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Abstract
The colored de Bruijn graph – a variant of the de Bruijn graph which associates each edge (i.e.,
k-mer) with some set of colors – is an increasingly important combinatorial structure in com-
putational biology. Iqbal et al. demonstrated the utility of this structure for representing and
assembling a collection (population) of genomes, and showed how it can be used to accurately
detect genetic variants. Muggli et al. introduced VARI, a representation of the colored de Bruijn
graph that adopts the BOSS representation for the de Bruijn graph topology and achieves con-
siderable savings in space over Cortex, albeit with some sacrifice in speed. The memory-efficient
representation of VARI allows the colored de Bruijn graph to be constructed and analyzed for
large datasets, beyond what is possible with Cortex.

In this paper, we introduce Rainbowfish, a succinct representation of the color information of
the colored de Bruijn graph that reduces the space usage even further. Our representation also
uses BOSS to represent the de Bruijn graph, but decomposes the color sets based on an equi-
valence relation and exploits the inherent skewness in the distribution of these color sets. The
Rainbowfish representation is compressed based on the 0th-order entropy of the color sets, which
can lead to a significant reduction in the space required to store the relevant information for each
edge. In practice, Rainbowfish achieves up to a 20× improvement in space over VARI. Rainbow-
fish is written in C++11 and is available at https://github.com/COMBINE-lab/rainbowfish.
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1 Introduction and Related Work

This paper proposes a new representation of the colored de Bruijn graph. The colored de
Bruijn graph is a variant of the de Bruijn graph where each edge (i.e., k-mer) is associated
with some set of colors. Here, each color is used to encode the source of the corresponding
k-mers (e.g., different source genomes, transcriptomes, sequenced samples, etc.). From this
perspective, it is a flexible and powerful combinatorial structure for representing a collection
of sequences while maintaining the identity of each. This structure gained popularity in the
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work of Iqbal et al. [12], which demonstrated the utility of the colored de Bruijn graph for
representing and assembling a collection (population) of genomes, and for detecting both
simple and complex genetic variants with high accuracy. Analysis of the colored de Bruijn
graph exhibits particular promise for analyzing complex population-level variation, since
topological structures (e.g., bubbles) can be associated with variation in the underlying
sub-populations. The representation adopted by Iqbal, as implemented in the tool Cortex,
is optimized for speed, and so requires a considerable amount of memory to represent both
the topology of the de Bruijn graph and the colors associated with each edge.

The memory usage of the colored de Bruijn graph representation adopted in Cortex
precludes this approach from being adopted when the underlying genomes and color sets
become too large. In order to overcome such limitations, Muggli et al. [16] introduced
the VARI representation of the colored de Bruijn graph. This approach sacrifices some
of the speed of the Cortex representation for a considerable reduction in the required
space. VARI achieves this space savings in two ways. First, rather than using a hash-table-
based representation of the de Bruijn graph topology, it adopts the highly-efficient BOSS
representation. The BOSS [1] representation (named based on the initials of the authors)
makes use of the FM index [7] to encode the topology of the de Bruijn graph. BOSS uses
4N + o(N) bits to represent a de Bruijn graph with N edges (empirically, this often works
out to be as few as 4-6 bits per edge).

VARI couples the BOSS representation of the de Bruijn graph topology with a compressed
representation of the color information. By its nature, BOSS assigns to every de Bruijn
graph edge a distinct rank in the range [0, N). So, VARI represents the color information
as a N × C bit matrix where C is the number of input colors. Conceptually, each of the
N rows of this matrix is simply a bit vector that encodes which of the C colors label the
corresponding edge. To reduce the space required to store this color information, VARI
concatenates these rows into a single vector over N × C coordinates and stores them in an
Elias-Fano [5, 6] encoded bit vector, allowing for a (sometimes substantial) reduction in the
size while still enabling efficient point queries (i.e., is a particular edge labeled with a given
color?). Muggli et al. [16] demonstrate that the VARI representation can be built on data
sets consisting of large numbers of k-mers, large input color sets, or both. Specifically, the
space efficiency of VARI makes it possible to build and query the colored de Bruijn graph on
datasets that are orders of magnitude larger than what is possible with Cortex. This is an
exciting development that opens up this methodology for increasingly large-scale analysis.

Though VARI achieves a substantial improvement in space over Cortex, there is still
a considerable amount of redundancy present in its representation. Both of these systems
represent the color set corresponding to each k-mer independently of other k-mers. Hence
a considerable amount of redundant information can be present when the color set for
each k-mer is represented independently. In fact, some existing colored de Bruijn Graph
representations, like the Bloom Filter Trie [11] exploit this redundancy to compress shared
color information, and share certain ideas and motivation with the representation proposed
in this paper. However, many of the possible subsets of colors do not occur in practice, and
there is an inherent (often extreme) skewness in the distribution of the color sets that do
appear. It becomes even more important to exploit this skewness for large metagenomic
datasets because the space usage of VARI for these datasets can become impractical.

