
Design And Implementation Of Virtual Network Testbeds
For Routing Protocols

Julius A. Bankole

BSc., University of Ibadan, (Nigeria), 1998
MSc., Beijing University of Posts & Telecommunications, (China), 2003

Project Report Submitted In Partial Fulfillment

Of The Requirements For The Degree Of

Master Of Science

in

Mathematical, Computer, And Physical Sciences

(Computer Science)

UNIVERSITY of NORTHERN
BRITISH COLUMBIA

LffiRARY

I·'
. Prince George, B.C.

The University Of Northern British Columbia

April 2009

©Julius A. Bankole, 2009

Abstract

In this project, we present the design and implementation of virtual network test beds

for studying routing changes. A virtual network testbed is a computer network that

is completely created in software, while routing changes directly impact on the relia-

bility and the reachability information of the network. We used testbeds to emulate

a small and a large-scale network on a single Linux machine. These emulated net-

works allow the study of network behavior and operations which are examined using

two routing protocols: Routing Information Protocol (RIP) and Open Shortest Path

First (OSPF). We implemented a fifteen-node network to study RIP , and a model of

the GEANT network to examine OSPF in virtual network testbeds. Each testbed repre-

sents an autonomous system (AS) or an intra-domain environment. Therefore, these

environments provided us with the opportunit ies to evaluate routing changes in an

AS. We used the testbeds to compare the routing of the original network with the

new routing of the missing links and routers to see what changes occur. The GEANT

network is the large-scale network used for investigations in this project. We then

used our emulation results of the large-scale network to compare with the simulation

work for the same network topology - the GEANT network, and confirmed that our

emulation studies also identified important links and routers in the same network.

ii

Acknowledgments

First of all, I give thanks to God, the Almighty. The one who was, who is, and who

is to come for preserving me throughout this academic period.

My sincere thanks and appreciation to my supervisor Dr. David Casperson for his

mentoring and guidance. I really appreciate his doggedness and willingness to defy

all odds and supervise me to completing this Masters' degree at UNBC. His patience,

dedication to duty and attention to details have really helped me to improve my

writing style. I am deeply indebted to his "touch of class".

I wish to thank members of my supervisory committee: Dr. Charles Brown and

Dr. Matt Reid for reviewing my project report and their invaluable remarks. They

were always there to provide me guidance and support. Their useful guidance, prompt

and constructive feedback have been of tremendous help to my training at UNBC.

Many thanks to Dr. Reid for helping me with technical assistance regarding experi-

mental processes and reporting.

Most importantly, I would like to thank my darling wife Abisola and kids - Temmy

and Tolu. Their love, support and belief in me never waned. They provided a

pillar of strength that nurtured the environment for me to complete this M.Sc. In

addition, I wish to extend gratitude to my family, friends and mentors for their help,

encouragements and prayers.

lll

Contents

Abstract

Acknowledgments

Table of Contents

List of Figures

Glossary

1 Introduction

1.1 Preamble

1.2 Motivations

1.3 Contributions

1.4 Overview of the project .

2 Background and Literature Review

2.1 Introduction

2.2 Virtualization technologies

2.3 UML-based virtual networks

2.4 Simulation versus emulation of networks

2.5 Routing in the Internet

2.5.1 Intra-AS routing: RIP

lV

ii

iii

IV

vii

ix

1

1

2

4

5

7

7

8

9

11

12

13

2.5.2 Intra-AS routing: OSPF .

2.5.3 Inter-AS routing: BGP .

2.6 Related works

3 Modelling RIP Routing

3.1 Introduction

3.2 Experimental setup

3.3 Modelling of a fifteen-node virtual network

3.3.1 Topology of the virtual network ..

3.3.2 Implementation and configuration with RIP

3.3.3 Validating the virtual network

3.4 Experiments on a fifteen-node network testbed .

3.4.1 Single-link failures with RIP .

3.4.2 Single-router failures with RIP

3.5 Conclusions

4 Modelling the Routing of an Autonomous System

4.1 Introduction

4.2 Modelling of the GEANT network

4.2.1 Topology of the GEANT network

4.2.2

4.2.3

Implementation and configuration with OSPF .

Validating a model of the GEANT network .

4.2.3.1 Testing the network reachability

4.2.3.2 Managing the routing information with OSPF

4.2.3.3 Tracing packets in the virtual GEANT network

4.3 Case studies in the virtual GEANT network

4.3.1 Single-link failures with OSPF . . .

v

14

14

15

17

17

19

19

20

21

23

26

26

29

32

36

37

37

38

40

42

43

43

44

46

47

4.3.2 Single-router failures with OSPF 50

4.4 Comparison of emulation and simulation results for the GEANT network 54

4.5 Conclusions . 56

5 Conclusions and Future Work

5.1 Project Summary

5.2 Conclusions

5.3 Future work

Bibliography

A The XML file for a test bed with RIP

A.l A fifteen-node virtual network testbed

B Configuration files for Zebra, RIP and vtysh

B.l zebra.conf

B.2 ripd.conf .

B.3 vtysh.conf

C The XML file for the virtual GEANT network

C.l A twenty-three node virtual network testbed

D Configuration files for Zebra, Ospfd and Vtysh

D.l zebra.conf .

D.2 Ospfd.conf .

D.3 vtysh.conf .

E Electronic version of my Project Report

Vl

58

58

60

62

63

66

66

74

75

76

76

77

78

92

93

94

95

96

List of Figures

2.1 The architecture of the UML [9] . 10

3.1 A fifteen-node network topology . 20

3.2 Commands for creating a virtual network for a fifteen-node topology. 22

3.3 Commands for releasing a network scenario for a fifteen-node topology. 23

3.4 Screen shot of a fifteen-node virtual network testbed

3.5

3.6

Commands for starting and stopping RIP protocols .

XML code for starting and stopping zebra and ripd dremons

3.7 An example of a telnet session with the ripd dremon.

3.8 Pinging from R1 to Host F

23

23

24

24

25

3.9 Case 1: Routing table for router R2 with full links - 19 routing entries 27

3.10 Case 2 - Routing table for R2 before network restabilized - 12 rout-

ing entries

3.11 Single link removal analysis for RIP

3.12 Routing table for the router-R5 with fully functional network.

Vll

28

29

31

3.13 Routing tables when the router-R3 was missing

3.14 Routing tables when the router-R1 was missing

3.15 Single router removal analysis for RIP

4.1 The GEANT backbone network: Courtesy of DANTE

4.2 A twenty-five node network topology configured with OSPF

4.3

4.4

Commands for creating virtual GEANT network

Commands for killing virtual GEANT network .

4.5 A screen shot of the virtual GEANT network testbed

4.6 Commands for starting and stopping the OSPF dremons

32

33

34

38

39

41

41

42

42

4. 7 XML code for starting and stopping the zebra and ospfd dremon . 42

4.8 Pinging from R5 to Host B

4.9 An example of OSPF routing table for R5 console .

4.10 Traceroute from R5 to Host B . .

4.11 Single link failure analysis for OSPF

4.12 Single router failure analysis for OSPF

Vlll

44

45

46

49

53

Glossary

Abbreviations, Acronyms

AS

BGP

C-BGP

cow
EGP

GEANT

IGP

ISP

OPNET

ICMP

OSPF

LA

RIP

SSFNET

TCP/IP

UML

VELNET

VNUML

WAN

XML

Autonomous System

Border Gateway Protocol

a BG P routing solver for large scale simulation of ASes

Copy-On-Write

Exterior Gateway Protocol

a pan-European computer network for research and education

Interior Gateway Protocol

Internet Service Provider

Optimized Network Engineering Tools

Internet Control Message Protocol

Open Shortest Path First

Local Area Network

Routing Information Protocol

Scalable Simulation Framework Network Models

Transmission Control Protocol/Internet Protocol

User Mode Linux

Virtual Environment for Learning Networking

Virtual Network User Mode Linux

Wide Area Network

The eXtensible Markup Language

IX

Chapter 1

Introduction

This project uses emulation techniques to investigate the impact of link and router

failures on routing changes of networks. In this chapter, we explain our motivations

for the study, discuss our responses to these motivations and provide an outline for

this project report.

1.1 Preamble

The phenomenal growth of the Internet has led to the deployment of many network

applications such as Voice or Video over IP (VoiP), electronic mail, Web browsing,

e-voting, and e-shopping, to name a few. While the Internet has been designed for a

best-effort service, many of these new applications and services require a better guar-

antee of services. End users may sometimes find the Internet service to be unreliable.

There are many factors leading to this poor performance, such as link bandwidth, the

efficiency of the application software, and robustness of the routing protocol. Rout-

ing protocols are a critical component of the Internet and their aim is to ensure that

there is efficient traffic flow from source to destination. In this project , we use a

1

virtualization tool to create testbeds and examine the routing changes of networks on

these testbeds. This routing investigation enables network operators and researchers

to gain further understanding of the routing protocols reactions to events such as

traffic re-distribution and routing instability in the network. Routing instability is

the rapid fluctuation of network reachability information: an important problem that

directly affects the service reliability of the Internet.

The Internet is a network of networks. It is made up of a collection of over 21,000

domains or Autonomous Systems (ASs) . An AS can be an Internet Service Provider

(ISP) , a university campus network, or a company network. An AS is made up of

a collection of routers that are interconnected. Previous research has focused on the

inter-connection of ASs and less attention has been paid to the intra-connection (i.e.,

intra-domain routing). In this project, we concentrate on intra-domain routing, and

use it to study routing changes in our testbeds. The complex nature of a physical

network often makes it difficult to carry out studies on how link and router changes

affect the distribution of traffic across the network. Hence, we use virtual networks

to emulate physical networks in this project.

This project investigates how to use virtual networks for studying routing changes in

complex network environments. We use an emulation method to model routing of ASs,

for a fifteen-node network and the GEANT network - a pan-European backbone that

connects Europe's national research and education networks. We study and evaluate

the impact of link and router failures versus routing changes in these networks.

1.2 Motivations

In this section, we explain why the study of intra-domain routing is important, and

what motivated us to carry out this particular research. There are four principal

2

motivations: cost, networking administration training, student experimentation, and

the possibility to offer particular practical advice.

Firstly, sometimes there is a need to quickly test a network configuration, e.g., a

firewall rule set, but setting up the configuration on real equipment is too time con-

suming (e.g., physically wiring and installing multiple operating systems), and very

expensive (e.g., multiple hosts and switches). We need a cheaper and more convenient

testbed that can be used for this test. Therefore, we need to design virtual networks;

and these networks can be used to carry out this test at little or no cost.

Secondly, students and network designers often need to obtain practical experience

by learning how to design, build and maintain computer networks. CISCO offers users

simulation software for this purpose, however, the experiences gained are restricted

to CISCO products only. This is insufficient for a thorough grasp of the expected

technical intricacies. In addition, network administration often involves activities

like network addressing, assignment of routing protocols and routing table configura-

tions. We provide a network emulation environment for conducting and testing these

activities.

Thirdly, a number of situations frequently arise that require the use of more than one

computer. Faculty and researchers often want to have extra full-fledged machines to

aid their teaching and research work. In communities with limited funding, such as

universities , the possibility of having as many full-fledged computer systems as nec-

essary to create real networks for experimentation purposes is less likely. Therefore,

creating effective virtual network testbeds will be a suitable alternative to assist fac-

ulty, researchers and other users with limited budgets, instead of investing in physical

equipment.

Finally, investigating the problem of intra-domain routing in any network is very

3

important. This is because many of the new applications and services on the Internet

often demand service reliability. We use an emulation method to model a real network

and evaluate the impact of changes to links and routers on the traffic distribution.

In doing this, our results identify which links or routers in this network model need

to be maintained. We also compare the results obtained from both simulation and

emulation models of our selected network.

In the next section, we give a summary of how we address these motivations.

1.3 Contributions

In response to our motivations and the need for examining networks' routing changes,

we develop two virtual networks. We use these virtual network testbeds to implement

two dynamic routing protocols: Routing Information Protocol (RIP) and Open Short-

est Path First (OSPF). We also provide sufficient documentation in this project report

to allow prospective students and network administrators to make use of the models.

In this project report , we aim to make the following contributions:

• The first contribution of this project is to develop virtual network testbeds that

can be used and re-configured by students and network administrators. These

testbeds will enhance learning and testing of network applications and services

without requiring a real network. The designed virtual network testbeds can

serve as working templates with which students can practise and modify for

specific network configurations.

• The second contribution of this project is to implement a realistic network

topology by emulation of the GEANT network and by viewing it as an AS. The

network topology of GEANT is taken from the work in [4, 21]. Next, we present the

4

techniques of how to configure routers and use the UML-utilities to implement the

switches and routers on the virtual network testbed in our specification scripts.

See Appendix A and Appendix C for these scripts.

• The third contribution of this project is a demonstration of a practical configu-

ration of the routing protocol- RIP. We create and use a virtual network testbed

to configure an RIP dcemon from Quagga [11]. We use the RI P dcemon to show

how to detect the link failures , understand path selection using hop count, and

dynamically adjust the routes.

• The fourth contribution of this project is to use case studies for investigating

intra-domain routing using the OSPF dcemon from [11]. We model our network

after the network used in a similar work conducted in [20, 21] . The first case

study provides the measurements of link failures against the total routing cost

at the head nodes of the links while the second provides the measurements

of router failures against total routing cost in the GEANT network. These case

studies provide us with a better understanding of the links whose loss produce

higher routing cost and the routers whose loss yields the largest total routing

costs. This project report includes details of our configuration experiences,

networking administration, and virtual networking experiments.

1.4 Overview of the project

The rest of the project report is organized as follows. Chapter 2 examines a summary

of techniques, background information and literature review of related works that are

used in this project. Chapter 3 provides reports on modelling of a simple network

that is configured with the RIP routing protocol and discusses experimental results.

In Chapter 4, we model the GEANT network, conduct two case studies on this network,

5

and provide the experimental results of our findings . Lastly, Chapter 5 presents the

project report summary, our conclusions and a discussion of future work.

6

Chapter 2

Background and Literature Review

In this chapter, we provide background information, summary of techniques and lit-

erature review of related works that are necessary for this project. In Section 2.2, we

give an overview of virtualization technologies and briefly discuss how network virtu-

alization techniques have been used successfully in the teaching context. Section 2.3

contains the overview of the principles of User Mode Linux (UML) for designing virtual

networks. Section 2.4 compares benefits and drawbacks of simulation and emulation

techniques. In Section 2.5, we discuss different types of routing protocols that are

connected to this project. Finally, Section 2.6 reviews previous research work that

has been done using network virtualization techniques.

2.1 Introduction

We need to understand how virtualization technologies can support our investigations

of link and router failures in the network. Virtualization techniques are often used

to combine hardware and software resources, and are used to model a network for

experimental purposes in this project. In addition to virtualization techniques, the

7

principles of UML enable us to model a complex network. We make a comparison of

emulation and simulation techniques, and present the major difference between the

two techniques. We limit the focus of our virtualization techniques to network virtual-

ization, and use this concept to investigate the performance of emulation techniques.

The emulation techniques enable us to study routing changes when there are link and

router failures in any network.

2.2 Virtualization technologies

In this section, we briefly explain the concept of virtualization in the context of com-

puting. We also provide some examples of previous work using network virtualization

techniques.

Virtualization is the term used to describe the abstraction of computer resources,

and is often defined as the technique for the mapping of virtual resources to real re-

sources. The user of the virtual resources is partially, or sometimes totally, detached

from the real resources [32] . Virtualization technology hides the physical characteris-

tics of the computing resources from the way that other systems, applications or end

users communicate with those resources. Examples of various types of virtualization

technologies include the following: virtual memory, redundant array of independent

disks, network virtualization and storage virtualization. More on virtualization tech-

niques can be reviewed in [2] and [32] . In this project, we limit our discussion of

virtualization to network virtualization only.

Network virtualization is the technique of combining hardware and software network

resources and network functionality into a single, software-based administrative en-

tity: this is sometimes referred to as a virtual network. Network virtualization often

includes platform virtualization, and occasionally combines with resource virtual-

8

ization. Some previous research uses network virtualization as a tool for teaching

computer networks and system administration [13, 14]. In [13, 14], Kneale et al.

develop a tool called VELNET, which is a virtual environment for learning networking.

VELNET is made up of one or more host machines and operating systems, commercial

virtual machine software, virtual machines and their operating systems, and a vir-

tual network connecting the virtual machines and remote desktop display software.

Yuichiro et al. in [26] design a system that offers students a learning environment

for LAN construction and troubleshooting. Their system reproduces virtual networks

that consist of about ten Linux servers, clients, routers and switching hubs on one

physical machine.

2.3 UML-based virtual networks

In this section, we explain principles and applications of UML in the context of net-

working. This UML technique is described as a port of a Linux kernel that allows

running one or more instances of a complete Linux environment [17]. These instances

are run as user-level processes on a physical host machine.

These user-level processes provide us with the virtualization of machines, routers and

other nodes on a network. Within the UML process, an instance or a process of that

UML communicates with the UML kernel which in turn talks with the host kernel in

the same way that any user or application would. This UML technique allows a Linux

kernel to be run in user space and possesses all of the features of a complete Linux

machine. With UML, additional virtual machines or nodes can be created using the

hardware of a single Linux machine. Therefore, it is possible to carry out multiple

tasks and experiments on these virtual machines using a single computer system.

Figure 2.1 shows the description of process space using UML approach.

