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Abstract 

Hudson Bay (HB) in northern Canada has experienced changing volumes and seasonality of 

streamflows in the last 100 years. These shifts may be due to changing snow accumulation and 

ablation regimes. This study quantifies the changing contribution of snow to river discharge from 

20 major river basins draining into HB (including James Bay) between 1980 and 2013. The 

analysis is based on daily snow water equivalent (SWE) data from GlobSnow, and daily 

streamflow data from the Water Survey of Canada, Hydro-Quebec, and Le Centre d'Expertise 

Hydrique du Quebec. The contribution of snowrnelt to streamflow generation is estimated from 

the ratio of water year maximum SWE to runoff. The Mann-Kendall test is performed for 

evaluation of trends and their significance. In HB, the snowmelt contribution to streamflow 

generation during 1980 to 2013 decreased by 15.9% (34 yrY 1 and changes in hydrological 

conditions are observed. The potential impacts of these changes on ecological and socio-

economic systems across much of Canada' s North are discussed. 
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1. Introduction 

1.1. Overview 

Snow plays an important role in the generation of streamflow globally (Barnett, Adam, & 

Lettenmaier, 2005). The land surface water cycle over much of the global land area, poleward of 

about 40° latitude in both hemispheres, is dominated by snow accumulation and ablation 

processes (Adam, Hamlet, & Lettenmaier, 2009). As an example, Figure 1 shows the ratio of 

accumulated snowfall to annual runoff on a global scale. It emphasizes the critical role of snow 

processes to the hydrology of much of the global land area. Snow processes are therefore critical 

to water resources and economies globally (Adam et al. , 2009; Barnett et al. , 2005). 

180° W 90°w 0 90° E 1800 E 
90° N....-~~~~~~~~~~~~~~~~~~~~~~~~~---. 

" 

0.0 0.2 0.4 0.6 0.8 1.0 
R 

Figure 1. The importance of snowmelt-derived streamflow globally as illustrated by the ratio of 
accumulated annual snowfall to annual runoff, given as a fraction (R). The red lines show the 
basin area where runoff is dominated by snowmelt. The black lines shows the additional basin 
areas where runoff is not primarily dominated by snowmelt but water availability is governed by 
upstream snowmelt. The inset map shows the topographically complex regions of the globe 
where orographic effects in precipitation occur (Barnett et al. , 2005). 



The seasonal snowpack in Canada serves as a major component of its regional water resources 

and acts as a sensitive indicator of climate change (Kang, Shi, Gao, & Dery, 2014). The regular 

monitoring of the timing and magnitude of streamflow provided by long term data, correlated 

with climatic variables, provides the means to study climate-related changes in hydrology 

(Hodgkins, Dudley, & Huntington, 2003). 

There are many studies showing the changing condition of snow over the Northern Hemisphere 

(NH). In the NH, snow cover has retreated poleward at a rate of 5.5 days decade·1 resulting in the 

full snow season (FSS) to decrease at a rate of 0.8 week decade·1 (5 .3 days decade-1
) between the 

winters of 1972/73 and 2007/08 (Choi, Robinson, & Kang, 2010). Further, it has retracted by 15 

to 25 days along eastern Hudson Bay (HB) during the 35-year period (Choi et al. , 2010). The 

spring snow cover extent (SCE) in the NH has significantly diminished over the past century 

with an accerelating decreasing rate of 7% in March and 11 % in April in during 1922 to 2010 

(Brown & Robinson, 2011 ). Similarly, a significant negative trend in snow depth along with 

SCE is observed in North America over the past 59 years (Dyer & Mote, 2007). Li et al. (2014) 

showed that there has been a significant decrease in the total winter snow mass in the NH for the 

period of 1979/80 to 2010/11. Brown & Braaten ( 1998) reported a significant decline in winter 

and early spring snow depths with the greatest decreases occurring in February and March over 

much of Canada including the Hudson Bay drainage basin during the period of 1946 to 1995. 

There has been a decline in maximum winter snow water equivalent (SWE) in the pan-Arctic 

region by 0.17 cm decade·1 over 1979 to 2009 (Liston & Hiemstra, 2011). Changes in winter 

snow accumulation or spring snowmelt rates would directly affect the hydrological regime of 

snowmelt-fed rivers (e.g. , permanent streams becoming ephemeral with a decrease in 

snowpacks) and glacier-fed rivers (e.g. , rapid glacier ablation and disappearance) (Burtle et al. , 
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2012). Further, changes in streamflow into HB may have occurred due to changing snow 

accumulation and ablation regimes. Therefore, it is important to quantify the contribution of 

snow to HB river discharge. 

Climate change-driven shifts in streamflow timing and magnitude have been reported in North 

American basins, especially in snow-dominated ones ( e.g. , Dery et al. 2009; Fritze, Stewart, & 

Pebesma, 2011 ; Westmacott & Bum, 1997) and are expected to continue with increased 

warming. Zhang, Harvey, Hogg, & Yuzyk (2001) reported that the annual and monthly mean 

streamflow over Canada for the past 30 to 50 years has generally decreased with the greatest 

changes occurring in August and September. Moreover, they found that the timing of spring peak 

streamflow has advanced by more than a month (30 days) in many basins of Canada, especially 

in British Columbia, based on daily streamflow. 

Hudson Bay river discharge has experienced changes in its timing and amounts over the past 

decades. Shiklomanov & Shiklomanov (2003) computed the annual streamflow into HB and 

Hudson Strait during 1921 to 1965, 1966 to 1976, 1977 to 1987, and 1988 to 1999 and 

determined it to be 952, 1034, 908, and 878 km3 y{1
, respectively. Similarly, Dery, Stieglitz, 

McKenna, & Wood (2005) estimated the average annual streamflow input to Hudson, James, and 

Ungava Bays to be 714 km3 during 1964 to 2000. Considering HB and James Bay (JB), Dery, 

Mlynowski, Hernandez-Henriquez, & Straneo (2011) estimated a total annual freshwater flux of 

760 km3 into HB from 1964 to 2008 . 

Changes in river input impact sea ice formation in Hudson Bay that, in tum, affects the climate 

of north-eastern North America (Saucier et al. , 2004 ). The inflow of fresh water from rivers into 

the high latitude oceans strengthens the ocean stratification, thereby suppressing deep water 
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formation. This in turn disrupts or weakens the thermohaline circulation that is responsible for 

transport of heat and nutrients in the North Atlantic (Ogi, Tachibana, Nishio, & Danchenkov, 

2001; Rennermalm, Wood, Weaver, Eby, & Dery, 2007). Further, Etkin (1991) showed that a 

climate warming of 1 °C could advance the sea ice break-up in HB by over two weeks on its 

eastern side, six to eight days on its southwestern side, and four to seven-days in JB, with 

freshwater inflows being one of the factors affecting this precise pattern. Earlier spring discharge 

into HB enhances the advection of ice, creating more open area that grows with time. Therefore, 

spring river discharge is an important factor impacting the sea ice breakage. 

While there are past studies reporting changes in snow and streamflow characteristics in the 

Hudson Bay region, a study is lacking that relates these hydrological parameters. This research 

will establish the relationship between changing snow conditions and the river discharge into 

HB. The study will focus on the spatially-integrated SWE across HB and its contribution to 

runoff generation in the latter part of the 20th century and early 21st century. 

1.2. Goal and Research Questions of the Thesis 

The main objective of this research is to assess the changing contribution of snow to runoff 

generation in the Hudson Bay drainage system during the latter part of the 20th century and the 

early 21 st century. 

Research questions: 

1. What is the total contribution of snow to HB river discharge? 

2. How is the contribution of snow to HB river discharge changing over time? 
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3. Are there any changes in snow melting onset time that impact the freshwater budget of 

HB with implications to streamflow timing? 

Further, this study will discuss the potential consequences of the changes in the 

hydrological regime to HB keystone species such as polar bears and ringed seals. 

1.3. Structure of the Thesis 

The thesis is structured into seven chapters. The first chapter provides an overview of the 

importance of snow in streamflow generation and the observed shifts in streamflow timing and 

magnitude driven by climate change as well as a brief literature review on the changing 

hydroclimatology of HB. In addition, the rationale and goal of the thesis are discussed. Chapter 2 

includes background information on the hydrological cycle, water budgets, and impacts of 

climate change on snow and streamflow in North America and HB. Chapter 3 describes the study 

area and Chapter 4 discusses the data and tools used and the methods employed for analysis. 

This chapter includes a detailed explanation and description of trend and statistical analyses 

performed. Results and discussions follow in Chapters 5 and 6, respectively. Results in Chapter 5 

include the validation of data used and temporal and spatial trends of the hydroclimatic 

parameters used. Furthermore, Chapter 6 provides discussion on the findings and compares and 

contrasts them with other similar studies. The first part of Chapter 7 presents the concluding 

summary of the major findings and their discussions. Potential recommendations and future 

work are discussed in the remainder of Chapter 7. 
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2. Background 

2.1. The Hydrological Cycle 

The hydrological cycle describes the distribution and movement of water between the earth and 

the atmosphere. It involves the continual cycling of water between the hydrosphere, the 

atmosphere, biosphere, lithosphere and the cryosphere. The cycle is driven mainly by solar 

heating, leading to the evaporation of water from the oceans and land surfaces. The water vapour 

is transported by winds, and then condenses to form clouds and precipitation occurs over land 

and ocean surfaces in the form of rainfall or snowfall. Precipitation may be stored temporarily on 

land as snow or soil moisture, while the excess runs off and forms streams and rivers, 

discharging the freshwater into the oceans. This completes the global water cycle (Figure 2). 
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Figure 2. The hydrological cycle (Trenberth, Smith, Qian, Dai, & Fasullo, 2007). The numbers 
represent the estimates of the main water reservoirs in km3 (in plain font) , and the flow of 
moisture through the system in km3 y{1 (in italicized font) . 

2.2. Water Budget 

A water budget is an accounting framework for the movements and transformations of water in a 

watershed or region. It describes and quantifies the various components of the hydrologic cycle 

including precipitation (P), evapotranspiration (ET), runoff (R), and groundwater flow (Gin: 

groundwater inflow, Gout: groundwater outflow). These components are related and expressed in 

a water budget equation as: 

!J.S = P + Gin - ( ET + R + Gout) (2.1) 

where.~S is a change in storage. 
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Precipitation is in the form of rain or snow or a combination of both. When precipitation is in the 

form of snow, instead of infiltrating the soil immediately or running off into stream channels as 

surface runoff, water is first stored in the snowpack, often for several months. The winter 

snowpack melts in the spring thereby contributing to runoff generation. Runoff generated from 

the melting of snow is the focus of this study. Evapotranspiration is the combination of 

evaporation and transpiration. Evaporation in snow environments occurs from sublimation and 

blowing snow, and transpiration by the transfer of water from vegetation to the atmosphere. 

Runoff is the flux of water at a point or basin scale, expressed in millimetres (mm). In a snow-

dominated basin, water from snowmelt represents the dominant portion of the total annual runoff 

generation. Snowpack is the amount of snow that accumulates on the ground, defined by its local 

characteristics such as snow depth and SWE. Snow depth (SD) is the thickness or height of snow 

that remains on the ground at a time of observation, and is typically expressed in centimetres 

(cm) (Armstrong & Brun, 2008). It changes with processes such as snow transport by wind, 

settling, metamorphism, sublimation, and melt/refreeze events (De Walle & Rango, 2008). 

Therefore, it is not necessarily the most appropriate measure for hydrological studies. SWE is the 

vertical depth of the water layer that is obtained when the snowpack over a given area is melted 

(Armstrong & Brun, 2008). It is typically expressed in kg m·2 or mm water equivalent. It is 

measured directly or calculated from measurements of the depth and density of the snowpack 

(DeWalle & Rango, 2008): 

where 

SWE = snow water equivalent, m; 

d = snowpack depth, m; 

(2.2) 
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Ps = snowpack density, kg m-3
; 

Pw = density of liquid water, approximately 1 x 103 kg m-3
. 

The measure of SWE is useful for hydrological applications as it represents the resulting water 

column when a snowpack melts. In snow dominated basins, runoff from melting of SWE 

represents a major source of water for streamflow and groundwater recharge. During winter, the 

snowpack accumulates (i.e. SWE reaches its annual maximum) with very low rates of flow. The 

flow rate is low due to baseflow recession from prior periods of recharge further reduced by less 

ground heat conduction to the snowpack base leading to low rates of melt. In spring, as energy 

supplies for melt increase, the flow rates gradually increase and contribute to runoff, leading to a 

peak annual flow in late spring or early summer. In high latitude river basins, as much as 80% of 

the annual streamflow is generated by snowmelt (Dery, Sheffield, & Wood, 2005; McNamara, 

Kane, & Hinzman, 1998). 

