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Abstract
Horizontal Gene Transfer (HGT), a process of acquisition and fixation of foreign genetic material,
is an important biological phenomenon. Several approaches to HGT inference have been proposed.
However, most of them either rely on approximate, non-phylogenetic methods or on the tree
reconciliation, which is computationally intensive and sensitive to parameter values. In this
work, we investigate the Locus Tree Inference problem as a possible alternative that combines
the advantages of both approaches. We show several algorithms to solve the problem in the
parsimony framework. We introduce a novel tree mapping, which allows us to obtain a heuristic
solution to the problems of locus tree inference and duplication classification. Our approach
allows not only for faster comparisons of gene and species trees but also to improve known
algorithms for duplication inference in the presence of polytomies in the species trees.
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1 Introduction

Horizontal Gene Transfer (HGT) is the process of acquisition and fixation of foreign genetic
material. It can lead to substantial changes in the ecology and evolution of recipient
organism, sometimes leading to the emergence of new pathogens [8]. HGT is interesting both
from biological and computational perspective. Several methods of detecting horizontally
transferred genes have been proposed, which can be roughly divided into two categories [14].
So-called surrogate methods are computationally efficient, yet often imprecise. The other
group are the the phylogenetic methods, most notably the tree reconciliation [5].

HGT and gene duplication are examples of evolutionary events in which an organism gains
a new locus, i.e. a fragment of a chromosome with a specific gene. The new locus evolves more
or less independently of other loci. This observation leads to the concept of a locus tree [13],
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which represents the evolutionary history of the loci. A corresponding gene tree represents
evolutionary histories of alleles found in those loci, including populational effects like the
incomplete lineage sorting. Therefore, a locus tree is an "intermediate" concept between the
gene and the species tree. When population effects are negligible, a locus tree is equivalent
to a gene tree with some branches labelled as locus gain events. Such labelling allows to
"decompose" the gene tree into a set of independent evolutionary histories of different loci.
The concept of gene tree decomposition has been investigated earlier in the context of tree
comparison [10]. Distinguishing between different locus gain events is challenging, as their
effects on gene trees are topologically similar. In reconciliation, weights of events have to
be specified; these are, however, rarely known. The fact that the results depend strongly
on those unknown parameters may undermine the credibility of biological conclusions. To
properly estimate the weights, high-quality training datasets are needed, in which inferred
events are biologically supported.

Many cases of HGT were found by manual inspection of incongruences in gene trees [15].
Inferring a locus tree facilitates such analyses, as it allows to automatically detect the
incongruences. This approach has several advantages over reconciliation. It allows to restrict
to only two parameters: the locus gain and the locus loss weight. It is also more robust
to imprecise data, as improperly placed branches will only be locally detected as new loci,
without interfering with the global evolutionary scenario. This allows to disregard the noise
when analyzing the tree, and instead focus on several important events. The locus tree
inference has been addressed in populational genetics setting [13]. However, this approach
requires several difficult to obtain parameters, like speciation times or population sizes.

Our contribution: In this work, we address the problem of Locus Tree Inference when
populational effects are negligible. This allows addressing the locus tree inference problem in
a parsimony framework. We propose to solve it by decomposing a binary gene tree into a
forest of subtrees that can be embedded into a possibly polytomic species tree, in a way that
minimizes the weighted sum of the forest size and the number of loss events. We propose
two variants of the problem: the Locus Tree Inference, LTI, in which forest elements are
subtrees of the species tree, and the Conditional Locus Tree Inference, CLTI, where each
forest element is a subtree of some binarization of the species tree. We show a dynamic
programming algorithm that solves LTI in O(|G||S|m) time and O(|G||S|) space, where
m is the maximal degree of a node from the species tree. To solve CLTI, we propose a
new mapping, called the Highest Separating Rank. Based on the mapping, we show an
O(d|G|+ |S|) time and O(|G|+ |S|) space algorithm, where d is the height of S, for inferring
required and conditional duplications in gene trees, which improves O(|G|(d+m) + |S|) time
solution from [18]. Finally, we propose an efficient heuristic to solve CLTI, and present a
comparative study on simulated and empirical data.