In this paper, we introduce a succinct representation, called Rainbowfish, of the color sets
associated to each edge in the de Bruijn graph. We also adopt the BOSS representation of
the de Bruijn graph topology, and focus, specifically, on how to concisely represent the color
information. Rainbowfish’s colored de Bruijn graph representation is entropy compressed
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Figure 1 The representation of color information in Rainbowfish. The “Color Matrix” at the top
represents 6 distinct 4-mers, each assigned a color set. 3 of these 4-mers (ACTG, TTTC, AGCC)
have the same color class, labeled 0, and the other 3 (CTTG, ACTT, and GCGT) each have color
classes labeled 1, 10, and 11 respectively. To retrieve the color set for a k-mer, we first perform select
on the boundary bit vector (BBV) using rank r of the corresponding edge (k-mer). This returns
the label’s starting position, i. We then look for the next set bit BBV to find the label’s ending
position, j. Then, we fetch the label at indices i to j in label bit vector (LBV). Finally, we lookup
the label l in the equivalence class table (ECT) and return the color class corresponding to the label.
A detailed explanation of the data structure and its construction is given in Section 3.1.

and exploits the high skewness present in the distribution of color sets. By exploiting a more
efficient decomposition of the set of present colors (i.e., in terms of equivalence classes), we
achieve a considerable reduction over the space required by VARI (up to 20× depending on
the dataset), while still retaining efficient (i.e., constant time) queries.

2 Background and definitions

Rainbowfish is a succinct representation of the color information, and uses rank and select
operations to lookup the color class corresponding to k-mers in the de Bruijn graph. Here,
we briefly recapitulate the definition of a succinct data structure and the rank and select
operations.

A succinct data structure consumes an amount of space that is close to the information-
theoretic optimum. More precisely, if Z denotes the information-theoretic optimal space
usage for a given data structure, then a succinct data structure uses Z + o(Z) space [14].

rank and select [13] are operations that are commonly used for navigating within succinct
data structures. For a bit vector B[0, . . . , n − 1], rank(j) returns the number of 1s in the
prefix B[0, . . . , j] of B. select(r) returns the position of the rth 1, that is, the smallest index
j such that rank(j) = r. For example, for the 12-bit vector B[0, . . . , 11] =100101001010,
rank(5) = 3, because there are three bits set to one in the 6-bit prefix B[0, . . . , 5] of B, and
select(4) = 8, because B[8] is the fourth 1 in the bit vector.

3 Method

In this section we first describe the design of Rainbowfish. We then analyze the space usage
and provide a lower bound for the representation of sets of colors given a ranking of de Bruijn
graph edges. Finally, we discuss the Rainbowfish implementation.

WABI 2017
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3.1 Design
Rainbowfish’s compact representation of color information is based on two particular obser-
vations. First, it is often the case that many of the k-mers in a colored de Bruijn graph share
the same set of colors. More formally, we define an equivalence relation ∼ over the set of
k-mers in the de Bruijn graph. Let Col(·) denote the function that maps each k-mer to its
corresponding set of colors. We say that two k-mers are color-equivalent (i.e., k1 ∼ k2) if and
only if Col(k1) = Col(k2). We will refer to the set of colors shared by the k-mers related by
∼ as a color class. If C, the number of input colors, is large, it is often the case that the
number of distinct color classes is far less than the number of possible color classes (which is
bounded above by min(N, 2C)).

Second, it is often the case that the frequency distribution of color classes is far from
uniform. Hence, it will often be useful to record a frequently occurring color class using a
short description (i.e., a small number of bits) while reserving larger descriptions for less
frequent color classes.

The design of Rainbowfish is motivated by the above observations. Instead of storing the
color set for each k-mer separately, Rainbowfish stores each distinct color class only once
and assigns to each distinct class a label (which, practically, is much smaller than the unary
encoding of the color class itself). It then stores, for each k-mer, the label of the color class
to which it belongs.

The approach we use to assign variable-length labels to color classes is similar in spirit to
the construction of a Huffman code, where the message is a string of color class symbols.
However, we do not build a prefix code, and instead opt to store an additional bit vector
to allow the efficient selection of an arbitrary label from the list. We generate the labels
according to the following procedure. We first sort, in descending order, all the color classes
based on their frequency (i.e., the number of k-mers in this color equivalence class). We then
assign labels to each color class starting from the class with the largest cardinality, so that
the color class represented by the most frequent label will have the shortest label length etc.

