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Abstract

Simulation is an integral part of most research studies in mobile computing 

context and building a valid, credible, and appropriately detailed simulation 

model is crucial for conducting accurate and meaningful simulation study. Al­

though many simulation softwares are freely available in the Internet for mobile 

computing simulations, we found th a t there is no comprehensive software freely 

available for the researchers to visualize, analyze, and then generate suitable 

mobility trace for their simulation study. Lack of such a comprehensive soft­

ware constrains the researchers to choose only from a few models supported 

in the generic simulation softwares and th a t in tu rn  questions the validity of 

most simulation results. This hypothesis has been reaffirmed in a recent survey 

conducted on the papers published in the proceedings of ACM MobiHoc sym­

posium between 2000 and 2005. The survey observes that the credibility of the 

simulation results has decreased while the use of simulation has increased. Part 

of this credibility crisis is clearly related to mobility model used to simulate the 

mobile nodes in the simulation system. We believe that the availability of a 

software to choose, visualize, and analyze mobility patterns before generating 

suitable mobility trace to use in the simulations, would resolve the mobility 

related concerns raised in the survey. The objective of this thesis is to develop 

such a software.

This thesis presents a mobility generator software called RMobiGen tha t 

we developed using Java. RMobiGen can be used to specify, visualize, analyze, 

and then generate mobility traces for various random mobility models. In
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addition to its rich functionality, the software has a user friendly interface 

which increases its appeal for wider use. We followed software engineering 

techniques and used UML diagrams during analysis and design phases of the 

development and then implemented using Java. We also surveyed the mobility 

models proposed in the literature and conducted various experiments on them 

using RMobiGen. During the experimentation, we confirmed the phenomena 

related to mobility models indicated in the literature and also encountered 

many new interesting behaviors and patterns.
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Chapter 1 

Introduction

1.1 B ackgr ound

Mobile computing is a technology which enables people to connect their comput­

ing and communication devices to networks whenever and wherever they go. The 

maturity of technology and the falling cost of equipments make the applications of 

mobile computing widely available and affordable to both business executives and 

common users. Most of the traditional wireless networks, such as cellular telephony, 

personal communication systems, wireless local area networks, etc., are supported 

by static infrastructure (also called backbone). The infrastructure consists of fixed 

base stations or access points, which are connected either through wires or by long 

range wireless transmissions to act as gateways and bridges in the network. However, 

setting up of a fixed infrastructure is not always viable in ad-hoc situations such as 

battlefield, emergency search, rescue operation, etc. In such situations, an infrastruc-
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tureless network known as Mobile Ad-hoc Network (MANET) is more attractive. A 

mobile ad-hoc network is a collection of mobile hosts with wireless interfaces forming 

a temporary network without the aid of any established infrastructure or centralized 

administration.

Research studies in mobile computing are carried out mainly through simulations 

because of their flexibility and cost effectiveness. Building a valid, credible, and 

appropriately detailed simulation model is crucial for conducting meaningful and ac­

curate simulation study. In most of these simulation based research studies, modeling 

mobility of participating nodes plays a crucial role. The underlying mobility pattern 

heavily influences the behavior of the system under investigation. Random mobility 

models are dominantly used to model the mobility patterns of the mobile nodes in 

the system. A typical random mobility model is characterized as follows. A collec­

tion of mobile nodes is initially placed within a simulation area and then each node 

moves randomly within that area. It is generally assumed that individual nodes move 

completely independent of each other, which makes the implementation of this class 

of movement models sufficiently simple.

Recently a survey has been conducted on the MANET research papers published in 

MobiHoc Symposiums proceedings between 2000 to 2005 [11]. In that, it is observed 

that 75% of the papers used simulations in their research and in that simulations 

38.5% of the papers used mobility in the study. There are many mobility models 

proposed in the literature, in that, the random mobility model called random waypoint 

is used dominantly (more than 73%) [11].

2
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1.1.1 M otivation

Although many simulation softwares are freely available in the Internet for mobile 

computing simulations, we found tha t there is no comprehensive software freely avail­

able for the researchers with the following characteristics: (i) support for a wide range 

of random mobility models, (ii) support for visualization and analysis of the mobility 

trace1 of the chosen model so that a suitable choice can be made, (iii) support for 

performance observations from the mobility trace to get more accurate insight about 

the system behavior, and (iv) support of a user friendly interface to effectively exploit 

the supports (i), (ii), and (iii). Lack of such a comprehensive software for generating 

mobility trace constrains the researchers to choose only from a few models supported 

in the generic simulation softwares and that in turn questions the validity of most 

simulation results. On the other hand, the availability of a comprehensive software to 

generate, analyze, and adjust various scenarios by suitably controlling the mobility 

parameters before applying it to the simulation would be extremely useful for the 

researchers in the mobile computing field.

The concern related to credibility of simulations has been reaffirmed in a recent 

survey showing that the credibility of the simulation results has decreased while the 

use of simulation has increased [11]. Part of this credibility crisis is clearly related 

to mobility model used to simulate the mobile nodes in the simulation system. The 

objective of this thesis is to develop a comprehensive mobility trace generator and

analysis software.

1The trails of mobile nodes.