2 Definitions

Let T = 〈VT , ET 〉 be a rooted directed tree. For a, b ∈ VT , by lcaT (a, b) we denote the lowest
common ancestor of a and b in T . We also use the binary order relation a � b if b is a
node on the path between a and the root of T (note that a � a). Two nodes a and b are
called siblings if they are children of lcaT (a, b). We call a and b comparable if a � b or b � a,
otherwise a and b are called incomparable. The parent of a node a is denoted as parent(a).
The subtree of T rooted at v is denoted by T (v). By L(T ) we denote the set of all leaves in
a tree T and we use L(v) instead of L(T (v)). By root(T ) we denote the root of tree T . A
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species tree S is a rooted directed tree in which nodes are called taxa. A gene tree G is a
rooted directed binary tree, such that every leaf of G is labeled by a leaf-taxon from S, i.e.,
an element of L(S). For a node g in G, by tax(g) ⊂ L(S) we denote the set of all labels of
leaves from L(g).

The lowest common ancestor mapping, or lca-mapping, between G and S is a function
M : VG → VS such that M(g) = t if g is a leaf labelled by the leaf-taxon t, or M(g) =
lcaS(M(g1),M(g2)) if g is has two children g1 and g2. An internal node g in G is a duplication
if M(g) = M(gi) for any child gi of g. Every other node, i.e. a leaf or an internal node
satisfying M(g) �M(gi) for every child gi of g, is called a speciation [12, 7, 4].

A node with more than two children is called a polytomy. For a polytomy s in a tree S, let
H(s) be the set of all possible binary trees whose leaves are the children of s. For instance, if s
is the polytomy node present in S from Fig. 2, then H(s) = {(d, (e, f)), (e, (d, f)), (f, (d, e))}.
Let H∗(S) be the set of all possible binary trees obtained from S by replacing each polytomy
s with a tree from H(s). An element of H∗(S) is called a binarization of S.

3 Locus gain Problems

In this section we introduce the parsimony framework for the (Conditional) Locus Tree
Inference problem and a dynamic programming formula for solving the problem. We say
that a gene tree G is embeddable (respectively, conditionaly embeddable) into a species tree
S, if each node of G is a speciation (respectively, a speciation in some binarization of S).
For instance, (a, (b, c)) is embeddable into (a, (b, c, e), f), while (a, (a, b)) is not. Since the
polytomies in S can be resolved independently, we get the following result:

I Lemma 1. G is conditionally embeddable into S if and only if there is a binarization S′
of S such that G is embeddable into S′.

Every internal node g of G induces a set of loss events defined as nodes of the species
tree strictly between M(g) and M(parent(g)), plus M(g) if M(g) is a polytomy. The above
definition yields a notion of the loss cost, denoted by Λ(G,S), and defined as the total number
of loss events required to embed G into S.

A gene tree may not be embeddable into a species tree due to duplications or HGTs. Our
goal is to decompose a gene tree into a set of embeddable subtrees in the most parsimonious
way. We say that a forest F is a decomposition of G, if

⋃
T∈F L(T ) = L(G), and for every

T ∈ F , G|L(T ) = T , where, for A ⊆ L(G), G|A is a tree induced by A and the set of internal
nodes {lcaG(a, b)|a, b ∈ A} and inheriting the ancestor relation from G. Decompositions can
be equivalenty obtained by tree edit operations as follows. Given a gene tree G, X ⊆ EG is
called a set of cuts if no two edges in X share their top nodes.

I Lemma 2. Let X be a set of cuts from G. Let GX be a graph obtained from G by: removing
all cuts from G, contracting all nodes with one parent and one child, and then removing all
roots having exactly one child. Then GX is a decomposition of G.

In the context of X every node of G can be uniquelly associated with a node from GX

by a mapping σX that maps a node g to the first non-removed node below g. Formally,
σX(g) = σX(g1) if 〈g, g2〉 ∈ X and g1 is the sibling of g2, and σX(g) = g, otherwise. By
MX : G→ S we denote the "locus-aware" lca-mapping, given byMX(g) = M ′(σX(g)), where
M ′ is the lca-mapping between T ∈ GX and S such that σX(g) ∈ T (see Fig. 1).

Consider a set of cuts X in G. We say that X detaches g ∈ G, or is g-detaching, if σX(g)
is the root of some tree from GX . For example, in Fig. 1, the cuts from the right example
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Figure 1 An example of locus trees for G = ((a1, b2), (b3, c4)) with two decompositions F1

and F2 consistent with S = (a, (b, c), d). These decompositions are created by cuts indicated
with red color. MX : G → S is depicted for every set of cuts X (only for internal nodes). Here,
Λ(F1, S) = Λ(F2, S) = 0, ∆(F1) = 2 ·GAIN and ∆(F2) = 3 ·GAIN, i.e., F1 is optimal.

detach the parent of leaf a (as σX(parent(a)) = b is a root in GX), while the cuts from the
left one do not (σX(g) = a is below the root).