SWEmax is the maximum SWE value obtained from the available daily SWE data. It is used 

because it represents the highest value of accumulated snowfall that is metamorphosed by 

associated atmospheric variables ( e.g., temperature, precipitation, wind), landcover type and 

topography. Snow accumulates during a snow season (usually October to May of a hydrological 

year) and then melts during spring and summer resulting in runoff (Zhao, Higuchi, Waller, Auld, 

& Mote, 2013). SWE therefore represents a time-integrated measure of wintertime precipitation, 

allowing comparison with annual runoff in snow-dominated watersheds. The maximum SWE is 

an important snow characteristic that helps in operational runoff and river discharge forcast 

including spring flood (Kokkonen, Koivusalo, Jakeman, & Norton, 2006; Pulliainen, 2006). 
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Further, this quantity represents the highest value of runoff that is possibly generated from 

maximum snow accumulated over a hydrological year (Dery et al. 2005). 

The hydrological cycle is a closed system and there is a natural balance maintained between the 

exchange of water within the system. However, human activities can potentially lead to changes 

in this balance, which will have significant impacts on natural systems. For example, the 

development of dams and reservoirs for the generation of hydroelectricity could disrupt the 

natural hydrological cycle. At broad scales, climate warming intensifies the rate of exchange of 

freshwater between the global atmosphere, land and ocean. 

2.3. Climate Change and Snow 

It is estimated that the global mean surface air temperatures averaged over land and ocean 

surfaces have risen by about 0.85 (minimum 0.65 to maximum 1.06) °Cover the last 132 years 

(1880 to 2012) (Hartmann et al. , 2013). The rate of warming over the last 60 years (1951 to 

2012) is about 0.12 (0.08 to 0.14) °C per decade (Hartmann et al. , 2013). In the past 100 years, 

the mean air temperature rise over the Arctic has almost doubled compared to that of the global 

mean values (Trenberth et al. , 2007). There will be a lesser fraction of the precipitation falling as 

snow, and an earlier spring snowmelt runoff under the increasingly warmer temperatures, which 

is expected to occur by the end of the 21 st century (Stewart, 2009). With the increasing surface 

air temperature, the NH snow cover extent (SCE) is decreasing. Brown (2000) estimated the SCE 

loss of 3 .1 x 106 km2 (100 yr r I in the NH during 1922 to 1997, associated with significant 

warming of l.26°C (100 yrr1
• 
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Furthermore, the satellite records over the period of 1967 to 2012 indicate statistically significant 

decreases in annual mean SCE in the NH in June (-53%) (Vaughan et al. , 2013). Studies by 

Brown (2000), Brown & Mote (2009), Derksen & Brown (2012), Dery & Brown (2007), Dyer & 

Mote (2007), and Groisman et al. (2004) show that snow cover has decreased significantly 

during spring over North America since the latter half of the 201
h century. Using satellite and 

model datasets, Park, Yabuki and Ohata (2012) found that the negative trend of SD over North 

America between 1948 to 2006 coincides with regional warming patterns. Mote, Hamlet, Clark, 

& Lettenmaier (2005) reported a declining trend for 1 April SWE across western North America 

for the period of 1925 to 2000. Brown (2000) found a significant decrease in April SWE in the 

NH, averaging 4.4% per decade during 1922 to 1997. Liston & Hiemstra (2011) determined a 

decreasing trend in maximum winter SWE during 1979 to 2009 for most of the pan-Arctic 

domain. 

2.4. Climate Change and Streamflow 

Snowrnelt runoff in the northern United States and Canada during spring is an important 

component of its regional hydrology and has a vital influence on water resources (Dyer, 2008). 

Hodgkins & Dudley (2006) analyzed the changes in the timing and magnitude of winter-spring 

streamflows that are substantially and regularly augmented by snowrnelt runoff in eastern North 

America over the period of 1913 to 2002. Over the period of 1913 to 1993, Hodgkins & Dudley 

(2006) found that 64% of stations north of 44 °N show significantly earlier flows. The study of 

the hydrologic consequences of climate change in Rocky Mountain rivers during the 20th 

century until 2005 reveals declining annual streamflows. Late summer flows have declined at the 

rate of about 0.2 % yr·1 for the rivers draining the eastern slopes of the Rocky Mountains towards 
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the northern prairies and HB (Rood et al. , 2008) . Rasouli, Hernandez-Henriquez, & Dery (2013) 

reported a significant reduction of 7 .22 km3 in total streamflow input into Lake Athabasca from 

1960 to 2010. Stewart, Cayan, & Dettinger (2005) estimated a change in streamflow timing 

during 1948 to 2002 in snowmelt-dominated basins across western North America that has 

shifted by one to four weeks. They considered a broad-scale increase of winter and spring air 

temperatures by about 1 °C to 3 °Cover the past 50 years as a primary cause of this change. 

2.5. Climate Change in Hudson Bay 

Studies have shown that there has been significant warming in the Hudson Bay region in 

different periods from the early 1990' s to 1998; (e.g., Gagnon & Gough, 2002; Gagnon & 

Gough, 2005a; Gagnon & Gough, 2005b). Hochheim, Lukovich, & Barber (2011) found that the 

regional spring surface air temperature anomalies surrounding HB have increased from 0.26°C to 

0.30°C decade-I over the period 1960 to 2005. 

The consequences of warming in the Hudson Bay region are demonstrated by the variability in 

the timing of sea ice formation and retreat. The mean melt season of Arctic sea ice has increased 

at a rate of 5.7 ± 0.9 days per decade over the last 34 years (Vaughan et al. 2013). The largest 

and most significant trends ( at the 99% level) of more than 10 days per decade are seen in HB 

along with other coastal margins and peripheral seas (Vaughan et al. 2013). Gagnon & Gough 

(2005b) reported statistically significant trends toward earlier breakup in JB, along the southern 

shore of HB, and in the western half of HB, and toward later freeze-up in the northern and 

northeastern regions of HB during 1971 to 2003. Further, they found the trends in the annual sea 

ice cycle of HB coinciding with both the regional air temperature records and the projections 

from general circulation models. 
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2.6. Climate Change and Hudson Bay Streamflow 

Dery & Wood (2004) revealed the influence of the Arctic Oscillation (AO) on the recent 

variability in Hudson Bay river discharge with up to 90% of the observed variance being 

explained. The AO is an atmospheric circulation pattern over northern mid-to-high latitudes 

(Thompson & Wallace, 1998). Shiklomanov & Shiklomanov (2003) reported that river discharge 

into HB and Hudson Strait has decreased by 6% from 1966 to 1999 as compared to that of 1921 

to 1965 . Further, a 13% decline in the total annual river discharge into Hudson, James, and 

Ungava Bays for the period 1964 to 2000 is found by Dery et al. (2005) who analyze the 

discharge from 42 rivers. Using a linear trend analysis, they observed a decreasing discharge in 

36 rivers out of total of 42. Subsequently, Dery et al. (2011) on extending their study period by 

another eight years found no statistically significant trend in the total annual streamflow into HB. 

Gagnon & Gough (2002) determined that the eastern HB is experiencing statistically significant 

warming trends in spring air temperature and three rivers (Grande Baleine, Gods and Kazan) 

flowing into southern HB show a shift towards an earlier occurrence of spring peak discharge. 

Further, Dery et al. (2005) discovered that the annual peak discharge rate associated with 

snowmelt has advanced by eight days between 1964 and 2000 and has diminished by 0.036 km3 

day-1 in intensity. A similar trend analysis in unregulated rivers of HB yields an advance of four 

days in the timing of spring peak discharge rates. The earlier onset of snowmelt is possibly 

caused by the increasing spring surface air temperature (SAT) in the HB region. 

While these studies provide important information on the changing conditions of both snow and 

streamflow across parts of western North America, there are currently no studies that focus on 

the spatially integrated SWE across the entire HB and its contribution to runoff generation in the 

latter half of the 20th century and early 21 st century. Therefore, this research covering HB is 

13 



motivated by the fact that there exists a gap in quantifying the contribution of snow to the river 

discharge in terms of its timing and magnitude. 
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3. Study Area 

The study area is the Hudson Bay drainage basin in northeastern Canada. It is the largest 

drainage basin in Canada where 30% of Canada' s water drains. This basin comprises all land 

areas discharging into HB and JB, covering an area of 3.7x106 km2 or more than a third of 

Canada's land mass (Dery et al. 2011). The HB system is connected to the Atlantic Ocean by 

Hudson Strait and the Labrador Sea in the east and to the Arctic Ocean in the north by the Foxe 

Basin, and Fury and Hecla Straits. The watershed of HB and JB covers a large area from 

southern Alberta, Saskatchewan, and Manitoba in the west to central Ontario and Quebec to the 

east and the Northwest Territories and Nunavut to the northwest. It also encompasses parts of 

Montana, North Dakota, South Dakota, and Minnesota in the United States. This vast area drains 

into the Bay from the glacierized Rocky Mountains in the far west, dry prairies in the continental 

interior, cool-wet boreal forest in the mid-latitudes, and Arctic tundra in the high latitudes (Dery 

et al. 2005; Dery et al. 2011). 

Twenty important rivers that drain into Hudson Bay and James Bay are listed in Table I and 

presented in Figure 3. These rivers are identified by one of the two bays where they discharge 

and where their outlet is located in any of the provinces or territories along the HB drainage 

basin. The mean annual surface air temperature of -2°C prevails in the HB drainage basin and it 

receives a total annual precipitation of 550 mm y{ 1
• Snowfall plays an important role in the 

precipitation of the HB basin, since approximately 155 mm yr-1 (30% of its total annual 

precipitation) falls as snow (Dery & Wood, 2004). The HB drainage basin experiences a a 

seasonal snowpack cycle each year (Gagnon & Gough, 2005b). The largest streamflow rates into 

HB are attained during the spring transition period, demonstrating the critical role played by 

snow in the hydrology of high latitude watersheds (Dery et al. 2005). 
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Figure 3. Map of the Hudson Bay Basin showing the 20 rivers with outlets into Hudson Bay or 
James Bay. The watersheds to the north of Hudson Bay are not gauged and therefore, are not 
included in the study area. The inset shows the location of Hudson Bay in Canada. 
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The Hudson Bay basin is home to indigenous and non-indigenous peoples (Figure 4). This area 

also forms the traditional territories of Inuit and Cree communities living around the perimeter of 

HB along with 6,000 to 7,000 non-indigenous people (many not permanent residents) (Berkes & 

Freeman, 1986). There are about 8,530 Cree people living to the west and south of HB in the 

communities of Chisasibi (4,160), Wemindji (1 ,315), Eastmain (730), Fort Albany (1,135) and 

Moosonee (1,190). Further, about 4,460 Inuit people reside along the eastern shores of HB in 

Arri vat (2,190), Churchill ( 60), and Kuujjuarapik ( 495) and Baker Lake (1 ,715) in the 

northwestern part of HB (Statistics Canada, 2013). Cities in the Canadian Prairies such as 

Calgary, Lethbridge, Edmonton, Regina, Saskatoon, Prince Albert, Brandon, and Winnipeg 

depend on water from the rivers such as the Nelson and Churchill for hydropower, agriculture, 

industries, recreation and other activities. Many rivers flowing into HB are a major source of 

water for hydroelectric generation in central and eastern Canada ( e.g. , in Manitoba, Ontario and 

Quebec; Manitoba Wildlands, 2005; Rosenberg et al. , 2005). 

The ecozone of Hudson Bay supports a large diversity of plants and animals. HB provides 

habitat for different marine and terrestrial mammals, fish, and migratory birds. Ringed seals and 

the polar bears are the keystone species of the region (Ferguson, Stirling, & Mcloughlin, 2005; 

Smith, 1975; Stirling, 2005 ; Regehr et al. , 2007). An areal survey in western HB in 2011 

recorded a total of 711 polar bears sightings along the coastline (Atkinson, Garshelis, Stapleton, 

& Hedman, 2012). In addition, the Department of Fisheries and Oceans (DFO) (DFO, 2011) 

estimated the abundance ofringed seals at 62,157±5,344 in June 2010 in western HB. However, 

there are studies showing declining populations of these species during 1990 to 2010 (DFO 

2009; DFO 2011 ; Lunn, Stirling, & Nowicki 1997; Regehr, Lunn, Amstrup, & Stirling, 2007). 

Further, there are some cases of seals and humans being infected by parasites such as toxoplasma 
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gondii reported during period of 1999 to 2008 associated with changes in snowrnelt runoff in the 

HB basin (Simon, Bigras-Poulin, Rousseau, & Ogden, 2013 ; Simon, Rousseau, Savary, Bigras-

Poulin, & Ogden, 2013 ). 
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Figure 4. The largest communities surrounding the Hudson Bay coastline. 
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Table 1. Alphabetical list of 20 rivers that discharge into Hudson Bay (HB) and James Bay (JB), 
and their outlet, province or territory (ON refers to Ontario, QC: Quebec, NU: Nunavut, and MB: 
Manitoba), geographical coordinates of the recording hydrometric gauge nearest to the mouth, 
contributing area that is gauged, and their condition. NAT indicates the river is naturally flowing 
and REG indicates the river is regulated. Note that some of these rivers include small 
downstream tributaries (see Appendix 3). 

