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Department of Chemistry and Chemical Engineering 
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ABSTRACT 

To a large extent, organic building blocks are today obtained from petroleum-based products. From 

an environmental point of view, biomass-derived compounds are more sustainable alternatives to 

such oil-derived molecules. The 12 principles of green chemistry describe how chemical processes 

can be improved in terms of sustainability. With some of these principles as guidelines, this thesis 

considers the upgrading of renewable glycerol- and amino acid-derived compounds using two 

different atom economic catalytic reactions: the hydrogen borrowing reaction, and the ruthenium-catalysed 

azide-alkyne cycloaddition (RuAAC) reaction.  

First, the glycerol derivatives solketal and 1,3-propanediol were investigated as starting materials in 

organic transformations using hydrogen borrowing methodology. Solketal was aminated with a set 

of secondary amines as well as sterically hindered primary amines, yielding the corresponding 

amino glycerol derivatives in good to excellent yields, using [Ru(p-cymene)Cl2]2 as the catalyst. 

Deprotection of the acetal gave the free amino diol, and this reaction sequence was used to 

synthesise the antitussive agent dropropizine in two steps from solketal. Furthermore, the iridium-

catalysed α-alkylation of acetophenone with 1,3-propanediol was investigated. A mixture of 

products was obtained in moderate yields when using [Ir(cod)Cl]2 as the catalyst, while the 

selectivity could be improved by instead utilising an iridium-carbene complex as the catalyst. 

Hydrogen transfer methodology was also employed in the synthesis of chromanone scaffolds from 

2’-hydroxyacetophenone and an alcohol. Brief mechanistic insight was gained considering the two 

reaction types via deuterium-labelling experiments and computational techniques, respectively. 

In addition, chiral triazole δ-amino acids were constructed via a RuAAC reaction for the 

construction of foldamers. Eight chiral triazoles were synthesized in good yields. Computational 

conformational studies revealed that the synthesised monomers had several low energy 

conformations that could be part of a well-defined three-dimensional foldameric structure. 

Finally, the RuAAC reaction was used in combination with a hydrogen borrowing cyclisation 

reaction for the construction of 1,5-fused triazole piperazines from a simple amino acid derived 

azide. A set of 14 different triazoles were synthesised in moderate to excellent yields, and 7 of these 

triazoles were successfully cyclised to give the desired 1,5-fused triazoles in two steps. 

 

Keywords: alkylation, amination, amino acid-derived azide, glycerol, hydrogen borrowing, 1,3-

propanediol, renewable precursors, RuAAC, solketal, 1,2,3-triazole  
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1.  INTRODUCTION  

The past century has seen amazing discoveries and technical advances in areas such 

as communication, infrastructure, transportation, and materials. The drawback 

however, is that a large proportion of the increasing need for power and materials 

has been fulfilled by the oil industry. From a global sustainability perspective, this 

cannot continue forever.1 As a consequence, the European Commission recently 

initiated a circular economy package.2 Chemistry holds a central role in this shift and 

is the foundation of for example the pharmaceutical and material industries, which 

are highly dependent on the use of organic compounds. This includes building 

blocks, reagents and solvents for the processes and manufacturing of a wide range 

of products. With diminishing oil reserves, industrial actors have to find alternative 

raw materials that can provide the community with organic building blocks, reagents 

and reaction media. Materials from wood and plants are possible alternatives to 

petroleum-derived building blocks. Such compounds do, however, differ in terms of 

structure and properties, meaning that chemical modifications of these materials 

must diverge from traditional methods employed for petroleum derived compounds. 

Moreover, many chemical transformations suffer from issues such as the use of 

stoichiometric amounts of reagents and hazardous reactants. The employment of 

more benign starting materials and efficient catalysts could lower the production 

costs in industry as well as be beneficial for the environment. These ideas are not 

new in any way and are all included in the concept of green chemistry, discussed in the 

next section.  

1.1  GREEN CHEMISTRY 

The idea of green chemistry, in great pioneered by Paul Anastas and John Warner in 

the 1990s, considers how chemistry can be performed with minimum environmental 

impact and minimal overall cost.3 It involves essential principles such as performing 

chemical transformations with a low degree of waste formation and high atom 

economy,4 the use of non-hazardous chemicals and solvents, high energy efficiency, 

and the utilisation of renewable feedstock. In this work, we have implemented a few 

of these principles as guidelines to make certain choices. These are the use of 

catalysis, atom economy, renewable feedstock, and waste prevention.  

There are several possible renewable sources of organic building blocks and reagents. 

Lignocellulosic biomass from plants is the most abundant renewable material on our 
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planet.5 It consists of cellulose, hemicellulose, and lignin. While cellulose and 

hemicellulose are polymeric materials built up by carbohydrate units, lignin is a 

randomly cross-linked aromatic amorphous material. Plant oils and extracts are also 

of interest in this context. Renewable feedstock such as rapeseed oil, soybean oil and 

palm oil can be used to produce biodiesel as an alternative fuel.6 Via 

transesterification, the fatty acids can be isolated as for example methyl esters, and 

applied as bio-based fuels. Glycerol is a small organic molecule, currently obtained 

in large volumes as a by-product in this process (Figure 1.1). It is dense in alcohol 

functionalities that can be chemically transformed. This versatile molecule and 

derivatives thereof has found a wide use, both in the manufacturing of food and 

cosmetics,7 as well as in the chemical industry.8 We have set out to investigate the 

use of glycerol as a starting material for organic synthesis. By employing the different 

alcohol functionalities as “handles” for organic transformations, we envision that 

glycerol can be used to construct three-carbon fragments of small organic molecules.  

 

Figure 1.1  Glycerol and the general structure of amino acids. R = H or alkyl. 

Living organisms use proteins called enzymes for catalysing chemical reactions.9 

Proteins are constructed of long chains of amino acids (Figure 1.1). Amino acids are 

versatile renewable building blocks obtainable from many sources including biofuel 

production waste streams.10 As they contain an amine functionality, they are suitable 

for the construction of nitrogen containing molecules. Conversion of the acid 

functionality of the amino acid into an azide, enables the formation of nitrogen 

containing heterocyclic compounds that may be of interest for the pharmaceutical 

industry. We have examined amino acid derivatives as precursors for the formation 

of organic building blocks. 

1.2  CATALYSIS 

A catalyst is a compound that increases the rate of a chemical reaction without 

altering the change in standard Gibbs free energy.11 At the end of the reaction, the 

catalyst is returned to its original state. In practice, this means that a catalyst can be 

used to perform a reaction under milder conditions or using shorter reaction times, 

thus increasing the efficiency of the process. Furthermore, catalysts can improve the 

selectivity of a reaction by enhancing the formation of a certain product over other 
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possible products, leading to higher yields and less waste. Enzymes in our bodies do 

this all the time to keep us alive. Enzymes can also be applied as catalysts in organic 

transformations.12 Another class of catalysts called organocatalysts are organic 

compounds that can mediate chemical reactions.13 Transition metal complexes are 

yet another group of compounds that can serve as catalysts.14 Such transformations 

are powerful tools in the modern chemistry toolbox and several Nobel prizes have 

been awarded for transition metal-catalysed reactions, including palladium-catalysed 

cross-coupling reactions in 2010 (Richard Heck, Ei-ichi Negishi, and Akira Suzuki), 

the metathesis reaction in 2005 (Yves Chauvin, Robert Grubbs and Richard 

Schrock), and asymmetric catalysis in 2001 (William Knowles, Ryōji Noyori, and 

Barry Sharpless).15  

Catalysis is an important tool for performing green chemical transformations and we 

are interested in exploring the construction of small organic molecules by means of 

atom economic transition metal-catalysed reactions. The hydrogen borrowing reaction 

allows the facile and direct substitution of an alcohol functionality by a nucleophile 

such as an amine or an enolisable carbonyl compound, forming water as the only by-

product, and avoiding the use of stoichiometric reagents associated with traditional 

pre-activation of the hydroxyl group.16 In this thesis, hydrogen borrowing is 

investigated as a method for the modification of glycerol derivatives as well as for 

the formation of fused heterocyclic compounds. The ruthenium-catalysed azide alkyne 

cycloaddition (RuAAC) reaction permits the selective formation of 1,5-disubstituted 

1,2,3-triazoles, with all substrate atoms retained in the product.17 Such structural 

motifs are interesting from a synthetic point of view, and are present in several 

biologically active molecules such as antibacterial, antiviral, antifungal, anticancer, 

and anti-inflammatory agents.18 Moreover, triazoles have received attention in the 

field of synthetic peptide-like structures known as peptidomimetics.19 In this thesis, 

amino acid derivatives are investigated as substrates in the RuAAC reaction, with the 

purpose of forming triazole monomers for the construction of foldamers. Foldamers 

are oligomeric compounds that can form well-defined three-dimensional structures 

resembling natural peptides.20 Furthermore, the RuAAC reaction is applied in 

combination with the hydrogen borrowing reaction, yielding polycyclic triazole-

containing compounds from amino acid derived azides.  
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2.  AIMS 

The overall aim of this thesis has been to:  

� Develop chemistry that is adapted for the utilisation of renewable organic 

building blocks in organic synthesis. 

� Investigate more sustainable and atom economic catalytic methods for these 

transformations.  

� To apply these chemical reactions towards the atom economic construction 

of polycyclic nitrogen containing compounds, of possible interest for the 

pharmaceutical industry.  

In order to do so, we have explored several different routes.  

In the first part of the thesis, glycerol derivatives were studied as renewable starting 

materials for organic transformations. Here, we wanted to investigate if amines and 

enolisable carbonyl compounds could be alkylated using different glycerol 

derivatives. This work is described in chapters 4 and 5.  

In the second part, amino acid derived azides were employed to form 1,5-

disubstituted 1,2,3-triazole monomers via a RuAAC reaction, for the construction of 

foldameric structures. In this project, we were interested in exploring how the 

chirality of amino acid derivatives would affect the structural properties of the 

formed triazole monomers. Moreover, we wanted to learn how such monomers 

would behave in foldamers, with a possible end use in peptidomimetics. This work 

is discussed in chapter 6.  

In the final part of the thesis, the chemistry from the two previous parts was 

combined in order to form polycyclic structures that may find applications in 

medicinal chemistry. In this chapter, we were interested in investigating if it was 

possible to construct 1,5-fused 1,2,3-triazole piperazines from amino acid derived 

azides via a RuAAC reaction, followed by an intramolecular hydrogen borrowing 

reaction. These results are discussed in chapter 7. 

  



- 6 - 

 

  



- 7 - 

 

3.  BACKGROUND 

3.1  BIOMASS-DERIVED BUILDING BLOCKS 

One of the objectives of this thesis has been to investigate the use of renewable starting materials in 

organic synthetic transformations. This chapter gives an introduction to biomass-derived glycerol and 

amino acids.  

During the past decades, efforts to improve the efficiency of chemical 

transformations and minimise their impact on the environment have increased. 

Renewable feedstocks will in the future be essential assets for preparing materials 

and small functional molecules.21 In addition, more sustainable catalysts, reagents and 

solvents will be important in the manufacturing process of these molecules and 

materials. Organic building blocks and reagents are to a large extent obtained from 

the petroleum industry. For example, in 2010 only around 3-4% of globally produced 

chemicals were bio-based.21 Biomass or renewable feedstock are generic terms for 

materials produced by currently or recently living organisms (such as wood that may 

have a lifetime over hundreds of years), yielding “short-cycle carbon system” 

production chains and thus not adding notably to the amount of carbon dioxide in 

the atmosphere.21 Depending on the source, a wide range of substances are 

accessible. In this thesis, two kinds of building blocks from renewable sources have 

been used: glycerol derivatives obtained from vegetable oils,7a and compounds 

originating from amino acids, available from for instance plant production waste 

streams.10b  

3.1.1  Glycerol and glycerol derivatives 

Glycerol (1,2,3-propanetriol or glycerine) is a three carbon compound with one 

alcohol functionality on each carbon, present in our bodies and in nature as the 

“backbone” of fats and oils in the form of  triglycerides (Scheme 3.1).7a In its free 

form, it is a colourless, hygroscopic, sweet tasting, syrupy liquid that has more than 

1500 known end uses. This versatile molecule has no known toxic effects to humans 

or to the environment. Glycerol was chemically identified by Carl Wilhelm Scheele 

in the 18th century.22 Today, glycerol is obtained from fats and oils via hydrolysis, 

saponification or most commonly transesterification (Scheme 3.1).7a, 8 The fatty acid 

esters can be used to manufacture diesel fuel, i.e. biodiesel, and the major by-product 

formed is glycerol (around 10 % w/w). 
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Scheme 3.1  Formation of glycerol and fatty acids or fatty acid esters from triglycerides.8 

Early practical use of glycerol on a large scale can be exemplified by the importance 

of nitroglycerine in the form of dynamite, discovered by Alfred Nobel in the 19th 

century.7a Glycerol itself has for example been employed as an additive in foods, 

cosmetics, pharmaceuticals, and other consumer products, benefiting from its 

viscous texture, sweet taste, hygroscopic, and preserving properties. In addition, 

glycerol has been applied in a wide range of industrial processes to afford chemicals 

that can be used as fuel additives, ingredients in cosmetics, antifreeze agents, in 

polymer- and surfactant production and many other applications.7 Various chemical 

modifications have been used to valorise glycerol, for example oxidation,23 

etherification,24 esterification,8, 25 hydrogenolysis,26 as well as acetal formation.27 

Examples of transformations involving glycerol are shown in Scheme 3.2.  