3
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1.1.2 C on trib u tion s

This thesis presents the mobility generator software called R M obiG en tha t we de­

veloped using Java. RMobiGen can be used to specify, visualize, analyze, and then 

generate mobility traces for various random mobility models. In addition to its rich 

functionality, the software has a user friendly interface which increases its appeal for 

its wider use. We followed software engineering techniques and used UML diagrams 

during analysis and design phases of the development and then implemented using 

Java. We also surveyed the mobility models and some popular softwares supporting 

the mobility models presented in the literature. Finally, we conducted various ex­

periments on them using RMobiGen. During the experimentation, we confirmed the 

phenomena related to mobility models indicated in the literature and also encountered 

many new interesting behaviors and patterns.

We believe tha t our work would serve as a guideline for researchers to choose the 

right model for their simulations. Also, this thesis brings many key concepts and 

observations scattered in the literature together under a common classification along 

with some new insights.

1.1 .3  O rganization

The rest of the thesis is organized as follows. Chapter 2 reviews random mobility 

models and relevant performance metrics. Chapter 3 presents the development of 

RMobiGen and simulation experiments using RMobiGen for various mobility models 

are described in Chapter 4. The thesis is concluded in Chapter 5.

4
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Chapter 2

Random  M obility M odels

2.1 Introduction

Most simulations use random mobility models to test the protocols, algorithms, or 

systems under study. In this section, we first describe the random mobility models 

and the performance metrics used to analyse the models. Then we review the random 

mobility models presented in the literature and the popular software tools that have 

implemented some of these models.

Although random mobility models have been analyzed in the literature for complex 

subspaces like Fish Bowl, Torus, Swiss Flag, etc. [13], the practical implementations 

are mostly restricted to either 2-dimensional square or 2-dimensional rectangle for 

ad hoc networks. We consider 2-dimensional rectangle as the region of mobility in 

RMobiGen.

A random mobility model can be viewed as an alternating sequence of pause and a

5
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continuous movement. We call the continuous movement between any two consecutive 

pauses as a leg of the mobility. That is, pause and leg are the components of a random 

mobility and it acquires the randomness from the computation of one or both of these 

two components. Probability distributions are used to generate the random values 

for these components. Computing a value for a pause is simple and therefore the crux 

of constructing a mobility model is in computing the legs.

2.2 A C lassification

Although random mobility models appear to be simple, their behavior is less obvious, 

sometimes even counter-intuitive. In this section, we classify the random mobility 

models based on the way they compute leg and pause. There are five parameters, 

referred as leg parameters, tha t can be used to compute a leg: i) speed (S'), ii) direction 

(9), iii) distance (A), iv) time duration (T) and v) destination (D)  in the simulation 

region R. Based on the parameters used to compute the leg, random mobility models 

can be classified, into five categories: (1) random destination-speed model, (2) random 

destination-time model, (3) random direction-speed-time model, (4) random direction- 

speed-distance model, and (5) random direction-time-distance model.

We have implemented these five models in RMobiGen. In random direction mod­

els, it is possible for a mobile node to hit the boundary during a leg travel. So, the 

random direction models require some kind of boundary actions. We have imple­

mented the following three boundary actions suggested in the literature.

6
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1. Reflection: The boundary is treated as a mirror to reflect the node into the 

mobile region when it hits the boundary.

2. Wrap-around: The node instantaneously reappears at the corresponding posi­

tion on the opposite boundary.

3. Restart: The node pauses at the edge and then generates a new leg to move 

into the mobile region.

Three probability distributions, uniform, normal, and exponential are supported 

in RMobiGen to compute the parameters and the default distribution is uniform. 

Next we discuss the performance metrics used to analyze the mobility aspects.

2.3 Perform ance M etrics

Performance metrics used to analyze mobility models fall mainly into the following 

categories.

1. movement metrics: number of legs, leg distance, leg speed, leg duration, etc.

2. connectivity metrics: number of connections, connection duration, connection 

changes, connection availability, etc.

3. coverage metrics: node distribution, coverage, etc.

These metrics, if applicable and meaningful, may be computed for minimum, 

maximum, average, total, standard deviation, rate, ratio, etc., and also for individual,

7
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group, or system level. For example, connectivity may be analyzed between two nodes, 

between one and a group of nodes, or among all nodes. Movement metrics are easy 

to understand and straightforward to compute. Connectivity and coverage metrics 

require some elucidation.

Communication is a fundamental problem for most applications in any networked 

systems and achieving effective communication between the mobile nodes is challeng­

ing due to the dynamics involved in the network. In mobile networks, the nodes with 

transmission range form a dynamic graph called connectivity graph. The perfor­

mance of most of the communication protocols in this context is heavily influenced 

by the connectivity and the coverage of this graph. We introduce some terminology 

related to connectivity and coverage which will be used later in our experiments to 

compute performance metrics.

2.3.1 T erm inology

D efinition 2.1 A link is said to exist or be ON between two nodes i and j  if they 

are within each other’s transmission range. Link is a boolean function over time t 

and it is denoted by link(i, j , t ) .

Link is a communication channel and it can be generalized to path as follows.

D efinition 2.2 A path is said to exist or be ON between two nodes i and j  if there 

is a sequence of nodes and the links between consecutive nodes in the sequence are 

ON. Path is also a boolean function over time t and it is denoted by p a th (i,j,t) .