River Outlet Province/ Latitude Longitude Area Regulation 
Territory (ON) (OW) (km2) Type 

Albany JB ON 51.33 83.84 118,000 NAT 
Attawapiskat JB ON 53.09 85.01 36,000 NAT 
Broad back JB QC 51.18 77.43 17,100 NAT 
Chesterfield HB NU 64.31 101.21 224,000 NAT 
Inlet 
Churchill HB MB 58.12 94.62 290,880 REG 
Eastmain JB QC 52.24 78.07 44,300 REG 
Grande HB QC 55.29 77.59 43,200 NAT 
Baleine 
Harricana JB QC 49.95 78.72 21 ,200 NAT 
Hayes HB MB 56.43 92.79 103,000 NAT 
La Grande JB QC 53.72 78.57 96,600 REG 
Moose JB ON 50.81 81.29 98,530 REG 
Nastapoca HB QC 56.86 76.21 12,500 NAT 
(Lo ups 
Marins) 
Nelson HB MB 56.37 94.63 1,075,520 REG 
Nottaway JB QC 50.13 77.42 57,500 NAT 
Pon tax JB QC 51.53 78.09 6,090 NAT 
Rupert JB QC 51.44 76.86 40,900 REG 
Seal HB MB 58.89 96.27 48,200 NAT 
Severn HB ON 55.37 88.32 94,300 NAT 
Thlewiaza HB NU 60.78 98.77 27,000 NAT 
Winisk HB ON 54.52 87.23 54,710 NAT 
Total 2,509,530 

Among the 20 rivers in this study, the two largest rivers by volumetric flows are the Nelson and 

La Grande Riviere (Dery et al. , 2011 ). There have been major disturbances in many rivers 

draining into HB since the 1960s due to the construction of dams, reservoirs and diversions of 

small rivers into larger ones for hydropower development. The six major rivers that drain into 

20 



HB impacted by dams, diversions (i.e. intra- and inter-basin), and/or reservoirs are listed in Table 

2. 

Table 2. List of rivers that are affected by major dams, diversions (DIV), and/or reservoirs (RES) 
as well as the approximate year when major human impacts began (Dery et al. (2005); 
Hernandez-Henriquez, Mlynowski, & Dery, (2010)). 

River Human Impact Year 
Churchill DIV 1976/77 
Eastmain DIV 1980 
La Grande dam, RES 1980 
Moose dam 1911 
Nelson dam 1926 
Rupert DIV 2009 

Hydropower production from the main stem of the Nelson River started in 1961 (Rosenberg et 

al. 2005); however, hydropower plants have operated since 1926 on the Winnipeg River, a 

tributary of the Nelson River (Manitoba Hydro, 2015). In 1976, 75% of the Churchill River' s 

flow was diverted into the lower Nelson River to augment flows for long-term hydropower 

development in that system (Newbury, McCullough, & Hecky, 1984), making the average 

discharge of the Nelson River 78.2 km 3. Therefore, in this study, the Nelson and Churchill River 

Basins are considered as one large basin known as the Nelson-Churchill. The Churchill and 

Nelson are Manitoba' s largest rivers. They support seven hydroelectric stations and more 

additions are proposed for the future (Manitoba Wildlands, 2005). Similarly, in the Moose River 

Basin, the river was fragmented by more than 40 dams and water-control structures. The 

construction of the oldest structures extends back to 1911 to 1932 with most ofremaining dams 

constructed in the 1960s (Rosenberg et al. 2005). In 1980, the northward diversion of the 

Eastmain and Opinaca Rivers to La Grande Riviere reduced 90% of the downstream flow from 

the Eastmain River (Hernandez-Henriquez, Mlynowski, & Dery, 2010). Further, a portion of the 
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upper Caniapiscau River since 1984, and a portion of the Rupert River since 2009 have been 

diverted into La Grande Riviere by Hydro-Quebec (Hernandez-Henriquez, Mlynowski, & Dery, 

2010). However, the Rupert River is still examined as a stand-alone basin in the present study 

but only until 2006. Due to the diversion of the Eastmain River into La Grande Riviere 

throughout the entire study period, they are considered as one large system termed La Grande-

Eastmain. 

3.1. Hudson Bay Drainage Basin 

The Hudson Bay drainage basin is a large, snow-dominated drainage basin and the world's 

largest northern inland sea. HB and Hudson Strait contribute about 946 km3 y{1 of freshwater 

( during 1921 to 1999) or 1/51
h of the total annual river discharge to the Arctic Ocean 

(Shiklomanov & Shiklomanov, 2003). The HB bridges the Arctic and temperate domains of 

central Canada and therefore, represents an important site for cryospheric change (Macdonald & 

Kuzyk, 2011 ). Furthermore, the export of freshwater from HB to the Labrador Sea by ocean 

currents contributes to its salinity variability that in tum influences high latitude oceanographic, 

atmospheric, cryospheric, and biologic processes (LeBlond, Lazier, & Weaver, 1996). 

There may be significant impacts of climate change on the hydrologic regime of HB with 

implications for native species, hydropower generation and local communities, and the overall 

economy of northeastern Canada. For example, with an increasing air temperature, the 

population of native species such as seal and polar bear is decreasing in the HB region (Regehr et 

al. , 2007; Norris, Rosentrater, & Eid, 2002; Peacock, Derocher, Lunn, & Obbard, 2010; 

Ferguson et al. , 2005; Dyck et al. , 2007). Further, the changing climate affects the present and 

future capacity of hydro power generation and operations of hydroelectric developments over the 

high latitude region of Canada (Prowse et al. , 2009; Minville, Brissette, Krau, & Leconte, 2009). 
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Climate change has implications for the well being and traditional life styles of the indigeneous 

population in the HB region. It has affected animal behaviour, impacted the traditional 

harvesting activities of Cree communities and the winter-road system causing more ice roads 

(Tam, Gough, Edwards, & Tsuji, 2013). In addition, other sectors of the economy, such as oil 

and gas, mining, infrastructure and transportation, face challenges due to climate change as they 

are developed and engineered around the cryospheric components of northern Canada (Prowse et 

al. , 2009). 
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4. Data Collection and Methods 

This chapter describes the data and methods used for the study. The first part looks at different 

sources of data considered and the description of the data used for analysis. The second part 

explains the methods used for long-term trend analyses and their statistical significance. 

4.1. Data Collection 

The main data used in this study are the SWE and streamflow data that are discussed below. 

4.1.1 SWE Data 

For this research, the daily GlobSnow SWE (version 2.0) dataset developed by the European 

Space Agency (ESA) is used (available at http://www.globsnow.info/swe/archive v2.0/). The 

SWE data extend from 1979 to 2013 for the NH land surface areas, except for mountainous 

regions, glaciers and Greenland and has a spatial resolution of 25 km x 25 km. Data for the HB 

domain are then clipped out of the NH SWE. The GlobSnow SWE data are selected for this 

study because they are available for a longer period of time at a daily time scale with a 

reasonable spatial resolution to calculate the SWE at the basin level. 

The GlobSnow SWE is produced by using a combination of satellite microwave radiometer and 

ground-based weather station data. It utilizes space-borne passive radiometer data from different 

sensors for different time periods, including the Scanning Multichannel Microwave Radiometer 

(SMMR) for 1979 to 1987, the Special Sensor Microwave/lmager (SSM/1) for 1987 to 2009 and 

the Special Sensor Microwave Imager/Sounder (SSMIS) for 2010 to 2013 . The weather station 

synoptic data for GlobSnow are provided by the European Centre for Medium-Range Weather 

Forecasts (ECMWF). These forecasts give the measured snow depth at station locations across 

the NH (Luojus et al. , 2013 ). Inclusion of a large number of in situ measurements of snow depth 

in the GlobSnow' s inversion algorithm has improved its accuracy (Luojus et al., 2010). 
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The sensors provide brightness temperature data at K- and Ka-bands (19 GHz and 37 GHz, 

respectively) and are all acquired from the National Snow and Ice Data Center (NSIDC) in 

Equal-Area Scalable Earth (EASE)-Grid projection with a nominal spatial resolution of 25 km 

(Luojus et al. , 2013). To derive the SWE data from remote sensing and ground based data, first 

wet/melting snow areas are masked out using an empirical relationship between brightness 

temperatures and snow properties. The sensors measure the brightness temperature that depends 

on the characteristics of a single-layer snowpack ( depth, bulk density and grain size) and the 

forest canopy. The snow depth is obtained from brightness temperatures for grid cells assembled 

with weather station data using an emission model. The model uses the snow grain size as a 

scalable input parameter that is chosen to minimize the difference between observed and 

computed snow depth. The set of grain sizes obtained together with the snow depth is distributed 

by a kriging interpolation, that is further used in the emission model inversion to obtain the snow 

depth distribution. The snow depth is then converted into SWE using the snow density values 

obtained from Sturm et al. (2010). 

The SWE dataset has been validated using independent SWE reference data from Russia, the 

former Soviet Union, Finland and Canada. It was found that the root mean square error (RMSE) 

was below 40 mm for cases when SWE was less than 150 mm, indicating an overall good 

performance for SWE estimation at the hemispheric scale (Takala et al. 2011). Details on this 

methodology for SWE extraction and validation can be obtained from Takala et al. (2011). 

Further, Takala et al. (2011) performed validation of GlobSnow SWE for Canada by comparing 

its seven-days moving average SWE with reference ground SWE measurements for the period of 

2005/06-2007/08. The reference ground measurements of SWE were obtained from various 

Canadian landcover regions such as from an intensive ground survey in the Northwest 
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Territories, snow surveys by SnowST AR, Environment Canada and Boreal Ecosystem Research 

and Monitoring Sites (BERMS). Further, a study by Liu, Li , Huang, & Tian (2014) has validated 

the GlobSnow SWE using ground station snow depth measurements from the Global Historical 

Climatology Network-Daily (GHCN-DAIL Y) that is obtained from 7388 meteorological stations 

over the NH. They found the correlation coefficient for GlobSnow SWE >0.5 for the NH during 

1979 to 2010 when SWE is above 30 mm and below 200 mm. 

4.1.2 Streamflow Data 

The daily observed discharges for the 20 rivers in this study are obtained from the Water Survey 

of Canada (available at http://wateroffice.ec.gc.ca/search/search e.html?sType=h2oArc) for 

1979 to 2013 and le Centre d 'Expertise Hydrique du Quebec for Quebec for 2000 to 2013 . The 

streamflow data from 1979 to 2013 for La Grande-Eastmain Rivers are provided by Hydro-

Quebec. For the Rupert River, streamflow data are available until 2006 as afterward the 

hydrometric gauge was discontinued, and as the flows were starting to be diverted towards La 

Grande Riviere. However, since the Rupert River was diverted only in 2009 and due to 

availability of its streamflow data until 2006, it is included in a list of unregulated rivers for 

analysis in this study. Further, runoff from a portion (about 36,900 km2
) of the Caniapiscau River 

was diverted into La Grande Riviere starting in 1984 changing the contributing area. The 

streamflow data for the Harricana River are available only until 2004 because there are no other 

data after this date for its principal tributary, the Turgeon River. The data quality control and 

assessment are described below in Section 4.1.3. The mean annual discharge is divided by the 

overall gauged area to calculate a mean water year runoff rate that is expressed in mm. A 

detailed error analysis for the streamflow data is not done in this study. However, it is assumed 
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to be similar to the studies by Lammers, Shiklomanov, Vorosmarty, Fekete, & Peterson (2001) 

and Shiklomanov et al. (2006). Lammers et al. (2001) reported a typical error range of ±2-5% for 

non-ice conditions in river regions without a flood plain and ±5-12% with a flood plain for river 

discharge measurement. Further, for the six largest Eurasian pan-Arctic rivers, Shiklomanov et 

al. (2006) estimated the error range to be 1.5-3.5% in total annual discharge over the period from 

1950 to 2000. 

The SWE and streamflow data are arranged by hydrological years and analyzed. A 

hydrological/water year is defined here to begin on 1 October and end on 30 September of the 

following calendar year. This is used because snow accumulates in autumn and winter and does 

not melt and drain until the following spring or summer. Therefore, using a hydrological year 

helps to obtain a better correspondence between runoff and snowfall in a period of one year. 

4.1.3 Data Quality Assessment and Control 

For the GlobSnow SWE data, missing gaps are inspected at each grid cell within the study 

domain. The missing gaps identified as NA are removed and then the dataset is used for analysis . 

There are some missing daily values of GlobSnow SWE data in each year, and the sequence of 

missing data is not regular. Further, information on why they are missing is not available; 

therefore, they are assumed to be missing because of technical issues. This could be considered 

as a further limitation of the SWE data availability. Such missing daily values of GlobSnow 

SWE data were not in-filled because daily SWEmax is used for this study. Obtaining SWEmax from 

daily SWE and interpolating or filling with mean values for missing values would result in a 

lesser SWE value that cannot be considered as SWEmax· Therefore, the original GlobSnow SWE 

data available are used in this study. 
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Missing gaps in incomplete streamflow series are in-filled following Dery et al. (2011) in a two-

step process. In the first step, missing data of the downstream gauge of a river are in-filled using 

the streamflow data from the nearest upstream station and the discharge for the missing area 

between the two gauges that is contributing to streamflow is adjusted based on the difference in 

contributing area. Secondly, when the additional data from an upstream gauge are missing, the 

data gaps are in-filled with mean daily discharge values over the period ofrecord at each of the 

gauges. A 12-year data gap in the Severn River of Ontario that exists in latter part of study 

period (from 1996 to 2007) is filled using this method. 

