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Finite-Blocklength Bounds on the Maximum
Coding Rate of Rician Fading Channels with
Applications to Pilot-Assisted Transmission

Johan Ostman, Giuseppe Durisi, and Erik G. Strom
Dept. of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

Abstract—We present nonasymptotic bounds on the maximum
coding rate achievable over a Rician block-fading channel for
a fixed packet size and a fixed packet error probability. Our
bounds, which apply to the scenario where no a priori channel
state information is available at the receiver, allow one to quantify
the tradeoff between the rate gains resulting from the exploitation
of time-frequency diversity and the rate loss resulting from fast
channel variations and pilot-symbol overhead.

I. INTRODUCTION

To enable future autonomous systems such as connected
vehicles, automated factories, and smart grids, next-generation
wireless communication systems must be able to support the
sporadic transmission of short data packets within stringent
latency and reliability constraints [1], [2]. Classic information-
theoretic performance metrics such as ergodic and outage
capacity, provide inaccurate benchmarks to the performance
of short-packet coding schemes, because of their asymptotic
nature [2], [3]. In particular, these performance metrics are
unable to capture the tension between the throughput gains in
the transmission over wireless fading channels attainable by
exploiting channel diversity and the throughput losses caused
by the insertion of pilot symbols, which are needed to estimate
the wireless fading channel (pilot overhead).

In this paper, we provide a characterization of the tradeoff
between latency, reliability, and throughput in the transmission
of short packets over point-to-point Rician block-fading chan-
nels. Our analysis explicitly accounts for the pilot overhead.

Relevant prior art: The fundamental quantity of interest
in short-packet communications is the maximum coding rate
R*(n,€), which is the largest rate achievable by any channel
code having blocklength n and packet error probability no
larger than e. Note that the classic Shannon capacity can be
obtained from R*(n, ¢) by taking the limit n — oo and € — 0.

No closed-form expressions for R*(n,e) are available
for the channel models of interest in wireless communica-
tion systems. However, tight numerically computable bounds
on R*(n,e) have been recently obtained for a variety of
channels; such bounds rely on the nonasymptotic tools re-
cently developed by Polyanskiy, Poor, and Verdi [4]. We next
summarize the available results, starting with the nonfading
complex AWGN channel. For this channel, tight upper (con-
verse) and lower (achievability) bounds on R*(n,¢) based
on cone packing were obtained by Shannon [5]. Polyanskiy,
Poor, and Verdu [4] showed recently that Shannon’s converse

bound is a special case of the so-called min-max converse [4,
Th. 27], [6], a general converse bound that involves a bi-
nary hypothesis test between the channel law and a suitably
chosen auxiliary distribution. Furthermore, they obtained an
alternative achievability bound—the x/3-bound [7, Th. 25]—
also based on binary hypothesis testing. This bound, although
less tight than Shannon’s achievability bound, is easier to
evaluate numerically and to analyze asymptotically. Indeed,
Shannon’s achievability bound relies on the transmission of
codewords that are uniformly distributed on the surface of
an n — l-dimensional complex hypersphere in C™ (ak.a.,
spherical or shell codes), which makes the induced output
distribution unwieldy. Min-max and x8 bounds solve this
problem by replacing this output distribution by a product
Gaussian distribution.

Analyzing the min-max converse and the k0 bound in the
asymptotic regime of large blocklength n, Polyanskiy, Poor,
and Verdu established the following asymptotic expansion for
R*(n,€) (see [4] and also the refinement in [8]):

R*(n,e) =C —Vn='VQ '(e) + O(n 'logn). (1)

Here, C' = log(1+p), where p denotes the SNR, is the channel
capacity, V = p(2 + p)/(1 + p)? is the so-called channel
dispersion, Q(+) is the Gaussian () function, and O(n~! logn)
comprises reminder terms of order n~! logn.

