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Abstract
Most string kernels for comparison of genomic sequences are generally tied to using (absolute)
positional information of the features in the individual sequences. This poses limitations when
comparing variable-length sequences using such string kernels. For example, profiling chromatin
interactions by 3C-based experiments results in variable-length genomic sequences (restriction
fragments). Here, exact position-wise occurrence of signals in sequences may not be as important
as in the scenario of analysis of the promoter sequences, that typically have a transcription start
site as reference. Existing position-aware string kernels have been shown to be useful for the
latter scenario.

In this work, we propose a novel approach for sequence comparison that enables larger po-
sitional freedom than most of the existing approaches, can identify a possibly dispersed set of
features in comparing variable-length sequences, and can handle both the aforementioned scen-
arios. Our approach, CoMIK, identifies not just the features useful towards classification but
also their locations in the variable-length sequences, as evidenced by the results of three binary
classification experiments, aided by recently introduced visualization techniques. Furthermore,
we show that we are able to efficiently retrieve and interpret the weight vector for the complex
setting of multiple multi-instance kernels.
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1 Introduction

In various studies since the elucidation of the human genome, many different definitions
of promoters have been used in different studies. For example, Butler et al. defined a
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core promoter as a minimal stretch of contiguous DNA sequence (∼ 40 nucleotides (nts))
that contains the transcription start site (TSS) and is sufficient for accurate transcription
initiation [4], and a proximal promoter as a region in the immediate vicinity of the TSS,
roughly 250 nts upstream and downstream. There are examples of many studies that consider
either only an upstream region or using an arbitrary-sized window around the TSS (albeit
fixed for the study) as promoter sequences. How does one know what size is appropriate in
any independent new study or a study unifying such promoter sequences from multiple prior
studies?

Discriminative machine learning methods like support vector machines (SVMs) [3] with
their state-of-the-art performance on many relevant problems in computational biology (e.g.,
splice site prediction [15]) have been proven to be a very powerful tool. The earliest kernel-
based approaches for computing similarities between biological sequences, e.g. spectrum [9]
and mismatch kernel [10], allowed comparing sequences of different length, but they did
not encode any positional information. Latter approaches, for example the weighted degree
kernel [16] and oligo kernel [13], do consider positional information in the corresponding
sequences, even with a certain amount of positional uncertainty [15]. Additionally, alignment-
based sequence comparison also provides a position-dependent similarity score albeit with a
gap penalty [17]. Thus, these approaches do allow deviations from exact matches but they
are penalized. The oligomer distance histograms (ODH) kernel [11] allows comparing of
sequences of different length by way of representing a sequence with a fixed-length feature
vector. But it ignores information about the position of such oligomer pairs within the
sequence.

These scenarios are outlined in Figure 1, panel Motivation, when comparing two sequences
S1 and S2. Any position-aware kernel that also allows shifts can detect the signal in case
(a) but not in case (b) where the signal is very far apart. Even if it does, it would penalize
this deviation. Case (c) represents how ODH would detect this signal and thus consider the
two sequences to be similar, but information on the position of this signal in the individual
sequences is lost. This work is a step in the direction to tackle this issue: compare sequences
allowing reasonable degree of positional freedom and not simultaneously penalizing this
deviation or keeping it problem-dependent. This scenario can arise in case of Hi-C data
where the pairs of loci interacting over a long-range are variable-length restriction fragments
reported from the experiments and the causal signal in the two loci compared, for example, the
enhancer and the promoter, does not have any positional restriction unlike the transcription
start site in the promoter sequences.

In this work we approach the problem of handling variable-length sequences and allowing
positional freedom when comparing them for problems such as identifying promoter architec-
tures or analysis of long-range interaction partners collected from Hi-C experiments. We do so
by breaking the individual sequences into segments (see Figure 1, panel Motivation, case (d))
and casting the problem into a multiple instance learning problem [6] where the instances in
each bag are parts of the whole sequence. We employ conformal multi-instance kernels [2]
to obtain the weightings for instances in each bag, thus rendering the capability to identify
segments of a sequence informative for the prediction problem. We efficiently retrieve the
weight vector for the complex setting of multiple conformed multi-instance kernels (outlined
in Section 2.4.1). We also demonstrate how to interpret the nonlinear classifiers by adopting
visualization techniques that were recently introduced [14] in the more basic setting (outlined
in Section 2.4.2).
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Figure 1 A schematic of our approach CoMIK, and the motivation. The complementary
segmentation procedure is illustrated in the top panel. The sequence is shown in gray. Non-shifted
segments are shown with an orange border, and shifted segments with blue border. The ‘Motivation’
panel shows the various scenarios when comparing sequences S1 and S2. Here, a signal in the sequence
is shown as a yellow box. ‘FV1’ and ‘FV2’ denote the ODH (oligomer distance histograms [11])
feature vectors for S1 and S2 respectively. The panel ‘CoMIK’ shows a schematic of our approach
starting from a sequence to the complementary conformal multi-instance (MI) kernel (see Methods
for details). S1, S2,. . . , Sn are the n sequences in the collection.