8
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The next definition is to capture the duration of path existence. The state of the 

path oscillates between ON and OFF.

D efinition 2.3 We define the interval between ON and immediate OFF state of a 

path between the nodes i and j  as a session. Session is also a boolean function on 

time t and it is denoted by session (i,j,t).

Path duration is an important metric for testing communication protocols. For 

example, some protocols referred as connection-oriented protocols require the path 

between source and destination to be ON throughout the communication.

Coverage is influenced by both mobility and transmission range of the nodes. 

Node distribution and the ratio of the area covered by transmission range to the total 

area are useful metrics to be analyzed for coverage. Since RMobiGen is a discrete 

time based simulator, the metrics are computed over discrete times.

2.4 R eview

This section reviews the random mobility models proposed in the literature and the 

simulation softwares which support some of these models.

2.4.1 M ob ility  M odels

Brownian Motion in science and random walk in mathematics are historically well 

known random mobility models. The mathematical description and analysis of Brow­

nian motion goes back at least to 1900 by Louis Bachelier in his PhD thesis and then

9
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later by Einstein in 1905. First we briefly review these two models.

In one dimensional random walk, imagine that a walker is moving randomly on 

the integers [38]. The walker starts at 0 and at every integer time n  the walker flips 

a coin and moves one step to the right if it comes up heads and one step to the 

left if it comes up tails. This is generalized to n-dimension as the walker is moving 

randomly on the n-dimensional integer grid. The model has both the time and space 

increments as 1. That is, the walker moves once every 1 time unit and when the 

walker moves, he or she moves a distance of 1 unit. The random walk model has the 

following interesting property [38].

Property 2.1 A random walk on a one or two dimensional surface returns to the 

origin with probability 1, and when n > 2 the probability of returning to the origin 

becomes strictly less than 1.

Brownian motion is a model of continuous random motion. One of the ways of 

defining Brownian motion is to look at it as a limit of a simple random walk where the 

time and space increments approach 0. That is, when the time and space increments 

are close to 0, the random walk appears as almost a continuous motion.

Next we discuss the random mobility models used in the mobile computing. In 

the cellular networks context, where the cells are used in the mobility model, a mobile 

node chooses one of its neighboring cells to move next. In such cases, the direction 

change is determined by a probability matrix. This is applicable to random walks 

on graphs also. In mobile ad hoc networks, there are two classes of models used

10
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with minor variations and they are referred as random direction/walk models and 

random waypoint models. We review these models next. In the review, for brevity 

of reference, we label the models.

R andom  W alk /D irection  M odels

This class of models are variations and in some cases generalizations of classical 

random walk models. We will review them next.

R D 1: This model is introduced in [35]. In this model, the movement of each 

mobile node in the coverage area is characterized by its velocity vector v = 

(v , 9), where v is the node’s speed and 6 is the direction, measured with respect 

to the positive x-axis. The position of the node and its velocity vector are 

updated periodically, by choosing the increments or decrements of 6 and v from 

the given ranges uniformly. The mobile node that exits the coverage area from 

one side, reenters the coverage area on the opposite side with the same velocity 

and same direction.

R D 2: This model referred as random walk model in [22] is described as follows. 

Each mobile node randomly chooses a direction in [0, 27r), a speed between 0 

and lOm/s and travels for a fixed period (60s). This process repeats.

R D 3: This model also referred as random walk model in [22] is described as 

follows. Each mobile node randomly chooses a direction in [0, 27r), a speed 

between 0 and lOm/s and travels a fixed number of steps (10 steps). This

11
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process repeats.

RDA: This model referred as Brownian Motion in [31] and renamed as ran­

dom direction model in [25] is described as follows. Each mobile node chooses a 

direction in [0, 27r) using uniform distribution, a speed value using normal dis­

tribution, and a time from fixed value or from exponential distribution. Then, 

the node travels in the chosen direction with the chosen speed for the chosen 

time period. The process repeats. When a node hits the boundary, it bounces 

off the simulation border with an angle determined by the incoming direction.

R D 5: This model a simplified version of R D i  and it is introduced in [24], In 

this model, each node chooses a direction and moves with a constant speed until 

it hits the boundary. When it hits the boundary, it will be reflected back into 

the coverage area immediately.

R D 6: This model is proposed and referred as random direction model in [26]. 

It is another simplified version of RDA with pause time and similar to R D 5 

without pause time. In this model, each node chooses a direction and a random 

speed to travel until it hits the boundary. When it hits the boundary, it pauses 

for a fixed time and then chooses a direction in [0 , t t ] to travel into the coverage 

area. This model was introduced in response to the density wave phenomenon 

observed in random waypoint model.

R D 7: This is a variation to RDQ called modified random direction introduced 

in [26], and in that instead of the nodes always hitting the boundary they may

12
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choose a random destination along the chosen direction.

R D 8: This variation called smooth random mobility model was introduced in 

[25]. It is a random direction model with the following additional feature called 

autocorrelation. In this model, (i) the speed is changed incrementally by the 

current acceleration of the mobile user, and also the direction change is smooth, 

and (ii) the movement patterns correlate the direction change with the speed 

change.