We say that a decompositon is consistent (respectively, conditionally consistent) with a
species tree S if for every T ∈ F , T is (respectively, conditionally) embeddable into S. From
the definition of σX we have:

I Remark. Let GX be a decomposition consistent with S. Then, a set of cuts X detaches
g ∈ G if and only if every tree in GX is either disjoint with or entirely contained in G(g).

Given a species tree S and a gene tree G we define a locus tree with respect to S as a
pair (G,X), where X is a set of cuts such that the decompositon GX is consistent with S.
Locus trees which induce the same decompositions are considered equivalent. From Lemma 2
it follows that for each set of cuts there is a unique decomposition induced by this set.
Conversely, for every decomposition F of G there exists a set of cuts X such that F = GX .
Inferring such a set from a given decomposition is straighforward by a bottom-up traversal of
the gene tree. Therefore, we can consider decompositions as equivalent to locus trees. From
computational point of view, it is more natural to seek for optimal decompositions rather
than sets of cuts.

Given a decompositon F , we define the total loss cost as Λ(F, S) =
∑

T∈F Λ(T, S). We
can now define the Locus Tree Inference problem (LTI ) in the parsimony framework:

I Problem (Locus Tree Inference, LTI). Given a gene tree G and a species tree S. Find
the decomposition F ∗ of G consistent with S having the minimal weighted cost ∆(G,S) =
GAIN · |F ∗| + LOSS · Λ(F ∗, S) in the set of all decompositions of G consistent with S,
where GAIN ≥ 0 and LOSS ≥ 0 are the weights of locus gain and locus loss events, resp.

Such decompositions we call optimal. In the same way, for conditional consistency, we
define the Conditional Locus Tree Inference problem (CLTI ). The problems are equivalent if
the input species tree is binary. From the algorithmic point of view, LTI is similar to the
reconciliation with DTL scenarios [1] with no duplications. A transfer event corresponds to
the creation of a tree in a decomposition forest. Additionally, we do not count loss event at
the root of a new tree.

Our algorithm consists of several functions of g ∈ G, s ∈ S and ι ∈ {0, 1} which denotes
whether a set of cuts detaches g:
D1. δ(g, s, 0) is the minimal partial cost contribution of G(g) in the set of all g-detaching

sets X such that MX(g) = s.
D2. δ(g, s, 1) as above but for non-g-detaching sets of cuts.
D3. δ4(g, s, ι) is the minimal value of δ(g, s′, ι) for s′ � s.
D4. δ↑(g, s, ι) is the minimal partial cost contribution of G(g) in the set of all g-detaching

sets of cuts X such that MX(g) � s. For ι = 1, the cost additionally includes all losses
created by σX(g) and associated with every species node s′ satisfying MX(g) ≺ s′ � s.
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Let c(v) be the set of children of v (∅ for leaves). By 1 we denote the indicator function,
that is, 1[p] is 1 if p is satisfied and 0 otherwise. Then, we have the following dynamic
programming formula (DP algorithm) that solves LTI:

δ(g, s, ι) =


0 if g is a leaf and M(g) = s,

min{α, γ} if g is not a leaf,
+∞ otherwise,

where

α = 1[c(s) ≥ 3] · LOSS · ι+ min
s′,s′′∈c(s) and s′ 6=s′′

δ↑(g′, s′, 1) + δ↑(g′′, s′′, 1),

γ = GAIN + min(δ4(g′,M(g′), 0) + δ↑(g′′, s, ι), δ4(g′′,M(g′′), 0) + δ↑(g′, s, ι)),

δ↑(g, s, ι) =
{
δ(g, s, ι) if s is a leaf,
min{δ(g, s, ι),1[|c(s)| > 1] · LOSS · ι+ minx∈c(s) δ

↑(g, x, ι)} otherwise,
δ4(g, s, ι) = min{δ(g, s, ι), min

x∈c(s)
δ(g, x, ι)}.

I Theorem 3. For every G and S: ∆(G,S) = mins∈S δ
4(root(G), s, 0)) + GAIN.