9

•• Virtual machine
(UML processt

Virtual machine
(UML process)

Figure 2.1 : The architecture of the UML [9]

A virtualization tool, Virtual Networking User Mode Linux (VNUML) [8] allows us to

easily create simple and complex network emulation scenarios based on UML virtual-

ization software. The Linux machines that run over the host using UML virtualization

software are called "virtual machines" or simply "UMLs".

In UML, a filesystem uses the copy-on-write (COW) technique to save disk space and to

share a single filesystem when a number of virtual machines are run. This technique,

COW, allows multiple UML processes/nodes to share a host file as a filesystem without

interfering with each other's read-write operations [5]. In this mechanism, COW, the

data objects are not copied until a write is made. When writing occurs, the data object

is copied and non-shared afterward. Each process stores changes to the filesystem

inside its own COW file. This technique allows the filesystem to be shared among all

processes or virtual machines, it is also possible to revert to the original filesystem

contents by simply deleting a COW file in case problems occur. Our virtualization

tool, VNUML, uses COW to perform write functions while it uses the host filesystem as

read-only. This COW mechanism is used in all UML-based networks in order to reduce

frequent access to host memory.

With the aid of UML, virtual networks of different sizes can be created [5]. This UML

technique is used to design and test networks of complex topologies and different

configurations. Therefore, network designers can use the principles of UML to model

10

virtual networks, and implement new communication protocols on these virtual net-

works.

2.4 Simulation versus emulation of networks

In this section, we compare experimental techniques of simulation and emulation for

any network. We discuss benefits and drawbacks of these techniques.

Network designers often employ three experimental techniques in the design and val-

idation of new and existing networking ideas. These techniques are: simulation,

emulation and live network testing. All of these techniques have their strengths and

weaknesses, and should not be viewed as competing methods.

Network simulation usually allows a repeatable and controlled environment for net-

work experimentation. The simulation environments make it possible to predict out-

comes of running a set of network devices on a complex network by using an internal

model that is specific to the simulator. The set of initial parameters assumed for

the simulators determines the model behavior of each simulation. Such environments

often include simulation tools such as OPNET [27], ns2 [6, 7] and SSFNet [3]. The

fundamental drawback with simulators is that simulated devices often have limited

functionalities, and the predicted behavior may not be close to that of the real system.

Network emulation reproduces features and the behavior of the real network devices.

The emulation environment is made up of the software and hardware platform that

provides the benefit of testing the same pieces of software that will be used on real

devices. In sharp contrast to simulation systems, emulators allow the network being

tested to undergo the same packet exchanges and state changes that would occur in

the real world. Simulators, on the other hand, are concerned with the abstract model

11

of the system being simulated and are often used to evaluate the performance of the

protocols and algorithms.

A fundamental difference between simulation and emulation is that while the former

runs in simulated time; the latter must run in real time, showing the close resemblance

of the real world devices. The emulation environments closely reproduce the features

and behaviors of real world devices. In an emulation environment, the network that

is being tested often undergoes the same packet exchanges and state changes that

usually occur in real world.

2.5 Routing in the Internet

In Section 2.3, we discussed how we can use UML to create virtual networks. In this

section, we will briefly describe routing in the Internet and different types of routing

protocols to regulate packets' routes in a network.

Routing is the process of determining the paths or routes that packets take on their

trip from the source to the destination node. On the Internet, routing protocols are

used to select the end-to-end path taken by a datagram, or packet , between the source

and destination. In Chapter 1, we define the Internet as a collection of domains or

ASs. Each AS is a collection of routers that are under the same administrative and

technical control. An AS runs the same routing protocol among its multiple subnets.

A routing algorithm within an AS is called an Interior Gateway Protocol (IGP) while

an algorithm for routing between ASs is called an Exterior Gateway Protocol (EGP)

[10, 15, 19, 25, 30].

Routing protocols specify how routers communicate with each other and disseminate

information that allows them to select routes between any two nodes on a network.

12

Readers who are not familiar with routing protocols are encouraged to read [10, 15,

19, 25, 30].

2.5.1 Intra-AS routing: RIP

In this section, we explain one of the intra-AS protocols. The Routing Information

Protocol (RIP) is the earliest intra-AS routing protocol. This RIP protocol uses a

"hop" count as a cost metric, which is the term used to describe the number of

subnets traversed along the shortest path from the source router to the destination

subnet. The maximum cost of a path in RIP is fifteen. This number limits the use

of RIP to smaller ASs. This protocol, RIP , is a distance vector protocol based on the

Bell-Ford algorithm [10], and is based on a shortest path computation. A distance-

vector routing protocol requires that a router periodically inform its directly attached

neighbors of topology changes, and perform a routing calculation. The result of the

calculation is distributed back to the attached neighbors. The primary goal of this

protocol, like other intra-AS protocols, is to find the shortest path to the chosen

destination based on a selected metric.

Normally, each router has a RIP table often called a routing table. Routers use their

routing tables to decide the next hop to which they should forward a packet. The

routers configured with this protocol, RIP , exchange advertisements approximately

every thirty seconds. If a router fails to hear from its neighbor at least once every

180 seconds, that neighbor is considered to be no longer reachable; that is , it is

either the neighbor (router) has died or the link has gone down. When this occurs,

RIP modifies the local routing table and then propagates this information by sending

advertisements to neighboring routers that are still reachable.

13

2.5.2 Intra-AS routing: OSPF

Similar to the previous section, here we discuss another intra-AS protocol: Open

Shortest Path First (OSPF). This protocol is the successor to RIP, and was developed to

handle limitations of RIP. This routing protocol, OSPF uses cost as the routing metric,

and uses link-state information that is based on the Dijkstra least-cost algorithm [10].

This algorithm computes the shortest path to all subnets based on cost and selects

the source node as the root node for cost computation. The network administrator

assigns a cost to each link. The OSPF protocol floods the network with link state

advertisements (LSAs), unlike RIP where a node only exchanges information with its

neighbors. At periodic intervals, OSPF protocols use a "HELLO" message to check

whether the routers are operational or not. This protocol is also a dynamic routing

protocol.

Each router periodically sends an LSA across the network. This message is sent to

provide information on a router 's adjacencies or to update others when a router 's

state changes. By comparing adjacencies to link states, failed routers can be detected

quickly, and the network's topology can be updated appropriately. From the topolog-

ical database generated from LSAs, each router calculates a shortest-path tree, with

itself as root . The shortest-path tree, in turn, yields a routing table.

2.5.3 Inter-AS routing: BGP

Here, we briefly explain an inter-AS protocol. Border Gateway Protocol (BGP) is the

routing protocol for interconnecting different ASs. This protocol, BGP, is a path vector

protocol, and does not use traditional IGP metrics. It makes routing decisions based

on path, network policies and/ or rule sets. This BGP protocol maintains a table of

IP networks or "prefixes" which show network reachability among ASs. Because the

14

Internet is made up of a collection of ASs and it is used everywhere, BGP is critical to

the proper functioning of the Internet. This BGP protocol is the core routing protocol

of the Internet.

2.6 Related works

In this section, we present a review of some work on network virtualization. From

the literature [9, 16, 18, 22- 24, 28], some of the previous research concentrates on

providing the concepts and implementation methods of virtualization, while some

focus on producing commercial software.

Liu et al. [16] and Ham et al. [28] discuss the concepts and implementation approaches

for designing a virtual network testbed. Both [16] and [28] only provide good insight

regarding the concepts and implementation methods for virtualization without pro-

viding necessary hands-on learning experiences.

Massino uses an emulator called Netki t in his PhD thesis [22, 23] to study inter-

domain routing policies on a network. Mottola uses a virtualization approach in his

PhD thesis [18] to study simulation of mobile ad hoc networks. This approach is

used for testing publish-subscribe middleware on mobile ad-hoc networks. Steffen et

al. also use a UML-based network to set up an environment for automated software

regression tests [24]. Software regression tests are carried out before the release of

new official software to eliminate bugs during software development, hence Steffen

et al. design an automated testing framework for the regression tests. Similarly,

Galan et al. use virtualization techniques to design and implement an IP multimedia

subsystem testbed [9]. This testbed is used for development and functional validation

of multimedia services for next generation networks.

15

Previous work on network routing protocols for some ISPs can be found in [21, 29). In

[21), Quoitin et al. develop an open source routing solver, C-BGP. This is an efficient

solver for BGP and is used for exchanging routing information across domains in the

Internet. This solver can be used with large-scale topologies to predict the effect of

link and router failures in an AS. C-BGP is also used by ISP operators for conducting

case studies on the routing information collected in their network. C-BGP is used to

collect the BGP updates for the work on page 16 of [21) and in Section 2.5.9 of [20).

It is also used to study inter domain traffic engineering techniques and to model the

network of ISPs.

In [29), Watson et al. conduct an experimental study of an operational OSPF network

for a period of one year. This network is a mid-size regional ISP that is running

an intra-domain routing protocol, OSPF. The network is characterized by routing

instability, different traffic levels and changes in the routing updates. They find out

that the information from external routing protocols leads to significant levels of

instability within OSPF.

Clearly, there is a substantial interest in network virtualization for purposes that

range from testing new protocols, configuring networks, studying routing changes

and traffic distributions to experimenting with new network designs.

16

Chapter 3

Modelling RIP Routing

This chapter discusses the design, description of the implementation, and results of

our experimental studies with RIP on a fifteen-node virtual network testbed. In Sec-

tion 3.1, we present an overview, some background information, and the problem.

Section 3.3 describes how to model a network, explains its implementation and con-

figurations, and defines how to validate a virtual network. Section 3.4 consists of

our experimental studies and results. Section 3.5 contains the limitation of RIP and

conclusions drawn from our experimental studies.

3.1 Introduction

Network simulation and emulation have been indispensable tools for understanding

the performance of network systems. In this project , we focused on the use of emu-

lation testbeds for studying various types of networking environments. We designed

a testbed to demonstrate that emulation techniques produce reasonable results in a

small network. In our experiments, we tested the reliability of RIP to dynamically

learn and fill the routing table with a route to all subnets in the network. This feature

17

of RIP routing protocol allowed us to examine routing changes in the network caused

by link and router failures.

Routing changes affect the network reachability information, and are such an im-

portant problem that it directly affects the service reliability of AS. While much

research has been conducted on inter-domain routing, the study of intra-domain

routing has been quite limited. Inter-domain routing simply refers to the routing

of inter-connected networks, while intra-domain routing refers to the routing within

a network or an ISP. Most network operators do not have sufficient understanding of

this problem. Some network operators often complain that they do not know to what

extent intra-domain protocol can cause changes in their networks. There is a lack of

understanding of the causes of these routing changes because it is difficult to detect

in their live networks.

In our efforts to investigate this problem, we use an intra-domain protocol, RIP , to

determine how routing is performed within a virtual network testbed. We explained

briefly the concepts of intra-AS routing in Section 2.5.1.

In this chapter, our first goal is to use an emulation technique to design a fifteen-

node virtual network testbed. The second goal is to use a routing protocol, RIP, to

configure a small network and use this network to understand how a datagram or

packet efficiently travels from source to destination on the testbed. The third goal is

to use our virtual network testbed to investigate routing changes caused by link and

router failures.

Most especially, the purpose of this set of experiments is to determine how sensitive a

network is to link and router failures, which is critical to understanding the reliability

of a network.

18

3.2 Experimental setup

In this section, we describe hardware and software components of the computer sys-

tem that was used to design the virtual network testbed for this project. All the

experiments were performed on testbeds that are built on a TOSHIBA Satellite Pro

P300 notebook. This notebook is an Intel®Core, consists of a dual-processor P4250

running at 1.5GHz, has 32KB/32KB 11 Cache and 3MB 12 Cache. The RAM is

2GB DDR2 running at 667MHz and a 250.0 billion bytes 8-ATA disk.

The computer system is a dual-booting type with pre-installed Windows™Vista and

UBUNTU 7.10 operating systems. We modified a kernel of UBUNTU 7.10 by patch-

ing it with skas3 for better performance. Next, we installed VNUML 1 . 8 [8] on the

modified host kernel of UBUNTU 7.10 for easy creation, execution, and release of

virtual networking scenarios. The typical use of VNUML consists of: step 1 to create

the scenarios, step 2 to execute commands as many times as desired or needed, and

step 3 to release or destroy the scenarios. More information on the use of VNUML can

be obtained from [8].

3.3 Modelling of a fifteen-node virtual network

In this section, we explain necessary steps to model and test a virtual network. We

also discuss methodologies for implementing the topology of a virtual network testbed.

Finally, we validate this virtual network testbed by testing for network connectivity

on a RIP-configured testbed. This validation is done to verify whether or not RIP is

functioning properly on the testbed.

19

3.3.1 Topology of t he virtual network

We describe the topology of our virtual network testbed in this section. In order to

build a network or a virtual network, we found it useful to produce a detailed map

representing the network before proceeding to write the configuration files .

Firstly, we designed the topology of our virtual network to consist of a total of fifteen

nodes that include nine virtual routers, six host machines, and eighteen links or sub-

networks. Secondly, we assigned appropriate I P addresses to the routers and the

links, and subsequently proceeded to write configuration files for each router in the

network. We selected this network topology to demonstrate that emulation techniques

produce reasonable results in a small network where the expected results are known.

Figure 3.1 shows a detailed map of the implemented network topology.

Figure 3.1: A fifteen-node network topology

20

3.3.2 Implementation and configuration with RIP

Before we conducted our experiments for this project, there were two fundamental

tasks that we needed to carry out for preparing an enabling environment on a virtual

network testbed. The first task was to create the network, and the second task was to

configure each router in the network. In this section, we discuss an implementation

of the network topology described in Section 3.3.1 using VNUML , and describe how we

used VNUML to create networking scenarios. We also explain how we used Quagga to

configure each router in the networking scenarios with a dynamic routing protocol.

Quagga is open source, and is obtained from [11]. Finally, we set up and produced

a fifteen-node virtual network testbed that was configured with a dynamic routing

protocol, RIP. Below are the basic steps for the implementation and configuration of

the fifteen-node virtual network.

1. We installed the VNUML tool on the LINUX environment of the host machine. This

tool and the installation procedures can be downloaded from [8]. The VNUML

tool is designed to easily create simple and complex networking scenarios.

2. Next, we installed Quagga in the system-wide /etc/ directory of the host ma-

chine. Quagga is a routing software package that provides TCP / IP-based rout-

ing services and protocol dremons. A machine installed with Quagga served as

a dedicated router.

3. We encoded the network topology specified in Figure 3.1 in an XML file. The

purpose of this file was to include specifications for creating a fifteen-node virtual

network testbed. We ensured that the XML file specifications conformed to the

VNUML DTD that comes with the VNUML tool. Details of the XML specifications

are included in Appendix A.

4. We then created the VNUML session and individual machines by running the

21

commands in Figure 3.2. When we were finished with the networking scenario,

we killed the scenario processes by running the commands specified in Figure 3.3.

A screen shot of a fifteen-node virtual network testbed is shown in Figure 3.4.

Each of the windows or machines in Figure 3.4 represents a node on the virtual

network testbed.

5. The network created in step four had strictly local connectivity, but this par-

ticular network ignored the global network topology. This type of connectiv-

ity means that only adjacent routers could communicate with each other. To

globally connect the network, we then configured each router in the network

with RIP by creating these files: zebra. conf , ripd. conf and vtysh. conf in

/etc/quagga directory. These three configuration files were created and des-

ignated for each router. A sample of each configuration file for router, Rl, is

included in Appendix B. See Appendix B for more details.

6. We then started and stopped the RIP dremon by running commands as shown

in Figure 3.5. A piece of code from XML specifications for starting and stopping

the ripd dremon is shown in Figure 3.6. See the XML file in Appendix A for

more details. For the purpose of our experiments as described in Section 3.4, we

verified that each router could connect to the local host. We achieved this goal

by running the command, telnet localhost ripd, on each router to confirm

that a telnet session was possible from each router. The telnet session for the

router-Rl console is shown in Figure 3.7.

vnumlparser.pl -t /usr/share/vnuml/RIP15nodes.xml -v -u root

Figure 3.2: Commands for creating a virtual network for a fifteen-node topology.

22

vnumlparser.pl -d /usr/share/vnuml/RIP15nodes.xml -v

Figure 3.3: Command::5 for releasing a. network ::5cenario for a. fifteen-node topology.

Figure 3.4: Screen shot of a fifteen-node virtual network testbed

sudo vnumlparser.pl -x start@RIP15nodes.xml # Starting

sudo vnumlparser.pl -x stop©RIP15nodes.xml # Stopping

Figure 3.5: Commands for star ting and stopping RIP protocols

3.3.3 Validating the virtual network

The validation test is used to confirm that there is network connectivity in the vir-

tual network. ·without a routing protocol, a router knows neighbors or routes that

are directly connected to it. \Vhen we configured the testbed with the RIP routing

23

- --,

<filetree root="/etc/quagga" seq="start">R1</filetree>

<exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
<exec seq="start" type="verbatim">/usr/lib/quagga/ripd -d</exec>
<exec seq="stop" type="verbatim">killall zebra</exec>
<exec seq="stop" type="verbatim">killall ripd</exec>

Figure 3.6: XML code for starting and stopping zebra and ripd dremons

R1:\-# telnet localhost ripd
Trying 127.0.0.1 ...
Connected to localhost.
Escape character is '-] '.

Hello, this is Quagga (version 0.99.7).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

User Access Verification
Password:(zebra)

ripd>

Figure 3. 7: An example of a telnet session with the ripd dremon.

protocol, each router could obtain the routing information of distant neighbors. Each

router contains a RIP table known as a routing table. The routing table has three

main columns among others: the first is the destination subnet, the second is the

gateway or identity of the next router along the shortest path to the destination sub-

net and the third indicates the "metric" or the number of hops to the destination.

