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Abstract 

In this project, we present the design and implementation of virtual network test beds 

for studying routing changes. A virtual network testbed is a computer network that 

is completely created in software, while routing changes directly impact on the relia-

bility and the reachability information of the network. We used testbeds to emulate 

a small and a large-scale network on a single Linux machine. These emulated net-

works allow the study of network behavior and operations which are examined using 

two routing protocols: Routing Information Protocol (RIP) and Open Shortest Path 

First (OSPF). We implemented a fifteen-node network to study RIP , and a model of 

the GEANT network to examine OSPF in virtual network testbeds. Each testbed repre-

sents an autonomous system (AS) or an intra-domain environment. Therefore, these 

environments provided us with the opportunit ies to evaluate routing changes in an 

AS. We used the testbeds to compare the routing of the original network with the 

new routing of the missing links and routers to see what changes occur. The GEANT 

network is the large-scale network used for investigations in this project. We then 

used our emulation results of the large-scale network to compare with the simulation 

work for the same network topology - the GEANT network, and confirmed that our 

emulation studies also identified important links and routers in the same network. 
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Chapter 1 

Introduction 

This project uses emulation techniques to investigate the impact of link and router 

failures on routing changes of networks. In this chapter, we explain our motivations 

for the study, discuss our responses to these motivations and provide an outline for 

this project report. 

1.1 Preamble 

The phenomenal growth of the Internet has led to the deployment of many network 

applications such as Voice or Video over IP (VoiP), electronic mail, Web browsing, 

e-voting, and e-shopping, to name a few. While the Internet has been designed for a 

best-effort service, many of these new applications and services require a better guar-

antee of services. End users may sometimes find the Internet service to be unreliable. 

There are many factors leading to this poor performance, such as link bandwidth, the 

efficiency of the application software, and robustness of the routing protocol. Rout-

ing protocols are a critical component of the Internet and their aim is to ensure that 

there is efficient traffic flow from source to destination. In this project , we use a 
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virtualization tool to create testbeds and examine the routing changes of networks on 

these testbeds. This routing investigation enables network operators and researchers 

to gain further understanding of the routing protocols reactions to events such as 

traffic re-distribution and routing instability in the network. Routing instability is 

the rapid fluctuation of network reachability information: an important problem that 

directly affects the service reliability of the Internet. 

The Internet is a network of networks. It is made up of a collection of over 21,000 

domains or Autonomous Systems (ASs) . An AS can be an Internet Service Provider 

(ISP) , a university campus network, or a company network. An AS is made up of 

a collection of routers that are interconnected. Previous research has focused on the 

inter-connection of ASs and less attention has been paid to the intra-connection (i.e., 

intra-domain routing). In this project, we concentrate on intra-domain routing, and 

use it to study routing changes in our testbeds. The complex nature of a physical 

network often makes it difficult to carry out studies on how link and router changes 

affect the distribution of traffic across the network. Hence, we use virtual networks 

to emulate physical networks in this project. 

This project investigates how to use virtual networks for studying routing changes in 

complex network environments. We use an emulation method to model routing of ASs, 

for a fifteen-node network and the GEANT network - a pan-European backbone that 

connects Europe's national research and education networks. We study and evaluate 

the impact of link and router failures versus routing changes in these networks. 

1.2 Motivations 

In this section, we explain why the study of intra-domain routing is important, and 

what motivated us to carry out this particular research. There are four principal 
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motivations: cost, networking administration training, student experimentation, and 

the possibility to offer particular practical advice. 

Firstly, sometimes there is a need to quickly test a network configuration, e.g., a 

firewall rule set, but setting up the configuration on real equipment is too time con-

suming (e.g., physically wiring and installing multiple operating systems), and very 

expensive (e.g., multiple hosts and switches). We need a cheaper and more convenient 

testbed that can be used for this test. Therefore, we need to design virtual networks; 

and these networks can be used to carry out this test at little or no cost. 

Secondly, students and network designers often need to obtain practical experience 

by learning how to design, build and maintain computer networks. CISCO offers users 

simulation software for this purpose, however, the experiences gained are restricted 

to CISCO products only. This is insufficient for a thorough grasp of the expected 

technical intricacies. In addition, network administration often involves activities 

like network addressing, assignment of routing protocols and routing table configura-

tions. We provide a network emulation environment for conducting and testing these 

activities. 

Thirdly, a number of situations frequently arise that require the use of more than one 

computer. Faculty and researchers often want to have extra full-fledged machines to 

aid their teaching and research work. In communities with limited funding, such as 

universities , the possibility of having as many full-fledged computer systems as nec-

essary to create real networks for experimentation purposes is less likely. Therefore, 

creating effective virtual network testbeds will be a suitable alternative to assist fac-

ulty, researchers and other users with limited budgets, instead of investing in physical 

equipment. 

Finally, investigating the problem of intra-domain routing in any network is very 
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important. This is because many of the new applications and services on the Internet 

often demand service reliability. We use an emulation method to model a real network 

and evaluate the impact of changes to links and routers on the traffic distribution. 

In doing this, our results identify which links or routers in this network model need 

to be maintained. We also compare the results obtained from both simulation and 

emulation models of our selected network. 

In the next section, we give a summary of how we address these motivations. 

1.3 Contributions 

In response to our motivations and the need for examining networks' routing changes, 

we develop two virtual networks. We use these virtual network testbeds to implement 

two dynamic routing protocols: Routing Information Protocol (RIP) and Open Short-

est Path First (OSPF). We also provide sufficient documentation in this project report 

to allow prospective students and network administrators to make use of the models. 

In this project report , we aim to make the following contributions: 

• The first contribution of this project is to develop virtual network testbeds that 

can be used and re-configured by students and network administrators. These 

testbeds will enhance learning and testing of network applications and services 

without requiring a real network. The designed virtual network testbeds can 

serve as working templates with which students can practise and modify for 

specific network configurations. 

• The second contribution of this project is to implement a realistic network 

topology by emulation of the GEANT network and by viewing it as an AS. The 

network topology of GEANT is taken from the work in [4, 21]. Next, we present the 
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techniques of how to configure routers and use the UML-utilities to implement the 

switches and routers on the virtual network testbed in our specification scripts. 

See Appendix A and Appendix C for these scripts. 

• The third contribution of this project is a demonstration of a practical configu-

ration of the routing protocol- RIP. We create and use a virtual network testbed 

to configure an RIP dcemon from Quagga [11]. We use the RI P dcemon to show 

how to detect the link failures , understand path selection using hop count, and 

dynamically adjust the routes. 

• The fourth contribution of this project is to use case studies for investigating 

intra-domain routing using the OSPF dcemon from [11]. We model our network 

after the network used in a similar work conducted in [20, 21] . The first case 

study provides the measurements of link failures against the total routing cost 

at the head nodes of the links while the second provides the measurements 

of router failures against total routing cost in the GEANT network. These case 

studies provide us with a better understanding of the links whose loss produce 

higher routing cost and the routers whose loss yields the largest total routing 

costs. This project report includes details of our configuration experiences, 

networking administration, and virtual networking experiments. 

1.4 Overview of the project 

The rest of the project report is organized as follows. Chapter 2 examines a summary 

of techniques, background information and literature review of related works that are 

used in this project. Chapter 3 provides reports on modelling of a simple network 

that is configured with the RIP routing protocol and discusses experimental results. 

In Chapter 4, we model the GEANT network, conduct two case studies on this network, 
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and provide the experimental results of our findings . Lastly, Chapter 5 presents the 

project report summary, our conclusions and a discussion of future work. 

6 



Chapter 2 

Background and Literature Review 

In this chapter, we provide background information, summary of techniques and lit-

erature review of related works that are necessary for this project. In Section 2.2, we 

give an overview of virtualization technologies and briefly discuss how network virtu-

alization techniques have been used successfully in the teaching context. Section 2.3 

contains the overview of the principles of User Mode Linux (UML) for designing virtual 

networks. Section 2.4 compares benefits and drawbacks of simulation and emulation 

techniques. In Section 2.5, we discuss different types of routing protocols that are 

connected to this project. Finally, Section 2.6 reviews previous research work that 

has been done using network virtualization techniques. 

2.1 Introduction 

We need to understand how virtualization technologies can support our investigations 

of link and router failures in the network. Virtualization techniques are often used 

to combine hardware and software resources, and are used to model a network for 

experimental purposes in this project. In addition to virtualization techniques, the 
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principles of UML enable us to model a complex network. We make a comparison of 

emulation and simulation techniques, and present the major difference between the 

two techniques. We limit the focus of our virtualization techniques to network virtual-

ization, and use this concept to investigate the performance of emulation techniques. 

The emulation techniques enable us to study routing changes when there are link and 

router failures in any network. 

2.2 Virtualization technologies 

In this section, we briefly explain the concept of virtualization in the context of com-

puting. We also provide some examples of previous work using network virtualization 

techniques. 

Virtualization is the term used to describe the abstraction of computer resources, 

and is often defined as the technique for the mapping of virtual resources to real re-

sources. The user of the virtual resources is partially, or sometimes totally, detached 

from the real resources [32] . Virtualization technology hides the physical characteris-

tics of the computing resources from the way that other systems, applications or end 

users communicate with those resources. Examples of various types of virtualization 

technologies include the following: virtual memory, redundant array of independent 

disks, network virtualization and storage virtualization. More on virtualization tech-

niques can be reviewed in [2] and [32] . In this project, we limit our discussion of 

virtualization to network virtualization only. 

Network virtualization is the technique of combining hardware and software network 

resources and network functionality into a single, software-based administrative en-

tity: this is sometimes referred to as a virtual network. Network virtualization often 

includes platform virtualization, and occasionally combines with resource virtual-

8 



ization. Some previous research uses network virtualization as a tool for teaching 

computer networks and system administration [13, 14]. In [13, 14], Kneale et al. 

develop a tool called VELNET, which is a virtual environment for learning networking. 

VELNET is made up of one or more host machines and operating systems, commercial 

virtual machine software, virtual machines and their operating systems, and a vir-

tual network connecting the virtual machines and remote desktop display software. 

Yuichiro et al. in [26] design a system that offers students a learning environment 

for LAN construction and troubleshooting. Their system reproduces virtual networks 

that consist of about ten Linux servers, clients, routers and switching hubs on one 

physical machine. 

2.3 UML-based virtual networks 

In this section, we explain principles and applications of UML in the context of net-

working. This UML technique is described as a port of a Linux kernel that allows 

running one or more instances of a complete Linux environment [17]. These instances 

are run as user-level processes on a physical host machine. 

These user-level processes provide us with the virtualization of machines, routers and 

other nodes on a network. Within the UML process, an instance or a process of that 

UML communicates with the UML kernel which in turn talks with the host kernel in 

the same way that any user or application would. This UML technique allows a Linux 

kernel to be run in user space and possesses all of the features of a complete Linux 

machine. With UML, additional virtual machines or nodes can be created using the 

hardware of a single Linux machine. Therefore, it is possible to carry out multiple 

tasks and experiments on these virtual machines using a single computer system. 

Figure 2.1 shows the description of process space using UML approach. 
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•• Virtual machine 
(UML processt 

Virtual machine 
(UML process) 

Figure 2.1 : The architecture of the UML [9] 

A virtualization tool, Virtual Networking User Mode Linux (VNUML) [8] allows us to 

easily create simple and complex network emulation scenarios based on UML virtual-

ization software. The Linux machines that run over the host using UML virtualization 

software are called "virtual machines" or simply "UMLs". 

In UML, a filesystem uses the copy-on-write (COW) technique to save disk space and to 

share a single filesystem when a number of virtual machines are run. This technique, 

COW, allows multiple UML processes/nodes to share a host file as a filesystem without 

interfering with each other's read-write operations [5]. In this mechanism, COW, the 

data objects are not copied until a write is made. When writing occurs, the data object 

is copied and non-shared afterward. Each process stores changes to the filesystem 

inside its own COW file. This technique allows the filesystem to be shared among all 

processes or virtual machines, it is also possible to revert to the original filesystem 

contents by simply deleting a COW file in case problems occur. Our virtualization 

tool, VNUML, uses COW to perform write functions while it uses the host filesystem as 

read-only. This COW mechanism is used in all UML-based networks in order to reduce 

frequent access to host memory. 

With the aid of UML, virtual networks of different sizes can be created [5]. This UML 

technique is used to design and test networks of complex topologies and different 

configurations. Therefore, network designers can use the principles of UML to model 
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virtual networks, and implement new communication protocols on these virtual net-

works. 

2.4 Simulation versus emulation of networks 

In this section, we compare experimental techniques of simulation and emulation for 

any network. We discuss benefits and drawbacks of these techniques. 

Network designers often employ three experimental techniques in the design and val-

idation of new and existing networking ideas. These techniques are: simulation, 

emulation and live network testing. All of these techniques have their strengths and 

weaknesses, and should not be viewed as competing methods. 

Network simulation usually allows a repeatable and controlled environment for net-

work experimentation. The simulation environments make it possible to predict out-

comes of running a set of network devices on a complex network by using an internal 

model that is specific to the simulator. The set of initial parameters assumed for 

the simulators determines the model behavior of each simulation. Such environments 

often include simulation tools such as OPNET [27], ns2 [6, 7] and SSFNet [3]. The 

fundamental drawback with simulators is that simulated devices often have limited 

functionalities, and the predicted behavior may not be close to that of the real system. 

Network emulation reproduces features and the behavior of the real network devices. 

The emulation environment is made up of the software and hardware platform that 

provides the benefit of testing the same pieces of software that will be used on real 

devices. In sharp contrast to simulation systems, emulators allow the network being 

tested to undergo the same packet exchanges and state changes that would occur in 

the real world. Simulators, on the other hand, are concerned with the abstract model 
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of the system being simulated and are often used to evaluate the performance of the 

protocols and algorithms. 

A fundamental difference between simulation and emulation is that while the former 

runs in simulated time; the latter must run in real time, showing the close resemblance 

of the real world devices. The emulation environments closely reproduce the features 

and behaviors of real world devices. In an emulation environment, the network that 

is being tested often undergoes the same packet exchanges and state changes that 

usually occur in real world. 

2.5 Routing in the Internet 

In Section 2.3, we discussed how we can use UML to create virtual networks. In this 

section, we will briefly describe routing in the Internet and different types of routing 

protocols to regulate packets' routes in a network. 

Routing is the process of determining the paths or routes that packets take on their 

trip from the source to the destination node. On the Internet, routing protocols are 

used to select the end-to-end path taken by a datagram, or packet , between the source 

and destination. In Chapter 1, we define the Internet as a collection of domains or 

ASs. Each AS is a collection of routers that are under the same administrative and 

technical control. An AS runs the same routing protocol among its multiple subnets. 

A routing algorithm within an AS is called an Interior Gateway Protocol (IGP) while 

an algorithm for routing between ASs is called an Exterior Gateway Protocol (EGP) 

[10, 15, 19, 25, 30]. 

Routing protocols specify how routers communicate with each other and disseminate 

information that allows them to select routes between any two nodes on a network. 
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Readers who are not familiar with routing protocols are encouraged to read [10, 15, 

19, 25, 30]. 

2.5.1 Intra-AS routing: RIP 

In this section, we explain one of the intra-AS protocols. The Routing Information 

Protocol (RIP) is the earliest intra-AS routing protocol. This RIP protocol uses a 

"hop" count as a cost metric, which is the term used to describe the number of 

subnets traversed along the shortest path from the source router to the destination 

subnet. The maximum cost of a path in RIP is fifteen. This number limits the use 

of RIP to smaller ASs. This protocol, RIP , is a distance vector protocol based on the 

Bell-Ford algorithm [10], and is based on a shortest path computation. A distance-

vector routing protocol requires that a router periodically inform its directly attached 

neighbors of topology changes, and perform a routing calculation. The result of the 

calculation is distributed back to the attached neighbors. The primary goal of this 

protocol, like other intra-AS protocols, is to find the shortest path to the chosen 

destination based on a selected metric. 

Normally, each router has a RIP table often called a routing table. Routers use their 

routing tables to decide the next hop to which they should forward a packet. The 

routers configured with this protocol, RIP , exchange advertisements approximately 

every thirty seconds. If a router fails to hear from its neighbor at least once every 

180 seconds, that neighbor is considered to be no longer reachable; that is , it is 

either the neighbor (router) has died or the link has gone down. When this occurs, 

RIP modifies the local routing table and then propagates this information by sending 

advertisements to neighboring routers that are still reachable. 
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2.5.2 Intra-AS routing: OSPF 

Similar to the previous section, here we discuss another intra-AS protocol: Open 

Shortest Path First (OSPF). This protocol is the successor to RIP, and was developed to 

handle limitations of RIP. This routing protocol, OSPF uses cost as the routing metric, 

and uses link-state information that is based on the Dijkstra least-cost algorithm [10]. 

