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Abstract
Hashing k-mers is a common function across many bioinformatics applications and it is widely
used for indexing, querying and rapid similarity search. Recently, spaced seeds, a special type
of pattern that accounts for errors or mutations, are routinely used instead of k-mers. Spaced
seeds allow to improve the sensitivity, with respect to k-mers, in many applications, however
the hashing of spaced seeds increases substantially the computational time. Hence, the ability
to speed up hashing operations of spaced seeds would have a major impact in the field, making
spaced seed applications not only accurate, but also faster and more efficient.

In this paper we address the problem of efficient spaced seed hashing. The proposed algorithm
exploits the similarity of adjacent spaced seed hash values in an input sequence in order to
efficiently compute the next hash. We report a series of experiments on NGS reads hashing using
several spaced seeds. In the experiments, our algorithm can compute the hashing values of spaced
seeds with a speedup, with respect to the traditional approach, between 1.6x to 5.3x, depending
on the structure of the spaced seed.
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1 Introduction

The most frequently used tools in bioinformatics are those searching for similarities, or local
alignments, between biological sequences. k-mers, i.e. words of length k, are at the basis
of many sequence comparison methods, among which the most widely used and notable
example is BLAST [1].

BLAST uses the so-called “hit and extend” method, where a hit consists of a match of a
11-mers between two sequences. Then these matches are potential candidates to be extended
and to form a local alignment. It can be easily noticed that not all local alignments include
an identical stretch of length 11. As observed in [3] allowing for not consecutive matches
increases the chances of finding alignments. The idea of optimizing the choice of the positions
for the required matches, in order to design the so called spaced seeds, has been investigated
in many studies, and it was used in PatternHunter [16], another popular similarity search
software.

In general contiguous k-mers counts are a fundamental step in many bioinformatic
applications [5, 6, 9, 20, 22, 21, 24]. However, spaced seeds are now routinely used, instead of
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contiguous k-mers, in many problems involving sequence comparison like: multiple sequence
alignment [7], protein classification [18], read mapping [23] and for alignment-free phylogeny
reconstruction [13]. More recently, it was shown that also metagenome reads clustering and
classification can benefit from the use of spaced seeds [4, 8, 19].

A spaced seed of length k and weight w < k is a string over the alphabet {1, 0} that
contains w ‘1’ and (k − w) ‘0’ symbols. A spaced seed is a mask where the symbols ‘1’
and ‘0’ denote respectively match and don’t care positions. The design of spaced seeds is a
challenging problem itself, tackled by several studies in the literature [10, 11, 16]. Ideally,
one would like to maximize the sensitivity of the spaced seeds, which is however an NP-hard
problem [15].

The advantage of using spaced seeds, rather than contiguous k-mers, in biological sequence
analysis, comes from the ability of such pattern model to account for mutations, allowing for
some mismatches in predefined positions. Moreover, from the statistical point of view, the
occurrences of spaced seeds at neighboring sequence positions are statistically less dependent
than occurrences of contiguous k-mers [15]. Much work has been dedicated to spaced seeds
over the years, we refer the reader to [2] for a survey on the earlier work.

Large-scale sequence analysis often relies on cataloging or counting consecutive k-mers
in DNA sequences for indexing, querying and similarity searching. An efficient way of
implementing such operations is through the use of hash based data structures, e.g. hash
tables. In the case of contiguous k-mers this operation is fairly simple because the hashing
value can be computed by extending the hash computed at the previous position, since they
share k− 1 symbols [17]. For this reason, indexing all contiguous k-mers in a string can be a
very efficient process.

However, when using spaced seeds these observations do not longer hold. As a consequence,
the use of spaced seeds within a string comparison method generally produces a slow down
with respect to the analogous computation performed using contiguous k-mers. Therefore,
improving the performance of spaced seed hashing algorithms would have a great impact on
a wide range of bioinformatics tools.

For example, from a recent experimental comparison among several metagenomic read
classifiers [14], Clark [20] emerged as one of the best performing tools for such a task. Clark
is based on discriminative contiguous k-mers, and it is capable of classifying about 3.5M
reads per minute. When contiguous k-mers are replaced by spaced seeds, as in Clark-S [19],
while the quality of the classification improves, the classification rate is reduced to just 200K
reads per minute.

