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Abstract 

This thesis focuses on combining the two most important and wide spread declarative 

programming paradigms, functional and logic programming. The proposed approach aims 

at adding logic programming features which are native to PROLOG onto HASKELL. We 

develop extensions which replicate the target language by utilizing advanced features of 

the host language for an efficient implementation. 

The thesis aims to provide insights into merging two declarative languages namely, 

HASKELL and PROLOG by embedding the latter into the former and analyzing the results 

of doing so as the two languages have conflicting characteristics. The finished products 

will be something similar to a haskellised PROLOG which has logic programming-like 

capabilities. 
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Chapter 1 

Introduction 

This chapter introduces the scope of the thesis along with the preliminary arguments. 

Programming has become an integral part of working and interacting with computers 

and day by day more and more complex problems are being tackled using the power of 

programming technologies. 

A programming language must not only provide an easy to use environment but also 

adaptability towards the problem domain. 

Over the last decade the declarative style of programming has gained popularity. The 

methodologies that have stood out are the functional and logical approaches. The former 

is based on functions and lambda calculus, while the latter is based on Hom clause logic. 

Each of them has its own advantages and disadvantages. How does one choose which 

approach to adopt? Perhaps one does not need to choose! This document looks at the 

attempts, improvements and future possibilities of uniting HASKELL, a purely functional 

programming language and PROLOG, a logical programming language so that one is not 

forced to choose. The task at hand involves replicating PROLOG-like features in HASKELL 

such as unification and a single typed system. The thesis aims at leveraging the features of 

the host language in order to incorporate logic programming features resulting in extending 

HASKELL with capabilities like unification. We achieve this by adopting various aspects 



from approaches related to merging paradigms and embedding techniques for programming 

languages. This results in a hybrid approach which provides a library taking advantage of 

the host language features. 

1.1 Thesis statement 

The thesis aims to provide insights into merging two declarative languages namely, HASKELL 

and PRO LOG by embedding the latter into the former and analyzing the result of doing so as 

they have conflicting characteristics. The finished product will be something like a haskel-

lised PROLOG which has logic programming like capabilities. 

1.2 Problem statement 

Over the years the development of programming languages has become more and more 

rapid. Today the number of is in the thousands and counting [ 178, 46]. The successors 

attempt to introduce new concepts and features to simplify the process of coding a solution 

and assist the programmer by lessening the burden of carrying out standard tasks and pro-

cedures. A new one tries to capture the best of the old; learn from the mistakes, add new 

concepts and move on; which seems to be good enough from an evolutionary perspective. 

However, all is not that straight forward when shifting from one language to another. There 

are costs and incompatibilities to look at. A language might be simple to use and pro-

vide better performance than its predecessor but not always be worth the switch. Another 

approach would be to replicate target features exhibited by a language in the present one 

to avoid the hassle of jumping between the two. Commonly this results in an embedded 

language or a foreign function interface. A mixture of these ideologies results in a multi-

paradigm I merged programming language. We try to encapsulated both the approaches of 

embedding and merging to develop a hybrid approach. 
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PROLOG is a language that has a hard time being adopted. Born in an era where proce-

dural languages were receiving a Jot of attention, it suffered from competing against another 

new kid on the block: C. 

Some of the problems were due to its own limitations. Basic features like modules were 

not provided by all compilers. Practical features for real world problems were added in an 

ad hoc way resulting in the loss of its purely declarative nature. Some say that PROLOG is 

fading away, [91, 146, 145]. It is apparently not used for building large programs [ 160, 122, 

66]. However there are a Jot of good things about PROLOG: it is ideal for search problems; 

it has a simple syntax, and a strong underlying theory. It is a language that should not die 

away. 

So the question is how to have all the good qualities of PROLOG without actually using 

PRO LOG? 

One idea is to make PROLOG an add-on to another language which is widely used and 

in demand. Here the choice is HASKELL; as both the languages are declarative they share 

a common background which can help to blend the two. HASKELL also has some support 

for logic programming [ 149] which enables encoding of search problems. 

A domain specific language (DSL) is a concise micro language that offers tools and 

functionalities focused on a particular problem domain. In many cases, DSL programs 

are translated to calls to a subroutine library and the DSL can be viewed as a means to 

hide the details of that library [ 144]. A DSL is built specically to express the concepts of 

a particular domain. Generally, two types of DSL can be distinguished according to the 

underlying implementation strategy. An external DSL is constructed from scratch, starting 

from definition of the desired syntax to implementation of the associated parser for reading 

it. In contrast, internal or embedded DSLs (eDSL) are constructed on top of an existing 

host language [79]. 

Putting all of the above together, DSLs are pretty good in doing what they are designed 

to do, but nothing else, resulting in choosing a different language every time. On the other 

3 



hand, a general purpose language can be used for solving a wide variety of problems but 

often the programmer ends up writing some code dictated by the language rather than by 

the problem. 

Generally speaking, programming languages with a wide scope over problem domains 

do not provide bespoke support for accomplishing mundane tasks. Approaching towards 

the solution can be complicated and tiresome, but the programming language in question 

acts as the master key. A general purpose language, as the name suggests, provides a 

general set of tools to cover many problem domains. The downside is that such general 

purpose languages lack tools specific to certain problem domains. 

Flipping the coin to the other side, we see, the more specific the language is to the prob-

lem domain, the easier it is to solve the problem since the solution need not be moulded 

according to the capability of the language. For example, a problem with a naturally recur-

sive solution cannot take advantage of tail recursion in many imperative languages. Many 

domains require being able to prove that certain chunks of code are side effect free, but 

must deal with a language with uncontrolled side effects. 

The solution is to develop a programming language with a split personality, in our 

case, sometimes functional, sometimes logical and sometimes both. Depending upon the 

problem, the language shapes itself accordingly and exhibits the desired characteristics. 

The ideal situation is a language with a rich feature set and the ability to mould itself 

according to the problem. A language with the ability to take the appropriate skill set and 

provide them to the programmer will reduce the hassle of jumping between languages or 

forcibly trying to solve a problem according to the limitations of a paradigm. 

The subject in question here is HASKELL and the split personality being PROLOG. 

How far can HASKELL be pushed to don the avatar of PROLOG? This is the million dollar 

question. 

A HASKELL with PROLOG-like features will result in a set of characteristics which are 

from both the declarative paradigms. 

4 



This can be achieved in two ways: 

Embedding (Chapter 5): This approach involves translating a complete language into the 

host language as an extension such as a library or module. The result is very shallow 

as all the positives as well as the negatives are brought into the host language. The 

negatives mentioned being, that languages from different paradigms usually have 

conflicting characteristics and result in inconsistent properties of the resulting em-

bedding. Examples and further discussion on the same are provided in the chapters 

to come. 

Paradigm Integration (Chapter 6): This approach goes much deeper as it does not in-

volve a direct translation. An attempt is made by taking a particular characteristic 

of a language and merging it with the characteristic of the host language in order to 

eliminate conflicts resulting in a multi-paradigm language. It is more of weaving the 

two languages into one tight package with the best of both and maybe even the worst 

of both. 

1.3 Thesis organization 

The next chapter, Chapter 2 talks about the programming paradigms and languages in gen-

eral and the ones in question. Chapter 3 provides details about the shortcomings of the 

previous works and an approach for improvements. Chapter 4 provides details on the con-

ceptual contributions of this thesis and the prototypes. Then we look at the question from 

different angles namely, Chapter 5, embedding a programming language into another pro-

gramming language and Chapter 6, multi-paradigm languages (functional logic languages). 

Some of the indirectly related content resides in Chapter 9. Chapters 7 and 8 discuss the 

languages used in this thesis; HASKELL and PROLOG. Chapters 10, 11, 12 and 13 describe 

the ideas and the implementation details of the prototypes. Chapter 14 gives a glimpse of 

the future and we conclude with Chapter 15. 

5 



Chapter 2 

Background 

2.1 About this chapter 

This chapter consists of information on the subject of programming languages and their 

classification into paradigms such as functional and logic styles. Further on, we talk about 

the languages used for the implementations in this thesis, namely PROLOG and HASKELL. 

Moreover, this chapter provides a starting point for various approaches for bringing features 

of different languages into the same environment. 

2.2 Languages and their classification 

Programming languages fall into different categories also known as "paradigms". They 

exhibit different characteristics according to the paradigm they fall into. It has been argued 

[70] that rather than classifying a language into a particular paradigm, it is more accurate 

that a language exhibits a set of characteristics from a number of paradigms. The broader 

the scope of a language, the broader is the versatility in solving problems. 

Programming languages that fall into the same family, in our case declarative program-

ming languages, can be of different paradigms and can have very contrasting, conflicting 

characteristics and behaviours. The two most important ones in the family of declarative 
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languages are the functional and logic style of programming. 

Functional programming, [ 61] gets its name as the fundamental concept is to apply 

mathematical functions to arguments to get results. A program itself consists of functions 

and functions only which when applied to arguments produce results without changing the 

state that is values on variables and so on. Higher order functions allow functions to be 

passed as arguments to other functions. The roots lie in A-calculi [170], a formal system in 

mathematical logic and computer science for expressing computations based on function 

abstraction and application using variable binding and substitution. It can be thought as 

the smallest programming language [112], a single rule and a single function definition 

scheme. In particular there are typed and untyped A-calculi. In untyped A-calculi functions 

have no predetermined type, whereas typed A-calculi puts restriction on what sort (type) 

of data can a function work with. SCHEME is based on the untyped variant, while ML 

and HASKELL are based on typed A-calculi. Most typed A-calculi languages are based 

on the Hindley-Milner (or Damas-Milner or Damas-Hindley-Milner, [56, 84, 168]) type 

system. The Hindley-Milner-like type systems have the ability to give a most general type 

to a program without any annotations. The algorithm [20] works by initially assigning 

undefined types to all inputs, next check the body of the function for operations that impose 

type constraints and go on mapping the types of each of the variables, lastly unifying all of 

the constraints giving the type of the result. This is, in fact, an instance of the unification 

algorithm that we discuss in a different context in Chapter 10. 

Logic programming, [ 124] on the other hand is based on formal logic. A program is a 

set of rules and formulre in symbolic logic that are used to derive new formulas from the 

old ones. This is done until the one which gives the solution is not derived. 

7 



2.3 HASKELL and PROLOG 

In this thesis we aim to merge two languages HASKELL and PROLOG together and pro-

duce a result which exhibits hybrid properties. The languages in question are HASKELL 

and PROLOG. These two languages come from the functional programming and logical 

programming branches of the declarative language group respectively. Some of the dissim-

ilarities between the languages are: 

I. HASKELL uses pattern matching while PROLOG uses unification. 

2. HASKELL is all about functions while PROLOG is on Horn clause logic. 

PROLOG [160], being one of the most dominant logic programming languages, has 

spawned a number of distributions and is present from academia to industry. 

HASKELL is one the most popular [75] functional languages around and is the first lan-

guage to incorporate monads [148] for safe input and output. Monads can be described as 

composable computation descriptions [ 158]. Each monad consists of a description of what 

action has to be executed, how the action has to be run and how to combine such com-

putations. An action can describe an impure or side-effecting computation, for example, 

input and output can be performed outside the language but can be brought together with 

pure functions inside in a program resulting in a separation and maintaining safety with 

practicality. HASKELL computes results lazily and is strongly typed. 

PROLOG and HASKELL are contrasting in nature, and bringing them into the same 

environment is tricky. The differences in typing, execution, working among others lead to 

an altogether mixed bag of properties. 

The selection of the target language is not uncommon: PROLOG seems to be the all 

time favourite for "let's implement PROLOG in the language X for proving its power and 

expressibility". The PRO LOG language has been partially implemented [31] in other lan-

guages such as SCHEME [121], LISP [68, 110, 111], JAVA [160, 62], JAVASCRIPT [63] and 

the list [104] goes on. 
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2.4 Approaches to integration 

The technique of embedding is a shallow one. It is as if the embedded language floats over 

the host language. Other approaches provide deeper integration between the target and the 

host. Here we look at a few. Over time there has been an approach that branches out, which 

is paradigm integration. The First International Symposium on Unifying the Theories of 

Programming ([35]) produced a lot of work [14, 105, 180, 58, 44]. Hybrid languages that 

have characteristics from more than one paradigm are coming into the mainstream. One of 

the more successful attempts is SCALA [36]. Simply speaking it is like afunctional JAVA 

providing side-effect free programming environment along with JAVA-like features. 

Before moving on, let us take a look at some terms related to the content above. To be-

gin with foreign function interfaces (FFI) [ 169] provide a mechanism by which a program 

written in one programming language can make use of services written in another pro-

gramming language. For example, a function written in C can be called within a program 

written in HASKELL and vice versa through the FFI mechanism. Currently the HASKELL 

foreign function interface works only for C. Another notable example is the common for-

eign function interface (CFFI) [ 12] for LISP which provides fairly complete support for C 

functions and data. As yet another example, JAVA provides the JAVA native interface (JNI) 

for the working with other languages. Moreover there are services that provide a common 

platform for multiple languages to work with each other. They can be termed as multilin-

gual runtimes which lay down a common layer for languages to use each others functions. 

An example for this is the Microsoft common language runtime (CLR) [167] which is an 

implementation of the common language infrastructure (CLI) standard [166]. 

Another important concept is meta programming [ 172], which involves writing com-

puter programs that write or manipulate other programs. The language used to write meta 

programs is known as the meta language while the the language in which the program to 

be modified is written is the object language. Sometimes the meta language and the object 

language are the same. 
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HASKELL programs can be modified using Template HASKELL [53], an extension to 

the language which provides services to jump between the two types of programs. The 

abstract syntax tree used to define a grammar is in the form of a HASKELL data type. This 

allows us to play with the code and go back and forth between the meta program and the 

object program. 

A specific tool used in meta programming is quasi-quotation [80, 151, 165], which per-

mits HASKELL expressions and patterns to be constructed using domain specific, program-

mer-defined concrete syntax. For example, consider a particular application that requires a 

complex data type. To accommodate the data type it must be represented using HASKELL 

syntax and performing pattern matching may turn into a tedious task. So having the option 

of using specific syntax reduces the programmer from this burden and this is where a quasi-

quoter comes into the picture. Template HASKELL provides the facilities mentioned above. 

For example, consider the code in Figure 2.1 in PRO LOG to append two lists, going through 

Listing 2.1 Code to append in PROLOG. 
append ([], X, X). 
append ([XIXs], Ys , [XI Zs]) :- append (Xs , Ys , Zs ). 

the code, the first rule says that an empty list appended with any list results in the list itself. 

The second predicate matches the head of the first and the resulting lists and then recurses 

on the tails. Listing 2.2 shows how a direct translation of Listing 2.1 into HASKELL while 

Listing 2.3 shows the same using quasi quotation. 

Consider the object functional programming language, SCALA [36]. It is purely func-

tional but with objects and classes. With the above in mind, coming back to the problem 

of implementing PROLOG in HASKELL and the possible methodologies to do so, there 

have been quite a few attempts to "merge" these two programming languages that are from 

different programming paradigms. The attempts fall into two categories as follows: 

1. Embedding, where PROLOG is merely translated to the host language HASKELL or 

10 
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II 

Listing 2.2 PROLOG append function translated to HASKELL. 
[ C (Clause (Struct "append" 

[ (Struct 11 [] " [] ) , 

VariableName O "X" , 
VariableName O "X" ]) [] ), 

C (Clause 
(Struct "append" 

[Struct " . " [VariableName 
VariableName 

VariableName O "Ys" , 
Struct " . " [VariableName 

VariableName 

0 "X" ' 
0 "Xs" ], 

0 "X" ' 
0 "Zs" ]]) 

12 [ (Struct "append" 
n [VariableName O "Xs" , 
14 VariableName O "Ys" , 
1s VariableName O "Zs" ])]) 
16 ] 

Listing 2.3 PROLOG append function translated to HASKELL using quasi quotation. 
[ C ( Clause [pr I append ( [], X, X) I] []) , 

J 

C (Clause [pr l append([XIXs], Ys , [XI Zs]) I] 
[[pr l append( Xs , Ys , Zs ) I]]) 

a foreign function interface. 