2 Methods

Towards pair-wise comparison of variable-length sequences allowing positional freedom, we
segment the individual sequences thus representing each sequence as a collection of its
segments and then compare all segments of one sequence to all those of the other. With this,
the typical binary classification problem involving sequences is cast into a multiple instance
learning problem [6]. We call our approach CoMIK for ‘Conformal Multi-Instance Kernels’.

In the following, we begin by discussing our sequence segmentation procedure and the
need for a complementary representation (Section 2.1). Further, we show how we exploit
this design with the help of conformal transformations to the multi-instance (MI) kernel [2]
to identify segments of a sequence which are important (due to features contained in the
segment) towards its classification (Section 2.2). Subsequently, we discuss the procedure
to obtain the SVM weight vector from the multiple conformal multi-instance kernels and
visualizing the important features thus making it interpretable (Section 2.4).

2.1 Segment Instantiation with Complementary Views
Non-shifted Segment Instantiation: Given any arbitrary length sequence, we propose
representing it by its segments where a segment is defined as a smaller part of the whole
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16:4 Handling Variable-Length Sequences with Dispersed Features

sequence. Beginning right at the start of the sequence, we create segments of a predetermined
size along the sequence until it ends. The segment size is chosen a priori by the user
depending on the problem (see Section 2.3 for details). The last segment is allowed to have a
different size (either larger or smaller than other segments) to accommodate any remainder
portion in case the sequence length is not an exact multiple of the segment size. We call this
instantiation the non-shifted segment instantiation. A simple case of non-shifted segmentation
is illustrated in Figure 1 (panel ‘Complementary Segmentation’). This segmentation provides
the non-shifted view of the whole sequence as the first segment starts at the beginning of the
sequence and, in total, the segments span the entire sequence.

Shifted Segment Instantiation: There may still be signals at the boundaries of any two
non-shifted segments (see Figure 1, panel ‘Complementary Segmentation’, signal at position
A5) which may get overlooked when comparing sequences using just non-shifted segments.
To cover for this scenario, we introduce an alternate instantiation called shifted segmentation
whereby the boundaries due to initial segmentation of the sequence end up in the same
segment in this representation. In this case, segmentation begins from the mid-point of
the first non-shifted segment, and proceeds to create further segments along the sequence
essentially covering the boundaries of the non-shifted segments. The portions of the sequence
before B1 and beyond B5 can be omitted since they are already covered in the non-shifted
view (see Figure 1). Shifted segments can either be of same size as the non-shifted segments
or different. Thus, shifted segmentation provides a complementary view of the same sequence
covering the portions which get overlooked by non-shifted segmentation.

Refer to Section 2.3 for a discussion on choosing an appropriate segment-size and its
influence on the method.

2.2 Conformal Multi-Instance Kernels for Complimentary Set of
Segments

Once segmented, we cast this problem into a multiple instance learning problem [6]. In
this setting, each sample (X, y) contains a set of instances x ∈ X and label y. The sets of
instances are also called bags. Each sequence is thus treated as a bag and its segments as
instances in the bag. One or more instances from a bag could be responsible for the bag to
be classified as positive or negative due to the presence or absence of class-specific features.
Since there is no restriction on the number of instances a bag can contain, this setting can
inherently allow for considering arbitrary length sequences that result in an arbitrary number
of instances per bag upon segmentation. Thus, there is a bag for each sequence containing
non-shifted and shifted segments of the sequence as instances in its bag.