The authors of Clark-S attributed such a difference to the use of spaced seeds. In
particular, the possible sources of slowdown are two: the hashing of spaced seeds, and the use
of multiple spaced seeds. In fact, Clark-S uses three different spaced seeds simultaneously in
its processing. However, while the number of spaced seeds used could explain a 3x slowdown,
running Clark-S is 17x slower than the original k-mer based Clark. Thus, the main cause of
loss of speed performances can be ascribe to the use of spaced seed instead of contiguous
k-mers. A similar reduction in time performance when using spaced seeds is reported also in
other studies [4, 18, 23]. We believe that the main cause is the fact that spaced seeds can
not be efficiently hashed, as opposed to contiguous k-mers.

In this paper we address the problem of the computation of spaced seed hashing for
all the positions in an given input sequence, and present an algorithm that is faster than
the standard approach to solve this problem. Moreover, since using multiple spaced seeds
simultaneously on the same input string can increase the sensitivity [13], we also developed
a variant of our algorithm for simultaneous hashing of multiple spaced seeds.
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In general, when computing a hash function there are also other properties of the
resulting hash that might be of interest like: bit dependencies, hash distributions, collisions
etc. However, the main focus of this paper is the fast computation of spaced seed hashing,
using the most simple hash function. Note that our method can be extended to implement,
for example, the cyclic polynomial hash used in [17] with no extra costs.

In the next section we briefly summarize the properties of spaced seeds and describe our
algorithm, together with a variant for handling multiple seed hashing. Experimental results
on NGS reads hashing for various spaced seeds are reported in Section 3. Conclusions are
driven in Section 4.

2 Methods

A spaced-seed S (or just a seed) is a string over the alphabet {1, 0} where the 1s correspond
to matching positions. The weight of a seed corresponds to the number of 1s, while the
overall length, or span, is the sum of the number of 0s and 1s.

Another way to denote a spaced seed is through the notation introduced in [12]. A spaced
seed can be represented by its shape Q that is the set of non negative integers corresponding
to the positions of the 1s in the seed. A seed can be described by its shape Q where its
weight W is denoted as |Q|, and its span s(Q) is equal to max Q + 1. For any integer i and
shape Q, the positioned shape i + Q is defined as the set {i + k, k ∈ Q}. Let us consider
the positioned shape i + Q = {i0, i1, . . . , iW−1}, where i = i0 < i1 < . . . < iW−1, and let
x = x0x1 . . . xn−1 be a string over the alphabet A. For any position i in the string x, with
0 ≤ i ≤ n−s(Q), the positioned spaced seed i + Q identifies a string of length |Q| that we
call Q-gram. A Q-gram at position i in x is the string xi0xi1 . . . xiW −1 and it is denoted by
x[i + Q].

I Example 1. Let Q = {0, 2, 3, 4, 6, 7}, then Q is the seed 10111011, its weight is |Q| = 6
and its span is s(Q) = 8. Let us consider the string x = ACTGACTGGA, then the Q-gram
x[0 + Q] = ATGATG can be defined as:

x A C T G A C T G G A
Q 1 0 1 1 1 0 1 1

x[0 + Q] A T G A T G

Similarly all other Q-grams are x[1 + Q] = CGACGG, and x[2 + Q] = TACTGA.

2.1 Spaced Seed Hashing
In order to hash any string, first we need to have a coding function from the alphabet A
to a binary codeword. For example let us consider the function encode : A → {0, 1}log2|A|,
with the following values encode(A) = 00, encode(C) = 01, encode(G) = 10, encode(T ) = 11.
Based on this function we can compute the encodings of all symbols of the Q-gram x[0 + Q]
as follows:

x[0 + Q] A T G A T G
encodings 00 11 10 00 11 10

There exist several hashing functions, in this paper we consider the Rabin-Karp rolling
hash, defined as h(x[0 + Q]) = encode(A) ∗ |A|0 + encode(T ) ∗ |A|1 + encode(G) ∗ |A|2 +
encode(A) ∗ |A|3 + encode(T ) ∗ |A|4 + encode(G) ∗ |A|5. In the original Rabin-Karp rolling
hash all math is done in modulo n, here for simplicity we avoid that. In the case of DNA
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sequences |A| = 4, that is a power of 2 and thus the multiplications can be implemented
with a shift. In the above example, the hashing value associated to the Q-gram ATGATG