 

Scheme 3.2  Glycerol can be converted into a large number of useful chemicals.8, 23-27 
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In this thesis, the glycerol derivatives 1,3-propanediol (1) and isopropylideneglycerol 

(2) have been utilised (Scheme 3.2). The former is obtained from glycerol via 

hydrogenolysis (dehydration followed by hydrogenation). Such processes are 

employed to produce both 1,2-propanediol and 1,3-propanediol.26 1,2-Propanediol 

is used as an additive in for example nutrition products and paint, but also directly 

as a de-icing agent, while 1,3-propanediol is applied mainly in polymer production. 

1,3-Propanediol can also be formed from glycerol via fermentation.28  

1,3-Propanediol can be used as a three carbon fragment in the construction of 

organic compounds. A recent example is the synthesis of fused oxazepine gefitinib 

derivatives as potential cancer therapeutics (Scheme 3.3).29 Following an aromatic 

nucleophilic substitution employing one alcohol moiety, the second alcohol was 

transformed into a chloride allowing for formation of the third ring.  

 

Scheme 3.3  1,3-Propanediol in the synthesis of fused oxazepine gefitinib analogues.29 

Glycerol acetals are a class of compounds that have found industrial applications, for 

example as fuel additives,27 surfactants and odorants.8 Isopropylideneglycerol, also 

called solketal (2, Scheme 3.2 and 3.4), can be synthesised from glycerol and acetone 

using acid or metal catalysis.27 It is a suitable substrate for selective reactions at one 

of the primary alcohols of glycerol. In the synthesis of sphingosine 1-phosphate 1 

receptor (S1PR1) agonist ACT-334441, developed for the treatment of autoimmune 

disease, (–)-isopropylideneglycerol was used as starting material to obtain the chiral 

side chain (Scheme 3.4).30 The free alcohol could after tosylation be used to alkylate 

a phenol. Four additional reaction steps were needed to complete the synthesis.  

Scheme 3.4  Synthesis of a S1PR1 agonist from (–)-solketal (2).30 
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3.1.2  Amino acids 

Amino acids are the building elements of enzymes and proteins in all living organisms 

(Figure 3.1).10b, 12 Amino acids are viable as food for humans and animals, but with 

increasing production of for example biofuels, the plant protein waste production 

increases.31 It can be estimated that if 10% of exploited fossil transportation fuel in 

the mid-2000s was substituted by biomass-derived alternatives, up to 100 million 

tonnes of protein waste could be produced annually. Such an increase in manufacture 

would lead to a decreasing market value of waste protein and would further motivate 

alternative uses such as the production of bulk chemicals. Examples of promising 

sources of protein waste are distiller dried grains with solubles, commonly called 

DDGS, from biofuel production such as bioethanol and biodiesel, obtained from 

various crops, including wheat, corn, rape, and maize.10a, 31  

 

Figure 3.1  Four of the twenty common amino acids found in proteins.12 

However, protein waste valorisation is not completely straightforward, and several 

approaches have been undertaken in order to achieve selective isolation and value 

upgrading.10b Initially, the proteins need to be hydrolysed into the individual amino 

acids, which can then be further isolated and finally modified. The hydrolysis step 

can be carried out using for example chemical or enzymatic approaches, or via 

fermentation. Separation of the individual amino acids can be accomplished by 

chromatography, sometimes in combination with chemical or enzymatic 

modification. These procedures are still expensive however, and a lot of work 

remains for these methods to become economically competitive. Nonetheless, amino 

acids are promising starting materials for nitrogen containing chemicals, and when a 

viable isolation process has been developed, there will be clear environmental 

benefits of using waste protein material. As an example, the amino acid proline 

(Figure 3.1) can be selectively de-carboxylated to give the cyclic amine pyrrolidine.32 

Moreover, there are numerous examples of the use of amino acids and derivatives 

thereof in organic synthesis, often related to medicinal chemistry. One example is 

the work of Masłyk and co-workers concerning 2-aminonaphthoquinones as 

potential antibacterial agents (Scheme 3.5).33 By allowing naphthoquinone to react 
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with different amino acids in the presence of triethylamine, a set of 2-

aminonaphthoquinones could be obtained and their antibacterial activity was tested.   

 

Scheme 3.5  Synthesis of 2-aminonaphthoquinones from the amino acid proline.33 

 

3.2  THE HYDROGEN BORROWING REACTION  

Glycerol has three alcohol functionalities. In order to efficiently upgrade glycerol derivatives, we have 

investigated hydrogen borrowing as a direct and green approach towards the construction of small 

functional molecules. Moreover, we have employed the hydrogen borrowing reaction in the synthesis 

of fused polycyclic triazole derivatives. This section deals with the scope and mechanism of the 

hydrogen borrowing reaction.  

In traditional transformations of alcohols, the nucleophilic oxygen can be used to 

form new bonds, yielding compounds such as ethers and esters.34 Alternatively, the 

alcohol can be converted into a more reactive species such as a halogen, tosylate, or 

carbonyl functionality. Halogens and tosylates are good leaving groups that allow for 

substitution on the adjacent carbon atom by a nucleophile. Carbonyl groups have an 

electrophilic carbon atom that can be subjected to nucleophilic addition. Amines are 

common nucleophiles that give imines upon nucleophilic addition. The addition of 

an amine to a carbonyl functionality in combination with reduction, i.e. reductive 

amination, is a common way to form new carbon-nitrogen bonds (Scheme 3.6). 35 

 

Scheme 3.6  Reductive amination reaction.35a 

From an environmental point of view, there are some drawbacks with the methods 

mentioned above. The approaches that result in a new bond to the carbon atom all 

include activation of the alcohol functionality prior to the bond forming reaction, 

resulting in additional reaction steps as well as work-up, and purification. In addition, 

stoichiometric amounts of sometimes hazardous waste in the form of inorganic salts 

is often generated in the activation step and/or in the bond forming reaction. To 
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avoid these issues, we decided to exploit a process that enables the direct use of 

alcohols in carbon–carbon and carbon–nitrogen bond forming reactions. 

In the early 1980s, Grigg36 and Watanabe37 independently reported the first examples 

of the homogenously catalysed hydrogen borrowing or hydrogen autotransfer 

reaction, involving the direct coupling of alcohols with amines (Scheme 3.7). 

Watanabe used a ruthenium catalyst at 180 ºC, employing the alcohol itself as the 

solvent and aniline as the nucleophile, resulting in alkylated aniline. Grigg instead 

used a rhodium or iridium complex in refluxing alcohol and an aliphatic amine as the 

nucleophilic species, and further demonstrated that cyclic amines could be formed 

from amino alcohols. 

 

Scheme 3.7  Early examples of the hydrogen borrowing reaction. 36-37 

Since then, these reactions have been extensively investigated and reviewed.16, 38 

Examples of nucleophiles that have been used in the hydrogen borrowing reaction 

are amines, enolisable carbonyl compounds, nitroalkanes, nitriles, phosphonium 

ylides, dienes, enynes and indoles (Figure 3.2).38a A large number of catalytic systems 

have proven efficient in catalysing these reactions, most commonly homogenous 

transition metal complexes based on iridium and ruthenium.39 There are also many 

examples of heterogeneous catalysts that can mediate this kind of transformation,40  

although this is not discussed further in this thesis.  

 

Figure 3.2  Examples of nucleophiles employed in the hydrogen borrowing reaction.38a 

(*Compounds shown in their neutral form, the corresponding anion is the nucleophile.) 
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3.2.1  General mechanism of the hydrogen borrowing reaction 

The hydrogen borrowing reaction involves the use of a catalyst, usually transition 

metal-based, that can activate an alcohol in situ via hydrogen transfer 

(hydrides/protons) to give a carbonyl compound that can react further with a 

nucleophile.38f, 38h Both primary and secondary alcohols can be used in the reaction. 

In this work, two types of nucleophiles have been utilised, i.e. enolisable carbonyl 

compounds and amines, resulting in α-alkylated ketones and alkylated amines, 

respectively. The detailed mechanism of the reaction depends on the nature of the 

substrates, the catalytic system used, and the reaction conditions.41 However, the 

overall mechanism is the same in all cases: the first reaction step is the 

dehydrogenation (oxidation) of the alcohol by the catalyst, resulting in the 

corresponding carbonyl compound (step i, Scheme 3.8). In the second step, the 

aldehyde (or ketone) is subject to a nucleophilic attack by the amine or enolate and 

dehydration takes place (step ii). Finally, the catalyst returns hydrogen to the 

unsaturated intermediate to give the saturated product (step iii).   

 

Scheme 3.8  General mechanism for the hydrogen borrowing reaction.38f, 38h  

The dehydrogenation/hydrogenation process is closely related to the catalytic 

transfer hydrogenation reaction that involves hydrogen transfer from an alcohol to a 

carbonyl compound or vice versa.42 The dehydrogenation step can result in either a 

monohydride metal intermediate41a, 41b (Scheme 3.9) or a dihydride metal complex41c, 

41d that is then further involved in the hydrogenation of the unsaturated intermediate. 

After dehydrogenation, the formed carbonyl compound may stay within the 

coordination sphere of the catalyst,41b allowing for condensation to occur within this 

sphere (Scheme 3.9), or it can dissociate.41d In the latter case, recomplexation occurs 

prior to reduction of the unsaturated intermediate.  
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Scheme 3.9  A monohydride complex, condensation occurs with the substrates 

coordinated to the metal.41a 

3.2.2  Alkylation of amines via hydrogen borrowing 

A number of different catalytic systems have proven successful in mediating the alkylation of amines 

via a hydrogen borrowing reaction. In this section, representative examples will be highlighted.  

Generally, iridium- and ruthenium-based complexes are the most commonly used 

catalysts in the alkylation of amines, although other metals have been employed.38f 

In most cases, the reaction is carried out under an inert atmosphere at temperatures 

ranging from 100 to 130 °C. Different solvents such as toluene, dioxane, and tert-

amyl alcohol are often used, as well as solventless conditions. Both primary and 

secondary amines can be used as nucleophiles in the hydrogen borrowing reaction. 

For primary amines, an imine is formed in the condensation step (step ii, Scheme 

3.8) yielding a secondary amine as the final product. Secondary amines form an 

iminium intermediate upon nucleophilic addition to the aldehyde (step ii), which is 

further reduced to a tertiary amine (step iii). 

One efficient and commonly used iridium-based catalyst is [Cp*IrCl2]2.38b, 38f This 

catalyst has been utilised by Fujita and Yamaguchi to form nitrogen heterocycles 

from diols,43 and later by Cumpstey and Martín-Matute to prepare aminosugars.44 

Furthermore, chemists at Pfizer have shown that the synthetic route to secondary 

amine intermediate 4 in the synthesis of GlyT1 inhibitor PF-03463275, could be 

improved using this catalyst (Scheme 3.10).45 An earlier approach using a two-step 

oxidation-reductive amination pathway gave 30-45% overall yield of compound 4. 

With this improved route, a yield of 69% – 4.5 kg – of compound 4 was obtained in 

a single step.  

Scheme 3.10  Improved synthesis of a GlyT1 inhibitor via hydrogen borrowing.45 
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In most cases these reactions are performed at relatively high temperatures (>100 

°C) but there are some exceptions. For example, catalysts developed by groups of 

Martín-Matute46 and Kempe47 operate at temperatures around 70 °C, while a 

bidentate iridium NHC-phosphine complex, developed by Andersson and co-

workers has proven to alkylate anilines in high yields at room temperature (Figure 

3.3).48 In order to enable the execution of these kinds of transformations in aqueous 

reaction media, water-soluble catalysts such as [Cp*Ir(NH3)3]I2 have also been 

developed.49 

 

Figure 3.3 Catalysts operating below 100 °C.46-48 

Moreover, several ruthenium-based catalysts show excellent results in this reaction. 