4.2Methods 

4.2.1 Tools 

Statistical analysis and calculations in this study are performed using Rand ArcGIS. Risa freely 

available computer programming and software environment that is widely used for statistical 

computing and graphics (R Development Core Team, 2011; Zuur, Ieno, & Meesters, 2009). The 

Environmental Systems Research Institute 's (ESRI's) ArcGIS 10.1 is used for watershed 

delineation and generating maps (ESRI, 2011 ). 

4.2.2 General Statistics 

Mean and Standard Deviation 

Mean (x) and standard deviation (a) of the annual runoff and SWEmax in each of the HB rivers is 

calculated from (von Storch & Zwiers, 1999): 

a= If=i (xi-x/ 
(n-1) 

( 4.1) 

(4.2) 
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where xi, i = 1, ......... , n is the series of the data. 

Coefficient of Variation (CV) 

The extent in variability in relation to mean annual runoff and SWEmax in each of the HB rivers 

is calculated using the coefficient of variation (Cv; Abdi, 2010): 

s 
Cv =-:: 

X 

where s is standard deviation, and x is the mean. 

Percent Change 

(4.3) 

Percent change in annual runoff and SWEmax in each of the HB rivers is calculated by 

multiplying the linear trend of annual runoff and SWEmax with years of study and dividing it with 

the value in a base year. It is then changed to a percentage value. 

Let m be the linear trend of annual runoff, n be the number of years of study and R1 be the annual 

runoff value of the initial year of a time series, then the percent change (% Change) is given by: 

m x n % Change = -- x 100% 
R1 

(4.4) 

For the calculation of percent change in annual SWEmax, R1 in Equation (4.4) is replaced by 

SWEmax(I) that represents the annual SWEmax value of the initial year of a time series, m 

represents the linear trend of an annual SWEmax, and n is the number of years of study. 

Spatial Averaging 

Spatial average of annual runoff and SWEmax in eastern and western HB, regulated and 

unregulated HB and overall HB is calculated by multiplying the annual runoff or SWEmax with 

the area of that basin and dividing the sum of it by the total area of the basins. 
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Let R1, R2, R3, ... , Rn be the annual runoff of each river, and A1,A2,A3, ... , An be the area of each 

river basin, where n is the number of the river, then the spatial average (S.A.) is given by: 

S.A. = R1 XA1+RzXA2 +R3xA3+ ... +RnXAn 
A1 +A2 +A3 + ... +An 

(4.5) 

For the spatial average of SWEmax, R,, R2, R3, ... . , Rn in Equation ( 4.5) are replaced by SWEmax(IJ, 

SWEmax(2), SWEmax(3), ... , SWEmax(n), where 1,2,3, ... , n represent the annual SWEmax of each river 

basin. The spatial average of runoff or SWEmax for subsets of HB may be greater or less than the 

value for overall HB since the spatial average depends upon the area considered for the analysis. 

4.2.3 Validation 

The GlobSnow SWE data are validated using the monthly estimated SWE data obtained from the 

Canadian Meteorological Centre (CMC). At CMC, monthly average SWE (mm) is estimated 

from monthly average snow depth multiplied by mean monthly snow density values, derived 

from Canadian snow course observations corresponding to snow climate classes given by Sturm, 

Holmgren, & Liston (1995). The snow depth data used are analyzed on a 24 km x 24 km grid 

from 1998 to the present (Brown & Brasnett, 2013). The monthly SWE estimates from CMC are 

driven by precipitation from the Global Environmental Multiscale (GEM) forecast model in 

areas without snow depth observations (most of the study domain). The SWE data are available 

at http://nsidc.org/data/nsidc-0447.html. The monthly average SWE are available only from 

October to June of each year because of the lack of observed snow density information during 

the remaining time period. Further, when the monthly SWE is zero, those data are not included 

in the statistics. The monthly GlobSnow SWE is compared with observed monthly SWE of the 

available hydrological years from 1999 to 2011. 
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4.2.4 Evaluation Statistics 

Correlation 

The correlation between the GlobSnow and observed SWE is calculated using the Pearson' s 

product moment correlation coefficient (Rodgers & Nicewander, 1988). It is given by: 

(4.6) 

where, r is the correlation, Xis the GlobSnow SWE, Xis mean GlobSnow SWE, Y is the 

observed SWE and Y is its mean. The r is considered statistically significant if p <0.05 in this 

work. 

Root Mean Square Error (RMSE) 

The RMSE is the square root of the average squared difference between the GlobSnow and CMC 

SWE data. It is used to measure the difference between values predicted by the two datasets. It is 

calculated as (Wilks, 2011): 

1 f, 2 
RMSE = -;_L_)xobs,i - Xmodet ,i) (4.7) 

i=l 

where Xobs are observed values and Xmodel are gridded values at time i. 
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Nash-Sutcliffe efficiency (NSE) coefficient 

The accuracy of the GlobSnow SWE is also quantified using the Nash-Sutcliffe 

efficiency (NSE) coefficient (Nash & Sutcliffe, 1970). The NSE score shows how accurately the 

GlobSnow SWE data represent the CMC SWE data in HB. NSE coefficients range from -oo to 1; 

the closer the NSE is to 1, the more accurate the model is. It is calculated by: 

NSE = l _ L~1(XobsrXmodel.f 
L~1 ( X obs.i-x obs.a

2 (4.8) 

where Xobs is the observed data and Xmodel is the modelled data, and X obs is the mean of the 

observed data. 

4.2.5 Analysis 

4.2.5.1. Contribution of Snow to Runoff Generation 

At first, hydrological year maximum daily SWE (SWEmax, mm) for each grid point falling within 

a given watershed is tracked. If SWEmax for any of the grid points is not available, then it is filled 

as NA. Then, available SWEmax values are spatially averaged across a watershed (see Figure 5) 

and divided by the hydrological year runoff (R, mm). This ratio is termed as RsR- To quantify the 

contribution of snow to HB streamflow generation, RsR each water year is obtained from : 

R sWE'max 
SR= R (4.9) 

where, SW Emax is hydrological year spatially averaged maximum SWE and R is the runoff (mm 

yr" 1
) (Dery, Sheffield, & Wood, 2005). The spatially averged SWEmax gives the potential amount 

of water stored during autumn and winter in the snowpack distributed throughout a basin that 

would yield runoff upon melting. The runoff is first obtained by dividing the simulated 
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streamflow by the corresponding watershed area. Then the daily runoff over a given hydrological 

year is temporally integrated to obtain total annual runoff at a selected basin. 
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Figure 5. Map of the 2007 SWEmax (mm) for the Albany watershed showing all points within it 
and their SWEmax values. 
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4.2.5.2. Trend Analysis 

Temporal trends of river discharge and other hydrometeorological variables are evaluated using 

the Mann-Kendall non-parametric test (Kendall, 1970; Mann, 1945). This test is found to be a 

robust tool for trend analysis in similar hydroclimatic studies as it does not rely on the magnitude 

of data or assumptions on their distribution (e.g. , Dery & Wood, 2004; Dery et al. 2005; Dery & 

Brown, 2007; Kang et al. 2014; Shi, Dery, Groisman, & Lettenmaier, 2013). Trend magnitude is 

assessed using the Kendall-Theil Robust Line (Dery et al. 2005; Sen, 1968). It develops a linear 

equation from a time series of n elements such as 

y =mt+ b ( 4.10) 

where tis time in years and y denotes river discharge. To determine the slope m of Equation 

(4.9), the slopes mk for each tied group ofriver discharge data are computed as 

(4.11) 

where k=l , 2, .. . , n(n-1)/2; i= 1, 2, ... , n-1 ; andj= 2,3, ... , n. where n is the total number of 

values. The median slope of all elements mk is then considered as the slope of Equation ( 4.10). 

The coefficient b is obtained by substituting the median time and river discharge values in 

Equation ( 4.10) and solving for b. This provides the Kendall-Theil Robust Line for each time 

series ofriver discharge as well as the magnitude of this trend (m). The significance of the test is 

observed at a 95% confidence interval. 

34 



4.2.5.3. Change in Melt Onset Date Impacting Streamflow Timing 

The change in melt onset date is assessed following the methodology proposed by Dery et al. 

(2009). It is studied here in unregulated rivers to see the change in streamflow timing of naturally 

flowing rivers. For each hydrological year, the 365 daily runoff values are segregated and then 

the monotonic trends for each of the daily time series is calculated from the slope of the Kendall-

Theil Robust Line (see equations 4.10 and 4.11). Using the trend magnitude, an assessment of 

the date of change in runoff timing is generated. Further, a moving average curve is added in the 

time series plots of the daily runoff trend of each river. Here, a seven-day moving average of the 

daily runoff trend is calculated to smooth out the daily fluctuations . It is calculated by taking the 

arithmetic mean of seven consecutive runoff trend values of a time series. The moving average 

curve is calculated as given in Equation 4.12 (McCuen, 2003): 

7 
I 1~ . xi = 7 L xi+j- 3 for l = 4, ....... , n - 3 (4.12) 

j=l 

where xi is the time series of the runoff. The seven-day moving average is a new series obtained 

by taking the arithmetic mean of seven consecutive values of xi. 

Further, to study the change in the annual hydrological condition of rivers, the study period is 

divided into two equal periods of 17 hydrological years from 1980 to 1996 and 1997 to 2013. In 

the case of the Rupert and Hayes Rivers the initial periods are 1980 to 1992 and 1980 to 1991 

and latter periods are 1993 to 2006 and 1992 to 2004 respectively as the streamflow data for this 

river end in 2006 and 2004 respectively. Then for each period the daily runoff values are 

averaged and an annual hydro graph is plotted. The annual hydro graphs of two periods are then 

compared to study the changing hydrological condition. 
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5. Results 

The results of the analysis of runoff and SWE data over the Hudson Bay watersheds are 

presented in this chapter. The trends and statistical analysis of SWE data are shown first, 

followed by the analysis of runoff. The basic statistical analyses are presented in tabular format 

to provide general information of the hydro logic conditions of HB watersheds. The analyses are 

done for individual rivers and spatial means of the hydrologic parameters for all rivers are taken 

to represent an analysis for the entire HB. Further, the analyses are presented for the eastern and 

western sections of HB as well as for regulated and unregulated rivers of the HB drainage basin. 

The eastern part comprises nine rivers (Broadback, Grande Baleine, Harricana, La Grande-

Eastmain, Nastapoca, Nottaway, Pontax and Rupert) and the western part comprises 11 rivers 

(Albany, Attawapiskat, Chesterfield Inlet, Hayes, Moose, Nelson-Churchill, Seal, Severn, 

Thlewiaza, and Winisk). There are five regulated rivers and 15 unregulated rivers (see Table 1 

and 2 and Figure 3) in the HB watersheds used in this study. 

The results of the validation of selected SWE data with an independent dataset are presented. 

This is performed using Pearson' s correlation coefficient (r) and correspondingp-values, 

RMSEs, and NSE coefficients to verify the reliability of the data. Further, the contribution of 

snow to runoff generation and their trends in HB watersheds are analyzed and presented. The last 

section of this chapter includes the analysis of the daily runoff trends for each of the unregulated 

rivers to see change in the melt onset date impacting streamflow timing in HB watersheds. 
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5.1. Validation of GlobSnow SWE Data 

The CMC monthly SWE data from 1998 to 2011 for the Albany, Broadback, Chesterfield Inlet 

and Grande Baleine watersheds are compared with the monthly average GlobSnow SWE data. 

The four watersheds are selected to validate at least 20% of the selected rivers in the study area. 

They cover different portions of the HB drainage and different snow and vegetation regimes. 
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Figure 6. Monthly average SWE (CMC and Globsnow) with NSE, RMSE, rand p-value, 1998 to 
2011. 

Figure 6 shows the comparison of GlobSnow and CMC monthly average SWE data for the four 

watersheds with their NSE, RMSE, rand p-values. The GlobSnow SWE data correlate well with 
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CMC SWE data in all watersheds. While the NSE for monthly averaged SWE is slightly 

negative for the Chesterfield Inlet watershed (-0.16), it is >0.5 for all other watersheds. The 

correlations are greater than 0.80 for these three watersheds and is 0.55 for Chesterfield Inlet, all 

being statistically significant. The RMSEs for monthly averaged SWE shows a difference of up 

to 31.8 mm for the Chesterfield Inlet watershed. This is comparable to the overall RMSE of 

about 40 mm estimated for the GlobSnow SWE over the Canadian land coverage and 47 mm 

specific to the tundra region (Takala et al. 2011). Further, the difference observed in the 

Chesterfield Inlet could be due to lack of in situ data in the high latitude that leads to degradation 

in CMC SWE quality. Overall, GlobSnow overestimates SWE relative to CMC for most years. 
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Figure 7. Comparison of monthly average SWE from CMC and Globsnow for four Hudson Bay 
watersheds for the period 1998 to 2011 . The solid diagonal line is the 1: 1 line. 