We next move to the fading case and focus on the setup
where no a priori channel-state information (CSI) about the
fading channel is available at transmitter and receiver. The
assumption of no a priori CSI at the receiver is of particular
relevance for short-packet transmission because information-
theoretic analyses conducted under this assumption account
automatically for the “cost” of acquiring CSI [9]-[11]. Bounds
on R* for generic quasi-static multiple-antenna fading chan-
nels were reported in [12]. Using these bounds, the authors
showed that under mild condition on the fading distribution,
the channel dispersion (i.e., the term V in (1)) is zero. This
means that the asymptotic limit (in this case the outage capac-
ity) is approached much faster in n than in the AWGN case.
This is because the main source of error in quasi-static fading
channels is the occurrence of “deep fades”; channel codes
cannot mitigate them. The achievability bound in [12] relies
on a modified version of the x3 bound, where the decoder
computes the angle between the received signal and each one
of the codewords. The converse bound relies on the min-max
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converse. The analysis in [12] was later partly generalized
in [3] to fading channels offering time-frequency diversity.
Specifically, the authors of [3] focused on a multi-antenna
Rayleigh block-fading model where coding is performed across
a fixed number of coherence blocks. Their converse bound
relies again on the min-max converse, whereas the achiev-
ability bound relies on the so-called dependency-testing (DT)
bound [4, Th. 17]. The input distribution used in the DT bound
is the one induced by unitary space-time modulation (USTM),
where the matrices describing the signal transmitted within
each coherence block are (after a normalization) uniformly
distributed on the set of unitary matrices. This distribution,
which achieves capacity at high SNR [10], [13], coincides
with the one induced by shell codes in the single-input single-
output (SISO) case. The auxiliary distribution used in the min-
max converse is the one induced by USTM. Unfortunately,
this distribution is unwieldy. As a consequence, no asymptotic
expansions for R* similar to (1) are available.

Contributions: We provide upper and lower bounds on
R* for SISO Rician block-fading channels under the assump-
tion of no a priori CSI. Similar to [3], our bounds rely on the
min-max converse and the DT bound, and on the transmission
of shell codes. The bounds recover the ones obtained in [3]
for the Rayleigh fading when the Rician factor « is set to 0,
and agree with the normal approximation (1) when x — oo.

We also provide an extension of our achievability bound
to the case when pilot symbols are used to estimate the
channel at the decoder. Our analysis provides a nonasymptotic
perspective on the pilot-assisted transmission problem, which
has been addressed so far only in the asymptotic regime of
large packet size (see, e.g., [14]-[16]).

Notation: Uppercase letters such as X and X are used to
denote scalar random variables and vectors, respectively, and
the realizations are written in lowercase, e.g.,  and x. The
identity matrix of size a x a is written as |,. The distribution
of a circularly-symmetric complex Gaussian random variable
with variance o2 is denoted by CA/ (0, 02). The superscript ©
denotes transposition, H Hermitian transposition, and © the
Schur product. Furthermore, 0,, and 1,, stand for the all-
zero and all-one vectors of size n, respectively. Finally, log(-)
indicates the natural logarithm, [a]t stands for max{0,a},
T'(-) denotes the Gamma function, I, (z) the modified Bessel
function of the first kind, |-|| the [?-norm, and E[] the
expectation operator.

II. SYSTEM MODEL

We consider a single-input single-output Rician block-
fading channel. Specifically, the random non-line-of-sight
(NLOS) component is assumed to stay constant for n. suc-
cessive channel uses (which form one coherence block) and
to change independently across coherence blocks. Coding is
performed across ¢ such blocks; we shall refer to ¢ as the
number of time-frequency diversity branches. The duration
of each codeword (packet size) is, hence, n = ncf. The
LOS component, which is assumed to be known at the
receiver, stays constant over the duration of the entire packet

(codeword). No a priori knowledge of the NLOS component
is available at the receiver, in accordance to the no-CSI
assumption. Mathematically, the channel input-output relation
can be expressed as

Y., =Hxp + Wi, k=1,... 0 2)

Here, x; € C", Yy € C" are vectors containing the
transmitted and received symbols within block &, respectively,
and Hj, ~ CN (uu, of) is the Rician-fading coefficient. Here,
pn = /k/(1+k) and 04 = (1 + k)~! where & is the
Rician factor. Finally, the vector W, ~ CN(0, l,,.) models
the AWGN process. The random variables { Hj} and {W}},
which are mutually independent, are also independent over k.

We next define a channel code.