This algorithm computes the shortest path to all subnets based on cost and selects 

the source node as the root node for cost computation. The network administrator 

assigns a cost to each link. The OSPF protocol floods the network with link state 

advertisements (LSAs), unlike RIP where a node only exchanges information with its 

neighbors. At periodic intervals, OSPF protocols use a "HELLO" message to check 

whether the routers are operational or not. This protocol is also a dynamic routing 

protocol. 

Each router periodically sends an LSA across the network. This message is sent to 

provide information on a router 's adjacencies or to update others when a router 's 

state changes. By comparing adjacencies to link states, failed routers can be detected 

quickly, and the network's topology can be updated appropriately. From the topolog-

ical database generated from LSAs, each router calculates a shortest-path tree, with 

itself as root . The shortest-path tree, in turn, yields a routing table. 

2.5.3 Inter-AS routing: BGP 

Here, we briefly explain an inter-AS protocol. Border Gateway Protocol (BGP) is the 

routing protocol for interconnecting different ASs. This protocol, BGP, is a path vector 

protocol, and does not use traditional IGP metrics. It makes routing decisions based 

on path, network policies and/ or rule sets. This BGP protocol maintains a table of 

IP networks or "prefixes" which show network reachability among ASs. Because the 
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Internet is made up of a collection of ASs and it is used everywhere, BGP is critical to 

the proper functioning of the Internet. This BGP protocol is the core routing protocol 

of the Internet. 

2.6 Related works 

In this section, we present a review of some work on network virtualization. From 

the literature [9, 16, 18, 22- 24, 28], some of the previous research concentrates on 

providing the concepts and implementation methods of virtualization, while some 

focus on producing commercial software. 

Liu et al. [16] and Ham et al. [28] discuss the concepts and implementation approaches 

for designing a virtual network testbed. Both [16] and [28] only provide good insight 

regarding the concepts and implementation methods for virtualization without pro-

viding necessary hands-on learning experiences. 

Massino uses an emulator called Netki t in his PhD thesis [22, 23] to study inter-

domain routing policies on a network. Mottola uses a virtualization approach in his 

PhD thesis [18] to study simulation of mobile ad hoc networks. This approach is 

used for testing publish-subscribe middleware on mobile ad-hoc networks. Steffen et 

al. also use a UML-based network to set up an environment for automated software 

regression tests [24]. Software regression tests are carried out before the release of 

new official software to eliminate bugs during software development, hence Steffen 

et al. design an automated testing framework for the regression tests. Similarly, 

Galan et al. use virtualization techniques to design and implement an IP multimedia 

subsystem testbed [9]. This testbed is used for development and functional validation 

of multimedia services for next generation networks. 
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Previous work on network routing protocols for some ISPs can be found in [21, 29). In 

[21), Quoitin et al. develop an open source routing solver, C-BGP. This is an efficient 

solver for BGP and is used for exchanging routing information across domains in the 

Internet. This solver can be used with large-scale topologies to predict the effect of 

link and router failures in an AS. C-BGP is also used by ISP operators for conducting 

case studies on the routing information collected in their network. C-BGP is used to 

collect the BGP updates for the work on page 16 of [21) and in Section 2.5.9 of [20). 

It is also used to study inter domain traffic engineering techniques and to model the 

network of ISPs. 

In [29), Watson et al. conduct an experimental study of an operational OSPF network 

for a period of one year. This network is a mid-size regional ISP that is running 

an intra-domain routing protocol, OSPF. The network is characterized by routing 

instability, different traffic levels and changes in the routing updates. They find out 

that the information from external routing protocols leads to significant levels of 

instability within OSPF. 

Clearly, there is a substantial interest in network virtualization for purposes that 

range from testing new protocols, configuring networks, studying routing changes 

and traffic distributions to experimenting with new network designs. 
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Chapter 3 

Modelling RIP Routing 

This chapter discusses the design, description of the implementation, and results of 

our experimental studies with RIP on a fifteen-node virtual network testbed. In Sec-

tion 3.1, we present an overview, some background information, and the problem. 

Section 3.3 describes how to model a network, explains its implementation and con-

figurations, and defines how to validate a virtual network. Section 3.4 consists of 

our experimental studies and results. Section 3.5 contains the limitation of RIP and 

conclusions drawn from our experimental studies. 

3.1 Introduction 

Network simulation and emulation have been indispensable tools for understanding 

the performance of network systems. In this project , we focused on the use of emu-

lation testbeds for studying various types of networking environments. We designed 

a testbed to demonstrate that emulation techniques produce reasonable results in a 

small network. In our experiments, we tested the reliability of RIP to dynamically 

learn and fill the routing table with a route to all subnets in the network. This feature 
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of RIP routing protocol allowed us to examine routing changes in the network caused 

by link and router failures. 

Routing changes affect the network reachability information, and are such an im-

portant problem that it directly affects the service reliability of AS. While much 

research has been conducted on inter-domain routing, the study of intra-domain 

routing has been quite limited. Inter-domain routing simply refers to the routing 

of inter-connected networks, while intra-domain routing refers to the routing within 

a network or an ISP. Most network operators do not have sufficient understanding of 

this problem. Some network operators often complain that they do not know to what 

extent intra-domain protocol can cause changes in their networks. There is a lack of 

understanding of the causes of these routing changes because it is difficult to detect 

in their live networks. 

In our efforts to investigate this problem, we use an intra-domain protocol, RIP , to 

determine how routing is performed within a virtual network testbed. We explained 

briefly the concepts of intra-AS routing in Section 2.5.1. 

In this chapter, our first goal is to use an emulation technique to design a fifteen-

node virtual network testbed. The second goal is to use a routing protocol, RIP, to 

configure a small network and use this network to understand how a datagram or 

packet efficiently travels from source to destination on the testbed. The third goal is 

to use our virtual network testbed to investigate routing changes caused by link and 

router failures. 

Most especially, the purpose of this set of experiments is to determine how sensitive a 

network is to link and router failures, which is critical to understanding the reliability 

of a network. 
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3.2 Experimental setup 

In this section, we describe hardware and software components of the computer sys-

tem that was used to design the virtual network testbed for this project. All the 

experiments were performed on testbeds that are built on a TOSHIBA Satellite Pro 

P300 notebook. This notebook is an Intel®Core, consists of a dual-processor P4250 

running at 1.5GHz, has 32KB/32KB 11 Cache and 3MB 12 Cache. The RAM is 

2GB DDR2 running at 667MHz and a 250.0 billion bytes 8-ATA disk. 

The computer system is a dual-booting type with pre-installed Windows™Vista and 

UBUNTU 7.10 operating systems. We modified a kernel of UBUNTU 7.10 by patch-

ing it with skas3 for better performance. Next, we installed VNUML 1 . 8 [8] on the 

modified host kernel of UBUNTU 7.10 for easy creation, execution, and release of 

virtual networking scenarios. The typical use of VNUML consists of: step 1 to create 

the scenarios, step 2 to execute commands as many times as desired or needed, and 

step 3 to release or destroy the scenarios. More information on the use of VNUML can 

be obtained from [8]. 

3.3 Modelling of a fifteen-node virtual network 

In this section, we explain necessary steps to model and test a virtual network. We 

also discuss methodologies for implementing the topology of a virtual network testbed. 

Finally, we validate this virtual network testbed by testing for network connectivity 

on a RIP-configured testbed. This validation is done to verify whether or not RIP is 

functioning properly on the testbed. 
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3.3.1 Topology of t he virtual network 

We describe the topology of our virtual network testbed in this section. In order to 

build a network or a virtual network, we found it useful to produce a detailed map 

representing the network before proceeding to write the configuration files . 

Firstly, we designed the topology of our virtual network to consist of a total of fifteen 

nodes that include nine virtual routers, six host machines, and eighteen links or sub-

networks. Secondly, we assigned appropriate I P addresses to the routers and the 

links, and subsequently proceeded to write configuration files for each router in the 

network. We selected this network topology to demonstrate that emulation techniques 

produce reasonable results in a small network where the expected results are known. 

Figure 3.1 shows a detailed map of the implemented network topology. 

Figure 3.1: A fifteen-node network topology 
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3.3.2 Implementation and configuration with RIP 

Before we conducted our experiments for this project, there were two fundamental 

tasks that we needed to carry out for preparing an enabling environment on a virtual 

network testbed. The first task was to create the network, and the second task was to 

configure each router in the network. In this section, we discuss an implementation 

of the network topology described in Section 3.3.1 using VNUML , and describe how we 

used VNUML to create networking scenarios. We also explain how we used Quagga to 

configure each router in the networking scenarios with a dynamic routing protocol. 

Quagga is open source, and is obtained from [11]. Finally, we set up and produced 

a fifteen-node virtual network testbed that was configured with a dynamic routing 

protocol, RIP. Below are the basic steps for the implementation and configuration of 

the fifteen-node virtual network. 

1. We installed the VNUML tool on the LINUX environment of the host machine. This 

tool and the installation procedures can be downloaded from [8]. The VNUML 

tool is designed to easily create simple and complex networking scenarios. 

2. Next, we installed Quagga in the system-wide /etc/ directory of the host ma-

chine. Quagga is a routing software package that provides TCP / IP-based rout-

ing services and protocol dremons. A machine installed with Quagga served as 

a dedicated router. 

3. We encoded the network topology specified in Figure 3.1 in an XML file. The 

purpose of this file was to include specifications for creating a fifteen-node virtual 

network testbed. We ensured that the XML file specifications conformed to the 

VNUML DTD that comes with the VNUML tool. Details of the XML specifications 

are included in Appendix A. 

4. We then created the VNUML session and individual machines by running the 

21 



commands in Figure 3.2. When we were finished with the networking scenario, 

we killed the scenario processes by running the commands specified in Figure 3.3. 

A screen shot of a fifteen-node virtual network testbed is shown in Figure 3.4. 

Each of the windows or machines in Figure 3.4 represents a node on the virtual 

network testbed. 

5. The network created in step four had strictly local connectivity, but this par-

ticular network ignored the global network topology. This type of connectiv-

ity means that only adjacent routers could communicate with each other. To 

globally connect the network, we then configured each router in the network 

with RIP by creating these files: zebra. conf , ripd. conf and vtysh. conf in 

/etc/quagga directory. These three configuration files were created and des-

ignated for each router. A sample of each configuration file for router, Rl, is 

included in Appendix B. See Appendix B for more details. 

6. We then started and stopped the RIP dremon by running commands as shown 

in Figure 3.5. A piece of code from XML specifications for starting and stopping 

the ripd dremon is shown in Figure 3.6. See the XML file in Appendix A for 

more details. For the purpose of our experiments as described in Section 3.4, we 

verified that each router could connect to the local host. We achieved this goal 

by running the command, telnet localhost ripd, on each router to confirm 

that a telnet session was possible from each router. The telnet session for the 

router-Rl console is shown in Figure 3.7. 

vnumlparser.pl -t /usr/share/vnuml/RIP15nodes.xml -v -u root 

Figure 3.2: Commands for creating a virtual network for a fifteen-node topology. 
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vnumlparser.pl -d /usr/share/vnuml/RIP15nodes.xml -v 

Figure 3.3: Command::5 for releasing a. network ::5cenario for a. fifteen-node topology. 

Figure 3.4: Screen shot of a fifteen-node virtual network testbed 

sudo vnumlparser.pl -x start@RIP15nodes.xml # Starting 

sudo vnumlparser.pl -x stop©RIP15nodes.xml # Stopping 

Figure 3.5: Commands for star ting and stopping RIP protocols 

3.3.3 Validating the virtual network 

The validation test is used to confirm that there is network connectivity in the vir-

tual network. ·without a routing protocol, a router knows neighbors or routes that 

are directly connected to it. \Vhen we configured the testbed with the RIP routing 
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- ----------------------------------------------------, 

<filetree root="/etc/quagga" seq="start">R1</filetree> 

<exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
<exec seq="start" type="verbatim">/usr/lib/quagga/ripd -d</exec> 
<exec seq="stop" type="verbatim">killall zebra</exec> 
<exec seq="stop" type="verbatim">killall ripd</exec> 

Figure 3.6: XML code for starting and stopping zebra and ripd dremons 

R1:\-# telnet localhost ripd 
Trying 127.0.0.1 ... 
Connected to localhost. 
Escape character is '-] '. 

Hello, this is Quagga (version 0.99.7). 
Copyright 1996-2005 Kunihiro Ishiguro, et al. 

User Access Verification 
Password:(zebra) 

ripd> 

Figure 3. 7: An example of a telnet session with the ripd dremon. 

protocol, each router could obtain the routing information of distant neighbors. Each 

router contains a RIP table known as a routing table. The routing table has three 

main columns among others: the first is the destination subnet, the second is the 

gateway or identity of the next router along the shortest path to the destination sub-

net and the third indicates the "metric" or the number of hops to the destination. 

An example of a routing table is discussed and shown in Section 3.4.1. 

We used the ping command to test whether or not a particular host was reachable 

across the virtual network. A computer network tool, ping, is used to test whether 

a particular host is reachable across an IP network and to self test the network 

interface card of the router. The ping command sends an ICMP echo request to the 

stated destination address and the TCP /IP software at the destination then replies to 
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the ping echo request packet with a similar packet, called an ICMP echo reply. If the 

network is connected and functional , it reports the number of packets transmitted, the 

percentage of packet loss, and the round-trip time. If the network is not connected, 

the ping command replies that the "Network is unreachable". The ping command 

estimates the round-trip time in milliseconds, records packet loss, and displays a 

statistical summary when it is finished. 

When we tested router Rl in our virtual network with the ping command, we obtained 

the results as shown in Figure 3.8. The results from this test displayed information 

about the network and confirmed that the ping command was working. In the first 

case, the nodes that were not immediate neighbors were not reachable when RIP 

protocol was not running in the network. In the second case there was a global network 

connectivity when the network was configured with RIP protocol. An example of a 

session testing for connectivity from a router, Rl console to a distant Host F is shown 

in Figure 3.8 . 
.------------------------ pinging: R1 console ------------------------~ 
R1:-# ping 10.0.14 . 5 -c1 #Host F without RIP 
connect: Network is unreachable 

R1:-# ping 10.0.14.5 -c1 #Host F with RIP 
PING 10.0.14.5 (10.0.14.5) 56(84) bytes of data. 
64 bytes from 10.0.14.5: icmp_seq=1 ttl=61 time=0.589 ms 

--- 10.0.14 . 5 ping statistics---
1 packets transmitted, 1 received, O% packet loss, time Oms 
rtt min/avg/max/mdev = 0.589/0.589/0.589/0.000 ms 

Figure 3.8: Pinging from Rl to Host F 

In this section, we carried out the fundamental steps necessary to confirm that that we 

have successfully created a network testbed, before conducting further experiments. 

Most especially, XML code has to be specified in such a way that routers can be started 

and stopped easily without affecting the networking scenario in the VNUML session. At 
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this point, our virtual network was validated, and we could proceed. 

3.4 Experiments on a fifteen-node network testbed 

In this section, we describe two experiments on the fifteen-node virtual network 

testbed. The goal of the first experiment was to use an emulation technique to un-

derstand routing changes in a small network for single-link failures. The goal of the 

second experiment was to use the same emulation technique to study routing changes 

for single-router failures in the same network. We will use the information obtained 

from these experiments as a background preparation towards our project's primary 

goal of making comparison for a large scale network using emulation and simulation 

technologies in Chapter 4. 

3.4.1 Single-link failures with RIP 

In this experiment, we investigated the effects of single-link failures on the virtual 

network testbed. We observed routing changes in the routing tables when single-link 

failures occurred. 

We emulated all the single-link failures in the network, and observed the effect of the 

failures on each router configured with RI P in the network. We removed each link in 

the network sequentially, and recorded routing changes at the head node of a link in 

the network. Several tests were conducted by disabling each link in the network for 

this experiment and routing changes were recorded. This experiment was performed 

by specifying a command in each router as follows - R1: rv# ifconf i g et h1 down. 