Proof. The proof is by induction on the structure of G and S, where the properties D1–D4
of all δ’s are proved. We omit technical details. J

I Theorem 4. The optimal cost can be computed in O(|G||S|m) time and O(|G||S|) space,
where m is the maximal degree of a node from S.

Proof. Time: We show that all values of δ functions can be computed in O(m) time. This
is straighforward for all values except α, where computing min potentially requires O(m2)
time. This can be done, however, in O(m) time, by finding for each node g′ of G, the two
children of s with the minimal and the second minimal value of δ↑ and choosing the minimal
pair one among all four variants. Space: Obvious. J

CLTI can be solved by an algorithm similar to the one presented above. It requires
additional case in δ for resolving duplications. In order to model a proper binarization of
a polytomy in M(g), both children of g have to be mapped into a disjoint sets of children
of M(g). Such solution requires extending all δ’s by a set of species nodes allowed for the
mappings. In consequence, this approach has an exponential time and space complexity. In
general we do not know if there is a polynomial time algorithm for CLTI. However, when
the locus gain weight (GAIN) is much greater than the loss weight (LOSS), an efficient
heuristic can be constructed, based on a mapping introduced in the next section.

4 Ranked Trees and Rank-based Mappings

Usually, when comparing trees, mappings based on their topologies are used (e.g. the
lca-mapping). However, biological species trees contain additional useful structure: the
taxonomic ranks, like species, genus, or family. Several major ranks are common to almost
all living organisms. In this section, we propose a mathematical formalization of ranks and
two rank-based mappings, which are useful in duplication inference and CLTI.

A ranked species tree is a species tree S in which every node s of S has assigned a small
positive integer called rank, denoted R(s), such that, for every s and s′, if s ≺ s′ then
R(s) < R(s′). We assume that the rank of the root of is d > 0 and every leaf has rank 1.

WABI 2017
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Figure 2 An example of a gene tree G and a species tree S. Left: The lca-mapping M . Each
internal node of S is decorated with its rank based on the height of the corresponding subtree. Each
internal node of G is decorated with the value of mapping P . Right: G in which each internal node
is decorated by a pair of gene leaves that induces the value of mapping P in Alg. 1 (line 7). For
example, for the left child of the root, say x, f3e9 yields P (x) = R(lcaS(f, e)) = 2.

Let G be a gene tree and S be a ranked species tree. For a rank r and a leaf t in S, the
unique directed path in S consisting of all taxa comparable with t having the rank lower
than r will be called an (evolutionary) r-lineage of t. Note that every 1-lineage is empty. We
say that leaf-taxa t and t′ are separated by the rank r if for every x from the r-lineage of
t and every y from the r-lineage of t′, x and y are incomparable. Observe that every pair
of leaf-taxa is separated by the rank of 1. Moreover, if r separates t and t′ then every rank
lower than r also separates t and t′. For example, in Fig. 2 leaf-taxa a and c are separated
by ranks 1, 2 and 3, but not by rank 4.

Let g be an internal node in G with children g1 and g2. The highest separating rank
mapping P : VG → {1, 2, . . . , d} is defined as

P (g) = max{r : r separates every pair of leaf-taxa from tax(g1)× tax(g2)}. (1)

The lowest common rank mapping I : VG → {1, 2, . . . , d} is defined as I(g) = R(M(g)).
We now present some basic properties of both mappings. Simple proofs are omitted for brevity.

I Lemma 5. Let ρ(t, t′) be the highest rank that separates leaf-taxa t and t′ and let g be an
internal node of G with two children g1 and g2. Then:
(A) For every leaf-taxa t and t′, ρ(t, t′) = R(lcaS(t, t′)).
(B) P (g) = min{ρ(t, t′) : 〈t, t′〉 ∈ tax(g1)× tax(g2)}.
(C) I(g) = max{R(lcaS(t, t′)) : 〈t, t′〉 ∈ tax(g1)× tax(g2)}.
(D) P (g) = min{R(lcaS(t, t′)) : 〈t, t′〉 ∈ tax(g1)× tax(g2)}.
(E) P (g) = 1 if and only if tax(g1) ∩ tax(g2) 6= ∅.

Taxonomic ranks have been used earlier for HGT detection [11]. In this work, the authors
decorated nodes of the gene tree with the rank of the lowest taxon shared by each descendant
leaf, equivalent with the I mapping. A high difference between the rank of a node and
the one of its parent was one of the premisses for HGT. To the best of our knowledge, no
mapping equivalent with the highest separating rank has been proposed to day.