An example of a routing table is discussed and shown in Section 3.4.1.

We used the ping command to test whether or not a particular host was reachable

across the virtual network. A computer network tool, ping, is used to test whether

a particular host is reachable across an IP network and to self test the network

interface card of the router. The ping command sends an ICMP echo request to the

stated destination address and the TCP /IP software at the destination then replies to

24

the ping echo request packet with a similar packet, called an ICMP echo reply. If the

network is connected and functional , it reports the number of packets transmitted, the

percentage of packet loss, and the round-trip time. If the network is not connected,

the ping command replies that the "Network is unreachable". The ping command

estimates the round-trip time in milliseconds, records packet loss, and displays a

statistical summary when it is finished.

When we tested router Rl in our virtual network with the ping command, we obtained

the results as shown in Figure 3.8. The results from this test displayed information

about the network and confirmed that the ping command was working. In the first

case, the nodes that were not immediate neighbors were not reachable when RIP

protocol was not running in the network. In the second case there was a global network

connectivity when the network was configured with RIP protocol. An example of a

session testing for connectivity from a router, Rl console to a distant Host F is shown

in Figure 3.8 .
.------------------------ pinging: R1 console ------------------------~
R1:-# ping 10.0.14 . 5 -c1 #Host F without RIP
connect: Network is unreachable

R1:-# ping 10.0.14.5 -c1 #Host F with RIP
PING 10.0.14.5 (10.0.14.5) 56(84) bytes of data.
64 bytes from 10.0.14.5: icmp_seq=1 ttl=61 time=0.589 ms

--- 10.0.14 . 5 ping statistics---
1 packets transmitted, 1 received, O% packet loss, time Oms
rtt min/avg/max/mdev = 0.589/0.589/0.589/0.000 ms

Figure 3.8: Pinging from Rl to Host F

In this section, we carried out the fundamental steps necessary to confirm that that we

have successfully created a network testbed, before conducting further experiments.

Most especially, XML code has to be specified in such a way that routers can be started

and stopped easily without affecting the networking scenario in the VNUML session. At

25

this point, our virtual network was validated, and we could proceed.

3.4 Experiments on a fifteen-node network testbed

In this section, we describe two experiments on the fifteen-node virtual network

testbed. The goal of the first experiment was to use an emulation technique to un-

derstand routing changes in a small network for single-link failures. The goal of the

second experiment was to use the same emulation technique to study routing changes

for single-router failures in the same network. We will use the information obtained

from these experiments as a background preparation towards our project's primary

goal of making comparison for a large scale network using emulation and simulation

technologies in Chapter 4.

3.4.1 Single-link failures with RIP

In this experiment, we investigated the effects of single-link failures on the virtual

network testbed. We observed routing changes in the routing tables when single-link

failures occurred.

We emulated all the single-link failures in the network, and observed the effect of the

failures on each router configured with RI P in the network. We removed each link in

the network sequentially, and recorded routing changes at the head node of a link in

the network. Several tests were conducted by disabling each link in the network for

this experiment and routing changes were recorded. This experiment was performed

by specifying a command in each router as follows - R1: rv# ifconf i g et h1 down.

Interfaces on the links for each router could be ethO, e t h1 , eth2 and so on. The

removal of each interface has a corresponding effect on the updates of the routing

26

-

table for each router in the network.

We recorded the number of routing entries generated in these networking scenarios.

This re cording was carried out by running a network command route directly on

each ro uter to collect routing entries in the routing table. This command displays

all the RIP routes in the network. We collected results from the routing tables for

each ro uter in the network. Examples of the results obtained from one of the exper-

iments when the network was fully functional, and when an interface eth3 of link

R2-R4 was removed (before the network restabilized) are shown in Figure 3.9 and

Figure 3.10. We then compared the results of routing changes in both cases obtained

from th eir respective routing tables - the fully functioning network, and the missing

links ne twork scenarios before restabilizations - to see what changes occur.
R2 console

Case 1 : Full Links with 19 routing entries in the network.
R2: -# route
Kernel IP routing table
Destin at ion Gateway Genmask Flags Metric Ref Use I face
192.16 8.0.8 * 255.255.255.252 u 0 0 0 ethO
10.0.4 .0 * 255.255.255.0 u 0 0 0 eth2
10.0.5 .0 * 255.255.255.0 u 0 0 0 eth3
10.0.6 .0 10.0.7.3 255.255.255.0 UG 3 0 0 eth4
10.0.7 .0 * 255.255.255.0 u 0 0 0 eth4
10.0.1 6.0 10.0.5.5 255.255.255.0 UG 3 0 0 eth3
10.0.0 .0 10 . 0 . 2.3 255.255.255.0 UG 2 0 0 eth1
10.0.1 7.0 10.0.5.5 255.255.255.0 UG 3 0 0 eth3
10 . 0 . 1 . 0 10.0.2.3 255.255.255.0 UG 2 0 0 eth1
10.0.2 .0 * 255.255.255.0 u 0 0 0 eth1
10.0.3 .0 10.0.7.3 255.255.255.0 UG 2 0 0 eth4
10.0.1 2.0 10.0.7.3 255 . 255.255 . 0 UG 3 0 0 eth4
10.0.1 3.0 10.0.7.3 255.255.255.0 UG 4 0 0 eth4
10.0.1 5.0 10.0.7.3 255.255.255.0 UG 4 0 0 eth4
10.0.8 .0 10.0 . 5.5 255.255.255.0 UG 2 0 0 eth3
10.0.9 .0 10.0.5.5 255.255.255.0 UG 2 0 0 eth3
10.0.1 0.0 10.0.5.5 255.255.255.0 UG 3 0 0 eth3
10.0.1 1.0 10.0.7.3 255 . 255 . 255.0 UG 3 0 0 eth4

Figure 3.9: Case 1: Routing table for router R2 with full links - 19 routing entries

27

-

R2 console

Case 2 : Link removal before network restabilized.
R2:-# ifconfig eth3 down # R2-R4 link removed.
R2:-# route
Kernel IP routing table
Destin at ion Gateway Genmask Flags Metric Ffef Use If ace
192.16 8.0.8 * 255 . 255.255.252 u 0 0 0 ethO
10.0.4 .0 * 255.255.255.0 u 0 0 0 eth2
10.0.6 .0 10.0.7.3 255 . 255.255.0 UG 3 0 0 eth4
10.0.7 .0 * 255 . 255.255.0 u 0 0 0 eth4
10.0.0 .0 10.0.2.3 255.255.255.0 UG 2 0 0 eth1
10.0.1 .0 10.0.2.3 255.255.255.0 UG 2 0 0 eth1
10.0.2 . 0 * 255.255.255.0 u 0 9 0 eth1
10.0.3 .0 10.0.7.3 255.255.255.0 UG 2 0 0 eth4
10.0.1 2.0 10.0.7.3 255.255.255.0 UG 3 Q 0 eth4
10.0.1 4.0 10.0.7.3 255.255.255.0 UG 4 0 0 eth4
10.0.1 1.0 10.0.7.3 255.255.255.0 UG 3 0 0 eth4

Figure 3.10: Case 2 - Routing table for R2 before network restabilized - 12 routing
entries I

For explanation purposes, we selected one of the links - link R2-R4 - to illustrate

the outcome of our single-link failure analysis. For further analysis, we can select any

other link in the network to explain effects of single-link failures.

When the virtual network was fully functional in case one, the expected outcome is to

obtain nineteen routing entries at the head node of the link from this network. How-

ever, when we experimented with the removal of the selected link R2-HA, the number

of routing entries changed from nineteen to eleven. This result clearly shows that the

removal of link R2-R4 leads to a 37% decrease in the number of routil1g entries. The

summarized results of these experiments are shown graphically in Figure 3.11. In

Figure 3.11, the links of the virtual network are shown on the x-axis while the head

node routing changes in the network are shown on the y-axis.

In most instances, it is observed that a single-link failure caused many changes in the

routing tables. About 50% of the links in this fifteen-node network will cause about

28

-

RIP: Single link failure analysis

20 r---------------------------------------~--~
18

16 i;'
I ·

R1-R2 R1 -R3 R2-R3 R2-R4 R3-RS R4-R6 R4-R7 R5-R8 R5-R9 R6-R7 R7-R8 R6-R9

Links

Figure 3.11 : Single link removal analysis for RIP

I c FULL LINKS I
I•LESS 1 LINK I

a 42% decrease in the number of routing changes. These observations demonstrate

that when the link connectivity of the network goes down, RIP will modify the local

routing table and record the routing entries for the routers that are still connected

in the network. This result conforms to the concepts explained regarding intra-AS

routing and matches our hypothesis in Section 2.5.1.

3.4.2 Single-router failures with RIP

In this experiment , we investigated the impact of single-router failures in the virtual

network. We recorded routing changes in the network as shown in the routing tables

for single-router failures.

The concepts and implementations of RIP routing protocol explain that if a router

29

does not hear from its neighbor at least once in every 180 seconds, that neighbor

is considered to be no longer reachable [15]. This outcome means the neighbor is

dead or the connectivity is lost. Therefore, RIP modifies the local routing table and

propagates this information by sending advertisements to neighboring routes that are

still reachable.

Firstly, we recorded the number of routing entries when all the routers were in place

in the network and the network was fully functional. Secondly, we removed each

router in the network, sequentially, then recorded the resulting routing changes for

each router. When a particular router was missing, we collected and recorded the

routing entries from each of the routers that were still active in the network. We

compared the routing entries collected from the routing tables of the original network,

with routing entries of the modified network, and reported changes observed for each

missing router.

For our original and unmodified network, each router had nineteen routing entries in

their routing table. When we modified the network by removing each router sequen-

tially, each router produced had eighteen or nineteen routing entries depending on

whether the router is a cut point. We now provide more detail.

Firstly, for routers - R3, R4, and R7 - there was no difference in their routing

tables both before and after their removal. This outcome occurred because each

router considers its neighbor dead after 180 seconds and adjusts its routes based on

the next available router. As an example, we show the results for R5 in Figure 3.12

for when the virtual network is fully functioning and in Figure 3.13 for when router

R3 was missing from the network.

Secondly, we observed only slight difference of one missing routing entry in these

routers: R1, R2, R5, R6, R8, and R9. This difference occurred because these routers

30

were cut points of t he network topology shown in Figure 3.1. As an example, we show

the results for R5 in Figure 3.12 for when the virtual network is fully functioning and

in Figure 3.14 for when router R1 was missing from the network. The loss of one

rout ing ent ry was as a result of network non-reachability due to a cut point on the

network topology. Otherwise, the behaviors of all these routers were t he same, and

it reflected that effects of missing routers were not important in t he RIP routers.
R5 console

R5:-# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use If ace
192.168.0.24 * 255.255.255.252 u 0 0 0 ethO
10.0.4.0 10.0.12.5 255.255.255 . 0 UG 5 0 0 eth4
10.0.5.0 10.0.12 . 5 255.255.255.0 UG 4 0 0 eth4
10.0.6.0 * 255.255.255.0 u 0 0 0 eth2
10.0.7.0 10.0.3.3 255 . 255.255.0 UG 2 0 0 eth1
10.0.16.0 10 . 0 . 12.5 255.255.255.0 UG 2 0 0 eth4
10 . 0.0.0 10 . 0.3.3 255 . 255.255.0 UG 3 0 0 eth1
10.0 . 17.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4
10.0.1.0 10 . 0.3.3 255.255.255 . 0 UG 2 0 0 eth1
10.0.2.0 10.0.3.3 255.255.255.0 UG 3 0 0 eth1
10.0.3.0 * 255.255.255.0 u 0 0 0 eth1
10.0.12.0 * 255.255.255.0 u 0 0 0 eth4
10.0.13.0 10.0 . 11.5 255.255.255 . 0 UG 2 0 0 eth3
10 . 0.14.0 10.0.11.5 255.255.255.0 UG 2 0 0 eth3
10.0.15.0 10.0.12.5 255.255.255 . 0 UG 2 0 0 eth4
10.0.8.0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4
10.0.9 . 0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4
10.0.10.0 10.0.12 . 5 255.255.255 . 0 UG 4 0 0 eth4
10.0.11.0 * 255.255.255.0 u 0 0 0 eth3

Figure 3.12: Routing table for the router-R5 with fully functional network

In summary, we obtained results obtained for the removal of each router. T hese results

are summarized graphically in Figure 3.15. In Figure 3. 15, the routers of the virtual

network are shown on the x-axis while t he number of routing changes in the network

are shown on they-axis. From t he obtained results for a single-router failure analysis,

we observed that a network configured wit h RIP always produced the same number

of rout ing table ent ries at each router when a particular router was removed. T he

31

R5 console
R5:-# route (missing router R3)
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use !face
192.168.0.20 * 255.255.255.252 u 0 0 0 ethO
10.0.4.0 10.0.12.5 255.255.255.0 UG 5 0 0 eth4
10.0 . 5 . 0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4
10.0.6.0 * 255.255.255.0 u 0 0 0 eth2
10.0.7.0 10.0.12.5 255.255.255.0 UG 5 0 0 eth4
10.0.16.0 10.0.12.5 255.255.255 . 0 UG 2 0 0 eth4
10.0.0.0 10.0.12.5 255.255.255.0 UG 6 0 0 eth4
10.0.17.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4
10.0.1.0 10.0.12.5 255.255.255 . 0 UG 6 0 0 eth4
10.0.2.0 10.0.12.5 255.255.255.0 UG 5 0 0 eth4
10.0.3.0 * 255.255.255.0 u 0 0 0 eth1
10.0.12.0 * 255.255.255.0 u 0 0 0 eth4
10.0.13.0 10 . 0 . 12.5 255.255.255.0 UG 2 0 0 eth4
10.0.14.0 10.0.11.5 255.255.255 . 0 UG 2 0 0 eth3
10.0.15.0 10.0.12.5 255.255.255.0 UG 2 0 0 eth4
10.0.8.0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4
10.0.9.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4
10.0.10.0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4
10 . 0.11.0 * 255.255.255.0 u 0 0 0 eth3

Figure 3.13: Routing tables when the router-R3 was missing

slight difference in the routing table entries was because that particular router was a

cut point of the network graph. This observation conforms to the concepts explained

regarding dead neighbors or routers, and matches our hypothesis in Section 2.5.1.

3.5 Conclusions

In this section, we explain our conclusions for the experiments conducted in the small

network with RIP configurations. We use the two experiments that we performed on

single-link and single-router failures in Section 3.4.

The first experiment enabled us to study the routing changes caused by the removal

of links in a virtual network configured with RIP routing protocol. When we exper-

32

)

R5 console
R5:-# route (missing router R1)
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use If ace
192.168.0.20 * 255.255.255.252 u 0 0 0 ethO
10.0.4.0 10.0.3.3 255.255.255.0 UG 3 0 0 eth1
10.0.5.0 10.0.3.3 255.255.255.0 UG 3 0 0 eth1
10.0.6.0 * 255.255.255.0 u 0 0 0 eth2
10.0.7.0 10.0.3.3 255.255.255.0 UG 2 0 0 eth1
10.0.16.0 10.0.12.5 255.255.255.0 UG 2 0 0 eth4
10.0.17.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4
10.0.1.0 10.0.3.3 255.255.255.0 UG 2 0 0 eth1
10.0.2.0 10.0.3.3 255.255.255.0 UG 3 0 0 eth1
10.0.3.0 * 255.255.255.0 u 0 0 0 eth1
10.0.12.0 * 255.255.255.0 u 0 0 0 eth4
10.0.13.0 10.0.12.5 255.255.255.0 UG 2 0 0 eth4
10.0.14.0 10.0.11.5 255.255.255.0 UG 2 0 0 eth3
10.0.15.0 10.0.12.5 255.255.255.0 UG 2 0 0 eth4
10.0.8.0 10.0.3.3 255.255.255.0 UG 4 0 0 eth1
10.0.9.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4
10.0.10.0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4
10.0.11.0 * 255.255.255.0 u 0 0 0 eth3

Figure 3.14: Routing tables when the router-R1 was missing

imented with the removal of links as shown in Figure 3.11, it shows that there was

a reduction of an average of 32%, with a range of 11% to 53% in the number of

routing entries in the routing tables. In addition, the removal of different links leads

to different routing changes in the network. We were able to identify links that had

the most effects on network when they were removed. These experiments explain the

importance of certain links to the routing changes in the network. Failure of each link

has corresponding effects on the routing information of the network and, eventually,

the routing changes. As an example, four links - R1-R3, R2-R4, R3-R5 , R4-R7 and

R6-R7 - in Figure 3.11 are critical for the day-to-day running of the network; any

failure of such links has considerable effects on the routing changes.

The second experiment evaluated the effects of router failures in a virtual network

configured with RIP routing protocol. We observed there was no difference in the

33

-

RIP: Single Router Failure Analysis

20

- r - - r-
18

16 '
14

: 12

~ .c ' I,
0 10 .. c s '
0 8 a:

0 '- ~ - -,.-'"- '--r-~ ~b.. '--r-~ ~'- '-- - -,.-C....

~ ~ ~ ~ ~ ~ ~ ~ ~

Routers

Figure 3.15: Single router removal analysis for RIP

IOFuiiRouters 1
~.1ro~!!_J

number of routing changes with single-router failures - except for those with cut

points - as shown in Figure 3.15. This evaluation confirmed the true behavior of

RIP [15]: After waiting for 180 seconds, a router considers its immediate neighbor to be

dead and takes the next available router as its next hop and adjusts its routes. When

there was a single-router failure in the network, it was equivalent to the simultaneous

failure of all their connecting links. The example in Figure 3.13 shows that when

router R3 was missing from the network, there was simultaneous failure of all the

three connecting links to this router. These single-router failure experiments show

that they are quite different from single-link failure experiments. In the case of single-

link failure experiments, the network waited for some time to stabilize while in the

case of single-router failure experiment the network did not wait for stabilization; the

next available router immediately became its next hop and adjusted the routes.