2. Paradigm integration, developing a hybrid programming language that is a functional 

logic programming language with a set of characteristics derived from both the par-

ticipating languages. 

The approaches of embedding and paradigm integration are discussed in Chapter 5 and 

Chapter 6 respectively. 
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Chapter 3 

Related Work 

This chapter discusses the current implementations and publications for embedding P RO-

LOG in languages and specifically in HASKELL. We take a look at their shortcomings and 

propose improvements. 

3.1 Existing work by others 

There have been several attempts at embedding P ROLOG into HASKELL, which are dis-

cussed below, along with their shortcomings. 

I . A total of three embedded implementations exist which offer a starting point for 

the task of embedding. One of the earliest implementations [64] is for an older 

specification of HASKELL called HASKELL 98 hugs. It is more of a proof of concept 

providing a mechanism to include variable search strategies in order to produce a 

result. Another implementation, [ I 8 I], simplifies the notation of PRO LOG literals 

to a list format. Nonetheless, both implementations lack simplicity and support for 

basic P RO LOG features such as cuts , fails , assert among others. 

2. The papers that try to take the above further are also few in number and do not 

have any implementations for the proposed concepts (see [ I 25, I I 8, I I 6, I 26, I I 7]). 
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Moreover, none of them are complete and most lack many practical parts of PRO LOG. 

3. In the case of libraries, around a dozen exist. Most are not in active development. 

Almost all only provide a shell through which one must do all the work, which is 

synonymous with the embeddings mentioned above. Some are more feature rich 

than others; that is, some have practical PROLOG concepts, but are still not complete. 

As for the idea of merging paradigms goes, it is not the main focus of this thesis and can 

be more of an "add-on". A handful of crossover hybrid languages based on HASKELL exist, 

CURRY [143] being the prominent one. Moving away from HASKELL and exploring other 

languages from different paradigms, a respectable number of crossover implementations 

exist but again most of them have faded out. 

3.2 Proposed improvements 

As discussed in Section 3.1, either an embedding or an integration approach is taken up 

for programming languages to work together. So, there is either a shallow approach that 

does not utilize the constructs available in the host language and results in a translation of 

the characteristics, or the other is a fairly complex process which results in tackling the 

conflicting nature of different programming paradigms and languages, resulting in a toned-

down compromised language that takes advantages of neither paradigms. Mostly, the trend 

is towards the former. 

From the problems mentioned in the sections above, here is a list that this thesis tackles: 

1. The eDSL supports fails and cuts . 

2. the implementation is more complete. 

3. The implementation is not Read-Eval-Print Loop (REPL) based. You can write a 

program file and compile and run it like a normal HASKELL file. 
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3.3 Summary 

This chapter reviewed current work and proposed improvements. The next chapter provides 

the contributions of this thesis which are not necessarily built upon existing work. 
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Chapter 4 

Other Contributions 

Having looked at the existing work for embedding PROLOG in HASKELL along with the 

suggestions for improvements in the previous chapter, this chapter describes further con-

tributions. The thesis reviews literature on combining two languages as described in Sec-

tion 4.1. Section 4.2 describes the minimalistic implementations for the ideas presented in 

this thesis. 

4.1 Possible directions for PROLOG in HASKELL 

This thesis provides a literature review on embedded eDSLs in Chapter 5 and a survey 

on multi-paradigm declarative languages in Chapter 6. The current chapter and Chapter 3 

evaluate and assess the current work for embedding PROLOG in HASKELL. 

This thesis also provides an environment for multiple HASKELL libraries which provide 

parts of PROLOG-like functionality. 

4.2 The prototypes 

A large part of this thesis consists of prototypes of a PROLOG-like language in HASKELL. 

The conceptual advances of these prototypes are: 
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I. provide a modular methodology to functorize a recursive abstract grammar used to 

define a language, 

2. modular monadic unification to leverage imperative unification algorithms, 

3. integrate the procedures mentioned above into a working Prolog implementation, 

4. support for variable search strategies, 

5. approach for embedding IO in an eDSL. 

The details of these prototypes follows. 

4.2.1 Prototype 1 

Most languages have a recursive abstract syntax which restricts the eDSL (eDSL, seep. 3) 

in terms of its capability to open up the language, i.e, to include meta syntactic variables, 

custom quantifiers and logic. Prototype 1 provides a methodology to convert a language 

whose recursive abstract syntax is represented by a tree into a non-recursive version whose 

fixed point is isomorphically equivalent to the original type. One of the outcomes is pro-

ducing a polymorphically typed embedded language within HASKELL. 

To test it out we adopt the closed PROLOG-like language defined in [114] and open it 

up. As for the unification part we use [ 137], which provides a generic unification algorithm 

implementation encapsulated into a monad. 

4.2.2 Prototype 2 

Prototype 2 does what a PROLOG query resolver would do given a query and a knowledge 

base. The mechanism for the same is adopted from [114]. The embedded language is 

modified as per the procedure in Prototype 1 and the monadic unification part is plugged 

into the existing architecture to demonstrate that it is independent of the other components. 

Lastly the result is converted into the original language via a translate function. 
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4.2.3 Prototype 3 

Prototype 3 demonstrates the modularity of the unification process of the query resolver 

with multiple search strategies. 

4.2.4 Prototype 4 

Prototype 4 throws light on how IO operations can be embedded into the abstract syntax of 

a DSL which when interpreted would produce output consisting of a pure set of instructions 

irrespective of the nature of the construct. The effects are produced only when the actions 

are executed. 

The next two chapters are the literature review. 
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Chapter 5 

Embedding a Programming Language 

into another Programming Language 

The art of embedding a programming language into another one has been explored a num-

ber of times in the form of building libraries or developing foreign function interfaces and 

so on. This area mainly aims at an environment and setting where two or more languages 

can work with each other harmoniously with each one able to play a part in solving the 

problems in the domain. This chapter mainly reviews the content related to embedding 

P ROLOG in HASKELL but also includes information on some other implementations and 

embedding languages in general. 

5.1 The informal content from biogs, articles and internet 

discussions 

Before moving on to the formal content such as publications, modules and libraries, let's 

take a look at some of the unofficially published content. This subsection takes a look at 

the information, thoughts and discussions that are currently taking place from time to time 

on the internet. A lot of interesting content is generated which has often led to some formal 
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content. 

A lot has been talked about embedding languages and also the techniques and methods 

to do so. It might not seem such a hot topic as such but it has always been a part of any pro-

gramming language to work and integrate their code with other programming languages. 

One of the top discussions are in, Lambda the Ultimate, The Programming Languages We-

blog [71] lists a number of PROLOG implementations in a variety of languages like LISP, 

SCHEME, SCALA, JAVA, JAVASCRIPT, RACKET [ 121] and so on. Moreover the discussion 

focuses on a Jot of critical points that should be considered in a translation of PROLOG to 

the host language in terms of types and modules among others. 

One of the implementations discussed redirects us to one of the earliest implementa-

tions of PROLOG in HASKELL for Hugs 98, called Mini PROLOG [64]. Although this 

implementation aims in the right direction, it is not supported by documentation or liter-

ature. It comes with three engines for query resolution, but still Jacks practical PROLOG 

features. This seems to be a common problem with the other implementations, [ 181]. Other 

informal discussions of PROLOG have already been mentioned in Chapter 1. 

5.2 Literature related to implementing logic programming 

Some books related to implementing logic programming are [23, 150, 69] . [23] aims at 

adding a few constructs to SCHEME to bring together the functional and logic styles of 

programming and capture the essence of PRO LOG in SCHEME. Moreover, [ 150] claims that 

HASKELL is suitable for basic logic programming using the List Monad. [69] provides a 

general outlook towards embedding PROLOG in other languages. 

Abundant literature can be found on embedding detailed parts of PRO LOG features such 

as basic constructs, search strategies and data types. One of the major works is covered by 

the subsection below consisting of a series of papers from Mike Spivey and Silvija Seres 

aimed at bring HASKELL and PROLOG closer to each other. The next subsection covers 
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this literature with improvements and further additions. 

5.2.1 Papers from Mike Spivey and Silvija Seres 

The work presented in the series [ 125, 118, 119, 127, 116] attempts to encapsulate various 

aspects of an embedding of PRO LOG in HASKELL. Being one of the very first attempts, the 

work is influenced by embeddings of PROLOG in other languages like SCHEME and LISP. 

Although the host language HASKELL has distinct characteristics such as lazy evaluation 

and a strong type system, the proposed scheme tends to be general as the aim here is to 

achieve a PROLOG-like eDSL and not a multi-paradigm declarative language. PROLOG 

predicates are translated to HASKELL functions which produce a stream of results lazily 

depicting depth first search with support for different strategies and practical operators 

such as cut and fail with higher order functions. The papers provide a minimalistic 

extension to HASKELL with only four new constructs. Though no implementation exists, 

the synthesis and transformation techniques for functional programs have been logicalised 

and applied to PROLOG programs. PROLOG is based on relations and HASKELL is based 

on functions; [ 126] takes this into consideration and attempts to model relations using 

functions . 

5.2.2 Other works related or based on the above 

Continuing from above, [19] taps into the advantages of the host language to embed a 

typed functional logic programming language. This results in typed logical predicates and 

a backtracking monad with support for various data types and search strategies. Though 

not very efficient or practical, the method aims at a more elegant translation of programs 

from one language to the other. Publications such as [37] attempt to exercise HASKELL 

features without adding any new constructs. It uses HASKELL'S type class to express a 

general structure for the problem while its instances represent the solutions. [57] replicates 

PROLOG's control operations in HASKELL suggesting the use of the HASKELL State 

20 



Monad to capture and maintain a global state. The main contributions are a Backtracking 

Monad Transformer that can enrich any monad with backtracking abilities and a monadic 

encapsulation to turn a PROLOG predicate into a HASKELL function. 

5.3 Related libraries in HASKELL 

5.3.1 PROLOG libraries 

To replicate PROLOG-like capabilities HASKELL seems to be a popular choice with a host 

of related libraries. First we begin with the libraries about PROLOG itself. A few exist. 

[ 133] is a preliminary or "mini PRO LOG" with not much in it to be able to be useful. [134] 

is all powerful, but is a foreign function interface so it is "PROLOG in HASKELL" but we 

need PRO LOG for it; [ 114] is the implementation that comes the closest to something like 

an actual practical PROLOG. All these libraries provide is a small interpreter, none or a few 

practical features, incomplete support for lists, minor or no monadic support and a REPL 

without the ability to "write a PROLOG program file". 

5.3.2 Logic libraries 

The next category is about the logical aspects of PROLOG; again a handful of libraries pro-

vide functionality related to propositional logic and backtracking. [32] is a continuation-

based, backtracking, logic programming monad which attempts to replicate PROLOG 'S 

backtracking behaviour. PROLOG is heavily based on formal logic. [42] provides a power-

ful system for propositional logic. Other libraries include small hybrid languages [38] and 

"Parallelising Logic Programming and Tree Exploration" [22]. 
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5.3.3 Unification libraries 

HASKELL has minimal support for unification. There are two libraries ([106, 137)) that 

unify two terms and return the resulting substitution. 

5.3.4 Backtracking libraries 

Another important aspect of PROLOG is backtracking. To simulate it in HASKELL, the 

libraries [39, 123) use monads . Moreover, there is a package for the EGISON programming 

language [59) which supports non-linear pattern-matching with backtracking. 

5.4 Summary 

Recapitulating, this chapter surveys the approach to embedding programming languages, 

especially PROLOG in HASKELL. Moreover, it describes tools, some of which are utilized 

in the prototype implementations. 
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Chapter 6 

Multi-Paradigm Languages (Functional 

Logic Languages) 

This chapter describes the approach for integrating properties of multiple languages from 

different programming paradigms, especially, functional logic programming languages. 

6.1 Multi-paradigm languages 

Over the years another approach has branched off from embedding languages, merging 

and integrating programming languages from different paradigms. Let us take the SCALA 

programming language [36] as an example. It is a hybrid object-functional programming 

language which takes features from each of the two paradigms. This section looks at the 

literature on multi-paradigm languages, mainly functional logic programming languages. 

This is of interest because in this thesis, the languages in question are HASKELL and PRO-

LOG which are of functional and logic programming paradigms respectively. 

A peak into language classification reveals that it is not always a straight forward task 

to segregate languages according to their features and characteristics. It turns out that 

there are a number of notions which play a role in deciding where the language belongs. 

Often a language ends up being a part of almost all paradigms due to extensive libraries. 
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Simply speaking, a multi-paradigm programming language is a programming language 

that supports more than one programming paradigm [70). Moreover, as Timothy Budd 

puts it [174) "The idea of a multi-paradigm language is to provide a framework in which 

programmers can work in a variety of styles, freely intermixing constructs from different 

paradigms." 

6.2 The informal content from biogs, articles and internet 

discussions 

6.2.1 Multi-paradigm languages 

A lot has been worked upon before coming to clear grounds about the classification of 

programming languages. One approach is to consider that the scope of each language is 

pretty much infinite, as small extension modules that replicate different feature sets not 

naturally native to the language itself can be implemented on top of the base language. The 

descriptions of multi-paradigm languages across the web [ 174, 92, 15) converge to roughly 

of a framework providing tools to work with different styles of programming [ 171, 30]. 

Generally speaking, the above approach to language classification is not very popular in 

programming circles; one reason is that this approach fails to identify the essence of a 

language. 

6.2.2 Functional logic programming languages 

Continuing from the previous section, we narrow down the scope by considering only 

multi-paradigm declarative languages, i.e., functional logical programming languages. By 

doing so a large amount of information pops up, from articles that give brief descriptions 

[ 164, 161] to articles that provide implementation techniques (for instance [3], which also 

gives an overview of implementing functional logic languages and a list of publications). 
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An important resource for this topic is [49) which is maintained by Michael Hanus [47) 

and Sergio Antoy [4] who developed CURRY [50). 

6.3 Literature 

6.3.1 Multi-paradigm languages 

Possibly one of the most important works towards bringing programming styles together is 

the book [58) by C.A.R. Hoare which points out that among the large number of program-

ming paradigms and theories, the unification theory serves as a complement rather than a 

replacement for classification. Since we are talking about HASKELL we should mention 

[44), which includes monads and unifying theories using monads. 

6.3.2 Functional logic programming languages 

A recent survey [ 48] throws light on this category of hybrid languages. 

One of the most prominent multi-paradigm languages in HASKELL is CURRY [5]. The 

syntax is borrowed from the parent language and so are a lot of the features . Recapitulating, 

a functional programming language works on the notion of mathematical functions while 

a logic programming language is based on predicate logic. The strong points of CURRY 

are that the features of the language are general, and are visible in a number of languages 

like [25) . The language can play with problems from both worlds. In a problem where 

there are no unknowns (variables) the language behaves like a functional language which 

is pattern matching the rules and executing the respective bodies. In the case of missing 

information, it behaves like PROLOG: a sub-expression e is evaluated on the conditions 

that it should satisfy, which constrain the possible values of e. This brings us to the first 

important feature of functional logic languages, narrowing. In narrowing, the expressions 

contain free variables, simply speaking incomplete information that needs to be unified 

25 



to a value depending on the constraints of the problem. The language introduces only 

a few new constructs to support non-determinism and choice. Firstly, narrowing (=:=), 

which deals with the expressions and unknown values and binds them with appropriate 

values. The next one is the choice operator (?) for non-deterministic operations. Lastly, 

for unifying variables and values under some conditions, (&) operator has been provided 

to add constraints to the equation. Putting it all together, it gives us the feel of a logic 

language for something that looks very much like HASKELL. Unification is like two-way 

pattern matching, and by a similar analogy CURRY is a HASKELL that works both ways 

and hence variables can be on either side of an assignment. Although the language can do 

a lot; gaps do exist, such as the need to improve narrowing techniques. 