simply corresponds to the list of encoding in Little-endian: 101100101100.
To compute the hashing value of a Q-gram from its encodings one can define the function

h(x[i + Q]), for any given position i of the string x, as:

h(x[i + Q]) =
∨

k∈Q

(encode(xi+k)� m(k) ∗ log2|A|) , (1)

where m(k) is the number of shifts to be applied to the encoding of the k-th symbols. For
a spaced seed Q the function m is defined as m(k) = |{i ∈ Q, such that i < k}|. In other
words, given a position k in the seed, m stores the number of matching positions that appear
to the left of k. The vector m is important for the computation of the hashing value of a
Q-gram.

I Example 2. In the following we report an example of hashing value computation for the
Q-gram x[0 + Q].

x A C T G A C T G G A
Q 1 0 1 1 1 0 1 1
m 0 1 1 2 3 4 4 5

shifted encodings 00 11«2 10«4 00«6 11«8 10«10
1100

101100
00101100

1100101100
hashing value 101100101100

The hashing values for the others Q-grams can be determined through the function
h(x[i + Q]) with a similar procedure. Following the above example the hashing values for
the Q-grams x[1 + Q] = CGACGG and x[2 + Q] = TACTGA are respectively 101001001001
and 001011010011.

In this paper we decided to use the Rabin-Karp rolling hash, because it is very intuitive.
There are other hashing functions, like the cyclic polynomial hash, that are usually more
appropriate because of some desirable properties like uniform distribution in the output
space, universality, higher-order independence [17]. In this paper we will focus on the efficient
computation of the Rabin-Karp rolling hash. However, with the same paradigm proposed
in the following sections, one can compute also the cyclic polynomial hash by replacing in
Eq. (1): the function encode(A) with a seed table where the letters of the DNA alphabet are
assigned different random 64-bit integers, shifts with rotations, OR with XOR.

2.2 Efficient Spaced Seed Hashing
In many applications [4, 7, 13, 18, 19, 23] it is important to scan a given string x and to
compute the hashing values over all positions. In this paper we want to address the following
problem.

I Problem 1. Let us consider a string x = x0x1 . . . xi . . . xn−1, of length n, a spaced seed Q

and an hash function h that maps strings into a binary codeword. We want to compute the
hashing values H(x, Q) for all the Q-grams of x, in the natural order starting from the first
position 0 of x to the last n− s(Q):

H(x, Q) = 〈h(x[0 + Q]), h(x[1 + Q]), . . . h(x[n− s(Q)])〉 .
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Clearly, in order to address Problem 1, it is possible to use Equation 1 for each position
of x. Note that, in order to compute the hashing function h(x[i + Q]) for a given position,
the number of symbols that have to be extracted from x and encoded into the hash is equal
to the weight of the seed |Q|. Thus such an approach can be very time consuming, requiring
the encoding of |Q|(n− s(Q)) symbols. In summary, loosely speaking, in the above process
each symbol of x is read and encoded into the hash |Q| times.

In this paper we present a solution for Problem 1 that is optimal in the number of encoded
symbols. The scope of this study is to minimize the number of times that a symbol needs to
be read and encoded for the computation of H(x, Q). Since the hashing values are computed
in order, starting from the first position, the idea is to speed up the computation of the hash
at a position i by reusing part of the hashes already computed at previous positions.

As mentioned above, using Equation (1) in each position of an input string x is a simple
possible way to compute the hashing values H(x, Q). However, we can study how the hashing
values are built in order to develop a better method. For example, let us consider the simple
case of a contiguous k-mers. Given the hashing value at position i it is possible to compute
the hashing for position i + 1, with three operations: a rotation, the deletion of the encoding
of the symbol at position i, and the insertion of the encoding of the symbol at position
i + k, since the two hashes share k − 1 symbols. In fact in [17] the authors showed that
this simple observation can speed up the hashing of a string by recursively applying these
operations. However, if we consider the case of a spaced seed Q, we can clearly see that this
observation does not hold. In fact, in the above example, two consecutive Q-grams, like
x[0 + Q] = ATGATG and x[1 + Q] = CGACGG, do not necessarily have much in common.