4.1 Computing mappings
Given a species tree S and a gene tree G, to compute I we can use the classical algorithm
for lca-queries, in which, after a linear-time preprocessing, computing lca-queries can be
completed in constant time [2]. We conclude that I can be computed in O(|G|+ |S|) time.

A naïve algorithm for computing P , based on Lemma 5, requires O(|G||S|2) time. Here,
we propose an O(d|G|+ |S|) time solution. For two distinct leaves l1 and l2 of G, we write
l1 <p l2 if l1 is visited earlier than l2 in prefix traversal of G. For instance, in Fig. 2 the
leaves are linearly ordered starting from the left, i.e., d1 <p b2 <p f3 <p . . . .
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Algorithm 1 Computing P
1: Input: A ranked tree S with maximal rank d, a gene tree G such that every leaf of G has an

attribute map equal to its label, i.e., a leaf from S. A parent of a node is denoted by attr. parent
(None for the root).
Output: Values of P stored in attr. P of each internal node of G.

2: For s in S.nodes: Let s.lastvisited := None # initialize last visited leaf
3: For g in G.nodes: If g is a leaf Then v.smap := v.map Else g.P := None # init P and smap
4: Initialize data structure in G for lca-queries lcaG(x, y) in G.
5: For rank in 1, 2, . . . , d: For v in G.leaves in prefix order such that v.smap.rank = rank:
6: If not v.smap.lastvisited = None Then
7: g := lcaG(v, v.smap.lastvisited)
8: If g.P = None Then g.P := rank # P assignment
9: v.smap.lastvisited := v # update last visited

10: v.smap := v.smap.parent # climb in S

I Lemma 6. For a fixed s ∈ S, the sequence of all assignment evaluations in line 9 such
that v.smap = s induces a sequence of values v, denoted by v1, v2, . . . , vk such that: (I) the
assignment s.lastvisited := vi is executed only when rank = s.rank, (II) v1 <p v2 <p · · · <p vk,
and (III) {v1, v2, . . . , vk} = M−1(L(s)).

Proof. (I) is obvious by the condition in the second loop. By the condition in the inner
loop, the order of leaves induced by a sequence of such assignments follows <p. For every
gene leaf v, v.smap is initially set to the label of v, i.e., M(v) (see line 3). Thus, if s is a
leaf, i.e., s.rank = 1, then the assignment in line 9 sets the value of v.lastvisited if and only
if the label of v is s. Thus for the leaves, (II) is satisfied. For (III), note that the line 10,
ensures that every leaf v is assigned once to s.lastvisited of every node s of a species tree that
is present on the path starting from M(v) and terminating in the root. Hence, M−1(L(s)) ⊆
{v1, v2, . . . , vk}. The other inclusion follows trivially from the fact that for a leaf v, v.smap
is originally set to M(v) and v cannot be assigned to a node incomparable with M(v). J

I Lemma 7. For every internal node g, P (g) = g.P.

Proof. Let g′ and g′′ be the left and the right child of g, respectively. The proof is by
induction on the rank r = 1, 2, . . . , d. Let r = 1. Assume that P (g) = 1, we show that
g.P = 1. Let s ∈ tax(g′)∩tax(g′′). Then, by Lemma 6, let Λs be the sequence {v1, v2, . . . , vk}
of all leaves assigned to s.lastvisited such that M(vi) = s and ordered by <p. Clearly, the list
has the leaves from both subtrees of g, thus there is an index j < k, such that vj ∈ L(g′) and
vj+1 ∈ L(g′′). Thus lcaG(vj , vj+1) = g. Now, in line 8, when v is vj+1 then v.smap.lastvisited
is vj . In such a case, either g.P is None and g.P will be set to 1, or g.P is already set, however,
it can be only 1. This completes the first part of the proof.