38 



The correlation between GlobSnow and CMC monthly average SWE for the Albany, Broadback, 

Chesterfield Inlet and Grande Baleine watersheds is shown in Figure 7. There is a strong 

correlation for the Albany, Broadback and Grande Baleine watersheds, but CMC SWE 

overestimates the GlobSnow values for the Chesterfield Inlet watershed. This might be caused by 

overestimation of snow depth in that particular basin (Brown & Brasnett, 2013 ). 

5.2. Characteristics and Trends of SWEmax in Hudson Bay Watersheds 

The mean annual, standard deviation and coefficient of variation in annual SWEmax for the HB 

20 watersheds are presented in Table 3. The monotonic trends in annual SWEmax for each 

watershed with slopes and percentage change during the period from 1980 to 2013 are also 

included in the table. The analysis shows that the Rupert watershed has the highest mean 

SWEmax (197.6 mm) from 1980 to 2013. Other watersheds that have higher SWEmax over the 

study period are the Harricana, Broadback, La Grande-Eastmain and Moose watersheds that lie 

in the southeastern part of the study area. 
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Table 3. The 1980 to 2013 annual mean, standard deviation (SD), coefficient of variation (CV), 
trend, and percent change in SWEmax for the 20 watersheds of interest. 

Watershed Annual SWEmax statistics 

Mean SD CV Linear Trend Percent 
(mm) (mm) (mmyr-1) Change 

(%) 
Albany 159.9 28.1 0.17 -0.2 -4.1 
Attawapiskat 152.4 27.8 0.18 -1.1** -20.8 
Broad back 182.6 34.3 0.18 -1.1 ** -31.1 
Chesterfield Inlet 134.5 21.7 0.16 -1.0** -23.3 
Grande Baleine 159.5 26.5 0.16 -0.9 -20.8 
Harri can a 190.0 27.8 0.14 -0.4** -8.0 
Hayes 142.9 24.6 0.17 -1.2** -26.8 
La Grande-Eastmain 180.6 30.2 0.16 -1.4 -30.9 
Moose 179.2 37.0 0.20 -0.4 -9.9 
Nastapoca 137.2 23 .8 0.17 -0.9** -20.4 
Nelson-Churchill 99.8 16.2 0.16 0.0 1.2 
Nottaway 177.8 30.5 0.17 -0.6 -16.1 
Pon tax 176.7 36.7 0.20 -1.4** -34.7 
Rupert 197.6 34.2 0.17 -0.7** -20.5 
Seal 162.5 41.8 0.25 0.2 6.6 
Severn 144.0 27.9 0.19 -1.4** -27.0 
Thlewiaza 141.9 31.8 0.22 -0.3 -8.8 
Winisk 143.0 28.3 0.19 -1.4** -26.8 
All watersheds 126.3 21.8 0.17 -0.4** -11.7 

** denotes statistically significant trends (p<0.05) 

For the overall gauged area (2.50 x 106 km2
) , the mean annual SWEmax is 126.3 mm with a 

standard deviation of 21.8 mm and a coefficient of variation of 0.17. Figure 8 illustrates the trend 

in the total annual SWEmax of20 watersheds ofHB during water years 1980 to 2013. The plot 

shows that the total annual SWEmax of HB is decreasing over the period of study, with a 

significant slope of -0.4 mm y{ 1
• For the entire HB region, it represents a decrease of 15.3 mm 

(34 yrr1 ofSWEmax· The overall annual maximum SWEmax in HB of 169.9 mm occurred in 1997, 
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and the total annual minimum SWEmax of 94.2 mm occurred in 2010. Over the study period, the 

percent change in the SWEmax of 18 rivers is negative. By 2013, the total annual SWEmax in HB 

has decreased by 11 . 7 % from its value in 1980. 
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Figure 8. Temporal evolution of the total annual SWEmax in 20 Hudson Bay watersheds during 
water years 1980 to 2013. The red solid line denotes the Kendall-Theil Robust Line. 

The annual SWEmax for each of the 20 HB watersheds is shown in Figure 9. Out of the 20 

watersheds, 18 show a decreasing trend of the annual SWEmax with 10 of them being statistically 

significant (p<0.05): Attawaspikat, Broadback, Chesterfield Inlet, Harricana, Hayes, Nastapoca, 

Pontax, Rupert, Severn and Winisk. 
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Figure 9. Temporal evolution of the annual SWEmax in 20 Hudson Bay watersheds during water years 1980 to 2013 . The red solid 
lines denote the Kendall-Theil Robust Lines. Note: The scale for SWEmax varies in each panel. 
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5.2.1 Comparison of SWEmax between Eastern and Western Hudson Bay 

On comparing SWEmax between eastern and western HB over the period of 34 years, the eastern 

HB that comprises nine river basins has a mean annual SWEmax of 178.5 mm. The western HB 

with 11 river basins has a mean annual SWEmax of 118.1 mm. Table 4 provides the annual 

SWEmax statistics of eastern and western HB. The total SWEmax in the eastern and western parts 

of HB shows a decreasing trend with a slope of -1.2 mm yr" 1 and -0.3 mm yr"1
, respectively 

where it is statistically significant only for eastern HB. By 2013 , the total annual SWEmax in 

eastern and western HB has decreased by 26.5% and 8.3% from its value in 1980, respectively. 

For eastern and western HB, it represents a decrease of 37.4 mm (34 yrr1 and 10.2 mm (34 yrr1 

in SWEmax, respectively, over a period of 34 years. Figure 10 illustrates the 1980 to 2013 time 

series plots of total SWEmax into eastern and western HB. Both the eastern and western basins 

show similar patterns in annual SWEmax with maximum values in 1997 and minimum values in 

2010. 

Table 4. The 1980 to 2013 annual mean, standard deviation (SD), coefficient of variation (CV), 
and trend in SWEmax for eastern and western Hudson Bay. 

Region of Total Annual SWEmax Statistics 

Hudson Gauged 
Mean SD Linear Percent Area CV Trend Bay (km2) (mm) mm) (mm yr-1) 

Change(%) 

Eastern 339,390 178.5 30.2 0.16 -1.2** -26.5 
Western 2,170,140 118.1 20.5 0.17 -0.3 -8.3 

** denotes statistically significant trends (p<O .05) 

43 



,-.... 
E 
E 

'--" X 

"' 

240 

200 

E 160 w :s: 
CJ) 

SWEmax in Eastern and Western Hudson Bay 

WestTrend= -0.311 mm/yr, p=0.198 
EastTrend= -1 .197 mm/yr, p=0.020 

- East - West- MKTrend 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Year 

Figure IO.Temporal evolution of the total annual SWEmax in eastern and western Hudson Bay 
river basins during 1980 to 2013. The solid black lines denote the Kendall-Theil Robust Lines. 

5.2.2 Comparison of SWEmax between Regulated and Unregulated Hudson Bay Rivers 

The regulated and unregulated basins that comprise SWEmax from five and 15 rivers have a mean 

annual SWEmax of 111 .8 mm and 152.0 mm, respectively. Table 5 provides the annual SWEmax 

statistics of regulated and unregulated basins of HB. The total SWEmax in the regulated basins 

show a decreasing trend with a slope of -1.1 mm yr" 1 while the unregulated basins show a 

relatively lower decreasing trend with a slope of -0.8 mm yr"1 that is statistically significant. By 

2013 , the total annual SWEmax in regulated and unregulated basins of HB has decreased by 
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33.6% and 18.1 %, respectively from its value in 1980. For the regulated and unregulated basins, 

it represents a decrease of 37.4 mm (34 yrr1 and 27.2 mm (34 yrr1 SWEmax, respectively over 

the study period. Figure 11 illustrates the 1980 to 2013 time series plots of total SWEmax in the 

regulated and unregulated basins of HB. Both the regulated and unregulated basins show similar 

patterns in annual S WEmax with maximum values in 1997 and minimum values in 2010. 

Table 5. The 1980 to 2013 annual mean, standard deviation (SD), coefficient of variation (CV), 
and trend in river runoff for regulated and unregulated rivers of Hudson Bay. 

Total Annual SWEmax Statistics 
Region of Gauged 

Mean SD Linear Percent Hudson Bay Area CV Trend 
(km2) (mm) (mm) (mm yr-1) 

Change(%) 

Regulated 1,605,830 111 .8 18.7 0.16 -1.1 -33.6 

Unregulated 903,700 152.0 27.4 0.18 -0.8** -18.1 

* * denotes statistically significant trends (p<0.05) 
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Figure 11. Temporal evolution of the total annual SWEmax in regulated and unregulated Hudson 
Bay river basins from 1980 to 2013 . The solid black lines denote the Kendall-Theil Robust 
Lines. 

5.3. Characteristics and Trends of Runoff in Hudson Bay Rivers 

The mean, standard deviation and coefficient of variation in annual runoff of the 20 rivers 

flowing into Hudson Bay are presented in Table 6. The linear trends in annual runoff for each 

river with slopes and percentage change over the water years 1980 to 2013 are also included in 

the table. The analysis shows that the relatively small Nastapoca River exhibits a substantially 

high runoff productivity (692.6 mm) annually to HB. Other rivers that provide a significant 

amount of runoff to HB are the Rupert, La Grande-Eastmain, Broadback and Nottaway Rivers. 
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Note that the runoff value is constant in the Severn River in the middle of the study period as 

there exists a long gap that is in-filled (see section 4.1.3). However, this does not greatly 

influence the trend analysis of the river in this case because of the in-filling strategy and location 

of the gaps. 

Table 6. The 1980 to 2013 annual mean, standard deviation (SD), coefficient of variation (CV), 
trend, and percent change in runoff for the 20 rivers of interest. Note that the runoff extends only 
until 2004 and 2006 for the Harricana and Rupert Rivers, respectively. 

Annual Runoff Statistics 

Rivers Mean SD CV Linear Trend Percent 
(mm) (mm) (mm yr-1yr-1) Change 

(%) 
Albany 267.3 60.0 0.22 2.0 32.9 
Attawapiskat 302.3 88.8 0.29 2.5 30.4 
Broad back 577.0 70.9 0.12 2.6** 14.8 
Chesterfield Inlet 191.0 32.8 0.17 0.2 5.9 
Grande Baleine 435.1 47.7 0.11 -1.2 -8.3 
Harri can a 516.8 66.8 0.12 -1.1 -6.4 
Hayes 188.0 51.8 0.28 0.0 0.0 
La Grande-Eastmain 582.1 73.6 0.12 3.3** 20.5 
Moose 388.6 67.0 0.17 0.1 0.9 
Nastapoca 692.6 75.0 0.11 -3.9 -17.0 
Nelson-Churchill 84.3 20.4 0.24 1.1 ** 48.3 
Nottaway 550.0 82.7 0.15 1.3 7.1 
Pon tax 513.4 70.3 0.14 -0.2 -1.8 
Rupert 638.9 53.5 0.08 1.3 5.8 
Seal 242.2 44.2 0.18 0.4 7.3 
Severn 222.6 49.2 0.22 1.3** 27.0 
Thlewiaza 254.1 36.7 0.14 0.5 9.2 
Winisk 270.0 83.2 0.31 1.6 22.1 
All watersheds 206.2 37.6 0.21 1.0** 17.4 

** denotes statistically significant trends (p<0.05) 
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For the overall gauged area (2.50x 106 km\ the mean annual runoff is 206.2 mm with a standard 

deviation of 37.6 mm and a coefficient of variation of 0.21. This equates to a mean annual 

streamflow rate of 16,409 m3 s·1
• Figure 12 illustrates the trend in the total annual runoff of 20 

rivers draining into HB during 1980 to 2013. The total annual runoff into HB is increasing over 

the period of study, with a significant slope of 1.0 mm yr·1 yr"1
, which represents an increase of 

34.3 mm (34 yr)" 1
• The total annual maximum runoff into HB is 244.6 mm that occurred in 2005, 

and the total annual minimum runoff is 173 .5 mm that occurred in 1982. Over the period of 1980 

to 2013 , the percent change in runoff is positive for 13 of the rivers with four of them being 

statistically significant: Broadback, LaGrande-Eastmain, Nelson-Churchill and Severn Rivers 

and negative for the remaining rivers. By 2013 , the total annual freshwater discharge into HB has 

increased by 17.4% from its value in 1980. The annual runoff in each river that drains into HB is 

shown in Figure 13 . 
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Figure 12. Temporal evolution of the total annual runoff of 20 rivers that drain into Hudson Bay 
during water years 1980 to 2013. The red solid line denotes the Kendall-Theil Robust Line. 
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Figure 13. Temporal evolution of the annual runoff in 20 rivers that drain into Hudson Bay during water years 1980 to 2013 (except 
the end year is 2004 and 2006 for the Harricana and Rupert Rivers, respectively). The red solid lines denote the Kendall-Theil Robust 
Lines. Note that there exists a long gap in the Severn that is in-filled (see section 4.1.3) and the scale for runoff varies in each panel. 
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5.3.1 Comparison of Runoff between Eastern and Western Hudson Bay 

The Eastern Hudson Bay with an area of 339,390 km2 and comprising discharge from nine rivers 

has mean annual runoff of 565.1 mm while western HB with an area of 2,170,140 km2 from 11 

river basins has mean annual runoff of 143.9 mm. Table 7 provides the annual runoff statistics of 

eastern and western HB. The total runoff in the eastern and western parts shows a statistically 

significant increasing trend with a slope of 1.2 mm yr-1 y{1 and 1.0 mm y{ 1 y{1
, respectively. By 

2013, the total annual freshwater runoff into eastern and western HB has increased by 6.8% and 

26.9%, respectively from its value in 1980. Figure 14 illustrates the 1980 to 2013 time series 

plots of total inflow into eastern and western HB. For the eastern and western part, it represents 

an increase of 40.8 mm (34 yrr1 and 34.0 mm (34 yrr1 runoff, respectively. 