In the case of spaced seeds the idea of reusing part of the previous hash to compute the
next one needs to be further developed. More precisely, because of the shape of a spaced
seed, we need to explore not only the hash at the previous position, but all the s(Q) − 1
previous hashes.

Let us assume that we want to compute the hashing value at position i and that we
already know the hashing value at position i − j, with j < s(Q). We can introduce the
following definition of Cj = {k − j ∈ Q : k ∈ Q ∧m(k − j) = m(k)−m(j)} as the positions
in Q that after j shifts are still in Q with the propriety of m(k− j) = m(k)−m(j). In other
words, if we are processing the position i of x and we want to reuse the hashing value already
computed at position i− j, Cj represents the symbols of h(x[i− j + Q]) that we can keep
while computing h(x[i + Q]). More precisely, we can keep the encoding of |Cj | symbols from
that hash and insert the remaining |Q| − |Cj | symbols at positions Q \ Cj .

I Example 3. If we know the first hashing value h(x[0 + Q]) and we want to compute the
second hash h(x[1 + Q]), the following example show how to construct C1.

k 0 1 2 3 4 5 6 7
Q 1 0 1 1 1 0 1 1

Q«1 1 0 1 1 1 0 1 1
m(k) 0 1 1 2 3 4 4 5

m(k)−m(1) −1 0 0 1 2 3 3 4
C1 2 3 6

The symbols at positions C1 = {2, 3, 6} of the hash h(x[1+Q]) have already been encoded
in the hash h(x[0 + Q]) and we can keep them. In order to complete h(x[1 + Q]), the
remaining |Q| − |C1| = 3 symbols need to be read from x at positions i + k, where i = 1 and
k ∈ Q\C1 = {0, 4, 7}.
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x A C T G A C T G G A
x[0 + Q] A T G A T G

C1 2 3 6
Q\C1 0 4 7

x[1 + Q] C G A C G G

Note that the definition of |Cj | is not equivalent to the overlap complexity of two spaced
seeds, as defined in [11]. In some cases, like the one presented above, the overlap complexity
coincides with |C1| = 3. However, there are other cases where |Cj | is smaller then the overlap
complexity.

I Example 4. Let us consider the hash at position 2 h(x[2 + Q]), and the hash at position 0
h(x[0 + Q]). In this case we are interested in C2.

k 0 1 2 3 4 5 6 7
Q 1 0 1 1 1 0 1 1

Q«2 1 0 1 1 1 0 1 1
m(k) 0 1 1 2 3 4 4 5

m(k)−m(2) −1 0 0 1 2 3 3 4
C2 0 4

The only symbols that can be preserved from h(x[0 + Q]) in order to compute h(x[2 + Q])
are those at positions 0 and 4, whereas the overlap complexity is 3.

For completeness we report all values of Cj :

C = < C1, . . . , C7 >

= < {2, 3, 6}, {0, 4}, {0, 3, 4}, {0, 2, 3}, {2}, {0}, {0} > .

In order to address Problem 1, we need to find, for a given position i, the best previous
hash that ensures to minimize the number of times that a symbol needs to be read and
encoded, in order to compute h(x[i + Q]). We recall that |Cj | represents the number of
symbols that we can keep from the previous hash at position i− j, and thus the number of
symbols that needs to be read and encoded are |Q \ Cj |. To solve Problem 1 and to minimize
the number of symbols that needs to be read, |Q \ Cj |, it is enough to search for the j that
maximizes |Cj |. The best previous hash can be detected with the following function:

ArgBH(s) = arg max
j∈[1,s]

|Cj | .

If we have already computed the previous j hashings, the best hashing value can be found
at position i − ArgBH(j), and will produce the maximum saving |CArgBH(j)| in terms of
symbols that can be kept. Following the above observation we can compute all hashing values
H(x, Q) incrementally, by using dynamic programming as described by the pseudocode of
Algorithm 1.