6.4 Some multi-paradigm languages 

The list of multi-paradigm languages is huge, but in this thesis we will mostly stick to func-

tional logic programming languages. Beginning with functional hybrids, a small project 

language called VIRGIL, [142], combines objects to work with functions and procedures. 

On similar lines is COMMON OBJECT LISP SYSTEM (CLOS) [162]. Combining objects 

with functions is important as object-oriented programming has become one of the most 

common styles of programming. As object-oriented programming has been a dominant 

style of programming, even HASKELL has one called O' HASKELL [93], though it last saw 

a release back in 2001. Another prominent language is OCAML [173, 98], which adds 

object-oriented capabilities to a powerful type system and module support. Many of the 

multi-paradigm languages were developed as a proof of concept and are replaced by new 

ones based on different approaches. As mentioned before, one of the most popular (see 

[75]) and widely used both in academia and industry is the SCALA [36] programming lan-

guage. 
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6.5 Some functional logic programming languages 

Knowing the amount of literature on these type of languages, it is fairly easy to say that 

there have been numerous attempts at specification and implementation. Sadly though, 

not many have survived. Only the ones that (a) are easily available, or (b) have an im-

plementation, or (c) have been cited or referred by other attempts have been included be-

low. We begin with variants of PROLOG. As of now, there have been three popular ones, 

beginning with NUE PROLOG, [77], Oz (MOZART PROGRAMMING SYSTEM) [21] and 

MERCURY [27]. These languages represent themselves as extensions of PROLOG rather 

than hybrids. To start with MERCURY represents a boundary between deterministic and 

non-deterministic programs. Similarly, NUE PROLOG has special support for functions, 

while Oz provides concurrent constraint programming plus distributed support, with dif-

ferent function types for goal solving and expression rewriting. ESCHER [78] comes very 

close to HASKELL with monads, higher order functions and lazy evaluation. We take a 

look at PROLOG variants: CIAO ([ 18]) is a preprocessor to PRO LOG for functional syntax 

support; ). PROLOG ([90]) aims at modular higher order programming with abstract data 

types in a logical setting; BABEL ([54, 86, 85]) combines pure PROLOG with a first order 

functional notation; LIFE ([141]) is for Logic, Inheritance, Functions and Equations in 

PROLOG syntax with currying and other features like functional languages; and there are 

others ([11, 81]). 

The functional language SCHEME is a very popular choice for adding logic program-

ming functionality to a functional language as described in the book [23] along with the 

accompanying implementation [24, 136]. [89, 40, 147] provide a similar approach, but for 

HASKELL. 

Finally talking about CURRY, one of the most popular HASKELL based multi-paradigm 

languages with support for deterministic and non-deterministic computations. Contributing 

to the same there have been some predecessors [ 139, 25]. 
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6.6 Summary 

Recapitulating, this chapter surveys the approach to merging different programming pa-

radigms to result in a hybrid programming language. Moreover, we talked about multi-

paradigm declarative languages along with PROLOG and HASKELL hybrids respectively. 
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Chapter 7 

HASKELL 

This chapter discusses HASKELL as a functional language and its features which assist 

in embedding DSLs. HASKELL as a functional programming language, is an advanced 

purely-functional programming language. In particular, it is a polymorphically statically 

typed, lazy, purely functional language [ 156]. It is one of the popular functional program-

ming languages [75]. HASKELL is widely used in the industry [159] . 

7.1 Functional programming languages 

Functional programming revolves around the concept of functions being applied to argu-

ments to get results. In functional programming functions are first class citizens and a main 

program itself is defined in terms of other functions, which in tum are defined in terms of 

still more functions, until at the bottom level the functions are language primitives. Pro-

grams contain no assignment statements, so variables, once given a value, never change 

and hence contain no side-effects [ 61]. 
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7 .2 Embedded domain specific languages ( eDSLs) 

Shifting a bit to eDSLs such as EMACS LISP. Opting for embedding provides a "shortcut" 

to create a language which may be designed to provide specific functionality. Designing 

a language from scratch would require writing a parser, code generator I interpreter and 

possibly a debugger, not to mention all the routine stuff that every language needs such as 

variables, control structures and arithmetic types. All of the aforementioned are provided 

by the host language; in this case HASKELL. Examples for the same can be found here 

[65, 83] which talk about introducing combinator libraries for custom functionality. 

The flip side of the coin is that the host language enforces certain aspects and properties 

on the eDSL and hence might not be exact to specification, all required constructs cannot 

be implemented due to constraints, programs could be difficult to debug since it happens at 

the host level and so on. 

7.3 Monads 

Control flow defines the order/ manner of execution of statements in a program [ 176]. The 

specification is set by the programming language. Generally, in the case of imperative 

languages the control flow is sequential while for a functional language is recursion [140]. 

For example, JAVA has a top down sequential execution approach. The declarative style 

consists of defining components of programs i.e. , computations not a control flow [177]. 

This is where HASKELL shines by providing something called a monad. Functional 

programming languages define computations which then need to be ordered in some way 

to form a combination [152]. A monad gives a bubble within the language to allow modi-

fication of control flow without affecting the rest of the universe. This is especially useful 

while handling side effects. 

A related topic would be of persistent languages, architectures and data structures. Per-

sistent programming is concerned with creating and manipulating data in a manner that 
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is independent of its lifetime [87). A persistent data structure supports access to multiple 

versions which may arise after modifications [34, 67). A structure is partially persistent if 

all versions can be accessed but only the current can be modified and fully persistent if all 

of them can be modified. 

Coming back to control flow; for example, implementing backtracking in an imperative 

language would mean undoing side effects which even PROLOG is not able to do since the 

asserts and retracts cannot be undone. In HASKELL, a monad defines a model for control 

flow and how side effects would propagate through a computation from step to step or 

modification to modification. HASKELL allows creation of custom monads relieving the 

burden of dealing with a fixed model of the host language. 

7 .4 Monads by example: state monad 

In this section we try and replicate a dictionary of variables. The operations such as adding 

and removing entries to and from the dictionary are implemented so as to replicate modifi-

cation. Listing 7.1 shows the structure of the IntegerDictionary for storing and modi-

fying the Variables . Each Variable is a VariableName, Value pair. 
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Listing 7.1 HASKELL Monad Working: Data Types 

22 type VariableName 
23 type Value 

String 
Int 

24 data Variable Variable (VariableName , Value ) 
25 deriving (Eq) 
26 data IntegerDictionary = ID [Variable] 
27 

28 ( <-- ) curry Variable 
29 infix 8 <--
30 

31 init _dictionary .. IntegerDictionary .. 
32 init _dictionary = ID [ 
33 ( "xO" <-- 0)' ( "x1 II <-- 1) ' 
34 ( "x2" <-- 2)' ( "x3" <-- 3)' 
35 ( "x4" <-- 4)' ( "x5" <-- 5 ) J 

Listing 7.2 shows the insertion and removal in a variable dictionary and the run function 

for applying the operation on the dictionary. 
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Listing 7.2 HASKELL Monad Working: Functions 

31 variableName : : Variable -> VariableName 
38 variableName (Variable (v , _)) = v 
39 

40 vNameEqual : : Variable -> Variable -> Bool 
41 vNameEqual = ( == ) 'on' variableName where 
~ (f2 'on' fl) ab = f2 (fl a) (fl b) 
43 

M insertVariable : : Variable -> State IntegerDictionary Variable 
45 insertVariable variable = do 
~ Control .Monad .State .modify (insertVariableHelper variable) 
41 return variable 
48 

49 insertVariableHelper : : Variable -> IntegerDictionary -> IntegerDictionary 
50 insertVariableHelper variable (ID dictionary) = 
51 ID (variable : filter (not . (vNameEqual variable)) dictionary) 
52 

53 runinsertVariable : : IntegerDictionary -> Variable -> IntegerDictionary 
54 runinsertVariable ini t_dictionary variable = snd $ 
55 runState (insertVariable variable) init_dictionary 
56 

51 removeVariable : : Variable -> State IntegerDictionary Variable 
58 removeVariable variable = do 
59 Control .Monad .State .modify (removeVariableHelper variable) 
w return variable 
61 

62 removeVariableHelper : : Variable -> IntegerDictionary -> IntegerDictionary 
63 removeVariableHelper variable ( ID dictionary) 
M ID $ filter (not . (vNameEqual variable)) dictionary 
65 

~ runRemoveVariable : : IntegerDictionary -> Variable -> IntegerDictionary 
61 runRemoveVariable init_dictionary variable = snd $ runState (removeVariable 
68 variable) ini t _dictionary 
69 

10 extractVariableValue : : Variable -> Value 
11 extractVariableValue (Variable (_ , value)) value 

Listing 7 .3 shows a combination of the operation of finding a product of the two vari-

ables and storing back the result in the dictionary. 
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Listing 7.3 HASKELL Monad Working: Examples 

13 exampleOperation : : Variable -> Variable -> State IntegerDictionary Variable 
14 exampleOperation variableX variableY = do 
15 insertVariable variableX 
16 let vx = extractVariableValue variableX 
11 insertVariable variableY 
18 let vy = extractVariableValue variableY 
19 product = Variable ( "product" , vx * vy) 
w insertVariable product 
81 return product 
82 

83 runExampleOperation : : IntegerDictionary -> Variable -> Variable -> 
M IntegerDictionary 
85 runExampleOperation init_dictionary variableX variableY snd $ runState ( 
86 exampleOperation variableX variableY) init_dictionary 

Listing 7.4 shows the output of runExampleOperation function. 

Listing 7.4 HASKELL Monad Working: Example output 

runExampleOperation init_dictionary ( "x" <-- 10 ) ( "y" <-- 20 ) 
-- output 
{[product <-- 200 ,y <-- 20 ,x <-- 10 ,xO <-- O,x1 <-- 1 ,x2 <-- 2 , 

x3 <-- 3 ,x4 <-- 4 ,x5 <-- 5]} 

7.5 Lazy evaluation 

Another property of HASKELL is laziness or lazy evaluation which means that nothing is 

evaluated until it is necessary. This results in the ability to define infinite data structures 

because at execution only a fragment is used [157). 

Consider the infinite list example: 

let x = 1:x in x 

results in: 
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1 : 1 : 1 . . . 

Lazy evaluation is part of operational semantics, i.e., how a HASKELL program is eval-

uated. This semantics allows one to bypass undefined values (e.g., results of infinite loops) 

and in this way it also allows one to process formally infinite data. 

7 .6 Quasiquotation and HASKELL 

7 .6.1 Quasiquotation 

Quotation is a device for exactly specifying some text [55]. Thus "not p" refers to the 

expression consisting of the word not followed by the letter p. Quasi-quotation, or Quine 

quotation, is a metalinguistic device for referring to the form of an expression containing 

variables without referring to the symbols for those variables. Thus 1 notp1 refers to the 

form of any expression consisting of the word not followed by any value of the variable 

p [29]. The variable p is sometimes called a meta-syntactic variable. Quasi-quotation 

facilitates rigorous but terse formulation of general rules about expressions [ 165]. 

7.6.2 Quasiquotaion in HASKELL 

Quasiquoting allows programmers to use custom, domain specific syntax to construct frag-

ments of their program. Along with HASKELL's existing support for DSLs, you are now 

free to use new syntactic forms for your eDSLs. Working with complex data types can im-

pose a significant syntactic burden; extensive applications of nested data constructors are 

often required to build values of a given data type, or, worse yet, to pattern match against 

values. Quasiquotation allows HASKELL expressions and patterns to be constructed using 

domain specific, programmer-defined concrete syntax [ I 5 I, 80] . Listing 2.3 shows us the 

advantages of quasi quotation (in this example there are no metasynctactic variables). 
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Chapter 8 

PRO LOG 

This chapter discusses the properties of the target language PRO LOG and the feature set that 

will be translated to the host language to extend its capabilities. PROLOG is a general pur-

pose logic programming language mainly used in artificial intelligence and computational 

linguistics. It is a declarative language, i.e., a program is a set of facts and rules running a 

query on which will return a result. The relation between them is defined by clauses using 

Horn Clauses [ 160). PRO LOG is very popular and has a number of implementations [ 175) 

for different purposes. PROLOG comes from the same family as HASKELL i.e., the declar-

ative paradigm. One of the reasons for selecting these languages is that both HASKELL, 

the base language and PROLOG, the target language are from the same paradigm. This pro-

vides a platform to play around with the conflicting characteristics of the two languages. 

PROLOG seems to be a very popular choice as a target language. Also for the specific 

topic of embedding PROLOG in HASKELL, implementations and publications exist which 

provide a starting point. 

8.1 Syntax 

PROLOG is dynamically typed. It has a single data type, the term, which has several sub-

types: atoms, numbers, variables and compound terms [160). 
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An atom is a general-purpose name with no inherent meaning. It is composed of a 

sequence of characters that is parsed by the PROLOG reader as a single unit. 

Numbers can be floats or integers . Many PROLOG implementations also provide un-

bounded integers and rational numbers. 

Variables are denoted by a string consisting of letters, numbers and underscore char-

acters, and beginning with an upper-case Jetter or underscore. Variables closely resemble 

variables in logic in that they are placeholders for arbitrary terms. A variable can become 

instantiated (bound to equal a specific term) via unification. 

A compound term is composed of an atom called a "functor" and a number of "ar-

guments", which are again terms. Compound terms are ordinarily written as a functor 

followed by a comma-separated list of argument terms, which is contained in parenthe-

ses. The number of arguments is called the term's arity. An atom can be regarded as a 

compound term with arity zero. 

A PROLOG program is a description of relations, defined by the use of clauses. Pure 

PROLOG is restricted to Horn clauses, a Turing-complete subset of first-order predicate 

logic. The clauses can be one of two types: facts and rules [96). 

8.2 Semantics 

Since the commutative nature of logical disjunction and conjunction, declaratively speaking 

the order of rules and their sub goals is irrelevant. However, the procedural aspect must be 

taken into account to determine the execution strategy of PROLOG since it has to deal with 

impure predicates. Moreover, a particular order of execution can lead to infinite recursion. 

8.3 Universal Horn clauses 

A Horn clause is a logical formula of a particular rule-like form which gives it useful 

properties for use in logic programming, formal specification, and model theory [ 13]. 
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A literal is an atomic formula or its negation. A clause is a disjunction of literals. A 

Hom clause is a clause with exactly one positive literal. A Hom formula is a conjunctive 

normal form formula whose clauses are all Hom [76]. 

Consider the clauses in Listing 8.1: 

Listing 8.1 PROLOG clause 

c : - a , b . 
a . 
b . 

and the Hom clause equivalent: 

[c V,a V,b] l\ a l\ b 

8.4 Unification 

To replicate PROLOG we look into how it works (see, for instance, [132]). As any other lan-

guage we start with the syntax and semantics. We begin with the programming constructs 

of the language. 

PROLOG has three types of terms: constants, variables and complex terms. 

Two terms can be unified if they are the same or the variables can be assigned to terms 

such that the resulting terms are equal. 

The possibilities are: 

1. If term1 and term2 are constants, then term1 and term2 unify if and only if they 

are the same atom, or the same number. Consider the example in Listing 8.2 

Listing 8.2 Unification with constants. 

?- =(mia ,mia). 
yes 

38 



2. If term1 is an uninstantiated variable and term2 is any type of term, then term1 

and term2 unify, and term1 is instantiated to term2. Similarly, if term2 is a 

variable and term1 is any type of term, then term1 and term2 unify, and term2 is 

instantiated to term1. Consider the examples in Listing 8.3 and Listing 8.4. (So if 

they are both variables, they're both instantiated to each other, and we say that they 

share values.) 