Table 7. The 1980 to 2013 annual mean, standard deviation (SD), coefficient of variation (CV), 
and trend in river runoff for eastern and western Hudson Bay. 

Total Annual Runoff Statistics 
Region of Gauged Linear Percent 

Hudson Bay Area Mean SD CV Trend Change 
(kni2) (mm) (mm) (mm yr-1 yr-1) (%) 

Eastern 339,390 565.1 69.3 0.12 1.2** 6.8 
Western 2,170,140 143.9 32.1 0.23 1.0** 26.9 

** denotes statistically significant trends (p<0.05) 
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Figure 14. Temporal evolution of the total annual runoff in eastern and western Hudson Bay rivers 
during water years 1980 to 2013 . The black lines denote the Kendall-Theil Robust Lines. 

5.3.2 Comparison of Runoff between Regulated and Unregulated Hudson Bay Rivers 

On comparing inflows between regulated and unregulated rivers of Hudson Bay over a period of 

34 years, the regulated basins with a larger area of 1,605 ,830 km2 comprise runoff from five 

rivers with a mean annual runoff of 156.5 mm. The unregulated basins with an area of 903 ,700 

km2 comprise runoff from 15 rivers with a mean annual runoff of 296.6 mm. Table 8 provides 

the annual runoff statistics of regulated and unregulated basins of HB. The total runoff in the 

regulated basins shows a statistically significant increasing trend with a slope of 1.3 mm y{1 y{1 
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while the runoff in unregulated basins shows a relatively lower increasing trend with a slope of 

0.4 mm y{ 1 y{1 that is not statistically significant. By 2013 , the total annual freshwater discharge 

into both regulated and unregulated basins of HB has increased by 30.1 % and 4.8%, respectively 

from its value in 1980. For the regulated and unregulated regions of HB, it represents an increase 

of 44.2 mm (34 yr)" 1 and 13.6 mm (34 yr)"1 in runoff, respectively over a period of 34 years. 

Figure 15 illustrates the 1980 to 2013 time series plots of total inflow into regulated and 

unregulated basins of HB. Both the regulated and unregulated basins show similar patterns in 

annual runoff with maximum values during 2005 to 2006. 

Table 8. The 1980 to 2013 annual mean, standard deviation (SD), coefficient of variation (CV), 
and trend in river runoff for regulated and unregulated rivers of Hudson Bay. 

Total Annual Runoff Statistics 
Region of Gauged Linear Percent 

Hudson Bay Area Mean SD CV Trend Change 
(km2) (mm) (mm) (mm yr-1 yr-1) (%) 

Regulated 1,605,830 156.5 28.9 0.22 1.3** 30.1 
Unregulated 903,700 296.6 53.4 0.20 0.4 4.8 
* * denotes statistically signific ant trends (p<0.05) 
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Figure 15. Temporal evolution of the total annual runoff in regulated and unregulated Hudson 
Bay rivers during 1980 to 2013. The black lines denote the Kendall-Theil Robust Lines. 

5.4. Characteristics and Trends of RsR in Hudson Bay Rivers 

The linear trends in annual RsR (the ratio of SWEmax to runoff) for each river are presented in 

Figure 16. The values of trends andp-values are presented in Table 9. This analysis shows that 

out of the 20 rivers, 19 show a decreasing trend of the annual RsR with nine of them being 

statistically significant. 
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Figure 16. Temporal evolution of the annual RsR in 20 Hudson Bay watersheds during water years 1980 to 2013. The red solid line 
denotes the Kendall-Theil Robust Line. Note: The scale for RsR varies in each panel. 
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Table 9. Trends of RsR during 1980 to 2013 in 20 Hudson Bay rivers with their p-values. Note 
that RsR time series extend only until 2004 and 2006 for the Harricana and Rupert Rivers, 
respectively. 

River Trend 
(% yr-I) 

p-value 

Albany -0.684** 0.035 
Attawapiskat -0.946** 0.005 
Broad back -0.337** 0.004 
Chesterfield Inlet -0.833** 0.035 
Grande Baleine -0.133 0.441 
Harricana 0.014 1.000 
Hayes -0.627 0.131 
La Grande-Eastmain -0.456** 0.002 
Moose -0.120 0.477 
Nastapoca -0.031 0.767 
Nelson-Churchill -1.329** 0.007 
Nottaway -0.167 0.248 
Pon tax -0.236** 0.038 
Rupert -0.185 0.260 
Seal -0.247 0.406 
Severn -1.204** 0.000 
Thlewiaza -0.406 0.173 
Winisk -0.936** 0.006 
Total -0.47** 0.004 
** denotes statistically significant trends (p<0.05) 

Figure 1 7 illustrates the trend in the total annual RsR of 20 Hudson Bay watersheds during 1980 

to 2013. It shows that the total annual RsR value of HB is decreasing with a statistically 

significant slope of 0.4% y{1
• Over the study period it has decreased by 15.9 % (34 yrr1• The 

total annual maximum RsR in HB of0.8 occurred in 1987, and the total annual minimum RsR of 

0.4 occurred in 2008 . 
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Figure 17. Temporal evolution of the total annual RsR in 20 Hudson Bay rivers during water 
years 1980 to 2013. The red solid line denotes the Kendall-Theil Robust Line. 

5.4.1 Comparison of RsR between Eastern and Western Hudson Bay 

On comparing RsR between western and eastern Hudson Bay over the period of 34 years, the 

eastern HB that comprises nine rivers has an RsR value decreasing by 0.3 % yr-1
• In western HB 

the RsR from 11 rivers has decreased by 0.8% yr-' that is statistically significant. For the eastern 

and western regions ofHB, it represents a decrease of 10.2 % (34 yrr 1 and 27.2% (34 yrr 1 in 

RsR, respectively. Figure 18 illustrates the 1980 to 2013 time series plots of total RsR into eastern 

and western HB. 
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Figure 18. Temporal evolution of the total annual RsR in eastern and western Hudson Bay river 
basins during 1980 to 2013 . The black lines denote the Kendall-Theil Robust Lines. 

5.4.2 Comparison of RsR between Regulated and Unregulated Rivers of Hudson Bay 

On comparing RsR between regulated and unregulated basins of Hudson Bay over a period of 34 

years, the regulated basins of HB that comprise the ratio of SWEmax to runoff from five rivers 

have an RsR value decreasing with a significant slope of 0.6% y( 1
• The unregulated basins with 

15 rivers have a decreasing mean annual RsR of 0.3% y(1 that is statistically significant. For the 

regulated and unregulated basins of HB, this represents a decrease of 20.4 % (34 yrr' and 10.2% 

(34 yrr' in RsR, respectively. Figure 19 illustrates the 1980 to 2013 time series plots of total RsR 
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into regulated and unregulated basins of HB. Both the regulated and unregulated basins show 

similar patterns of annual RsR over the study period. 
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Figure 19. Temporal evolution of the total annual RsR in regulated and unregulated Hudson Bay 
river basins from 1980 to 2013. The black lines denote the Kendall-Theil Robust Lines. 

5.5. Overall Contribution of Snow to Runoff Generation 

The contribution of snow to runoff generation for 20 Hudson Bay rivers as given by the ratio of 

SWEmax to runoff (R) for each river is presented in Table 10. The analysis shows that the Nelson-

Churchill River with the largest basin area (1,366,400 km2
) and lowest SWEmax (99.8 mm) and 
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runoff (84.3 mm) contributes the highest in snow to runoff generation. Further, the Nastapoca 

River with the second smallest basin area (12,500 km2
) and relatively high SWEmax (137.2 mm) 

and runoff (692.6 mm) contributes the least in snow to runoff generation in HB. Overall, during 

the study period of 34 years from 1980 to 2013 , the contribution of snow to runoff generation in 

20 HB rivers is 61.5% and it has decreased by 20.6% from its value in 1980. 

Table 10. The values of SWEmax, runoff and their ratio during 1980 to 2013 in the rivers of 
Hudson Bay showing overall contribution of snow to runoff generation. Note that all values for 
the Harricana and Rupert Rivers extend only until 2004 and 2006, respectively. 

SWEmax Runoff Ratio 
River (mm) (mm) (%) 

Albany 159.9 267.3 59.8 
Attawapiskat 152.4 302.3 50.4 
Broad back 182.6 577.0 31.6 
Chesterfield Inlet 134.5 191.0 70.4 
Grande Baleine 159.5 435.1 36.6 
Harricana 190.0 516.8 36.7 
Hayes 142.9 188.0 76.0 
La Grande-Eastmain 180.7 582.1 31.0 
Moose 179.2 388.6 46.1 
Nastapoca 137.2 692.6 19.8 
Nelson-Churchill 99.8 84.3 118.3 
Nottaway 177.8 550.0 32.3 
Pon tax 176.7 513.4 34.4 
Rupert 197.6 638.9 30.9 
Seal 162.5 242.2 67.1 
Severn 144.0 222.6 64.6 
Thlewiaza 141.9 254.1 55.8 
Winisk 143.0 270.0 52.9 
Total 126.2 205.1 61.5 
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5.6. Trends in Daily Runoff 

Trends in daily runoff are analyzed to observe changes in the annual hydrograph including 

possible shifts in the spring freshet. Figure 20 shows plots of daily runoff trends for the 

unregulated rivers. A seven-day moving average curve is added to smooth out fluctuations in 

daily runoff trends. For some of the rivers (Albany, Attawaspikat, Nottaway, and Pontax) a 

prominent shift to an earlier timing of the spring freshet is observed in between the last week of 

April and the third week of June. Further rivers such as the Broadback, Grande Baleine, Pontax, 

Hayes, Rupert and Seal show a higher runoff trends during winter. 

Changes in the mean annual hydro graph of the two periods are shown in Figure 21. On average, 

higher magnitude of spring runoff is observed in the first half of the study period (1980 to 1996) 

in 11 out of 14 rivers than in the latter half period ( 1997 to 2013 ). This corresponds to the 

prominently decreasing SWEmax in the latter study period (see Figure 9). Some of the rivers such 

as the Albany, Nottaway, Broadback and Hayes exhibit an earlier start of the spring freshet in the 

latter half rather than the first half of the study period. This is shown by the earlier appearance of 

spring runoff during the latter period of study in the annual cycle of daily mean runoff (see 

Figure 21 ). In addition, in the latter half study period, there is relatively high runoff during the 

first three months of a hydrological year from October to December in nine of the 14 rivers 

showing change in the hydrological conditions of the rivers. Therefore, such changes in the 

hydrological regime of the rivers in the latter half of the study period show that there are changes 

in the timing of snowmelt onset, impacting the freshwater budget of HB with implications for 

streamflow timing. 
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Figure 20. Daily runofftrend in unregulated Hudson Bay rivers during 1980 to 2013 . The black lines show the daily trends and the red 
lines denote the 7-days moving averages. Note: The scale for runoff trend varies in each panel. 
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Figure 21. Mean annual cycle of daily runoff in the unregulated Hudson Bay rivers for 1980 to 1996 and 1997 to 2013 . Note that the 
study periods for Rupert is 1980 to 1992 and 1993 to 2006 and Harricana is 1980 to 1991 and 1992 to 2004 due to limited availability 
of runoff data. Note: The scale for river runoff varies in each panel. 
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6. Discussion 

In this chapter the trends of SWE, runoff and RsR in the Hudson Bay rivers and their impacts in 

the region are discussed. Further, findings of this study are used to discuss the changing 

hydrologic conditions of the HB region. The results of this study are supported and contrasted by 

the findings of other studies. Furthermore, the limitations of the study, and the ecological and 

social impacts of such changing hydrologic conditions are discussed based on the findings of 

other studies. 

6.1. Change in Snow Condition 

Temporal SWEmax trends for all of the Hudson Bay drainage basin show a statistically significant 

decreasing trend of 0.4 mm yf I within the study period (see Figure 8). These decreasing trends 

of SWE in HB are consistent with the findings of Liston & Hiemstra (2011) for the pan-Arctic 

domain and Mote, Hamlet, Clark, & Lettenmaier (2005) for the NH. Further, Takala et al. (2011) 

estimated the snow mass for March calculated by multiplying SWE values with area during the 

period of 1982 to 2009 over the NH shows a declining trend of 7% for a period of 30 years that 

is similar to the findings of this study. The annual maximum SWEmax in 1997 may be associated 

with the winter Pacific/North American (PNA) pattern and the North Atlantic Oscillation 

(NAO). Zhao, Higuchi, Waller, Auld and Mote (2013) identified a significant correlation 

between these phenomena and S WEmax anomalies in eastern and western Canada. They reported 

that the largest mean values of SWEmax are due to the high frequency of snowstorm occurrences 

caused by the positive phase of these teleconnection patterns. Further, they also found that the 

averaged SWEmax over central Ontario is highest in the hydrological year 1997 in association 

with the positive phase of the NAO, similar to the findings of this study. The annual minimum 

SWEmax in 2010 may be associated with a strong El Nifio (positive phase of El Nino/Southern 
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Oscillation) that leads to warmer and drier weather and less snowfall during the winter of a 

particular year over the HB drainage basin. 