34

Finally, we are able to use this protocol in the virtual network to understand the

routing changes caused by the link and router removal in a small network. But for

large network and complex networks RIP is probably wholly inadequate. This routing

protocol does compute new routes after any change in the network topology, but in

some cases it does so very slowly, by counting to infinity. RIP prevents routing loops

from continuing indefinitely by implementing a hop count limit. This limit ensures

that anything more than fifteen hops away is considered unreachable by RIP. The

drawback of RIP in [15] explains the choice of network operators and researchers for

improved routing protocols from the link state family that can detect and correct

router failures in their network.

35

Chapter 4

Modelling the Routing of an

Autonomous System

This chapter contains the experimental work and results of modelling the routing of

an AS, more specifically the GEANT network. The GEANT network was a pan-European

backbone that connects Europe's national research and education networks.

We present the goals of this chapter in Section 4.1. In Section 4.2, we explain our

network topology and describe how we modelled the GEANT network using an emula-

tion method, and validated the functionality of this virtual network. We conducted

two case studies in the network, which are described in Section 4.3. The first case

study investigated the effects of single-link failures in the virtual network, and the

second case study examined the effects of single-router failures . In Section 4.4, we

compare our emulation studies and a simulation work by Quoitin et al. in [20, 21] .

Both simulation and emulation methods are used to study the routing changes in the

GEANT network. Lastly, in Section 4.5 we present our conclusions drawn from the two

case studies.

36

4.1 Introduction

In this chapter, we aim to use emulation techniques to design a model of the GEANT

network. This emulated network topology is similar to that of the simulated model

of the GEANT network investigated in [20, 21] . Our first goal in this study was to use

emulation techniques to design a model of the GEANT network testbed. The second

goal was to use a routing protocol, OSPF, to configure a large scale network on the

testbed, referred to as the GEANT. The third goal was to use our virtual GEANT network

testbed to study routing changes caused by link and router failures. Lastly, the final

goal was to demonstrate that emulation techniques produce reasonable results for a

large scale network, which are consistent with the results obtained by Quoitin et al.

in [20, 21]. The results collected from our emulated study are directly compared to

the results from Quoitin et al. simulation work.

4.2 Modelling of the GEANT network

In this section, we describe how to use an emulation technique to model the GEANT

network. The GEANT was a transit network: a pan-European computer network for

research and education. The GEANT network is the large-scale network we used for our

investigations. The GEANT network was a multi-gigabit European computer network

project for research and education. Maintaining the GEANT network project involved

network testing and development of new technologies and networking research. Fig-

ure 4.1 shows the overview of the GEANT backbone network. GEANT2 is the successor

to GEANT, and its development began in November 2000 and officially ended in April

2005. See more details regarding GEANT and GEANT2 projects in [4, 31] . Later in the

sub-sections, we briefly describe the implementation and configuration of this network

with OSPF routing protocol.

37

.. ""' * DANTE GEANT
The world's most advanced

international research network
Providing pan-European and international connectivity for research and education

.........• ,

-LSGba/1
···· · 'UMbll/1
····· :M·ISSMblt/1

§]

·---- L~ cl1
.... ----~- ---- "@]

·--~

I. '. ... 1.1
GlANT Is ~t.d by DANTE on beh.Wof[uropn rewltdllll'ld tduc.Mion ~ '-·· ······:::·.-::::·.-.. ····-······=··-:::.-:.:.·.::·:· ... : .. L.!:J

§~ ~...,.. ~ s.- B a..... l!J -· EJ -....
~ --- Bl __. B, EJ • ~,

~=· ~ = ~ = ~ =... ; ::;-
·~---.. -.,

G£ANT Is co-funded by The European Commission within its
sth R&D Framework programme

~ -· !!l -
IS -
El -t;l --

lrl-¥[•1
~-........ ..
IST--~•7

Figure 4.1: The GEANT backbone network: Courtesy of DANTE

4.2.1 Topology of the GEANT network

We modelled a network with similar topology to that used in [20, 21], which was the

three-layer topology of the GEANT captured from a one-day IS-IS trace of 24 November,

2004. Our model of the GEANT network has a complex topology which includes the

twenty-three routers, thirty-eight links, and two hosts. These two hosts are used

for testing and validation purposes, they are not routers and have no effect on the

topology.

The emulated GEANT network model was designed for our investigations of the impact

of router and link failures in a large scale network. The network graph of the emulation

38

0
.,

c:
+ ::r

Cii"

>-
rj

("
)

oq
"

0 s
.::: '"1

'0

(1

)
(i

)
~

:><
:

tv

i:
j

(1
)

c:
+

>
~

c:
+

0
~

'"1

~

(1
) i:
j

......
.

c:
+

r:J
l

'-<

r:J
l

I
::r

::n

<

~
(1

) i:
j

i:
j
.

0
i:

j
0.

.
(1

)
>-

rj
i:

j
......

.
(J

q
(1

)
.:::

c:
+

w

~
'"1

(.

0

(1
)

~

'"1

~

tv

c:
+ 0 '0

0
.... 0 (J

q '-<

("
) 0 i:
j ::n

(J
q E=i

(1

) 0.
.

~

.

c:
+
~

0 C
ll '"0

'T
j

4.2.2 Implementation and configuration with OSPF

In this section, we implemented the network topology described in Section 4.2. 1 using

VNUML on an UBUNTU Linux machine. The methodologies for design and implementa-

tion of this virtual network testbed are similar to the approach used in Section 3.3.2.

The major difference between them is the size of the GEANT network; we needed to

patch the UBUNTU host machine with SKAS3 features [1] in order to enhance per-

formance to meet the larger resource requirements of the GEANT network emulation.

Below is a set of basic steps for the implementation and configuration of the virtual

GEANT network:

1. We patched the default Linux kernel of the UBUNTU host machine [12] with

SKAS3 obtained from [1]. We downloaded these patches and compiled a Linux

kernel on UBUNTU systems to include SKAS3 features.

2. We then installed VNUML tool in the Linux environment of the host machine.

This tool and the installation procedures can be downloaded from [8]. The

VNUML tool is designed to easily create simple and complex network emulation

scenarios.

3. Next, we installed Quagga in the system-wide /etc/ directory of the host ma-

chine. Quagga is a routing software package that provides TCP /IP-based rout-

ing services and protocol dcemons. A machine installed with Quagga serves as

a dedicated router.

4. We wrote implementation code for the network topology specified in Figure 4.2

in an XML file. The purpose of this file was to include specifications for cre-

ating the virtual GEANT network. We ensured that the XML file specifications

conformed to the VNUML DTD [8] that came with the VNUML tool. Details of the

XML specifications are included in Appendix C.

40

5. We then created the VNUML session and individual machines by running the

commands in Figure 4.3. When we were finished with the networking scenario,

we killed the scenario processes by running the commands specified in Figure 4.4.

A screen shot of the virtual GEANT network testbed is shown in Figure 4.5.

Each of the windows or machines in Figure 3.4 represents a node on the virtual

network testbed.

6. The network created in step five had strictly local connectivity, but this net-

work ignored the global network topology. This type of connectivity means that

only adjacent routers could communicate with each other. To enable network

connectivity, we then configured each router in the network with OSPF by cre-

ating these files: zebra.conf , ospfd.conf and vtysh.conf in /etc/quagga

directory. These three configuration files were created and designated for each

router. A sample of each configuration file for the router-Rl is included in

Appendix D. See Appendix D for more details.

7. We then started and stopped OSPF daemon by running commands as shown in

Figure 4.6. We included a piece of code from XML specifications for starting and

stopping ospfd daemon as shown in Figure 4. 7. See the XML file in Appendix C

for more details.

vnumlparser.pl -t /usr/share/vnuml/NIYiospf.xml -v -u root

Figure 4.3: Commands for creating virtual GEANT network

vnumlparser.pl -d /usr/share/vnuml/NIYiospf.xml -v

Figure 4.4: Commands for killing virtual GEANT network

41

Figure 4.5: A screen shot of the virtual GEANT network testbed

sudo vnumlparser.pl -x start~NIYiospf.xml #Starting the daemons

sudo vnumlparser.pl -x stop~NIYiospf.xml #Stopping the daemons

Figure 4.6: Commands for starting and stopping the OSPF dremons

<filetree root="/etc/quagga" seq="start">Rl</filetree>

<exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
<exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
<exec seq="stop" type="verbatim">killall zebra</exec>
<exec seq="stop" type="verbatim">killall ospfd</exec>

Figure 4. 7: XML code for starting and stopping the zebra and ospfd dremon

4.2.3 Validating a model of the GEANT network

In this section, we performed validation tests on the virtual GEANT network. The

results of these validation tests from our emulated network confirmed the expected
42

behavior as observed on the physical topology of the GEANT network. The validation

tests were carried out in three different ways: testing the network for reachability,

computing routing tables for each router, and tracing the route of packets in the

network. These three tests assured us that our virtual representation of the GEANT

network was functional and reliable for our case studies in Section 4.3.

4.2.3.1 Testing the network reachability

The first validation test was to check for connectivity in this complex virtual network.

When there is no routing protocol in the network, routers have local connectivity,

that is, they are only connected to immediate neighbors. When there is a routing

protocol such as OSPF in the network, OSPF routers flood the network with link state

information. All routers will receive updates and re-compute their routing tables .

We used the ping command for this test. For instance, we tried from console R5

to reach Host A on the virtual network. We obtained the result: "Network is un-

reachable"; this is due to lack of a routing protocol in the network. After we had

successfully configured the network with the OSPF dremon, the connectivity confirmed

the protocol was working correctly. The result of a ping command on the router-R5

console to reach Host A is shown in Figure 4.8. This testing confirmed that the OSPF

protocol was working correctly, and we could proceed to the next test.

4.2.3.2 Managing the routing information with OSPF

The second validation test was to compute the routing tables for each router. We

wanted to display summary information about all routes for the OSPF protocol.

We ran the route command directly from the console of each router. After executing

the command, we obtained results - routing tables - that indicated routing entries:

43

- --~

.---------------------------- pinging ------------------------------.
R5:-# ping 10.0.10 . 8 -c2 #Host A without OSPF daemon
connect: Network is unreachable

R5:-# ping 10.0.10.8 -c2 #Host A with OSPF daemon
PING 10.0.10.8 (10.0.10.8) 56(84) bytes of data.
64 bytes from 10.0.10 . 8: icmp_seq=1 ttl=62 time=60.7 ms
64 bytes from 10.0.10.8: icmp_seq=2 ttl=62 time=0.647 ms

--- 10.0.10.8 ping statistics---
2 packets transmitted, 2 received, 0% packet loss, time 1012ms
rtt min/avg/max/mdev = 0.647/30.719/60.791/30.072 ms

Figure 4.8: Pinging from R5 to Host B

destinations, gateway or path to different destinations, metric - cost, interfaces and

flags. These results showed the routing information of the virtual network and they

are shown in Figure 4.9 for the router-R5 console. This test also confirmed that the

OSPF protocol was working correctly and we could proceed to the third test.

4.2.3.3 Tracing packets in the virtual GEANT network

The third validation was to ascertain how packets travel in our virtual network. This

validation test showed a list of routes traversed, and allowed us to identify the path

taken to reach a particular destination in the network.

We used the traceroute command to investigate the route taken by packets across

the virtual GEANT network. The result showed paths that were taken by the packets

and the corresponding time spent in milliseconds. Figure 4.10 shows a session through

the router-R5 console. The result showed how a packet would travel on the router

and the respective t imes in milliseconds. This test also confirmed that both the net-

work and OSPF protocol were functioning properly. From the topology in Figure 4.2,

we could use a physical examination of the network to obtain the computation of

shorthest paths/hops for tracing the packets from R5 to Host B. Both the physical

44

R5 console
R5: -# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.0.16 * 255.255.255.252 u 0 0 0 ethO
10 .0 . 20 . 0 10.0.12.8 255.255.255 . 0 UG 30 0 0 eth3
10 .0.21.0 10.0.6 . 8 255.255.255.0 UG 40 0 0 eth2
10.0.22.0 10.0.12 . 8 255 . 255.255.0 UG 40 0 0 eth3
10.0 . 23 . 0 10.0.12.8 255.255.255 . 0 UG 30 0 0 eth3
10.0.16.0 10 . 0 . 12 .8 255 . 255.255 . 0 UG 20 0 0 eth3
10.0.17.0 10 . 0 . 5.4 255 . 255.255 . 0 UG 30 0 0 eth1
10.0.18.0 10.0.12.8 255.255.255 . 0 UG 20 0 0 eth3
10.0.19 . 0 10.0.12.8 255.255.255.0 UG 30 0 0 eth3
10 . 0.28.0 10 . 0.12.8 255.255.255.0 UG 40 0 0 eth3
10.0.29.0 10 . 0.12.8 255 . 255.255 . 0 UG 50 0 0 eth3
10.0.30 . 0 10 . 0.12 .8 255 . 255.255.0 UG 50 0 0 eth3
10.0.31.0 10.0.12 . 8 255.255.255 . 0 UG 60 0 0 eth3
10.0.24.0 10 . 0 . 6.8 255.255.255 . 0 UG 40 0 0 eth2
10.0.25.0 10.0.12 . 8 255.255.255 . 0 UG 50 0 0 eth3
10.0.26.0 10 . 0 . 6.8 255.255.255 . 0 UG 40 0 0 eth2
10.0.27.0 10.0.12.8 255.255.255.0 UG 30 0 0 eth3
10.0.4.0 10.0.5 . 4 255.255.255.0 UG 30 0 0 eth1
10.0.5.0 * 255.255.255.0 u 0 0 0 eth1
10.0.6.0 * 255.255.255.0 u 0 0 0 eth2
10.0.7.0 10.0.6.8 255 . 255.255.0 UG 20 0 0 eth2
10 . 0.1.0 10.0.5.4 255.255.255.0 UG 30 0 0 eth1
10.0 . 2.0 10.0 . 5.4 255.255 . 255.0 UG 20 0 0 eth1
10.0.3.0 10.0.5.4 255.255.255.0 UG 40 0 0 eth1
10.0.12.0 * 255.255 . 255.0 u 0 0 0 eth3
10.0.13 . 0 10.0.12.8 255.255.255.0 UG 40 0 0 eth3
10.0 . 14.0 10.0.6.8 255.255.255.0 UG 40 0 0 eth2
10 . 0 . 15.0 10.0.5.4 255 . 255.255.0 UG 20 0 0 eth1
10.0.8.0 10.0.6.8 255.255.255.0 UG 20 0 0 eth2
10.0.9.0 10.0.6 . 8 255.255.255.0 UG 30 0 0 eth2
10.0 . 10.0 10.0.6.8 255.255.255.0 UG 30 0 0 eth2
10.0.11.0 10 . 0 . 6 . 8 255.255.255.0 UG 30 0 0 eth2
10.0 . 37 . 0 10.0.12.8 255.255.255 . 0 UG 60 0 0 eth3
10 . 0.36.0 10.0.12 . 8 255.255.255.0 UG 20 0 0 eth3
10.0.38.0 10.0.12.8 255.255.255.0 UG 50 0 0 eth3
10.0.33.0 10 . 0 . 12.8 255 . 255.255.0 UG 60 0 0 eth3
10.0 . 32 . 0 10 . 0 . 6.8 255 . 255.255.0 UG 30 0 0 eth2
10.0.35.0 10 . 0 . 12.8 255.255.255.0 UG 60 0 0 eth3
10.0 . 34.0 10.0.12.8 255 . 255.255 . 0 UG 60 0 0 eth3

Figure 4.9: An example of OSPF rout ing table for R5 console

45

examination and emulation results produced the same number of shortest hops/paths,

i.e., six hops to the final destination.

We could confirm by using the above three validation tests that our emulated GEANT

network was functional and the OSPF protocol was running accordingly in the net-

work. Because the network topology has been validated, next we proceed with our

networking experiments.
traceroute

R5 :-# traceroute -n 10.0.37.8 #Host B
tr aceroute to 10.0.37.8 (10.0.37.8), 30 hops max, 40 byte packets

1 10.0.12.8 33.176 ms 0.366 ms 0.255 ms
2 10.0.18.8 47.148 ms 0.728 ms 0.587 ms
3 10.0.27.4 50.409 ms 0.995 ms 0.914 ms
4 10.0.28.8 41.210 ms 0.676 ms 0.484 ms
5 10.0.29.8 46.643 ms 0.651 ms 0.555 ms
6 10.0.37.8 46.573 ms 0.952 ms 0.659 ms

Figure 4.10: Traceroute from R5 to Host B

4.3 Case studies in the virtual GEANT network

In this section, we present two case studies investigated in the virtual GEANT network.

The experimental set-up is similar to that detailed in Section 3.2, but slightly modified

as explained in Section 4.2.2 to conform with the requirements necessary for a large

scale networking scenario.

In the first case study, we examined the impact of removing links as detected in the

total routing cost. In the second case study, we investigated the effects of the routers'

removal and the corresponding total routing cost . The two case studies helped us to

understand the impact of link and router failures in the virtual GEANT network and

their resulting total costs.