[Ru3(CO)12] has been used by Beller and co-workers,50 as well as Vogt,51 and gives 

good yields for a wide variety of substrates, in some cases in conjuction with 

CataCXium® PCy as the ligand. The preferred solvent is generally tert-amyl alcohol 

at 130 °C. Williams and co-workers have instead used [Ru(p-cymene)Cl2]2 with dppf 

or DPEphos as the ligand (Scheme 3.11).52 The reaction gives high yields, for 

example in the synthesis of dopamine agonist Piribedil, used in the treatment of 

Parkinson’s disease. Sulfonamides can also be alkylated using this catalytic system. 

 

Scheme 3.11  Synthesis of Piribedil using a ruthenium catalyst.52 

The hydrogen borrowing reaction using ruthenium and iridium catalysts has proven 

to be valuable tools for more efficient and environmentally benign alkylation 

reactions. The drawback, however, is that both ruthenium and iridium have very low 

abundance in the Earth’s crust.53 In contrast, iron (situated in the same group as 

ruthenium in the periodic table) is the fourth most abundant element53 and has lately 

received increasing attention as a potential catalyst in organic synthesis.54 
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The capacity of iron catalysts in the context of amination via hydrogen borrowing 

has been demonstrated for several structurally similar iron cyclopentadienone 

complexes, as reported by Feringa and Barta,55 as well as Zhao,56 and Wills57 (Figure 

3.4). The reactivity of the iron cyclopentadienone complexes was initially discovered 

by Knölker,58 revealing their potential as a redox catalysts. This capacity has since 

then been employed in other hydrogen transfer reactions such as hydrogenations and 

dehydrogenations, including asymmetric versions,59 and carbon–carbon bond 

forming reactions that will be discussed in the following chapter. Furthermore, a 

pincer complex based on manganese, recently reported by Beller, has also proved to 

efficiently catalyse this type of transformation (Figure 3.4).60 Although we have not 

employed any of these catalysts in the current work, these reports are of great interest 

for our future investigations towards green transformations of renewable building 

blocks.  

 

Figure 3.4  Iron and manganese complexes used for the amination of alcohols.55-57, 60 

3.2.3  α-Alkylation of ketones via hydrogen borrowing 

The borrowing hydrogen reaction is a suitable alternative to several of the traditional carbon–carbon 

bond forming reactions that employ electrophiles such as aldehydes, tosylates, and alkyl halides. 

Enolates, generated from carbonyl compounds via removal of acidic α-protons, are nucleophiles that 

can be efficiently alkylated using this methodology. In the following section some examples 

demonstrating such transformations will be emphasised.  

As with the amine nucleophiles discussed in the previous section, ruthenium and 

iridium complexes are most frequently used to catalyse the hydrogen borrowing 

reaction involving enolate nucleophiles.38h Reactions are commonly performed under 

inert conditions, in solvents such as dioxane or toluene and at temperatures ranging 

from 80-110 °C. In addition to the catalyst, a base is needed for the deprotonation 

of an acidic α-proton so that the enolate nucleophile is formed and aldol 

condensation can take place (step ii, Scheme 3.8). Typically, 20-100 mol% of the base 

is added. An α,β-unsaturated ketone is formed that is further hydrogenated by the 

catalyst in the final reaction step to give the α-alkylated ketone (step iii). Moreover, 
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in some cases, a scavenger in the form of an alkene is added in order to suppress 

competing transfer hydrogenation/overreduction of the carbonyl group of the 

starting material and the product. A range of carbonyl compounds, with enolisable 

α-protons can be utilised. Under certain conditions, the carbonyl precursor can have 

an alkyl group attached to the α-carbon.61 

Some of the first examples of using enolate nucleophiles were presented by Cho and 

Shim in the early 2000s. They showed that [RuCl2(PPh3)3] is an efficient catalyst for 

the α-alkylation of ketones (see Scheme 3.12 for one example).62 The reaction is 

regioselective for the least hindered α-carbon and requires equimolar amounts of 

KOH for enolisation. However, this method required one equivalent of sacrificial 

alkene (1-dodecene) to prevent overreduction of the product to its corresponding 

alcohol. In an earlier study by the same group, the corresponding alcohol was 

obtained in moderate to good yields in the absence of the sacrificial alkene.63  

Scheme 3.12  α-Alkylation of acetophenone with benzyl alcohol.62-63 

Furthermore, an iridium based catalytic system was introduced by Ishii and co-

worker.64 They showed that [Ir(cod)Cl]2 with PPh3 as the ligand can mediate the α-

alkylation of ketones under solventless conditions, with only 20 mol% of base 

(KOH), albeit with a slightly higher reaction temperature (100 °C). It has later been 

shown that the same catalyst in combination with a different ligand, DPPBz, allows 

for the formation of branched α-alkylation products.61 Glorius and co-workers 

instead utilised a ruthenium-NHC catalyst for the formation of branched α-alkylated 

ketones.65 This catalyst has for example proven useful in the formation of 

Donepezil66 (used for the treatment of Alzheimer’s disease, Scheme 3.13). 
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Scheme 3.13  Ru-NHC catalyst for the synthesis of branched alkylated compounds.65 

As with the amine alkylation, focus in the development of α-alkylation reactions has 

lately turned to the utilisation of more abundant metal catalysts. For example, an 

osmium complex developed by Esteruelas and Yus, effectively catalyses the 

alkylation of acetophenone as well as arylacetonitriles giving high yields of alkylated 

products.67 Sortais and Darcel instead employed an iron cyclopentadienone complex 

in the α-alkylation of various acetophenones,68 a catalyst previously used by Feringa 

and Barta in the alkylation of amines (Figure 3.4), while Zhang69 and Kempe70 utilised 

cobalt complexes for the alkylation of ketones and secondary alcohols, respectively.  

3.2.4  Modification of glycerol derivatives via hydrogen borrowing 

Glycerol and glycerol derivatives have been used as substrates in several types of 

organic transformations. However, when it comes to the application of these 

substances in the hydrogen borrowing reaction, the examples are scarce. Crotti and 

co-workers have shown that glycerol can be directly used in an iridium-mediated 

amination reaction with 1,2-diaminocyclohexane to give a mixture of diaminated 

products (Scheme 3.14).71 

 

Scheme 3.14  Iridium-mediated coupling of glycerol with 1,2-diaminocyclohexane.71 

The 1,2-protected glycerol acetonide, isopropylideneglycerol or solketal, was used by 

Rueping and co-workers in an iridium-catalysed aldol condensation type reaction 

with various acetophenone derivatives as enolate precursors (Scheme 3.15).72 

Subsequent reduction of the ketone and deprotection of the acetal allowed for 

cyclisation to 2,5-disubstituted tetrahydrofurans.  
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Scheme 3.15  Synthesis of 2,5-disubstituted tetrahydrofurans.72 

Moreover, Williams and co-workers have shown that isopropylideneglycerol can be 

aminated using their ruthenium-based catalytic system (Scheme 3.16).52 The 

enantiomerically pure alcohol was used, and it was speculated that racemisation of 

the intermediate aldehyde or imine led to the loss of enantiopurity. 

 

Scheme 3.16  Amination of isopropylideneglycerol.52 

1,3-Propanediol is one of the most widely used glycerol derivative in these types of 

reactions. Ishii and co-workers have employed hydrogen borrowing methodology in 

the synthesis of benzo[h]quinolones via reaction of naphthylamines with 1,3-

propanediol (Scheme 3.17).73 These reactions are closely related to the pioneering 

work of Watanabe in the 1980s where anilines were reacted with 1,3-propanediol74 

and ethylene glycol,75 using ruthenium catalysis, to give quinolones and indoles, 

respectively. Later, similar transformations have been performed by Achard and co-

workers.76 

 

Scheme 3.17  Preparation of benzo[h]quinolones.73 

Stephens and Marr have shown that 1,3-propanediol directly derived from crude 

glycerol via biocatalysis can be aminated with aniline using Ir-NHC catalyst 5 

(Scheme 3.18).77 Three different products could be obtained in various ratios 

depending on the solvent, reaction temperature and reaction time. Later, the 

selectivity was further enhanced via catalyst improvement78 and the group has 

continued studying the behaviour of 1,3-propanediol under the influence of their Ir-

NHC catalyst and in the absence of the aniline component.79  
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Scheme 3.18  Amination of 1,3-propanediol can be mediated by an iridium-NHC 

catalyst.77-78  

This thesis focuses on the utilisation of hydrogen borrowing methodology for the 

valorisation of glycerol derivatives. Moreover, we have also explored the use of 

hydrogen transfer chemistry as a route to more complex molecular structures. This 

type of chemistry was used in the amination of solketal (chapter 4), in the 

investigation of 1,3-propanediol as alkylating agent (section 5.1), in the synthesis of 

chroman-4-ones (section 5.2), and in the construction of 1,5-fused 1,2,3-triazol 

piperazines (chapter 7). 

 

3.3  THE RUTHENIUM-CATALYSED AZIDE ALKYNE 
CYLOADDITION REACTION 

Nitrogen heterocycles such as triazoles are interesting targets for organic and medicinal chemists. We 

have used the ruthenium-catalysed azide alkyne cycloaddition (RuAAC) reaction as a route towards 

new triazole containing molecules. In this section the mechanism and scope of the RuAAC reaction 

will be discussed.  

A vast number of natural products80 and eight of the twenty best selling drugs in the 

world in 2015 contain at least one nitrogen heterocycle.81 In other words, it is of great 

value for organic chemists to be able to construct nitrogen containing cyclic 

compounds. There is a large number of different nitrogen-containing heterocycles in 

terms of structure, ring size and bond types.82 Triazoles are five-membered rings that 

contain three nitrogens and two double bonds. The nitrogens can be situated either 

in the 1-, 2-, and 3- or the 1-, 2-, and 4-positions of the ring, which gives the names 

to the two different regioisomers 1,2,3-triazole and 1,2,4-triazole (Figure 3.5). This 

work considers the formation of 1,2,3-triazoles and focus therefore will be on these 

compounds hereafter.  
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Figure 3.5  The general structure and numbering of triazoles. 

Traditionally, 1,2,3-triazoles are formed via the Huisgen 1,3-dipolar cycloaddition 

reaction (Scheme 3.19).83 In this reaction, an alkyl or aryl azide (the 1,3-dipole) is 

allowed to react with an alkyne (the dipolarophile), formally in a [3+2] cyloaddition 

reaction, to form a five membered ring. For the original thermal Huisgen reaction, 

long reaction times at elevated temperatures (around 100 °C) are needed. 

Furthermore, when the alkyne is not acetylene, a mixture of regioisomers are formed. 

This lowers the appeal of this kind of transformation as an option for organic 

chemists interested in forming nitrogen heterocycles.  

N
N

N

R2

R1

N
N

NR1

R2

R1

R2N3
+ +

1,4-regioisomer 1,5-regioisomer  

Scheme 3.19  The thermal Husigen 1,3-dipolar cycloaddition reaction.83 

However, in 2002 independent studies by Meldal84 at the Carlsberg Laboratory, and 

Fokin and Sharpless85 at the Scripps Research Institute, were published on the 

copper-catalysed 1,3-dipolar cycloaddition (CuAAC) reaction of azides with terminal 

alkynes to form exclusively the 1,4-disubstituted 1,2,3-triazole (Scheme 3.20). In the 

study by Meldal, the alkyne was attached to a solid support and a Cu(I) salt was used 

as the catalyst,84 while Fokin and Sharpless’ approach included the use of an aqueous 

alcoholic solvent and a Cu(II) salt as the added catalyst, with sodium ascorbate as 

reducing agent to form the active Cu(I) species in situ.85 The mechanism is believed 

to involve the formation of a copper(I) acetylide, a reaction step that also explains 

the lack of tolerance for internal alkynes. Later studies indicate that some steps of 

the mechanism involve the interaction of a second copper center.85-86 The success of 

the CuAAC reaction became a fact with its use as a “click” reaction. This concept, 

coined by Sharpless,87 describes a set of tools that chemists can use to join or “click” 

molecules together in a modular and simple way to form a wide scope of new 

substances. In addition to the modularity, the reaction has to be high yielding, employ 

readily available starting materials and solvents that are benign, or no solvent at all. 