RD9: This model called random drunken mobility model is implemented in 

GloMoSim [9]. It is basically the simple random walk on grids, described in the 

beginning of this section. That is, if a node is at a position (x, y) then it can 

move to one of (x-1, y), (x+1, y), (x, y-1), and (x, y+1) as long as the new 

position is within the coverage region.

RD  10: This model, given in [23], is a generalization of RD9. In this model, the 

nodes can choose all possible directions.

RD11: This model, called Gauss-Markov model, was implemented in [32] as 

follows: at fixed intervals of time, movement occurs by updating the speed and 

direction of each mobile node. The next speed and direction is computed based 

on the current speed and direction.

Comparing these models with the models in our classification given in Section 

2.2, RD1, RD2, RD4, RD5, and R D 6 are random direction-speed-time models, and

13
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R D 8 and RD  11 are random direction-speed-time models with Markov property. The 

models R D 3 and R D 7 are random direction-speed-distance models. The models R D 9 

and RD  10 are random direction-time-distance models.

R andom  W aypoint M odels

Random waypoint model is the most popularly used model for simulations in MANET 

and it has been analyzed extensively in the literature.

RW1: This model is the first in random destination class, introduced in [37], 

and named as random waypoint in [34], In this model, each node pauses at 

its current location for a fixed period, which is called pause time, and then 

randomly chooses a new location and velocity from a uniform distribution to 

move to. This behavior is continued, alternatively pausing and moving to the 

new location in the coverage region. This model has been implemented in NS2 

[ ! ] ■

RW2: This variation is introduced and used in [28]. Instead of using a constant 

value, the pause time is also chosen from a uniform distribution.

R W 3: This variation called steady-state random waypoint model is introduced in 

[16]. In this model, the speed and destinations are generated from steady-state 

distributions derived in [14].

RW4: In [21], random waypoint model is generalized in such a way that the 

destination is chosen from uniform distribution and velocity and pause time are

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



chosen from arbitrary distributions.

Comparing these models with the models in our classification, the models R W 1 

to R W 4 are random destination-speed models.

In some models, particularly proposed in [20, 21], some of the nodes are chosen to 

be stationary in the beginning. Properties of random mobility models and a simple 

relationship to random waypoint model is given in [12].

2.4 .2  S im u lation  Softw ares S u p p ortin g  som e R an dom  M obil­

ity  M odels

Numerous simulation softwares are available tha t can be used for mobile computing 

simulations. Here we review only the widely used simulation softwares.

1. NS2: A discrete event simulator developed jointly by UCB, USC/ISI, and Xe­

rox targeted at research over fixed and wireless (local and satellite) networks [1]. 

It supports random waypoint mobility model.

2. GloM oSim: A scalable simulation environment for wireless and wired network 

systems with parallel discrete-event simulation capability provided by Parsec, 

a parallel programming language. GloMoSim is developed at UCLA[2] and it 

supports random waypoint, random-drunken, RPGM (group mobility) models.

3. QualNet: The commercial version of GloMoSim with enhanced features[3].

15
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4. O PNET: The largest, most comprehensive library of simulation models for the 

industry-level network modeling, analysis, and design[4], The OPNET wireless 

module provides the ability to model many aspects of wireless transmissions.

5. MATLAB: A general purpose mathematical software package for high per­

formance numerical computation and visualization^]. Simulation for wireless 

communications is supported by an integrated interactive simulation environ­

ment called Simulink.

6. SW AN: A configurable and scalable simulator designed purely for wireless 

network simulations [6]. It is organized as independent components that can be 

composed to form a complete wireless network or a sensor network configura­

tions. SWAN’s capabilities are similar to NS2 and GloMoSim, but is claimed to 

be able to simulate much larger networks. SWAN is developed at Dartmouth 

College and it supports random waypoint, Brownian, probwaypoint (random 

direction with predetermined probabilities to choosing same or different direc­

tions), Gauss-Markov, Boundless (RD1) models.

In the above list, QualNet, OPNET, and MATLAB are commercial softwares and 

the rest are free and open source softwares and hence widely used by the academic 

community. Among the open source softwares, NS2 is the most widely used one. 

Basically, there are two techniques to incorporate node mobility into the simulators: 

(i) simulators having internal support for mobility and (ii) mobility trace is generated 

externally using other softwares and is given as an input to the network simulator.

16
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For example, in NS2, the following command “$node_($i) random-motion s t a t e ” 

is specified in the simulation script. Specifying state 1 chooses the random mobility 

model built in NS2 and choosing state 0 either allows mobility trace from external or 

keeps the nodes stationary. For GloMoSim and SWAN, the user can choose a mobility 

model by specifying it in the simulation configuration file. The following tools were 

designed specifically to generate and/or visualize mobility models.

•  nam: A visualization tool comes with NS2 distribution allowing users to play­

back simulation output file generated after a simulation is over. It is originally 

designed for wired network and has the following drawbacks:

— animation is limited to only node movements

— no statistical insights provided

— animation is based on a simulation output file generated after the simu­

lation completion; this process can take lots of time and the output file 

generated can grow to be hundreds of megabytes.

• iN Spect: Another visualization and animation tool designed for NS2 simulator[10]. 