Definition 1: An (¢,n., M, e, p)-code for the channel (2)
consists of

e An encoder f : {1,...,M} — C" that maps the
message J € {l,...,M} to a codeword in the set
{c1,...,car}. Since each codeword ¢,,,, m =1..., M,
spans ¢ blocks, it is convenient to express it as a concate-
nation of ¢ subcodewords of dimension 7,

- Cme) - 3)

We require that each subcodeword satisfies the average-
power constraint

Cm = [Cm,lv .-

| 2

lem il =nep, k=1,...,¢L 4)

Since the noise has unit variance, we can think of p as
the SNR.

o A decoder g : C™* — {1,..., M} satisfying an average
error probability constraint

M
1 .
MZPr{g(W);&JU:]}ge (5)
j=1
where Y* = [Y3,...,Y,] is the channel output induced

by the codeword x* = [x1,...,x¢] = f(j).
For given ¢ and n., €, and p, the maximum coding rate R*,
measured in information bits per channel use, is defined as

follows:

1 M
R* & sup{Og;TE) :3(l,ne, M, €, p) —code} . (6)

III. FINITE-BLOCKLENGTH BOUNDS ON R*
A. An Auxiliary Lemma

We next present our achievability and converse bounds on
R* in (6). The achievability bound relies on the DT bound [4,
Th. 17] and on the transmission of independent shell codes
over each coherence block. This achievability bound does not
require the explicit estimation of the fading coefficients; rather,
it relies on a noncoherent transmission technique in which the
message is encoded in the direction of each vector x;, in (2)-a
quantity that is not affected by the fading process. The case of
explicit channel estimation through pilot-assisted transmission
will be treated in Section III-D.



Our converse bound relies on the min-max converse [4,
Th. 27], with auxiliary distribution chosen as the one induced
on {Y}} by the transmission of independent shell codes over
each coherence block. We start by providing in the next lemma
the output distribution induced by a shell code of length n..
Its proof is omitted for space constraints.

Lemma 1: Let X € C" be uniformly distributed on the
(ne — 1)—dimensional complex hypersphere of radius /pnc
and let H ~ CN(/J,,O’z). Furthermore, let Y = HX + W
where W is defined as in (2). The probability density function
(pdf) of Y is given by

RS (VIvTPoncz)
X 10(2\/z|u| /04) mfl( ||y|\2pncz) dz. (7)

B. A Noncoherent Lower Bound on R*

ne—1

We are now ready to state our lower bound on R*.
Theorem 1 (DT lower bound): R* in (6) is lower-bounded
as

logy (M)

R* > max{ncg Deap(M) < e} (8)

1)]+ ©)

where

4 M —
eun(M) = E | exp —lZSk—log<
k=1

with

‘ 2
— W |? -

2351
Sy = | 5
on

log(ofl (J%Incp + 1))

e—(pnc—&-oﬁz)z

— 1og/ |
B (\/ v“wpncz)
< 1o (22l ) s (2 Wiz ) .- 10

Here, W}, is defined as in (2) and

—~ 2
W, = HHA/ TP + ognep + 1 © Wy
Onc—l ]—nc—l

Proof: The proof follow steps similar to the ones re-
ported in [3, App. A]. Specifically, we let X} = /ncpUy
where { Uk}f;:l are independent and isotropically distributed
unitary vectors. It follows from Lemma 1 that the vectors
Y, = /ncpUpHy, + Wy, k € {1,...,/}, are independent
and fy -distributed.

The block-memoryless assumption implies that the infor-
mation density [4, Eq. (4)] can be decomposed as

Y

£ £

u
ZZ ks i) Zlog fyv(yr|uk)
k=1

12
2 Fem P

where

fY | U=u;, — CN(MH\/ Nepug, U%Incpuku]gH + Inc)

and fy is given in (7). One can also verify that for every
Ne X N unitary matrix V,

13)

fyu(ye Vo) = fy u(Vye | ug) (14)

and

fy (Vyr) = fy(yx) -

This implies that i(ug;Y:) does not depend on u; when
Y. ~ fy. Hence, we can set without loss of generality
u, = [1,0,... ,O]T, k=1,...,£. One can finally show that,
when Yy ~ fy |y—u,. the information density i(ug;Y%) has
the same distribution as the random variable Sy in (10). The
proof is concluded by invoking the DT bound [4, Th. 17]. &