Listing 8.3 Unification with a single variable. 

?- mia = X. 
X mia 
yes 

Listing 8.4 Unification with variables. 

?- X Y. 
yes 

3. If term1 and term2 are complex terms, then they unify if and only if: 

(a) they have the same functor and arity, and 

(b) all their corresponding arguments unify, and 

(c) the variable instantiations are compatible. 

Consider the example in Listing 8.5. 

Listing 8.5 Unification of complex terms. 

?- k (s (g), Y) k (X, t (k)). 
X s Cg) 
y t (k) 
yes 
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4. Two terms unify if and only if it follows from the previous three clauses that they 

unify. 

Unification is just a part of the process where the language attempts to find a solution for 

the given query using the rules provided in the knowledge base. The other part (searching) 

is to reach a point where two terms are required to be unified. Together they form the query 

resolver in PROLOG. 

For example, consider the append function shown in Listing 8.6. 

Listing 8.6 append function in PROLOG 

?- k (s (g), Y) k (X, t (k)). 
X s (g) 
y t (k) 
yes 

whose operation is illustrated in Figure 8.1 . 
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?- append([a,b,c], [1,2,3] ,...G518) 

[al _G587] 

I?- append( [b,c], [1,2,3] ,...G587) I 
[b I _G590] 
[a, b I _G590] 

I?- append([c],[1,2,3],_G590)I 

[c I _G593] 
[b, c I _G593] 
[a, b, c I _G593] 

I?- append([], [1,2,3] ,_G593) I 

[1,2,3] 
[c,1,2,3] 
[b, C, 1, 2, 3] 
[a,b,c,1,2,3] 

Figure 8.1: Trace for append [ 131] 

8.5 The execution models of PROLOG 

The description of how PROLOG relates to logic programming is paraphrased from Chap-

ter 6 of [130]. Logic programming languages are adapted from abstract interpreters for 

logic programs. To implement a logic programming language such as PROLOG two major 

decisions about the resolver must be taken: 

1. Scheduling policy: A scheduling policy defines how the additions and deletions of 

goals from the resolvent is performed by the interpreter. For instance, PROLOG 

adopts a stack scheduling policy. The resolvent is maintained as a stack which in-

valves popping the topmost goal for reduction and pushing derived goals back. 

2. Search strategy: Most problem solving systems are built by state-space search to 
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obtain desired solutions and involve problems in selecting possible alternatives while 

searching through a solution space. [97]. For instance, PROLOG simulates the non-

deterministic choice of reducing clause by sequential search and backtracking. The 

first goal whose head unifies with the goal is chosen. If no match is found then 

the computation is unwound to the last choice point and the next unifiable clause is 

chosen. 

For terminating queries PROLOG generates all possible solutions of the goal with re-

spect to the PROLOG program. It performs a complete depth first traversal of a particular 

search tree for the goal by always choosing the leftmost goal. Listing 8.8 shows a sample 

trace for a query using the knowledge base from Listing 8.7 . 

A popular implementation of PROLOG is the Warren Abstract Machine [2] which has 

three different storage usages; a global stack for compound terms, for environment frames 

and choice points and lastly the trail to record which variables bindings ought to be undone 

on backtracking. 

Listing 8.7 Tracing a simple PROLOG computation [130] : Clauses 

father (abraham , isaac ). male (isaac ). 
2 father (haran , 1ot ). male (1ot ). 

father (haran ,milcah). female (yiscah). 
4 father (haran ,yiscah) . female (milcah) . 

son (X, Y) :- father (Y, X), male (X). 
6 daughter (X, Y) : - father (Y, X), female (X). 
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Listing 8.8 Tracing a simple PROLOG computation [130]: Output 

1 son (X, haran) ? 
father (haran , X) 
male ( lot ) 

IO 

II Output : 
12 

13 father (haran , x ) 
14 male (milcah) f 
15 father (haran , X) 
16 male (yiscah) f 
17 

true 
X=lot 

no (more ) 

8.6 cuts in PROLOG 

solutions 

X=lot 

X=milcah 

X=yiscah 

Consider the example in Listing 8.9. A sample query p (X) will result in 8.10. 

Listing 8.9 A cut-free PROLOG computation [99] 

I p (X) 
2 p ( X) 
3 p ( X) 
~ a ( 1). 
5 b (1 ). 
6 C (1 ). 
7 b ( 2 ). 
8 c( 2). 
9 d ( 2 ). 

ID e ( 2 ) . 
II f ( 3 ) . 

a (X). 
b (X) , c (X) , d (X) , e (X) . 
f (X). 

Listing 8.10 cut-free PROLOG computation output[99] 

1 X 1 
X 2 

3 X 3 
4 no 
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A cut represented as ! operator [179]. If PROLOG finds a cut in a rule, it will not 

backtrack on the choices it has made. Consider the example below: 

p ( X) - b ( X) , c (X) , ! , d (X) , e ( X) . 

The result for a sample query p (X) : 

X = 1 ; no 

Only a single solution is obtained because the cut prevents backtracking. The Fig-

ure 8.2 shows the trace for the query with the cut operator. 

a ( ..Glll ) 

..Glll = 1 

!, d ( l ), e ( l ) 

d ( 1 ) , e ( 1 ) 

Figure 8.2: Trace with cut (taken from [99]) 

Recapitulating, this chapter provided information on PROLOG as a logic programming 

language. 
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Chapter 9 

Related Concepts 

This chapter discusses concepts which are related to the work presented in this thesis which 

may not bear a direct point of contact but contribute to understanding. 

9.1 MapReduce 

MapReduce is a programming model and an associated implementation for processing and 

generating large data sets. Users specify a map function that processes a key/value pair 

to generate a set of intermediate key/value pairs, and a reduce function that merges all 

intermediate values associated with the same intermediate key [26]. 

In HASKELL it is implemented using the map and fold functions. map takes as argu-

ments: an operation and a list of values, and applies the operation to each element in the 

list. The map operation is as follows: 

map ( + 3 ) [ 1 , 5 , 3 , 1 , 6 J 

and results in 

[4 , 8 , 6 , 4 , 9] 
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fold takes as arguments: an operation, an accumulator and a list, and applies the operation 

on the accumulator and each element one at a time till the end of the list and returns the 

final accumulator. 

The fold operation is as follows: 

foldr ( +) 0 [4 , 8 , 6 , 4 , 9] 

and results in, 

31 

9 .2 Type systems 

A type system consists of a set of rules to define a "type" to different constructs in a pro-

gramming language such as variables, functions and so on. A static type system requires 

types to be attached to the programming constructs before hand which results in finding 

errors at compile time and thus increase the reliability of the program. On the other hand 

the dynamic type system passes through code which would not have worked in former 

environment; it comes off as less rigid. 

The advantages of static typing [82] are : 

• earlier detection of errors, 

• better documentation in terms of type signatures, 

• more opportunities for compiler optimizations, 

• increased run-time efficiency, and 

• better developer tools; 

whereas for dynamic typing the advantages are: 
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• less rigidity, 

• suitability, and 

• re-usability. 

9.3 Residuation and narrowing 

Lastly some details on the working of functional logic programming languages, residua-

tion and narrowing [50, 163]. Residuation involves delaying of function calls until they are 

deterministic, that is, deterministic reduction of functions with partial data. This princi-

ple is used in languages like ESCHER [78], LIFE [ 141 ], NUE-PROLOG [77] and Oz [21]. 

Narrowing on the other hand is a mixture of reduction in functional languages and unifi-

cation in logic languages. In narrowing, a variable is bound a value within the specified 

constraints and try to find a solution, values are generated while searching rather than just 

for testing. The languages based on this approach are ALF [139] , BABEL [54], LPG [11] 

and CURRY [143]. 
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Chapter 10 

Prototype 1 

This chapter demonstrates a fairly generic procedure of creating an open eDSL in HASKELL 

along with monadic unification. As a proof of concept, the implementation consists of cre-

ating a PROLOG-like open language whose unification procedure is carried out in a monad. 

10.1 Ingredients 

In this chapter we work with four pieces of software to develop a working implementation 

of embedded PROLOG. These are: 

1. PROLOG 

The language itself has a number of sub components. The ones relevant to this thesis 

are: 

(a) Language, the syntax, semantics. 

(b) Database, or the knowledge base where the rules are stored. 

(c) Unification 

(d) PROLOG has to satisfy a list of goals while maintaining variable bindings and 

choice points. For a non empty list of list of goals, it looks through the knowl-

edge base for matching rules and attempts at unifying the terms and repeats 
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until all goals have been satisfied. If more than one option is available, they 

are recorded as choice points which are later used for backtracking and finding 

other possible solutions. 

(e) Lastly, the query resolver which combines the unification and search strategy 

to return a result. 

2. prolog-0 . 2.0.1 [114] 

One of the existing implementation of PROLOG in HASKELL, though partial, pro-

vides a starting point for the implementation as it provides certain components to test 

our approach. The main components of this library are adopted from PROLOG and 

modified. These are: 

(a) the language, adopted from PROLOG but trimmed down; 

(b) the database; 

(c) the unifier; 

( d) the REPL; 

(e) the interpreter which consists of a parsing mechanism and resembles the query 

resolver. 

3. unification-fd [137] 

This library provides tools for first-order structural unification over general structure 

types along with mechanisms for a modifiable generic unification algorithm imple-

mentation. 

The relevant components are: 

(a) the Unifiable class; 

(b) the UTerm data type; 

(c) variable implementations: STVar and IntVar; 
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(d) the Binding monad; and 

(e) Unification (unify and unifyDccurs). 

4 . Prototype 1 

This implementation applies to practice the procedure to create an open language to 

accommodate types, custom variables, quantifiers and logic and recovering primi-

tives while preserving the structure of a language commonly defined by a recursive 

abstract syntax tree. The resulting language is then adapted to apply a PROLOG-like 

unification. 

The implementation consists of the following components: 

(a) an open language, 

(b) compatibility with the unification library [ 137], 

( c) variable bindings, and 

(d) monadic unification. 

Each of the components are discussed in the following sections. 
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10.2 Prototype architecture 

Pro log 

UTerm 

Figure 10.1: Architecture of Prototype I 

Int Var 

Monadic 
Unificat ion 

Unify 

Chapter 8 provides a general description of the working of PROLOG. In this prototype we 

explore the unification aspect only. 

This prototype demonstrates the process of creating an isomorphic data type to replicate 

the target language type system while conforming to the host language. 

We create a PROLOG-like language using a recursive abstract grammar in HASKELL 

using HASKELL's data statement. We then convert it to a non-recursive version whose 

fixed point is isomorphically equivalent to the original. This gives us a more open imple-

mentation which will be discussed in the sections to come. 

The rest of the procedure includes managing library compatibility for the language and, 

51 



more importantly, monadic unification. 

10.3 Creating a data type 

To start we need to define an abstract syntax for a PROLOG-like language. Consider the 

language in Listing I 0.1, which has been adopted from [ 114]. 

Listing 10.1 A classic recursive grammar 

data VariableName = VariableName Int String 
deriving (Eq , Data , Typeable , Ord) 

data Atom = Atom !String I Operator ' String 
deriving (Eq , Ord , Data , Typeable ) 

data Term Struct Atom [Term] 
Var VariableName 

I Wildcard 
I Cut Int 

deriving (Eq , Data , Typeable ) 

Even though Term has a number of constructors the resulting construct has a single 

type. Hence, a binary function would have type 

foo Term -> Term -> Term 

Listing I 0.1 is a classic example of using a recursive data type to define the abstract 

syntax of a language. One of the issues with the datatype in Listing I 0.1 is that it is not 

possible to distinguish the structure of the data from the data type itself [ 120]. Moreover, 

the primitives of the language (see [8]) are not accessible, as the language can have expres-

sions of only one type, "Term". 

Consider the code in Listing 10.2. 
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Recursive Grammar 
(Term) 

Extract variables to 
generate dictionaries 

Translate to UTerm 

Unification 

Flattened Grammar 
(FlatTerm) 

Fixed point version 
(Fix FlatTerm) 

,~ 

. Class lnstan ces 

1-----------~ (unifier. dictionary) 

Translate back to 
Fix FlatTerm 

Figure 10.2: Prototype l Implementation architecture 
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Listing 10.2 A flattened (non-recursive) grammar 

data FlatTerm a Struct Atom [a] 
Var VariableName 
Wildcard 
Cut Int 

deriving (Show , Eq , Ord) 

One result of coding as in Listing 10.2 rather than as in Listing 10.1 (lines 6-9) is 

that the non-recursive type FlatTerm is modular and generic as the structure FlatTerm is 

separate from the type of its subterms which is a . The above language can be of any type 

FlatTerm a where a can be of any type at all . A more accurate way of saying it would be 

that a can be any kind in HASKELL. 

In type theory, a kind is the type of a type constructor or, less commonly, the type of 

a higher-order type operator. A kind system is essentially a simply-typed 1-calculus 'one 

level up' , endowed with a primitive type, denoted * and called ' type', which is the kind of 

any (monomorphic) data type (see [153]). Listing 10.3 describes kinds in HASKELL. 

Listing 10.3 kinds in HASKELL 

Int : : * 
Maybe : : * -> * 
Maybe Bool : : * 
a -> a : : * 
[] : : * -> * 
(-> ) : : * -> * -> * 

Simply speaking we can have something like 

FlatTerm Bool 

and a generic function like, 

function : : (a -> b) -> FlatTerm a -> FlatTerm b 

54 



One problem remains: how does one represent deep expressions of the above language, 

for example something of the form, 

FlatTerm (FlatTerm (FlatTerm (FlatTerm ( ....... (a))))) 

and how to represent it generically to perform operations on it, since 

(FlatTerm a) != (FlatTerm (FlatTerm a)) 

because with our original grammar all the expression that could be defined would be rep-

resented by a single entity Term, no matter how deep they were. 

The approach to tackling this problem is to find the "fixed-point" of FlatTerm. Af-

ter infinitely many iterations we should get to a fixed point where further iterations make 

no difference. It means that applying one more FlatTerm would not change anything-

HASKELL provides fixed-points in two forms, one for data and one for types. 

In type constructor form, 

newtype Fix f = f (Fix f) 

which we apply to our abstract syntax. 

The resulting language is of the form, 

data Prolog = P (Fix FlatTerm) deriving (Show , Eq , Ord) 

simply speaking all the expressions resulting from FlatTerm can be represented by the 

type signature Fix FlatTerm. 

A sample function working with such expressions would be of the form, 

func : : Fix FlatTerm -> Fix FlatTerm 

Generically speaking, the language can be expanded for additional functionality with-

out changing or modifying the base structure. Consider the scenario where the language 

needs to accommodate additional type of terms. There are two approaches: 
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1. Manually modify the structure of the language, as shown in Listing 10.4. 

Listing 10.4 A manually enhanced recursive grammar 

type Atom String 

data VariableName VariableName Int String 
deriving (Eq , Data , Typeable , Ord) 

data Term Struct Atom [Term] 
Var VariableName 
Wildcard 
Cut Int 
New_Constructor 1 .... . ... . 
New_Constructor_2 . ...... . . 

deriving (Eq , Data , Typeable ) 

This would then trigger a ripple effect throughout the architecture because accom-

modations need to be made for the new functionality. 

2. The other option would be to functorize language like we did by adding a type vari-

able which can be used to plug something that provides the functionality into the lan-

guage. Since we needed the fixed point of the language we used Fix but generically 

one could add custom functionality. For instance, using Extended from Listing l 0.5 

we have Extended FlatTerm that is isomorphic to the type defined in Listing 10.4. 