It takes a NS2 trace file as the input and displays nodes movement as well as 

wireless links. The transmissions are displayed with route lines and color coded 

nodes. Because it can animate a movement scenario without running NS2, com­

pared to nam, iNSpect is a better tool that can be utilized with minimal over­

head. However, other than visualization, no statistical analysis is supported.
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•  BonnM otion: It is a Java-based tool which generates movement scenarios of 

a set of random models on grids: random waypoint, M anhattanGrid, Gauss- 

Markov, and RPGM)[8]. Some statistical measures, such as relative mobility, 

average node degree, and average link duration, are provided.

•  setdest: This also comes with the NS2 distribution which generates mobility 

trace for random waypoint model.

•  mobgen: A tool developed by Tracy Camp’s research group on the steady state 

distribution for the random waypoint model.

2.5 Sum m ary

This Chapter, after presenting a comprehensive overview and a simple classification 

of various mobility models, provides a review of existing mobility models and the 

popular simulation softwares that implement some of the models.

As the number of nodes and movement duration increases, the mobility trace 

file will become overwhelmingly hard to analyze. This, in most cases, forces the 

researchers to adopt the mobility trace with little knowledge of what is exactly going 

on w ith in  th e  trace  before applying it to  th e  sim ulation. Therefore, it is desirable to  

have the mobility generator and analysis software independent of simulator itself. We 

present RMobiGen, designed to help the researchers to choose the mobility models 

suitable for their research, in next Chapter.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

RM obiG en

This Chapter presents the design and development of RMobiGen, a software of size 

about 8,000 lines Java code - the major contribution in this thesis. We used software 

engineering approach during the developmental stages of RMobiGen. We start with 

the requirement specification.

3.1 Specification

From the user’s point of view, when the user specifies a mobility model, RMobiGen 

has to generate the movement trace accordingly. More importantly, it should allow 

the users to analyze the generated mobility trace for various aspects before exporting 

it in a required format. This requires a multilevel user interface for the users to 

navigate the system conveniently, in specifying and analyzing the mobility models. 

To get the formal specification of the system, we start with use-case diagram.
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Constructing an use-case diagram involves the following three steps.

• Identification of the actors (the roles played by various users while accessing the 

system).

• Identification of the use-cases (the ways of using the system).

•  Setting the relationships between the actors and use-cases, and between the 

use-cases themselves.

The researcher, who is interested in using RMobiGen to analyze and generate 

mobility trace, is the only actor in the system. The main use-cases are:

• Generating the mobility trace,

•  Analyzing and visualizing various scenarios from the trace, and

• Exporting the trace to NS2 format.

Since the pauses can be extracted from the start and end times of the legs, the 

mobility trace of a node can be considered as a sequence of legs. The mobility trace 

for all the nodes is the collection of the mobility traces of the individual nodes, as 

shown in Figure 3.1.

Generating the mobility trace includes generating the mobility traces from the 

five random mobility models discussed in the previous Chapter. Visualization and 

analysis of the mobility trace include, visual analysis and computing statistical metrics 

for movement, connectivity, and coverage aspects, discussed in Chapter 2. Adding 

together all these use-cases, we get the use-case diagram given in Figure 3.2.
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Figure 3.1: Internal Structure of Execution Trace

Next we present the higher level architecture and subsequently explain the design 

of its components.

3.2 A rchitecture

Based on the use case diagram, in a higher level, RMobiGen can be constructed by 

three main components.

• Mobility Trace Generator: Responsible for generating the mobility trace.

•  Mobility Trace Manager: Responsible for extracting various statistical insights 

and providing visualizations.

•  Mobility Trace Exporter: Responsible for converting the mobility trace into NS2 

format explained in Chapter 2.
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Figure 3.2: Usecase Diagram

Figure 3.3 illustrates the basic architecture.

3.3 Class Diagram

Class diagram depicts the structural aspects of the system. A class essentially has 

three logical components: data attributes, operations that involve services from other 

classes, and operations to access the member attributes of the class. Identifying 

classes is an iterative process. Based on the insights we obtained from the above 

analysis, the following main classes are identified for RMobiGen.

• User specifications (Parameter)

•  Mobility Trace Generator (MobilityGenerator, RandomNumberGenerator, LegGen-
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Figure 3.3: RMobiGen Architecture

erator)

• Mobility Trace Manager (MetricGenerator, Visualizer)

• Mobility Trace Exporter (TraceExporter)

The class diagram illustrating the classes and their relationships is given in Figure

3.4.
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•KndividualTraceO: void 
-t-animateO: void

Figure 3.4: Class Diagram

3.4 M odeling K ey O perations

In this section, we present some key operations implemented in RMobiGen. Building 

interface is a complex task and we used Java Swing and AWT package with the help of 

JBuilder IDE. Here, we present some selected operations of mobility trace generation 

and performance metrics computation.

3.4.1 Trace G en eration

The trace generator uses the event-driven method to build the mobility trace for each 

node as follows.
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1. Set simulation clock value to 0.

2. Compute the leg parameter values according to the input specification.

3. Set the leg start time to simulation clock value and leg end time to simulation 

clock value +  leg travel time.

4. Set simulation clock value to leg end time +  pause time.

5. If simulation clock value < simulation end time, then go to step 2.

Leg parameters are sampled based on its range and the probability distribution 

type using the RandomNumberGenerator. sample () operation. The different versions 

of genNextRandomLegO operation can be described in terms of different mobility 

models as follows:

1. Random destination-speed model: Sample a new destination, a new speed, and 

a new pause time.