(15)

C. An Upper Bound on R*

We next state our converse bound.
Theorem 2 (Min-max converse bound): R* in (6) is upper-
bounded as

R* < inf
A>0 In,

¢ +
/\—loglPr{ZSkg)\}—el (16)

k=1

where the {5} are defined in (10).
Proof: We use as auxiliary channel in the min-max
converse [4, Th. 27], the one for which ye has pdf

[
ave(y") = ] fv(yx) (17)
k=1
where fy is given in (7). For this choice, it follows from (10),
(14), and (15) that the Neyman-Pearson function B(xe, qye)
defined in [4, Eq. (105)] is independent of x!. Hence, we can
use [4, Th. 28] to conclude that R* is upper-bounded as
1

Bi- e( é,qw).

Without loss of generality, we shall set x; = [\/nep,0...,0],

R*

(18)

k=1,...,L It follows by the Neyman-Pearson lemma [17]
that
Bioe(x aye) = Pri{r(x5Y") 29}, Y'~gye (19)
where + is the solution to
Pr{r(xz; YZ) < ’y} =¢, Y~ Jye xe (20)
and
0.t : . fy 1 x (Y| xx)
r(xby) = r(xeiye) Z A RCY)
k=1 k=

Finally, we obtain (16) by relaxing (18) using [4, Eq.
(106)] (which yields a generalized Verdi-Han converse bound,
cf. [18]) and by exploiting that when Y}, ~ fy|x—x, the
random variable r(xy; Y}) is distributed as Sy in (10). |



Remark: The achievability and converse bounds reported
in Theorem 1 and 2 coincide with the bounds obtained in [3]
for the Rayleigh-fading case if one sets x = 0 and replaces
the maximum probability of error constraint used in [3] with
the average probability of error constraint (5).

D. A Pilot-Assisted Lower Bound on R*

We next present a lower bound on R* for the case in which
pilot symbols are transmitted to enable the decoder to perform
channel estimation. Specifically, we assume that within each
coherence block, n;, out of the available n, channel uses are
reserved for pilot symbols. The remaining ng = n¢ — ny
channel uses are left for data symbols. We further assume that
all pilot symbols are transmitted at power p, and that each data
symbol vector xéd) € CM, k =1,...,¢ satisfies the power
constraint Hx,(cd) | = nqp so that (4) holds.

The receiver uses the n,, pilot symbols per coherence block
to perform a maximum likelihood estimate of the fading
coefficient within the coherence block. Specifically, given
H. = hyg, the receiver obtains the estimate Hj, ~ CN (hk, org)
where 02 = (npp)~'. This implies that, given the channel
estimates {ﬁk = /ﬁk}, k = 1,...,¢ (which are available at
the receiver), we can express the input-output relation for the

data symbols in the following equivalent form:
Y. =Zixp + Wy, k=1,... ¢ (22)

Here, all vectors belong now to C"¢ and the random variable
Zy is CN' (up(hk), o—g)-distributed with

27 2 2 2

~ oihr + o5 9 o0,
hy) =2 - —e7= 52— _Hoe | 23
o (h) o3 + o2 P ok +02 (23)

We see from (22) that we can account for the availability
of the noisy CSI {Hy = hy} simply by transforming the
Rician fading channel (2) into the equivalent Rician fading
channel (22), whose LOS component isA a random variable
that depends on the channel estimates {Hj}. A lower bound
on R* for this setup can be readily obtained by assuming that
each nq dimensional data vector is generated independently
from a shell code, by applying Theorem 1 to each realization
of {H}, and then by averaging over {Hy}. The resulting
bound is given in Theorem 3 below.

Theorem 3 (Pilot-assisted DT lower bound): Assume that
np, pilots per coherence interval are used to estimate the fading
coefficients. Then R* in (6) is lower-bounded as

R* > max{bgi(éw) celme) (M) < e} (24)
where
(M) =
‘ M-\
E |exp —[Zsk(Hk)—log< 5 )] (25)
k=1

Note that the expectation in (25) is computed also with
respect to the channel estimates {Hy}; the random variables

{S,(Hg)} are defined similarly as in (10) with the difference
that nc, i and o in (10) are replaced by nq, pu,(Hy) and
o2, respectively.