Interfaces on the links for each router could be ethO, e t h1 , eth2 and so on. The 

removal of each interface has a corresponding effect on the updates of the routing 
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table for each router in the network. 

We recorded the number of routing entries generated in these networking scenarios. 

This re cording was carried out by running a network command route directly on 

each ro uter to collect routing entries in the routing table. This command displays 

all the RIP routes in the network. We collected results from the routing tables for 

each ro uter in the network. Examples of the results obtained from one of the exper-

iments when the network was fully functional, and when an interface eth3 of link 

R2-R4 was removed (before the network restabilized) are shown in Figure 3.9 and 

Figure 3.10. We then compared the results of routing changes in both cases obtained 

from th eir respective routing tables - the fully functioning network, and the missing 

links ne twork scenarios before restabilizations - to see what changes occur. 
R2 console 

Case 1 : Full Links with 19 routing entries in the network. 
R2: -# route 
Kernel IP routing table 
Destin at ion Gateway Genmask Flags Metric Ref Use I face 
192.16 8.0.8 * 255.255.255.252 u 0 0 0 ethO 
10.0.4 .0 * 255.255.255.0 u 0 0 0 eth2 
10.0.5 .0 * 255.255.255.0 u 0 0 0 eth3 
10.0.6 .0 10.0.7.3 255.255.255.0 UG 3 0 0 eth4 
10.0.7 .0 * 255.255.255.0 u 0 0 0 eth4 
10.0.1 6.0 10.0.5.5 255.255.255.0 UG 3 0 0 eth3 
10.0.0 .0 10 . 0 . 2.3 255.255.255.0 UG 2 0 0 eth1 
10.0.1 7.0 10.0.5.5 255.255.255.0 UG 3 0 0 eth3 
10 . 0 . 1 . 0 10.0.2.3 255.255.255.0 UG 2 0 0 eth1 
10.0.2 .0 * 255.255.255.0 u 0 0 0 eth1 
10.0.3 .0 10.0.7.3 255.255.255.0 UG 2 0 0 eth4 
10.0.1 2.0 10.0.7.3 255 . 255.255 . 0 UG 3 0 0 eth4 
10.0.1 3.0 10.0.7.3 255.255.255.0 UG 4 0 0 eth4 
10.0.1 5.0 10.0.7.3 255.255.255.0 UG 4 0 0 eth4 
10.0.8 .0 10.0 . 5.5 255.255.255.0 UG 2 0 0 eth3 
10.0.9 .0 10.0.5.5 255.255.255.0 UG 2 0 0 eth3 
10.0.1 0.0 10.0.5.5 255.255.255.0 UG 3 0 0 eth3 
10.0.1 1.0 10.0.7.3 255 . 255 . 255.0 UG 3 0 0 eth4 

Figure 3.9: Case 1: Routing table for router R2 with full links - 19 routing entries 
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R2 console 

Case 2 : Link removal before network restabilized. 
R2:-# ifconfig eth3 down # R2-R4 link removed. 
R2:-# route 
Kernel IP routing table 
Destin at ion Gateway Genmask Flags Metric Ffef Use If ace 
192.16 8.0.8 * 255 . 255.255.252 u 0 0 0 ethO 
10.0.4 .0 * 255.255.255.0 u 0 0 0 eth2 
10.0.6 .0 10.0.7.3 255 . 255.255.0 UG 3 0 0 eth4 
10.0.7 .0 * 255 . 255.255.0 u 0 0 0 eth4 
10.0.0 .0 10.0.2.3 255.255.255.0 UG 2 0 0 eth1 
10.0.1 .0 10.0.2.3 255.255.255.0 UG 2 0 0 eth1 
10.0.2 . 0 * 255.255.255.0 u 0 9 0 eth1 
10.0.3 .0 10.0.7.3 255.255.255.0 UG 2 0 0 eth4 
10.0.1 2.0 10.0.7.3 255.255.255.0 UG 3 Q 0 eth4 
10.0.1 4.0 10.0.7.3 255.255.255.0 UG 4 0 0 eth4 
10.0.1 1.0 10.0.7.3 255.255.255.0 UG 3 0 0 eth4 

Figure 3.10: Case 2 - Routing table for R2 before network restabilized - 12 routing 
entries I 

For explanation purposes, we selected one of the links - link R2-R4 - to illustrate 

the outcome of our single-link failure analysis. For further analysis, we can select any 

other link in the network to explain effects of single-link failures. 

When the virtual network was fully functional in case one, the expected outcome is to 

obtain nineteen routing entries at the head node of the link from this network. How-

ever, when we experimented with the removal of the selected link R2-HA, the number 

of routing entries changed from nineteen to eleven. This result clearly shows that the 

removal of link R2-R4 leads to a 37% decrease in the number of routil1g entries. The 

summarized results of these experiments are shown graphically in Figure 3.11. In 

Figure 3.11, the links of the virtual network are shown on the x-axis while the head 

node routing changes in the network are shown on the y-axis. 

In most instances, it is observed that a single-link failure caused many changes in the 

routing tables. About 50% of the links in this fifteen-node network will cause about 
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RIP: Single link failure analysis 
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Figure 3.11 : Single link removal analysis for RIP 
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a 42% decrease in the number of routing changes. These observations demonstrate 

that when the link connectivity of the network goes down, RIP will modify the local 

routing table and record the routing entries for the routers that are still connected 

in the network. This result conforms to the concepts explained regarding intra-AS 

routing and matches our hypothesis in Section 2.5.1. 

3.4.2 Single-router failures with RIP 

In this experiment , we investigated the impact of single-router failures in the virtual 

network. We recorded routing changes in the network as shown in the routing tables 

for single-router failures. 

The concepts and implementations of RIP routing protocol explain that if a router 
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does not hear from its neighbor at least once in every 180 seconds, that neighbor 

is considered to be no longer reachable [15]. This outcome means the neighbor is 

dead or the connectivity is lost. Therefore, RIP modifies the local routing table and 

propagates this information by sending advertisements to neighboring routes that are 

still reachable. 

Firstly, we recorded the number of routing entries when all the routers were in place 

in the network and the network was fully functional. Secondly, we removed each 

router in the network, sequentially, then recorded the resulting routing changes for 

each router. When a particular router was missing, we collected and recorded the 

routing entries from each of the routers that were still active in the network. We 

compared the routing entries collected from the routing tables of the original network, 

with routing entries of the modified network, and reported changes observed for each 

missing router. 

For our original and unmodified network, each router had nineteen routing entries in 

their routing table. When we modified the network by removing each router sequen-

tially, each router produced had eighteen or nineteen routing entries depending on 

whether the router is a cut point. We now provide more detail. 

Firstly, for routers - R3, R4, and R7 - there was no difference in their routing 

tables both before and after their removal. This outcome occurred because each 

router considers its neighbor dead after 180 seconds and adjusts its routes based on 

the next available router. As an example, we show the results for R5 in Figure 3.12 

for when the virtual network is fully functioning and in Figure 3.13 for when router 

R3 was missing from the network. 

Secondly, we observed only slight difference of one missing routing entry in these 

routers: R1, R2, R5, R6, R8, and R9. This difference occurred because these routers 
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were cut points of t he network topology shown in Figure 3.1. As an example, we show 

the results for R5 in Figure 3.12 for when the virtual network is fully functioning and 

in Figure 3.14 for when router R1 was missing from the network. The loss of one 

rout ing ent ry was as a result of network non-reachability due to a cut point on the 

network topology. Otherwise, the behaviors of all these routers were t he same, and 

it reflected that effects of missing routers were not important in t he RIP routers. 
R5 console 

R5:-# route 
Kernel IP routing table 
Destination Gateway Genmask Flags Metric Ref Use If ace 
192.168.0.24 * 255.255.255.252 u 0 0 0 ethO 
10.0.4.0 10.0.12.5 255.255.255 . 0 UG 5 0 0 eth4 
10.0.5.0 10.0.12 . 5 255.255.255.0 UG 4 0 0 eth4 
10.0.6.0 * 255.255.255.0 u 0 0 0 eth2 
10.0.7.0 10.0.3.3 255 . 255.255.0 UG 2 0 0 eth1 
10.0.16.0 10 . 0 . 12.5 255.255.255.0 UG 2 0 0 eth4 
10 . 0.0.0 10 . 0.3.3 255 . 255.255.0 UG 3 0 0 eth1 
10.0 . 17.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4 
10.0.1.0 10 . 0.3.3 255.255.255 . 0 UG 2 0 0 eth1 
10.0.2.0 10.0.3.3 255.255.255.0 UG 3 0 0 eth1 
10.0.3.0 * 255.255.255.0 u 0 0 0 eth1 
10.0.12.0 * 255.255.255.0 u 0 0 0 eth4 
10.0.13.0 10.0 . 11.5 255.255.255 . 0 UG 2 0 0 eth3 
10 . 0.14.0 10.0.11.5 255.255.255.0 UG 2 0 0 eth3 
10.0.15.0 10.0.12.5 255.255.255 . 0 UG 2 0 0 eth4 
10.0.8.0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4 
10.0.9 . 0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4 
10.0.10.0 10.0.12 . 5 255.255.255 . 0 UG 4 0 0 eth4 
10.0.11.0 * 255.255.255.0 u 0 0 0 eth3 

Figure 3.12: Routing table for the router-R5 with fully functional network 

In summary, we obtained results obtained for the removal of each router. T hese results 

are summarized graphically in Figure 3.15. In Figure 3. 15, the routers of the virtual 

network are shown on the x-axis while t he number of routing changes in the network 

are shown on they-axis. From t he obtained results for a single-router failure analysis, 

we observed that a network configured wit h RIP always produced the same number 

of rout ing table ent ries at each router when a particular router was removed. T he 
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R5 console 
R5:-# route (missing router R3) 
Kernel IP routing table 
Destination Gateway Genmask Flags Metric Ref Use !face 
192.168.0.20 * 255.255.255.252 u 0 0 0 ethO 
10.0.4.0 10.0.12.5 255.255.255.0 UG 5 0 0 eth4 
10.0 . 5 . 0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4 
10.0.6.0 * 255.255.255.0 u 0 0 0 eth2 
10.0.7.0 10.0.12.5 255.255.255.0 UG 5 0 0 eth4 
10.0.16.0 10.0.12.5 255.255.255 . 0 UG 2 0 0 eth4 
10.0.0.0 10.0.12.5 255.255.255.0 UG 6 0 0 eth4 
10.0.17.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4 
10.0.1.0 10.0.12.5 255.255.255 . 0 UG 6 0 0 eth4 
10.0.2.0 10.0.12.5 255.255.255.0 UG 5 0 0 eth4 
10.0.3.0 * 255.255.255.0 u 0 0 0 eth1 
10.0.12.0 * 255.255.255.0 u 0 0 0 eth4 
10.0.13.0 10 . 0 . 12.5 255.255.255.0 UG 2 0 0 eth4 
10.0.14.0 10.0.11.5 255.255.255 . 0 UG 2 0 0 eth3 
10.0.15.0 10.0.12.5 255.255.255.0 UG 2 0 0 eth4 
10.0.8.0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4 
10.0.9.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4 
10.0.10.0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4 
10 . 0.11.0 * 255.255.255.0 u 0 0 0 eth3 

Figure 3.13: Routing tables when the router-R3 was missing 

slight difference in the routing table entries was because that particular router was a 

cut point of the network graph. This observation conforms to the concepts explained 

regarding dead neighbors or routers, and matches our hypothesis in Section 2.5.1. 

3.5 Conclusions 

In this section, we explain our conclusions for the experiments conducted in the small 

network with RIP configurations. We use the two experiments that we performed on 

single-link and single-router failures in Section 3.4. 

The first experiment enabled us to study the routing changes caused by the removal 

of links in a virtual network configured with RIP routing protocol. When we exper-
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R5 console 
R5:-# route (missing router R1) 
Kernel IP routing table 
Destination Gateway Genmask Flags Metric Ref Use If ace 
192.168.0.20 * 255.255.255.252 u 0 0 0 ethO 
10.0.4.0 10.0.3.3 255.255.255.0 UG 3 0 0 eth1 
10.0.5.0 10.0.3.3 255.255.255.0 UG 3 0 0 eth1 
10.0.6.0 * 255.255.255.0 u 0 0 0 eth2 
10.0.7.0 10.0.3.3 255.255.255.0 UG 2 0 0 eth1 
10.0.16.0 10.0.12.5 255.255.255.0 UG 2 0 0 eth4 
10.0.17.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4 
10.0.1.0 10.0.3.3 255.255.255.0 UG 2 0 0 eth1 
10.0.2.0 10.0.3.3 255.255.255.0 UG 3 0 0 eth1 
10.0.3.0 * 255.255.255.0 u 0 0 0 eth1 
10.0.12.0 * 255.255.255.0 u 0 0 0 eth4 
10.0.13.0 10.0.12.5 255.255.255.0 UG 2 0 0 eth4 
10.0.14.0 10.0.11.5 255.255.255.0 UG 2 0 0 eth3 
10.0.15.0 10.0.12.5 255.255.255.0 UG 2 0 0 eth4 
10.0.8.0 10.0.3.3 255.255.255.0 UG 4 0 0 eth1 
10.0.9.0 10.0.12.5 255.255.255.0 UG 3 0 0 eth4 
10.0.10.0 10.0.12.5 255.255.255.0 UG 4 0 0 eth4 
10.0.11.0 * 255.255.255.0 u 0 0 0 eth3 

Figure 3.14: Routing tables when the router-R1 was missing 

imented with the removal of links as shown in Figure 3.11, it shows that there was 

a reduction of an average of 32%, with a range of 11% to 53% in the number of 

routing entries in the routing tables. In addition, the removal of different links leads 

to different routing changes in the network. We were able to identify links that had 

the most effects on network when they were removed. These experiments explain the 

importance of certain links to the routing changes in the network. Failure of each link 

has corresponding effects on the routing information of the network and, eventually, 

the routing changes. As an example, four links - R1-R3, R2-R4, R3-R5 , R4-R7 and 

R6-R7 - in Figure 3.11 are critical for the day-to-day running of the network; any 

failure of such links has considerable effects on the routing changes. 

The second experiment evaluated the effects of router failures in a virtual network 

configured with RIP routing protocol. We observed there was no difference in the 
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number of routing changes with single-router failures - except for those with cut 

points - as shown in Figure 3.15. This evaluation confirmed the true behavior of 

RIP [15]: After waiting for 180 seconds, a router considers its immediate neighbor to be 

dead and takes the next available router as its next hop and adjusts its routes. When 

there was a single-router failure in the network, it was equivalent to the simultaneous 

failure of all their connecting links. The example in Figure 3.13 shows that when 

router R3 was missing from the network, there was simultaneous failure of all the 

three connecting links to this router. These single-router failure experiments show 

that they are quite different from single-link failure experiments. In the case of single-

link failure experiments, the network waited for some time to stabilize while in the 

case of single-router failure experiment the network did not wait for stabilization; the 

next available router immediately became its next hop and adjusted the routes. 
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Finally, we are able to use this protocol in the virtual network to understand the 

routing changes caused by the link and router removal in a small network. But for 

large network and complex networks RIP is probably wholly inadequate. This routing 

protocol does compute new routes after any change in the network topology, but in 

some cases it does so very slowly, by counting to infinity. RIP prevents routing loops 

from continuing indefinitely by implementing a hop count limit. This limit ensures 

that anything more than fifteen hops away is considered unreachable by RIP. The 

drawback of RIP in [15] explains the choice of network operators and researchers for 

improved routing protocols from the link state family that can detect and correct 

router failures in their network. 
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Chapter 4 

Modelling the Routing of an 

Autonomous System 

This chapter contains the experimental work and results of modelling the routing of 

an AS, more specifically the GEANT network. The GEANT network was a pan-European 

backbone that connects Europe's national research and education networks. 

We present the goals of this chapter in Section 4.1. In Section 4.2, we explain our 

network topology and describe how we modelled the GEANT network using an emula-

tion method, and validated the functionality of this virtual network. We conducted 

two case studies in the network, which are described in Section 4.3. The first case 

study investigated the effects of single-link failures in the virtual network, and the 

second case study examined the effects of single-router failures . In Section 4.4, we 

compare our emulation studies and a simulation work by Quoitin et al. in [20, 21] . 