The color class representation in Rainbowfish has three components. Rainbowfish stores
the mappings between labels and color classes in an equivalence class table (ECT).
As labels are assigned sequentially, this is simply an array of bit vectors encoding the
corresponding color sets. Apart from the equivalence class table, Rainbowfish maintains two
bit vectors, a boundary bit vector (BBV) and a label bit vector(LBV).

All color classes are stored in the equivalence class table (with their corresponding labels
implicitly being their position). However, we now need to store a mapping from k-mers to
the variable-length labels. Rainbowfish stores variable-length labels corresponding to each
k-mer in the label bit vector. The labels are stored in the order in which k-mers are stored
in the de Bruijn graph representation. Specifically, the k-mers are stored in the rank order
induced by BOSS. However, since these labels are variable-length, we can not directly read
the label corresponding to the k-mer of a specific rank, since we do not know where such a
label begins or how long it is.

To address this, Rainbowfish maintains another bit vector – the boundary bit vector
(BBV) – to mark the boundary of each variable-length label in LBV. The BBV is the same
size as the LBV and has a bit set to 1 at each index where a new label starts in the LBV.
Thus, the starting position for the label corresponding to the rth k-mer can be obtained by
issuing a select(r) query on BBV, and the length of this label can be obtained by simply
scanning BBV until we encounter the next set bit.

Figure 1 shows how the color classes are represented in Rainbowfish. To perform a query
for the color class corresponding to a k-mer in the colored de Bruijn graph, we first get the
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rank r of the k-mer in the de Bruijn graph. We then perform a select operation using r on
BBV. The result of the select operation i is the start index of the label of the color class in
LBV to which the k-mer belongs. To find the length of the label we determine the index
i′ of the next bit set in BBV using the tzcnt instruction. tzcnt returns the number of
trailing zeros in its argument. If B is a 12-bit vector such that B[0, 11] =110010100000 then
tzcnt(B) = 5. Using i and i′ we retrieve the label from LBV, and using the label we lookup
the corresponding color class in ECT. We also note that, as we never have > 264 distinct
k-mers in practice, and number of distinct labels is at max equal to the number of distinct
k-mers (when each k-mer has a unique label), then we never have > 264 labels. Hence, we
can always represent a label using a single machine word. Consequently, we will always reach
the next set bit in the LBV after scanning at most a single machine word when starting from
current label. This ensures we need only issue a single tzcnt instruction per label decoding
call.

3.2 Space analysis
The color class representation in Rainbowfish is entropy compressed, i.e., the space is bounded
by the entropy (H(Xc)) of the color class distribution. For a dataset in which number of
k-mers belonging to each distinct color class are similar, the entropy of the color class
distribution will be high. On the other hand, if most of the k-mers in a dataset belong to a
small number of distinct color classes, the entropy of the color class distribution will be low.

I Lemma 1. The size of each color class label is bounded by log2 M bits, where M is the
total number of distinct color classes. For a dataset with N distinct k-mers coming from C

input samples (i.e., colors), we have that M ≤ min(N, 2C).

I Theorem 2. Given an ordering of edges (or k-mers) in a de Bruijn graph, the space
needed by Rainbowfish to represent a set of colors attached to each edge is O(MC + NH(Xc))
bits, where M is the number of distinct color classes, C is the number of colors, N is the
number of distinct k-mers, and H(Xc) = −

∑M
i=1 P (xi) log P (xi) is the entropy (i.e., order-0

or Shannon’s entropy) over random variable Xc, which distributed according to the frequency
distribution of the color classes.

Proof. The space needed by Rainbowfish can be analyzed as follows. There are three bit
vectors in Rainbowfish, the equivalence class table, label bit vector, and boundary bit vector.
To store an equivalence class table containing M distinct color classes each having C colors
we need MC bits. To store a label bit vector (as stated in Theorem 1), for N k-mers, where
each label corresponds to one of the M distinct color classes, takes N log2 M bits. However,
as explained in Section 3.1, in Rainbowfish we assign (optimal) variable-length labels based
on the frequency of color classes. Therefore, the space needed to store the label bit vector
is dependent on the 0th-order entropy of the color class variable, H(Xc), and the size of
the label bit vector is upper bounded by N log2 M . The boundary bit vector has the same
number of bits as the label bit vector. J

3.3 Lower bound for color representation
We now provide a lower bound to store a color class representation for a set of edges in a
colored de Bruijn graph. In the color class representation, the equivalence class table takes
MC bits to store M bit vectors each having C bits, which is optimal. The other two bit
vectors, the boundary and label bit vector, map k-mers given an ordering in the de Bruijn
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graph to their corresponding color classes. The theorem below gives the lower bound to store
such a mapping.

I Theorem 3. The lower bound to represent a mapping from an ordered list of k-mers in a
de Bruijn graph to a set of color classes is log2 (MN−M · M !) bits, where M is the number
of distinct color classes, N is the number of edges, and for a dataset with N distinct k-mers
coming from C input samples (i.e., colors), we have that M ≤ min(N, 2C).