Remark: For the case n, = 0, the pilot-based achievabil-
ity bound in Theorem 3 coincides with the noncoherent bound
given in Theorem 1.

IV. NUMERICAL RESULTS
A. Dependency of R* on the Rician Factor Kk

In Fig. 1, we plot the bounds on R* given in Theorem 1
and 2 for different values of the Rician factor x. We assume a
blocklength of n = 168 channel uses; furthermore, ¢ = 103
and p = 6dB. The bounds are depicted as a function of the
number of time-frequency diversity branches ¢ or, equivalently,
the size of each coherence block n.. We see from Fig. 1
that there exists an optimal number of diversity branches that
maximizes R*. When /¢ is too low, the performance bottleneck
is the limited diversity available. When ¢ is too high, the
limiting factor is instead the fast variation of the channel. We
note also that R* increases with x and it becomes less sensitive
to ¢ as « grows. This is expected since when k — oo the
Rician channel becomes an AWGN channel. Indeed, we see
that the bounds obtained for the case x = 10° are in good
agreement with the normal approximation (1).

Size of coherence block n.

84 42 24 12 8 6 4 2
T T T

Notmal Approﬁljnalion

Bit/channel use

2 4 7 14 21 28 42 84
Number of time-frequency diversity branches ¢ (log scale)

Fig. 1. Achievability (red) and converse (blue) bounds on R* from
Theorem 1 and 2, respectively. Here, = = {0, 1, 10, 100, 1000}, n = 168,
€e=10"3, and p = 6 dB.

B. Pilot-Assisted Transmission

In Fig. 2, we compare the pilot-assisted-transmission achiev-
ability bound given in Theorem 3 with n, € {0,1,2,4,6,8},
with the converse bound given in Theorem 2. We assume
k = 0. The other parameters are set as in Fig. 1. We can see
from Fig. 2 that using one pilot yields similar performance
as using the noncoherent shell-code scheme in Theorem 1.
Transmitting more than one pilot turns out to be detrimental
when the size of the coherence block decreases. Indeed, the



improvement in the channel estimate is outweighed by the rate
loss caused by pilot insertion. As shown in Fig. 3 for the case
x = 10, the negative effect of pilot overhead becomes more
significant when « is large.

Size of coherence block n.
24 12 8 6 4 2

84 42

0.8

0.6

0.4

Bit/channel use

q np =8

- - - >eu e )
2 4 7 14 21 28 42 84
Number of time-frequency diversity branches £ (log scale)

Fig. 2. Comparison between the converse bound (blue) given in Theorem 2
and the achievability bound with pilot-assisted transmission given in Theo-
rem 3 for the case when n, = {0,1,2,4,6,8} pilot symbols are inserted
within each coherence block. Here, k = 0, n = 168, ¢ = 1073 and
p =6 dB.

Size of coherence block n.
84 42 24 12 8 6 4 2

2
=
o)
=
g
=
o
=
)
np =8
0 - - - oo *«——e »
2 4 7 14 21 28 42 84
Number of time-frequency diversity branches £ (log scale)
Fig. 3. Comparison between the converse bound (blue) given in Theorem 2

and the achievability bound with pilot-assisted transmission given in Theo-
rem 3 for the case when np, = {0,1,2,4, 6,8} pilot symbols are inserted
within each coherence block. Here, x = 10, n = 168, ¢ = 1073 and
p =06 dB.

C. Conclusion

We presented finite-blocklength bounds on the maximum
coding rate achievable over Rician block-fading channels for
the case when no a priori CSI is available. Our bounds
allow one to estimate the optimal number of time-frequency

branches over which one should code across. This value trades
optimally the rate gains resulting from time-frequency diver-
sity against the rate loss resulting from fast channel variations.
We also obtained an achievability bound for the case of pilot-
assisted transmission, which allow one to optimize the number
of pilot symbols to be transmitted within each coherence
block. Our results indicate that pilot-assisted transmission
results in a significant rate loss when the coherence block
is short and when the Rician factor « is large. In these
situations, noncoherent transmission schemes are preferable.
A comparison between our bounds and the performance of
actual coding schemes, along the lines of what we recently
reported in [19], is left for future work.