Both simulation and emulation methods are used to study the routing changes in the 

GEANT network. Lastly, in Section 4.5 we present our conclusions drawn from the two 

case studies. 
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4.1 Introduction 

In this chapter, we aim to use emulation techniques to design a model of the GEANT 

network. This emulated network topology is similar to that of the simulated model 

of the GEANT network investigated in [20, 21] . Our first goal in this study was to use 

emulation techniques to design a model of the GEANT network testbed. The second 

goal was to use a routing protocol, OSPF, to configure a large scale network on the 

testbed, referred to as the GEANT. The third goal was to use our virtual GEANT network 

testbed to study routing changes caused by link and router failures. Lastly, the final 

goal was to demonstrate that emulation techniques produce reasonable results for a 

large scale network, which are consistent with the results obtained by Quoitin et al. 

in [20, 21]. The results collected from our emulated study are directly compared to 

the results from Quoitin et al. simulation work. 

4.2 Modelling of the GEANT network 

In this section, we describe how to use an emulation technique to model the GEANT 

network. The GEANT was a transit network: a pan-European computer network for 

research and education. The GEANT network is the large-scale network we used for our 

investigations. The GEANT network was a multi-gigabit European computer network 

project for research and education. Maintaining the GEANT network project involved 

network testing and development of new technologies and networking research. Fig-

ure 4.1 shows the overview of the GEANT backbone network. GEANT2 is the successor 

to GEANT, and its development began in November 2000 and officially ended in April 

2005. See more details regarding GEANT and GEANT2 projects in [4, 31] . Later in the 

sub-sections, we briefly describe the implementation and configuration of this network 

with OSPF routing protocol. 
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Figure 4.1: The GEANT backbone network: Courtesy of DANTE 

4.2.1 Topology of the GEANT network 

We modelled a network with similar topology to that used in [20, 21], which was the 

three-layer topology of the GEANT captured from a one-day IS-IS trace of 24 November, 

2004. Our model of the GEANT network has a complex topology which includes the 

twenty-three routers, thirty-eight links, and two hosts. These two hosts are used 

for testing and validation purposes, they are not routers and have no effect on the 

topology. 

The emulated GEANT network model was designed for our investigations of the impact 

of router and link failures in a large scale network. The network graph of the emulation 
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4.2.2 Implementation and configuration with OSPF 

In this section, we implemented the network topology described in Section 4.2. 1 using 

VNUML on an UBUNTU Linux machine. The methodologies for design and implementa-

tion of this virtual network testbed are similar to the approach used in Section 3.3.2. 

The major difference between them is the size of the GEANT network; we needed to 

patch the UBUNTU host machine with SKAS3 features [1] in order to enhance per-

formance to meet the larger resource requirements of the GEANT network emulation. 

Below is a set of basic steps for the implementation and configuration of the virtual 

GEANT network: 

1. We patched the default Linux kernel of the UBUNTU host machine [12] with 

SKAS3 obtained from [1]. We downloaded these patches and compiled a Linux 

kernel on UBUNTU systems to include SKAS3 features. 

2. We then installed VNUML tool in the Linux environment of the host machine. 

This tool and the installation procedures can be downloaded from [8]. The 

VNUML tool is designed to easily create simple and complex network emulation 

scenarios. 

3. Next, we installed Quagga in the system-wide /etc/ directory of the host ma-

chine. Quagga is a routing software package that provides TCP /IP-based rout-

ing services and protocol dcemons. A machine installed with Quagga serves as 

a dedicated router. 

4. We wrote implementation code for the network topology specified in Figure 4.2 

in an XML file. The purpose of this file was to include specifications for cre-

ating the virtual GEANT network. We ensured that the XML file specifications 

conformed to the VNUML DTD [8] that came with the VNUML tool. Details of the 

XML specifications are included in Appendix C. 
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5. We then created the VNUML session and individual machines by running the 

commands in Figure 4.3. When we were finished with the networking scenario, 

we killed the scenario processes by running the commands specified in Figure 4.4. 

A screen shot of the virtual GEANT network testbed is shown in Figure 4.5. 

Each of the windows or machines in Figure 3.4 represents a node on the virtual 

network testbed. 

6. The network created in step five had strictly local connectivity, but this net-

work ignored the global network topology. This type of connectivity means that 

only adjacent routers could communicate with each other. To enable network 

connectivity, we then configured each router in the network with OSPF by cre-

ating these files: zebra.conf , ospfd.conf and vtysh.conf in /etc/quagga 

directory. These three configuration files were created and designated for each 

router. A sample of each configuration file for the router-Rl is included in 

Appendix D. See Appendix D for more details. 

7. We then started and stopped OSPF daemon by running commands as shown in 

Figure 4.6. We included a piece of code from XML specifications for starting and 

stopping ospfd daemon as shown in Figure 4. 7. See the XML file in Appendix C 

for more details. 

vnumlparser.pl -t /usr/share/vnuml/NIYiospf.xml -v -u root 

Figure 4.3: Commands for creating virtual GEANT network 

vnumlparser.pl -d /usr/share/vnuml/NIYiospf.xml -v 

Figure 4.4: Commands for killing virtual GEANT network 
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Figure 4.5: A screen shot of the virtual GEANT network testbed 

sudo vnumlparser.pl -x start~NIYiospf.xml #Starting the daemons 

sudo vnumlparser.pl -x stop~NIYiospf.xml #Stopping the daemons 

Figure 4.6: Commands for starting and stopping the OSPF dremons 

<filetree root="/etc/quagga" seq="start">Rl</filetree> 

<exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
<exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
<exec seq="stop" type="verbatim">killall zebra</exec> 
<exec seq="stop" type="verbatim">killall ospfd</exec> 

Figure 4. 7: XML code for starting and stopping the zebra and ospfd dremon 

4.2.3 Validating a model of the GEANT network 

In this section, we performed validation tests on the virtual GEANT network. The 

results of these validation tests from our emulated network confirmed the expected 
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behavior as observed on the physical topology of the GEANT network. The validation 

tests were carried out in three different ways: testing the network for reachability, 

computing routing tables for each router, and tracing the route of packets in the 

network. These three tests assured us that our virtual representation of the GEANT 

network was functional and reliable for our case studies in Section 4.3. 

4.2.3.1 Testing the network reachability 

The first validation test was to check for connectivity in this complex virtual network. 

When there is no routing protocol in the network, routers have local connectivity, 

that is, they are only connected to immediate neighbors. When there is a routing 

protocol such as OSPF in the network, OSPF routers flood the network with link state 

information. All routers will receive updates and re-compute their routing tables . 

We used the ping command for this test. For instance, we tried from console R5 

to reach Host A on the virtual network. We obtained the result: "Network is un-

reachable"; this is due to lack of a routing protocol in the network. After we had 

successfully configured the network with the OSPF dremon, the connectivity confirmed 

the protocol was working correctly. The result of a ping command on the router-R5 

console to reach Host A is shown in Figure 4.8. This testing confirmed that the OSPF 

protocol was working correctly, and we could proceed to the next test. 

4.2.3.2 Managing the routing information with OSPF 

The second validation test was to compute the routing tables for each router. We 

wanted to display summary information about all routes for the OSPF protocol. 

We ran the route command directly from the console of each router. After executing 

the command, we obtained results - routing tables - that indicated routing entries: 
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- ----------------------------------------------------~ 

.---------------------------- pinging ------------------------------. 
R5:-# ping 10.0.10 . 8 -c2 #Host A without OSPF daemon 
connect: Network is unreachable 

R5:-# ping 10.0.10.8 -c2 #Host A with OSPF daemon 
PING 10.0.10.8 (10.0.10.8) 56(84) bytes of data. 
64 bytes from 10.0.10 . 8: icmp_seq=1 ttl=62 time=60.7 ms 
64 bytes from 10.0.10.8: icmp_seq=2 ttl=62 time=0.647 ms 

--- 10.0.10.8 ping statistics---
2 packets transmitted, 2 received, 0% packet loss, time 1012ms 
rtt min/avg/max/mdev = 0.647/30.719/60.791/30.072 ms 

Figure 4.8: Pinging from R5 to Host B 

destinations, gateway or path to different destinations, metric - cost, interfaces and 

flags. These results showed the routing information of the virtual network and they 

are shown in Figure 4.9 for the router-R5 console. This test also confirmed that the 

OSPF protocol was working correctly and we could proceed to the third test. 

4.2.3.3 Tracing packets in the virtual GEANT network 

The third validation was to ascertain how packets travel in our virtual network. This 

validation test showed a list of routes traversed, and allowed us to identify the path 

taken to reach a particular destination in the network. 

We used the traceroute command to investigate the route taken by packets across 

the virtual GEANT network. The result showed paths that were taken by the packets 

and the corresponding time spent in milliseconds. Figure 4.10 shows a session through 

the router-R5 console. The result showed how a packet would travel on the router 

and the respective t imes in milliseconds. This test also confirmed that both the net-

work and OSPF protocol were functioning properly. From the topology in Figure 4.2, 

we could use a physical examination of the network to obtain the computation of 

shorthest paths/hops for tracing the packets from R5 to Host B. Both the physical 
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R5 console 
R5: -# route 
Kernel IP routing table 
Destination Gateway Genmask Flags Metric Ref Use Iface 
192.168.0.16 * 255.255.255.252 u 0 0 0 ethO 
10 .0 . 20 . 0 10.0.12.8 255.255.255 . 0 UG 30 0 0 eth3 
10 .0.21.0 10.0.6 . 8 255.255.255.0 UG 40 0 0 eth2 
10.0.22.0 10.0.12 . 8 255 . 255.255.0 UG 40 0 0 eth3 
10.0 . 23 . 0 10.0.12.8 255.255.255 . 0 UG 30 0 0 eth3 
10.0.16.0 10 . 0 . 12 .8 255 . 255.255 . 0 UG 20 0 0 eth3 
10.0.17.0 10 . 0 . 5.4 255 . 255.255 . 0 UG 30 0 0 eth1 
10.0.18.0 10.0.12.8 255.255.255 . 0 UG 20 0 0 eth3 
10.0.19 . 0 10.0.12.8 255.255.255.0 UG 30 0 0 eth3 
10 . 0.28.0 10 . 0.12.8 255.255.255.0 UG 40 0 0 eth3 
10.0.29.0 10 . 0.12.8 255 . 255.255 . 0 UG 50 0 0 eth3 
10.0.30 . 0 10 . 0.12 .8 255 . 255.255.0 UG 50 0 0 eth3 
10.0.31.0 10.0.12 . 8 255.255.255 . 0 UG 60 0 0 eth3 
10.0.24.0 10 . 0 . 6.8 255.255.255 . 0 UG 40 0 0 eth2 
10.0.25.0 10.0.12 . 8 255.255.255 . 0 UG 50 0 0 eth3 
10.0.26.0 10 . 0 . 6.8 255.255.255 . 0 UG 40 0 0 eth2 
10.0.27.0 10.0.12.8 255.255.255.0 UG 30 0 0 eth3 
10.0.4.0 10.0.5 . 4 255.255.255.0 UG 30 0 0 eth1 
10.0.5.0 * 255.255.255.0 u 0 0 0 eth1 
10.0.6.0 * 255.255.255.0 u 0 0 0 eth2 
10.0.7.0 10.0.6.8 255 . 255.255.0 UG 20 0 0 eth2 
10 . 0.1.0 10.0.5.4 255.255.255.0 UG 30 0 0 eth1 
10.0 . 2.0 10.0 . 5.4 255.255 . 255.0 UG 20 0 0 eth1 
10.0.3.0 10.0.5.4 255.255.255.0 UG 40 0 0 eth1 
10.0.12.0 * 255.255 . 255.0 u 0 0 0 eth3 
10.0.13 . 0 10.0.12.8 255.255.255.0 UG 40 0 0 eth3 
10.0 . 14.0 10.0.6.8 255.255.255.0 UG 40 0 0 eth2 
10 . 0 . 15.0 10.0.5.4 255 . 255.255.0 UG 20 0 0 eth1 
10.0.8.0 10.0.6.8 255.255.255.0 UG 20 0 0 eth2 
10.0.9.0 10.0.6 . 8 255.255.255.0 UG 30 0 0 eth2 
10.0 . 10.0 10.0.6.8 255.255.255.0 UG 30 0 0 eth2 
10.0.11.0 10 . 0 . 6 . 8 255.255.255.0 UG 30 0 0 eth2 
10.0 . 37 . 0 10.0.12.8 255.255.255 . 0 UG 60 0 0 eth3 
10 . 0.36.0 10.0.12 . 8 255.255.255.0 UG 20 0 0 eth3 
10.0.38.0 10.0.12.8 255.255.255.0 UG 50 0 0 eth3 
10.0.33.0 10 . 0 . 12.8 255 . 255.255.0 UG 60 0 0 eth3 
10.0 . 32 . 0 10 . 0 . 6.8 255 . 255.255.0 UG 30 0 0 eth2 
10.0.35.0 10 . 0 . 12.8 255.255.255.0 UG 60 0 0 eth3 
10.0 . 34.0 10.0.12.8 255 . 255.255 . 0 UG 60 0 0 eth3 

Figure 4.9: An example of OSPF rout ing table for R5 console 
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examination and emulation results produced the same number of shortest hops/paths, 

i.e., six hops to the final destination. 

We could confirm by using the above three validation tests that our emulated GEANT 

network was functional and the OSPF protocol was running accordingly in the net-

work. Because the network topology has been validated, next we proceed with our 

networking experiments. 
traceroute 

R5 :-# traceroute -n 10.0.37.8 #Host B 
tr aceroute to 10.0.37.8 (10.0.37.8), 30 hops max, 40 byte packets 

1 10.0.12.8 33.176 ms 0.366 ms 0.255 ms 
2 10.0.18.8 47.148 ms 0.728 ms 0.587 ms 
3 10.0.27.4 50.409 ms 0.995 ms 0.914 ms 
4 10.0.28.8 41.210 ms 0.676 ms 0.484 ms 
5 10.0.29.8 46.643 ms 0.651 ms 0.555 ms 
6 10.0.37.8 46.573 ms 0.952 ms 0.659 ms 

Figure 4.10: Traceroute from R5 to Host B 

4.3 Case studies in the virtual GEANT network 

In this section, we present two case studies investigated in the virtual GEANT network. 

The experimental set-up is similar to that detailed in Section 3.2, but slightly modified 

as explained in Section 4.2.2 to conform with the requirements necessary for a large 

scale networking scenario. 

In the first case study, we examined the impact of removing links as detected in the 

total routing cost. In the second case study, we investigated the effects of the routers' 

removal and the corresponding total routing cost . The two case studies helped us to 

understand the impact of link and router failures in the virtual GEANT network and 

their resulting total costs. 
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In [20, 21], Quoitin et al. partitioned the routing changes into four different classes: 

Peer change, Egress change, Intra cost change and Intra path change. Each of these 

changes was described in their work. In our emulated GEANT network, we focus on 

Intra cost change as the routing changes, because other changes cannot be measured 

in this network. This particular change occurs when there is no egress change except 

for the change in the IGP cost of the ingress-egress path in the network. Our emulated 

GEANT network assumed that the link weights were constant - ten units, and link 

weights reflected the cost of using a link. To minimize the overall cost, OSPF routing 

protocol runs Dijkstra's algorithm to determine the shortest path - least-cost path 

- in our case studies. 

We also used the case studies to identify the links whose loss produces higher routing 

costs and the routers whose loss yields the largest routing costs. Our goal in these 

case studies was to demonstrate that the emulation method produces useful results 

for understanding intra-domain routing. In the next section, Section 4.4, we use this 

information to make a comparison of emulation and simulation techniques. 

4.3.1 Single-link failures with OSPF 

Most network operators do not have a sufficient understanding of the effect of link 

failures in the network. Evaluating and determining which link failures will change 

the outcome of the route selection in a large network configured with OSPF is a difficult 

problem. Understanding and evaluating effects of link failures are important because 

routing changes often lead to traffic shifts and traffic congestion. For a network oper-

ator, it is important to determine whether the network will be able to accommodate 

the traffic load when single link failures occur. In addition, it is also necessary to 

identify the links in the network whose loss would cause increases in the total routing 

cost (i.e ., sum of Intra cost change) and protect such links by the addition of parallel 
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links to mitigate the impact of link failures in the network. 

In this case study, we experimented with the removal of links in the emulated GEANT 

network. The first objective was to compute the head node routing costs of each link 

for a fully functional network and compare it with that of a missing-link networking 

scenario. We aimed to identify the links most affected by the single link failures in 

the network. The second objective was to relate our results from the emulated GEANT 

network with those of simulations carried out by Quoitin et al. in [20, 21]. 