2. Random destination-time model: Sample a new destination, a new time dura­

tion, and a new pause time.

3. Random direction-speed-distance model: Sample a new direction, a new speed, 

a new distance, a new pause time.

4. Random direction-speed-time model: Sample a new direction, a new speed, a 

new time duration, and a new pause time.
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5. Random direction-time-distance model: Sample a new direction, a new distance, 

a new time duration, and a new pause time.

3.4 .2  P erform ance M etrics C om p u tation

Performance metrics are extracted from the mobility trace by the M etricsG enerator.

It uses time-step based technique to collect data. The time-step based data collection 

works as follows.

1. Set simulation clock value to 0.

2. Collect data from the legs whose time matches the simulation clock value.

3. Increment simulation clock time by a fixed unit.

4. If simulation clock value < simulation end time, then go to step 2.

The computation from the collected data may be updated as soon as the data is 

collected for that time step or computed at the end.

Individual metrics are collected by traversing through the in d iv id u a lT race  list 

at a node and the system metrics can be obtained by iterating through all the 

in d iv idualT race  lists. To compute the connectivity metrics, a series of “snapshots” 

of the connectivity graph is taken once for every time step using the in s ta n tP o s i tio n O  

operation.
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Figure 3.11: Snapshot subpanel Figure 3.12: Export to NS subpanel

3.4 .3  U ser Interface

Here, we present snapshots of the RMobiGen graphical user interface. User inputs 

the specifications at general scenario setting panel and leg parameter setting panel 

demonstrated in figure 3.5 and 3.6 respectively. In the former case, the user specifies 

simulation settings such as duration, warm-up time, the size of the simulation region, 

the number of mobile nodes. In the latter case, the user specifies the leg parame­

ters. After the specifications are entered, the user clicks the OK button to generate 

the mobility trace. A panel will pop up to indicate the success of the generation 

(figure 3.7). By clicking the OK button, the user can see the performance metrics 

and visualize the scenario in the post-generation panel. User can navigate through 

the subpanels by clicking on tabs. The contents presented at each subpanel can be 

described in terms of the tab:

1. Individual Stat subpanel (figure 3.8): Presents performance metrics of indi­

vidual nodes.
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2. Scenario Stat subpanel (figure 3.9): Provides statistical summary of over all 

nodes.

3. A nim ation subpanel (figure 3.10): Traces animation.

4. Snapshot subpanel (figure 3.11): Displays nodes topology at any instant.

5. Export to  NS subpanel (figure 3.7): Converts the mobility trace into NS 

format and displays.

3.5 Sum m ary

In this Chapter we presented the analysis, design, and implementation of RMobi­

Gen. Also, we explained how RMobiGen can be used to generate mobility trace, 

visualize various performance and behavioral aspects, and then export to NS2 for­

mat. In addition, thanks to the Java2 technology, MobiGen has been made avail­

able as a Java Applet hence it can be conveniently accessed through Internet (url: 

w eb.unbc.ca/~cuix/rm obigen) without the need for installation. In the next Chap­

ter, we discuss the experiments that we conducted for various mobility models using 

RMobiGen.
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Chapter 4

Sim ulation Study

Numerous experiments can be conducted using RMobiGen by varying the mobility 

models, the probability distributions, the size of the simulation area, etc., and we 

conducted many such experiments during the development of RMobiGen to confirm 

its correctness. This Chapter presents only a selected set of simulation experiments 

conducted using RMobiGen mainly to study the movement, the connectivity, and the 

coverage metrics. The results we obtained from our experiments confirm and, in some 

cases, refine the past observations about random mobility models.

We will discuss movement, connectivity, and coverage in separate sections. In 

each section, we start with the analysis of main observation(s) made in the literature 

related to tha t section. Then we present other related observations from our exper­

iments using RMobiGen. Since the random waypoint model is used dominantly in 

simulations, most observations are related to the random waypoint model.
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4.1 E xperim ental Setup

Unless otherwise mentioned, the following are the default values used for the input 

parameters.

•  Size of the simulation area - 1000 by 1000 meters.

•  Speed range - [0.01, 20], in meters per second.

• Transmission range - 250 meters. (Not relevant for node movement and distri­

bution analysis).

•  Distance range - [0.01,1414], in meters. (1414 is the diagonal length of 1000 x 

1000).

• Time range - [1,100], in seconds.

• direction range - [0,359], in degrees.

The number of nodes and simulation duration used vary from experiment to ex­

periment.

4.2 M ovem ent A nalysis

We start with a notorious observation regarding nodal speed in random waypoint 

model.
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Observation 4.1 In random waypoint model, the average nodal speed consistently 

decreases over time, and therefore should not be directly used for simulation [18] 

(speed decayj.

This phenomenon is true for any model which has the possibility of choosing a 

speed close to zero to complete a leg travel without specified time bound. When 

a node chooses a speed closer to zero, it will take infinitely long time for that leg 

travel. During this long period, it is quite possible that some other nodes also might 

choose speeds close to zero and that will reduce the number of nodes moving with the 

speed above average. From Figure 4.1, we can observe the speed decay for the models 

involving speed as a parameter: destination-speed and direction-speed models, when 

the speed is from uniform distribution.