Proof. We can analyze the lower bound using a counting argument. We count the number
of ways to map a set of M distinct color classes to a set of N edges. The space required to
store the color class representation should be less than or equal to the space required to store
these mappings.

Edges can be mapped to color classes using a surjective (onto) function. Thus, we wish
to count the total number of surjections from M color classes to N edges. Rather than
counting this number exactly, we instead provide a lower bound. First, we must ensure that
each of the M color classes maps to at least one edge – so, we select a set of M edges and
label each with a distinct color class. There are M ! ways to assign M color classes to a set
of M edges. We will then allow the remaining N − M edges to be colored in any possible
manner. We can assign M colors to N − M edges (the remaining number) in MN−M ways.
Therefore, the total number of different mappings is bounded below by MN−M · M !. To be
able to represent each such mapping, and distinguish it from the others, we need at least
log2 (MN−M · M !) bits. J

The lower bound can be expanded using Sterling’s approximation as

(N − M) log2 M + M log2 M − 0.44M + O(log2 M),

which, ignoring the additive term O(log2 M), is greater or equal to N log2 M −0.44M . Given
the range of M (i.e., 1 ≤ M ≤ N), N log2 M always dominates the lower bound.

Now, we show that the space needed by Rainbowfish to store the variable-length labels
assigned to color classes is equal to the lower bound. As explained in Theorem 1, the
upper bound to store any label is log2 M bits, and for N edges, it is given by N log2 M bits.
Rainbowfish also stores a boundary bit vector which has the same number of bits as the label
bit vector. Therefore, the space required to store the label mappings is strictly ≤ 2N log2 M .
Note that the extra overhead to store the metadata to perform a select operation in constant
time on the boundary bit vector is bounded by o(N), where N is the numbers of bits in the
bit vector [9].

However, Rainbowfish’s representation of color classes is entropy compressed (see Sec-
tion 3.1) and the space required depends on the entropy of the color class distribution. For a
highly skewed distribution, the entropy is low and the space required to store labels is much
smaller than N log2 M bits. On the other hand, when the distribution is near-uniform, i.e.,
the entropy is high, Rainbowfish makes all labels to be log2 M bits and dispenses with BBV.
Therefore, the space required by Rainbowfish is always smaller than or equal to the lower
bound.

3.4 Implementation
Considerations due to the underlying de Bruijn graph representation. We recall here that
we make use of the BOSS representation of the underlying de Bruijn graph topology. To build
the BOSS representation, k-mer counting is first performed using KMC2 [3], canonicalizing
k-mers during counting. Though the BOSS representation inserts both forward and reverse
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Figure 2 Distribution of k-mer frequencies across equivalence class labels in Rainbowfish after
1-pass and 2-pass algorithm on plant dataset Table 1. The 2-pass algorithm assigns the smallest
label to color class with maximum number of k-mers. The distribution in 2-pass algorithm is
monotonically decreasing.

complement k-mers into the graph, it associates only a single color vector with this pair.
Moreover, BOSS creates “dummy” edges (real k-mers prepended or appended with $) to allow
encoding k-mers that appear near terminal nodes in the de Bruijn graph. In the colored de
Bruijn graph these dummy edges are assigned the empty color set. All of this information is
encoded by both VARI and Rainbowfish. However, as we discuss in more detail in Section 5,
the Rainbowfish representation can work with any de Bruijn graph representation that can
assign distinct ranks to each k-mer in the de Bruijn graph. Thus, we would expect this
encoding scheme to work well with, e.g., a de Bruijn graph representation based on minimum
perfect hashing of the k-mers [4].

Storing bit vectors. In Rainbowfish, we use bit vector implementations from the SDSL
library [8] to store the three bit vectors from Figure 1. We use the rrr_vector implementation
from SDSL to store the equivalence class table and boundary bit vector, and the bit_vector

implementation from SDSL to store the label bit vector.
The rrr_vector of SDSL is an implementation of RRR encoding [20]. RRR encoding is

an entropy compressed encoding and also supports constant time rank and select operations
on the compressed bit vector. The space reduction depends on the entropy of the bit vector.
For high entropy bit vectors, the compression is not noticeable and in fact “negative” in
some cases because of the extra metadata overhead to support rank and select operations.

The equivalence class table and boundary bit vector often have fairly low entropy, and
can be compressed efficiently using RRR encoding. However, the label bit vector often has
high entropy, and compressing it using RRR encoding is not effective. In our representation,
the average order-0 entropy of the label bit vector for four different datasets is 0.94. This
is a quite high, and hence we did not see any reduction in the space using RRR encoding.
However, for the other two bit vectors, the order-0 entropy is lower (e.g., for boundary bit
vector the average entropy over same four datasets is 0.56) and, in practice, we achieve a
considerable space reduction using RRR encoding.