46

In [20, 21], Quoitin et al. partitioned the routing changes into four different classes:

Peer change, Egress change, Intra cost change and Intra path change. Each of these

changes was described in their work. In our emulated GEANT network, we focus on

Intra cost change as the routing changes, because other changes cannot be measured

in this network. This particular change occurs when there is no egress change except

for the change in the IGP cost of the ingress-egress path in the network. Our emulated

GEANT network assumed that the link weights were constant - ten units, and link

weights reflected the cost of using a link. To minimize the overall cost, OSPF routing

protocol runs Dijkstra's algorithm to determine the shortest path - least-cost path

- in our case studies.

We also used the case studies to identify the links whose loss produces higher routing

costs and the routers whose loss yields the largest routing costs. Our goal in these

case studies was to demonstrate that the emulation method produces useful results

for understanding intra-domain routing. In the next section, Section 4.4, we use this

information to make a comparison of emulation and simulation techniques.

4.3.1 Single-link failures with OSPF

Most network operators do not have a sufficient understanding of the effect of link

failures in the network. Evaluating and determining which link failures will change

the outcome of the route selection in a large network configured with OSPF is a difficult

problem. Understanding and evaluating effects of link failures are important because

routing changes often lead to traffic shifts and traffic congestion. For a network oper-

ator, it is important to determine whether the network will be able to accommodate

the traffic load when single link failures occur. In addition, it is also necessary to

identify the links in the network whose loss would cause increases in the total routing

cost (i.e ., sum of Intra cost change) and protect such links by the addition of parallel

47

links to mitigate the impact of link failures in the network.

In this case study, we experimented with the removal of links in the emulated GEANT

network. The first objective was to compute the head node routing costs of each link

for a fully functional network and compare it with that of a missing-link networking

scenario. We aimed to identify the links most affected by the single link failures in

the network. The second objective was to relate our results from the emulated GEANT

network with those of simulations carried out by Quoitin et al. in [20, 21].

We used our virtual GEANT network that was validated in the last section for these

experiments. Firstly, we conducted the experiments as described in steps five to seven

of Section 4.2.2 for separate single link failures for each router. When the network

was functioning, we recorded the routing tables for each router. Secondly, we removed

each link from the virtual network, one at a time, and recorded the corresponding

routing tables for the router at the beginning of the link. This removal of link was

done for all the links in the network, and each time we computed the total cost of

routings and re-routings of these links. In this experiment, we selected cost as an

index for measuring routing changes. Data collection was done by running the route

command directly from the console of the beginning router of the removed link. The

beginning of a link is the starting router and the ending of the link is the ending

router for any link in the network. An example of data collection for a removed link

R1-R2 is as follows. The sum of total cost for routings and re-routings was collected

from the console of the router-R1 before and after link R1-R2 was removed.

The resulting changes in the routing tables for each link removed are shown graphi-

cally in Figure 4.11. In this figure, we show results for both conditions, that is, when

the network was fully functional and when there was removal of individual links. In

Figure 4.11, the links of the virtual network are shown on the x-axis while the head

node routing costs are shown on the y-axis.

48

-

2000

1800

1600

ll
IS 14oo
0

"' ~ 1200

~
-3 1000
0 z
: BOO
::t:

600

400

200

OSPF: Single link failure analysis

Figure 4.11: Single link failure analysis for OSPF

i jc Full links: Cosll
L•Less 11ink: Co~

For each link removed, we observed the total routing cost at the head nodes of the

links - the sum of Intra cost changes. There were remarkable changes in the number

of routers that increased their cost (metric) as a result of single-link failures in the

virtual GEANT network. We observed about 12% variation in the total routing cost

for all the links, and an average of 13%, with a range of 5% to 20% increases in the

cost of re-routings of all the links in the emulated GEANT network. We also observed

remarkable increases in the total routing cost at the link head nodes of an average

of 18%, with a range of 16% to 20% in the following links: R1-R2, R1-R3, R2-R5,

R3-R13, R5-R10, R5-R6, R7-R9, R9-R17, R10-R12, R12-R16, R13-R14, R18-R23,

R21-R23, and R22-R23. From Figure 4.2, these links show that their failures would

49

increase the total cost of re-routings in the network. In this project, we selected any

link from 10% increases to constitute a potential major change in the total cost of

routing. The increase in the total cost accounted for the fact that those links were

important for routing in the network; removal of such links would have moderate

effects in the network.

In our experiments, we also observed small increases in the total routing cost at the

head nodes of these links: R2-R4, R4-R10, R15-R22, R17-R19, and R18-Rl9. These

routing costs, the sum of Intra cost change, are of an average of 6%, with a range of

5% to 7% for their re-routings in the network. The slight increases in the total routing

cost at the head nodes of these links demonstrate that their effect in the network is

of lesser importance. The links with higher routing costs in the network are more

important , and their removal or breakage moderately affected the routing costs.

Without missing links, the network functioned smoothly; and we recorded the head

node routing costs from the routing tables. However, we observed differences in the

the head node routing costs when we conducted experiments with link failures in the

same network. Link failures clearly resulted in moderate changes in the total routing

cost at the head nodes of these links in the network, and such identified links need to

be protected to prevent traffic congestion.

In these experiments, we observed a change in the total routing cost at the node at

the head of a link that was removed. This result is qualitatively consistent with the

description of OSPF given in Section 2.5.2.

4.3.2 Single-router failures with OSPF

Most network operators and ISPs desire to understand the impact of router failures

in the network. Evaluating and determining which router failures will change the

50

outcome of the route selection is a difficult problem in a large network configured

with OSPF. Understanding and evaluating effects of router failures are important,

because routing changes often lead to traffic shifts and traffic congestion. For a

network operator, it is often important to predict whether the network will be able

to accommodate the traffic load when single-router failures occur. In addition, it is

necessary to identify which of the routers in the network should be protected against

router failures by the addition of parallel routers.

In this case study, we experimented with the removal of routers in the emulated

GEANT network. In a large AS, it is often difficult to predict which router failures will

most affect the total routing cost - sum of Intra cost change. Our first objective

was to collect the routing information for the fully functional network and compare

the results with routing information for a missing-routers networking scenario. We

sought to identify which routers are most affected by the single router failures in

the network. Our second objective is to relate our results from the emulated GEANT

network with the simulation results reported by Quoitin et al. in [20, 21]. We discuss

the comparison in Section 4.4.

As explained in Section 2.5.2, an OSPF router typically runs Dijkstra's shortest path

algorithm to determine a shortest path tree to all subnets, with itself as the root

node. In this network, we assumed that each link has a cost of ten , and consequently

the least-cost path is the same as the shortest path.

For these experiments, we used the virtual GEANT network that had already been

validated as described in the last section. Firstly, we ran the experiments as described

in steps five to seven of Section 4.2.2 for a total of twenty-three times, that is, each

time for each router. When the network was fully functional , we recorded the total

routing cost from the routing tables for each router. Secondly, we removed one router

for each experiment using our XML specifications in Appendix C. Emulations of the

51

network were performed sequentially until the effects of a single router failure for each

router in the network were recorded. For each router disabled, the data were collected

by running the route command directly from the console of each remaining router,

and summing the costs. These experiments consumed a lot of time and resources

because we had to collate the resulting data for each of the twenty-three routers that

was disabled and their remaining routers on each occasion.

Normally, a router broadcasts link state information whenever there is a change in the

network. The OSPF routers periodically flood the network with their advertisements,

thereby adjusting their routing tables and letting other routers know that they are

still functional. The resulting changes in the number of routing entries for each

router removal are shown graphically in Figure 4.12. The results for both conditions

are displayed: when the network was fully functional and after the removal of each

router. Each router in the virtual network is shown on the x-axis, and the total

routing cost in the network is shown on they-axis.

When each router was removed, we observed moderate increases in the total routing

cost for some routers. These variations were of an average of 7.5%, with a range of 5%

to 10% in the total routing cost (i.e., the sum of Intra cost change) for these routers:

R5, R6, RlO, R12, and R14. In this project, any router with more than 5% increases

was considered to have a potential major change in the total cost of routing. These

results confirmed that the removal of any of these routers in the network would lead

to increases in the total routing cost. However, failure of such routers could lead to

increasing cost of reaching some destinations in the network.

We also observed that routers: R7, R17, R19, R20, R21 , and R22 have least effects

because their removal would lead to a shortfall of an average of 4.5%, with a range

of 2% to 7% in the total routing cost (i.e. , the sum of Intra cost change), not the

individual cost for a each router in the network. This shortfall means that their

52

OSPF: Single router failure analysis

36000 r--·----------~~-~-----.,...---.....,..... -,_,--........,-,-.--- ·--~

34000

32000

30000

28000

26000

24000

~ 22000
0
'; 20000
1:
'$ 18000
0

0:: 16000

~ 14000

12000

10000

8000

6000

4000

2000
o~wu~~~~~~yu~~~~UL~~~LLRJ~~~~yu~~.y

~
Routers

Figure 4.12: Single router failure analysis for OSPF

fC F~ll routers -1
~ss 1 router: -~

removal could reduce the total routing cost (i.e. , the sum of Intra cost change) in

the network. It would lower the total cost for traversing the whole network. The

fluctuation in the total routing cost gave us the hint on the possible changes in the

cost of maintaining traffic flows in the network.

Essentially from the data collected, we observed that there is a fluctuation in the

total routing cost for the missing routers networking scenario when compared with the

original, fully functioning network. These results confirm the concepts in Section 2.5.2

that there are changes in the routing tables when each router is removed from the

network.

53

4.4 Comparison of emulation and simulation re-

sults for the GEANT network

In this section, we compare the results obtained from our emulations studies of the

GEANT network with the simulation studies for this same network carried out by Bruno

Quoitin in [20, 21]. We briefly discuss the main difference of these two experimental

techniques.

The emulation and simulation techniques take complementary approaches toward

computing routing. Typically, the goal of emulation techniques is to closely reproduce

features and behaviors of real world devices while the goal of simulation techniques

is to predict outcomes of running a set of network devices in a network based on

the internal model of the specified simulator. In our emulation studies, we obtained

results that show similar pattern to that of Quoitin et al. [20, 21] regarding the change

in network conditions as caused by link and router failures in the network.

From our emulation studies of single link failures , we observed that a single link failure

often leads to noticeable changes in the total routing cost at the head nodes of the

links in the network. All of the links in our virtual GEANT network indicate variation

in the head node routing costs as shown graphically in Figure 4.11. For instance

on Figure 4.2, links: R1-R2, R1-R3 , R2-R5 , R3-R13 , R5-R10, R5-R6, R7-R9, R9-

R17, R10-R12, R12-R16, R13-R14, R18-R23, R21-R23, and R22-R23 represent some

increase in the cost while links: R2-R4, R4-R10, R4-Rll, R6-R7, R8-R9, R10-Rll ,

R15-R20, R17-R19, and R18-R19 show slight increases for re-routings when a link

removal occurred in the network. This is similar to the results obtained in [20, 21] ;

the changes in the routing updates for simulation work can be obtained from page

87 of [20]. From our investigations, we observed that all of our virtual GEANT links

caused nearly 20% fluctuations in the head node routing costs when they failed for

54

our emulated network which was primarily intra-AS. On the other hand, Quoitin et

al. observed that about 60% of the GEANT links caused more than 100,000 routing

changes when they failed in their simulated network. The differences in percentages

obtained for our emulated network and that of the simulated can be explained by the

fact that our emulated network percentage is only for the total head node routing

costs while the simulated network percentage is for all the four classes of routing

changes as described in their work. It can be seen clearly that both experimental

techniques identify important links that are most affected by single link failures in

their model of the GEANT network.

We also agree with Quoitin et al. that the number of intra domain re-routings is

few. We recorded a relatively low number of routing changes in our virtual network

because our network design mainly focused on an intra-AS, that is, we concentrate

on purely intra domain re-routing. In [20, 21], Quoitin et al. also remarked that there

are few routing changes in the intra-cost change (that is, change in IGP cost without

egress change) and intra-path change (that is, same IGP cost for an ingress-egress)

classes. This is because models of the GEANT would not capture all the changes in the

routing updates of single link failures for a transit network like the GEANT.

For our emulation studies of single router failures, we observed that failures of GEANT

routers often lead to changes in the total routing cost. The failure of a single router is

also equivalent to the failure of all links that are attached to this router. In [20, 21],

it was observed that failure of some routers could lead to the unreachability of some

destinations. These routers: R5, R6, RIO, R12, and R14 accounted for moderate

increases in the total routing cost; as their failures also affected the most critical links

that were connected to these routers. These links and routers are also identified in

Figures 4.11 and 4.12. The changes in the routing changes for simulation work can

be obtained from page 88 of [20]. Our emulation result is consistent with that of

55

simulation work in [20, 21]. It can be seen clearly that both experimental techniques

identify important routers that are most affected by single-router failures in their

model of the GEANT network.

There is a noticeable difference in the number ofrouting changes (i.e., the routing cost)

in our emulation studies when compare to that of simulation work. This difference

occurred because Quoitin et al. included BGP routes in his simulation studies while our

emulation studies focused purely on intra-AS routes. This explains the huge number

of routing changes recorded in his experiments. However, the pattern of the routing

costs reflects similar behavior for cases with link and router failures in the network.

4.5 Conclusions

In this section, we provide discussions and experimental conclusions. We used emula-

tion technique to model the GEANT network, carried out validation tests and conducted

two experimental case studies for intra-domain routing. We used the two emulation

case studies do a comparison with the simulation work and infer the following con-

clusions.

In the first case study, we used emulation techniques to examine the impact of link

failures on the head node routing costs in the network using the OSPF routing protocol.

From our results, we inferred that single-link failures in the virtual network account

for less than 20% difference in the total head node routing costs. Our emulation result

shows similar patterns with that of simulation work in [20, 21]. We inferred that both

emulation and simulation studies identified important links that were important in the

models of GEANT network. Such links were not exactly the same because of different

routing data used in the two different experimental techniques.

56

In the second case study, we used emulation techniques to understand the impact of

router failures on total routing cost using the OSPF routing protocol. We used the

single-router failure analysis to identify heavily-used routers in the network and also

to understand their behavior using the OSPF routing protocol. Such routers include

R5, R6, RlO, R12, and R14, and they accounted for moderate increases in the total

routing cost. Our results are similar to the simulation work in [20, 21] which also

observed that failures of single routers, that is, the GEANT routers often cause different

classes of routing changes and lead to traffic congestion. Finally, we were able to use

the emulation technique and OSPF routing protocol to understand changes in the

routing costs of our emulated GEANT network as caused by link and router failures.

57

Chapter 5

Conclusions and Future Work

This chapter concludes the project report. Section 5.1 is a summary of the work

done, and the main conclusions are presented in Section 5.2. Lastly, we discuss future

directions of this research in Section 5.3.

5.1 P roject Summary

We used emulation techniques to design and implement two virtual network testbeds

in this project. In this work, we emulated simple and complex networks; these net-

works were validated and used for our investigations. We implemented a fifteen-node

virtual network testbed and configured it with RIP routing protocol. We also mod-

elled a complex network, the GEANT and configured it with a more powerful routing

protocol, OSPF. These testbeds were used to explore experiments on routing changes

caused by link or router failures in the two networks.

With our simple network testbed, we were able to use emulation techniques to produce

meaningful results that are comparable to the expected results for a small network -

58

a fifteen node network. This testbed provided us with an environment for testing RIP

protocol while it works dynamically to re-configure the network against fluctuations

or changes of conditions in the network. In our experiments, RIP protocol was useful

for identifying missing links and critical links in the network: this result confirmed our

theoretical expectations of RIP. In addition, we observed that when there was a single-

router failure in the RIP configured network, it was equivalent to the simultaneous

failure of all the connecting links. During the single-router failure experiment the

network, there was no need to wait for network stabilization; the next available router

immediately became the next hop and adjusted the routes accordingly.

We carried out two case studies in the virtual GEANT network testbed to investigate

routing changes. The first case study, an evaluation of the impact of missing links on a

complex network, we observed the network behavior for missing-link scenarios. These

scenarios revealed critical links that were important for operations of the network. For

network operations, link failures accounted for changes in the total routing costs on the

routing tables. The second case study, an evaluation of the impact of missing routers

in the GEANT network testbed, we observed that the failures of certain routers could

lead to increase in the cost of reaching some destinations. The testbed enabled us to

study the behavior of the network when it was used for an intra-domain routing. From

the results collected, we observed that OSPF protocol was efficient at re-computing

the routing tables in the case of missing routers. The protocol flooded the network

with routing information updates and adjusted quickly to new conditions. Our results

are consistent with those obtained when similar experiments were performed on the

simulation of the GEANT network for the missing routers.

Lastly, we used emulation techniques to gain invaluable experience creating, configur-

ing, and managing virtual networks that are similar to live networks. This practical

knowledge and understanding provided us insights for the deployment of physical net-

59

works when needs arise. We gained much-needed knowledge and hands-on experience

to building and maintaining small and large scale networks.

In this project, there were two major limitations to conducting our experiments.

The first limitation was our inability to obtain the network graph for the simulated

GEANT network of Quoitin et al. This limitation prevented us from having the exact

representation of links and routers in the design of our emulated networking scenarios.

Though, the GEANT network had ceased to exist, but it would be nice if GEANT2

operators can produce a network graph of their new network for future research

purposes.

The second limitation was our inability to obtain and use the same routing data that

Quoitin et al. collected on November 24th, 2004 [20, 21]. In our experiments, we had

to generate our routing data from our emulation of the GEANT network. This lack of

routing data accounted for non-replicate references to individual links and routers in

the graphical presentation of our results. However, we observed a similar pattern of

link and router behaviors as recorded in the simulation experiments.