2.2.1 Multi-Instance Kernels
Gärtner et al. proposed the normalized set kernel (also known as the multi-instance kernel)
for the multiple instance problem [8]. For each sample represented as a bag of instances, the
kernel value between any two bags X and X ′, k(X,X ′), is given as in Eq. 1.

k(X,X ′) := kset(X,X ′)
fnorm(X)fnorm(X ′) . (1)

Here kset(X,X ′) :=
∑

x∈X,x′∈X′
k(x, x′) and fnorm(X) is a suitable normalization function.

One could normalize using either averaging (fnorm(X) := #X, where #X denotes the number
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of instances in bag X) or feature space normalization (fnorm(X) :=
√
kset(X,X)). In this

work, we used feature space normalization.
While the multi-instance kernel can successfully handle comparison between bags by

comparing their individual instances, it has the issue that, in averaging, it looses any
information related to the contributions of the individual instances. In other words, it treats
all the instances in a bag equally. And, it is usually desirable to not only obtain a solution to
a problem, but also to identify (a) the features that contribute to that specific solution, and
(b) the parts which contain these features. Here, (b) amounts to knowing which instance(s)
in a bag have features that helped determining the correct class label of the bag (positive or
negative class). To this end, we propose using conformal multi-instance kernels [2] that allow
us to obtain an instance weighting based on the contribution of these instances to learning
the discriminant function.

2.2.2 Conformal Multi-Instance Kernels
Blaschko and Hofmann proposed the conformal multi-instance kernel as a modification to
the normalized set kernel [2]. This modification is a conformal transformation parameterized
by θ, tθ > 0, applied to the kernel function, meaning that the transformation preserves the
angle between vectors in the mapped space. The idea is to magnify those regions in the
feature space which are discriminative and shrinking those which are not discriminative.
Selection of these candidate regions in the feature space is done by clustering the complete
set of input instances and choosing the corresponding cluster centres as candidate regions or
expansion points. The decision of whether the region characterized by any cluster centre is
discriminative or not is made by solving the multiple kernel learning problem as explained
further.

Blaschko and Hofmann [2] proposed (a) the conformal transformation tθ(x) to be of the
form given in Eq. 2.

tθ(x) =
E∑
e=1

θeκ̃(x, ce) (2)

κ̃(x, ce) = exp
(
− ||x− ce||

2

2σ2

)
(3)

Here, ce’s denote the cluster centres indexed by e ∈ {1, . . . , E} for a total of E expansion
points; and (b) κ̃ to be a Gaussian (Eq. 3) whose bandwidth (σ) can be adjusted. The
parameter θe in Eq. 2 tells how discriminative the region around a certain cluster centre is. A
large value of θe denotes that the neighborhood of the corresponding expansion point ce is a
discriminative region. As mentioned, the θe values are learnt via multiple kernel learning (see
subsection ‘Resultant conformal multi-instance kernel’ and Eq. 5). Thus, replacing k(x, x′)
by its conformal transformation tθ(x)tθ(x′)k(x, x′)

k(X,X ′) = 1
fnorm(X) · fnorm(X ′)

∑
x∈X

∑
x′∈X′

tθ(x)tθ(x′) k(x, x′)︸ ︷︷ ︸
base kernel

(4)

Identifying expansion points. To identify a set of expansion points, one could use k-means
clustering with all available instances to identify clusters, whose cluster centres, ce’s, are
then treated as expansion points (E = k). Here, the individual instances are represented
by their ODH feature vectors as discussed in Section 2.2.3. When dealing with too many
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instances, which could make the clustering process a bottleneck, Blaschko and Hofmann [2]
suggest using the buckshot clustering approach [5] wherein, in order to identify E clusters
from n instances, instead of using all n instances, one could perform k-means clustering using
randomly sampled

√
En instances out of n. This has been shown to identify qualitatively

similar clusters and being highly scalable at the same time [2].

Resultant conformal multi-instance kernel. Upon substituting Eq. 2 in Eq. 4, and simpli-
fication (see [2] for more details), the conformal multi-instance kernel is given by

k(X,X ′) ≈
E∑
e=1

θ2
e

(
1

fnorm(X) · fnorm(X ′)
∑
x∈X

∑
x′∈X′

κ̃(x, ce)κ̃(x′, ce) k(x, x′)︸ ︷︷ ︸
base kernel

)
(5)

Eq. 5 is then posed as a multiple kernel learning (MKL) [1] problem (linear in ρe ≡ θ2
e)

to simultaneously learn the θe’s and the SVM parameters α, also called λ in part of the
literature.