Construction. We use a 2-pass algorithm to construct the three bit vectors. In the first
pass, we read the color matrix, compute the distinct color classes, and count the frequency

WABI 2017



18:8 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

Table 1 The number of edges (include k-mers and dummy edges in the BOSS representation),
samples and color classes for different datasets used in the experiments. k = 32 unless otherwise
specified. *# of edges excluding dummies.

Datasets # of edges # of colors (samples) # of distinct color classes
E. coli 10 28,273,951 10 479
E. coli 1000 157,737,064 1000 2,669,157
E. coli 5598 435,705,390 5598 7,000,715
E. coli 1000 (k=63) 258,893,268 1000 2,530,253
Plant 2,520,140,426 4 16
Beef safety 97,096,576,010* 87 623,022,532
Human transcriptome 159,441,804* 95,146 340,762

of each class. Once we have the frequency information, we sort color classes in descending
order based on their frequency. We then assign labels to color classes starting from zero. In
the second pass, we read the uncompressed color matrix again, and add the label of each
k-mer to the label bit vector. While building the label bit vector, we also build the boundary
bit vector by storing a 1 at every index where a new label starts in the label bit vector. The
labels are stored in the same order as the k-mers in the BOSS representation.

To reduce the space required for the labeling even further, we implemented our label
encoding in the following way. Every time that the label size increases from x bits to x + 1
bits, we restart the counter of that label in label bit vector to 0. For example, we store 0
and 1 for labels 0 and 1 respectively, then we store 00, 01, 10 and 11 for labels 2, 3, 4 and 5
respectively. For label value 6 we again restart the counter to 0 and store 000 to represent 6
in the label bit vector, etc. Later, when we want to retrieve the actual value of a label, we
first recover the stored label l′ from the label bit vector and then calculate the actual label l

using the equation l = l′ + 2d − 2 where d is length of label l in bits.
As explained in Section 3.2, the 2-pass algorithm minimizes the space used to represent

color class labels by sorting the classes based on their frequencies and assigning labels to
color classes to minimize the length of the resulting code path, similar to Huffman coding.
However, one could also imagine assigning labels to color classes as we see them in the order
k-mers appear in the BOSS representation. This way, we can construct all three tables in a
single pass (i.e., a 1-pass algorithm).

However, as shown in Figure 2, this 1-pass algorithm can end up assigning long labels
to frequent k-mers, and hence produce poor (i.e., large) encodings. However, the 2-pass
algorithm always assigns labels according to the corresponding frequency distribution of the
color classes. Sometimes, the 1-pass algorithm does well, but we chose to adopt the 2-pass
algorithm in Rainbowfish.

4 Evaluation

In this section we evaluate Rainbowfish, and compare it to VARI [15], a state-of-the-art
colored de Bruijn graph representation. We evaluate both systems in terms of space and
running time. We address the following questions about the performance of Rainbowfish:
How does Rainbowfish compare to VARI in terms of the space required to represent color
information?; How does Rainbowfish compare to VARI in terms of the construction time?;
How does Rainbowfish compare to VARI in terms of typical queries (e.g., in bubble calling)?
We are particularly concerned with ensuring that Rainbowfish produces small encodings of
the color information and remains practically efficient to query.



F. Almodaresi, P. Pandey, and R. Patro 18:9

Table 2 Construction and bubble calling time for Rainbowfish and VARI for different datasets.

Datasets Construction Time (secs) Bubble Calling Time (secs)
VARI Rainbowfish VARI Rainbowfish

E. coli 10 44 31 344 366
E. coli 1000 340 270 2,610 2,356
E. coli 5598 3,141 4,021 8,796 8,201
Plant 108 339 47,040 48,537
Beef safety 15,378 30,478 NA NA
Human transcriptome 13,961 30,804 NA NA

4.1 Experimental setup
To answer the above questions, we perform two different benchmarks. First, we evaluate the
time taken to construct the color class representation. The construction time is the time
taken to construct the color class representation from a list of color classes stored in the
order of the edges in the de Bruijn graph (this is the same input used by VARI). During
construction, we adopt a two-pass algorithm. In the first pass, we use a sparse hash-table to
determine the distinct color classes and the cardinality of each such class.

We note that the space taken in this first pass is within a small constant factor of the
final space required by the final ECT table itself, since we need only store each color class
once in the hash table (as a key), and store the associated count (a machine word) as the
value. Thus, the memory required by this first pass is almost always a small fraction of the
total memory usage of the construction algorithm.