Listing 10.5 The Extended type constructor 

data Extended f New Constructor 1 
New_Constructor_2 
Base (f (Extended f)) 

Figure I 0.3 and Figure I 0.4 show the extension of the example in Listing I 0.1 using 

the manual and functorized approach respectively. 
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Term FlatTerm a Fix FlatTerm 

Isomorphic 

Figure I 0.3: Manually Extension of data type 

Extended Term-------------

Isomorphic 

Extended 
FlatTerm 

Figure I 0.4: Automatic Extension of data type 

10.4 Making the language compatible with 

unification-fd 

Our language is now opened up and ready for expansion, but it still needs to conform to 

the requirements of the unif iication-fd library ([137]) for the unification algorithm to 
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work. 

The library provides functionality for first-order structural unification over general struc-

ture types along with mutable variable bindings. 

In this section we discuss 

1. Functor hierarchy. 

2. Required instances the language must have. 

3. Mutable variables. 

4. Variable bindings. 

5. Monadic unification. 

6. Replicating PROLOG unification in HASKELL 

Classes in HASKELL are like containers with certain properties which can be thought of 

as functions . When a data type creates an instance of a class the function(s) can be applied 

to each element I primitive in the data type. 

The data here is the PRO LOG abstract syntax and the containers are Functor, Foldable, 

and Traversable. Figure 10.5 shows the relation between the different classes. 

Foldable Functor 

Figure 10.5: Functor Hierarchy (simplified from [155]) 
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The Functor and Foldable instances provide functions for applying map-reduce to 

the data structure as described in Chapter 9. The primary issue is that at the end of the 

operation the structure of the data type is Jost which would not help our cause since the 

result of a query must be a list of substitutions which are essentially pairs of language 

variables with language values (language constructs) . 

Enter Traversable . It allows reduce whilst preserving the shape of the structure. We 

create the necessary instances as shown in Listing 10.6. 

Listing 10.6 FlatTerm class instances 

instance Functor (FlatTerm) where 
fmap = T. fmapDefault 

instance Foldable (FlatTerm) where 
foldMap = T. foldMapDefault 

instance Traversable (FlatTerm) where 
traverse f (Struct atom x) Struct atom <$> 

sequenceA (Prelude .map f x) 
10 traverse (Var v) pure (Var v) 
,, traverse Wildcard pure (Wildcard) 
12 traverse (Cut i) pure (Cut i) 

The above lay the foundation to work with the library. Coming back to the library, 

the language must have the Unifiable instance. This works in tandem with the UTerm 

data type. The UTerm data type captures the recursive structure of logic terms, i.e., given 

some functor t which describes the constructors of our logic terms, and some type v which 

describes our logic variables, the type UTerm t v is the type of logic terms: trees with 

multiple layers of t structure and leaves of type v. The Unifiable class gives one step 

of the unification process. Just as we only need to specify one level of the ADT (i.e., T) 

and then we can use the library's UTerm to generate the recursive ADT, so we only need 

to specify one level of the unification (i.e., zipMatch) and then we can use the library's 
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operators to perform the recursive unification. This is shown in Figure 10.7. 

Listing 10.7 FlatTerm instance of zipMatch 

instance Unifiable (FlatTerm) where 
zipMatch (Struct al ls) (Struct ar rs) = 

if (al == ar) && (length ls == length rs) 
then Struct al <$> pairWith ( \ 1 r -> Right (l,r)) ls rs 
else Nothing 

zipMatch Wildcard = Just Wildcard 
zipMatch Wildcard = Just Wildcard 
zipMatch (Cut ii) (Cut i2) 

if (ii == i2) then Just (Cut ii) else Nothing 

Unification involves side effects of binding logic variables to terms. To allow and keep 

track of these effects we use the binding monad which provides facilities to generate fresh 

logic variables and perform look ups on dictionaries. By default two logic variable imple-

mentations exist: 

1. The Int Var implementation uses Int as the names of variables, and uses an IntMap 

to keep track of the environment. 

2. The STVar implementation uses STRefs, so we can use actual mutation for binding 

logic variables, rather than keeping an explicit environment around. 

The ST monad is similar to the IO monad but is escapable. An ST action is of the form: 

ST s a 

a is the return type of the result of the computation in thread s . The s keeps references 

to objects inside the ST monad from leaking to the outside of the ST monad meaning the 

actions can only affect their own thread. To escape we require: 

runST : : (forall s . ST s a) -> a 

The action a must be universal in s , meaning the threading association is not known 

prohibiting to other threads and thus runST is pure [ 154, 129]. This is the idea behind 
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STVars which are implemented using STRefs. Hence to use "true mutability" we carry 

out the computation in the ST monad. 

This implementation uses STVars and STBindings to implement the BindingMonad 

but a custom implementation could also be used inside the BindingMonad. For our Ian-

guage expressions to be unifiable we must deal with the variables in the expressions being 

compared. For that we extract the variables and then convert them into a dictionary con-

sisting of a free variable for each language variable as shown in Figure 10.8. 

Listing 10.8 Creating a variable dictionary 

variableExtractor : : Fix FlatTerm -> [Fix FlatTerm] 
variableExtractor (Fix x) = case x of 

(Struct __ ) -> Foldable . foldMap variableExtractor x 
(Var v) -> [Fix $ Var v] 

-> [] 

variableNameExtractor Fix FlatTerm -> [VariableName] 
s variableNameExtractor (Fix x) = case x of 

(Struct __ ) -> Foldable . foldMap variableNameExtractor x 
10 ( Var v) - > [ v J 
II - ) [] 

12 

13 variableSet [Fix FlatTerm] -> S . Set (Fix FlatTerm) 
14 variableSet a = S . f romList a 
15 

16 variableNameSet : : [VariableName] -> S . Set (VariableName ) 
11 variableNameSet a = S . f romList a 
18 

19 varsToDictM : : (Ord a, Unifiable t) => 
20 S . Set a -> ST . STBinding s (Map a (ST . STVar s t)) 
21 varsToDictM set = foldrM addEl t Map . empty set where 
n addElt sv diet = do 
n iv <- freeVar 
24 return $ ! Map . insert sv iv diet 

A language to STVar dictionary is only one part of the unification procedure, the terms 

themselves should be made compatible for the in built unify procedure to perform look ups 
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for the variables in them. The dictionary along with the fixed point version flattened of the 

term, as shown in Figure 10.9. 

Listing 10.9 Conversion to UTerm 

uTermify 
Map VariableName (ST .STVar s (FlatTerm)) 

-> UTerm FlatTerm (ST .STVar s (FlatTerm)) 
-> UTerm FlatTerm (ST .STVar s (FlatTerm)) 

uTermify varMap ux = case ux of 
UT .UVar -> ux 
UT .UTerm (Var v) -> maybe (error ''bad map" ) UT .UVar $ 

Map . lookup v varMap 
-- UT.UTerm t -> UT.UTerm £! fmap (uTermify varMap) 

10 UT .UTerm (Struct a xs) -> UT .UTerm $ Struct a $! 
II 

12 

13 

14 

UT .UTerm (Wildcard) 
UT .UTerm (Cut i) 

1s translateToUTerm : : 

fmap (uTermify varMap) xs 
-> UT .UTerm Wildcard 
-> UT .UTerm (Cut i) 

16 Fix FlatTerm -> ST . STBinding s 
11 (UT .UTerm (FlatTerm) (ST .STVar s (FlatTerm)), 
1s Map VariableName (ST .STVar s (FlatTerm))) 
19 translateToUTerm e1 Term = do 
20 let vs = variableNameSet $ variableNameExtractor e1Term 
21 

22 

23 

varMap <- varsToDictM vs 
let t2 = uTermify varMap 
return (t2,varMap) 

unfreeze $ e1Term 

and for later use to convert them back, as shown in Figure 10.10. 
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Listing 10.10 Conversion from UTerm 

vTermify : : Map Int VariableNarne -> 
UT .UTerm (FlatTerm) (ST .STVar s (FlatTerm)) -> 
UT .UTerm (FlatTerm) (ST .STVar s (FlatTerm)) 

vTermify diet t1 = case t1 of 
UT .UVar x -> maybe (error "logic" ) (UT .UTerm . Var) $ 

Map . lookup (UT . getVarID x) diet 
UT. UTerm r -> 

case r of 
Var iv -> t1 

10 -> UT .UTerm . fmap (vTermify diet) $ r 
11 

12 translateFromUTerm 
13 Map VariableNarne (ST . STVar s (FlatTerm)) -> 
14 UT .UTerm (FlatTerm) (ST .STVar s (FlatTerm)) -> Prolog 
1s translateFromUTerm diet uTerm = 
16 P maybe (error "Logic" ) id . freeze . vTermify varidDict $ uTerm where 
11 rot3 f a k v = f k v a 
1s inserter k v = Map . insert (UT . get Var ID v) k 
19 forKV diet initial fn = Map . foldlWithKey' (rot3 fn) initial diet 
20 varidDict = forKV diet Map . empty inserter 

The variable dictionaries and UTermified language expressions are unified in the binding 

monad as shown in Figure 10.11 and Figure 10.12. 

Listing 10.11 Unification code 

monadicUnification : : 
(BindingMonad FlatTerm (STVar s FlatTerm) (ST . STBinding s)) => 
(forall s . (Fix FlatTerm) -> (Fix FlatTerm) -> 
ErrorT (UT .UFailure (FlatTerm) (ST .STVar s (FlatTerm))) 
(ST .STBinding s) (UT .UTerm (FlatTerm) (ST .STVar s (FlatTerm)), 

Map VariableNarne (ST .STVar s (FlatTerm)))) 
1 monadicUnification t1 t2 = do 

(x1,d1) <- lift . translateToUTerm $ t1 
(x2,d2) <- lift . translateToUTerm $ t2 

w x3 <- U.unify x1 x2 
11 return $ ! (x3, d1 ' Map . union' d2) 
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Listing 10.12 Driver code 

runUnify : : 
(forall s . (BindingMonad FlatTerm (STVar s FlatTerm) (ST .STBinding s)) 
=> 

) 

(ErrorT 
(UT .UFailure FlatTerm (ST .STVar s FlatTerm)) 
(ST .STBinding s) 
(UT .UTerm FlatTerm (ST .STVar s FlatTerm), 

Map VariableName (ST .STVar s FlatTerm))) 

IO -> [(VariableName , Prolog)J 
,, runUnify test = ST . runSTBinding $ do 
12 answer <- runErrorT $ test 
13 

,~ 
IS 

case answer of 
(Left _) 
(Right (_ , diet)) 

-> return [] 
-> extractUnifier diet 

The final reconversion to return a list of substitutions, called extractUnifier in Fig-

ure 10.12, is shown in Figure 10.13 . 

Listing 10.13 Variable substitution li st extraction 

extractUnifier : : 
(BindingMonad FlatTerm (STVar s FlatTerm) (ST .STBinding s)) 
=> (forall s . Map VariableName (STVar s FlatTerm) 

-> (ST .STBinding s [(VariableName , Prolog)J) 
) 

6 extractUnifier diet = do 
let ldl = Map . toList diet 
ld2 <- Control .Monad .Error . sequence 

[ vl I (k,v) <- ldl, let vl UT . lookupVar v] 
IO let ld3 [ (k,v) I ((k, _), Just v) <- ldl 'zip' ld2] 
11 ld4 = [ (k,v) I (k , v2) <- ld3, 
12 let v = translateFromUTerm diet v2 J 
13 return ld4 

Listing 10.14 shows fixed point versions of sample terms. 
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Listing 10.14 Sample terms 

f ix1 = Fix $ Struct "a" [ (Fix $ Var $ VariableName O "x'' ), (Fix $ Cut 0), 
(Fix $ Wildcard)] 

fix2 (Fix $ Var $ VariableName 1 "x" ) 

Listing I 0.15 shows the result of the execution for runUnify. 

Listing 10.15 Output for runUnif y 

runUnify $ monadicUnification fix1 fix2 
[ (VariableName 1 "x" , 
P (Struct "a" [Var (VariableName O "x" ), Cut O, Wildcard]))] 

Recapitulating, this chapter provides the ideas of language modification and monadic 

unification along with their respective implementations. 
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Chapter 11 

Prototype 2 

This chapter attempts to infuse the generic methodology from Chapter IO in a current 

PROLOG implementation [I 14] and make the unification "monadic". 

This chapter discusses the idea of implementing a basic working PROLOG query re-

solver while using prolog-0. 2. 0 .1 [114] as the base implementation. The language 

modifications and unification mechanism have been taken from Chapter IO and adapted 

to fit in with the other components such as the search strategy of the library. 

11.1 How prolog-0. 2. 0. 1 works 

The prolog-0. 2. 0. 1 library ([114]) was written by Matthias Bartsch and consists of 14 

HASKELL files. It implements data base assertions and cuts but lacks any IO facilities. 

Moreover, the abstract syntax used to implement the language is rigid and leaves very little 

to no scope for extension. Figure 11.1 describes its architecture. 
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Interpreter Parser 

REPL prolog -0 2.0 1 Language 

Database Unifier 

Figure 11.1: prolog-0.2 . 0 . 1 [114] architecture 

From the Listing 11.1 we will focus on Terms, since the others just add wrappers around 

expressions which can be created by it. This language suffers from most of the problems 

discussed in the previous chapter. The above is used to construct PROLOG "terms" which 

are of a "single type". 

The implementation consists of components that one would find in a language process-

ing system (see Figure 11.2). 
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lilirary fit 
retoutabl object fib 

Figure 11.2: A language-processing system (taken from [I]) 

They specifically contain parts of a compiler (see Figure 11 .3). 
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souce program 

t 
lexical 
aJ1alyzer 

syntax 
3.llalyzer 

code 
optimizer 

code 
generator 

target program 

Fig l .S Phases of a compiler 

Figure 11.3: Phases of Compiler [I] 

The architecture for a compiler as described in Figure 11.3 is not needed since HASKELL 

provides most of them. Nonetheless, the library has the following major components as 

shown in Figure 11.1: 

• the syntax which defines the language, 

• the database which stores the expressions and language constructs, 

• the parser, 

• the interpreter, 

• the unifier, 

• the Read-Eval-Print Loop (REPL). 
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To prove the modularity of the approach used in Chapter 10 for language modification 

and monadic unification only the abstract syntax and unifier will be customized. 

11.2 What we do in this prototype 

Figure 11.4 describes the components of this implementation and the relation between 

them. 

1 Language Mod ification 

open up, 
extend, flatten 
fi x, functorize 

Interpreter 
REPL 

Database 
Parser 

2 Library Compatibi lity 

Uni fiab le 
Instances 

works on some 
search strategy 

Utermify 
translate 

3 Monadic Unification 

~ Substs 

pushed back into the 
query reso lver 

Figure 11.4: Architecture of Prototype 2 

Unification is a part of how PROLOG works to produce a solution to the query. The 

unification procedure tells us whether or not two terms can be made equal. Before 

reaching that state, two terms must be gathered depending upon matching rules in the 

knowledge base. This is where a search strategy comes into play along with a backtracking 

mechanism. 

Putting everything together forms the PROLOG query resolver. Given a query and a 

knowledge base, the query resolver matches the input query with the rules in the knowledge 

base to create a list of goals to satisfy to generate an unifier along with saving choice points 
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on the way for backtracking. 

This chapter discusses how the abstract syntax and query resolver from [ 114] can be 

adapted to the concepts and implementation from Chapter 10. This not only proves how 

generic and modular the approach from the previous chapter is, but also the working PRO-

LOG system as a whole. 