Obtaining individual instance weights. Upon solving the MKL problem, once the sub-
kernel weights (θe’s) are obtained we can directly obtain tθ(x) for any instance x of a bag X
using Eq. 2.

2.2.3 Oligomer Distance Histograms (ODH) Kernel as Base Kernel
The choice of the base kernel to compare the individual instances depends on the problem.
Here, we propose representing the individual segments of any sequence by its ODH repres-
entation [11] and using the ODH kernel [11] to compute similarities between them. In the
ODH representation, any arbitrary-length sequence is represented by a feature vector that
counts the occurrences of all pairs of short K-mers separated by d positions in the sequence.

For the DNA alphabet, Σ = {A, C, G, T}, with mi ∈ ΣK , i = 1, . . . ,M as all possible K-
mers, any L-length sequence s can have K-mers separated by a maximum distance D = L−K.
Thus, d ∈ {0, . . . , D}. Here, distance between a K-mer pair is the difference between its
starting positions in the sequence. For any K-mer pair (mi,mj), the distance histogram
vector of its occurrences in sequence s is given as hij(s) = [h0

ij(s), h1
ij(s), . . . , hDij(s)]T. Here,

each hdij(s) is the count of the number of times the K -mer pair (mi,mj) is observed at
distance d in s. Finally, the feature space transformation of sequence s is obtained by stacking
together the distance histograms of all K-mer pairs over Σ.

Φ(s) = [hT
11(s),hT

12(s), . . . ,hT
MM (s)]T (6)

Then, N training samples are given as: X = [Φ(s1), . . . ,Φ(sN )] and the N ×N kernel matrix
is given by K = XTX.

2.3 Choosing an appropriate segment-size
While the user could choose a segment-size that is appropriate for a problem, there is a
trade-off one should consider. On the one hand, the ODH kernel computation involving
dot products between very high-dimensional feature vectors benefits from the sparsity of
these feature vectors. But, with just 4 characters in the DNA alphabet, for very long
segments the representation may not be sparse enough. On the other hand, having too
many segments overall, influences the computation time spent performing clustering and
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subsequently applying the transformation per segment. Thus, there is a trade-off between
the size of the segments and the total number of segments at the training stage.

In general, many long segments in total from all the sequences at the training stage could
lead to a longer computation time for the (instance-wise) base kernel, but we note that this
is done only once at the beginning.

2.4 Interpretation and Visualization of Features
In the following, we discuss how one can interpret and visualize the sequence features deemed
important by CoMIK for a prediction problem.

2.4.1 Obtaining the SVM Weight Vector for CoMIK
In the MKL problem [1], the weight vector corresponding to a given sub-kernel Km is given
as in Eq. 7.

wm = βm

N∑
i=1

αiyiΦm(Xi) (7)

Φce
m(X) = 1

B

∑
x∈X

κ̃(x, ce)φm(x) (8)

Here βm is the sub-kernel weight learnt by solving the MKL problem and each Φm(Xi) is
the feature space representation of sequence Xi corresponding to sub-kernel Km. And, for
the conformally transformed multi-instance setting, this would mean Φm(X) is the bag-level,
transformed ODH representation of the sequence corresponding to the cluster centre chosen
when computing the sub-kernel Km. Thus, Φce

m(X) can be represented mathematically as
in Eq. 8 where φm(x) is the ODH representation of segment x (Eq. 6) belonging to bag X,
κ̃(x, ce) is the Gaussian transformation (Eq. 3) and B is the feature space normalization
factor. Following [20], B can either be

√
k(X,X) or ||

∑
x∈X κ̃(x, ce)φm(x)||2 since our base

kernel, the ODH kernel, is a dot product kernel (refer to Section 2.2.3). Thus, we have a
bag-level representation of a sequence corresponding to all cluster centres which allows us to
compute all the relevant weight vectors. These individual weight vectors can also be used
to make fast predictions on test examples. For this, we only need the transformed ODH
representations of the test examples corresponding to each kernel in the collection.

