical aspects of their agent. This could extend the 

Component SDNEAT algorithm to evolve the structure of its agent as well as 

the topological structure of its neural network controller. 

Using Component SDNEAT, the complexity of the neural network solutions 

could be increased along with the potential for storing specialized information, 

without dramatically increasing the size of the genome. Segments could scale to 

this level of abstraction because they would not break the topological rules of 

neural networks and would still take full advantage of the historical markings 

introduced in NEAT. A Component SDNEAT algorithm could potentially scale 

to solve much more complex real-world problems than NEAT or SDNEAT 

alone. 
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5.4 Conclusion 

NEAT and SDNEAT were first compared in order to resolve the question of 

whether or not the topological efficiency of their solutions to the XOR problem 

would be similar. 

Experiments showed that SDNEAT evolved solutions that were as efficient in 

structure as those evolved by this implementation of NEAT. SDNEAT also 

found solutions in a shorter average time than NEAT. Further experimentation 

with the dynamic obstacle avoidance problem showed that SDNEAT evolved 

more high-fitness solutions than NEAT in the name number of experiments, as 

•well as a higher-efficiency high-performance solution. SDNEAT's solution to the 

dynamic obstacle avoidance problem was the only solution to exhibit solution 

behaviour in all three environments. SDNEAT was also the only algorithm to 

evolve a solution to the maze environment. 

NEAT is capable of evolving, from simple initial genomes, complex structures 

that solve complex problems. SDNEAT empowers NEAT to optimize these 

solutions much more efficiently through the use of segmental duplication, 

without losing any of the benefits of the original NEAT algorithm. SDNEAT 

evolves complex and nearly optimal solutions for the dynamic obstacle avoidance 

problem described in this thesis. SDNEAT can potentially be upgraded to 

Component SDNEAT, which could evolve complete environment-independent 

solutions to complex real-world problems. Future work could result in a 

complete solution to the dynamic obstacle avoidance problem. 
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Appendix A 

EXPERIMENT PARAMETER VALUES 

This appendix reviews the definition of the parameters used to modify the 

behaviour of the NEAT and SDNEAT algorithms. It also details the values used 

in each NEAT and SDNEAT experiment for both the XOR and dynamic 

obstacle avoidance problems. 

A.1 Definitions 

There are twenty-six neuroevolutionary system parameters for NEAT and 

twenty-eight for SDNEAT. 

1. Initial Population Size: The number of individual genomes in the initial 

population in an experiment. 

2. Generations: The number of generations the experiment should run for. 

3. Ci- Coefficient modifying the importance of excess genes during distance 

calculation. 

4. C2: Coefficient modifying the importance of disjoint genes during 

distance calculation. 

5. C3: Coefficient modifying the importance of the average weight 

difference during distance calculation. 

6. Compatibility Threshold: The distance required for a genome to be 

considered structurally different from another genome. 

7. Threshold Increment: The amount the compatibility threshold is 

modified when no speciation is occurring. Induces speciation in lower-

complexity populations. 

8. Max Number of Species: limits speciation to a maximum number of 

concurrent species. 
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9. Young Bonus Threshold: If a new species is below this number of 

generations its fitness is boosted by the young fitness bonus. 

10. Young Fitness Bonus: The amount by which a new species' overall 

fitness is boosted when it is below the young bonus threshold. 

11. Old Age Threshold: If a species is over this age and is not improving its 

fitness is penalized by the old age penalty. 

12. Old Age Penalty: If a species is over the old age threshold, its fitness is 

punished by this amount. 

13. Survival Rate: The percentage of the population to survive each 

generation. 

14. Probability Rate Replaced: The probability a link weight is completely 

replaced by a new random weight. 

15. Max Weight Perturbation: The maximum amount by which a weight 

will be mutated. 

16. Activation Mutation Rate: The probability an activation function will 

be mutated. 

17. Max Activation Perturbation: The maximum amount by which an 

activation function will be mutated. 

18. Genome Inputs: The number of inputs in a genome. 

19. Genome Outputs: The number of outputs in a genome. 

20. Number of Generations Allowed with N o Improvement: After a 

species reaches this number of generations, if it has not improved and it 

is not the species containing the genome with the population's highest 

fitness, the species is killed off. 

21. Crossover Rate: The probability of crossover occurring. 

22. Max Number of Neurons: The maximum number of neurons a 

genome is allowed to evolve. 

23. Mutation Rate: The probability of mutation occurring. 

24. Chance to Add Node: The probability of a node mutation occurring. 
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25. Chance to Add Link: The probability of a link mutation occurring. 

26. Chance of Looped Link: The probability of a recurrent link mutation 

occurring. 

These parameters are specific to the SDNEAT algorithm: 

1. SD Mutation Rate: The probability of a segmental duplication mutation 

occurring. 

2. SD Sub-Mutation Rate: The probability that a link or node mutation 

will occur in a segmental duplication. 

A.2 Common Parameters 

Several parameters were not changed between experiments in both NEAT and 

SDNEAT they are outlined in table A.l. 
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Parameter 

Cl 

c2 

c3 

Threshold Increment 

Young Bonus Age Threshold 

Young Fitness Bonus 

Old Age Threshold 

Old Age Penalty 

Initial Genome Inputs 

Initial Genome Outputs 

XOR 

1 

1 

0.4 

0.05 

10 

1.3 

50 

0.7 

13 

2 

Dynamic Obstacle Avoidance 

1 

1 

0.4 

0.05 

10 

1.3 

50 

0.7 

13 

2 

Table A.1: Common parameter settings. These parameter values 
were used in every experiment. 

A.3 Variable Parameters 

Most parameters were varied between experiments. In XOR the experiments all 

used the low range value from Table A.2. 
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Parameter 

Initial Population Size 

N u m b e r of Generations 

Initial Compatibility Threshold 

Maximum N u m b e r of Species 

Survival Rate 

Probability Rate Replaced 

Max Weight Perturbation 

Activation Mutat ion Rate 

Max Activation Perturbation 

N u m b e r of Generations no improvement 

Crossover Rate 

Max imum N u m b e r of Neurons 

Mutat ion Rate 

Chance of Adding N o d e 

Chance of Adding Link 

Chance of Looped Link 

Base 

100 

200 

0.5 

30 

0.2 

0.1 

0.5 

0.1 

0.1 

15 

0.07 

25 

0.3 

0.04 

0.07 

0.05 

Low 

50 

100 

0.2 

20 

0.2 

0.1 

0.5 

0.1 

0.1 

15 

0.1 

25 

0.2 

0.01 

0.04 

0.03 

H i g h 

200 

300 

0.5 

30 

0.5 

0.3 

0.8 

0.3 

0.3 

30 

0.3 

50 

0.4 

0.1 

0.14 

0.11 

Increment 

50 

100 

0.1 

5 

0.1 

0.05 

0.1 

0.1 

0.1 

5 

0.1 

5 

0.1 

0.01 

0.2 

0.2 

Table A.2: Variable parameter settings. These parameter values 
were varied in individual experiments. The base value is the default 
when there is no variance, the low value is the bot tom of the range of 
values while there is variance, high is the top of the range being 
varied and increment is the amount by which each is varied. 
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