Given this information, we know exactly the number of bits that will be required to store
the label and boundary vectors. In the second pass, we fill in both the label and boundary
vectors and then save all three structures to file. As with most succinct representations, the
space required for our data structure in memory and on disk is almost the same (as the
two-pass algorithm allows us to allocate only the space we need for our final representation).
The construction time recorded here does not include (for either Rainbowfish or VARI) the
time taken to build the de Bruijn graph and color list corresponding to edges in the de Bruijn
graph (since this is the same for both methods).

We also report the space needed by both Rainbowfish and VARI to store the color class
representation on disk. We do not include the space needed to represent the actual de Bruijn
graph in our space comparisons because both Rainbowfish and VARI use BOSS to store the
actual de Bruijn graph, and the BOSS representation itself tends to take less space than the
color information.

Second, we evaluate the time taken to perform the bubble calling benchmark as described
in [16], using both the VARI and Rainbowfish representations. Finding bubbles in a colored
de Bruijn graph enables one to detect regions in the de Bruijn graph where different samples
(i.e., colors) diverge from each other. As originally suggested by Iqbal et al. [12], such
algorithms can form the basis for analyzing certain types of genetic variants in populations of
genomes. We note that we adopt the exact bubble calling algorithm implemented in VARI,
and the only variable being altered in our bubble-calling benchmark is the data structure
being used to determine the set of colors present for each k-mer. Since VARI and Rainbowfish
are both built upon the BOSS representation, which is based on the edge-centric view of de
Bruijn graph, they consider k-mers as edges in the de Bruijn graph, meaning that each edge
is associated with a k-mer, and its corresponding rank and color set. Briefly, the bubble
calling algorithm takes as input a pair c1, c2 of colors and traverses edges in the de Bruijn
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18:10 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

graph to find bubbles in which the edges in one sub-path are colored with c1 and the edges
in the other sub-path are colored with c2 (see [16] for further details).

For all experiments in this paper, unless otherwise noted, we consider the k-mer size to be
32 to match the parameters adopted by Muggli et al. [16]. We carry out these benchmarks
on a number of datasets as described in Section 4.2. The time reported for construction
and bubble calling are averaged over two runs, and the time is measured as the wall-clock
time using the /usr/bin/time executable. All experiments were performed on an Intel(R)
Xeon(R) CPU (E5-2699 v4 @2.20GHz with 44 cores and 56MB L3 cache) with 512GB RAM
and a 4TB TOSHIBA MG03ACA4 ATA HDD running ubuntu 16.10, and were carried out
using a single thread. We note that, while the construction of the color set representation in
Rainbowfish (and VARI) are serial operations, queries are trivially parallelizable, as each
label can be queried and decoded independently.

4.2 Data
We run our benchmarks on the datasets mentioned in Table 1. The first three datasets, E.
coli, Plant, and Beef safety are slight variants of those used for evaluation in VARI [16]. Each
of these data sets exhibits different characteristics in terms of the number of k-mers, the
number of input samples (i.e., colors) and the homogeneity of the underlying samples (i.e.,
how different are the de Bruijn graph for each of the individual samples). The first dataset
consists of the assemblies of 5,598 different strains of E. coli obtained from GenBank [18].
Here, each “color” represents a specific E. coli assembly. Since these assemblies are from
different strains of the same species, they exhibit a small degree of heterogeneity. In other
words, a large fraction of the union de Bruijn graph is expected to occur in all samples.

To evaluate the scalability of Rainbowfish when primarily changing the underlying number
of input colors, we have evaluated three variants of the E. coli dataset. These consist of a
dataset containing only 10 different strains, another containing 1,000 different strains and
the final containing all 5,598 strains. We also performed experiments with k-mer size to be
63 for E. coli 1000 dataset to evaluate the space usage for higher k-mer sizes.

The second dataset (i.e., Plant) consists of the genome assemblies of four different plant
species. Hence, this dataset contains only four colors, but has more than ≈ 2 billion distinct
k-mers. The plant species considered are, A. thaliana 1 [22], Corn2 [21], Rice3 [23], and
Tomato4 [2]. These genomes exhibit considerable diversity and heterogeneity. Given the
diverse regions in the colored de Bruijn graph, this dataset is a good candidate for the bubble
calling benchmark. Further, Muggli et al. [16] found that this was the only of the three
original datasets on which they were able to construct the original Cortex representation
of the colored de Bruijn graph. They validated Cortex produces the same bubble calls as
VARI [16] (which, of course, produces the same bubble calls as Rainbowfish). For more
detailed analysis of Cortex’s construction and processing time and space on this dataset,
please refer to [16].