11.3 Procedure 

11.3.1 Flatten the language by introducing a type variable 

The first component describes the process of creating a modified version of the current 

abstract syntax used by the library as shown in Listing 11.1. 
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6 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Listing 11.1 Original Recursive Grammar 

data Term Struct Atom [Term] 
Var VariableName 
Wildcard -- Don ' t cares 
Cut Int 

deriving (Eq , Data , Typeable ) 

var Var VariableName 0 
cut Cut 0 

data Clause = Clause { lhs .. Term , .. rhs_ 
I ClauseFn { lhs .. Term , fn .. 

deriving (Data , Typeable ) 

rhs . . Clause -> [Term] -> [Goal ] .. 
rhs (Clause rhs) const rhs 
rhs (ClauseFn _ fn) = fn 

data VariableName = VariableName Int String 
deriving (Eq , Data , Typeable , Ord) 

type Atom String 
type Goal Term 
type Program [Clause] 

[Goal] } 
[Term] -> [Goal ] } 

The grammar suffers from most of the drawbacks mentioned in Chapter 10. This im-

plementation focuses on creating a working PROLOG query resolver with monadic uni -

fication . The base implementation adopted from prolog-0. 2. 0. 1 [114] already has 

a working implementation, but lacks benefits achieved from our approach mention in the 

previous chapter. 

The non-recursive implementation described in Listing 11.2 introduces a type variable 

which separates the structure from the data itself. 
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Listing 11.2 Flattened (non-recursive) grammar 

data FTS a = FS Atom [a] I FV VariableName I FW I FC Int 
deriving (Show , Eq , Typeable , Ord) 

We implement the necessary instances to make the language unifiable as shown in List-

ing 11.3. 

Listing 11.3 Instances for flattened grammar 

instance Functor (FTS ) where 
fmap T. f mapDef aul t 

instance Foldable (FTS ) where 
foldMap T. foldMapDef ault 

instance Traversable (FTS ) where 
traverse f (FS atom xs) FS atom <$> sequenceA (Prelude .map f xs) 
traverse (FV v) pure (FV v) 
traverse FW pure (FW ) 
traverse (FC i) pure (FC i) 

10 instance Unifiable (FTS ) where 
11 zipMatch (FS al ls) (FS ar rs) = 
12 if (al == ar) && (length ls == length rs) 
13 then FS al <$> pairWith (\ 1 r -> Right (l,r)) ls rs else Nothing 
14 zipMatch FW Just FW 
1s zipMatch _ FW = Just FW 
16 zipMatch (FC il) (FC i2) 
11 if (il == i2) then Just (FC il) else Nothing 

Lastly, the fixed point version is created using the Fix constructor 

Listing 11.4 Fixed point of flattened grammar 

newtype Prolog = P (Fix FTS ) deriving (Eq , Show , Ord , Typeable ) 

3 unP Prolog -> Fix FTS 
4 unP (P x) = x 
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The above approach allows us to jump between the environments (grammars) easily 

provided the back and forth conversion capabilities from Listing 11.6 and Listing 11.5. 
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Listing 11.5 prolog-0 . 2. 0. 1 Monadic Unification Conversion Functions 

termFlattener : : Term -> Fix FTS 
termFlattener = DFF . ana oneLevel where 

oneLevel : : Term -> FTS Term 
oneLevel x = case x of 

{ Var v -> FV v ; Wildcard -> FW 
Struct a xs -> FS a xs} 

unFlatten : : Fix FTS -> Term 
unFlatten = DFF . cata levelOne where 

10 levelOne : : FTS Term -> Term 
II 

12 

13 

14 

15 

levelOne x = case x of 
{ FV v -> Var v; FW -> Wildcard 

FS a xs -> Struct a xs} 

Cut i -> FC i 

FC i -> Cut i 

16 variableExtractor : : Fix FTS -> [Fix FTS] 
17 

18 

19 

20 

21 

variableExtractor 
CFS _ xs) -> 
(FV v) -> 

-> [] 

(Fix x) = case x of 
Prelude . concat $ Prelude .map variableExtractor xs 

[Fix $ FV v] 

22 variableNameExtractor : : Fix FTS -> [VariableName] 
23 variableNameExtractor (Fix x) case x of 
24 (FS _ xs) -> Prelude . concat $ Prelude .map variableNameExtractor xs 
~ (FV v) -> [v] 
26 -> [] 
27 

28 variableSet [Fix FTS] -> S .Set (Fix FTS ) 
29 variableSet a = S . f romList a 
30 

31 variableNameSet : : [VariableName] -> S . Set (VariableName ) 
32 variableNameSet a = S . fromList a 
33 

34 varsToDictM : : (Ord a, Unifiable t) => 
3s S. Set a -> ST . STBinding s (Map a (ST . STVar s t)) 
36 varsToDictM set = foldrM addElt Map . empty set where 
n addElt sv diet = do 
D iv <- freeVar 
39 return $ ! Map . insert sv iv diet 
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Listing 11.6 prolog-0 . 2. 0 . 1 Monadic Unification Translation Functions 

type USTerm ts = UTerm t (ST .STVar st) 

uTermify : : Map VariableName (ST .STVar s FTS ) -> USTerm FTS s -> UTerm FTS s 
uTermify varMap ux = case ux of 

UT .UVar -> ux 
UT .UTerm (FV v) 
UT .UTerm t 

-> maybe (error "bad map" ) UT .UVar $ Map . lookup v varMap 
-> UT .UTerm $! fmap (uTermify varMap) t 

translateToUTerm 
10 Fix FTS -> ST . STBinding s 
11 (UT .UTerm (FTS) (ST . STVar s (FTS)), 
12 Map VariableName (ST . STVar s (FTS))) 
13 translateToUTerm eiTerm = do 
14 let vs = variableNameSet $ variableNameExtractor eiTerm 
15 varMap <- varsToDictM vs 
16 let t2 = uTermify varMap unfreeze $ eiTerm 
11 return ( t2, varMap) 
18 

19 

20 I vTermify recursive Ly converts @UVar x@ into @UTerm (VarA x). 
21 This is a subroutine of @ transLateFromUTerm @. The resuLting 
22 term has no (UVar x) subterms. 
23 

24 helper : : Map Int VariableName -> ST .STVar s FTS -> USTerm FTS s 
25 helper diet v maybe (error "logic" ) (UT.UTerm . FV) $ 
26 Map . lookup (UT . getVarID v) diet 
27 

28 vTermify : : Map Int VariableName -> USTerm FTS s -> USTerm FTS s 
29 vTermify diet ti = vTermify2 (helper diet) ti where 
30 vTermify2 f ti = case ti of 
31 UT .UVar x -> f x 
32 UT .UTerm r -> UT .UTerm . fmap (vTermify2 f) $ r 
33 

~ reverseDict : : Map VariableName (SVar s) -> Map Int VariableName 
35 reverseDict diet = varidDict where 
36 forKV diet initial fn = Map . foldlWithKey' ( \ a k v -> fn k v a) initial diet 
37 varidDict = forKV diet Map . empty $ \ k v -> Map . insert (UT .getVarID v) k 
38 

39 translateFromUTerm : : 
40 Map VariableName (ST .STVar s (FTS)) -> USTerm FTS s -> Prolog 
41 translateFromUTerm diet = 
42 P . maybe (error "Logic" ) id . freeze . vTermify (reverseDict diet) 

After the language is opened up, the next step is to replace the current unification pro-

cedure from prolog-0. 2. 0 .1 [114] with one similar to Chapter 10. 

The current unification uses basic pattern matching to unify terms. This approach 
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tightly couples the unification to the embedded language meaning that every language 

change requires rewriting the unification procedure. Secondly, the unification procedure 

is correct but not very efficient. Given that unif ication-fd [137] provides an efficient 

implementation of imperative unification algorithms, we have another reason to replace the 

unification mechanism from prolog-0. 2. 0 .1 [114]. 

The results produced by the query resolver are shown in Listing 11.7. 

Listing 11.7 prolog-0. 2 . 0 . 1 Unifier 

type Unifier 
type Substitution 

[Substitution] 
(VariableName , Term) 

A Unifier is a list of Substitutions which binds a variable to a value. 

The unification procedure is shown in Figure 11.8. Each language expression is matched 

based on its structure and returns a Unifier . 
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Listing 11.8 prolog-0 . 2 . 0 . 1 Unification 

unify , unify_with_occurs_check : : MonadPlus m => Term -> Term 
-> m Unifier 

unify = fix unify' 

unify_with_occurs_check 
fix $ \ self t1 t2 -> if (t1 'occursin' t2 I I t2 'occursin' t1) 

then fail "occurs check" 
else unify' self t1 t2 

10 where 
11 occursin t = everything Cl I ) (mkQ False (==t)) 
12 

13 unify' : : MonadPlus m => (Term -> Term -> m Unifier ) -> Term -> 
14 Term -> m [ (VariableName , Term)] 
15 

16 -- If either of the terms are don 1 t cares then no unifiers exist 
11 unify' Wildcard return [] 
18 unify' __ Wildcard = return [] 
19 

20 -- If one is a variable then equate the term to its vaLue which 
21 

22 

23 

24 

- - f orms the unifier 
unify' (Var v) t 
unify' _ t (Var v) 

return [ (v, t)] 
return [ ( v, t)] 

25 -- Match the names and the Length of their parameter List and 
26 - - then match the elements of List one by one. 
21 unify' self (Struct a1 ts1) (Struct a2 ts2) 
28 

29 

I a1 == a2 && same length ts1 ts2 = 
unifyList self (zip ts1 ts2) 

30 

31 unify' __ 
32 

= mzero 

33 same : : Eq b => (a -> b) -> a -> a -> Bool 
~ same f x y = f x == f y 
35 

36 -- Match the elements of each of the tupLes in the List. 
31 unifyList : : Monad m => (Term -> Term -> m Unifier ) ->-
38 [(Term , Term)] -> m Unifier 
39 unifyList _ [] = return [] 
40 unifyList unify ((x,y) :xys) = do 
41 U <- unify X y 
42 u' <- unifyList unify (Prelude .map (both (apply u)) xys) 
43 return (u++u') 
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The modification to the unification procedure is described in Listing 11 .9, Listing 11.10, 

Listing 11.11, Listing 11 .13, Listing 11 .15 and Listing 11.14. 

79 



Listing 11.9 prolog-0. 2 . 0. 1 Monadic Unification Functions 

I Unify two (El a) terms resuLting in maybe a dictionary 
of variabLe bindings (to terms). 

NB!!!! The current interface assumes that the variabLes 
in tl and t2 are disjoint. This LikeLy needs fixing. 

type SVar s = ST .STVar s (FTS ) 
type PrologMap = Map VariableName Prolog 
type UTExcept t v m r = ExceptT (UT .UFailure t v) m r 

w unifyTerms : : Fix FTS -> Fix FTS -> Maybe PrologMap 
11 unifyTerms t1 t2 = ST . runSTBinding $ do 
12 answer <- runExceptT $ unifyTermsX t1 t2 
n return $! either (const Nothing) Just answer 
14 

15 I Unify two (El a) terms resuLting in maybe a dictionary 
16 of variabLe bindings (to terms) . 
11 This routine works in the unification monad 
18 unifyTermsX (Fix FTS ) -> (Fix FTS ) 
19 -> UTExcept FTS (SVar s) (ST .STBinding s) PrologMap 
w unifyTermsX t1 t2 = do 
21 (x1, d1) <- lift . translateToUTerm $ t1 
22 (x2, d2) <- lift . translateToUTerm $ t2 
n _ <- U.unify x1 x2 
M makeDicts $ (d1 , d2) 
25 

u mapWithKeyM : : (Ord k ,Applicative m, Monad m) 
21 => (k -> a -> m b) -> Map k a -> m (Map k b) 
28 mapWi thKeyM = Map . traverseWi thKey 
29 makeDict Map VariableName (SVar s) -> ST . STBinding s PrologMap 
30 makeDict sVarDict = 
31 flip mapWi thKeyM sVarDict $ \ _ -> \ iKey -> do 
n Just xx <- UT . lookupVar $ iKey 
33 return $! (translateFromUTerm sVarDict) xx 
34 

35 -- I recover the bindings for the variabLes of the two terms 
M -- unified from the monad. 
31 makeDicts : : (Map VariableName (SVar s), Map VariableName (SVar s)) 
38 -> UTExcept FTS (SVar s) (ST .STBinding s) PrologMap 
39 makeDicts (svDict1, svDict2) = do 
~ let svDict3 = (svDict1 ' Map .union' svDict2) 
41 let ivs = Prelude .map UT .UVar . Map . elems $ svDict3 
42 applyBindingsAll i vs 
43 lift . makeDict $ svDict3 
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Listing 11.10 prolog-0. 2. 0. 1 Monadic Unification Tests and Extraction 1 

instance (UT .Variable v, Functor t) => Error (UT .UFailure t v) where {} 

3 test1 : : 
ErrorT (UT .UFailure (FTS ) (ST .STVar s (FTS ))) 

(ST .STBinding s) 

8 test1 = do 
let 

10 t1a 
II t2a 
12 (x1,d1) 
13 (x2,d2) 

(UT .UTerm (FTS ) (ST .STVar s (FTS )), 
Map VariableName (ST .STVar s (FTS))) 

= (Fix $ FV $ VariableName 0 11x11 ) 
= (Fix $ FV $ VariableName 1 llyll ) 
<- lift translateToUTerm $ t1a --error 
<- lift translateToUTerm $ t2a 

14 x3 <- U.unify x1 x2 
15 return (x3, d1 ' Map .union' d2) 
16 

11 test2 : : 
18 ErrorT (UT . UFailure (FTS ) (ST . STVar s (FTS ))) 
19 

20 

21 

22 test2 = do 
23 let 

(ST .STBinding s) 
(UT .UTerm (FTS ) (ST .STVar s (FTS )), 
Map VariableName (ST .STVar s (FTS))) 

24 t1a = (Fix $ FS II a 11 [Fix $ FV $ VariableName O 11 x 11 ]) 
25 t2a = (Fix $ FV $ VariableName 1 11 y 11 ) 
26 (x1,d1) <- lift . translateToUTerm $ t1a --error 
n (x2,d2) <- lift . translateToUTerm $ t2a 
3 x3 <- U.unify x1 x2 
N return (x3, d1 ' Map .union' d2) 
30 

31 test3 : : 
32 ErrorT (UT .UFailure (FTS ) (ST .STVar s (FTS))) 
33 

34 

35 

36 test3 = do 
37 let 

(ST .STBinding s) 
(UT .UTerm (FTS ) (ST .STVar s (FTS )), 
Map VariableName (ST .STVar s (FTS ))) 

38 t1a = (Fix $ FS II a 11 [Fix $ FV $ VariableName O 11 x" ]) 
39 t2a = (Fix $ FV $ VariableName O ''x'' ) 
~ (x1,d1) <- lift . translateToUTerm $ t1a --error 
41 (x2,d2) <- lift . translateToUTerm $ t2a 
G x3 <- U.unify x1 x2 
43 return (x3, d1 ' Map .union' d2) 
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Listing 11.11 prolog-0 . 2. 0. 1 Monadic Unification Tests and Extraction 2 

45 test4 : : 
~ ErrorT (UT .UFailure (FTS ) (ST . STVar s (FTS ))) 
47 

48 

49 

50 test4 = do 
51 let 
52 t1a 
53 t2a 
54 (x1,d1) 
55 (x2,d2) 

(ST .STBinding s) 
(UT .UTerm (FTS ) (ST . STVar s (FTS )), 
Map VariableName (ST . STVar s (FTS))) 

= (Fix $ FS "a" [Fix $ FV $ VariableName 0 
= (Fix $ FV $ VariableName 0 "x" ) 
<- lift translateToUTerm $ t1a --error 
<- lift translateToUTerm $ t2a 

56 x3 <- U.unifyOccurs x1 x2 
57 return (x3, d1 ' Map . union' d2) 
58 

59 test5 : : 
~ ErrorT (UT .UFailure (FTS ) (ST . STVar s (FTS ))) 
61 

62 

63 

64 test5 = do 
65 let 

(ST . STBinding s) 
(UT .UTerm (FTS ) (ST . STVar s (FTS )), 
Map VariableName (ST . STVar s (FTS))) 

"x" ]) 

66 t1a = (Fix $ FS II a" [Fix $ FV $ VariableName O 11 x 11
]) 

67 t2a = (Fix $ FS 11 b 11 [Fix $ FV $ VariableName O 11 y 11
]) 

68 (x1,d1) <- lift . translateToUTerm $ t1a --error 
69 (x2, d2) <- lift . translateToUTerm $ t2a 
m x3 <- U.unify x1 x2 
11 return (x3, d1 ' Map . union' d2) 

In this implementation unification is a three part procedure as follows: 

1. monadicUnification 

Firstly, we take a couple of flattened terms in fixed point and convert them into 

UTerm-format so that we can apply the unify function provided by unif ication-fd 

and results in a unifier. The type signature of unify is shown in Listing 11.12. 
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Listing 11.12 unification-fd unify type signature 

unify : : 
(BindingMonad t v m, Fallible t v e, MonadTrans em, Functor (em m), 

MonadError e (em m)) 
=> UTerm t v 

-> UTerm t v 
-> em m (UTerm t v) 

We also return a umon of the variable dictionaries for each of the terms re-

quired to convert the result into the eDSL. Listing 11.13 the procedure for 

monadicUnification. 