Assume that P (g) = r and for every q, such that P (q) < r, we have P (q) = q.P . For
every v ∈ L(g′) and w ∈ L(g′′), R(lcaS(M(v),M(w))) ≥ r, thus g.P = None, when Alg. 1
starts the main loop with rank = r. From Lemma 5, there is a pair taxa 〈t1, t2〉 ∈ ĝ such
that s = lcaS(t, t′) and R(s) = r. Thus, there are two leaves a1 and a2 in G such that for
each i, M(ai) = ti and lca(a1, a2) = g, i.e. a1 � g′ and a2 � g′′. Similarly, to the first step,
the leaves from M−1(L(s)) are all visited and set to s.lastvisited according to the order <p.
The sequence contains elements a1 and a2, therefore again there is j separating leaves from
both subtrees of g. The rest of the proof is analogous: in line 8 either g.P is already set to r
(if there was other s′, processed before s, with R(s′) = r satisfying the same properties as s)
or it will be set in to r. This completes the proof. J

WABI 2017
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I Lemma 8. Alg. 1 requires O(d|G|+ |S|) time and O(|G|+ |S|) space.

Proof. Time: Lines 2–5 have O(|G|+ |S|) time complexity, while the body of the inner loop
needs O(1) time. Space: Alg. 1 uses only a few node attributes plus the lca-query data
structure of the size O(|G|). J

5 Classification of Gene Duplications

Several methods for reconciliation with non-binary gene trees have been proposed [20, 16,
19, 6, 3, 9]. However, reconciliation with non-binary species trees is harder to model. This is
because a polytomy may represent a lack of knowledge about the order of speciations, and
therefore some duplication nodes may correspond to biological speciations. This motivates a
further classification of duplication nodes into conditional and required duplications [18].

When reconciling a gene tree G with every binarization of S, if g from G is a duplication
in every reconciliation, then g is called a required duplication. Similarly, if g is a duplication
in at least one but not all reconciliations, we say that g is a conditional duplication. Note
that G is conditionally embeddable in S if and only if each node in G is either a speciation
or a conditional duplication.

In this section, we show how P and I can be used to solve the problem of gene duplication
classification when the species tree has possible polytomies.

I Lemma 9. For an internal node g from a gene tree G, the following conditions are
equivalent:
(A1) P (g) = I(g),
(A2) every subtree rooted below M(g) contains taxa from at most one child of g, i.e., for

every s ≺M(g), if L(s) ∩ tax(g1) 6= ∅ then L(s) ∩ tax(g2) = ∅, where g1 and g2 are the
children of g, and

(A3) for every 〈t, t′〉 ∈ tax(g1)× tax(g2), lcaS(t, t′) = M(g).

Proof. (A1) ⇒ (A2). Assume that s ≺M(g) and there are two leaves t and t′ in L(s) such
that t ∈ tax(g1) and t′ ∈ tax(g2). Hence, 〈t, t′〉 ∈ tax(g1)×tax(g2) and lcaS(t, t′) � s ≺M(g).
Thus, P (g) < I(g), a contradiction. (A2) ⇒ (A3). Let 〈t, t′〉 ∈ ĝ. Then, t and t′ are leaves
from two different subtrees rooted below M(g). Therefore, lcaS(t, t′) = M(g). (A3) ⇒ (A1).
It follows immediately from Lemma 5. J

Note that the above Lemma holds also when P (g) = I(g) = 1, i.e. when an internal node
g is mapped to a leaf of S. In such a case the condition (A2) is satisfied trivially.

I Lemma 10. Let P (g) = I(g). Then, g is a speciation iff M(g) is an internal node and
there are exactly two subtrees rooted at children of M(g) having nodes from tax(g).

Proof. (⇒). We have that g is an internal node. In such a case I(g) > 1 and M(g) is an
internal node. Then, by (A2) from Lemma 9, every child of M(g) has taxa present in at
most one child of g. Clearly, there are at least two children of M(g) satisfying this property.
If there are more than two, then one child of g, say g1, has taxa from at least two children of
M(g). Hence, M(g1) = M(g) and g is a duplication node, a contradiction. (⇐). Similarly, if
M(g) is an internal node, then by (A2), the mappings of the children of g are incomparable
and located below M(g), therefore g cannot be a duplication. J

We have a symmetric property whose proof is similar to the previous one.
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I Lemma 11. Assume that P (g) = I(g). Then, g is a duplication node if and only if either
M(g) is a leaf or M(g) is an internal node and there are at least three subtrees rooted at a
child of M(g) having nodes from tax(g).

Finally, we have the main property.

I Theorem 12 (Classification Theorem). Let g be an internal node of G. Then:
(C1) If P (g) = I(g) = 1 or P (g) < I(g) then g is a required duplication.
(C2) If P (g) = I(g) > 1, then g is a duplication if and only if g is a conditional duplication.