The third dataset, Beef safety, is considerably different from the prior data. Instead of
the input samples consisting of assembled genomes, they consist of 87 metagenomic samples

1 ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/
Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz

2 ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/
GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz

3 http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/
pseudomolecules/version_7.0/all.dir/all.con

4 ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz

ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz
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sequenced from cattle in the commercial process of beef production [17]. Hence, this dataset
yields a considerably larger and more complex de Bruijn graph since it is built upon many
un-assembled (and non-error-corrected) reads. Thus, the de Bruijn graph will encode portions
of the relevant metagenomes as well as the effects of sequencing errors. This dataset also has
many more k-mers than the others, ≈ 97 billion. It exhibits a large degree of heterogeneity
and an intermediate number of input colors (87).

In addition to the three datasets used in the VARI paper, we also consider building
the colored de Bruijn graph on the human transcriptome5 (Gencode v26 protein coding
transcripts) [10]. Here, we consider each transcript as an individual sample (i.e., a distinct
input color). This data consists of ≈ 95, 000 colors, but only ≈ 159 million k-mers. Hence,
this dataset will give an idea about how the representations will perform when the number
of colors becomes very large (though the number of distinct color classes remains orders of
magnitude smaller than the number of k-mers). Further, we note that this dataset highlights
some of the similarities between the color class encoding adopted by Rainbowfish and the
k-mer-based equivalence class decomposition adopted by certain transcript quantification
methods (e.g. [19]).

4.3 Performance
Table 2 shows the time taken by Rainbowfish and VARI to construct the color class repres-
entation for different datasets. Rainbowfish uses a 2-pass algorithm to construct the color
class representation, and hence the construction time is dominated by the steps to read the
color list file twice. For small datasets like E. coli 10 and E. coli 1, 000, the input file size
is small and does not affect the overall construction time compared to VARI. However, for
large datasets like Plant and Beef safety, the time to read the color file twice dominates
the construction time and Rainbowfish is 1.9×–3× slower. We note that this time can be
considerably reduced by avoiding the uncompressed color matrix representation currently
used upstream of Rainbowfish and VARI, and integrating determination and encoding of
the color classes into the de Bruijn graph construction directly. However, this is outside the
scope of the current paper.

Space

Table 3 shows the space usage of Rainbowfish and VARI for the different datasets we consider.
Among these data, there are a range of characteristics in terms of the number of k-mers, the
number of colors, and the complexity and heterogeneity of the de Bruijn graph. We find
that, for all datasets, Rainbowfish requires less space to store the color information than
VARI. The magnitude of the improvement depends on the number of distinct equivalence
classes and their distribution, but is as large as ∼ 20×. We see the same trend with higher
values of k-mer sizes.

In particular, Rainbowfish’s space usage is particularly impressive for datasets with a
large number of input colors but a relatively small number of distinct k-mers. In this case, we
usually find that the number of distinct color classes is very small compared to the universe
of possibilities, and so each label can be encoded in much fewer than C bits. However, the
space VARI consumes depends greatly on the sparsity of the color matrix. The color matrix
itself grows rapidly as the number of k-mers and colors increases, but VARI’s compression

5 ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_transcripts.
fa.gz
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Table 3 The space required by Rainbowfish and VARI to store the color class representation for
different datasets. The first column shows space required for the uncompressed color matrix (N × C

bits). All space is reported in MB. k = 32 unless otherwise specified.

Datasets uncompressed color matrix VARI Rainbowfish
E. coli 10 34 58 20
E. coli 1000 18,804 8,848 475
E. coli 5598 290,761 58,718 2,938
E. coli 1000 (k=63) 185,669 8,872 637
Plant 1,202 1,603 497
Beef safety 1,007,009 210,998 144,564
Human transcriptome 1,808,435 841 817

mechanism (Elias-Fano encoding) is very effective if the color matrix is sparse (e.g., each
k-mer is labeled with only a small subset of colors). This is exactly the case for the Human
transcriptome, where the color matrix has an entropy of ∼ 0.0004 (compared to E. coli
5,598 and E. coli 1,000 with entropies of ∼ 0.16 and ∼ 0.34 respectively). Thus, in the E.
coli dataset, VARI can save space up to a factor of ∼ 5 compared with the uncompressed
representation, while in the Human transcriptome it can save a factor of ∼ 2, 150 because of
the low entropy of the color matrix. Rainbowfish does well in all experiments, even when the
number of input colors is small (e.g., in the Plant dataset). Rainbowfish achieves the most
impressive compression when the color class distribution has low entropy and the number of
color classes is small relative to the upper bound. In such cases, the entropy compressed
representation of Rainbowfish is able to represent a large fraction of all labels using a very
small number of bits.