Listing 11.13 monadicUnification function 

84 monadicUnification : : (BindingMonad FTS (STVar s FTS ) (ST . STBinding s)) 
e => (forall s . ((Fix FTS ) -> (Fix FTS ) -> 
86 ErrorT (UT .UFailure (FTS ) (ST .STVar s (FTS))) 
81 (ST .STBinding s) (UT .UTerm (FTS) (ST .STVar s (FTS)), 
88 Map VariableName (ST .STVar s (FTS))))) 
~ monadicUnification tl t2 = do 
w (x1,d1) <- lift . translateToUTerm $ tl 
91 (x2, d2) <- lift . translateToUTerm $ t2 
~ x3 <- U.unify xl x2 
93 return $' (x3, dl ' Map . union' d2) 

2. extractUnifier 

Retranslate the terms back to fixed flat terms and return results. Listing 11.14 returns 

list of VariableName, Pro log pairs. 
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Listing 11.14 extractUnifier function 

109 extractUnifier : : 
110 (BindingMonad FTS (STVar s FTS ) (ST .STBinding s)) 
111 => (forall s . Map VariableName (STVar s FTS ) 
112 -> (ST . STBinding s [ (VariableName , Pro log)])) 
113 

114 

115 

11 6 

117 

118 

extractUnifier diet = do 
let ldi = Map . toList diet 
ld2 <- Control .Monad .Error . sequence 

[vi I (k,v) <- ldi, let vi 
let ld3 = [ (k,v) I ((k, _), Just v) 

ld4 = [ (k,v) I (k,v2) <- ld3, 
119 return ld4 

3. runUnify 

UT . lookupVar v] 
<- ldi 'zip' ld2] 
let v = translateFromUTerm diet v2 J 

This function executes the above operations in the BindingMonad and return the 

necessary results. Listing 11.15 shows the runUnif y function . 

Listing 11.15 runUnify function 

95 runUnif y : : 
% (forall s . (BindingMonad FTS (STVar s FTS ) (ST .STBinding s)) 
97 => (ErrorT 
9s (UT .UFailure FTS (ST .STVar s FTS)) 
~ (ST .STBinding s) 

100 (UT .UTerm FTS (ST .STVar s FTS), 
101 Map VariableName (ST . STVar s FTS)))) 
102 -> [ (VariableName , Pro log)] 
103 runUnify test = ST . runSTBinding $ do 
1~ answer <- runErrorT $ test 
105 

106 

107 

case answer of 
(Left _) 
(Right (_ , diet)) 

4. unify 

-> return [] 
-> extractUnifier diet 

Putting it all together we perform the unification on the two terms and return the 

Unifier as originally intended. Listing 11.16 
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Listing 11.16 unify 

12 1 unifierConvertor [ (VariableName , Pro log)] -> Unifier 
1n unifierConvertor xs 
123 Prelude . map ( \ (v, p) -> (v, (unFlatten $ unP $ p))) xs 
124 

12s unify MonadPlus m => Term -> Term -> m Unifier 
1u unify tl t2 = unifierConvertor 
121 (goUnify 
12s (monadicUnif ication 
129 (termFlattener tl) (termFlattener t2) 
I~ ) 

131 ) 

Recapitulating, this chapter provided an implementation of a Prolog-like language 

adopted from [114] and incorporated a monadic unifier built from [137] to create a PRO LOG 

query resolver. 
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Chapter 12 

Prototype 3 

This chapter discusses the procedure to infuse multiple search strategies into a PROLOG 

query resolver with monadic unification. The base implementation for this prototype is 

Mini Prolog [64]. 

12.1 Mini Prolog [64] architecture 

Mini Prolog is based on an older implementation of HASKELL called Hugs 98. The 

architecture of the library is described in the Figure 12.1. The main components are as 

follows: 

1. the language itself, 

2. multiple search strategies used by the query resolver, 

3. a parser, 

4. a unification mechanism, 

5. an interpreter, 

6. a knowledge base, and 
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7. a REPL. 

The main highlight of this implementation is the fact that the query resolver can work 

with multiple search strategies decided at compile time. A query request will consist of the 

query itself i.e., the terms to be unified, a knowledge base storing the clauses, the unification 

procedure and finally a user provided search strategy. 

GG 
Engines 

(Search Strategy) 

8 
CombParse 

(Parser) 

Sub st 
(Unifier) 

G 
Main 

Pro log 
(Language) 

Figure 12.1: Mini PRO LOG architecture 

12.2 Prototype architecture 

The focus of this prototype is to embed the language modification procedure and monadic 

unification into [64) so to further prove the generality and modularity of the approach from 

the previous prototypes. The architecture for this prototype is beautifully illustrated by 

Figure 12.2. 
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GG 
Database 

Engines 

8 
Language 

query 
Monadic Unification 

Open Language Parser 

Unifier 

Figure 12.2: Architecture of Prototype 3 

Since we are aiming for modularity, most components in the Figure 12.1 are untouched. 

The abstract syntax is modified to conform to the unification-fd library [137]. Looking 

at the center of the figure you will find query. This component takes as input the terms to be 

unified in modified language form, a search strategy, the knowledge base and the monadic 

unifier, and returns a list of substitutions as required by Mini Prolog library [64]. Each of 

the components in Figure 12.2 will be discussed in the sections to come. 
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12.3 Engines (search strategies) 

This section corresponds to the top left component of Figure 12.2. Below are the descrip-

tion of the various engines (these are called search strategies in 8.5). 

12.3.1 The Stack engine 

The stack based engine works on a stack of triples Cs, goal, al ts) corresponding to back-

track choice points, where: 

I. s is the substitution at that point, 

2. goal is the outstanding goal and 

3. al ts is a list of possible ways of extending the current proof to find a solution. 

Each member of al ts is a pair ( tp, u) where: 

1. tp is a new goal that must be proved and 

2. u is a unifying substitution that must be combined with the substitution s . 

The list of relevant clauses at each step in the execution is produced by attempting to 

unify the head of the current goal with a suitably renamed clause from the database. 

Listing 12.1 represents the Stack engine. 
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Listing 12.1 Stack engine from Mini Prolog [64] 

29 type Stack 
30 type Alt 

[ (st, [Term] , [Alt]) ] 
([Term], st) 

31 

32 alts Database -> Int -> Term -> [Alt] 
33 alts db n g = [ (tp,u) I (tm :-tp) <- renClauses db n g, u <- unify g tm J 
34 

35 prove Database -> [Term] -> [st] 
solve 1 nullst gl [] 36 prove db gl 

37 

38 

39 

where 
solve 
solve n s 

Int -> st -> [Term] -> Stack -> [st] 
[] ow s : backtrack now 

~ solve n s (g :gs) ow 
41 

42 

g==theCut 
I otherwise 

solve n s gs (cut ow) 
choose n s gs (alts db n Capps g)) ow 

~ choose : : Int -> st -> [Term] -> [Alt ] -> Stack -> [st] 
~ choose n s gs [] ow backtrack now 
~ choose n s gs ((tp,u) : rs) ow = solve (n+1 ) (u@@s) (tp++gs) ((s,gs,rs) : ow) 
47 

48 

49 

50 

51 

backtrack 
backtrack n [] 
backtrack n ((s,gs,rs) : ow) 

Int -> Stack -> [st] 
[] 
choose (n-1 ) s gs rs ow 

52 theCut 
53 theCut 

Term 
Struct 11 ! 11 

[] 

54 

55 cut Stack -> Stack 
[] 56 cut ss 

12.3.2 The Pure engine 

The pure engine works on Proof trees. Each node in a Proof tree corresponds to: 

1. Either, a solution to the current goal, represented by Done s , where s is the required 

substitution, or, 

2. a choice between a number of trees ts , each corresponding to a proof of a goal 

of the current goal, represented by Choice ts . The proof tree corresponding to an 
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unsolvable goal is Choice [] . 

Listing 12.2 represents the Pure engine. 

Listing 12.2 Pure engine from Mini Prolog [64) 

u data Prooftree = Done st Choice [Prooftree] 
27 

28 -- prooftree uses the rules of Prolog to construct a suitable proof tree for 
29 a specified goal 
30 prooftree 
31 proof tree 
32 where pt 

Database -> Int -> st -> [Term] -> Prooftree 
db = pt 

33 pt n s [] 
Int -> st -> [Term] -> Prooftree 
Done s 

34 pt n s (g :gs) = 
35 

36 

31 DFS Function 

Choice [ pt (n+1 ) (u©©s) (map 
I (tm :-tp) <-renClauses 

Capp u) (tp++gs)) 
db n g, u<-unify g tm] 

38 search performs a depth-first search of a proof tree, producing the List 
39 of solution stitutions as they are encountered. 
~ search Prooftree -> [st] 
41 search (Done s) [s] 
~ search (Choice pts) [ s I pt <- pts, s <- search pt] 
43 

44 

45 prove Database -> [Term] -> [st] 
~ prove db search . prooftree db 1 nullst 

12.3.3 The Andorra engine 

This inference engine implements a variation of the Andorra Principle for logic program-

ming adapted from [51]. The main difference here is to select a relatively deterministic 

goal and not the first one. Upon selecting a goal: 

I. for each goal g in the list of goals, calculate the resolvents that would result from 

selecting g, and 

2. then choose a g which results in the lowest number of resolvents. 
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If some g results in no resolvents then it is regarded as a failure. For instance, 

?- append (A,B, [1, 2 , 3]), equals (1, 2).) 

PROLOG would not perform this optimization and would instead search and backtrack 

wastefully. If some g results in a single resolvent then that g will get selected; by selecting 

and resolving g, bindings are propagated sooner, and useless search can be avoided, since 

these bindings may prune away choices for other clauses. For example: 

?- append (A,B, [1, 2 , 3]), B=[]. 

Listing 12.3 represents the Andorra engine. 
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Listing 12.3 Andorra engine from Mini Prolog [64] 

29 solve Database -> Int -> st -> [Term] -> [st] 
m solve db = slv where 
31 slv Int -> st -> [Term] -> [st] 
n slv n s [] = [s] 
n slv n s goals = 
~ let allResolvents = resolve_selecting_each_goal goals db n in 
35 let (gs,gres) = findMostDeterministic allResolvents in 
36 concat [slv (n+1 ) (u@@ s) (map Capp u) (tp++gs)) I (u, tp) <- gres] 
37 

g resolve_selecting_each_goal :: 
39 [Term] -> Database -> Int -> [ ([Term], [(st, [Term])])] 
~ resolve_selecting_each_goal goals db n = [(gs, gResolvents) 
41 (g,gs) <- delete goals, let gResolvents = resolve db g n] 
42 

43 resolve Database -> Term -> Int -> [(st, [Term])] 
« resolve db g n = [(u , tp) I (tm :- tp) <-renClauses db n g, u<-unify g tm] 
45 

46 findMostDeterministic :: [([Term], [(st, [Term])])] -> ([Term], [(st, [Term])]) 
47 findMostDeterministic allResolvents = minF comp allResolvents where 
48 comp : : (a, [b]) -> (a, [b]) -> Bool 
49 comp (_ ,gs1) (_ ,gs2) = (length gs1) < (length gs2) 
50 

51 delete : : [a] -> [ (a, [a])] 
~ delete 1 = d 1 [] where 
53 d : : [ a] - > [ a] - > [ ( a , [ a] ) ] 
~ d [g] sofar = [ (g,sofar) J 
~ d (g :gs) sofar = (g , sofar++gs) 
56 

(d gs (g :sofar)) 

51 minF : : (a -> a -> Bool ) -> [a] -> a 
B minF f (h :t) = m ht where 
59 m : : a -> [a] - > a 
~ m sofar [] = sofar 
61 m sofar (h :t) = if (f h sofar) then m h t else m sofar t 
62 

63 prove 
64 prove db 

Database -> [Term] -> [st] 
solve db 1 nullst 
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12.4 Language 

12.4.1 Current language 

Listing 12.4 shows the abstract syntax of Mini Prolog [64]. A term can either be a vari-

able or a complex term with an atom as a head. A Clause consists of a head of type Term 

and a body of type [Term] . 

Listing 12.4 Current abstract syntax grammar in Mini Prolog [64] 

24 

25 type Atom String 
26 

27 data Term Var Id I Struct Atom [Term] 
28 

29 data Clause Term : - [Term] 
30 

31 data Database Db [( Atom , [Clause])] 
32 

33 instance Eq Term where 
M Var v Var w 
~ Struct a ts Struct b ss 
36 

37 

12.4.2 Language modification 

v==w 
a==b && ts==ss 
False 

Listing 12.5 describes the necessary modifications required to adapt the language for mona-

dic unification. This procedure consists of opening the language and adding the necessary 

instances for unification-fd [137] compatibility. 
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Listing 12.5 Language modification 

~ data FTS a = forall a . FV Id I FS Atom [a] 
65 deriving (Eq , Show , Ord , Typeable ) 
~ newtype Prolog = P (Fix FTS ) deriving (Eq , Show , Ord , Typeable ) 
67 

u unP Prolog -> Fix FTS 
69 unP (P x) = x 
70 

11 instance Functor FTS where 
12 fmap = T. fmapDefaul t 
73 

14 instance Foldable FTS where 
15 foldMap = T. foldMapDefault 
76 

11 instance Traversable FTS where 
1s traverse f (FS atom xs) = FS atom <$> sequenceA (Prelude . map f xs) 
19 traverse _ (FV v) = pure (FV v) 
80 

81 instance Unifiable FTS where 
~ zipMatch (FS al ls) (FS ar rs) = 
~ if (al == ar) && (length ls length rs) 
M then FS al <$> pairWith (\ 1 r -> Right (l,r)) ls rs 
85 else Nothing 
86 zipMatch (FV v1) (FV v2) if (v1 == v2) then Just (FV v1) 
~ else Nothing 
~ zipMatch __ = Nothing 

12.5 Unification from Mini Prolog [64] 

12.5.1 Current unification 

Listing 12.6 describes the current unification mechanism which works on substitutions. 

The unify function compares the two terms and returns a list of substitutions as with the 

base implementations from the previous prototypes. 