Furthermore, the reaction should proceed with the formation of non-hazardous by-
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products, and allow for simple product isolation. The CuAAC reaction has found 

applications in many different areas such as polymer chemistry, dendrimer chemistry, 

medicinal chemistry, organic synthesis, and bioconjugation.88 

 

Scheme 3.20  The CuAAC reaction.85 

There was, however, also a need to selectively form the other regioisomer, and in 

2005 Fokin and Jia reported the first example of the ruthenium-catalysed azide alkyne 

cycloaddition (RuAAC) reaction, forming selectively the 1,5-disubstituted 1,2,3-

triazole (Scheme 3.21).89 They evaluated a number of ruthenium catalysts in the 1,3-

dipolar azide alkyne cycloaddition reaction and found that ruthenium complexes 

such as [Cp*RuCl(PPh3)2], containing a [Cp*RuCl] structure element, gave excellent 

regiocontrol for the formation of the 1,5-isomer.  

 

Scheme 3.21  The ruthenium-catalysed azide alkyne cycloaddition reaction.89 

Remarkably, the internal alkyne diphenylacetylene was also efficiently reacted with 

benzyl azide and converted into the 1,4,5-trisubstituted-1,2,3-triazole, indicating that 

a different mechanism must operate for the ruthenium-catalysed version of the 

reaction as compared to the CuAAC. Additional studies by Lin, Jia, and Fokin shed 

more light on the impressive scope and functional group tolerance of this reaction 

and the mechanism was investigated further.90 
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3.3.1  The mechanism of the ruthenium-catalysed azide alkyne 1,3-

cycloaddition reaction 

In the initial studies of the RuAAC reaction by Jia and Fokin, it was concluded that 

the mechanism must differ from the one in the CuAAC reaction where a Cu-acetylide 

is believed to be involved.89 The reason for this is the acceptance for internal alkynes 

in the ruthenium-catalysed version of the reaction. In the following paper, Lin, Jia, 

and Fokin included both experiments and DFT calculations to investigate the 

mechanism.90  They proposed that the first step of the RuAAC reaction is the 

displacement of the spectator ligands by the alkyne that is coordinated side-on to the 

active catalyst, a neutral [Cp*RuCl] species, while the azide binds to ruthenium with 

the substituted nitrogen (step i, Scheme 3.22). In a later study, Nolan suggested that 

coordination of the alkyne to the ruthenium catalyst is part of the catalyst activation 

and that the active catalyst is a [Cp*RuCl]-alkyne complex.91 The azide is 

subsequently coordinated to ruthenium, allowing for nucleophilic attack of the 

acetylene carbon on the terminal nitrogen of the azide, resulting in an irreversible 

oxidative addition reaction forming a ruthenacycle (step ii). This step determines the 

regioselectivity of the final product. Reductive elimination gives the triazole product 

(step iii) that can be displaced by new substrates or the original ligands (step iv). 

 

Scheme 3.22  Proposed mechanism for the RuAAC reaction (L = ligand).90 

With unsymmetrical internal alkynes, the regioselectivity is more complex and is 

dependent on the different groups attached to the alkyne.17 For example, for alkynes 

bearing alkyl and/or aryl groups, mixtures of regioisomers are obtained in most cases 
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(Figure 3.6).92 Alkynes with amines and alcohols in the propargylic position, on the 

other hand, form predominantly the regioisomer with the amine/alcohol in the 5-

position, most likely due to hydrogen bonding of the NH/OH to the chloride ligand 

on the metal (Figure 3.6).90 For alkynes with a halogen directly attached to the triple 

bond, the halogen will primarily end up in the 5-position (Figure 3.6).93 

 

Figure 3.6  Regioselectivity for internal alkynes.90, 92-93 

There are a number of different catalysts that can mediate the RuAAC reaction to 

give the 1,5-disubstituted 1,2,3-triazole.17 The common features of these catalysts is 

that they all contain the [Cp*RuCl] fragment. The two most commonly used catalysts 

are [Cp*RuCl(cod)] and [Cp*RuCl(PPh3)2]. The former is the more active of these 

two complexes, often allowing for reactions to be performed at room temperature. 

Other kinds of ruthenium catalysts lacking a Cp* ligand will instead give the 1,4-

regioisomer.89-90  

3.3.2  Synthetic applications of the RuAAC reaction 

Already in their first two papers on the subject, Lin, Jia, Fokin and co-workers proved 

that the RuAAC reaction can be applied towards a wide variety of substrates (Figure 

3.7).90 Although they found that the azide was sensitive to steric hindrance (primary 

azides being most efficient), the possible complexity of the azide substrates was 

remarkable. Furthermore, the reaction was tolerant to various functional groups in 

the alkyne such as alcohols, amines, halogens, ethers, sulfonamides, acetals and 

nitriles.   

 

Figure 3.7  Examples of triazoles that can be synthesized via the RuAAC reaction.90 
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Since then, the reaction has found application in areas such as medicinal chemistry, 

nanochemistry, electronic devices, supramolecular structures, polymer chemistry and 

organocatalysis.17 One of the most frequent applications of the RuAAC reaction is 

in the synthesis of peptidomimetics. For example, constrained amino triazolo 

diazepines have been synthesised and examined as histidine mimetics.94 Two 

different synthetic approaches were used, applying an amino acid-derived azide in 

RuAAC (see Scheme 3.23) or employing a thermal cycloaddition reaction.  

 

Scheme 3.23  Synthesis of amino triazolo diazepines.94 

The RuAAC reaction has been investigated in this thesis as a route to triazole amino 

acids and to fused triazole piperazines, and will be discussed in chapters 6 and 7. 
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4. AMINATION OF SOLKETAL (PAPER I) 

Nitrogen-containing compounds are vastly represented among small functional 

organic molecules, and can for example be constructed through the formation of 

new carbon–nitrogen bonds. One of the major objectives of this thesis has been to 

utilise glycerol, obtainable as a by-product in the production of biodiesel,7a as a 

renewable starting material for organic synthesis. When planning this work, we 

envisioned that the glycerol hydroxyl groups could be used as handles in the 

formation of new bonds so that glycerol would constitute a three-carbon fragment 

in a new molecule. Furthermore, we set out to find a method that permitted such 

bond formation to be carried out in an atom economic manner. With this in mind, 

we decided to investigate the utilisation of hydrogen borrowing catalysis, described 

in chapter 3.2, for the formation of new amino glycerol derivatives. This type of 

chemistry allows for the direct coupling of an alcohol functionality with a nucleophile 

such as an amine, without the need for prior activation of the alcohol moiety. 

Moreover, water is formed as the only by-product in the reaction.  

Based on these ideas, we set out to selectively aminate glycerol on one of the alcohol 

functionalities to form an amino glycerol derivative for further use as an organic 

building block or for direct use in for example biological applications. Such structural 

features can be seen in drugs such as the β-blocker propranolol, the antiviral agent 

indinavir, and the antitussive agent dropropizine (Figure 4.1).  

 

Figure 4.1  Biologically active compounds with amino glycerol moieties. 

However, as shown by Crotti and co-workers in their work on the reaction of 

glycerol with diamines, the direct use of glycerol will most likely lead to a mixture of 

products (Scheme 3.20).71 Therefore, we decided to start our investigations utilising 

the 1,2-acetal-protected glycerol derivative 1,2-isopropylideneglycerol (2, solketal), 

with one primary alcohol available for functionalisation, in a direct amination 

reaction applying hydrogen borrowing methodology (Scheme 4.1)   
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Scheme 4.1  Amination of solketal. 

In this initial screening, solketal was allowed to react with morpholine as the model 

amine in the presence of a catalyst with toluene as the reaction medium, in a sealed 

vial under argon and using conventional heating (Table 4.1). One iridium catalyst43 

and two ruthenium catalysts,50b, 51-52 that have previously proved to effectively 

aminate alcohols, were investigated. When [Ru3(CO)12] was used, no product could 

be observed (entry 1), and although [Cp*IrCl2]2 performed well compared to the 

other catalysts at 110 °C (entry 2), [Ru(p-cymene)Cl2]2 proved to be superior when 

the temperature was increased to 120-130 °C (entries 4-8). Both dppf and DPEphos 

could be employed as ligands. 

Table 4.1  Evaluation of the reaction conditions for the amination of solketal with 

morpholine. 

 

Entry Catalyst Catalyst 

loading 

[mol%] 

Ligand Temp. 

[°C] 

Time 

[h] 

Yield [%]b 

1 [Ru3(CO)12] 2 - 140 24 <1 

2c [Cp*IrCl2]2 5 - 110 24 38 

3 [Ru(p-cymene)Cl2]2 1.25 dppf 110 24 12 

4 [Ru(p-cymene)Cl2]2 1.25 dppf 120 24 80 

5 [Ru(p-cymene)Cl2]2 1.25 dppf 130 24 95 

6d [Ru(p-cymene)Cl2]2 1.25 DPEphos 130 24 97 

7 [Ru(p-cymene)Cl2]2 1.25 dppf 130 48 >99 

8 [Ru(p-cymene)Cl2]2 1.25 dppf 130 12 90 

 a Conditions: In a sealed Biotage® microwave-vial was added catalyst, ligand (2.5 mol%) solketal (2 mmol), 

morpholine (2 mmol) and toluene (2 mL) under argon. The mixture was stirred at room temperature for 5-

10 min, and then heated in an oil bath. b Measured by 1H NMR. c In 0.1 mL toluene using 5 mol% NaHCO3 

as added base. d 1 mmol scale.  

For the following experiments, we chose to use [Ru(p-cymene)Cl2]2 as the catalyst, 

with dppf or DPEphos as the ligand at 130 °C and toluene as the solvent. The amine 

was added in a small excess. Employing these conditions, the morpholine derivative 
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6 could be isolated in 92% yield (Figure 4.2). Piperazines with different substituents 

(phenyl, Boc, and methyl) were also applicable, forming amino glycerol derivatives 

7, 8, and 9 that were all isolated in over 80% yield. The piperidine derivative 10 was 

isolated in a lower yield, mostly due to purification issues.  

 

Figure 4.2  Synthesised amino glycerol derivatives.  
Conditions: In a sealed Biotage® microwave-vial was added [Ru(p-cymene)Cl2]2 (1.25 mol%), ligand (2.5 

mol%) solketal (2 mmol), amine (2.4 mmol) and toluene (2 mL) under argon. The mixture was stirred at 

room temperature for 5-10 min, and then heated in an oil bath. a dppf. b tert-Amyl alcohol as solvent. c 

DPEphos. d Solventless conditions: ratio solketal/amine, 1.5 : 1. e Solventless conditions: ratio 

solketal/amine, 1 : 1.2. 

Primary amines with some degree of sterical hindrance such as cyclohexylamine 

could also be employed, yielding compound 11 in 73% yield. 4-Amino-N-Boc-

piperidine, of interest in the synthesis of several classes of drugs,95 was then utilised 

as the amine, resulting in a highly functionalised glycerol derivative 12 with several 

possible alternatives for further functionalisation. While the use of α-

methylbenzylamine resulted in 76% isolated yield of compound 13, benzylamine 

itself gave only low yields of the desired product. For other less sterically hindered 

primary amine substrates such as n-hexylamine, 2-phenethylamine, and N’,N’-

dimethylpropane-1,3-diamine, none of the desired products could be isolated. 

Possibly, less hindered primary amines undergo homo-coupling under the applied 

reaction conditions, a reaction that has been previously reported by Williams, albeit 

employing a more reactive iridium catalyst.96 MS analysis of reactions employing n-

hexylamine or benzylamine as the amine nucleophile indicate the formation of such 

homo-coupled products. The more benign solvent tert-amyl alcohol could also be 

used, but the isolated yield of compound 6 decreased considerably when running the 

reaction in this solvent (Figure 4.2). Solventless conditions were investigated in the 

formation of 7 and even though a slight drop in yield was observed as compared to 

running the reaction in toluene, good yields were nevertheless obtained. 
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With our amino glycerol derivatives at hand, we moved on to the deprotection of 

the acetal group. Several conventional deprotection methods were investigated 

(HOAc, TFA, p-TsOH, Dowex-50W-8x exchange resin, HCl in acetone), and it was 

found that 0.1 M aqueous HCl and acetone in a 1:1 mixture at 40 °C gave the desired 

HCl-salt of the amino glycerol derivative. Treatment of the hydrochloride salt with a 

polystyrene-bound carbonate base (MP-carbonate) afforded the free amine. When 

applying this strategy for the phenyl-piperazine derivative 7, the antitussive agent 

dropropizine was isolated in an 86% overall yield from solketal (Scheme 4.2).  

 

Scheme 4.2  Synthesis of dropropizine from solketal. a Conditions: see Figure 4.2. 