We used our virtual GEANT network that was validated in the last section for these 

experiments. Firstly, we conducted the experiments as described in steps five to seven 

of Section 4.2.2 for separate single link failures for each router. When the network 

was functioning, we recorded the routing tables for each router. Secondly, we removed 

each link from the virtual network, one at a time, and recorded the corresponding 

routing tables for the router at the beginning of the link. This removal of link was 

done for all the links in the network, and each time we computed the total cost of 

routings and re-routings of these links. In this experiment, we selected cost as an 

index for measuring routing changes. Data collection was done by running the route 

command directly from the console of the beginning router of the removed link. The 

beginning of a link is the starting router and the ending of the link is the ending 

router for any link in the network. An example of data collection for a removed link 

R1-R2 is as follows. The sum of total cost for routings and re-routings was collected 

from the console of the router-R1 before and after link R1-R2 was removed. 

The resulting changes in the routing tables for each link removed are shown graphi-

cally in Figure 4.11. In this figure, we show results for both conditions, that is, when 

the network was fully functional and when there was removal of individual links. In 

Figure 4.11, the links of the virtual network are shown on the x-axis while the head 

node routing costs are shown on the y-axis. 
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For each link removed, we observed the total routing cost at the head nodes of the 

links - the sum of Intra cost changes. There were remarkable changes in the number 

of routers that increased their cost (metric) as a result of single-link failures in the 

virtual GEANT network. We observed about 12% variation in the total routing cost 

for all the links, and an average of 13%, with a range of 5% to 20% increases in the 

cost of re-routings of all the links in the emulated GEANT network. We also observed 

remarkable increases in the total routing cost at the link head nodes of an average 

of 18%, with a range of 16% to 20% in the following links: R1-R2, R1-R3, R2-R5, 

R3-R13, R5-R10, R5-R6, R7-R9, R9-R17, R10-R12, R12-R16, R13-R14, R18-R23, 

R21-R23, and R22-R23. From Figure 4.2, these links show that their failures would 
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increase the total cost of re-routings in the network. In this project, we selected any 

link from 10% increases to constitute a potential major change in the total cost of 

routing. The increase in the total cost accounted for the fact that those links were 

important for routing in the network; removal of such links would have moderate 

effects in the network. 

In our experiments, we also observed small increases in the total routing cost at the 

head nodes of these links: R2-R4, R4-R10, R15-R22, R17-R19, and R18-Rl9. These 

routing costs, the sum of Intra cost change, are of an average of 6%, with a range of 

5% to 7% for their re-routings in the network. The slight increases in the total routing 

cost at the head nodes of these links demonstrate that their effect in the network is 

of lesser importance. The links with higher routing costs in the network are more 

important , and their removal or breakage moderately affected the routing costs. 

Without missing links, the network functioned smoothly; and we recorded the head 

node routing costs from the routing tables. However, we observed differences in the 

the head node routing costs when we conducted experiments with link failures in the 

same network. Link failures clearly resulted in moderate changes in the total routing 

cost at the head nodes of these links in the network, and such identified links need to 

be protected to prevent traffic congestion. 

In these experiments, we observed a change in the total routing cost at the node at 

the head of a link that was removed. This result is qualitatively consistent with the 

description of OSPF given in Section 2.5.2. 

4.3.2 Single-router failures with OSPF 

Most network operators and ISPs desire to understand the impact of router failures 

in the network. Evaluating and determining which router failures will change the 
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outcome of the route selection is a difficult problem in a large network configured 

with OSPF. Understanding and evaluating effects of router failures are important, 

because routing changes often lead to traffic shifts and traffic congestion. For a 

network operator, it is often important to predict whether the network will be able 

to accommodate the traffic load when single-router failures occur. In addition, it is 

necessary to identify which of the routers in the network should be protected against 

router failures by the addition of parallel routers. 

In this case study, we experimented with the removal of routers in the emulated 

GEANT network. In a large AS, it is often difficult to predict which router failures will 

most affect the total routing cost - sum of Intra cost change. Our first objective 

was to collect the routing information for the fully functional network and compare 

the results with routing information for a missing-routers networking scenario. We 

sought to identify which routers are most affected by the single router failures in 

the network. Our second objective is to relate our results from the emulated GEANT 

network with the simulation results reported by Quoitin et al. in [20, 21]. We discuss 

the comparison in Section 4.4. 

As explained in Section 2.5.2, an OSPF router typically runs Dijkstra's shortest path 

algorithm to determine a shortest path tree to all subnets, with itself as the root 

node. In this network, we assumed that each link has a cost of ten , and consequently 

the least-cost path is the same as the shortest path. 

For these experiments, we used the virtual GEANT network that had already been 

validated as described in the last section. Firstly, we ran the experiments as described 

in steps five to seven of Section 4.2.2 for a total of twenty-three times, that is, each 

time for each router. When the network was fully functional , we recorded the total 

routing cost from the routing tables for each router. Secondly, we removed one router 

for each experiment using our XML specifications in Appendix C. Emulations of the 
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network were performed sequentially until the effects of a single router failure for each 

router in the network were recorded. For each router disabled, the data were collected 

by running the route command directly from the console of each remaining router, 

and summing the costs. These experiments consumed a lot of time and resources 

because we had to collate the resulting data for each of the twenty-three routers that 

was disabled and their remaining routers on each occasion. 

Normally, a router broadcasts link state information whenever there is a change in the 

network. The OSPF routers periodically flood the network with their advertisements, 

thereby adjusting their routing tables and letting other routers know that they are 

still functional. The resulting changes in the number of routing entries for each 

router removal are shown graphically in Figure 4.12. The results for both conditions 

are displayed: when the network was fully functional and after the removal of each 

router. Each router in the virtual network is shown on the x-axis, and the total 

routing cost in the network is shown on they-axis. 

When each router was removed, we observed moderate increases in the total routing 

cost for some routers. These variations were of an average of 7.5%, with a range of 5% 

to 10% in the total routing cost (i.e., the sum of Intra cost change) for these routers: 

R5, R6, RlO, R12, and R14. In this project, any router with more than 5% increases 

was considered to have a potential major change in the total cost of routing. These 

results confirmed that the removal of any of these routers in the network would lead 

to increases in the total routing cost. However, failure of such routers could lead to 

increasing cost of reaching some destinations in the network. 

We also observed that routers: R7, R17, R19, R20, R21 , and R22 have least effects 

because their removal would lead to a shortfall of an average of 4.5%, with a range 

of 2% to 7% in the total routing cost (i.e. , the sum of Intra cost change), not the 

individual cost for a each router in the network. This shortfall means that their 
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OSPF: Single router failure analysis 
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Figure 4.12: Single router failure analysis for OSPF 
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removal could reduce the total routing cost (i.e. , the sum of Intra cost change) in 

the network. It would lower the total cost for traversing the whole network. The 

fluctuation in the total routing cost gave us the hint on the possible changes in the 

cost of maintaining traffic flows in the network. 

Essentially from the data collected, we observed that there is a fluctuation in the 

total routing cost for the missing routers networking scenario when compared with the 

original, fully functioning network. These results confirm the concepts in Section 2.5.2 

that there are changes in the routing tables when each router is removed from the 

network. 
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4.4 Comparison of emulation and simulation re-

sults for the GEANT network 

In this section, we compare the results obtained from our emulations studies of the 

GEANT network with the simulation studies for this same network carried out by Bruno 

Quoitin in [20, 21]. We briefly discuss the main difference of these two experimental 

techniques. 

The emulation and simulation techniques take complementary approaches toward 

computing routing. Typically, the goal of emulation techniques is to closely reproduce 

features and behaviors of real world devices while the goal of simulation techniques 

is to predict outcomes of running a set of network devices in a network based on 

the internal model of the specified simulator. In our emulation studies, we obtained 

results that show similar pattern to that of Quoitin et al. [20, 21] regarding the change 

in network conditions as caused by link and router failures in the network. 

From our emulation studies of single link failures , we observed that a single link failure 

often leads to noticeable changes in the total routing cost at the head nodes of the 

links in the network. All of the links in our virtual GEANT network indicate variation 

in the head node routing costs as shown graphically in Figure 4.11. For instance 

on Figure 4.2, links: R1-R2, R1-R3 , R2-R5 , R3-R13 , R5-R10, R5-R6, R7-R9, R9-

R17, R10-R12, R12-R16, R13-R14, R18-R23, R21-R23, and R22-R23 represent some 

increase in the cost while links: R2-R4, R4-R10, R4-Rll, R6-R7, R8-R9, R10-Rll , 

R15-R20, R17-R19, and R18-R19 show slight increases for re-routings when a link 

removal occurred in the network. This is similar to the results obtained in [20, 21] ; 

the changes in the routing updates for simulation work can be obtained from page 

87 of [20]. From our investigations, we observed that all of our virtual GEANT links 

caused nearly 20% fluctuations in the head node routing costs when they failed for 
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our emulated network which was primarily intra-AS. On the other hand, Quoitin et 

al. observed that about 60% of the GEANT links caused more than 100,000 routing 

changes when they failed in their simulated network. The differences in percentages 

obtained for our emulated network and that of the simulated can be explained by the 

fact that our emulated network percentage is only for the total head node routing 

costs while the simulated network percentage is for all the four classes of routing 

changes as described in their work. It can be seen clearly that both experimental 

techniques identify important links that are most affected by single link failures in 

their model of the GEANT network. 

We also agree with Quoitin et al. that the number of intra domain re-routings is 

few. We recorded a relatively low number of routing changes in our virtual network 

because our network design mainly focused on an intra-AS, that is, we concentrate 

on purely intra domain re-routing. In [20, 21], Quoitin et al. also remarked that there 

are few routing changes in the intra-cost change (that is, change in IGP cost without 

egress change) and intra-path change (that is, same IGP cost for an ingress-egress) 

classes. This is because models of the GEANT would not capture all the changes in the 

routing updates of single link failures for a transit network like the GEANT. 

For our emulation studies of single router failures, we observed that failures of GEANT 

routers often lead to changes in the total routing cost. The failure of a single router is 

also equivalent to the failure of all links that are attached to this router. In [20, 21], 

it was observed that failure of some routers could lead to the unreachability of some 

destinations. These routers: R5, R6, RIO, R12, and R14 accounted for moderate 

increases in the total routing cost; as their failures also affected the most critical links 

that were connected to these routers. These links and routers are also identified in 

Figures 4.11 and 4.12. The changes in the routing changes for simulation work can 

be obtained from page 88 of [20]. Our emulation result is consistent with that of 

55 



simulation work in [20, 21]. It can be seen clearly that both experimental techniques 

identify important routers that are most affected by single-router failures in their 

model of the GEANT network. 

There is a noticeable difference in the number ofrouting changes (i.e., the routing cost) 

in our emulation studies when compare to that of simulation work. This difference 

occurred because Quoitin et al. included BGP routes in his simulation studies while our 

emulation studies focused purely on intra-AS routes. This explains the huge number 

of routing changes recorded in his experiments. However, the pattern of the routing 

costs reflects similar behavior for cases with link and router failures in the network. 

4.5 Conclusions 

In this section, we provide discussions and experimental conclusions. We used emula-

tion technique to model the GEANT network, carried out validation tests and conducted 

two experimental case studies for intra-domain routing. We used the two emulation 

case studies do a comparison with the simulation work and infer the following con-

clusions. 

In the first case study, we used emulation techniques to examine the impact of link 

failures on the head node routing costs in the network using the OSPF routing protocol. 

From our results, we inferred that single-link failures in the virtual network account 

for less than 20% difference in the total head node routing costs. Our emulation result 

shows similar patterns with that of simulation work in [20, 21]. We inferred that both 

emulation and simulation studies identified important links that were important in the 

models of GEANT network. Such links were not exactly the same because of different 

routing data used in the two different experimental techniques. 
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In the second case study, we used emulation techniques to understand the impact of 

router failures on total routing cost using the OSPF routing protocol. We used the 

single-router failure analysis to identify heavily-used routers in the network and also 

to understand their behavior using the OSPF routing protocol. Such routers include 

R5, R6, RlO, R12, and R14, and they accounted for moderate increases in the total 

routing cost. Our results are similar to the simulation work in [20, 21] which also 

observed that failures of single routers, that is, the GEANT routers often cause different 

classes of routing changes and lead to traffic congestion. Finally, we were able to use 

the emulation technique and OSPF routing protocol to understand changes in the 

routing costs of our emulated GEANT network as caused by link and router failures. 
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Chapter 5 

Conclusions and Future Work 

This chapter concludes the project report. Section 5.1 is a summary of the work 

done, and the main conclusions are presented in Section 5.2. Lastly, we discuss future 

directions of this research in Section 5.3. 

5.1 P roject Summary 

We used emulation techniques to design and implement two virtual network testbeds 

in this project. In this work, we emulated simple and complex networks; these net-

works were validated and used for our investigations. We implemented a fifteen-node 

virtual network testbed and configured it with RIP routing protocol. We also mod-

elled a complex network, the GEANT and configured it with a more powerful routing 

protocol, OSPF. These testbeds were used to explore experiments on routing changes 

caused by link or router failures in the two networks. 

With our simple network testbed, we were able to use emulation techniques to produce 

meaningful results that are comparable to the expected results for a small network -
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a fifteen node network. This testbed provided us with an environment for testing RIP 

protocol while it works dynamically to re-configure the network against fluctuations 

or changes of conditions in the network. In our experiments, RIP protocol was useful 

for identifying missing links and critical links in the network: this result confirmed our 

theoretical expectations of RIP. In addition, we observed that when there was a single-

router failure in the RIP configured network, it was equivalent to the simultaneous 

failure of all the connecting links. During the single-router failure experiment the 

network, there was no need to wait for network stabilization; the next available router 

immediately became the next hop and adjusted the routes accordingly. 

We carried out two case studies in the virtual GEANT network testbed to investigate 

routing changes. The first case study, an evaluation of the impact of missing links on a 

complex network, we observed the network behavior for missing-link scenarios. These 

scenarios revealed critical links that were important for operations of the network. For 

network operations, link failures accounted for changes in the total routing costs on the 

routing tables. The second case study, an evaluation of the impact of missing routers 

in the GEANT network testbed, we observed that the failures of certain routers could 

lead to increase in the cost of reaching some destinations. The testbed enabled us to 

study the behavior of the network when it was used for an intra-domain routing. From 

the results collected, we observed that OSPF protocol was efficient at re-computing 

the routing tables in the case of missing routers. The protocol flooded the network 

with routing information updates and adjusted quickly to new conditions. Our results 

are consistent with those obtained when similar experiments were performed on the 

simulation of the GEANT network for the missing routers. 

Lastly, we used emulation techniques to gain invaluable experience creating, configur-

ing, and managing virtual networks that are similar to live networks. This practical 

knowledge and understanding provided us insights for the deployment of physical net-
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works when needs arise. We gained much-needed knowledge and hands-on experience 

to building and maintaining small and large scale networks. 

In this project, there were two major limitations to conducting our experiments. 

The first limitation was our inability to obtain the network graph for the simulated 

GEANT network of Quoitin et al. This limitation prevented us from having the exact 

representation of links and routers in the design of our emulated networking scenarios. 

Though, the GEANT network had ceased to exist, but it would be nice if GEANT2 

operators can produce a network graph of their new network for future research 

purposes. 

The second limitation was our inability to obtain and use the same routing data that 

Quoitin et al. collected on November 24th, 2004 [20, 21]. In our experiments, we had 

to generate our routing data from our emulation of the GEANT network. This lack of 

routing data accounted for non-replicate references to individual links and routers in 

the graphical presentation of our results. However, we observed a similar pattern of 

link and router behaviors as recorded in the simulation experiments. 

5.2 Conclusions 

There are five main conclusions from this project: 

1. Our experiments in Chapters 3 and 4 enable us to develop virtual network 

testbeds that are re-usable and re-configurable by users. These testbeds will 

enhance learning and testing of network applications and services by students 

and network administrators . Network configurations and training can be pro-

vided to students without requiring a real network. Our testbeds can be used 

as templates for practising and learning network configurations. 
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2. Our experiments in Chapters 3 and 4 show that emulation-based experiments 

demonstrate typical behaviors of both RIP and OSPF protocols in any network. 

Both dynamic routing protocols are able to quickly re-compute routing tables 

when there are missing-links, and the OSPF protocol effectively handles missing-

routers scenarios by flooding the network with new routing information. 