REFERENCES

[1] METIS project, Deliverable D1.1, “Scenarios, requirements and KPIs
for 5G mobile and wireless system,” Tech. Rep., Apr. 2013.

[2] G. Durisi, T. Koch, and P. Popovski, “Towards massive, ultra-reliable,
and low-latency wireless communication with short packets,” Proc.
IEEE, vol. 104, no. 9, pp. 1711-1726, Sep. 2016.

[3]1 G. Durisi, T. Koch, J. Ostman, Y. Polyanskiy, and W. Yang, “Short-
packet communications over multiple-antenna Rayleigh-fading chan-
nels,” IEEE Trans. Commun., vol. 64, no. 2, pp. 618-629, Feb. 2016.

[4] Y. Polyanskiy, H. V. Poor, and S. Verdd, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307-2359, May 2010.

[5] C. E. Shannon, “Probability of error for optimal codes in a Gaussian
channel,” Bell Syst. Tech. J., vol. 38, pp. 611-656, 1959.

[6] Y. Polyanskiy, “Saddle point in the minimax converse for channel
coding,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 2576-2595, Jul.
2013.

[71 ——, “Channel coding: non-asymptotic fundamental limits,” Ph.D.
dissertation, Princeton University, Princeton, NJ, Nov. 2010.

[8] V. Y. F. Tan and M. Tomamichel, “The third-order term in the normal
approximation for the AWGN channel,” IEEE Trans. Inf. Theory, vol. 61,
no. 5, pp. 2430-2438, May 2015.

[9]1 A. Lapidoth, “On the asymptotic capacity of stationary Gaussian fading

channels,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 437-446, Feb.

2005.

W. Yang, G. Durisi, and E. Riegler, “On the capacity of large-MIMO

block-fading channels,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp.

117-132, Feb. 2013.

R. Devassy, G. Durisi, J. Ostman, W. Yang, T. Eftimov, and Z. Utkovski,

“Finite-SNR bounds on the sum-rate capacity of Rayleigh block-fading

multiple-access channels with no a priori CSI,” IEEE Trans. Commun.,

vol. 63, no. 10, pp. 3621-3632, Oct. 2015.

W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, “Quasi-static multiple-

antenna fading channels at finite blocklength,” IEEE Trans. Inf. Theory,

vol. 60, no. 7, pp. 4232-4265, Jul. 2014.

L. Zheng and D. N. C. Tse, “Communication on the Grassmann

manifold: A geometric approach to the noncoherent multiple-antenna

channel,” IEEE Trans. Inf. Theory, vol. 48, no. 2, pp. 359-383, Feb.

2002.

B. Hassibi and B. M. Hochwald, “How much training is needed in

multiple-antenna wireless links?” IEEE Trans. Inf. Theory, vol. 49, no. 4,

pp. 951-963, Apr. 2003.

L. Tong, B. M. Sadler, and M. Dong, “Pilot-assisted wireless transmis-

sions,” IEEE Signal Process. Mag., vol. 21, no. 6, pp. 12-25, Nov. 2004.

N. Jindal, A. Lozano, and T. Marzetta, “What is the value of joint

processing of pilots and data in block-fading channels?” in Proc. IEEE

Int. Symp. Inf. Theory (ISIT), Seoul, Korea, Jun. 2009, pp. 2189-2193.

J. Neyman and E. S. Pearson, “On the problem of the most efficient

tests of statistical hypotheses,” Phil. Trans. R. Soc. Lond., Jan. 1933.

S. Verdid and T. S. Han, “A general formula for channel capacity,” IEEE

Trans. Inf. Theory, vol. 40, no. 4, pp. 1147-1157, Jul. 1994.

1. Ostman, G. Durisi, E. G. Strom, J. Li, H. Sahlin, and G. Liva, “Low-

latency ultra-reliable 5G communications: finite block-length bounds

and coding schemes,” in Int. ITG Conf. Sys. Commun. Coding (SCC),

Hamburg, Germany, Feb. 2017.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]