Proof. (C1) If P (g) = I(g) = 1, then g is mapped to a leaf. Hence, every leaf below g has
the same label. Thus, in every binarization of S, g is a duplication. Assume that P (g) < I(g).
Then M(g) is an internal node in S, having at least three taxa in L(M(g)) (otherwise, the
two children of M(g) are leaves and P (g) = I(g) = 2). We can assume that there are three
leaves t, t′ ∈ tax(g1) and t′′ ∈ tax(g2) such that lcaS(t′, t′′) ≺ lcaS(t, t′, t′′). Clearly, this
property holds for every binarization T of S, where the possible polytomy M(g) is resolved.
Moreover, in every T , M(g1) � lcaT (t, t′, t′′), thus M(g1) is comparable with M(g2) � t′′.
Thus, M(g) = max(M(g1),M(g2)) and g is a duplication node.

(C2,⇐). If g is a conditional duplication, then it is a duplication by the definition.
(C2,⇒). Assume that g is a duplication, then by condition (A2) from Lemma 9, the children
of M(g) can be clustered into three disjoint sets X, X ′ and X ′′ such that every node from X

has no taxa present in tax(g), every node of X ′ has taxa from tax(g′) but not from tax(g′′)
and analogously every node of X ′′ has taxa from tax(g′′) but not from tax(g′), where g′ and
g′′ are the children of g. In addition, by Lemma 11 at least one among X ′ and X ′′, say X ′,
has at least two elements. Consider a binary tree T in H(M(g)), such that all elements of X ′
and X ′′ are located in the left and the right subtree of T , respectively. Then, lcaT (X ′) and
lcaT (X ′′) are incomparable. Thus, in such a binarization of S, g′ and g′′ maps below M(g),
and g is a speciation node. Similarly, it can be shown that there exist a tree in H(M(g)) in
which g is a duplication. J

Based on Alg. 1, Classification Theorem leads to a natural O(d|G|+ |S|) time solution
for the inference of required and conditional duplications when reconciling a given binary
gene tree with a species tree. This improves known O(|G|(d + m) + |S|) time algorithm
from [18], where m is the maximal degree of a node from S. The improvement is beneficial
for highly polytomic species trees. For example, as of 04.28.2017, the genus Aspergillus has
1950 children species in the NCBI Taxonomy.

6 Heuristic for CLTI

In this section, we propose the heuristic algorithm for CLTI when the locus gain weight is
much greater than the loss weight. The algorithm is based on the following lemma, which
follows directly from Theorem 12:

I Lemma 13. Tree G is conditionally embeddable in S if and only if for all internal nodes
g in G, I(g) = P (g) > 1.

Alg. 2 is a greedy approach that iteratively finds the minimal nodes g such that P (g) < I(g)
or I(g) = 1 and detaches an embeddable subtree below each node. Note the following:

I Remark. Let G be conditionally embeddable in S. Let Λ̂(G,S) = |L(M(root(G)))|−|L(G)|.
Then, Λ(G,S) ≤ Λ̂(G,S).
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Algorithm 2 Heuristic algorithm for CLTI
1: Input: A ranked tree S and a gene tree G.

Output: A decomposition forest of G conditionally consistent with S.
Initialize: F := ∅

2: Compute I and P in G.
3: Let Z be the set of all minimal nodes g in G such that G(g) is not conditionally embeddable

(i.e. P (g) < I(g) or I(g) = 1). If Z is empty Then Return F ∪ {G}
4: For every g in Z:
5: Let 〈v, w〉 be the edge incident to a child of g with minimal Λ̂(G(w), S) + Λ̂(G(g) \G(w), S)

such that G(w) and G(g) \G(w) are conditionally embeddable.
Add G(w) to F , remove e and G(w) from G.

6: Repeat steps 2-6 until tree G is empty.

DP Heuristic
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Figure 3 Comparison of DP and heuristic algorithms for binary species trees in terms of
forest size |F | and numbers of losses Λ(F, S). The brown line depicts the median cost; the grey
ribbon depicts the 90% confidence interval. The weights in the DP algorithm have been set to
GAIN = 1000, LOSS = 1. The plots have been smoothed with cubic splines.

Let T1 \ T2 denote tree T1 with detached subtree T2. Then, Λ̂(G′, S) + Λ̂(G(g) \G′, S) is
an estimate of the partial loss cost induced by detaching subtree G′. The detached subtree
in Alg. 2 is chosen so as to minimize this estimate. To limit the complexity of a single step,
we consider only subtrees rooted at vertices at a close neighbourgood of g.