95 



Listing 12.6 Current unification procedure in Mini Prolog [64] 

67 newtype SubstP = SubstP { unSubstP : : Subst } 
68 

69 app Subst -> Term -> Term 
70 app s (Var i) s i 
71 app s (Struct a ts) Struct a (Prelude .map Capps) ts) 
72 

73 nullSubst Sub st 
74 nullSubst i Var i 
75 

76 (->- ) Id -> Term -> Subst 
77 (i ->- t) j j == i t 
78 otherwise Var j 
79 

80 ( ©@ ) Sub st -> Sub st -> Subst 
81 s1 @@ s2 app s1 s2 
82 

83 unify . . Term -> Term -> [Sub st] . . 
84 unify (Var x) (Var y) if x==y then [nullSubst] else [x->-Var 
85 unify (Var x) 
86 unify t1 
87 unify (Struct a ts) 
88 

~ listUnify [Term] 
90 listUnify [] [] 

t2 [ X 

(Var y) [ y 
(Struct b ss) [ u 

-> [Term] -> [Subst] 
[nullSubst] 

91 list Unify [] (r : rs) [] 
n listUnify (t :ts) [] [] 
m listUnify (t :ts) (r : rs) [ u2 @@ u1 I 

->- t2 X 'notElem' varsin t2 J 
->- t1 I y 'notElem' varsin t1 J 

a==b, u<- listUnify ts ss ] 

94 

95 

u1 <-unify tr, 
u2<-listUnify (map 

(map 
Capp u1) ts) 
Capp u1) rs) J 

The shortcomings are translated from the language to the unification as it is based on 

basic pattern matching. 

12.5.2 Monadic unification 

Listing 12. 7 shows the procedure for monadic unification. Most components of the proce-

dure remain similar to the ones in previous prototypes. 
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Listing 12.7 Monadic unification 

monadicUnification : : (BindingMonad FTS (STVar s FTS ) (ST .STBinding s)) => 
(forall s . (Term -> Term -> ErrorT (UT .UFailure (FTS) (ST .STVar s (FTS))) 

(ST .STBinding s) (UT .UTerm (FTS ) (ST .STVar s (FTS)), 
Map Id (ST .STVar s (FTS))))) 

monadicUnification t1 t2 = do 
let 

t1f = termFlattener t1 
t2f = termFlattener t2 

(x1,d1) <- lift . translateToUTerm $ t1f 
w (x2,d2) <- lift . translateToUTerm $ t2f 
11 x3 <- U. unify x1 x2 
12 return $! (x3, d1 ' Map .union' d2) 
13 

14 runUnify 
15 (forall s . (BindingMonad FTS (STVar s FTS) (ST .STBinding s)) 
16 => (ErrorT 
11 (UT . UFailure FTS (ST . STVar s FTS )) 
18 (ST . STBinding s) 
19 (UT .UTerm FTS (ST .STVar s FTS ), 
20 Map Id (ST .STVar s FTS)))) 
21 -> [( Id , Prolog)] 
22 runUnify test = ST . runSTBinding $ do 
23 answer <- runErrorT $ test 
24 case answer of 
25 (Left _) -> return [] 
26 (Right (_ , diet)) -> extractUnifier diet 
27 

28 extractUnifier : : (BindingMonad FTS (STVar s FTS) (ST .STBinding s)) 
29 => (forall s . Map Id (STVar s FTS) 
30 -> (ST .STBinding s [( Id , Prolog)])) 
31 extractUnifier diet = do 
~ let ld1 = Map . toList diet 
33 ld2 <- sequence [ v1 I (k,v) <- ld1, let v1 = UT . lookupVar v] 
~ let ld3 = [ (k,v) I ((k, _), Just v) <- ld1 'zip' ld2] 
35 ld4 = [ (k,v) I (k,v2) <- ld3, let v = translateFromUTerm diet v2] 
36 return ld4 
37 

38 

39 

40 

41 

substConvertor 
substConvertor xs 

[( Id , Prolog)] -> [Subst] 
Prelude .map (\ (varid, p) -> (->- ) varid 

(unFlatten $ unP $ p)) xs 

42 unify t 1 t2 substConvertor (runUnify (monadicUnification t1 t2)) 
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The major changes occur in substConvertor used to convert the result of monadic 

unification into the original Subst form and unify. 

12.6 Summary 

Recapitulating, this chapter provided us with a working implementation of a PROLOG-like 

interpreter with the option to change the search strategy further proving the modularity and 

genericity of the language modification and monadic unification procedure. 
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Chapter 13 

Prototype 4 

The aim of this prototype is to embed IO operations within the definition of an eDSL so as 

to allow the chaining and control of operations of the language irrespective of them being 

pure or impure. 

13.1 HASKELL IO is pure 

The discussion in this section is mainly paraphrased from [ 135]. 

HASKELL calls itself a pure functional programming language. Every function in 

HASKELL is a function in the mathematical sense (i .e., "pure"). Even side-effecting IO 

operations are but a description of what to do, produced by pure code. There are no state-

ments or instructions, only expressions which cannot mutate variables (local or global) 

nor access state like time or random numbers [52). Consider the example in Listing 13.1 

describing the getLine function in HASKELL. 

Listing 13.1 HASKELL getLine 

Prelude> x <- getLine 
Hello 
Prelude> x 
"Hello" 
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IO actions can be embedded by building up data structures which can then be executed 

to cause side-effects, but until that point they are pure. Consider the Listing 13.2 describing 

an example for the same. 

Listing 13.2 IO action data type taken from [ 135] 

data IOAction a Return a 
Put String ( IOAction a) 
Get (String -> IOAction a) 

IOAction is one of the following three types: 

1. A container for a value of type a, 

2. A container holding a String to be printed to stdout, followed by another IOAction 

a, or 

3. A container holding a function from String -> IOAction a , which can be applied 

to whatever String is read from stdin. 

The Return constructor is the terminal operation for any program written in IOAction. 

Some simple actions include the one that prints to stdout before returning (): 

put s Put s (Return () ) 

and the action that reads from stdin and returns the string unchanged: 

get Get ( \ s -> Return s) 

A program is a sequence of actions . Operators for chaining actions and then performing 

them in a particular order would be required to execute a program. We could have the 

second IOAction depend on the return value of the first one. Consider the seqio operator 

described in Listing 13.3. 
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Listing 13.3 seqio operation 

seqio . . IOAction a -> (a -> IOAction b) -> IOAction b . . 
seqio (Return a) f f a 
seqio (Put s io) f Put s (seqio io f) 
seqio (Get g) f Get ( \ s -> seqio Cg s) f) 

We want to take the IOAction a supplied in the first argument, get its return value 

(which is of type a) and feed that to the function in the second argument, getting an 

IOAction b out, which can be sequenced with the first IOAction a. Listing 13.4 de-

scribes an example of chaining IOActions and Listing 13.5 shows the output. 

Listing 13.4 Example operation with IOActions 

hello = put "What is your name?" 'seqio' \ _ -> 
get 'seqio' \ name -> 
put "What is your age?" 'seqio' \ _ -> 
get 'seqio' \ age -> 
put ( "Hello II ++ name ++ II ! II ) 'seqio' \ _ -> 
put (1 'You are II ++ age ++ II years old" ) 

Although this looks like imperative code, it's really a value of type IOAction (). In 

HASKELL, code can be data and data can be code. 
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Listing 13.5 Output of example operation 

*Main> print hello 
Put "What is your name?" ( 

Get ($0 -> 

) 
) 

Put "What is your age?" ( 
Get ($1 -> 

) 
) 

Put "Hello $0 ! 11 
( 

) 

Put "You are $1 years old" ( 
Return () 

) 

IOAction is a monad. Listing 13.6 shows the instance for the same. 

Listing 13.6 IOAction Monad 

instance Monad IOAction where 
return Return 
(»=) = seqio 

The main benefit of doing this is that we can now sequence actions using HASKELL's 

do notation. Listing 13.7 describes the example from Listing 13.4: 

Listing 13.7 Example operation using do notation 

hello2 = do put "What is your name?" 
name <- get 
put "What is your age?" 
age <- get 
put ( "Hello, 11 ++ name ++ 11 ! 11 ) 

put (1 'You are 11 ++ age ++ 11 years old! 11
) 
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Since no code is executed, till this the above example is pure and side-effect free. 

To see the effects, we need to define a function that takes an IOAction a and converts 

it into a value of type IO a, which can then be executed by the interpreter or the runtime 

system. Listing I 3.8 shows the run function for IO Act ion. 

Listing 13.8 run function for IOAction 

run :: IOAction a -> IO a 
run (Return a) return a 
run (Put s io) putStrLn s >> run io 
run (Get g) getLine >>= \ s -> run Cg s) 

Listing 13.9 shows the output for the run function. 

Listing 13.9 Output for run function 

*Main> run hello 
What is your name? 
Chris 
What is your age? 
29 
Hello Chris ! 
You are 29 years old 

IDAction is a mini-language for doing impure, side-effecting code. It restricts the 

language constructs to only reading from stdin and writing to stdout in effect creating a 

safe eDSL. 
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13.2 Prototype architecture 

Figure 13.1 shows architecture for prototype 4. 

~-L-an_g_ua-ge-~1-------,.1~ __ P_r_og-ra_m-~>-----runProg----• .__P_r_olo_g~R-es_u_lt~ 

runlO 

Ouput afterexecution 

Figure 13.1 : Prototype 4 architecture 

This architecture adopts a two stage interpretation procedure with runProg and runIO . 

Consider the PROLOG-like language described in Listing 13.10. 

Listing 13.10 Language with pure and impure constructors 

data Prolog Pure Constructor 1 .. . 
Pure_Constructor_2 .. . 
Impure_Constructor_1 
Impure_Constructor_2 

deriving (Show , Eq , Ord) 

This abstract grammar encapsulates constructors which represent pure and impure ac-

tions. The first stage of the interpretation, i.e., runProg takes a program and returns a 

PrologResul t as shown in Listing 13.11 . 
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Listing 13.11 PROLOG-like language with IO constructors 

1 data PrologResult 
NoResult 
Cons Unifier PrologResult 

10 IO In ( IO String) (String -> PrologResul t ) 
11 IOOut ( IO () ) PrologResult 

The NoResul t is used for termination. If a most general unifier is reached then a 

Cons construct is returned. The last two constructors are for read and write operations 

respectively. 

Listing 13.12 describes the type signature of runProg. 

Listing 13.12 runProg type signature 

runProg : : Prolog -> PrologResult 

Till this point in the interpretation of the program no IO operations have been executed. 

As described in the previous section we construct functions which upon execution will 

produce results and hence the partially interpreted program is still pure. 

The second stage of interpretation, i.e., runIO involves executing the impure actions 

within the IO Monad to produce the desired side effects. In this prototype, the impure 

actions as seen in Listing 13.11 are: 

I. IOin (IO String) (String-> PrologResult) ,and 

2. IOin (IO String) (String-> PrologResult) 

Listing 13.13 describes the type signature of runIO . 

Listing 13.13 runIO type signature 

runIO : : PrologResult -> IO [Unifier] 
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runIO accepts as input the result from runProg, i.e., PrologResul t and executes each 

action in the IO Monad. 

13.3 Summary 

Recapitulating, this prototype gives an architecture for a two stage interpretation strategy 

for an eDSL. In this process the first stage produces a pure interpreted program while 

the latter executes each action to produce output. This approach provides modularity and 

control over the side effecting actions for execution. 
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Chapter 14 

Future Scope 

This chapter discusses additions that could be made to the contributions of this thesis. 

14.1 PROLOG quasiquoter with antiquotation 

As discussed in Section 2.4 and Section 7 .6, a quasiquoter provides an economy of expres-

sion to describe a program in the eDSL. Listing 14.1 shows an example. 

Listing 14.1 A sample quasi quoted expression for PROLOG in HASKELL 

Clause [pr I $ ( X) i s $ (Y) I] [ [pr I $ ( X) = $ (eval (varY)) I]] 

This not only provides a simpler interface but also allows interchangeable usage of 

programming constructs of different languages in the same expression. For the example 

above, Xis a PROLOG variable and varY is a HASKELL variable injected into the expression 

14.2 Runtime search strategy selection 

The PROLOG interpreter in Chapter 12 can work with multiple search strategies. The search 

must be provided at compile time and hence one must make an estimated guess to the 
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nature of the problem to select the most appropriate choice. A possible solution to this 

problem could be the addition of providing and/or switching the search strategy at runtime. 

Listing 14.2 depicts an example query request. 

Listing 14.2 Query resolver with variable search strategy 

queryResolver searcStrategy query knowledgeBase 

A potential improvement would be add a construct to the abstract grammar itself which 

can allow to change the search strategy dynamically. 

14.3 Database operations for PROLOG 

Operations for manipulating the clause database containing facts and clauses are provided 

with many PROLOG distributions such as SWI PROLOG [103]. Operations such assertz 

[102] would provide the ability to modify the knowledge base at runtime. This is only 

partially implemented by prolog-0. 2. 0 .1 [114] . 

Moreover, SWI PROLOG provides multiple mechanisms for storage and modification 

as described in [103] . 

14.4 Multi type variable language 

The eDSl FlatTerm has a single type variable i.e., 

FlatTerm a 

This restricts the constructors (generated terms) to all be of the same type or no type. 

An eDSL with multiple type variables will provide its constructors with multiple options 

resulting in multi-type terms generated by the grammar. Listing 14.3 shows an example. 
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Listing 14.3 Multi type variable eDSL 

data FlatTerm ab c 
Constructor 1 a 
Constrcutor_2 b 

In the above example, the c type variable is not used by any constructor in FlatTerm 

and the fixed point will be calculated around it. 

Continuing the example from the previous section, with multi typed constructors one 

can have constructor specific unification. Generally speaking, quantifiers and logic can be 

programmed per constructor adding to the extensibility of the language. 

14.5 Additions and extensions to prototype 4 

Chapter 13 defines a grammar for encapsulating and ultimately controlling impure actions 

in a language. The constructors are split into two types representing pure and impure 

actions. A program would be a chaining/ sequence of these actions. The possibility of a 

constructor having a pure and an impure component would be possible if the language has 

multiple type variables. Listing 14.4 provides an example. 

Listing 14.4 Grammar with hybrid constructors 

data ResultWithIO ab 
PureConstructor 1 
PureConstructor_2 
IOContrcutor_1 .... . 
I0Contructor_2 . . . 
ContructorWithBoth_1 
ContructorWithBoth_2 

deriving ( ........ ) 

Moreover, Chapter 13 lacks an accompanying implementation. 
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Recapitulating, this chapter provided us with points where this thesis could be extended 

in the future along with suitable samples for the respective implementations. 

1 IO 



Chapter 15 

Conclusion 

This thesis set out to explore the various approaches used for bringing features of mul-

tiple languages into a single programming environment, and has identified embedding and 

paradigm integration as being the major ones. This study has also sought to improve the 

existing work on implementing PROLOG in HASKELL. One contribution of this thesis is a 

PROLOG-like language in HASKELL which not only is closer to a "real" PROLOG distribu-

tion but also provides logic programming functionality as natively as possible in the host 

language. 

During this process we have also thrown light on the subject of eDSLs in HASKELL 

and the support for the same. Moreover, we have provided a methodology for replicating 

results achieved in this thesis. 

HASKELL has been shown to be an effective tool for embedding DSLs. If used cor-

rectly HASKELL'S lazy nature can be utilized to calculate results lazily; as in returning 

only a single result from all the possible ones. Opening up the language enables us to take 

advantage of the existing classes such as Functor, Applicative, Monad, Foldable, 

Traversable . Adding a type variable not only allows us to inject custom functionality 

into the language but permits jumping between the different grammars since they are iso-

morphic. It is fairly straight forward to embed a recursive untyped grammar into a typed 

1 11 



language such as HASKELL by defining a data type with multiple constructors. Monads 

provide the functionality to define custom control flow mechanisms along with encapsu-

lation of impure side effecting computations. Moreover, due to the nature of monads, a 

approach similar to Prototype 4 can not only be possible but also generalized, i.e., the 

separation of interpreting different types of code such as pure or impure. 
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