The above dynamic programming algorithm scans the input string x and computes all
hashing value according to the spaced seed Q. In order to better understand the amount
of savings we evaluate the above algorithm by counting the number of symbols that are
read and encoded. First, we can consider the input string to be long enough so that we can
discard the transient of the first s(Q)− 1 hashes. Let us continue to analyze the spaced seed
10111011. If we use the standard function h(x[i + Q]) to compute all hashes, each symbol
of x is read |Q| = 6 times. With our algorithm, we have that |CArgBH(7)| = 3 and thus
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Algorithm 1 Fast Spaced Seed Hashing
1: for i := 0 to |x| − s(Q) do
2: if (i == 0) then
3: h0 := compute h(x[0 + Q]);
4: else if (i < s(Q)− 1) then
5: hi := hi−ArgBH(i) � m(ArgBH(i)) ∗ log2|A|;
6: for all k ∈ Q\CArgBH(i) do
7: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;
8: end for
9: else

10: hi := hi−ArgBH(s(Q)−1) � m(ArgBH(s(Q)− 1)) ∗ log2|A|;
11: for all k ∈ Q\CArgBH(s(Q)−1) do
12: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;
13: end for
14: end if
15: end for

half of the symbols do need to be encoded again, overall each symbol is read 3 times. The
amount of saving depends on the structure of the spaced seed. For example, the spaced
seed 10101010101, with the same weight |Q| = 6, is the one that ensures the best savings
(|CArgBH(10)| = 5). In fact, with our algorithm, we can compute all hashing values while
reading each symbol of the input string only once, as with contiguous k-mers. To summarize,
if one needs to scan a string with a spaced seed and to compute all hashing values, the above
algorithm guarantees to minimize the number of symbols to read.

2.3 Efficient Multiple Spaced Seed Hashing

Using multiple spaced seeds, instead of just one spaced seed, is reported to increase the
sensitivity [13]. Therefore, applications that exploit such an observation (for example
[4, 8, 19]) will benefit from further speedup that can be obtained from the information
already computed from multiple spaced seeds.

Our algorithm can be extended to accommodate the need of hashing multiple spaced seeds
simultaneously, without backtracking. Let us assume that we have a set S = s1, s2, . . . , s|S|
of spaced seeds, from which we can compute the corresponding vectors msi . To this purpose,
Algorithm 1 needs to be modified as follows. First of all, a new cycle (between steps 2 and
14) is needed to iterate the processing among the set of all spaced seeds. Next, Cj needs to
be redefined so that it compares not only a given spaced seed with itself, but all spaced seeds
vs all. In the new definition, Cyz

j = {k − j ∈ sy : k ∈ sz ∧msy
(k − j) = msz

(k)−msz
(j)},

evaluates the number of symbols in common between the seed sy and the j-th shift of the
seed sz. The function Cyz

j allows to identify, while computing the hash of sy, the number of
symbols in common with the j-th shift of seed sz. Similarly, we need to redefine ArgBH(i)
so that it detects not only the best previous hash, but also the best seed. We define
ArgBSH(y, s) = arg maxz∈[1,|S|],j∈[1,s] |Cyz

j | that returns, for the seed sy, the pair (sz, j)
representing the best seed sz and best hash j. With these new definitions we can adjust our
algorithm so that, while computing the hash of sy for a given position i, it can start from
the best previous hash identified by the pair ArgBSH(y, s) = (sz, j). The other steps for
the insertion of the remaining symbols (steps 6–7 and 11-12) do not need to be modified.
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Table 1 The nine spaced seeds used in the experiments grouped according to their type.

Spaced seeds maximizing the hit probability[19]
Q1 1111011101110010111001011011111
Q2 1111101011100101101110011011111
Q3 1111101001110101101100111011111
Spaced seeds minimizing the overlap complexity[10]
Q4 1111010111010011001110111110111
Q5 1110111011101111010010110011111
Q6 1111101001011100111110101101111

Spaced seeds maximizing the sensitivity[10]
Q7 1111011110011010111110101011011
Q8 1110101011101100110100111111111
Q9 1111110101101011100111011001111

3 Results and discussion

In this section we will discuss the improvement in terms of time speedup of our approach
(TFastHash) with respect to the time TEq1 needed for computing spaced seeds hashing re-
peatedly using Eq. (1): speedup = TEq1

TFastHash
.