The speed decay problem can be avoided directly by not letting any node to choose 

a speed less than a threshold value or simply choosing the distribution function for 

the speed as normal. The comparison of using normal and uniform distributions for 

destination-speed and direction speed models is shown in Figure 4.2, where the speed 

chosen from normal distribution has no speed decay and the average nodal speed is 

close to the actual average.

Experiments were conducted to observe the number of legs performed for destination- 

speed and direction-speed-time models for both uniform (Figures 4.3 & 4.4) and nor­

mal (Figures 4.5 & 4.6) distributions.

From Figures 4.3 & 4.4, for uniform distribution on speed, we can observe that 

a considerable number of nodes are stuck with only one leg while some other nodes
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Figure 4.1: Uniform Speed Figure 4.2: Normal and Uniform Speeds

MilkUi
Figure 4.3: Destination-Speed Model Figure 4.4: Direction-speed-distance Model

can perform as many as 10 or above legs in 1000 seconds. For normal distributions, 

as shown in Figures 4.5 & 4.6, the variations are small and only a few nodes perform 

as low as 4 legs. This explains why the speed decay occurs.

We now summarize the techniques, from which one or more can be used to choose 

the speed of the nodes, in order to solve the speed decay problem.

1. Do not allow the nodes to choose their speed close to zero.

2. Allow the simulation to reach the steady state before collecting data.

3. Use stationary (or steady-state) distribution for speed.

4. Use normal distribution for choosing the speed.
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Figure 4.5: Destination-Speed Model Figure 4.6: Direction-speed-distance Model

The observation related to direction and speed changes reported in the literature 

is the following.

Observation 4.2 It has been criticized by Hong et al. in [SO] that many researchers 

use a mobility model where the new choice for speed v and direction 6 is not correlated 

to previous values (such as in the random waypoint model). This may cause unrealistic 

movement behavior with sudden speed and sharp turnings/£5/.

After presenting this observation, the authors suggested a random direction model 

with the next direction and speed correlated respectively with current direction and 

speed. We implemented another random direction model where the the next direction 

is chosen with some offset to current direction and the offset is derived from normal 

d istrib u tio n  in th e  range -180 to  180. T he m ovem ent observed is shown in F igure 4.8, 

which is smoother compared to the movement of the same model shown in Figure 4.7 

where the offset is chosen from uniform distribution.

The following experiments were conducted to analyze the number of leg move­

ments, the average leg length, the average leg length ratio to the diagonal, and the
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Figure 4.7: Uniform Direction Figure 4.8: Normal Direction

average of total distance traveled. The experiments are conducted for 1000 nodes for 

the duration of 500 seconds. The results are presented in Figures 4.9 to 4.12.

Maximum Speed (m/s)

■  destination-speed Qdirection-speed-distance □direction-S:

M M i
10 20 30 40 50

Maximum Speed (m/s)

[■destination-speed pdirection-speed-distance □  direction-speed-time |

Figure 4.9: Number of Legs Figure 4.10: Average Leg Length

From Figures 4.9 to 4.12, we can make the following observations.

e Average number of legs traveled increases as the speed increases for destination- 

speed and direction-speed-distance models, whereas, the average does not change 

for direction-speed-time model. It is easy to see that change in speed, without 

proportional change in time, will not affect the number of legs traveled. How­

ever, it may increase the total distance traveled.
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• The average leg length is not affected by change in speed in the destination- 

speed and direction-speed-distance models, whereas, the average leg length is 

proportional to the speed in direction-speed-time model.

•  The average distance traveled increases proportionately to speed for all three 

models: destination-speed, direction-speed-distance, and direction-speed-time 

models.

•  The ratio between the average leg length and the diagonal of the simulation 

area appears to be constant for random waypoint model.

4.3 Coverage A nalysis

The objective in this section is to study how the nodes spread in the simulation 

region during the experiments. To compute this, the region is divided into small cells 

of equal size (10 by 10) and the nodes are counted inside each cell. Initially, 1000 

nodes are uniformly placed inside the region. After the nodes move for 2000 seconds,
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a snapshot of the positions of the nodes is taken and the number of nodes at each cell 

is counted for their spatial distribution.

We start with another popularly referred observation for random waypoint model 

relating to coverage aspect.

Observation 4.3 An inherent characteristics of random waypoint model is that the 

nodes converge in the center of the area, and then disperse, and then re-converge, 

etc., resulting in density waves [26].

Since the destinations in random waypoint (destination-speed in our classifica­

tion) are chosen uniformly from the simulation region, the clustering of nodes in the 

center is intuitive tha t there is a higher probability that the nodes will travel to 

or travel through the center region. However, we did not observe consistent density 

waves during our experimentation. The center clustering phenomenon observed in the 

destination-speed model is given in Figures 4.13 and for the destination-time model 

is given in Figures 4.14. Both models have similar spatial distributions as expected.