3. Our experiments in Chapters 3 and 4 confirm that emulation-based experiments 

can help ISP operators to understand routing changes and assess the total rout-

ing costs of traversing the network respectively. Virtual network testbeds can 

be used to study missing routers and links in simple and complex networks. 

This information is useful because emulation environments closely reproduce 

features and behaviors of real world devices. Emulated networks undergo the 

same packet exchanges and state changes that occur in real world. 

4. Our experiments in Chapters 3 and 4 confirm that emulation techniques pro-

duce reasonable results that are consistent with simulation techniques. Our 

emulation results are consistent with simulation results in identifying critical 

links and routers that can influence routing changes and traffic distributions in 

the network. The experimental work in Chapters 3 and 4 evaluated the im-

pact of link and router failures in the network, achieved comparable patterns of 

network behavior when there were link and router failures in the network, and 

identified network links and routers that needed to be protected. 

5. Our experiments in Chapters 3 and 4 affirm the cheap and fast ways to model 

complex networks. To conduct emulation of networks, we simply obtain free 

download of the VNUML tool and install it on a Linux machine for easy creation of 

networks. Network analysts and ISP operators can easily use this fast approach 

to investigate their desired networks. 
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5.3 Future work 

In this project, our focus was to investigate routing changes and total routing costs 

for intra-AS. It would be interesting to expand these techniques and explore network 

behaviors for inter-AS routing changes and traffic distributions. For future work, 

we recommend the use of VNUML tool to study inter-domain routing changes. This 

work will involve using exterior gateway protocols (EGP) for interconnecting different 

autonomous systems ASs. The study of EGP will help to understand the operations 

of the Internet and the collection of ASs that make up the Internet. 

The GEANT network had ceased to exist, and has since been replaced with the GEANT2 

network. Another avenue of investigations is to conduct similar experiments in the 

new network and compare the effects of missing links and routers on routing changes in 

the network. The results obtained will be more relevant and provide useful suggestions 

for ISP operators based in the new network. 

It is also worth studying the use of combined experimental techniques for studying 

routing changes and total routing costs. Applying these techniques: simulation, em-

ulation and live testing will allow researchers to determine which combination of two 

or three techniques will improve network tests and experiments. 
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Appendix A 

The XML file for a test bed with RIP 

A.l A fifteen-node virtual network testbed 

The following XML file describes a sample scenario of fifteen nodes to be used with UML 

and VNUML parser to set up a virtual network testbed. This testbed is configured 

with RIP to verify whether or not this intra-domain routing protocol is functioning 

correctly. We also use the testbed to study routing instability in the network. 

The XML file is stored in /usr/share/vnuml/RIP15nodes . xml directory of a host 

machine, and a copy of this XML specification is included in the report as follows. 

1 <?xml version="!. 0" encoding="UTF-8"?> 
2 <!DOCTYPE vnuml SYSTEM "/usr/share/xml/vnuml/vnuml.dtd"> 
3 

4 <vnuml> 
5 <global> 
6 <version>1.8</version> 
7 <simulation_name>RIP15nodes</simulation_name> 
s <automac/> 
9 <vm_def aul ts exec_mode= "mconsole" > 

10 <filesystem type="cow">/usr/share/vnuml/filesystems 
u /root_fs_tutorial</filesystem> 
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12 <kernel>/usr/share/vnuml/kernels/linux</kernel> 
13 <console id="O">xterm</console> 
14 </vm_defaults> 
15 </global> 
16 <net name="NetO" mode="uml_switch" /> 
17 <net name="Net1" mode="uml_switch" /> 
18 <net name="Net2" mode="uml_switch" /> 
19 <net name="Net3" mode="uml_switch" /> 
20 <net name="Net4" mode="uml_switch" /> 
21 <net name="Net5" mode="uml_switch" /> 
22 <net name="Net6" mode="uml_switch" /> 
23 <net name="Net7" mode="uml_switch" /> 
24 <net name="Net8" mode="uml_switch" /> 
25 <net name="Net9" mode="uml_switch" /> 
26 <net name="Net10" mode="uml_switch"/> 
27 <net name="Net11" mode="uml_switch"/> 
28 <net name="Net12" mode="uml_switch" /> 
29 <net name="Net13" mode="uml_switch" /> 
30 <net name="Net14" mode="uml_switch" /> 
31 <net name="Net15" mode="uml_switch"/> 
32 <net name="Net16" mode="uml_switch"/> 
33 <net name="Net17" mode="uml_switch" /> 
34 

35 <vm name="HostA"> 
36 <if id="1" net="NetO"> 
37 <ipv4 mask="255.255.255.0">10.0.0.3</ipv4> 
38 </if> 
39 <route type="ipv4" gw="10.0.0.1">default</route> 
40 </vm> 
41 

42 <vm name="R1"> 
43 <if id="1" net="Net1"> 
44 <ipv4 mask="255. 255.255. 0">10. 0 .1. 3</ipv4> 
45 </if> 
46 <if id="2" net="NetO"> 
47 <ipv4 mask="255. 255.255. 0">10. 0. 0 .1</ipv4> 
48 </if> 
49 <if id="3" net="Net2"> 
5o <ipv4 mask="255. 255.255. 0">10. 0. 2. 3</ipv4> 
5 1 </if> 
52 <forwarding/> 
53 <filetree root=" /etc/quagga" seq="start ">r1</filetree> 
54 <exec seq="start" type="verbatim">hostname</exec> 
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55 <exec seq= 11 start 11 type= 11 verbatim 11 >/usr/lib/ 
56 quagga/zebra -d</exec> 
57 <exec seq= 11 start 11 type= 11 verbatim 11 >/usr/lib/ 
ss quagga/ripd -d</exec> 
59 <exec seq= 11 stop 11 type= 11 verbatim 11 >hostname</exec> 
60 <exec seq= 11 stop 11 type= 11 verbatim 11 >killall zebra</exec> 
61 <exec seq= 11 stop 11 type= 11 verbatim 11 >killall ripd</exec> 
62 </vm> 
63 

64 <vm name= 11 R2 11 > 
65 <if id= 11 1 11 net= 11 Net2 11 > 
66 <ipv4 mask= 11 255. 255.255. 0 11 >10. 0. 2. 5</ipv4> 
67 </if> 
68 <if id= 11 2 11 net= 11 Net4 11 > 
69 <ipv4 mask= 11 255. 255.255. 0 11 >10. 0. 4. 3</ipv4> 
70 </if> 
n <if id= 11 3 11 net= 11 Net5 11 > 
12 <ipv4 mask= 11 255. 255.255. 0 11 >10. 0. 5. 3</ipv4> 
73 </if> 
74 <if id= 11 4 11 net= 11 Net7 11 > 
~ <ipv4 mask= 11 255.255.255 . 0 11 >10.0.7.5</ipv4> 
76 </if> 
11 <forwarding/> 
1s <f i letree root= 11 I etc/ quagga 11 seq= 11 start 11 >r2</ f iletree> 
79 <exec seq= 11 start 11 type= 11 verbatim 11 >hostname</exec> 
so <exec seq= 11 start 11 type= 11 verbatim 11 >/usr/lib/ 
s1 quagga/zebra -d</exec> 
s2 <exec seq= 11 start 11 type= 11 verbatim 11 >/usr/lib/ 
s3 quagga/ripd -d</exec> 
s4 <exec seq= 11 stop 11 type= 11 verbatim 11 >hostname</exec> 
s5 <exec seq= 11 stop 11 type= 11 verbatim 11 >killall zebra</exec> 
s6 <exec seq= 11 stop 11 type= 11 verbatim 11 >killall ripd</exec> 
s1 </vm> 
88 

s9 <vm name= 11 HostB 11 > 
9o <if id= 11 1 11 net= 11 Net4 11 > 
91 <ipv4 mask= 11 255.255.255.0 11 >10.0.4.5</ipv4> 
92 </if> 
93 <route type= 11 ipv4 11 gw= 11 10.0.4.3 11 >default</route> 
94 </vm> 
95 

96 <vm name= 11 R3 11 > 
97 <if id= 11 1 11 net= 11 Net3 11 > 
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~ <ipv4 mask="255.255.255.0">10.0.3.3</ipv4> 
99 </if> 

100 <if id="2" net="Net1 "> 
101 <ipv4 mask="255. 255.255. 0">10. 0 .1. 5</ipv4> 
102 </if> 
1o3 <if id="3" net="Net7"> 
1o4 <ipv4 mask="255. 255.255. 0">10. 0. 7. 3</ipv4> 
105 </if> 
1o6 <forwarding/> 
101 <filetree root=" /etc/quagga" seq="start">r3</filetree> 
1o8 <exec seq="start" type="verbatim">hostname</exec> 
1o9 <exec seq="start" type="verbatim">/usr/lib/ 
110 quagga/zebra -d</exec> 
111 <exec seq="start" type="verbatim">/usr/lib/ 
112 quagga/ripd -d</exec> 
113 <exec seq="stop" type="verbatim">hostname</exec> 
114 <exec seq="stop" type="verbatim">killall zebra</exec> 
115 <exec seq="stop" type="verbatim">killall ripd</exec> 
116 </vm> 
117 

118 <vm name="R4"> 
119 <if id=" 1" net="Net5"> 
1w <ipv4 mask="255.255.255.0">10.0.5.5</ipv4> 
121 </if> 
122 <if id="2" net="Net8"> 
123 <ipv4 mask="255. 255.255. 0">10. 0. 8. 3</ipv4> 
124 </if> 
125 <if id="3" net="Net9"> 
126 <ipv4 mask="255. 255.255. 0">10. 0. 9. 3</ipv4> 
127 </if> 
128 <forwarding/> 
129 <filetree root=" /etc/quagga" seq="start">r4</filetree> 
130 <exec seq="start" type="verbatim">hostname</exec> 
131 <exec seq="start" type="verbatim">/usr/lib/ 
132 quagga/zebra -d</exec> 
133 <exec seq="start" type="verbatim">/usr/lib/ 
134 quagga/ripd -d</exec> 
135 <exec seq=" stop" type= "verbatim" >hostname</ exec> 
136 <exec seq="stop" type="verbatim">killall zebra</exec> 
137 <exec seq="stop" type="verbatim">killall ripd</exec> 
138 </vm> 
139 

140 <vm name="R5"> 
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14 1 <if id="1" net="Net3"> 
u2 <ipv4 mask="255.255.255.0">10.0.3.5</ipv4> 
143 </if> 
144 <if id="2" net="Net6"> 
145 <ipv4 mask="255. 255.255. 0">10. 0. 6. 5</ipv4> 
146 </if> 
147 <if id="3" net="Net11"> 
148 <ipv4 mask="255. 255.255. 0">10. 0 .11. 3</ipv4> 
149 </if> 
15o <if id="4" net="Net12"> 
151 <ipv4 mask="255. 255.255. 0">10. 0.12. 3</ipv4> 
152 </if> 
153 <forwarding/> 
154 <filetree root="/etc/quagga" seq="start">r5</filetree> 
155 <exec seq="start" type="verbatim">hostname</exec> 
156 <exec seq="start" type="verbatim">/usr/lib/ 
157 quagga/zebra -d</exec> 
158 <exec seq="start" type="verbatim">/usr/lib/ 
159 quagga/ripd -d</exec> 
160 <exec seq="stop" type="verbatim">hostname</exec> 
161 <exec seq="stop" type="verbatim">killall zebra</exec> 
162 <exec seq="stop" type="verbatim">killall ripd</exec> 
163 </vm> 
164 

165 <vm name="HostC"> 
166 <if id="1" net="Net6"> 
167 <ipv4 mask="255. 255.255 . 0">10 . 0. 6. 3</ipv4> 
168 </if> 
169 <route type="ipv4" gw="10.0.6 . 5">default</route> 
110 </vm> 
171 

112 <vm name="R6"> 
173 <if id="1" net="Net8"> 
174 <ipv4 mask="255 . 255.255.0">10.0.8.5</ipv4> 
175 </if> 
176 <if id="2" net="Net10"> 
m <ipv4 mask="255.255.255.0">10.0 . 10.3</ipv4> 
178 </if> 
179 <if id="3" net= "Net17"> 
18o <ipv4 mask="255. 255.255. 0">10. 0.17. 5</ipv4> 
181 </if> 
182 <forwarding type=" ip" /> 
183 <filetree root="/etc/quagga" seq="start">r6</filetree> 
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184 <exec seq="start" type="verbatim">hostname</exec> 
185 <exec seq="start" type="verbatim">/usr/lib/ 
186 quagga/zebra -d</exec> 
187 <exec seq="start" type="verbatim">/usr/lib/ 
188 quagga/ripd -d</exec> 
189 <exec seq="stop" type="verbatim">hostname</exec> 
19o <exec seq="stop" type="verbatim">killall zebra</exec> 
191 <exec seq="stop" type="verbatim">killall ripd</exec> 
192 </vm> 
193 

194 <vm name="HostD"> 
195 <if id="1" net="Net10"> 
196 <ipv4 mask="255. 255.255. 0">10. 0. 0. 5</ipv4> 
197 </if> 
198 <route type="ipv4" gw="10.0.0.3">default</route> 
199 </vm> 
200 

201 <vm name="R7"> 
202 <if id="1" net="Net9"> 
2o3 <ipv4 mask="255. 255.255. 0">10. 0. 9. 5</ipv4> 
204 </if> 
2o5 <if id="2" net="Net16"> 
2o6 <ipv4 mask="255. 255.255. 0">10. 0.16. 5</ipv4> 
207 </if> 
2o8 <if id="3" net="Net17"> 
2o9 <ipv4 mask="255. 255.255. 0">10. 0.17. 3</ipv4> 
210 </if> 
211 

212 <forwarding type=" ip" /> 
213 <filetree root="/etc/quagga" seq="start">r7</filetree> 
214 <exec seq=" start" type= "verbatim" >hostname</ exec> 
215 <exec seq="start" type="verbatim">/usr/lib/ 
216 quagga/zebra -d</exec> 
211 <exec seq="start" type="verbatim">/usr/lib/ 
218 quagga/ripd -d</exec> 
219 

220 

221 

<exec seq="stop" type="verbatim">hostname</exec> 
<exec seq="stop" type="verbatim">killall zebra</exec> 
<exec seq="stop" type="verbatim">killall ripd</exec> 

222 </vm> 
223 

224 <vm name=" R8" > 
225 <if id="1" net="Net12"> 
226 <ipv4 mask="255. 255.255. 0">10. 0.12. 5</ipv4> 
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227 </if> 
228 <if id="2" net="Net13"> 
229 <ipv4 mask="255. 255 . 255. 0">10 . 0. 13. 5</ipv4> 
230 </if> 
23 1 <if id="3" net="Net15"> 
232 <ipv4 mask="255.255 . 255.0">10.0.15.3</ipv4> 
233 </if> 
234 <if id="4" net="Net16"> 
235 <ipv4 mask="255. 255.255. 0">10. 0 . 16. 3</ipv4> 
236 </if> 
237 

238 <forwarding type=" ip" /> 
239 <filetree root= "/etc/quagga" seq="start">r8</filetree> 
24o <exec seq="start" type="verbatim">hostname</exec> 
24 1 <exec seq="start" type="verbatim">/usr/lib/ 
242 quagga/zebra -d</exec> 
243 <exec seq="start" type="verbatim">/usr/lib/ 
244 quagga/ripd -d</exec> 
245 <exec seq="stop" type="verbatim">hostname</exec> 
246 <exec seq="stop" type="verbatim">killall zebra</exec> 
24 7 <exec seq="stop" type="verbatim">killall ripd</exec> 
248 </vm> 
249 

25o <vm name="HostE"> 
25 1 <if id=" 1" net="Net15"> 
252 <ipv4 mask="255. 255.255. 0">10. 0.15 . 5</ipv4> 
253 </if> 
254 <route type="ipv4" gw="10.0.15.3">default</route> 
255 </vm> 
256 

25 7 <vm name="R9"> 
258 <if id=" 1" net="Net11 "> 
259 <ipv4 mask="255. 255.255. 0">10. 0 .11. 5</ipv4> 
260 </if> 
26 1 <if id= "2" net="Net13"> 
262 <ipv4 mask="255.255.255.0">10 . 0 . 13.3</ipv4> 
263 </if> 
264 <if id="3" net="Net14"> 
265 <ipv4 mask="255. 255.255. 0">10 . 0.14. 3</ipv4> 
266 </if> 
267 <forwarding type="ip"/> 
268 <filetree root="/etc/quagga" seq="start">r9</filetree> 
269 <exec seq="start" type="verbatim">hostname</exec> 
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270 

271 

272 

273 

274 

275 

276 

277 

<exec seq="start" type="verbatim">/usr/lib/ 
quagga/zebra -d</exec> 
<exec seq="start" type="verbatim">/usr/lib/ 
quagga/ripd -d</exec> 
<exec seq="stop" type="verbatim">hostname</exec> 
<exec seq="stop" type="verbatim">killall zebra</exec> 
<exec seq="stop" type="verbatim">killall ripd</exec> 

278 </vm> 
279 

28o <vm name="HostF"> 
281 <if id="1" net="Net14"> 
282 <ipv4 mask="255. 255.255. 0">10. 0.14. 5</ipv4> 
283 </if> 
284 <route type="ipv4" gw="10.0.14.3">default</route> 
285 </vm> 
286 </vnuml> 
287 \end{Verbatim} 

73 



-

Appendix B 

Configuration files for Zebra, RIP 

and vtysh 

In these configuration files, you can specify the debugging options, a vty's password, 

the RIP routing dremon configurations, a log file name, and so forth. 