The catalytic process for this type of transformation involves initial dehydrogenation, 

followed by condensation and hydrogenation of the imine intermediate (see Scheme 

3.8). In the initial study on the [Ru(p-cymene)Cl2]2-catalysed hydrogen borrowing 

reaction by Williams, labelling experiments indicated that condensation did not 

necessarily take place within the coordination sphere of the catalyst and that only one 

C–H bond needed to be broken for the reaction to occur.52 The hydrogenated 

catalytic species can be either a mono- or a di-hydride metal complex (see section 

3.2.1). We decided to further investigate the nature of the catalyst by considering the 

effect of added D2O. Under standard reaction conditions, using equimolar amounts 

of solketal and morpholine, 0.5, 1, and 2 eq of D2O were added, respectively, and 

allowed to equilibrate before the reaction was started. The reaction mixtures were 

then analysed by 1H, 2H, and 13C NMR, indicating that deuterium was incorporated 

mainly at the positions highlighted in Scheme 4.2. Major incorporations were seen 

on all carbons bound to the nitrogen atom (marked in red in Scheme 4.3). A lower 

degree of incorporation was seen for the position marked in blue, and minor 

incorporation was observed for all other positions α to heteroatoms. 
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Scheme 4.3  Deuterium incorporation experiments and plausible mechanism.  

D = fraction incorporated deuterium. 

In the case of a di-hydride route, substantial deuterium incorporation is expected, as 

the proton and the hydride will lose their identity on the metal species. The mono-

hydride route should not lead to any scrambling in the presence of D2O, as only the 

α-hydride ends up on the metal. However, if the mono-hydride complex is a redox-

labile and long-lived species, there is a possibility that the “hydride” is transferred as 

a proton to the D2O/H2O/DOH in a reversible process, leading to some degree of 

hydride/proton scrambling between the protic co-solvent and the catalyst. Some 

degree of deuterium incorporation was indeed observed, indicating that the 

intermediate ruthenium-species could be either a mono-hydride or di-hydride metal 

complex that, in a fast reversible reaction, can lose the hydride as a proton to the 

protic co-solvent. The majority of the deuterium ended up on carbons bound to 

nitrogen, indicating that the formed iminium ion is in a fast equilibrium with an 

iminum ion in the morpholine ring, possibly catalysed by the ruthenium catalyst. 

These intermediates can be reduced by a ruthenium deuteride. For the remaining 

positions, ruthenium-catalysed alkene isomerisation97 and reversible formation of 

enamines via proton loss could lead to this type of incorporation. Imine formation 

can take place via a coordinated or non-coordinated pathway. In an experiment 

employing (S)-BINAP as the ligand, 18% enantiomeric excess of compound 7 and 

5% of 6 was obtained, indicating that the phosphine ligand is involved in the 

selectivity-determining step.  

In conclusion, we have shown that solketal can be aminated with cyclic secondary 

amines and bulky primary amines using a ruthenium catalyst. Less sterically hindered 

primary amines, did not afford synthetically useful amounts of product, at least in 

part due to homo-coupling of such amines. Deprotection of the acetal was effected 

by treating the aminated solketal derivative with HCl/acetone, followed by treatment 
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with a polymer-bound carbonate base. This method could be employed to synthesise 

the antitussive agent dropropizine in 86% overall yield from solketal. The nature of 

the catalyst was briefly examined via deuterium incorporation in the presence of 

D2O, indicating that the intermediated metal hydride complex could be long-lived, 

allowing for the exchange of deuterides/hydrides of the catalyst with the solvent in 

a redox equilibrium.  
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5. ALKYLATION OF KETONES  

5.1  1,3-PROPANEDIOL AS AN ALKYLATING AGENT (PAPER II) 

In the previous chapter, it was shown that the glycerol derivative solketal can be 

employed in amination reactions to obtain useful building blocks and small 

functional organic compounds. In the construction of new molecules, it is also of 

great value to form new carbon–carbon bonds. Therefore, we were interested in 

examining carbon nucleophiles in conjunction with hydrogen borrowing. Enolisable 

carbonyl compounds have proven to be useful nucleophiles in the hydrogen 

borrowing reaction, resulting in α-alkylated ketones.38h 1,3-Propanediol has two 

primary alcohols available for substitution, but lacks the secondary alcohol on the 

central carbon, eliminating the issue of selectivity in terms of primary/secondary 

alcohol, but also allowing for substitution at both ends of the glycerol molecule. 

Although 1,3-propanediol has been used in carbon–nitrogen bond forming reactions 

via hydrogen borrowing,73-74, 76-78, 98 the utilisation in carbon–carbon79  bond forming 

reactions has only been briefly examined (see section 3.2.4 for more details). We 

decided to start our investigations by alkylating acetophenone with 1,3-propanediol 

and we envisioned that under hydrogen borrowing conditions, a ketone with an 

extended alkyl chain and a terminal hydroxyl group would be formed (Scheme 5.1).  

 

Scheme 5.1  Proposed alkylation of acetophenone with 1,3-propanediol. 

First, we examined a number of different catalysts that have proven to efficiently 

catalyse the alkylation of ketones with alcohols. In a typical reaction setup, 

acetophenone and 1,3-propanediol were heated in a sealed vessel in the presence of 

a catalyst, sodium hydroxide, with or without a solvent, at 100–130 °C for 20 h. The 

reaction mixture was then analysed by GC-MS. Under these conditions, the desired 

product 5-hydroxy-1-phenylpentan-1-one (14) was not detected. Instead, a mixture 

of five different products was obtained (Table 5.1). Depending on the choice of 

catalyst, the major products were 1-phenylpentan-1-one (15a) and/or 1-

phenylethanol (16). In addition, smaller amounts of 1-phenylpentan-1-ol (15b), 1-

phenylbutan-1-one (15c), and propiophenone (15d) could be detected. Compounds 

15a-15d are all formed through carbon–carbon bond formation between 

acetophenone and 1,3-propanediol (15a and 15b) or fragments of 1,3-propanediol 
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(15c and 15d), while compound 16 is the result of catalytic transfer hydrogenation of 

the ketone substrate.  

Table 5.1  Catalyst evaluation for the alkylation of acetophenone with 1,3-propanediol.a 

 

Entry Catalyst Solvent Conv.  Selectivity 

   [%]b 15a 15b 15c 15d 16 Ratio 15:16 

1 RuCl2(PPh3)3 - 18 - - - - 100 0 : 100 

2c,d RuH2(PPh3)3(CO)/  

PNP·HCl 

t-amyl 

alcohol 

21 - - - 10 90 10 : 90 

3c Ru3(CO)12/  

CataCXium PCy 

t-amyl 

alcohol 

27 15 - 3 4 78 22 : 78 

4c Ru(CO)ClH(PPh3)3/  

Xantphos 

t-amyl 

alcohol 

32 - - - - 100 0 : 100 

5 RuCl2(DMSO)4 - 37 19 5 - - 76 24 : 76 

6e IrCl3/ BINAP p-xylene 2 - - - - 100  0 : 100 

7 [Ir(cod)Cl]2/ PPh3 - 26 50 15 - - 35 65 : 35 

8 [Cp*IrCl2]2 - 61 - - - - 100 0 : 100 

9f 17 - 11 100 - - - - 100 : 0 
a Conditions: In a sealed Biotage® microwave-vial was added catalyst (2 mol%), ligand (8 mol%), NaOH 

(20 mol%), acetophenone (2 mmol), 1,3-propanediol (3 mmol), and solvent (0 or 1 mL) under argon and 

heated in an oil bath at 100 °C for 20 h. b Measured by GC-MS using naphthalene as internal standard. c 130 

°C. d PNP·HCl = (Ph2PCH2CH2)NH·HCl. e 140 °C. f 0.25 mmol scale, K2CO3 as base, 115 °C, 24 h. 

Five different ruthenium catalysts were investigated, and in all cases compound 16 

was the major product (Table 5.1, entries 1-5). Two of these catalysts, gave complete 

selectivity for transfer hydrogenation (entries 1 and 4). In the remaining cases, a 

mixture of transfer hydrogenation and alkylation products was obtained (entries 2, 3, 

and 5). Three different commercial iridium catalysts were then examined (entries 6-

8), as well as iridium carbene complex 17 (entry 9), first reported by Saunders99 and 

of the same type previously used by Marr and co-workers for the amination of 1,3-

propanediol.77-79 [Ir(cod)Cl]2 gave the highest overall yield of alkylation products 

(entry 7), while compound 17, made available to us by Marr and co-workers, was the 

only catalyst that was completely selective for one alkylation product (entry 9). 
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Interestingly, [Cp*IrCl2]2 produced substantial amounts of 16 selectively, indicating 

that 1,3-propanediol can be used as a hydrogen source in the catalytic transfer 

hydrogenation of aromatic ketones employing this catalyst (entry 8). The results in 

entries 7 and 9 encouraged us to further investigate [Ir(cod)Cl]2 and 17 in order to 

improve the yield of the alkylated products.  

First, we considered the reaction with [Ir(cod)Cl]2 and a number of different ligands 

were used to replace triphenylphosphine. Both bidentate (dppe, dppp, dppb, dppf, 

BINAP, SEGPHOS, and Xantphos) and monodentate ligands (PPh2Me, (p-

CF3C6H4)PPh2, CataCXium PCy, RuPhos, XPhos, and PipPhos) were less effective 

in terms of alkylation compared to PPh3, although the selectivity for transfer 

hydrogenation could be increased in some cases (see supporting information for 

Paper II). The reaction conditions were then further evaluated using PPh3 as the 

ligand. The effect of temperature, base loading and substrate ratio were then briefly 

examined, and it was found that temperatures around 100-120 °C, with the addition 

of 20 mol% base and 150-200 mol% of 1,3-propanediol as compared to 

acetophenone was most beneficial for the formation of alkylation products (see 

supporting information for Paper II).  

A number of different bases and solvents were then explored and compared (Table 

5.2). The base screening was performed using toluene as the reaction medium and 

for all the examined bases, a mixture of products were obtained (entries 1-8). In the 

case of CsOH, LiOH, KOH and K3PO4, transfer hydrogenation was favoured 

(entries 3-6) while alkylation was favoured by K2CO3, albeit in a low yield in this case 

(entry 7). Using NaOH as the base, the effect of solvent was then evaluated. Less 

polar solvents (toluene and xylene) slightly favoured transfer hydrogenation (entries 

1 and 9). More polar solvents such as dioxane, t-butanol and t-amyl alcohol, however, 

favoured the formation of alkylation products, and the overall conversion increased 

(entries 10-12), while neat conditions further improved the selectivity (entry 13). 

Under neat conditions, other reaction temperatures and previously examined bases 

were reconsidered. Increasing the temperature resulted in slightly lower selectivity 

and lower conversion, in the latter case, possibly due to faster catalyst deactivation 

(entry 14). NaOt-Bu under these conditions, gave a higher selectivity but a lower 

conversion (comparing entries 2 and 16), while the use of LiOH and CsOH resulted 

in higher conversions and better selectivity under neat conditions (entries 17-19).  
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For [Ir(cod)Cl]2, the best results were obtained using NaOH as the base in dioxane 

or under solventless conditions at 110 °C. Under these conditions, the GC yields 

were still not synthetically useful and for this reason, we decided to investigate 

catalyst 17 further, as our initial studies showed that this catalyst could selectively give 

compound 15a.  

Table 5.2  Effect of base and solvent for the alkylation of acetophenone with 1,3-

propanediol.a 

Entry Base Solvent Conv.  Selectivity 

   [%]b 15a 15b 15c 15d 16 Ratio 15:16 

1 NaOH toluene 35 28 3 6 6 57 43 : 57 

2 NaOt-Bu toluene 33 36 3 9 9 43 57 : 43 

3 CsOH·H2O toluene 28 32 3 4 4 57 43 : 57 

4 LiOH·H2O toluene 21 24 - - - 76 24 : 76 

5 KOH toluene 34 15 3 6 3 73 27 : 73 

6 K3PO4 toluene 24 21 - 8 4 67 33 : 67 

7 K2CO3 toluene 17 53 - 18 trace 29 71 : 29 

8 Cs2CO3 toluene 14 36 - 14 trace 50 50 : 50 

9 NaOH xylene 38 29 3 5 5 58 42 : 58 

10 NaOH dioxane 40 48 trace 20 22 10 90 : 10 

11 NaOH t-butanol 36 50 5 17 14 14 86 : 14 

12 NaOH t-amyl 

alcohol 

43 51 2 19 16 12 88 : 12 

13 NaOH - 42 67 7 9 5 12 88 : 12 

14c NaOH - 29 69 - 7 7 17 83 : 17 

15d NaOH - 35 63 14 9 - 14 86 : 14 

16 NaOt-Bu - 22 82 - - - 18 82 : 18 

17 CsOH·H2O - 33 52 6 6 - 36 64 : 36 

18 LiOH·H2O - 38 45 18 5 3 29 71 : 29 

19c LiOH·H2O - 36 47 8 6 6 33 67 : 33 
a Conditions: In a sealed Biotage® microwave-vial was added [Ir(cod)Cl]2 (2 mol%), PPh3 (8 mol%), base 

(20 mol%), acetophenone (2 mmol), 1,3-propanediol (3 mmol), and solvent (0 or 1 mL) under argon and 

heated in an oil bath at 110 °C for 20 h. b Measured by GC-MS using naphthalene as internal standard. c 130 

°C. d 100 °C, 112 h. 