In the direction-speed models, the distributions are similar and not center clus­

tered. However, instead of being in the center, the nodes cluster along the boundary 

region when the boundary action is restart (RS). For the cases of reflection (RF) and 

reenter, the nodes are distributed uniformly for the random direction models. It is 

easy to observe that reflection and restart actions have the same the effect on the 

nodes distribution in these models. The difference is that, in reflection action, the 

node is reflected from the same boundary and, in case of reenter action, the node
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Figure 4.13: Destination-speed Figure 4.14: Destination-time

enters from the opposite boundary. In case of restart action, since the nodes pause at 

the boundary, the clustering occurs at the boundary. The coverage for the random 

direction models with reflection as the boundary action are shown in Figures 4.15, 

4.17, & 4.19, and the coverage for the random direction models with restart as the 

boundary action are given in Figures 4.16, 4.18, & 4.20.

Figure 4.15: Direction-speed-distance (RF) Figure 4.16: Direction-speed-distance (RS) 

Center clustering, boundary clustering, or completely uniform are not realistic
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Figure 4.17: Direction-speed-time (RF) Figure 4.18: Direction-speed-time (RS)
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Figure 4.19: Direction-distance-time (RF) Figure 4.20: Direction-distance-time (RS)

situations in most cases. In many cases, (i) it is common that more nodes stay in the 

inner region compared to the boundary regions at any instance and (ii) the spatial 

distribution is generally less uniform. To achieve these, we developed a mobility 

model in which the next position is chosen in the neighborhood of current position.

We call this model as M arkov-destination model. We simulated this model using 

RMobiGen and we observed that it does not have the clustering phenomenon either 

in the center or along the boundary, as shown in Figures 4.21 h  4.22. In Figure 4.21
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the destination is chosen within a rectangular neighborhood of size \th. of the mobility 

region and in Figure 4.22 the destination is chosen within a rectangular neighborhood 

of size ~th of the mobility region.

Figure 4.21: Markov-Destination ( |)  Figure 4.22: Markov-Destination ( |)

4.4 C onnectiv ity  A nalysis

For connectivity analysis, we mainly study two metrics: the connection changes and 

the session duration defined in Chapter 2. Three experiments were conducted by 

changing the transmission range, the speed, and the size of the simulation region. 

For each experiment, 16 nodes were simulated for 500 seconds. The observations are 

presented in Figures 4.23 & 4.24 by varying transmission range, in Figures 4.25 & 

4.26 by varying speed, and in Figures 4.27 & 4.28 by varying size of the simulation 

regions.

From Figures 4.23 to 4.28, we make the following observations.

•  The change in connectivity is small when the range is small (hardly get con-
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nected), or the range is high (often connected). The change in connectivity is 

high when the range is medium.

• The change in connectivity is small when the simulation area size is small, or 

the size is high. The change in connectivity is high when the size is medium.

• The change in connectivity increases as the speed increases.

• The average session duration increases as the transmission range increases and 

decreases as the size of the simulation region increases or as the speed increases.

The connectivity metrics will be useful when studying communication protocols 

using these models.
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4.5 Im plem entation  C om plexity

Random waypoint is the most popular model heavily used for simulations. The main 

reason, in addition to its support in NS2, is stated in the literature as follows.

A ssertion 4.1 Random waypoint is a simple model that is easy to analyze and im­

plement. This has, probably, been the main reason for the widespread use of this model 

for simulations [22],

The assertion is true only for the particular case where the mobility region is an n- 

dimensional rectangle with sides aligned to coordinate axes. It loses its simplicity even 

for rectangles if the sides are not aligned with the coordinate axes. Also, implementing 

random direction models is not terribly complex compared to the implementation of 

random waypoint model. So the researchers should not hesitate to consider using 

other random mobility models if they are more relevant for their study.
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4.6 Sum m ary

In this Chapter, we presented a selected set of experiments using RMobiGen on 

Random mobility models. The experiments clearly illustrate the variations and their 

impact on the dynamics of the mobility models. Also, our experiments confirm some 

of the widely observed phenomena and presents some new observations.
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Chapter 5

Summary and Future Directions

5.1 Sum m ary

In recent times, mobile computing has received increasing attention from the research 

community. Also, many applications based on mobile networks will be realized in the 

near future. Research studies in mobile computing are carried out mainly through 

simulations due to its flexibility and cost effectiveness. In most of these simulation 

based research studies, modeling the mobility of participating nodes plays a crucial 

role. This thesis deals with mobility related issues.

The contributions in this are manyfold: First we presented a comprehensive 

overview of random mobility models and a simple classification. Next, the exist­

ing random mobility models and the popular softwares that support some of these 

models were presented. Then the design and implementation of RMobiGen, which 

are the major contributions of this thesis, were presented. We followed software engi-
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neering techniques and used UML diagrams during analysis and design phases of the 

development and then implemented using Java. RMobiGen can be used to generate, 

analyze, and adjust various scenarios by suitably controlling the mobility parame­

ters before applying it to the simulation. Finally, we conducted an extensive set of 

experiments to analyze various characteristics of random mobility models.

We believe that our work and the insights we presented from our experiments on 

random mobility models would serve as guidelines for researchers to choose the right 

model for their simulations.

5.2 Future D irections

There are many directions in which the work presented in this thesis can be expanded. 

We outline some of them next.

•  RMobiGen assumes the mobility region as 2-dimensional rectangle. It can be 

extended to accommodate other geometric regions.

• The mobility models can be extended to the regions with obstacles.

• Also, the models can be further extended to the regions with attraction points, 

introduced in[17], to create more realistic mobility patterns.
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