3.1 Spaced seeds and datasets description

The spaced seeds we used have been proposed in literature as maximizing the hit probability
[19], minimizing the overlap complexity [10] and maximizing the sensitivity [10]. We tested
nine of such spaced seeds, three for each category. The spaced seeds are reported in Table 1
and labeled Q1, Q2, . . . , Q9. Besides these spaced seeds, we also tested Q0, which corresponds
to an exact match with a 22mer (all 22 positions are set to 1), and Q10, a spaced seed with
repeated ‘10’ and a total of 22 symbols equal to ‘1’. All spaced seeds Q0–Q10 have the same
weight |Qi| = 22. Furthermore, in order to compare seeds with different weights but similar
density, we computed with rasbhari two sets of seeds with weights 11 and 32 and lengths
respectively 16 and 45 (see Tables 3 and 4 in the Appendix).

The datasets we used were taken from previous scientific papers on metagenomic read
binning and classification [9, 25]. We considered both simulated datasets (S,L,R), and
synthetic datasets (MiSeq, HiSeq, MK_a1, MK_a2, and simBA5). The datasets Sx and Lx

contain sets of paired-end reads of length approximately 80bp generated according to the
Illumina error profile with an error rate of 1%, while the datasets Rx contain Roche 454
single-end long reads of length approximately 700bp, and a sequencing error of 1%. The
synthetic datasets represent mock communities built from real shotgun reads of various
species. Table 2 shows, for each dataset, the number of reads and their average length.

All the experiments where run on a laptop equipped with an Intel i74510U cpu at 2GHz,
and 16 GB RAM.

3.2 Analysis of the time performances

Figure 1 plots, for each spaced seed, the speedup that is obtainable with our approach with
respect to the standard hashing computation. As a reference, the baseline given by the
standard approach is about 17 minutes to compute the hash for a given seed on all datasets.
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Table 2 Number of reads and average lengths for each of the dataset used in our experiments.

Datasets number of reads avg. read length
S6 1426457 80
S7 3307100 80
S9 4468336 80
S10 9981172 80
L5 1016418 80
L6 1182178 80

HiSeq 9989713 91
simBA5 5439738 100
MixK1 9629886 101
MixK2 7149900 101
MiSeq 9933556 131
R7 290473 702
R8 374576 715
R9 588256 715

Figure 1 The speedup of our approach with respect to the standard hashing computation, as a
function of the spaced seeds used in our experiments.

First of all it can be noticed that our approach improves over the standard algorithm for
all of the considered spaced seeds. The smallest improvements are for the spaced seeds Q2
and Q3, both belonging to the class of spaced seeds maximizing the hit probability, for which
the speedup is almost 1.2x, and the running time is about 15 minutes. For all the other
spaced seeds the speedup is close to 1.6x, thus saving about 40% of the time required by the
standard computation, and ending the computation in less than 11 minutes on average.

Figure 2 shows the performances of our approach with respect to the single datasets. In
this experiment we considered the best performing spaced seed in each of the classes that we
considered, namely Q1, Q6, and Q9, and the two additional special cases Q0 and Q10.

We notice that for the spaced seeds Q0 and Q10 the standard approach requires re-
spectively, 12 and 10 minutes, to process all datasets. This is already an improvement of
the standard method with respect to the 17 minutes required with the other seeds Q1–Q9.
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Figure 2 Details of the speedup on each of the considered datasets. Q0 is the solid 22mer,
Q10 is the spaced seed with repeated 10. The other reported spaced seeds are the ones with the
best performances for each class: Q1 (maximizing the hit probability), Q6 (minimizing the overlap
complexity) and Q9 (maximizing the sensitivity).

Nevertheless, with our algorithm the hashing of all dataset can be completed in just 2.7
minutes for Q0 e 2.5 minutes for Q10, with a speedup of 4.5x and 4.2x.

We observe that while the speedup for the spaced seeds Q1, Q6, and Q9 is basically
independent on the dataset and about 1.6x, the speedup for both the 22-mer Q0 and the
‘alternate’ spaced seed Q10 is higher, spanning from 4.3x to 5.3x, depending on the seed
and on the dataset. In particular, the speedup increases with the length of the reads and
it achieves the highest values for the long read datasets R7, R8 and R9. This behavior is
expected, as these datasets have longer reads with respect to the others, thus the effect of
the initial transient is mitigated.