5.2 Conclusions

There are five main conclusions from this project:

1. Our experiments in Chapters 3 and 4 enable us to develop virtual network

testbeds that are re-usable and re-configurable by users. These testbeds will

enhance learning and testing of network applications and services by students

and network administrators . Network configurations and training can be pro-

vided to students without requiring a real network. Our testbeds can be used

as templates for practising and learning network configurations.

60

2. Our experiments in Chapters 3 and 4 show that emulation-based experiments

demonstrate typical behaviors of both RIP and OSPF protocols in any network.

Both dynamic routing protocols are able to quickly re-compute routing tables

when there are missing-links, and the OSPF protocol effectively handles missing-

routers scenarios by flooding the network with new routing information.

3. Our experiments in Chapters 3 and 4 confirm that emulation-based experiments

can help ISP operators to understand routing changes and assess the total rout-

ing costs of traversing the network respectively. Virtual network testbeds can

be used to study missing routers and links in simple and complex networks.

This information is useful because emulation environments closely reproduce

features and behaviors of real world devices. Emulated networks undergo the

same packet exchanges and state changes that occur in real world.

4. Our experiments in Chapters 3 and 4 confirm that emulation techniques pro-

duce reasonable results that are consistent with simulation techniques. Our

emulation results are consistent with simulation results in identifying critical

links and routers that can influence routing changes and traffic distributions in

the network. The experimental work in Chapters 3 and 4 evaluated the im-

pact of link and router failures in the network, achieved comparable patterns of

network behavior when there were link and router failures in the network, and

identified network links and routers that needed to be protected.

5. Our experiments in Chapters 3 and 4 affirm the cheap and fast ways to model

complex networks. To conduct emulation of networks, we simply obtain free

download of the VNUML tool and install it on a Linux machine for easy creation of

networks. Network analysts and ISP operators can easily use this fast approach

to investigate their desired networks.

61

5.3 Future work

In this project, our focus was to investigate routing changes and total routing costs

for intra-AS. It would be interesting to expand these techniques and explore network

behaviors for inter-AS routing changes and traffic distributions. For future work,

we recommend the use of VNUML tool to study inter-domain routing changes. This

work will involve using exterior gateway protocols (EGP) for interconnecting different

autonomous systems ASs. The study of EGP will help to understand the operations

of the Internet and the collection of ASs that make up the Internet.

The GEANT network had ceased to exist, and has since been replaced with the GEANT2

network. Another avenue of investigations is to conduct similar experiments in the

new network and compare the effects of missing links and routers on routing changes in

the network. The results obtained will be more relevant and provide useful suggestions

for ISP operators based in the new network.

It is also worth studying the use of combined experimental techniques for studying

routing changes and total routing costs. Applying these techniques: simulation, em-

ulation and live testing will allow researchers to determine which combination of two

or three techniques will improve network tests and experiments.

62

Bibliography

[1] Paolo Giarrusso a .k.a. BlaisorBlade. Skas patches:. http://www.
user-mode-linux.org/-blaisorblade/uml-utilities.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauery, Ian Pratt, and Andrew Warfield. Xen and the Art of Vir-
tualization. In 19th A CM Symposium on Operating Systems principles, Bolton
Landing, NY, USA, 2003.

[3] James H. Cowie. Scalable simulation framework api reference manual. http:
//www.ssfnet.org.

[4] DANTE. An overview map of GEANT network. http: I /www. geant. net/
upload/pdf/Topology_Oct_2004 .pdf/.

[5] Jeff Dike. User Mode Linux. Pearson Education, Inc, 1st edition, 2006.

[6] Kevin Fall and Kannan Varadhan. The Network Simulator Manual. http:
//www.isi.edu/nsnam/ns/.

[7] Tony Dongliang Feng, Rob Ballantyne, and Ljiljana Trajkovic. Implementation
of BGP in a network simulator. Technical report, Simon Fraser University, 2004.

[8] Fermin Gallin and David Fernandez. VNUML tutorial. http: I /www. di t. upm.
es/vnumlwiki/index.php/Tutorial.

[9] Fermin Galan, E. Garcia, C. Chavarri, D. Fernandez, and M. Gomez. Design
and implementation of an IP multimedia subsystem emulator using virtualiza-
tion techniques. Technical report, Centre Tecnologic de Telecomunicacions de
Catalunya (CTTC) Av. Canal Olimpic, s/n Castelldefels, Spain, May 2006.

[10] Christian Huitema. Routing in the Internet. Prentice Hall, 2nd edition, 2000.

[11] Kunihiro Ishiguro. Quagga Routing Software Suite. http: I /www. quagga. net .

[12] Linux Kernel. The vanilla kernel: . http: I /www. kernel. org.

[13] Bruce Kneale and Ilona Box. A virtual learning environment for real-world
networking. Informing Science Journal, June 2003.

63

[14] Bruce Kneale, Ain Y. De Horta, and Ilona Box. VELNET: Virtual environment
for learning networking. In 6th A ustraliasian Computing Education Conference
(ACE2004), Dunedin, New Zealand, 2004. Australian Computer Science Society.

[15] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Ap-
proach Featuring the Internet. Pearson-Addison Wesley, 3rd edition, 2005.

[16] Steve Liu, Willis Marti, and Wei Zhao. Virtual Networking Lab (VNL): its
concepts and implementation. In Proceedings of the 2001 American Society for
Engineering Annual Conference fj Exposition, 2001.

[17] Kuthonuzo Luruo and Shashank Khanvikar. Virtual networking with user-mode
linux. Linux For You Magazine, January 2003.

[18] Luca Mottola. Overlay Management for Publish-Subscribe in mobile Environ-
ments. PhD thesis, Politecnico Di Milano, 2003-2004.

[19] Wendell Odom. CCNA Intra: Exam Certification Guide. Cisco Systems, 2004.

[20] Bruno Quoitin. BGP-based Interdomain Traffic Engineering. PhD thesis, Uni-
versite Catholique de Louvain, Belgium, August 2006.

[21] Bruno Quoitin and Steve Uhlig. Modeling the Routing of an Autonomous System
with C-BGP. In IEEE Network Magazine. IEEE, November/December 2005.

[22] Massimo Rimondini. Emulation of computer network with Netkit. Technical
report, Universita Degli Studi Di Roma Tre, 2007.

[23] Massimo Rimondini. Interdomain Routing Policies in the Internet: Inference
and Analysis. Computer science and Engineering, Roma Tre University, 2007.

[24] Andreas Steffen, Eric Marchionni, and Parik Rayo. Advanced network simulation
under user-mode linux. Gesellschaft fiir Informatik, 2005.

[25] AndrewS. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle River,
NJ, 3rd edition, 1996.

[26] Yuichiro Tateiwa, Takami Yasuda, and Shigeki Yokoi. Virtual Environment
Based Learning for Network Administration Beginner. In ABR fj TLC Con-
ference Proceedings, Hawaii USA, 2007.

[27] OPNET Technologies. OPNET. http: I /www. opnet. com.

[28] Jeroen van der Ham and Gert Jan Verhoog. Virtual environments for networking
experiments. Technical report, University of Amsterdam, the Netherlands, 2004.

[29] David Watson, Farnam Jahanian, and Craig Labovitz. Experiences with moni-
toring ospf on a regional service provider network. In 23rd International Confer-
ence on Distributed Computing Systems (ICDCS 2003), Ann Arbor, Michigan,
US, 2003. Computer Science Society.

64

[30] Klaus Wehrle, Frank Pahlke, Hartmut Ritter , Daniel Muller, and Marc Bechler.
The LINUX Networking Architecture: Design and Implementation of Network
Protocols in the Linux K ernel. Pearson-Prentice Hall, 1st edition, 2005.

[31] Wikipedia. An overview of GEANT network. http: I /en. wikipedia. org/wiki/
GEANT.

[32] Chris Wright. Virtually Linux: Virtualization techniques in linux. In Proceedings
of the Linux Symposium, Volume Two, Ottawa, Ontario, Canada, 2004.

65

-

Appendix A

The XML file for a test bed with RIP

A.l A fifteen-node virtual network testbed

The following XML file describes a sample scenario of fifteen nodes to be used with UML

and VNUML parser to set up a virtual network testbed. This testbed is configured

with RIP to verify whether or not this intra-domain routing protocol is functioning

correctly. We also use the testbed to study routing instability in the network.

The XML file is stored in /usr/share/vnuml/RIP15nodes . xml directory of a host

machine, and a copy of this XML specification is included in the report as follows.

1 <?xml version="!. 0" encoding="UTF-8"?>
2 <!DOCTYPE vnuml SYSTEM "/usr/share/xml/vnuml/vnuml.dtd">
3

4 <vnuml>
5 <global>
6 <version>1.8</version>
7 <simulation_name>RIP15nodes</simulation_name>
s <automac/>
9 <vm_def aul ts exec_mode= "mconsole" >

10 <filesystem type="cow">/usr/share/vnuml/filesystems
u /root_fs_tutorial</filesystem>

66

12 <kernel>/usr/share/vnuml/kernels/linux</kernel>
13 <console id="O">xterm</console>
14 </vm_defaults>
15 </global>
16 <net name="NetO" mode="uml_switch" />
17 <net name="Net1" mode="uml_switch" />
18 <net name="Net2" mode="uml_switch" />
19 <net name="Net3" mode="uml_switch" />
20 <net name="Net4" mode="uml_switch" />
21 <net name="Net5" mode="uml_switch" />
22 <net name="Net6" mode="uml_switch" />
23 <net name="Net7" mode="uml_switch" />
24 <net name="Net8" mode="uml_switch" />
25 <net name="Net9" mode="uml_switch" />
26 <net name="Net10" mode="uml_switch"/>
27 <net name="Net11" mode="uml_switch"/>
28 <net name="Net12" mode="uml_switch" />
29 <net name="Net13" mode="uml_switch" />
30 <net name="Net14" mode="uml_switch" />
31 <net name="Net15" mode="uml_switch"/>
32 <net name="Net16" mode="uml_switch"/>
33 <net name="Net17" mode="uml_switch" />
34

35 <vm name="HostA">
36 <if id="1" net="NetO">
37 <ipv4 mask="255.255.255.0">10.0.0.3</ipv4>
38 </if>
39 <route type="ipv4" gw="10.0.0.1">default</route>
40 </vm>
41

42 <vm name="R1">
43 <if id="1" net="Net1">
44 <ipv4 mask="255. 255.255. 0">10. 0 .1. 3</ipv4>
45 </if>
46 <if id="2" net="NetO">
47 <ipv4 mask="255. 255.255. 0">10. 0. 0 .1</ipv4>
48 </if>
49 <if id="3" net="Net2">
5o <ipv4 mask="255. 255.255. 0">10. 0. 2. 3</ipv4>
5 1 </if>
52 <forwarding/>
53 <filetree root=" /etc/quagga" seq="start ">r1</filetree>
54 <exec seq="start" type="verbatim">hostname</exec>

67

55 <exec seq= 11 start 11 type= 11 verbatim 11 >/usr/lib/
56 quagga/zebra -d</exec>
57 <exec seq= 11 start 11 type= 11 verbatim 11 >/usr/lib/
ss quagga/ripd -d</exec>
59 <exec seq= 11 stop 11 type= 11 verbatim 11 >hostname</exec>
60 <exec seq= 11 stop 11 type= 11 verbatim 11 >killall zebra</exec>
61 <exec seq= 11 stop 11 type= 11 verbatim 11 >killall ripd</exec>
62 </vm>
63

64 <vm name= 11 R2 11 >
65 <if id= 11 1 11 net= 11 Net2 11 >
66 <ipv4 mask= 11 255. 255.255. 0 11 >10. 0. 2. 5</ipv4>
67 </if>
68 <if id= 11 2 11 net= 11 Net4 11 >
69 <ipv4 mask= 11 255. 255.255. 0 11 >10. 0. 4. 3</ipv4>
70 </if>
n <if id= 11 3 11 net= 11 Net5 11 >
12 <ipv4 mask= 11 255. 255.255. 0 11 >10. 0. 5. 3</ipv4>
73 </if>
74 <if id= 11 4 11 net= 11 Net7 11 >
~ <ipv4 mask= 11 255.255.255 . 0 11 >10.0.7.5</ipv4>
76 </if>
11 <forwarding/>
1s <f i letree root= 11 I etc/ quagga 11 seq= 11 start 11 >r2</ f iletree>
79 <exec seq= 11 start 11 type= 11 verbatim 11 >hostname</exec>
so <exec seq= 11 start 11 type= 11 verbatim 11 >/usr/lib/
s1 quagga/zebra -d</exec>
s2 <exec seq= 11 start 11 type= 11 verbatim 11 >/usr/lib/
s3 quagga/ripd -d</exec>
s4 <exec seq= 11 stop 11 type= 11 verbatim 11 >hostname</exec>
s5 <exec seq= 11 stop 11 type= 11 verbatim 11 >killall zebra</exec>
s6 <exec seq= 11 stop 11 type= 11 verbatim 11 >killall ripd</exec>
s1 </vm>
88

s9 <vm name= 11 HostB 11 >
9o <if id= 11 1 11 net= 11 Net4 11 >
91 <ipv4 mask= 11 255.255.255.0 11 >10.0.4.5</ipv4>
92 </if>
93 <route type= 11 ipv4 11 gw= 11 10.0.4.3 11 >default</route>
94 </vm>
95

96 <vm name= 11 R3 11 >
97 <if id= 11 1 11 net= 11 Net3 11 >

68

~ <ipv4 mask="255.255.255.0">10.0.3.3</ipv4>
99 </if>

100 <if id="2" net="Net1 ">
101 <ipv4 mask="255. 255.255. 0">10. 0 .1. 5</ipv4>
102 </if>
1o3 <if id="3" net="Net7">
1o4 <ipv4 mask="255. 255.255. 0">10. 0. 7. 3</ipv4>
105 </if>
1o6 <forwarding/>
101 <filetree root=" /etc/quagga" seq="start">r3</filetree>
1o8 <exec seq="start" type="verbatim">hostname</exec>
1o9 <exec seq="start" type="verbatim">/usr/lib/
110 quagga/zebra -d</exec>
111 <exec seq="start" type="verbatim">/usr/lib/
112 quagga/ripd -d</exec>
113 <exec seq="stop" type="verbatim">hostname</exec>
114 <exec seq="stop" type="verbatim">killall zebra</exec>
115 <exec seq="stop" type="verbatim">killall ripd</exec>
116 </vm>
117

118 <vm name="R4">
119 <if id=" 1" net="Net5">
1w <ipv4 mask="255.255.255.0">10.0.5.5</ipv4>
121 </if>
122 <if id="2" net="Net8">
123 <ipv4 mask="255. 255.255. 0">10. 0. 8. 3</ipv4>
124 </if>
125 <if id="3" net="Net9">
126 <ipv4 mask="255. 255.255. 0">10. 0. 9. 3</ipv4>
127 </if>
128 <forwarding/>
129 <filetree root=" /etc/quagga" seq="start">r4</filetree>
130 <exec seq="start" type="verbatim">hostname</exec>
131 <exec seq="start" type="verbatim">/usr/lib/
132 quagga/zebra -d</exec>
133 <exec seq="start" type="verbatim">/usr/lib/
134 quagga/ripd -d</exec>
135 <exec seq=" stop" type= "verbatim" >hostname</ exec>
136 <exec seq="stop" type="verbatim">killall zebra</exec>
137 <exec seq="stop" type="verbatim">killall ripd</exec>
138 </vm>
139

140 <vm name="R5">

69

14 1 <if id="1" net="Net3">
u2 <ipv4 mask="255.255.255.0">10.0.3.5</ipv4>
143 </if>
144 <if id="2" net="Net6">
145 <ipv4 mask="255. 255.255. 0">10. 0. 6. 5</ipv4>
146 </if>
147 <if id="3" net="Net11">
148 <ipv4 mask="255. 255.255. 0">10. 0 .11. 3</ipv4>
149 </if>
15o <if id="4" net="Net12">
151 <ipv4 mask="255. 255.255. 0">10. 0.12. 3</ipv4>
152 </if>
153 <forwarding/>
154 <filetree root="/etc/quagga" seq="start">r5</filetree>
155 <exec seq="start" type="verbatim">hostname</exec>
156 <exec seq="start" type="verbatim">/usr/lib/
157 quagga/zebra -d</exec>
158 <exec seq="start" type="verbatim">/usr/lib/
159 quagga/ripd -d</exec>
160 <exec seq="stop" type="verbatim">hostname</exec>
161 <exec seq="stop" type="verbatim">killall zebra</exec>
162 <exec seq="stop" type="verbatim">killall ripd</exec>
163 </vm>
164

165 <vm name="HostC">
166 <if id="1" net="Net6">
167 <ipv4 mask="255. 255.255 . 0">10 . 0. 6. 3</ipv4>
168 </if>
169 <route type="ipv4" gw="10.0.6 . 5">default</route>
110 </vm>
171

112 <vm name="R6">
173 <if id="1" net="Net8">
174 <ipv4 mask="255 . 255.255.0">10.0.8.5</ipv4>
175 </if>
176 <if id="2" net="Net10">
m <ipv4 mask="255.255.255.0">10.0 . 10.3</ipv4>
178 </if>
179 <if id="3" net= "Net17">
18o <ipv4 mask="255. 255.255. 0">10. 0.17. 5</ipv4>
181 </if>
182 <forwarding type=" ip" />
183 <filetree root="/etc/quagga" seq="start">r6</filetree>