We wrote three configuration files for each router configured with RIP . These files 

are zebra.conf , ripd.conf and vtysh.conf , and are described below. These brief 

descriptions are as follows: 

• The first file is a default configuration file, and it is called zebra. conf. This 

file, zebra, is an IP routing manager and is used to provide kernel routing 

updates, interface lookups, and the redistribution of routes between different 

routing protocols [11]. 

• The second file is a default configuration file , and it is called ri pd . conf. This 

configuration file contains a ripd dremon that implements the RIP protocol. 

This RIP protocol requires interface information maintained by zebra dremon. 

It is mandatory to run zebra before running ripd dremon, and zebra must be 
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invoked before we use an ripd dremon. 

• The third file is vtysh. conf file and it configures the virtual terminal - ( vty). 

The vty is a command line interface (CLI) for user interaction with the routing 

daemon. Users can connect to the dremons via the telnet protocol. To enable a 

vty interface, users have to setup a vty password. 

These files are usually kept in /etc/quagga directory of a computer machine. For 

ease of reference, we will upload all the configuration files for this project to this 

website: http: I /web. unbc . ca/ rvbankole/ after the project defense. 

Below is a set of sample files for router, Rl, regarding the configuration files explained 

above. 

B.l zebra.conf 

3 zebra sample configuration file 
4 

5 $Id: zebra.conf.sample,17:26:38 developer Exp $ 
6 

1 hostname Rl 
8 password xxxx 
9 enable password zebra 

10 

11 Interface's description. 
12 

13 ! interface lo 
u ! description test of desc. 
15 

16 !interface sitO 
11 multicast 
18 

19 
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20 ! Static default route sample. 
21 

n !ip route 0.0.0.0/0 203.181.89.241 
23 

24 

25 ! log file zebra.log 
26 log file /var/log/zebra/zebra.log 

B.2 ripd.conf 

2 

3 RIPd sample configuration file 
4 

5 $Id: ripd . conf.sample, 17:28:42 developer Exp $ 
6 

1 hostname ripd 
s password zebra 
9 

10 debu g rip events 
11 debu g rip packet 
12 

13 router rip 
14 networ k 10.0.0.0/8 

B.3 vtysh.conf 

! vtysh sample configuration file 
2 

3 !username niyibank nopassword 
4 log file /var/log/zebra/vtysh.log 
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Appendix C 

The XML file for the virtual GEANT 

network 

In order to set up dynamic routing with the DSPF routing protocol, we configure the 

virtual network testbed with OSPF. This protocol is widely used in large networks such 

as enterprise networks and ISPs because it converges very quickly. By convergence, 

we refer to the time it takes to respond to changes in the network. These changes 

could occur due to link and router failures. 

We need three separate configuration files- zebra. conf , ospfd . conf and vtysh. conf 

for each of the twenty-three routers. In the ospfd. conf file, each router defines 

the subnets and the OSPF areas that make up the network. Both zebra. conf and 

vtysh. conf resemble equivalent files that we already explained in Subsection 3.3.2. 

In the OSPF configuration file, we specify the debugging options, routing dremon 

configurations and the name of the log file. We write three configuration files for each 

of the twenty-three routers. We use these configuration files in the XML specification 

files to create the virtual network. See sample of the three configuration files in 

Appendix E. 
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On the host machine, we locate the XML file and then start or stop these routing 

dremons by specifying the necessary commands. 

The XML file is stored in /usr/share/vnuml/NIYiospf .xml directory of a host rna-

chine, and a copy of t his XML specification is included in the report as follows. 

C.l A twenty-three node virtual network testbed 

The following XML file describes a scenario of twenty-three nodes to be used with UML 

and VNUML parser to set up a virtual network testbed. This testbed is configured 

with OSPF to verify whether or not this int ra-domain rout ing protocol is functioning 

correctly. We also use the testbed to study rout ing instability in the network. Below 

is the script for the XML specifications. 

1 <?xml version="!. 0" encoding="UTF-8"?> 
2 <!DOCTYPE vnuml SYSTEM "/usr/share/xml/vnuml/vnuml.dtd"> 
3 

4 <vnuml> 
5 <global> 
6 <version>1.8</version> 
7 <simulation_name>newGEANT</simulation_name> 
8 <automac/> 
9 <vm_defaults exec_mode="mconsole"> 

10 <filesystem type="cow">/usr/share/vnuml/filesystems/ 
11 root _fs_tutorial</filesystem> 
12 <kernel>/usr/share/vnuml/kernels/linux</kernel> 
13 <console id="O">xterm</console> 
14 </vm_defaul ts> 
15 </global> 
16 

17 <net name="Netl" mode="uml_switch" /> 
18 <net name="Net2" mode="uml_switch" /> 
19 <net name="Net3" mode="uml_switch" /> 
20 <net name="Net4" mode="uml_switch" /> 
21 <net name="Net5" mode="uml_switch" /> 
22 <net name="Net6" mode="uml_switch" /> 
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23 <net name="Net7" mode="uml_switch" /> 
24 <net name="Net8" mode="uml_switch" /> 
25 <net name="Net9" mode="uml_switch" /> 
26 <net name="Net10" mode="uml_switch"/> 
2 7 <net name="Net11" mode="uml_switch"/> 
28 <net name="Net12" mode="uml_swi tch" /> 
29 <net name="Net13" mode="uml_switch" /> 
30 <net name="Net14" mode="uml_switch" /> 
3 1 <net name="Net15" mode="uml_switch"/> 
32 <net name="Net16" mode="uml_switch"/> 
33 <net name="Net17" mode="uml_switch" /> 
34 <net name="Net18" mode="uml_switch" /> 
35 <net name="Net19 " mode="uml_switch" /> 
36 <net name="Net20" mode="uml_switch" /> 
37 <net name="Net21" mode="uml_switch" /> 
38 <net name="Net22" mode="uml_switch" /> 
39 <net name="Net23" mode="uml_switch" /> 
40 <net name="Net24" mode="uml_switch" /> 
41 <net name="Net25" mode="uml_switch" /> 
42 <net name="Net26" mode="uml_switch" /> 
43 <net name= "Net27" mode="uml_switch" /> 
44 <net name="Net28" mode="uml_switch"/> 
45 <net name="Net29" mode="uml_switch"/> 
46 <net name="Net30" mode="uml_switch" /> 
47 <net name="Net31" mode="uml_switch" /> 
48 <net name="Net32" mode="uml_switch" /> 
49 <net name="Net33" mode="uml_switch"/> 
50 <net name="Net34" mode="uml_switch"/> 
5 1 <net name="Net35" mode="uml_switch" /> 
52 <net name="Net36" mode="uml_switch"/> 
53 <net name="Net37" mode="uml_switch" /> 
54 <net name="Net38" mode="uml_switch" /> 
55 

56 <vm name="R1" order=""> 
57 <if id="1" net="Net1"> 
ss <ipv4 mask="255. 255.255. 0">10 . 0 .1. 4</ipv4> 
59 </if> 
6o <if id="2" net="Net2"> 
61 <ipv4 mask="255.255.255.0">10.0.2.4</ipv4> 
62 </if> 
63 <forwarding type=" ip" /> 
64 <filetree root=" /etc/quagga" seq="start">R1</filetree> 
65 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
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66 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
67 <exec seq=" start" type= "verbatim" >hostname</ exec> 
68 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
69 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
10 <exec seq="stop" type="verbatim">killall zebra</exec> 
11 <exec seq="stop" type="verbatim">killall ospfd</exec> 
12 </vm> 
73 

74 <vm name="R2"> 
75 <if id="1" net="Net2"> 
76 <ipv4 mask="255. 255.255. 0">10. 0. 2. 8</ipv4> 
77 </if> 
78 <if id="2" net="Net5"> 
79 <ipv4 mask="255. 255.255. 0">10. 0 . 5. 4</ipv4> 
80 </if> 
81 <if id="3" net="Net15"> 
82 <ipv4 mask="255.255.255.0">10.0.15.8</ipv4> 
83 </if> 
84 

85 <forwarding type=" ip" /> 
86 <filetree root="/etc/quagga" seq="start">R2</filetree> 
87 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
88 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
89 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
9o <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
91 <exec seq="stop" type="verbatim">killall zebra</exec> 
92 <exec seq="stop" type="verbatim">killall ospfd</exec> 
93 </vm> 
94 

95 <vm name="R3"> 
96 <if id=" 1" net="Net1 "> 
97 <ipv4 mask="255. 255.255. 0">10. 0 .1. 8</ipv4> 
98 </if> 
99 <if id="2" net="Net4"> 

1oo <ipv4 mask="255. 255.255 . 0">10. 0 . 4. 4</ipv4> 
101 </if> 
102 <if id="3" net="Net3"> 
1o3 <ipv4 mask="255. 255.255. 0">10. 0. 3 .4</ipv4> 
104 </if> 
1o5 <forwarding type=" ip" /> 
1o6 <filetree root=" I etc/ quagga" seq=" start" >R3</filetree> 
101 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
10s conf/*/rp_filter; do ech~ 0 &gt; $f; done</exec> 
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1o9 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
110 <exec seq= "start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
111 <exec seq="stop" type="verbatim">killall zebra</exec> 
112 <exec seq="stop" type="verbatim">killall ospfd</exec> 
113 </vm> 
114 

115 <vm name="R4"> 
116 <if id="1" net="Net4"> 
117 <ipv4 mask="255.255.255.0">10.0.4.8</ipv4> 
118 </if> 
119 <if id="2" net="Net15"> 
120 <ipv4 mask="255.255.255.0">10.0.15.4</ipv4> 
121 </if> 
122 <if id="3" net="Net16"> 
123 <ipv4 mask="255. 255.255. 0">10. 0.16. 4</ipv4> 
124 </if> 
125 <if id="4" net="Net17"> 
126 <ipv4 mask="255. 255.255. 0">10. 0.17. 4</ipv4> 
127 </if> 
128 <forwarding type=" ip" /> 
129 

130 <filetree root=" /etc/quagga" seq="start">R4</filetree> 
131 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
1~ conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
133 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
134 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
135 <exec seq="stop" type="verbatim">killall zebra</exec> 
136 <exec seq="stop" type="verbatim">killall ospfd</exec> 
137 </vm> 
138 

139 <vm name=" R5" > 
14o <if id="1" net="Net5"> 
141 <ipv4 mask="255 . 255.255. 0">10. 0. 5. 8</ipv4> 
142 </if> 
143 <if id="2" net="Net6"> 
144 <ipv4 mask="255. 255 . 255. 0">10 . 0 . 6. 4</ipv4> 
145 </if> 
146 <if id="3" net="Net12"> 
147 <ipv4 mask="255. 255 . 255. 0">10 . 0.12 .4</ipv4> 
148 </if> 
149 <forwarding type=" ip" /> 
150 

151 <filetree root="/etc/quagga" seq="start">R5</filetree> 
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152 <exec seq="start" type="verbatim">for f in /proc/sys/net/ 
153 ipv4/conf/•/rp_filter; do echo 0 &gt; $f; done</exec> 
154 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
155 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
156 <exec seq="stop" type="verbatim">killall zebra</exec> 
157 <exec seq="stop" type="verbatim">killall ospfd</exec> 
158 </vm> 
159 

160 <vm name="R6"> 
161 <if id="1" net="Net6"> 
162 <ipv4 mask="255. 255 . 255 . 0">10. 0. 6 . 8</ipv4> 
163 </if> 
164 <if id="2" net="Net7"> 
165 <ipv4 mask="255. 255.255. 0">10 . 0. 7. 4</ipv4> 
166 </if> 
167 <if id="3" net="Net8"> 
168 <ipv4 mask="255. 255.255. 0">10. 0. 8. 4</ipv4> 
169 </if> 
110 <forwarding type="ip"/> 
111 <filetree root="/etc/quagga" seq="start">R6</filetree> 
112 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
1~ conf/•/rp_filter; do echo 0 &gt; $f; done</exec> 
174 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
175 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
176 <exec seq="stop" type="verbatim">killall zebra</exec> 
111 <exec seq="stop" type="verbatim">killall ospfd</exec> 
178 </vm> 
179 

180 <vm name="R7"> 
181 <if id="1" net="Net7"> 
182 <ipv4 mask="255. 255 . 255 . 0">10. 0. 7. 8</ipv4> 
183 </if> 
184 <if id="2" net="Net10"> 
185 <ipv4 mask="255. 255 . 255. 0">10. 0. 10. 4</ipv4> 
186 </if> 
187 <if id="3" net="Net11"> 
188 <ipv4 mask="255. 255.255. 0">10. 0 .11. 4</ipv4> 
189 </if> 
19o <forwarding type=" ip" /> 
191 <filetree root="/etc/quagga" seq="start">R7</filetree> 
1n <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
1~ conf/•/rp_filter; do echo 0 &gt; $f; done</exec> 
194 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
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195 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
196 <exec seq="stop" type="verbatim">killall zebra</exec> 
197 <exec seq="stop" type="verbatim">killall ospfd</exec> 
198 </vm> 
199 

2oo <vm name="HostA"> 
201 <if id="1" net="Net10"> 
202 <ipv4 mask="255. 255.255. 0">10. 0.10. 8</ipv4> 
203 </if> 
2o4 <route type="ipv4" gw="10.0.10.4">default</route> 
2o5 <forwarding type=" ip" /> 
2o6 </vm> 
207 

2o8 <vm name=" R8" > 
2o9 <if id="1" net="Net8"> 
210 <ipv4 mask="255. 255.255. 0">10. 0. 8. 8</ipv4> 
211 </if> 
212 <if id="2" net="Net9"> 
213 <ipv4 mask="255. 255.255. 0">10. 0. 9 .4</ipv4> 
214 </if> 
215 <if id="3" net="Net32"> 
216 <ipv4 mask="255. 255.255. 0">10. 0. 32 . 4</ipv4> 
217 </if> 
218 <forwarding type=" ip" /> 
219 <filetree root="/etc/quagga" seq="start">R8</filetree> 
220 <exec seq="start" type="verbatim">for f in /proc/sys/net/ 
221 ipv4/conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
222 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
223 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
224 <exec seq="stop" type="verbatim">killall zebra</exec> 
225 <exec seq="stop" type="verbatim 11 >killall ospfd</exec> 
226 

221 </vm> 
228 

229 <vm name=" R9" > 
230 <if id="1" net="Net9"> 
231 <ipv4 mask="255. 255.255. 0">10. 0. 9. 8</ipv4> 
232 </if> 
233 <if id="2" net="Net26"> 
234 <ipv4 mask="255. 255.255. 0">10. 0. 26. 4</ipv4> 
235 </if> 
236 <if id="3" net="Net14"> 
237 <ipv4 mask="255. 255.255. 0">10. 0. 14. 8</ipv4> 
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238 </if> 
239 <if id="4" net="Net11"> 
240 <ipv4 mask="255. 255.255. 0">10. 0 .11. 8</ipv4> 
241 </if> 
242 <forwarding type=" ip" /> 
243 <filetree root="/etc/quagga" seq="start">R9</filetree> 
244 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
245 conf/*/rp_filter; do echo 0 &gt; $f; done</ exec> 
246 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
247 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
248 <exec seq="stop" type="verbatim">killall zebra</exec> 
249 <exec seq="stop" type="verbatim">killall ospfd</exec> 
25o </vm> 
251 