A major advantage of Alg. 2 is the space complexity, which is O(|G| + |S|). This
makes the heuristic suitable for trees with hundreds or thousands of nodes. The time
complexity is O(ad|G|+a|S|), where a is the number of recomputations of I and P mappings.
Pessimistically, a = O(|G|), which makes this algorithm assymptotically quadratic. However,
in applications this number is expected to be a small integer.

6.1 Experimental validation

In the case of binary species trees, conditional embeddability is identical to strict embeddab-
ility, and both locus tree inference algorithms can be compared experimentally.

For each |L(G)| = 1, . . . , 20 and |L(S)| = 10 we have generated 100 pairs of random trees
under the Yule-Harding model. The leaves of G have been assigned to leaves of S randomly.
The numbers of losses for heuristic algorithm have been computed using a modification of
the DP algorithm. The inferred costs are shown in Fig. 3.

The costs are similar for both algorithms. The forest size is approximately half the
number of leaves in G. Using linear regression, we have determined that, on average, the
inferred forest size is equal to 0.47|L(G)| for DP and 0.53|L(G)| for the heuristic. The number
of losses is slightly smaller for the heuristic algorithm (on average 0.98|L(G)| for DP and
0.90|L(G)| for the heuristic). The reason for this is that the greedy approach tends to detach
more concise trees.
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7 Example of evolutionary history decomposition

We have compared our approach with a state-of-the-art reconciliation program, Notung
2.9 [17]. We have analyzed the evolution of the gene family of an aminotransferase from a
fungus Penicillium lilacinoechinulatum1 (GenBank: ABV 48733.1), which has been earlier
reported to undergo a HGT [15]. The gene tree has been reconciled with NCBI Taxonomy
with loss weight 1, duplication weight 1.5 and transfer weight varying from 3 to 8. The
result of decomposition by our heuristic approach is depicted in Fig. 4. Depending on the
transfer weight, Notung 2.9 reported from 1 to 7 transfers and numerous duplications, while
our heuristic inferred a unique result.

Several biological conclusions can be drawn from the decomposition. There are two
probable HGTs: into the ancestors of family Clavicipitaceae (blue subtree) and genus
Fusarium (turquoise subtree). Those groups are distantly related to species in their "mother
locus" subtrees, which makes multiple duplications and losses less likely than a HGT. Since
both recipient groups are pathogenic (as well as Aspergillus fumigatus, in which the gene has
been extensively duplicated), we may expect that the protein ABV 48733.1 plays a role in
their pathogenesis. Both transfers are consistent with reconciliation results.

Note that the P mappings of parents of turquoise and blue subtrees are much higher
than the ones of their children, consistent with a HGT hypothesis. On the contrary, the P
mapping of parent of the green subtree is much lower than the ones of its children, consistent
with a duplication. This observation can be a basis for an event scoring system to aid the
classification of the events. Other locus gain events are ambiguous, both in the case of history
decomposition analysis and the tree reconciliation.

8 Discussion

In this work, we have investigated two new problems for locus tree inference in a parsimony
framework. We have proposed and analyzed a new mapping, called the Highest Separating
Rank, which has been applied to the problems of duplication classification and locus tree
inference. The solution to the duplication classification problem has improved the current
one by removing dependence on the maximum node degree in species tree from the time
complexity. A prototype implementation is publicly availiable at https://github.com/
mciach/LocusTreeInference. The presented approach will be used to obtain a manually
curated dataset of horizontally transferred genes.

Future outlooks. The influence of potential contradictory binarizations on the decomposi-
tion needs to be elucidated. LTI should be generalized for non-binary gene trees, as it would
allow to collapse nodes with low support, possibly decreasing the forest size. The P mapping
can be applied to obtain efficient solutions to the problem of gene tree rooting and supertree
construction. Finally, application of automatic event scoring system should be investigated.

1 Homologs of the protein sequence have been found in 20 fungal species using BLASTp suite. The
sequences have been aligned using MAFFT program and trimmed with TrimAL. The phylogenetic tree
has been created using PhyML and rooted by setting Amanita muscaria as the outgroup. Nodes of the
species tree have been collapsed to represent only the following taxonomic ranks: species, genus, family,
order, class, phylum, kingdom.
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