70

184 <exec seq="start" type="verbatim">hostname</exec>
185 <exec seq="start" type="verbatim">/usr/lib/
186 quagga/zebra -d</exec>
187 <exec seq="start" type="verbatim">/usr/lib/
188 quagga/ripd -d</exec>
189 <exec seq="stop" type="verbatim">hostname</exec>
19o <exec seq="stop" type="verbatim">killall zebra</exec>
191 <exec seq="stop" type="verbatim">killall ripd</exec>
192 </vm>
193

194 <vm name="HostD">
195 <if id="1" net="Net10">
196 <ipv4 mask="255. 255.255. 0">10. 0. 0. 5</ipv4>
197 </if>
198 <route type="ipv4" gw="10.0.0.3">default</route>
199 </vm>
200

201 <vm name="R7">
202 <if id="1" net="Net9">
2o3 <ipv4 mask="255. 255.255. 0">10. 0. 9. 5</ipv4>
204 </if>
2o5 <if id="2" net="Net16">
2o6 <ipv4 mask="255. 255.255. 0">10. 0.16. 5</ipv4>
207 </if>
2o8 <if id="3" net="Net17">
2o9 <ipv4 mask="255. 255.255. 0">10. 0.17. 3</ipv4>
210 </if>
211

212 <forwarding type=" ip" />
213 <filetree root="/etc/quagga" seq="start">r7</filetree>
214 <exec seq=" start" type= "verbatim" >hostname</ exec>
215 <exec seq="start" type="verbatim">/usr/lib/
216 quagga/zebra -d</exec>
211 <exec seq="start" type="verbatim">/usr/lib/
218 quagga/ripd -d</exec>
219

220

221

<exec seq="stop" type="verbatim">hostname</exec>
<exec seq="stop" type="verbatim">killall zebra</exec>
<exec seq="stop" type="verbatim">killall ripd</exec>

222 </vm>
223

224 <vm name=" R8" >
225 <if id="1" net="Net12">
226 <ipv4 mask="255. 255.255. 0">10. 0.12. 5</ipv4>

71

227 </if>
228 <if id="2" net="Net13">
229 <ipv4 mask="255. 255 . 255. 0">10 . 0. 13. 5</ipv4>
230 </if>
23 1 <if id="3" net="Net15">
232 <ipv4 mask="255.255 . 255.0">10.0.15.3</ipv4>
233 </if>
234 <if id="4" net="Net16">
235 <ipv4 mask="255. 255.255. 0">10. 0 . 16. 3</ipv4>
236 </if>
237

238 <forwarding type=" ip" />
239 <filetree root= "/etc/quagga" seq="start">r8</filetree>
24o <exec seq="start" type="verbatim">hostname</exec>
24 1 <exec seq="start" type="verbatim">/usr/lib/
242 quagga/zebra -d</exec>
243 <exec seq="start" type="verbatim">/usr/lib/
244 quagga/ripd -d</exec>
245 <exec seq="stop" type="verbatim">hostname</exec>
246 <exec seq="stop" type="verbatim">killall zebra</exec>
24 7 <exec seq="stop" type="verbatim">killall ripd</exec>
248 </vm>
249

25o <vm name="HostE">
25 1 <if id=" 1" net="Net15">
252 <ipv4 mask="255. 255.255. 0">10. 0.15 . 5</ipv4>
253 </if>
254 <route type="ipv4" gw="10.0.15.3">default</route>
255 </vm>
256

25 7 <vm name="R9">
258 <if id=" 1" net="Net11 ">
259 <ipv4 mask="255. 255.255. 0">10. 0 .11. 5</ipv4>
260 </if>
26 1 <if id= "2" net="Net13">
262 <ipv4 mask="255.255.255.0">10 . 0 . 13.3</ipv4>
263 </if>
264 <if id="3" net="Net14">
265 <ipv4 mask="255. 255.255. 0">10 . 0.14. 3</ipv4>
266 </if>
267 <forwarding type="ip"/>
268 <filetree root="/etc/quagga" seq="start">r9</filetree>
269 <exec seq="start" type="verbatim">hostname</exec>

72

-

270

271

272

273

274

275

276

277

<exec seq="start" type="verbatim">/usr/lib/
quagga/zebra -d</exec>
<exec seq="start" type="verbatim">/usr/lib/
quagga/ripd -d</exec>
<exec seq="stop" type="verbatim">hostname</exec>
<exec seq="stop" type="verbatim">killall zebra</exec>
<exec seq="stop" type="verbatim">killall ripd</exec>

278 </vm>
279

28o <vm name="HostF">
281 <if id="1" net="Net14">
282 <ipv4 mask="255. 255.255. 0">10. 0.14. 5</ipv4>
283 </if>
284 <route type="ipv4" gw="10.0.14.3">default</route>
285 </vm>
286 </vnuml>
287 \end{Verbatim}

73

-

Appendix B

Configuration files for Zebra, RIP

and vtysh

In these configuration files, you can specify the debugging options, a vty's password,

the RIP routing dremon configurations, a log file name, and so forth.

We wrote three configuration files for each router configured with RIP . These files

are zebra.conf , ripd.conf and vtysh.conf , and are described below. These brief

descriptions are as follows:

• The first file is a default configuration file, and it is called zebra. conf. This

file, zebra, is an IP routing manager and is used to provide kernel routing

updates, interface lookups, and the redistribution of routes between different

routing protocols [11].

• The second file is a default configuration file , and it is called ri pd . conf. This

configuration file contains a ripd dremon that implements the RIP protocol.

This RIP protocol requires interface information maintained by zebra dremon.

It is mandatory to run zebra before running ripd dremon, and zebra must be

74

2

invoked before we use an ripd dremon.

• The third file is vtysh. conf file and it configures the virtual terminal - (vty).

The vty is a command line interface (CLI) for user interaction with the routing

daemon. Users can connect to the dremons via the telnet protocol. To enable a

vty interface, users have to setup a vty password.

These files are usually kept in /etc/quagga directory of a computer machine. For

ease of reference, we will upload all the configuration files for this project to this

website: http: I /web. unbc . ca/ rvbankole/ after the project defense.

Below is a set of sample files for router, Rl, regarding the configuration files explained

above.

B.l zebra.conf

3 zebra sample configuration file
4

5 $Id: zebra.conf.sample,17:26:38 developer Exp $
6

1 hostname Rl
8 password xxxx
9 enable password zebra

10

11 Interface's description.
12

13 ! interface lo
u ! description test of desc.
15

16 !interface sitO
11 multicast
18

19

75

-

20 ! Static default route sample.
21

n !ip route 0.0.0.0/0 203.181.89.241
23

24

25 ! log file zebra.log
26 log file /var/log/zebra/zebra.log

B.2 ripd.conf

2

3 RIPd sample configuration file
4

5 $Id: ripd . conf.sample, 17:28:42 developer Exp $
6

1 hostname ripd
s password zebra
9

10 debu g rip events
11 debu g rip packet
12

13 router rip
14 networ k 10.0.0.0/8

B.3 vtysh.conf

! vtysh sample configuration file
2

3 !username niyibank nopassword
4 log file /var/log/zebra/vtysh.log

76

Appendix C

The XML file for the virtual GEANT

network

In order to set up dynamic routing with the DSPF routing protocol, we configure the

virtual network testbed with OSPF. This protocol is widely used in large networks such

as enterprise networks and ISPs because it converges very quickly. By convergence,

we refer to the time it takes to respond to changes in the network. These changes

could occur due to link and router failures.

We need three separate configuration files- zebra. conf , ospfd . conf and vtysh. conf

for each of the twenty-three routers. In the ospfd. conf file, each router defines

the subnets and the OSPF areas that make up the network. Both zebra. conf and

vtysh. conf resemble equivalent files that we already explained in Subsection 3.3.2.

In the OSPF configuration file, we specify the debugging options, routing dremon

configurations and the name of the log file. We write three configuration files for each

of the twenty-three routers. We use these configuration files in the XML specification

files to create the virtual network. See sample of the three configuration files in

Appendix E.

77

-

On the host machine, we locate the XML file and then start or stop these routing

dremons by specifying the necessary commands.

The XML file is stored in /usr/share/vnuml/NIYiospf .xml directory of a host rna-

chine, and a copy of t his XML specification is included in the report as follows.

C.l A twenty-three node virtual network testbed

The following XML file describes a scenario of twenty-three nodes to be used with UML

and VNUML parser to set up a virtual network testbed. This testbed is configured

with OSPF to verify whether or not this int ra-domain rout ing protocol is functioning

correctly. We also use the testbed to study rout ing instability in the network. Below

is the script for the XML specifications.

1 <?xml version="!. 0" encoding="UTF-8"?>
2 <!DOCTYPE vnuml SYSTEM "/usr/share/xml/vnuml/vnuml.dtd">
3

4 <vnuml>
5 <global>
6 <version>1.8</version>
7 <simulation_name>newGEANT</simulation_name>
8 <automac/>
9 <vm_defaults exec_mode="mconsole">

10 <filesystem type="cow">/usr/share/vnuml/filesystems/
11 root _fs_tutorial</filesystem>
12 <kernel>/usr/share/vnuml/kernels/linux</kernel>
13 <console id="O">xterm</console>
14 </vm_defaul ts>
15 </global>
16

17 <net name="Netl" mode="uml_switch" />
18 <net name="Net2" mode="uml_switch" />
19 <net name="Net3" mode="uml_switch" />
20 <net name="Net4" mode="uml_switch" />
21 <net name="Net5" mode="uml_switch" />
22 <net name="Net6" mode="uml_switch" />

78

-

23 <net name="Net7" mode="uml_switch" />
24 <net name="Net8" mode="uml_switch" />
25 <net name="Net9" mode="uml_switch" />
26 <net name="Net10" mode="uml_switch"/>
2 7 <net name="Net11" mode="uml_switch"/>
28 <net name="Net12" mode="uml_swi tch" />
29 <net name="Net13" mode="uml_switch" />
30 <net name="Net14" mode="uml_switch" />
3 1 <net name="Net15" mode="uml_switch"/>
32 <net name="Net16" mode="uml_switch"/>
33 <net name="Net17" mode="uml_switch" />
34 <net name="Net18" mode="uml_switch" />
35 <net name="Net19 " mode="uml_switch" />
36 <net name="Net20" mode="uml_switch" />
37 <net name="Net21" mode="uml_switch" />
38 <net name="Net22" mode="uml_switch" />
39 <net name="Net23" mode="uml_switch" />
40 <net name="Net24" mode="uml_switch" />
41 <net name="Net25" mode="uml_switch" />
42 <net name="Net26" mode="uml_switch" />
43 <net name= "Net27" mode="uml_switch" />
44 <net name="Net28" mode="uml_switch"/>
45 <net name="Net29" mode="uml_switch"/>
46 <net name="Net30" mode="uml_switch" />
47 <net name="Net31" mode="uml_switch" />
48 <net name="Net32" mode="uml_switch" />
49 <net name="Net33" mode="uml_switch"/>
50 <net name="Net34" mode="uml_switch"/>
5 1 <net name="Net35" mode="uml_switch" />
52 <net name="Net36" mode="uml_switch"/>
53 <net name="Net37" mode="uml_switch" />
54 <net name="Net38" mode="uml_switch" />
55

56 <vm name="R1" order="">
57 <if id="1" net="Net1">
ss <ipv4 mask="255. 255.255. 0">10 . 0 .1. 4</ipv4>
59 </if>
6o <if id="2" net="Net2">
61 <ipv4 mask="255.255.255.0">10.0.2.4</ipv4>
62 </if>
63 <forwarding type=" ip" />
64 <filetree root=" /etc/quagga" seq="start">R1</filetree>
65 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/

79

66 conf/*/rp_filter; do echo 0 > $f; done</exec>
67 <exec seq=" start" type= "verbatim" >hostname</ exec>
68 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
69 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
10 <exec seq="stop" type="verbatim">killall zebra</exec>
11 <exec seq="stop" type="verbatim">killall ospfd</exec>
12 </vm>
73

74 <vm name="R2">
75 <if id="1" net="Net2">
76 <ipv4 mask="255. 255.255. 0">10. 0. 2. 8</ipv4>
77 </if>
78 <if id="2" net="Net5">
79 <ipv4 mask="255. 255.255. 0">10. 0 . 5. 4</ipv4>
80 </if>
81 <if id="3" net="Net15">
82 <ipv4 mask="255.255.255.0">10.0.15.8</ipv4>
83 </if>
84

85 <forwarding type=" ip" />
86 <filetree root="/etc/quagga" seq="start">R2</filetree>
87 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
88 conf/*/rp_filter; do echo 0 > $f; done</exec>
89 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
9o <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
91 <exec seq="stop" type="verbatim">killall zebra</exec>
92 <exec seq="stop" type="verbatim">killall ospfd</exec>
93 </vm>
94

95 <vm name="R3">
96 <if id=" 1" net="Net1 ">
97 <ipv4 mask="255. 255.255. 0">10. 0 .1. 8</ipv4>
98 </if>
99 <if id="2" net="Net4">

1oo <ipv4 mask="255. 255.255 . 0">10. 0 . 4. 4</ipv4>
101 </if>
102 <if id="3" net="Net3">
1o3 <ipv4 mask="255. 255.255. 0">10. 0. 3 .4</ipv4>
104 </if>
1o5 <forwarding type=" ip" />
1o6 <filetree root=" I etc/ quagga" seq=" start" >R3</filetree>
101 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
10s conf/*/rp_filter; do ech~ 0 > $f; done</exec>

80

1o9 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
110 <exec seq= "start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
111 <exec seq="stop" type="verbatim">killall zebra</exec>
112 <exec seq="stop" type="verbatim">killall ospfd</exec>
113 </vm>
114

115 <vm name="R4">
116 <if id="1" net="Net4">
117 <ipv4 mask="255.255.255.0">10.0.4.8</ipv4>
118 </if>
119 <if id="2" net="Net15">
120 <ipv4 mask="255.255.255.0">10.0.15.4</ipv4>
121 </if>
122 <if id="3" net="Net16">
123 <ipv4 mask="255. 255.255. 0">10. 0.16. 4</ipv4>
124 </if>
125 <if id="4" net="Net17">
126 <ipv4 mask="255. 255.255. 0">10. 0.17. 4</ipv4>
127 </if>
128 <forwarding type=" ip" />
129

130 <filetree root=" /etc/quagga" seq="start">R4</filetree>
131 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
1~ conf/*/rp_filter; do echo 0 > $f; done</exec>
133 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
134 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
135 <exec seq="stop" type="verbatim">killall zebra</exec>
136 <exec seq="stop" type="verbatim">killall ospfd</exec>
137 </vm>
138

139 <vm name=" R5" >
14o <if id="1" net="Net5">
141 <ipv4 mask="255 . 255.255. 0">10. 0. 5. 8</ipv4>
142 </if>
143 <if id="2" net="Net6">
144 <ipv4 mask="255. 255 . 255. 0">10 . 0 . 6. 4</ipv4>
145 </if>
146 <if id="3" net="Net12">
147 <ipv4 mask="255. 255 . 255. 0">10 . 0.12 .4</ipv4>
148 </if>
149 <forwarding type=" ip" />
150

151 <filetree root="/etc/quagga" seq="start">R5</filetree>

81

152 <exec seq="start" type="verbatim">for f in /proc/sys/net/
153 ipv4/conf/•/rp_filter; do echo 0 > $f; done</exec>
154 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
155 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
156 <exec seq="stop" type="verbatim">killall zebra</exec>
157 <exec seq="stop" type="verbatim">killall ospfd</exec>
158 </vm>
159

160 <vm name="R6">
161 <if id="1" net="Net6">
162 <ipv4 mask="255. 255 . 255 . 0">10. 0. 6 . 8</ipv4>
163 </if>
164 <if id="2" net="Net7">
165 <ipv4 mask="255. 255.255. 0">10 . 0. 7. 4</ipv4>
166 </if>
167 <if id="3" net="Net8">
168 <ipv4 mask="255. 255.255. 0">10. 0. 8. 4</ipv4>
169 </if>
110 <forwarding type="ip"/>
111 <filetree root="/etc/quagga" seq="start">R6</filetree>
112 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
1~ conf/•/rp_filter; do echo 0 > $f; done</exec>
174 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
175 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
176 <exec seq="stop" type="verbatim">killall zebra</exec>
111 <exec seq="stop" type="verbatim">killall ospfd</exec>
178 </vm>
179

180 <vm name="R7">
181 <if id="1" net="Net7">
182 <ipv4 mask="255. 255 . 255 . 0">10. 0. 7. 8</ipv4>
183 </if>
184 <if id="2" net="Net10">
185 <ipv4 mask="255. 255 . 255. 0">10. 0. 10. 4</ipv4>
186 </if>
187 <if id="3" net="Net11">
188 <ipv4 mask="255. 255.255. 0">10. 0 .11. 4</ipv4>
189 </if>
19o <forwarding type=" ip" />
191 <filetree root="/etc/quagga" seq="start">R7</filetree>
1n <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
1~ conf/•/rp_filter; do echo 0 > $f; done</exec>
194 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>

82

195 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
196 <exec seq="stop" type="verbatim">killall zebra</exec>
197 <exec seq="stop" type="verbatim">killall ospfd</exec>
198 </vm>
199

2oo <vm name="HostA">
201 <if id="1" net="Net10">
202 <ipv4 mask="255. 255.255. 0">10. 0.10. 8</ipv4>
203 </if>
2o4 <route type="ipv4" gw="10.0.10.4">default</route>
2o5 <forwarding type=" ip" />
2o6 </vm>
207