In the initial screening, the use of catalyst 17 resulted in the selective formation of 

compound 15a, albeit in low conversion (Table 5.3, entry 1). Increasing the reaction 

time gave a higher yield without lowering the selectivity (entry 2). However, an 

increase in temperature with lower base loading or the addition of molecular sieves 

did not improve the yield (entries 3-4). Interestingly, NaOH afforded complete 
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selectivity for transfer hydrogenation, albeit in very low yields (entry 5), while LiOH 

resulted in an increase of the yield, accompanied with a loss in selectivity. No short 

chain products (15c and 15d) were obtained using this catalyst. 

Table 5.3  Investigation of catalyst 17 in the alkylation of acetophenone with 1,3-
propanediol. 

Entry Base Time  Conv.  Selectivity 

  [h] [%]b 15a 15b 15c 15d 16 Ratio 15:16 

1 K2CO3 24  11 100 - - - - 100 : 0 

2 K2CO3 48 17 100 - - - - 100 : 0 

3c K2CO3 48 10 100 - - - - 100 : 0 

4d K2CO3 48 15 100     100 : 0 

5 NaOH 24 6 - - - - 100 0 : 100 

6 LiOH·H2O 24 58 48 4   48 52 : 48 

7e LiOH·H2O 24 19 42 trace - - 58 42 : 58 

8 LiOH·H2O 48 27 67 trace - - 33 67 : 33 

9f LiOH·H2O 24 20 75 - - - 25 75 : 25 
a Conditions: In a sealed Biotage® microwave-vial was added 17 (2 mol%), base (20 mol%), acetophenone 
(1 mmol), and 1,3-propanediol (1.5 mmol) under argon and heated in an oil bath at 115 °C for 24 or 48h. b 
Measured by GC-MS using naphthalene as internal standard. c 150 °C, 10 mol% base. d 4Å molecular sieves 
as additive. e 40 mol% base. f N1,8,8,8NTf2 (ionic liquid) as solvent. 

The results above give indicate that 1,3-propanediol can potentially be used as a green 

propylation agent. However, this type of transformation poses several difficulties in 

terms of selectivity and mechanism. We did not observe the initially expected 5-

hydroxy-1-phenyl-pentan-1-one 14 (Scheme 5.1). Instead, we could see the 

formation of 15a, together with transfer hydrogenation products 16 and 15b. In 

addition, the short chain coupling products 15c and 15d were also observed.  

We were interested in understanding how the observed products were formed. It 

seemed as if the first step, the dehydrogenation of 1,3-propanediol (1) to give 

hydroxypropanal (18), was the first reaction step in the formation of all products, but 

the fate of this intermediate differed depending on the final product (Schemes 5.2 

and 5.3).  

First we considered the formation of compounds 15a and 15b (Scheme 5.2). In order 

to produce these compounds, 3-hydroxypropanal (18) can either react with the 

enolate ion obtained from acetophenone (Route A), followed by dehydration to give 

19 and then hydrogenation of the formed dienone to give compound 15a and 

subsequently compound 15b after a reduction of the carbonyl group. Alternatively, 
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hydroxypropanal may undergo a base promoted dehydration to form acrolein (3), 

which can then react in a condensation reaction with the enolate ion to give 19 after 

dehydration (Route B), followed by hydrogenation to form 15a and 15b. Finally, 

acrolein can instead be directly reduced to propanal (20, Route C), which may then 

react through a condensation reaction with the enolate ion to give intermediate 21 

after dehydration. DFT calculations using the anion of acetone and 3-

hydroxypropanal as the model reactants revealed that although the reversible aldol 

addition should be considerably faster than elimination at the relatively high 

temperatures used here, elimination is irreversible and should therefore dominate at 

the actual reaction conditions. This, together with the fact that 22 was never detected, 

indicates that Route C is a more probable pathway to the final products. 

 

Scheme 5.2  Potential pathways to compounds 15a and 15b. 

The short-chain coupling products 15c and 15d are most likely formed through initial 

base promoted retro-aldol fragmentation of 3-hydroxypropanal (18), yielding 

acetaldehyde (23) and formaldehyde (24), which can both react in an aldol 

condensation with the enolate anion to give 15c and 15d (Scheme 5.3).  

Selective N-substitution on one side of 1,3-propanediol, with the other alcohol 

moiety retained, has been previously reported by Börner,98 as well as Marr.78 

Furthermore, substitution on both sides of 1,3-propanediol has also been carried out 

in good yields.73 The behaviour of 1,3-propanediol to act as a propylation agent has 

also been seen as a side reaction74, 76 or as the major pathway leading to the main 

product under optimised conditions.78  
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Scheme 5.3  Potential pathways to 15c and 15d. 

In the case of the enolate ion, it can be speculated that the reactivity of the enolate 

poses problems, as it is also a good enough base to efficiently promote E1cB 

elimination of 3-hydroxypropanal (18), instead of directly acting as a nucleophile, 

yielding acrolein that can react in one of the described pathways. It is also possible 

that the catalyst is involved in the transformation of 3-hydroxypropanal into acrolein 

and/or propanal. If so, the catalyst may be involved in the selectivity for the different 

products.   

In conclusion, we have shown that the alkylation of acetophenone with 1,3-

propanediol is a challenging transformation, as a number of competing processes can 

take place in parallel. While full selectivity could be obtained in some cases, the yields 

were not synthetically useful. These results do however suggest that catalyst 

development may be a possible way to gain better control of this transformation, 

even though it is clear that the search for such a catalyst will most likely not be 

straightforward. The selectivity obtained with catalyst 17 is also encouraging as this 

type of catalyst is compatible with directly coupling the alkylation process with 

fermentation of crude glycerol to 1,3-propanediol, indicating that glycerol could 

indirectly be employed as an alkylating agent.77  
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5.2  SYNTHESIS OF CHROMAN-4-ONES VIA HYDROGEN 
TRANSFER CATALYSIS 

Throughout the course of the work described in this chapter, we became interested 

in connecting the hydrogen borrowing reaction with other transformations. During 

discussions with colleagues in the medicinal chemistry field, working on the synthesis 

of chroman-4-one-based sirtuin 2 (SIRT2) selective inhibitors,100 it became clear to 

us that hydrogen transfer catalysis bears the potential to overcome certain issues in 

this area.  

More specifically, Luthman and co-workers have developed an efficient protocol for 

the synthesis of chroman-4-ones from 2´-hydroxyacetophenones and aldehydes via 

an aldol condensation forming a chalcone intermediate, that subsequently cyclises in 

an intramolecular oxa-Michael addition to give the final product (Scheme 5.4).100 

 

Scheme 5.4  Chromanone synthesis.100 

Although the substrate scope is wide, the variety of available aldehydes is limited, 

and for certain aldehydes the reaction suffers from low yields due to high degree of 

homo-aldol coupling. Furthermore, some of the aldehydes have to be synthesised 

from the corresponding alcohols and can be difficult to isolate.  

We envisioned that the use of a hydrogen transfer approach, allowing for the direct 

use of alcohols in the chroman-4-one synthesis, could solve several of these 

problems (Scheme 5.5). First of all, the scope of commercially available alcohols is 

much wider than the commercial scope of aldehydes. Moreover, a hydrogen transfer 

approach would lead to a low concentration of aldehyde present in the reaction 

mixture, minimising the formation of homo-aldol by-products. In addition, this new 

approach would eliminate the need of isolating sensitive aldehydes that are not 

commercially available. 
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Scheme 5.5  Proposed pathway to chroman-4-ones directly from alcohols. 

2’-Hydroxyacetophenone and 1-butanol were chosen as the model substrates and 

were allowed to react in the presence of different catalysts at 130-170 °C (Table 5.4). 

Two products were observed, the desired chromanone 25a and the alkylated 

acetophenone 25b that is formed as the result of a standard hydrogen borrowing 

reaction. First, [Ir(cod)Cl]2 was investigated with and without 1-dodecene, as the 

added hydrogen acceptor, and it was found that the product distribution was 

improved without the addition of 1-dodecene (entries 1-2). An increase in the 

reaction temperature from 130 °C to 150 °C resulted in slightly higher yields, but 

going up to 170 °C also resulted in increased formation of 25b (entries 2-4). 

[RuCl2(PPh3)3] afforded the highest selectivity for the hydrogen borrowing product 

25b (entry 5).  

Table 5.4  Investigation of reaction conditions for the chroman-4-one synthesis.a

 

Entry Catalyst Solvent Temp  Time Yield [%]b 

   [°C] [h] 25a 25b 

1c [Ir(cod)Cl]2/PPh3 toluene 130 76 8 17 

2 [Ir(cod)Cl]2/PPh3 toluene 130 76 9 11 

3 [Ir(cod)Cl]2/PPh3 p-xylene 150 90 15 19 

4 [Ir(cod)Cl]2/PPh3 mesitylene 170 90 18 27 

5 [RuCl2(PPh3)3] p-xylene 150 26 10 29 

6 17 p-xylene 150 22 19 - 

7 5 p-xylene 150 72 27 15 

8 26 p-xylene 150 72 18 14 
a Conditions: 2’-Hydroxyaectophenone (0.5 mmol), 1-butanol (0.9 mmol), catalyst (2mol%), LiOH (40 

mol%), and solvent (2 mL) stirred in a sealed Biotage® microwave-vial under argon for the indicated 

temperature and time. Products were isolated by column chromatography. bIsolated yield. c 1-Dodecene (1 

eq) added.  

Finally, three different iridium carbene catalysts were tested (Table 5.4 entries 6-8, 

and Figure 5.1). Interestingly, catalyst 17 was completely selective for the desired 

chromanone product, however this product was isolated in a low yield (entry 6). 
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Employing catalyst 5 (entry 7), resulted in the highest isolated yield of 25a, and in 

this case 25b was also isolated, while the last catalyst 26 was less successful, both in 

terms of selectivity and yields (entry 8).  

 

Figure 5.1  Iridium carbene catalysts. 

Although the reported yields remain low, these results have encouraged us to further 

investigate this type of transformation, and a few issues need to be addressed for the 

success of future efforts. First of all, the catalyst should be capable of releasing 

hydrogen as H2(g) after dehydrogenation of the alcohol, or should be able to leave 

hydrogen to a scavenger such as an alkene. Furthermore, in order to simplify this 

process, it would most likely be beneficial if the condensation occurred after 

decomplexation of the formed aldehyde, and that reduction of the intermediate 

chalcone would be slower or less favoured than the cyclisation. As in the case with 

the alkylation of acetophenone with 1,3-propanediol in the previous section, the 

nature of the catalyst is most likely very important for the product distribution and 

by careful catalyst design there is a chance that higher yields could be obtained.  

Both of these carbon–carbon bond forming reactions suffer from poor selectivity 

and/or low yields of the desired product. This illustrates the difficulties but also the 

possibilities of these types of transformations. If mastered, these reactions could be 

powerful and environmentally friendly tools for the formation of new molecules.  
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6. SYNTHESIS OF TRIAZOLE AMINO ACIDS VIA A RuAAC 
REACTION (PAPER III) 

Peptidomimetics are a class of compounds that mimic the function and structure of 

natural peptides, although their construction may differ considerably from the 

natural ones, adding features such as metabolic stability, or higher activity and 

selectivity.101 1,2,3-Triazoles, described in more detail in section 3.3, have received 

considerable attention in this area of research thanks to their geometric and 

electronic resemblance to the amide bond, in combination with their stability towards 

a range of conditions including enzymatic stability.102 Depending on the substitution 

pattern on the triazole, the geometry may resemble different types of amide bonds. 