3.3 Multiple spaced seed hashing

When the analysis of biological data to perform requires the use of multiple spaced seeds, it
is possible to compute the hash of all seeds simultaneously while reading the input string
with the method described in Section 2.3.

In Figure 3 we report the comparison between the speedup we obtained when computing
the hash for each spaced seed Q1,. . . ,Q9 independently (light grey), and the speedup we
obtained when using the multiple spaced seeds approach (dark grey).

In most cases, multiple spaced seed hashing allows for a further improvement of about
2–5%, depending on the dataset. In terms of absolute values, the standard computation to
hash all datasets requires 159 minutes, the computation of all seeds independently with the
approach described in Section 2.2 takes 109 minutes, while the simultaneous computation of
multiple spaced seeds with our method (see Section 2.3) takes 107 minutes. When considering
all datasets the average speedup increases from 1.45x (indipendent computation) to 1.49x
(simultaneous computation). The small improvement can be justified by the fact that the
spaced seeds considered are by construction with minimal overlap.
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Figure 3 Details of the time speedup of our approach with the multiple spaced seeds hashing
(dark grey) and of our approach with each spaced seed hashed independently (light grey).

Figure 4 The theoretical and real speedup of our approach with respect to the standard hashing
computation, as a function of the spaced seeds weight.

3.4 Spaced Seeds with Different Weights
In order to compare the performance of our method on spaced seeds with different weights
we generated other two sets of nine spaced seeds with rasbhari, all with similar density (see
Tables 3 and 4 in the Appendix). In Figure 4 are reported the average speedup (Real), over
all datasets, for the three different groups of nine seeds. In the same Figure we include also
the speedup when all nine seeds are used simultaneously (Multi) and the theoretical speedup
predicted by our method (Predicted).

It can be observed that if the weight of the seeds grows then also the real speedup grows.
This is expected, because if a seed has more 1s, then the chances to reuse part of the seed
increase. As, for the theoretical predicted speedups, these are usually in line with the real
speedups even if the absolute values are not necessarily close. We suspect that the model
we use, where shifts and insertions have the same cost, is too simplistic. Probably, the real
computational cost for the insertion of a symbol is greater than the cost for shifting, and
also cache misses might play a role.

If the theoretical speedup for multiple seeds is greater than the theoretical speedup for
independent seeds, this indicates that in principle, with multiple seeds, it is possible to
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improve with respect to the computation of seeds independently. It is interesting to note that
the real results confirm these predictions. For example, in the multiple seeds with weights
32, it is impossible to improve both theoretically and in practice. In the other two cases, the
computation of multiple seeds is faster in practice as correctly predicted by the theoretical
speedup.

4 Conclusions

We presented a new approach for spaced seeds hashing that exploits the information available
from previous matches in order to minimize the number of positions that need to be
recomputed. The experiments we performed on several datasets showed that our method
has a speedup of 1.6x with respect to the standard approach used to compute spaced seeds
hashing, for several kind of spaced seeds defined in the literature. Furthermore, the gain
greatly improved in special cases, where seeds show a high autocorrelation, and for which a
speed up of about 4x to 5x can be achieved.
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A Appendix

Table 3 Nine spaced seeds with W = 11 and length 16 computed with rasbhari minimizing
overlap complexity.

Q10 1011101100101110
Q11 1100111100011110
Q12 1101011100011110
Q13 1101101110111000
Q14 1110110010110110
Q15 1111001100101110
Q16 1111001101110010
Q17 1111100011010110
Q18 1111110001011100

Table 4 Nine spaced seeds with W = 32 and length 45 computed with rasbhari minimizing
overlap complexity.

Q19 100111111111110010010111101111001110110110111
Q20 101001111001011111011110111111110001010111111
Q21 110100110101111100011111011011111111111110001
Q22 110101011001100111110101110011001111111111111
Q23 110111011111111101101111101010010000011111111
Q24 111011100111010001101111001111110011111110111
Q25 111100011011010010011111111011111111100011111
Q26 111101001101110011101110101011101110111011111
Q27 111101101111100011111110001011101011110111011
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