The average SWEmax is found to be higher on the eastern side of HB than on its western side (see 

Table 4). The annual mean total precipitation and maximum snow depth in the eastern part of 

HB is higher than in the western part (see Appendix 1 and 2). Further, the analysis performed by 

Derksen & MacKay (2006) also shows the monthly averaged SWE during 1979 to 1996 was 

higher in the eastern part of HB than in the western part. The average SWEmax is higher in 

unregulated basins than in regulated ones (see Table 5) because of the geographical location of 

the basins in the region of higher annual mean total precipitation and maximum snow depth (see 

Appendix 1 and 2). 

The declining trend in annual SWEmax in the HB region may be due to the warming air 

temperature in the region that decreases the snowfall and causes more precipitation to fall as 

rainfall. Brown & Mote (2009) and Zhang et al. (2011) observed more precipitation falling in the 

form of rain across Canada during the period of 1966 to 2007 and 1950 to 2007, respectively. 

Further, there are studies showing the warming air temperature trends in the HB region. Gagnon 

& Gough (2002) reported a statistically significant warming trend in spring temperature in a 

region extending from Manitoba to Quebec. In addition, Gagnon & Gough (2005a) found a 

statistically significant warming air temperature trend during winter and year-round for the 

period of 1971 to 2001 in most of the region on the HB drainage basin. Air temperatures are 

increasing at a rate of O. l 7°C decade-1 (p<0.05) in the Chesterfield Inlet Basin, 0.50°C decade-1 

(p<0.10) in the Churchill River Basin, and 0.67°C decade-' (p<0.05) in parts of the Moose River 

Basin. Thistle & Caissie (2013) reported an increase of annual mean temperature by 0.3°C to 

0.6°C and 0.6 °C to l.0°C decade-' in the southern and northern part of Quebec. Park, Yabuki, & 
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Ohata (2012) observed a warming trend in Arctic and sub-Arctic regions with an increasing 

winter temperature of 0.42°C decade-I from 1979 to 2006. 

6.2. Change in Runoff 

The temporal runoff trend for Hudson Bay shows a statistically significant increasing value of 

1.0 mm y{1 y{1 within the study period (see Figure 12). This increasing trend in HB runoff is 

consistent with the findings of Dery et al. (2005), Dery, Hernandez-Henriquez, Burford, & Wood 

(2009), Dery, Mlynowski, Hernandez-Henriquez, & Straneo (2011), and Gagnon & Gough 

(2002). Further, this finding is consistent with the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change ' s finding that, in high latitudes, runoff and 

discharge have generally increased (Hartmann et al. , 2013). However, the findings of this study 

are not consistent with those of Dery & Wood (2005), McClelland, Dery, Peterson, Holmes, & 

Wood (2006), and Zhang, Harvey, Hogg, & Yuzyk (2001). This may be due to the difference in 

the study period and the spatial coverage of these studies. Zhang, Harvey, Hogg, & Yuzyk 

(2001) analyzed the trend of streamflow based on limited record lengths of streamflow data and 

spatial coverage in the prairies and western Ontario, Quebec and the northern part of HB. 

Further, Dery & Wood (2005) and McClelland, Dery, Peterson, Holmes, & Wood (2006) 

analyzed the runoff rates during the period of 1964 to 2000. Therefore, such a difference in 

temporal and spatial scale may lead to variability in total inflow into HB, thereby producing 

contrasting results. 

The maximum annual runoff is observed in 2005 is similar to the findings of Dery, Mlynowski, 

Hernandez-Henriquez, & Straneo (2011 ). The maximum annual runoff observed in 2005 may be 
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the consequence of major flooding caused by more precipitation in the Nelson River Basin that 

intensified the runoff (Flesch & Reuter, 2012; Shein, 2006). The minimum annual runoff 

observed in 1982 might be the consequence of relatively lower precipitation rates and higher 

evapotranspiration rates observed in the Arctic drainage system in that particular year (Serreze et 

al. , 2003). Further, an El Nifio was very strong that year resulting in warmer temperatures with 

higher evapotranspiration over HB (Shabbar & Khandekar, 1996). 

Higher mean annual runoff is observed in eastern Hudson Bay compared to western HB (see 

Table 7). There is much more evapotranspiration in the Canadian Prairies than elsewhere in the 

HB basin (Serreze et al. , 2003; Dery et al. 2005). This diminishes runoff productivity in the west 

that is dominated by the Canadian Prairies, leading to higher runoff in eastern HB generated by 

more melting of snow than in the western part. The higher average runoff observed in 

unregulated basins than in regulated ones (see Table 8) might be because the regulated basin is 

dominated by the wide area of the Nelson River basin that lies in the Canadian Prairies and has 

low runoff productivity. 

The overall increasing trend in runoff in Hudson Bay may be attributed to the warming climate 

(Labat, Godderis, Probst, & Guyot, 2004). There are studies showing increasing air temperature 

trends from 1920 to the late 1990's in the HB region (Gagnon & Gough, 2002; Gagnon & 

Gough, 2005b; Hochheim, Lukovich, & Barber, 2011 ; Zhang et al. 2011) and increasing 

precipitation in the HB region (Mekis & Vincent, 2011 ; Thistle & Caissie 2013 ; Zhang et al. 

2011). Further, increased precipitation in the form ofrain on snow increases runoff ofHB. 
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6.3. Trends in Daily Runoff 

Daily runoff trends of unregulated rivers (see Figure 20) show an increasing winter runoff for 

most of the rivers. Further, earlier spring freshets are observed for some of the rivers of HB. The 

earlier spring freshet for these rivers is observed on average in the last week of April or in early 

May. There are many studies showing earlier spring freshets in North America such as Barnett et 

al. (2005), Dery et al. (2009), Hidalgo et al. (2009), Hodgkins & Dudley (2006), Maurer, 

Stewart, Bonfils, Duffy, & Cayan (2007), Moore, Harper, & Greenwood (2007), Stewart, Cayan, 

& Dettinger (2005), and Zhang, Harvey, Hogg, & Yuzyk (2001). Such trends toward an 

increasing winter runoff and earlier spring freshet may be attributed to the greater likelihood of 

rain than snow and reduced SWE accumulation combined with the warming spring air 

temperature recorded in the second half of the 20th century and early 21st century, leading to 

earlier snowmelt ( Arora & Boer, 2001 ; Hidalgo et al. 2009; Maurer, Stewart, Bonfils, Duffy, & 

Cayan, 2007; Zhang, Harvey, Hogg & Yuzyk, 2001). 

Further, the mean annual cycle of daily runoff of unregulated Hudson Bay rivers (see Figure 21) 

for two periods shows a change in the hydrological cycle of the rivers. The high magnitude of 

spring runoff observed in the first half of the study period ( 1980 to 1996) compared to the latter 

half period (1997 to 2013) in most of the rivers may be attributed to decreasing SWEmax in the 

latter period of study (Figure 9). Further, warmer winter temperatures from 1950 to 2009 (Thistle 

& Caissie, 2013; Zhang et al. 2011) increase winter runoff with earlier snow melting and 

decreasing spring snowpacks, thereby reducing peaks in spring runoff. The earlier spring freshet 

in some of the rivers in the latter half period can be attributed to warmer spring temperatures. 

These results on changing hydrological regimes in HB during the study period of 34 years are 
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similar with the findings of Dery et al.(2005) for HB, and Dery et al. (2009) for the rivers of 

western Canada. 

6.4. Change in the Ratio of SWEmax to Runoff 

The ratio of SWEmax to runoff quantifies the contribution of snow to the river discharge. The 

overall contribution of snow to HB river discharge for the study period of 34 years is 61.5% (see 

Table 10). This result is in agreement with the findings of Barnett et al. (2005). It shows that 

snow plays a critical role in governing the hydrological regime of the HB region, thus affecting 

the ecological and socio-economic characteristics across the region. The statistically significant 

decreasing trend of RsR in HB rivers (Figure 16 and Figure 17) shows that the contribution of 

snow in the river discharge of HB is decreasing over the study period of 34 years. These results 

are similar to the findings of Kang et al. (2014) who explored at the changing contribution of 

snow to the hydrology of the Fraser River Basin, in British Columbia, Canada. 

6.5. Limitations of Study 

6.5.1 Selection of SWE Data 

Some of the limitations of this study include the selection and use of the SWE data. After some 

investigation and preliminary analysis, GlobSnow SWE was considered to be the most 

appropriate dataset for this research, although some missing daily SWE data exist. The 

possibility of merging GlobSnow SWE data with another daily SWE data product, as a means of 

filling in missing gaps, was not attempted due to differences in their resolution and time 

constraints. A continuous daily SWE dataset would have improved the accuracy of SWEmax 
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estimation. In addition, use of continuous daily SWE data would improve the trend analysis of 

the timing of SWEmax that shows changing snow conditions over the HB region. Furthermore, 

the relatively coarse resolution of passive microwave remote sensing GlobSnow SWE data could 

limit the actual representation of the local snow conditions in a basin. 

6.5.2 Validation of SWE Data 

Validation of the SWE data is performed only with CMC SWE data because they are also 

available at essentially the same spatial resolution. The CMC SWE data are only available in 

monthly averages; therefore, this limits the validation of GlobSnow daily SWEmax data used for 

analysis in this study. It is difficult to compare point (observational) data with remote sensing 

data at a 25 km x 25 km scale; therefore the validation of GlobSnow SWE data using station data 

was not performed. Furthermore, the validation of GlobSnow SWE time series using 

independent reference data from Eurasia, Finland and Canada has been performed by Takala et 

al. (2011), showing its potential application for climatological analysis over North America. 

6.5.3 Selection of River Basins 

The availability of long term and continous hydrometric station data remains a challenge in this 

type of research. Furthermore, the changes in the hydrometric gauges in operation affects the 

availability of streamflow data for the study period (Mlynowski, Hernandez-Henriquez, & Dery, 

2011). Therefore, only 20 rivers in the HB watershed have been selected for this study based on 

long term and continous availability of streamflow data. 
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6.6. The Ecological and Social Implications of Snow and Streamflow Change in 

Hudson Bay 

The ecological and social implications of observed changes in HB snow and streamflow are 

discussed based on some of the published literature. 

6.6.1 Impacts to Polar Bears, Ringed Seals and Humans 

Polar bears and seals are some of the native species of the HB region. Polar bears use Arctic sea 

ice to hunt and move between feeding and resting areas (Norris et al. , 2002). Their primary prey 

are the ringed seals (Phoca hispida), but they also hunt bearded seals (Erignathus barbatus), 

harp seals (Phoca groenlandica) , young walrus ( Odobenus rosmarus) , beluga whales 

(Delphinapterus leucas) , narwhals (Monodon monoceros), fish, and seabirds and their eggs 

(Norris et al. , 2002; Thiemann, Iverson, & Stirling, 2008). There are about 62, 157±5,344 ringed 

seals found along all the coasts of JB and HB (DFO 2011). Similarly, the population of polar 

bears is estimated to be 711 in western HB (Atkinson et al. , 2012). Further, polar bears are found 

along southern HB as well (Norris et al. , 2002). However, between 1990 and 2010 studies find 

that the population of these species is declining in the HB region (Atkinson et al. , 2012). 

Regehr, Lunn, Amstrup, & Stirling (2007) found that the population of polar bears in western 

HB has declined from 1,194 in 1987 to 955 in 2004. During 1981 to 1998, Stirling, Lunn, & 

Iacozza (1999) also observed significant declines in the body condition and natality of male and 

female polar bears. Similarly, in the southern HB, a significant decline in the body mass of polar 

bears was detected by Obbard, McDonald, Howe, Regehr, & Richardson (2007) during 2003 to 

2005 as compared to that of 1984 to 1986. Further, Ferguson, Stirling, & Mcloughlin (2005) 

found that the survival rates of ringed seals from fetuses to the age of harvest during 1999 to 

2001 are decreasing as compared to that of 1991 to 1992 in western HB. Similarly, lower 
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pregnancy rates and reduced production of pups for ringed seals from the same area during 1991 

to 2000 are reported by Stirling (2005). In addition, in a series of aerial surveys, Ferguson & 

Young (2011) found a declining trend in ringed seal density during 1995 to 2010 over western 

HB. 

The prominent reason for such declining trends of these species and increased predation of seals 

from polar bears in HB is due to an earlier ice breakup during the 1990' s and the first decade of 

the twenty-first century. Studies such as Dyck et al. (2007), Ferguson et al. (2005), Peacock, 

Derocher, Lunn, & Obbard (2010), Regehr et al. (2007), and Stirling et al. (1999) show that the 

earlier ice breakup has a direct impact on declining populations of these species. The interaction 

and relationship of sea ice and river discharge is a complex process; however, studies show that 

ablation of sea ice in estuaries and delta regions is enhanced by spring river discharge that 

delivers sensible heat accelerating ice melt in the nearshore region (Holt, Kelly, & Cherry, 1984; 

Kuzyk et al. 2008; Searcy, Dean, & Stringer, 1996). Therefore, the negative impact in the habitat 

of local species of the HB region and its influence on the local communities which depend on 

subsistence hunting may be related to the earlier runoff in the HB rivers. 