The 1,5-disubstituted triazole has structural similarities with cis-amide bonds, while 

the 1,4-disubstituted triazole bears resemblance to a trans-amide bond.102  

Foldamers are polymers or oligomeric structures that in solution can adopt a well-

defined three-dimensional structure, or conformationally fold into an ordered state, 

in a similar fashion to how proteins fold.19-20 Peptidic foldamers can, for example, be 

constructed of different non-natural amino acids, and 1,2,3-triazoles have emerged 

as promising scaffolds for such compounds.103 Previous work in our group has 

considered the ruthenium-catalysed construction of monomeric triazole δ-amino 

acid derivatives and the structural investigations of these monomers, as well as the 

corresponding oligomerised foldameric structures.104 Similar 1,5-disubstituted 

triazole amino acid monomers have been synthesised for incorporation into proteins 

as cis-amide bond substitutes105 and as disulfide bond auxiliaries.106  

As a continuation to the previous work in our group on triazole δ-amino acids in 

foldameric structures,104 we were interested in investigating the effect of chiral groups 

on the three-dimensional structure of such compounds. We therefore decided to 

synthesise a set of new triazole monomers with different combinations of alanine 

derivatives. In the earlier studies, the commercially available unsubstituted azide and 

alkyne derivatives 27 and 28 were used to construct 1,5-triazole monomers (Figure 

6.1).104a We reasoned that if we combined these two monomers with the two 

enantiomers of the corresponding alanine-derived alkyne and azide 29 and 30, 

respectively, a set of four monochiral triazoles could be synthesised. Furthermore, 

29 and 30 could be combined with each other, yielding four stereoisomers of the 

disubstituted triazole monomer.  
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Figure 6.1  Azides and alkynes used for the triazole monomer synthesis. 

Initially, we attempted to synthesise the two enantiomers of alkyne 29 from the 

corresponding chiral amino alcohols via an oxidation reaction using Dess-Martin 

periodinane,107 followed by treatment of the intermediate aldehyde with the 

Bestmann-Ohira reagent108 to give the corresponding alkyne (Scheme 6.1). 

Unfortunately, this approach proved to cause extensive racemisation of the 

stereogenic centre, and we instead opted to purchase these substrates from a 

commercial source. The chiral azides 30 were synthesised using a diazo-transfer 

reaction to the primary amine of the alanine methyl ester.109  

 

Scheme 6.1  Attempted synthesis of chiral alkynes. 

With these compounds at hand, we started investigating their use in the RuAAC 

reaction. First, we had to find a catalyst that was suitable for coupling these building 

blocks without affecting the enantiomeric purity of the chiral moieties. Four different 

ruthenium catalysts were examined in the reaction between azide 27 and alkyne (S)-

29 (Table 6.1, entries 1-4). The two substrates were allowed to react in the presence 

of the ruthenium catalyst in THF under microwave irradiation for 20 minutes at 60-

80 °C and the generated product ((S)-31) was purified by flash chromatography or 

HPLC.  

The two most commonly used catalysts in this type of reaction, [Cp*RuCl(PPh3)3] 

and [Cp*RuCl(cod)], as well as [Cp*RuCl2]n gave moderate to good yields, while the 

tetramer [Cp*RuCl]4 was the only catalyst that performed poorly in terms of yield. 

The enantiomeric purity was to our delight not notably affected by any of the 

catalysts, although the use of [Cp*RuCl(cod)] maintained slightly higher enantiomeric 

purity in the product, possibly due to the lower temperature used in this case. We 

then decided to synthesise the different triazole monomers using either 

[Cp*RuCl(cod)] or [Cp*RuCl2]n.  
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Table 6.1  Catalyst evaluation for the RuAAC reaction.a 

 

Entry Catalyst Temp [°C] Yield [%]b ee [%]c 

1 [Cp*RuCl(PPh3)3] 80 42 97.7 

2 [Cp*RuCl(cod)] 60 73 98.4 

3 [Cp*RuCl]4 80 5 97.5 

4 [Cp*RuCl2]n 80 57 97.3 
a Conditions: Azide (0.4 mmol), alkyne (0.4 mmol), and ruthenium-catalyst (5 mol%) in THF (3 mL) heated 

under microwave irradiation at the given temperature for 20 mins. The product was purified by HPLC or 

flash chromatography. b Isolated yield. c Determined by chiral HPLC. 

First, the achiral azide was combined with the other enantiomer of the chiral alkyne 

(R)-29 using [Cp*RuCl2]n, resulting in a 52% yield of the triazole monomer (Table 

6.2, entry 2). Thereafter, N-Boc-propargylamine was combined with the two 

different enantiomers of the chiral azide 30 yielding monomers (S)-32 and (R)-32 in 

87% and 84% yield, respectively (entries 3-4). However, the enantiomeric excess (ee) 

for these two compounds had surprisingly dropped to 81.8% and 79.2%, 

respectively, showing that either the diazo-transfer reaction or the RuAAC reaction 

causes racemisation of this stereogenic center. This, however, still remains unclear as 

the unstable nature of the azides complicates the ee-investigation of these 

compounds, and further investigations of this matter are in progress. Finally, the two 

enantiomers of the chiral azide 30 were combined with the two enantiomers of the 

chiral alkyne 29 to give the four different stereoisomers of monomer 33 (entries 5-

8). Compounds (R,S)- and (R,S)-33 were obtained in higher yields than (R,R)- and 

(S,S)-33, possibly due to higher steric hindrance in the latter. In all cases, the 

regiochemistry could be confirmed by 2D NMR techniques such as 2D NOESY. 

The enantiomeric excess has not yet been determined for these compounds, and we 

will continue our structural investigations.  

However, theoretical conformational studies could still be carried out at this stage 

and these were based on earlier computations performed in our research group on 

achiral triazole monomers.104a The earlier published quantum mechanical calculations 

for the achiral monomers were adapted to the 8 current structures, considering the 

(R)- and (S)-conformers as enantiomer pairs (Table 6.2). For compounds (S)-31 and 

(R)-31, 7 and 9 low energy conformers were found, respectively. All of these 
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conformers could be part of low energy secondary structures, meaning that there are 

several folding possibilities for each monomer. For (S)-32 and (R)-32, there were 11 

and 6 stable conformers, respectively. For compounds 33, the number of stable 

monomer conformers was slightly lower, most likely as a result of the higher steric 

hindrance.  

Table 6.2  Chiral triazole monomers.a  

Entry Compound no. Structure Yield [%]b Number of stable conformers 

1 (S)-31 

 

73 7 

2 (R)-31 

 

52 9 

3 (S)-32 

 

87 11 

4 (R)-32 

 

84 6 

5 (S,S)-33 

 

68 5 

6 (R,R)-33 

 

67 3 

7 (S,R)-33 

 

79 7 

8 (R,S)-33 

 

78 

 

3 

a Conditions: Azide (0.4 mmol), alkyne (0.4 mmol), and ruthenium-catalyst (5 mol%) in THF (3 mL) heated 

under microwave irradiation at 60-80 °C for 20 mins and the product was purified by HPLC or flash 

chromatography. b Isolated yield.  

In conclusion, we have synthesised eight triazole δ-amino acids for further structural 

investigations. However, problems were encountered during the synthesis of these 

compounds and some of these issues still need to be solved. For example alternative 

methods to synthesise the azides that avoid racemisation could be considered. The 

computational conformational studies indicate that all monomers could be part of 

well-defined polymeric structures, and we plan to investigate these structures further.  
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7. SYNTHESIS OF 1,5-FUSED TRIAZOLE PIPERAZINES VIA 
A RuAAC–HYDROGEN BORROWING ROUTE (Paper IV) 

In the previous section, the RuAAC reaction was used to access non-natural 1,2,3-

triazole amino acids. Such amino acids bear a potential as building blocks for non-

natural peptides (for example as cis-amide bond isosters or in peptidic foldamers), or 

for the construction of other organic compounds. The spatial arrangement of the 

substituents on the 1- and the 5-positions of a 1,2,3-triazole also provides the 

possibility of forming fused triazole-containing compounds. Such fused triazoles 

occur in various types of biologically active compounds with for example 

anticancer110 and antiviral111 properties (Figure 7.1). Triazole-fused bicyclic scaffolds 

have earlier been synthesised using for example tandem,112 sequential,113 or multi-

component114 reactions.  

N

O

N
N

N

N
NH2

O

HO O
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N

O

N N

O

O

anticancer agent

 

Figure 7.1 Biologically active fused 1,2,3-triazoles.110-111 

When designing this project, we anticipated that fused triazoles could be constructed 

by first forming the 1,4,5-trisubsituted triazole scaffold via a RuAAC reaction 

involving an internal alkyne, and that the nature of the substituents in the 1- and 5-

positions would allow for a subsequent intramolecular hydrogen borrowing reaction, 

leading to the formation of the second ring. With this in mind, we reasoned that if 

an amino acid-derived azide such as compound 34 (Scheme 7.1) was reacted with a 

propargylic alcohol via a RuAAC reaction, the amine and the alcohol moiety would 

be positioned so that a hydrogen borrowing reaction between the two would lead to 

the formation of a 1,5-fused triazole piperazine with one substituent on the 

piperazine ring (Scheme 7.2, substituent R) and a second substituent in the 4-position 

of the triazole (R1). Moreover, as secondary alcohols are also applicable in the 

hydrogen borrowing reaction, a substituent could potentially be introduced adjacent 

to the alcohol (R2). 
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Scheme 7.1  Sequential RuAAC and hydrogen borrowing reactions yielding 1,5-fused 

triazole piperazines. 

We started our investigation by allowing commercially available proline-derived azide 

(S)-35 and 3-phenyl-2-propyn-1-ol 36a to react in a RuAAC reaction yielding triazole 

37a (Table 7.1). In a general reaction setup, the azide and the alkyne were stirred in 

equimolar amounts under argon in the presence of a ruthenium catalyst for 24-72 

hours, using conventional heating. The product was isolated using flash 

chromatography. Four different catalysts were examined (Table 7.1, entries 1-5), with 

[Cp*RuCl(cod)] giving the highest yield at the shortest reaction time (entries 4-5). 

The best results were obtained using toluene as the solvent at 40 °C. Increasing or 

decreasing the temperature did not improve the yield (entries 6-7).  

Table 7.1  Investigation of reaction conditions for the RuAAC reaction.a 

N
Boc

N3

HO

RuAAC
N N
N

OH

+

(S)-35 36a 37a

BocN

N N
N

OH

regioisomer 37aa

BocN

 

Entry Catalyst Solvent Temp. [°C] Time [h] Yield [%]b 37a 

1 [Cp*RuCl]4 toluene 40 62 9 

2 [Cp*RuCl2]n toluene 40 62 40 

3 [Cp*RuCl(PPh3)3] toluene 40 62 59 

4 [Cp*RuCl(cod)] toluene 40 48 85 

5c [Cp*RuCl(cod)] toluene 40 21 67 

6 [Cp*RuCl(cod)] toluene 50 23 56 

7 [Cp*RuCl(cod)] toluene 25 48 45 

8 [Cp*RuCl(cod)] THF 40 41 41 

9d [Cp*RuCl(cod)] CH2Cl2 25 24 51 
aConditions; Azide (0.4 mmol) and alkyne (0.4 mmol) were added to a mixture of ruthenium-catalyst in the 

solvent (5 mL). The mixture was stirred under argon at the stated reaction temperature for the indicated 

time. bIsolated yield. cReaction performed using (R)-35. d Regioisomer 37aa observed in higher yields 

(approx. 10%). 
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Changing the solvent to THF resulted in lower yields (entry 8), while the use of 

dichloromethane afforded acceptable amounts of the desired product, but in this 

case substantial amounts of the unwanted regioisomer 37aa was also formed (entry 

9). In most other cases, the undesired regioisomer was not seen or it was detected in 

trace amounts. We therefore decided to use [Cp*RuCl(cod)] on a slightly larger scale 

(0.6 mmol) in toluene at 40 °C for the triazole synthesis. This enabled the isolation 

of (R)-37a in 94% yield.  