2o8 <vm name=" R8" >
2o9 <if id="1" net="Net8">
210 <ipv4 mask="255. 255.255. 0">10. 0. 8. 8</ipv4>
211 </if>
212 <if id="2" net="Net9">
213 <ipv4 mask="255. 255.255. 0">10. 0. 9 .4</ipv4>
214 </if>
215 <if id="3" net="Net32">
216 <ipv4 mask="255. 255.255. 0">10. 0. 32 . 4</ipv4>
217 </if>
218 <forwarding type=" ip" />
219 <filetree root="/etc/quagga" seq="start">R8</filetree>
220 <exec seq="start" type="verbatim">for f in /proc/sys/net/
221 ipv4/conf/*/rp_filter; do echo 0 > $f; done</exec>
222 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
223 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
224 <exec seq="stop" type="verbatim">killall zebra</exec>
225 <exec seq="stop" type="verbatim 11 >killall ospfd</exec>
226

221 </vm>
228

229 <vm name=" R9" >
230 <if id="1" net="Net9">
231 <ipv4 mask="255. 255.255. 0">10. 0. 9. 8</ipv4>
232 </if>
233 <if id="2" net="Net26">
234 <ipv4 mask="255. 255.255. 0">10. 0. 26. 4</ipv4>
235 </if>
236 <if id="3" net="Net14">
237 <ipv4 mask="255. 255.255. 0">10. 0. 14. 8</ipv4>

83

238 </if>
239 <if id="4" net="Net11">
240 <ipv4 mask="255. 255.255. 0">10. 0 .11. 8</ipv4>
241 </if>
242 <forwarding type=" ip" />
243 <filetree root="/etc/quagga" seq="start">R9</filetree>
244 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
245 conf/*/rp_filter; do echo 0 > $f; done</ exec>
246 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
247 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
248 <exec seq="stop" type="verbatim">killall zebra</exec>
249 <exec seq="stop" type="verbatim">killall ospfd</exec>
25o </vm>
251

252 <vm name="R10">
253 <if id="1" net="Net16">
254 <ipv4 mask="255. 255.255. 0">10. 0.16. 8</ipv4>
255 </if>
256 <if id="2" net="Net18">
257 <ipv4 mask="255. 255.255. 0">10. 0.18. 4</ipv4>
258 </if>
259 <if id="3" net="Net36">
260 <ipv4 mask="255. 255.255. 0">10. 0. 36. 4</ipv4>
261 </if>
262 <if id="4" net="Net12">
263 <ipv4 mask="255. 255.255. 0">10. 0.12. 8</ipv4>
264 </if>
265 <forwarding type=" ip" />
266 <filetree root="/etc/quagga" seq="start">R10</filetree>
267 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
268 conf/*/rp_filter; do echo 0 > $f; done</exec>
269 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
210 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
211 <exec seq="stop" type="verbatim">killall zebra</exec>
212 <exec seq="stop" type="verbatim">killall ospfd</exec>
273 </vm>
274

275

276 <vm name="R17">
211 <if id="1" net="Net21">
21s <ipv4 mask="255. 255.255. 0">10. 0. 21. 8</ipv4>
279 </if>
28o <if id="2" net="Net24">

84

28 1 <ipv4 mask="255. 255.255. 0">10. 0. 24. 4</ipv4>
282 </if>
283 <if id="3" net="Net14">
284 <ipv4 mask="255. 255.255 . 0">10. 0.14. 4</ipv4>
285 </if>
286 <if id="4" net="Net32">
287 <ipv4 mask="255. 255.255. 0">10. 0. 32. 8</ipv4>
288 </if>
289 <forwarding type=" ip" />
29o <filetree root=" /etc/quagga" seq="start">R17</filetree>
291 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
292 conf/*/rp_filter; do echo 0 > $f; done</ exec>
293 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
294 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
295 <exec seq="stop" type="verbatim">killall zebra</exec>
296 <exec seq="stop" type="verbatim">killall ospfd</exec>
297 </vm>
298

299 <vm name="R19">
3oo <if id="1" net="Net24">
301 <ipv4 mask="255. 255.255. 0">10. 0. 24. 8</ipv4>
302 </if>
303 <if id="2" net="Net25">
304 <ipv4 mask="255. 255.255. 0">10. 0. 25. 8</ipv4>
305 </if>
306 <if id="3" net="Net26">
307 <ipv4 mask="255. 255.255. 0">10. 0. 26. 8</ipv4>
308 </if>
309 <forwarding type=" ip" />
310 <f i letree root=" I etc/ quagga" seq=" start"> R19</ f iletree>
311 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
312 conf/*/rp_filter; do echo 0 > $f; done</exec>
313 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
314 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
315 <exec seq="stop" type="verbatim">killall zebra</exec>
316 <exec seq="stop" type="verbatim">killall ospfd</exec>
317 </vm>
3 18

319 <vm name="R11">
320 <if id="1" net="Net17">
321 <ipv4 mask="255. 255.255. 0">10. 0. 17. 8</ipv4>
322 </if>
323 <if id="2" net="Net19">

85

324 <ipv4 mask="255. 255.255. 0">10. 0.19 .4</ipv4>
325 </if>
326 <if id="3" net="Net23">
~7 <ipv4 mask="255.255.255.0">10.0.23.8</ipv4>
328 </if>
329 <if id="4" net="Net36">
33o <ipv4 mask="255. 255.255. 0">10. 0. 36. 8</ipv4>
331 </if>
332 <forwarding type=" ip" />
333 <filetree root=" /etc/quagga" seq="start">R11</filetree>
334 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
335 conf/*/rp_filter; do echo 0 > $f; done</exec>
336 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
337 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
338 <exec seq="stop" type="verbatim">killall zebra</exec>
339 <exec seq="stop" type="verbatim">killall ospfd</exec>
340 </vm>
341

342 <vm name="R12">
343 <if id="1" net="Net18">
344 <ipv4 mask="255. 255.255. 0">10. 0.18. 8</ipv4>
345 </if>
346 <if id="2" net="Net19">
347 <ipv4 mask="255. 255.255. 0">10. 0.19. 8</ipv4>
348 </if>
349 <if id="3" net="Net20">
350 <ipv4 mask="255. 255.255. 0">10. 0 . 20. 4</ipv4>
351 </if>
352 <if id="4" net="Net27">
353 <ipv4 mask="255. 255.255. 0">10. 0. 27. 8</ipv4>
354 </if>
355 <forwarding type="ip"/>
356 <filetree root="/etc/quagga" seq="start">R12</filetree>
357 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
~8 conf/*/rp_filter; do echo 0 > $f; done</exec>
359 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
36o <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
361 <exec seq="stop" type="verbatim">killall zebra</exec>
362 <exec seq="stop" type="verbatim">killall ospfd</exec>
363 </vm>
364

365 <vm name="R13">
366 <if id="1" net="Net3">

86

367 <ipv4 mask="255. 255.255. 0">10. 0. 3. 8</ipv4>
368 </if>
369 <if id="2" net="Net13">
37o <ipv4 mask="255. 255.255. 0">10. 0. 13. 4</ipv4>
371 </if>
372 <if id="3" net="Net23">
373 <ipv4 mask="255.255.255.0">10.0.23.4</ipv4>
374 </if>
375 <forwarding type=" ip" />
376 <filetree root="/etc/quagga" seq="start">R13</filetree>
377 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
~8 conf/*/rp_filter; do echo 0 > $f; done</exec>
379 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
380 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
381 <exec seq="stop" type="verbatim">killall zebra</exec>
382 <exec seq="stop" type="verbatim">killall ospfd</exec>
383 </vm>
384

385 <vm name="R14">
386 <if id="1" net="Net13">
387 <ipv4 mask="255. 255.255. 0">10. 0.13. 8</ipv4>
388 </if>
389 <if id="2" net="Net28">
39o <ipv4 mask="255. 255.255. 0">10. 0. 28. 4</ipv4>
391 </if>
392 <if id="3" net="Net27">
393 <ipv4 mask="255. 255.255. 0">10. 0. 27. 4</ipv4>
394 </if>
395 <forwarding type=" ip" />
396 <filetree root=" /etc/quagga" seq="start">R14</filetree>
397 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
39s conf/*/rp_filter; do echo 0 > $f; done</exec>
399 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
4oo <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
401 <exec seq="stop" type="verbatim">killall zebra</exec>
402 <exec seq="stop" type="verbatim">killall ospfd</exec>
403 </vm>
404

405 <vm name="R15">
406 <if id="1" net="Net28">
407 <ipv4 mask="255. 255.255. 0">10. 0. 28. 8</ipv4>
408 </if>
409 <if id="2" net="Net29">

87

410 <ipv4 mask="255. 255.255. 0">10. 0. 29. 4</ipv4>
411 </if>
412 <if id="3" net="Net30">
4 13 <ipv4 mask="255.255 . 255.0">10 . 0.30.4</ipv4>
414 </if>
415 <forwarding type=" ip" />
416 <filetree root="/etc/quagga" seq="start">R15</filetree>
417 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
418 conf/*/rp_filter; do echo 0 > $f; done</exec>
419 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
420 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
421 <exec seq="stop" type="verbatim">killall zebra</exec>
422 <exec seq="stop" type="~erbatim">killall ospfd</exec>
423 </vm>
424

425 <vm name="R16">
426 <if id=" 1" net="Net20">
427 <ipv4 mask="255. 255.255. 0">10. 0. 20. 8</ipv4>
428 </if>
429 <if id="2" net="Net21 ">
430 <ipv4 mask="255. 255.255. 0">10. 0. 21. 4</ipv4>
431 </if>
432 <if id="3" net="Net22">
433 <ipv4 mask="255. 255.255. 0">10. 0. 22. 4</ipv4>
434 </if>
435 <forwarding type=" ip" />
436 <filetree root=" /etc/quagga" seq="start">R16</filetree>
437 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
438 conf/*/rp_filter; do echo 0 > $f; done</ exec>
439 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
440 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
441 <exec seq="stop" type="verbatim">killall zebra</exec>
442 <exec seq="stop" type="verbatim">killall ospfd</exec>
443 </vm>
444

445 <vm name="R18">
446 <if id=" 1" net="Net22">
447 <ipv4 mask="255. 255.255. 0">10. 0. 22. 8</ipv4>
448 </if>
449 <if id="2" net="Net25">
450 <ipv4 mask="255 . 255.255. 0">10. 0. 25 .4</ipv4>
451 </if>
452 <if id="3" net="Net38">

88

453 <ipv4 mask="255. 255.255. 0">10 . 0. 38. 4</ipv4>
454 </if>
455 <forwarding type=" ip" />
456 <filetree root=" /etc/quagga" seq="start">R18</filetree>
457 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
458 conf/*/rp_filter; do echo 0 > $f; done</exec>
459 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
460 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
461 <exec seq="stop" type="verbatim">killall zebra</exec>
462 <exec seq="stop" type="verbatim">killall ospfd</exec>
463

464 </vm>
465

466 <vm name="R20">
467 <if id="1" net="Net30">
468 <ipv4 mask="255. 255.255. 0">10. 0. 30. 8</ipv4>
469 </if>
470 <if id="2" net= "Net31">
471 <ipv4 mask="255.255.255.0">10.0.31.4</ipv4>
472 </if>
473 <if id="3" net="Net34">
474 <ipv4 mask="255. 255.255. 0">10. 0. 34. 4</ipv4>
475 </if>
476 <forwarding type=" ip" />
477 <filetree root="/etc/quagga" seq="start">R20</filetree>
478 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
4N conf/*/rp_filter; do echo 0 > $f; done</exec>
480 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
481 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
482 <exec seq="stop" type="verbatim">killall zebra</exec>
483 <exec seq="stop" type="verbatim">killall ospfd</exec>
484 </vm>
485

486 <vm name="R21">
487 <if id="1" net="Net31">
488 <ipv4 mask="255. 255.255. 0">10. 0. 31. 8</ipv4>
489 </if>
49o <if id="2" net="Net33">
491 <ipv4 mask="255. 255 . 255. 0">10. 0. 33. 4</ipv4>
492 </if>
493 <forwarding type=" ip" />
494 <filetree root="/etc/quagga" seq="start">R21</filetree>
495 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/

89

496 conf/*/rp_filter; do echo 0 > $f; done</exec>
497 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
498 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
499 <exec seq="stop" type="verbatim">killall zebra</exec>
5oo <exec seq="stop" type="verbatim">killall ospfd</exec>
50 1 </vm>
502

503 <vm name=" R22" >
504 <if id="1" net="Net34">
505 <ipv4 mask="255.255.255.0">10.0.34.8</ipv4>
506 </if>
5o1 <if id="2" net="Net35">
508 <ipv4 mask="255. 255.255. 0">10. 0. 35. 4</ipv4>
509 </if>
510 <if id="3" net="Net37">
511 <ipv4 mask="255.255.255.0">10.0.37.4</ipv4>
512 </if>
513 <if id="4" net="Net29">
514 <ipv4 mask="255. 255.255. 0">10. 0. 29. 8</ipv4>
5 15 </if>
516 <forwarding type=" ip" />
517 <filetree root=" I etc/ quagga" seq=" start" >R22</f iletree>
518 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/
519 conf/*/rp_filter; do echo 0 > $f; done</ exec>
520 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
521 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
522 <exec seq="stop" type="verbatim">killall zebra</exec>
523 <exec seq="stop" type="verbatim">killall ospfd</exec>
524 </vm>
525

526 <vm name=" R23 ">
527 <if id="1" net="Net33">
528 <ipv4 mask="255. 255.255. 0">10. 0. 33. 8</ipv4>
529 </if>
53o <if id="2" net="Net35">
53 1 <ipv4 mask="255. 255.255. 0">10. 0. 35. 8</ipv4>
532 </if>
533 <if id="3" net="Net38">
534 <ipv4 mask="255. 255.255. 0">10. 0. 38. 8</ipv4>
535 </if>
536 <forwarding type=" ip" />
537 <filetree root="/etc/quagga" seq="start">R23</filetree>
538 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/

90

-

539 conf/*/rp_filter; do echo 0 > $f; done</exec>
540 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec>
541 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec>
542 <exec seq="stop" type="verbatim">killall zebra</exec>
543 <exec seq="stop" type="verbatim">killall ospfd</exec>
544 </vm>
545

546 <vm name="HostB">
547 <if id=" 1" net="Net37">
548 <ipv4 mask="255. 255.255. 0">10. 0. 37. 8</ipv4>
549 </if>
55o <route type="ipv4" gw="10.0.37 . 4">default</route>
551 <forwarding type=" ip" />
552 </vm>
553

554 </vnuml>

91

Appendix D

Configuration files for Zebra,

Ospfd and V tysh

In these configuration files, you can specify the debugging options, a vty 's password,

the ospfd routing dremon configurations, a log file name, and so forth.

We describe the three configuration files: zebra. conf , ospfd. conf and vtysh. conf.

• The default configuration file name is zebra. conf . This file, zebra, is an

IP routing manager and is used to provide kernel routing updates, interface

lookups, and the redistribution of routes between different routing protocols

[11].

• The default configuration file name is ospfd. conf . The ospfd dremon imple-

ments the OSPF protocol which supports OSPF version 2. This OSPF protocol

requires interface information maintained by zebra dremon. Running zebra is

mandatory before running ospfd, so zebra must be invoked before ospfd.

• The vtysh. conf file configures the virtual terminal - (vty). The vty is a

92

command line interface (CLI) for user interaction with the routing daemon.

Users can connect to the dremons via the telnet protocol. To enable a vty

interface, users have to setup a vty password.

These files are usually kept in /etc/quagga directory of a host machine. For ease

of reference, we will upload all the configuration files for this project to this website:

http: I /web. unbc. ca/ rvbankole/ after the project defense.

Below is a set of sample files for router, Rl, regarding the configuration files explained

above.

D.l zebra.conf

2

3 zebra sample configuration file
4

5 hostname R1
6 password xxxx
1 ! enable password zebra
8

9 Interface's description.
10

n interface lo
12 description test of desc.
13

14 interface sitO
15 multicast
16

11 Static default route sample.
18

19 ip route 0.0.0.0/0
20

21 log file zebra . log
22 log file /tmp/zebra.log
23

93

D.2 Ospfd.conf

Config by Julius
2 OSPF configuration
3

4 hostname R1
5 password xxxx
6 log file /tmp/ospfd.log
1 log stdout
8

9 debug ospf packet all send
10

11 interface dummyO
12

13 interface eth1
14 ip ospf cost 10
15

16 interface eth2
11 ip ospf cost 10
18

19 interface eth3
20

21 interface greO
22

23 interface lo
24

~ interface sitO
26

21 interface teqlO
28

29 interface tunlO
30

31 router ospf
32 !ospf router-id 10 . 0.0 . 255
33 !ospf rfc1583compatibility
34 !network 10.0 . 0.0/24 area
35 network 10.0.1.0/24 area
36 network 10.0.2.0/24 area
37

38 line vty

0.0.0.0
0.0 . 0 . 0
0.0.0 . 0

94

D.3 vtysh.conf

2 ! vtysh sample configuration file
3

4 !username niyibank nopassword
5 log file /var/log/zebra/vtysh.log

95

Appendix E

Electronic version of my Project

Report

I had promised in my project report, to make available to prospective users and

students; my two virtual network testbeds that were used for experiments in my

research. Students are allowed to copy, modify and re-configure both testbeds for

their use and education. The configuration files will be available on my personal

homepage.

For ease of reference, we will upload an electronic version of this project report to

this website: http : I /web. unbc. ca/ rvbankole/ after the project defense.

96