Further, there are cases of high infection rates of Inuit by the parasite toxoplasma gondii, a 

zoonotic protozoan. The oocysts of the parasite are transported to HB via surface runoff, 

particularly during the spring snowmelt period. Lynx are the primary initial vectors for these 

parasites and the oocysts are shed out into the soil through their faeces. It then enters into the 

food chain via estuarine filter feeding molluscs and snails on which seals and other marine 

mammals may feed. This then infects the seals and by eating their raw meat, Inuit people as well 

(Simon, Bigras-Poulin, et al. 2013; Simon, Rousseau, et al. 2013). This suggests that continued 
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monitoring of snow accumulation and runoff into HB is of vital importance to human health and 

community well being. 

6.6.2 Impacts on Hydroelectric Generation 

The findings of this study reveal the changing conditions of snow and streamflow in the HB 

region. This impacts the hydropower generation in the region as it is influenced by regional 

water resources and is very sensitive to the changes in quantity and seasonality of runoff in a 

basin (Koch et al. 2011). There are many hydropower plants in the region operated by Manitoba 

Hydro, Ontario Power Generation and Hydro-Quebec. Manitoba Hydro produces about 5,217 

MW of hydroelectricity (Manitoba Hydro, 2015), Ontario Power Generation produces about 

7,438 MW (Ontario Power Generation, 2015) and Hydro-Quebec produces about 35 ,364 MW 

(Hydro-Quebec, 2013) that is distributed in Canada and nearby states of the United States. The 

increasing winter runoff, earlier spring runoff and decreasing summer runoff would influence the 

efficiency of hydropower generation by affecting the reservoir capacities and operations of 

power plants. It further creates risks on the safety of existing dam structures, their design and 

their functioning due to change in runoff timing and magnitude (Prowse et al. 2009). Studies 

show that with the changing hydrological regime, there is a slight to severe decline in 

hydroelectric power generation in many basins of the world (Koch et al. 2011 ; Madani & Lund, 

2010; Vicuna & Dracup, 2007). 
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7. Conclusions, Recommendations and Future Work 

7.1. Conclusion 

Snow plays an important role in the generation of streamflow globally. When precipitation is in 

the form of snow during winter, water is first stored in the snowpack, often for several months. 

The winter snowpack melts in the spring thereby contributing to runoff generation that serves as 

a major source of water for streamflow and groundwater recharge. 

There are a number of studies showing changing snow and streamflow conditions in snow-

dominated regions, influencing the timing and magnitude of runoff generation. Hudson Bay is 

the largest inland body of water of North America with a nival river regime that contributes a 

fifth of the total annual river discharge to the Arctic Ocean. HB has experienced changes in snow 

and streamflow conditions during the latter half of the 20th century and early 21 st century. Such 

changes, in turn, have impacted the hydro-climatic, ecological, and socio-economic aspects of 

the region. It is, therefore, important to quantify the changing contribution of snow to streamflow 

generation. 

7.1.1 Changing Snow Condition in Hudson Bay 

Average annual SWEmax in the 20 watersheds of the Hudson Bay region is 126.3 mm over the 

study period of 1980 to 2013. The trend of the total annual S WEmax in HB is decreasing at the 

rate of0.4 mm yr·1 (p <0.05). Annual maximum SWEmax in HB is 169.9 mm that occurred in 

1997, and the total annual minimum SWEmax is 94.2 mm that occurred in 2010. The maximum 

S WEmax in 1997 is likely due to the frequent occurrence of snowstorms in winter of that year 

caused by the La Nina, while the minimum in 2010 may be associated with an El Nifio event 
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causing less snowfall. For the entire HB region, SWEmax has decreased by 15.3 mm (34 yrr1 and 

by 2013 it has decreased by 11. 7 % from its value in 1980. Out of the 20 watersheds, 18 show a 

decreasing trend of the annual SWEmax with 10 of them being statistically significant. 

The eastern Hudson Bay comprising nine river basins has a mean annual SWEmax of 178.5 mm 

whereas western HB with 11 river basins has a mean annual SWEmax of 118.1 mm over a period 

of 34 years. The higher mean annual SWEmax in the eastern side ofHB is likely because the 

mean annual total precipitation and maximum snow depth is higher than in the western part of 

the basin. The total SWEmax in the eastern and western parts of HB has decreased by 37.4 mm 

(34 yrr1 and 10.2 mm (34 yrr1, respectively. By 2013, the total annual SWEmax in eastern and 

western HB has decreased by 26.5% and 8.3% from its value in 1980. Both of them show similar 

patterns in annual SWEmax with maximum values in 1997 and minimum values in 2010. 

Over a period of 34 years, the regulated basins ( with SWEmax from five basins) have a mean 

annual SWEmax of 111.8 mm with a decreasing trend of 37.4 mm (34 yrr1
• The unregulated 

basins (SWEmax from 15 basins) have a mean SWEmax of 152.1 mm with a statistically 

significant decreasing trend of 27.2 mm (34 yrr1
• By 2013, the total annual SWEmax in regulated 

and unregulated basins of HB has decreased by 33.6% and 18.1 %, respectively from its value in 

1980. Both of them show similar patterns in annual SWEmax with maximum and minimum 

values in 1997 and 2010, respectively. 

7.1.2 Changing Runoff Condition in Hudson Bay 

Average annual runoff in the 20 watersheds of the Hudson Bay region is 206.2 mm over the 

study period of 1980 to 2013. The trend of the total annual runoff in HB is increasing at the rate 
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of 1.0 mm y{1 y{1
• Annual maximum runoff in HB of 244.6 mm occurred in 2005, and the total 

annual minimum runoff of 173.5 mm occurred in 1982. The maximum runoff in 2005 is likely 

due to flooding caused by higher precipitation in the Nelson River Basin. In addition, the 

minimum runoff in 1982 may be attributed to reduced inflow into HB due to higher rates of 

evapotranspiration the basin. For the entire HB region, runoff has increased by 34.3 mm (34 yrr1 

and, by 2013, had risen 17.4% from its value in 1980. Out of the 20 watersheds, 13 show an 

increasing trend of the annual runoff with four of them being statistically significant. 

Eastern Hudson Bay comprising runoff from nine river basins has a mean annual runoff of 565 .1 

mm and the western HB with runoff from 11 river basins has a mean annual runoff of 143.9 mm 

over the period of 34 years. The higher mean annual runoff on the eastern side of HB than on the 

western side is likely due to the annual mean total precipitation and maximum snow depth in the 

eastern part of HB is higher than in the western part. The total runoff in the eastern and western 

parts of HB shows a statistically significant increasing trend of 1.2 mm y{1 y{1 and 1.0 mm yr-1 

y{ 1 respectively (p<0.05). By 2013 , the total annual runoff in eastern and western HB has 

increased by 6.8% and 26.9% from its value in 1980. 

Over a period of 34 years, the regulated basins (five basins) and unregulated basins (15 basins) 

have a mean annual runoff of 156.5 mm and 296.6 mm, respectively. The mean annual runoff in 

regulated basins is increasing with a statistically significant increasing trend of 1.3 mm y{ 1 y{ 1 

and unregulated basins show relatively lower increasing trend of0.4 mm y{ 1 y{1
• By 2013 , the 

total annual runoff in regulated and unregulated basins of HB has increased by 30.1 % and 4.8%, 

respectively from its value in 1980. Both of them show similar patterns in annual runoff with 

maximum values during 2005 to 2006. 

76 



Trends in daily runoff show a change in intensity throughout the hydrological year. For some of 

the rivers, a prominent shift to earlier timing of the spring freshet is observed in between the last 

week of April and the third week of June. Further an increasing trend in winter runoff is 

observed. This may be attributed to more likelihood ofrain than snow, earlier snowmelt, and 

reduced SWE accumulation combined with the warming spring air temperature recorded in the 

latter part of the 20th century and early 21st century. 

While comparing the mean annual cycle of daily runoff in the unregulated Hudson Bay rivers for 

1980 to 1996 and 1997 to 2013 , high magnitude of runoff in spring is observed in the first half of 

the study period for 11 rivers out of 14 studied rivers. This is likely caused by reduced SWE 

accumulation in the latter period compared to first half of the study period. Relatively high 

runoff during the first three months of a hydrological year from October to December in nine of 

the 14 rivers observed in latter half study period may be attributed to runoff generated by 

precipitation in the form of rain during the winter. 

7.1.3 Changing RsR Condition in Hudson Bay 

The ratio of SWEmax to runoff in Hudson Bay rivers is decreasing. Out of the 20 rivers, 19 show 

a decreasing trend of the annual RsR with nine of them being statistically significant. The total 

annual RsR value ofHB has decreased by 15.9% (34 yrr'. The total annual maximum RsR in HB 

of 0.8 occurred in 1987, and the total annual minimum RsR of 0.4 occurred in 2008. In eastern 

and western HB, RsR decreases by 10.2 % (34 yrr' and 27.2% (34 yrr' respectively. In regulated 

an unregulated basins of HB, RsR decreases by 20.4 % (34 yrr' and 10.2% (34 yrr' , respectively. 
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Overall during the study period of 34 years, the contribution of snow to runoff generation in 20 

Hudson Bay rivers is 61.5% and it has decreased by 20.6% from its value in 1980. Such 

statistically significant decreasing trends of RsR in HB rivers reveal the decreasing contribution 

of snow to the river discharge of HB over the study period of 34 years. This may be attributed to 

the decreasing SWE accumulation combined with warming air temperatures of the region. 

7.1.4 Implications of the Results 

The changing hydrological regime of the Hudson Bay drainage basin revealed in this study could 

contribute to the declining populations of its keystone species,: seals and polar bears. The sea ice 

breakage is accelerated by earlier spring runoff and increased winter runoff that impacts the 

habitat of seals and polar bears. Further, the study on impact of runoff change and effect of 

changes in regulated flows in HB sea-ice breakup would help to understand the reason of 

declining population of keystone species. The earlier freshet and runoff in winter found in this 

study reveals the possibility of accumulation of the parasite toxoplasma gondii in the region 

infecting the community. Further, the obtained result on the long term SWEmax, runoff and 

contribution of snow to runoff in the HB region can be useful to water resources authorities in 

making effective water operating policies for dam construction, reservoir flow regulation, water 

allocation for agricultural purposes, scheduling hydropower generation and other applications 

(Sarhadi, Kelly, & Modarres, 2014). 
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7.2. Recommendations and Future Work 

To obtain more accurate SWEmax, use of finer resolution SWE data would be helpful in 

improving results. Further, use of a high resolution model that produces simulated SWE and 

runoff would give results in a finer spatial scale and larger basin area of HB could be covered in 

the study. In addition, the modelled data can be used for future simulations to assess the 

hydro logic response of SWE, runoff and their ratios under different scenarios. Use of continuous 

daily SWE data is recommended to improve calculations of SWEmax· Merging of GlobSnow 

SWE data with any other available daily SWE data product would help to fill the missing gaps in 

GlobSnow SWE data and to enhance the analysis of SWEmax· The establishment and operation of 

more weather and snow pillow stations in and around HB would help in monitoring snow 

conditions of the region more precisely and provide valuable in situ data to validate remote 

sensing products. 

Inclusion of streamflow data from more rivers of HB would give better information on changing 

streamflow conditions over the HB region. Further, obtaining SWEmax for more basins and 

looking over RsR at larger spatial scales would provide better results on the overall contribution 

of snow to HB river discharge. Extracting the streamflow data using a high resolution hydrologic 

model over HB would provide better temporal and spatial estimation of streamflow over the 

entire region. Further, obtaining SWE data along with streamflow data from the same hydrologic 

model would provide an opportunity to estimate the contribution of snow in runoff generation at 

a grid scale. 

The study on hydrologic responses of SWEmax, runoff and RsR with respect to the changing air 

temperature and precipitation would be useful to observe the possible impact of climate change 

on the hydrology of the Hudson Bay. This would aid to estimate the response of these hydrologic 
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variables over the changing climatic conditions. Further, it helps to foresee the changing 

contribution of snow on river discharge for different climatic scenarios. This research and future 

research in this area could benefit communities along the watersheds of HB by informing about 

the changing streamflow condition and predicting flooding. Further, providing information on 

sea ice conditions would be important especially for hunters. 
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Appendix 1. Average Maximum Snow Depth over Canada (Natural Resources Canada, 2009) 
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Appendix 2. Annual Mean Total Precipitation over Canada (Natural Resources Canada, 
2009) 
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Appendix 3. List of rivers that include small downstream tributaries 

River Tributaries 
Churchill Deer 

Nelson Angling 
Limestone 
Weir 

Chesterfield Inlet Thelon 
Kazan 

Moose Abitibi 
K wataboahegan 
North French 

Winisk Shamattawa 

Harri can a Turgeon 
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