Bubble calling

Table 2 shows the time taken by Rainbowfish and VARI to perform the bubble calling
benchmark on different datasets. We run the bubble calling benchmark on the E. coli and
Plant datasets (as in the VARI paper). We note that the current bubble calling algorithm
is too slow to run on the Beef safety data set (the time in [16] was estimated at > 3, 000
hours). It is possible, however, that optimizations to the underlying algorithm might lift this
restriction. We also did not perform bubble calling on the human transcriptome dataset as
here, we were unable, given the resources on our server, to even run the de Bruijn graph
construction to completion. Specifically, due to the large amount of external memory that
VARI uses to build the uncompressed color matrix and the de Bruijn graph on these larger
(either in terms of the number of k-mers, the number of colors, or both) datasets (on order
of Terabytes), we exhausted the available disk space. For these datasets, to approximate
the relevant sizes and construction times, we produced a uncompressed color matrix that
lists the colors for each k-mer and its reverse complement, and we use this to build both
the VARI and Rainbowfish color representations. While very similar to the full color matrix
that VARI would produce, this file is slightly different in that it does not include entries for
dummy edges (a detail of the BOSS representation), and the order of the color matrix rows
can be different from what will appear in the BOSS representation. However, we still believe
these numbers, provided in Table 1, give a reasonable approximation of how the respective
methods would perform were we able to construct the de Bruijn graph completely.

For bubble calling, both representations require a very similar amount of time. This is
likely due, in part, to the fact that navigating the BOSS representation of the de Bruijn
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graph may be the performance bottleneck in the bubble calling algorithm. Thus, both VARI
and Rainbowfish provide sufficiently fast access to the color sets for each edge that they do
not represent bottlenecks in this regard.

5 Conclusion and Future Work

In this paper, we propose an entropy-compressed, succinct data structure to store the color
information of a colored de Bruijn graph. To represent the topology of the de Bruijn graph
itself, we adopt the BOSS [1] representation. However, we note that, for our representation
of the color sets, we only require that the underlying de Bruijn graph representation is able
to associate a unique rank between 0 and N − 1 with each edge. Hence, it is possible to use
the Rainbowfish representation with other representations of the de Bruijn graph topology
(e.g., those based on minimal perfect hashing).

We demonstrate that the inherent skewness in the distribution of color classes can be
exploited to reduce the size of the color information. This allows Rainbowfish to represent
the colored de Bruijn graph, even for large datasets with many colors, in a reasonably small
space. In fact, for representing the color information itself, we show that Rainbowfish is
succinct, and hence requires only Z + o(z) bits where Z is the number of bits required by
an information-theoretically optimal representation. Moreover, it may be possible for the
color information stored in the equivalence class table to be further compressed to reduce
the space. For example, one could imagine an encoding of color sets that takes advantage of
their shared subsets, e.g., storing the shared prefixes of membership vectors only once.

While we have described here a system for efficiently representing the color information
in a colored de Bruijn graph, our encoding scheme can be generalized to store any type of
attribute attached to the edges. For example, one could use the same (or a related) scheme
to encode information like the k-mer count or set of positions associated with a given edge.
Moreover, it will be interesting to explore how multiple attributes could be efficiently stored
simultaneously, and how potential correlations between these attributes might be exploited.
For example, there may be natural extensions of similar coding schemes to the compacted de
Bruijn graph, where one might also be able to take advantage of the coherence in annotation
(i.e., color or count information) shared among the constiuent k-mers of a contig, allowing
one to store only the information where these annotations change during traversal.

Finally, in our current implementation, the input to the system is a color matrix file
generated by VARI. This implementation requires first building the uncompressed color
matrix, and then permuting the rows of this matrix along with the edges of the de Bruijn
graph during the BOSS construction procedure. This process can require a large amount
of space, as the uncompressed color matrix can become extremely large (on the order of
Terabytes for some of the datasets we considered here). Consequently, in most cases, the
construction algorithm must resort to making extensive use of external memory (i.e., disk),
which increases building time and consumes a large amount of disk space. However, we note
that the Rainbowfish representation can be built without direct access to the uncompressed
color matrix.

Specifically, the current VARI algorithm uses a mergesort-like approach to construct the
uncompressed color matrix, where the k-mers in each sample are sorted lexicographically
(independently), and the rows of the color matrix are constructed one by one by asking for
each k-mer, in lexicographic order, which samples contain it. The working memory of this
approach is very small compared to the size of the full color matrix itself. One could imagine
using the same merge-based scheme to construct the Rainbowfish representation directly. In
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the first pass, the distinct color classes and a counter for each would be stored, resulting in a
small, sparse hash table rather than a large, uncompressed color matrix. In the second pass,
one would simply associate the relevant labels, rather than uncompressed color vectors, with
each edge. This would vastly reduce the time and space required to construct the colored de
Bruijn graph.

Thus, in the future, we are interested in both incorporating the Rainbowfish represent-
ation more tightly inside the existing VARI codebase, as well as pairing the Rainbowfish
representation with other compatible representations of the de Bruijn graph topology.
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