252 <vm name="R10"> 
253 <if id="1" net="Net16"> 
254 <ipv4 mask="255. 255.255. 0">10. 0.16. 8</ipv4> 
255 </if> 
256 <if id="2" net="Net18"> 
257 <ipv4 mask="255. 255.255. 0">10. 0.18. 4</ipv4> 
258 </if> 
259 <if id="3" net="Net36"> 
260 <ipv4 mask="255. 255.255. 0">10. 0. 36. 4</ipv4> 
261 </if> 
262 <if id="4" net="Net12"> 
263 <ipv4 mask="255. 255.255. 0">10. 0.12. 8</ipv4> 
264 </if> 
265 <forwarding type=" ip" /> 
266 <filetree root="/etc/quagga" seq="start">R10</filetree> 
267 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
268 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
269 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
210 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
211 <exec seq="stop" type="verbatim">killall zebra</exec> 
212 <exec seq="stop" type="verbatim">killall ospfd</exec> 
273 </vm> 
274 

275 

276 <vm name="R17"> 
211 <if id="1" net="Net21"> 
21s <ipv4 mask="255. 255.255. 0">10. 0. 21. 8</ipv4> 
279 </if> 
28o <if id="2" net="Net24"> 
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28 1 <ipv4 mask="255. 255.255. 0">10. 0. 24. 4</ipv4> 
282 </if> 
283 <if id="3" net="Net14"> 
284 <ipv4 mask="255. 255.255 . 0">10. 0.14. 4</ipv4> 
285 </if> 
286 <if id="4" net="Net32"> 
287 <ipv4 mask="255. 255.255. 0">10. 0. 32. 8</ipv4> 
288 </if> 
289 <forwarding type=" ip" /> 
29o <filetree root=" /etc/quagga" seq="start">R17</filetree> 
291 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
292 conf/*/rp_filter; do echo 0 &gt; $f; done</ exec> 
293 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
294 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
295 <exec seq="stop" type="verbatim">killall zebra</exec> 
296 <exec seq="stop" type="verbatim">killall ospfd</exec> 
297 </vm> 
298 

299 <vm name="R19"> 
3oo <if id="1" net="Net24"> 
301 <ipv4 mask="255. 255.255. 0">10. 0. 24. 8</ipv4> 
302 </if> 
303 <if id="2" net="Net25"> 
304 <ipv4 mask="255. 255.255. 0">10. 0. 25. 8</ipv4> 
305 </if> 
306 <if id="3" net="Net26"> 
307 <ipv4 mask="255. 255.255. 0">10. 0. 26. 8</ipv4> 
308 </if> 
309 <forwarding type=" ip" /> 
310 <f i letree root=" I etc/ quagga" seq=" start"> R19</ f iletree> 
311 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
312 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
313 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
314 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
315 <exec seq="stop" type="verbatim">killall zebra</exec> 
316 <exec seq="stop" type="verbatim">killall ospfd</exec> 
317 </vm> 
3 18 

319 <vm name="R11"> 
320 <if id="1" net="Net17"> 
321 <ipv4 mask="255. 255.255. 0">10. 0. 17. 8</ipv4> 
322 </if> 
323 <if id="2" net="Net19"> 
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324 <ipv4 mask="255. 255.255. 0">10. 0.19 .4</ipv4> 
325 </if> 
326 <if id="3" net="Net23"> 
~7 <ipv4 mask="255.255.255.0">10.0.23.8</ipv4> 
328 </if> 
329 <if id="4" net="Net36"> 
33o <ipv4 mask="255. 255.255. 0">10. 0. 36. 8</ipv4> 
331 </if> 
332 <forwarding type=" ip" /> 
333 <filetree root=" /etc/quagga" seq="start">R11</filetree> 
334 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
335 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
336 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
337 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
338 <exec seq="stop" type="verbatim">killall zebra</exec> 
339 <exec seq="stop" type="verbatim">killall ospfd</exec> 
340 </vm> 
341 

342 <vm name="R12"> 
343 <if id="1" net="Net18"> 
344 <ipv4 mask="255. 255.255. 0">10. 0.18. 8</ipv4> 
345 </if> 
346 <if id="2" net="Net19"> 
347 <ipv4 mask="255. 255.255. 0">10. 0.19. 8</ipv4> 
348 </if> 
349 <if id="3" net="Net20"> 
350 <ipv4 mask="255. 255.255. 0">10. 0 . 20. 4</ipv4> 
351 </if> 
352 <if id="4" net="Net27"> 
353 <ipv4 mask="255. 255.255. 0">10. 0. 27. 8</ipv4> 
354 </if> 
355 <forwarding type="ip"/> 
356 <filetree root="/etc/quagga" seq="start">R12</filetree> 
357 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
~8 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
359 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
36o <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
361 <exec seq="stop" type="verbatim">killall zebra</exec> 
362 <exec seq="stop" type="verbatim">killall ospfd</exec> 
363 </vm> 
364 

365 <vm name="R13"> 
366 <if id="1" net="Net3"> 
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367 <ipv4 mask="255. 255.255. 0">10. 0. 3. 8</ipv4> 
368 </if> 
369 <if id="2" net="Net13"> 
37o <ipv4 mask="255. 255.255. 0">10. 0. 13. 4</ipv4> 
371 </if> 
372 <if id="3" net="Net23"> 
373 <ipv4 mask="255.255.255.0">10.0.23.4</ipv4> 
374 </if> 
375 <forwarding type=" ip" /> 
376 <filetree root="/etc/quagga" seq="start">R13</filetree> 
377 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
~8 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
379 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
380 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
381 <exec seq="stop" type="verbatim">killall zebra</exec> 
382 <exec seq="stop" type="verbatim">killall ospfd</exec> 
383 </vm> 
384 

385 <vm name="R14"> 
386 <if id="1" net="Net13"> 
387 <ipv4 mask="255. 255.255. 0">10. 0.13. 8</ipv4> 
388 </if> 
389 <if id="2" net="Net28"> 
39o <ipv4 mask="255. 255.255. 0">10. 0. 28. 4</ipv4> 
391 </if> 
392 <if id="3" net="Net27"> 
393 <ipv4 mask="255. 255.255. 0">10. 0. 27. 4</ipv4> 
394 </if> 
395 <forwarding type=" ip" /> 
396 <filetree root=" /etc/quagga" seq="start">R14</filetree> 
397 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
39s conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
399 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
4oo <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
401 <exec seq="stop" type="verbatim">killall zebra</exec> 
402 <exec seq="stop" type="verbatim">killall ospfd</exec> 
403 </vm> 
404 

405 <vm name="R15"> 
406 <if id="1" net="Net28"> 
407 <ipv4 mask="255. 255.255. 0">10. 0. 28. 8</ipv4> 
408 </if> 
409 <if id="2" net="Net29"> 
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410 <ipv4 mask="255. 255.255. 0">10. 0. 29. 4</ipv4> 
411 </if> 
412 <if id="3" net="Net30"> 
4 13 <ipv4 mask="255.255 . 255.0">10 . 0.30.4</ipv4> 
414 </if> 
415 <forwarding type=" ip" /> 
416 <filetree root="/etc/quagga" seq="start">R15</filetree> 
417 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
418 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
419 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
420 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
421 <exec seq="stop" type="verbatim">killall zebra</exec> 
422 <exec seq="stop" type="~erbatim">killall ospfd</exec> 
423 </vm> 
424 

425 <vm name="R16"> 
426 <if id=" 1" net="Net20"> 
427 <ipv4 mask="255. 255.255. 0">10. 0. 20. 8</ipv4> 
428 </if> 
429 <if id="2" net="Net21 "> 
430 <ipv4 mask="255. 255.255. 0">10. 0. 21. 4</ipv4> 
431 </if> 
432 <if id="3" net="Net22"> 
433 <ipv4 mask="255. 255.255. 0">10. 0. 22. 4</ipv4> 
434 </if> 
435 <forwarding type=" ip" /> 
436 <filetree root=" /etc/quagga" seq="start">R16</filetree> 
437 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
438 conf/*/rp_filter; do echo 0 &gt; $f; done</ exec> 
439 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
440 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
441 <exec seq="stop" type="verbatim">killall zebra</exec> 
442 <exec seq="stop" type="verbatim">killall ospfd</exec> 
443 </vm> 
444 

445 <vm name="R18"> 
446 <if id=" 1" net="Net22"> 
447 <ipv4 mask="255. 255.255. 0">10. 0. 22. 8</ipv4> 
448 </if> 
449 <if id="2" net="Net25"> 
450 <ipv4 mask="255 . 255.255. 0">10. 0. 25 .4</ipv4> 
451 </if> 
452 <if id="3" net="Net38"> 
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453 <ipv4 mask="255. 255.255. 0">10 . 0. 38. 4</ipv4> 
454 </if> 
455 <forwarding type=" ip" /> 
456 <filetree root=" /etc/quagga" seq="start">R18</filetree> 
457 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
458 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
459 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
460 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
461 <exec seq="stop" type="verbatim">killall zebra</exec> 
462 <exec seq="stop" type="verbatim">killall ospfd</exec> 
463 

464 </vm> 
465 

466 <vm name="R20"> 
467 <if id="1" net="Net30"> 
468 <ipv4 mask="255. 255.255. 0">10. 0. 30. 8</ipv4> 
469 </if> 
470 <if id="2" net= "Net31"> 
471 <ipv4 mask="255.255.255.0">10.0.31.4</ipv4> 
472 </if> 
473 <if id="3" net="Net34"> 
474 <ipv4 mask="255. 255.255. 0">10. 0. 34. 4</ipv4> 
475 </if> 
476 <forwarding type=" ip" /> 
477 <filetree root="/etc/quagga" seq="start">R20</filetree> 
478 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
4N conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
480 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
481 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
482 <exec seq="stop" type="verbatim">killall zebra</exec> 
483 <exec seq="stop" type="verbatim">killall ospfd</exec> 
484 </vm> 
485 

486 <vm name="R21"> 
487 <if id="1" net="Net31"> 
488 <ipv4 mask="255. 255.255. 0">10. 0. 31. 8</ipv4> 
489 </if> 
49o <if id="2" net="Net33"> 
491 <ipv4 mask="255. 255 . 255. 0">10. 0. 33. 4</ipv4> 
492 </if> 
493 <forwarding type=" ip" /> 
494 <filetree root="/etc/quagga" seq="start">R21</filetree> 
495 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
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496 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
497 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
498 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
499 <exec seq="stop" type="verbatim">killall zebra</exec> 
5oo <exec seq="stop" type="verbatim">killall ospfd</exec> 
50 1 </vm> 
502 

503 <vm name=" R22" > 
504 <if id="1" net="Net34"> 
505 <ipv4 mask="255.255.255.0">10.0.34.8</ipv4> 
506 </if> 
5o1 <if id="2" net="Net35"> 
508 <ipv4 mask="255. 255.255. 0">10. 0. 35. 4</ipv4> 
509 </if> 
510 <if id="3" net="Net37"> 
511 <ipv4 mask="255.255.255.0">10.0.37.4</ipv4> 
512 </if> 
513 <if id="4" net="Net29"> 
514 <ipv4 mask="255. 255.255. 0">10. 0. 29. 8</ipv4> 
5 15 </if> 
516 <forwarding type=" ip" /> 
517 <filetree root=" I etc/ quagga" seq=" start" >R22</f iletree> 
518 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
519 conf/*/rp_filter; do echo 0 &gt; $f; done</ exec> 
520 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
521 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
522 <exec seq="stop" type="verbatim">killall zebra</exec> 
523 <exec seq="stop" type="verbatim">killall ospfd</exec> 
524 </vm> 
525 

526 <vm name=" R23 "> 
527 <if id="1" net="Net33"> 
528 <ipv4 mask="255. 255.255. 0">10. 0. 33. 8</ipv4> 
529 </if> 
53o <if id="2" net="Net35"> 
53 1 <ipv4 mask="255. 255.255. 0">10. 0. 35. 8</ipv4> 
532 </if> 
533 <if id="3" net="Net38"> 
534 <ipv4 mask="255. 255.255. 0">10. 0. 38. 8</ipv4> 
535 </if> 
536 <forwarding type=" ip" /> 
537 <filetree root="/etc/quagga" seq="start">R23</filetree> 
538 <exec seq="start" type="verbatim">for f in /proc/sys/net/ipv4/ 
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-

539 conf/*/rp_filter; do echo 0 &gt; $f; done</exec> 
540 <exec seq="start" type="verbatim">/usr/lib/quagga/zebra -d</exec> 
541 <exec seq="start" type="verbatim">/usr/lib/quagga/ospfd -d</exec> 
542 <exec seq="stop" type="verbatim">killall zebra</exec> 
543 <exec seq="stop" type="verbatim">killall ospfd</exec> 
544 </vm> 
545 

546 <vm name="HostB"> 
547 <if id=" 1" net="Net37"> 
548 <ipv4 mask="255. 255.255. 0">10. 0. 37. 8</ipv4> 
549 </if> 
55o <route type="ipv4" gw="10.0.37 . 4">default</route> 
551 <forwarding type=" ip" /> 
552 </vm> 
553 

554 </vnuml> 
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Appendix D 

Configuration files for Zebra, 

Ospfd and V tysh 

In these configuration files, you can specify the debugging options, a vty 's password, 

the ospfd routing dremon configurations, a log file name, and so forth. 

We describe the three configuration files: zebra. conf , ospfd. conf and vtysh. conf. 

• The default configuration file name is zebra. conf . This file, zebra, is an 

IP routing manager and is used to provide kernel routing updates, interface 

lookups, and the redistribution of routes between different routing protocols 

[11]. 

• The default configuration file name is ospfd. conf . The ospfd dremon imple-

ments the OSPF protocol which supports OSPF version 2. This OSPF protocol 

requires interface information maintained by zebra dremon. Running zebra is 

mandatory before running ospfd, so zebra must be invoked before ospfd. 

• The vtysh. conf file configures the virtual terminal - ( vty). The vty is a 
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command line interface (CLI) for user interaction with the routing daemon. 

Users can connect to the dremons via the telnet protocol. To enable a vty 

interface, users have to setup a vty password. 

These files are usually kept in /etc/quagga directory of a host machine. For ease 

of reference, we will upload all the configuration files for this project to this website: 

http: I /web. unbc. ca/ rvbankole/ after the project defense. 

Below is a set of sample files for router, Rl, regarding the configuration files explained 

above. 

D.l zebra.conf 

2 

3 zebra sample configuration file 
4 

5 hostname R1 
6 password xxxx 
1 ! enable password zebra 
8 

9 Interface's description. 
10 

n interface lo 
12 description test of desc. 
13 

14 interface sitO 
15 multicast 
16 

11 Static default route sample. 
18 

19 ip route 0.0.0.0/0 
20 

21 log file zebra . log 
22 log file /tmp/zebra.log 
23 
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D.2 Ospfd.conf 

Config by Julius 
2 OSPF configuration 
3 

4 hostname R1 
5 password xxxx 
6 log file /tmp/ospfd.log 
1 log stdout 
8 

9 debug ospf packet all send 
10 

11 interface dummyO 
12 

13 interface eth1 
14 ip ospf cost 10 
15 

16 interface eth2 
11 ip ospf cost 10 
18 

19 interface eth3 
20 

21 interface greO 
22 

23 interface lo 
24 

~ interface sitO 
26 

21 interface teqlO 
28 

29 interface tunlO 
30 

31 router ospf 
32 !ospf router-id 10 . 0.0 . 255 
33 !ospf rfc1583compatibility 
34 !network 10.0 . 0.0/24 area 
35 network 10.0.1.0/24 area 
36 network 10.0.2.0/24 area 
37 

38 line vty 

0.0.0.0 
0.0 . 0 . 0 
0.0.0 . 0 
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D.3 vtysh.conf 

2 ! vtysh sample configuration file 
3 

4 !username niyibank nopassword 
5 log file /var/log/zebra/vtysh.log 

95 



Appendix E 

Electronic version of my Project 

Report 

I had promised in my project report, to make available to prospective users and 

students; my two virtual network testbeds that were used for experiments in my 

research. Students are allowed to copy, modify and re-configure both testbeds for 

their use and education. The configuration files will be available on my personal 

homepage. 

For ease of reference, we will upload an electronic version of this project report to 

this website: http : I /web. unbc. ca/ rvbankole/ after the project defense. 
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