We now planned to investigate internal alkynes with different substituents on the 

aromatic moiety. In order to do so, a series of alkynes were synthesised from 

propargylic alcohols and aryl halides employing a microwave-assisted Sonogashira 

reaction (Table 7.2).115 Under the influence of [Pd(PPh3)4] in combination with CuI, 

ten different internal propargylic alcohols were synthesised and isolated in low to 

excellent yields using these conditions. However, the 4-metyl substituted compound 

36f could only be obtained in trace amounts and therefore, an alternative procedure 

employing [PdCl2(PPh3)2] as the catalyst at ambient temperature was used instead, 

giving the desired product in excellent yield (entry 5).116 

With these alkynes at hand, we started investigating the scope of alkynes that could 

be used in the RuAAC reaction with azide (R)-35 (Figure 7.2). In cases where the 

alkyne was not soluble in toluene, dioxane was added as co-solvent. Functional 

groups such as methoxy, methyl ester, trifluoromethyl, acetyl, methyl, and even nitrile 

groups were unaffected and these substrates were obtained in good to excellent yields 

(compounds (R)-37b-37f, (R)-37i). Lower yields were obtained for heteroatom-

containing aromatic groups such as dioxole ((R)-37h), and pyrimidine ((R)-37k), as 

well as the ortho-methyl substituted compound (R)-37j. In the case of the dioxole 

and the pyrimidine group, the lower yields were partly due to purification issues, as 

these polar products were more difficult to separate from the catalyst. For the ortho-

substituted compound (R)-37j, we suspect poor coordination of the alkyne (36j) to 

the catalyst due to steric hindrance, resulting in a sluggish reaction. A secondary 

propargylic alcohol was also applicable, resulting in compound 37l. Both 

enantiomers of the azide were allowed to react with a racemic mixture of 4-phenyl-

3-butyn-2-ol (36l), in both cases resulting in a 1:1 mixture of the two diastereomers 

in very good yields. Aliphatic groups on the alkyne such as methyl alcohol and an 

ethyl group could also be used resulting in compounds (R)-37m and (R)-37n. 

Compound (R)-37n was isolated in a moderate yield, mostly due to problems with 



- 50 - 

 

the purification as a large portion of the desired compound co-eluated with what we 

suspect is the undesired regioisomer. 

Table 7.2  Songashira reaction for synthesis of internal alkynes.a 

 

Entry ArX R1 Product Yield [%]b 

1 
 

H 36b 
 

59 

2 
 

H 36c 

 

82 

3 
 

H 36d 
 

82 

4 
 

H 36e 

 

82 

5 c 
 

H 36f 
 

91 

6 
 

H 36g 
 

44 

7 
 

H 36h 
 

18 

8 
 

H 36i 
 

80 

9 
 

H 36j 

 

39 

10 
 

H 36k 
 

93 

11 
 

Me 36l 

 

43 

a Conditions: Aryl halide (2 mmol), CuI, and [Pd(PPh3)4] were added to a pre-dried 2-5 mL Biotage® 

microwave-vial that was sealed and the vial was purged with argon. Triethylamine (2 mL) and DMF (1mL) 

were added, followed by propargyl alcohol. The mixture was heated in a microwave reactor for 10 min at 

100 °C. b Isolated yield. c [PdCl2(PPh3)2] (5 mol%) was used as the catalyst and the reaction was stirred 

overnight at room temperature. 
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Figure 7.2  Synthesised triazoles. 

Somewhat surprisingly, terminal alkynes did not result in any considerable product 

formation. The azide was recovered in these cases, but the fate of the alkyne was less 

clear and it is possible that these alkynes were consumed by competing reactions 

such as cyclotrimerisation.117  

The model triazole (R)-37a was then deprotected and cyclised (Scheme 7.2). Boc-

removal was effected by treatment of the triazole with 3 M HCl in methanol, yielding 

the HCl-salt that was neutralised using aqueous NaOH or a polymer-bound 

carbonate base. Alternatively, TFA/CH2Cl2 could be used to provide the 

corresponding TFA-salt, but using the crude product after applying this deprotection 

method was associated with unwanted side reactions in the final hydrogen borrowing 

cyclisation reaction. The amino alcohol was then directly treated with [Ru(p-

cymene)Cl2]2 using DPEphos as the ligand. In order to obtain reproducible results, 

unusually high catalyst loadings were needed (5 mol%), in combination with 10 mol% 
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triethylamine. These conditions afforded the desired product in high yields (>90% 

calculated by 1H NMR). 

 

Scheme 7.2  Deprotection and cyclisation of (R)-37a. 

However, the final product (R)-38a (Scheme 7.2 and Figure 7.3) proved to 

coordinate well to the ruthenium catalyst, a property that has been previously 

reported118 and that resulted in purification issues. Standard flash chromatography 

was not powerful enough here and we therefore investigated the possibility to use an 

ion-exchange resin, a metal-scavenger resin or a combination of the above 

mentioned methods. However, using a sequence of these purification methods 

resulted in a relatively large loss of material. To circumvent this problem, we briefly 

investigated the use of [Cp*IrCl2]2 as the catalyst for the hydrogen borrowing 

reaction, in hope that our final compound would not bind as strongly to the iridium 

complex. Unfortunately, this catalyst did not afford acceptable yields of the final 

product. Instead, we found that purification of compound (R)-38a could be carried 

out by first applying the crude product on a pad of amine functionalised silica, which 

was then directly placed on top of a standard silica column and further purified using 

standard flash chromatography using a slow gradient of 0-60% ethyl acetate in 

petroleum ether, followed by 0-30% methanol in dichloromethane. This sequence 

afforded the pure fused triazole piperazine in 70% yield for (R)-38a and 58% yield 

for (S)-38a over two steps.  

We then further investigated this deprotection–hydrogen borrowing cyclisation 

sequence for the different triazole substrates (Figure 7.3). Five compounds ((R)-38b, 

(R)-38d, (R)-38e, and (R)-38f) could be isolated in yields comparable to the model 

compound. To our surprise, no reduction of the acetyl group in (R)-38e was 

observed, as seen in Paper II (section 5.1). Compound (R)-38g was produced in a 

lower yield possibly due to the presence of the chloride on the aryl group. It has been 

shown that aryl halides can react with ruthenium(II) complexes in an oxidative 

addition reaction,119 a process that could generate a number of different by-products 

as well as causing deactivation of the catalyst. Compound (R)-38j was then isolated 

in a moderate yield after the deprotection–cyclisation sequence. This could partly be 
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a result of the smaller scale, due to the low yield obtained of this substrate in the 

RuAAC reaction ((R)-37j, Figure 7.2). We are currently investigating the behaviour 

of the remaining triazoles in this final reaction sequence. 

 

Figure 7.3  1,5-Fused triazole piperazines. 

In conclusion, we have shown that it is possible to construct 1,5-fused triazole 

piperazines via sequential RuAAC–hydrogen borrowing route. This type of approach 

allows for the variation of substituents in at least three different positions of the 

scaffold. Furthermore, the appeal of such a transformation increases with the 

possibility of finding a catalyst that can mediate both of the ruthenium-catalysed 

reactions, enabling the fast and facile one-pot construction of complex fused 

molecules, from simple propargylic alcohols and amino acid-derived azides. We are 

currently investigating such an approach, as well as exploring a wider substrate scope 

for the deprotection-cyclisation sequence. It would also be of interest to evaluate a 

set of the obtained compounds for biological activities such as antimicrobial, antiviral 

or anti-proliferative properties, which have been seen for other triazole-containing 

structures.17 

  



- 54 - 

 

  



- 55 - 

 

8. CONCLUDING REMARKS AND FUTURE OUTLOOK 

This thesis describes the development of atom-economic and efficient chemistry 

adapted for the valorisation of renewable building blocks into more complex 

structures. Furthermore, seemingly simple transformations such as alkylation and 

amination reactions have been investigated for polyfunctionalised renewable starting 

materials.  

The first part of the thesis covered the upgrading of glycerol derivatives via hydrogen 

borrowing. The amination of solketal was high yielding, allowing for the isolation of 

tertiary and sterically demanding secondary amino glycerol derivatives. However, the 

use of less sterically hindered primary amines afforded no or only small amounts of 

products, partly due to competing homo-coupling of the primary amine substrates. 

The α-alkylation of acetophenone with 1,3-propanediol proved to be much more 

challenging. Although a mixture of products were obtained, more knowledge about 

these types of transformations was gained and chromanone scaffolds could be 

synthesised using this type of chemistry, albeit in low yields so far. Most likely, further 

catalyst development is needed in order to solve these problems.  

Future investigations within this part of the project could include amination of 1,3-

protected glycerol-derivatives to enable substitution on the secondary alcohol, as well 

as the development of methods for the further functionalisation of the obtained 

amino glycerol derivatives. For the α-alkylation reactions, catalyst development 

would be an important start for increasing the selectivity and yields of these reactions. 

Moreover, it would be of great interest to investigate the possibility of combining the 

use of 1,3-propanediol as an alkylation agent with the biocatalytic conversion of 

glycerol into 1,3-propanediol, i.e. employing glycerol indirectly as an alkylation 

agent.77, 79 Furthermore, recent advances in double α-alkylation of ketones are 

encouraging for further functionalisation of the obtained glycerol functionalised 

substrates, as well as for introducing substituents on the position α to the carbonyl-

group of chromanones. It would also be interesting to investigate the possibility of 

using catalysts based on more abundant metals such as iron or cobalt.  

The RuAAC reaction has proven to be a powerful tool in the construction of triazole 

δ-amino acids from natural amino acids, but the introduction of chiral moieties was 

not as straightforward as anticipated, mainly due to the lack of reliable methods for 

the synthesis of the necessary enantiopure alkyne and azide building blocks. Thus, 

the development of such methods would be of great value for future use of the 



- 56 - 

 

RuAAC reaction in this context. Moreover, it would be interesting to synthesise one 

or several oligomers of the obtained monomers in order to study their behaviour as 

possible foldamers. 

The RuAAC reaction could be successfully employed in the formation of a large set 

of triazoles, designed for a subsequent hydrogen borrowing cyclisation reaction 

resulting in the formation of 1,5-fused triazole piperazines. The presented results 

show that this is a viable method for the construction of such scaffolds. To the best 

of our knowledge, it is the first example of triazole substrates in the hydrogen 

borrowing reaction, showing how the combination of RuAAC and hydrogen 

borrowing reactions could be used as a powerful tool in the fast and atom economic 

formation of complex heterocyclic structures.  

For this final part of the project, it would be of great interest to investigate the 

possibility of finding a catalyst that can mediate both the RuAAC and the hydrogen 

borrowing reaction. This would allow for a one-pot approach to this sequence. 

Furthermore, the use of for example a homopropargylic alcohol would allow for 

forming a seven-membered 1,5-fused ring. The azide coupling partner could also be 

varied in a similar manner by changing the chain length or substituent pattern, 

allowing for the formation of new structurally related compounds. The evaluation of 

the final compounds as well as the intermediate triazoles, against for example 

antiviral or anticancer targets, alternatively for their use as catalysts and ligands in 

other reactions would also be of interest. 
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APPENDIX  
General procedure for the synthesis of 25a and 25b (Section 5.2). 

 

To a 2-5 mL Biotage® microwave-vial were added catalyst 5 (0.01 mmol, 5.7 mg) 

and LiOH·H2O (0.2 mmol, 16.8 mg) followed by 2’-hydroxyacetophenone (0.5 

mmol, 60 µL) and 1-butanol (0.5 mmol, 46 µL). The vial was capped and purged with 

argon. p-Xylene (2 ml) was then added and the mixture was stirred at 150 °C for 72 

h. The crude reaction mixture was cooled to room temperature and filtered through 

a pad of neutral activated aluminium oxide. The solvent was removed under reduced 

pressure and the product was isolated using flash chromatography on silica gel, 

eluting with 0-40% ethyl acetate in petroleum ether yielding the desired chromanone 

as a brown oil (26 mg, 27%). Known compound, analytical data were in accordance 

with published data. δH NMR (400 MHz, CDCl3) 0.99 (t, J = 7.3 Hz, 3H), 1.42-1.74 

(m, 4H), 1.88 (dddd, J = 5.1, 7.5, 9.6, 13.3 Hz, 1H), 2.66-2.71 (m, 2H), 4.42-4.49 (m, 

1H), 6.94-7.03 (m, 2H), 7.47 (ddd, J = 1.8, 7.2, 8.3 Hz, 1H), 7.87 (ddd, J = 0.5, 1.8, 

7.8 Hz, 1H); δC NMR (100 MHz, CDCl3) 14.0, 18.3, 37.2, 43.2, 77.8, 118.1, 121.2, 

121.3, 127.1, 136.1, 161.8, 192.9.120  

The alkylation product was isolated as a brown oil (14 mg, 15%). Known compound, 

analytical data were in accordance with published data. δH NMR (400 MHz, CDCl3) 

0.89-0.95 (m, 3H), 1.32-.143 (m, 4H), 1.70-1.80 (m, 2H), 2.98 (t, J = 7.5 Hz, 3H), 

6.87-6.92 (m, 1H), 6.96-7.00 (m, 1H), 7.42-7.49 (m, 1H), 7.74-7.79 (dd, J = 1.6, 8.0 

Hz, 1H), 12.41 (s, 1H); δC NMR (100 MHz, CDCl3) 13.9, 22.5, 24.1, 31.4, 38.2, 118.4, 

118.8, 119.3, 130.0, 136.1, 162.5, 206.8.121  

 