2.4.2 Visualizing Features from the CoMIK Weight Vector
Figure 2 shows two ways of visualizing the features deemed important by CoMIK in discerning
the positive set of sequences from the negative set. The bottom-left panel in Figure 2 shows
the distance-centric view, the ‘Absolute Max Per Distance’ (AMPD) visualization [14], and,
the right panel, K-mer-centric view [11]. In the AMPD visualization, based on the ODH
feature representation, each dimension of the weight vector corresponds to the histogram
count of an oligomer pair lying at a given distance d (unit: basepairs) (refer Section 2.2.3,
Eq. 6). From this weight vector, for each distance value, among all the K-mer pairs, we pick
the pair that is assigned the most positive and most negative coefficient. A positive coefficient
value means the feature (i.e., the d-separated K-mer pair, d ∈ {0, 1, . . . , D}) is prominent
among the positive set of examples, otherwise negative. This provides a distance-centric
view of the important features. The K-mer-centric view [11] shows the role of each K-mer
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Figure 2 (top) Visualizing the weights assigned to segments of the variable-length sequences in
simulated data set, distance-centric (bottom-left panel) and K-mer-centric visualizations (bottom-
right panel) of features for the simulated data set. The left panel shows 2-mer pairs that were assigned
the highest positive and negative weights at each distance value corresponding to a sub-kernel that
was assigned the highest weight. For easy viewing, the K-mer-pairs at odd distances are placed on
the outside and the even distances, inside. Horizontal axis: weights, vertical axis: distances between
2-mer pairs (in basepairs). Refer to Section 2.4.2 for details on the K-mer centric visualization.

pair towards prediction. Simply stated, the K-mer-centric view of the discriminant is a
matrix which is obtained upon performing, for all K-mer pairs, an `2-norm of the relevant
dimensions of the weight vector, corresponding to all distance values considered, with itself.
Thus, a pair which holds high importance (i.e., it has large coefficients in the discriminant,
positive or negative) will have higher absolute value in the matrix.

3 Materials

Simulated data set: We prepared a simulated data set of 1000 arbitrary-length sequences
with a mix of many coupled and non-coupled motifs as explained below. Of these 1000 were
three kinds of positive sequences totaling 500; the rest 500 comprised of two kinds of negative
sequences.

Refer to Table 1 for the following: (a) 300 of the 500 positive sequences had motifs from
set A planted in them (column marked ‘+’), all except those marked with N (e.g., 4N and 5N
which are negative variants of the positive motifs 4P and 5P, respectively). (b) Another 100
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Table 1 Motif sets planted in the simulated data set. The differences between the positive and
the negative variants are underlined (e.g., 4P and 4N). ‘-’ denotes a gap. Columns marked ‘+’ and
‘−’ give the number of positives and negatives respectively containing the corresponding set of motifs.
Columns ‘P’ and ‘N’ give the #segment (non-shifted) in which the motif could lay (start positions).

Set Motifs + − P N
1.‘GAGTTATACATGGTATAGACCACACTATTA’ {1,2} {2,3}
2.‘AACATGGTCTAGACCATTTT’ {3} {1}
3.‘CTAAACAGGGTCTATACCACACTATTA’ {5} {5}

A 4P.‘AGGATATATATGTGCTCTTCAGATTTTCACCCTTAGCAAGAGCGAGG’ 300 300 {6} −
4N.‘ACCATATACATGTGCAGATCAGATTTTCACCCCGAGCAAGAGCGAGG’ − {6}
5P.‘ACACAGCTACTACCACAGGGACAGACAGACAG’ {4} −
5N.‘ATAGCGCTACTACCACACCCACAGACAGACAG’ − {1}
1.‘ACCATATACATGTGCAGATCAGATTTTCACCCCGAGCAAGAGCGAGG’ {3} {2,3}
2.‘ATAGCGCTACTACCACACCCACAGACAGACAG’ {2} {1}

B 3P.‘GACACATGTGCACATATGGTTTTCACCCCGATACATAGTGAGG’ 100 200 {4} −
3N.‘GACACATGTGCACATATG-TAGCGAGG’ − {3,4}

C ‘GA’ repeated at every 10 nt in the sequence 100 − − −

positive sequences had motifs from set B planted in them – 3P and 3N denoting variants as
in (a). (c) Additional 100 positive sequences had the dinucleotide ‘GA’ repeated at every
10nt throughout the sequences. For the 500 negative sequences, 300 contained all motifs
from set A (1, 2, 3 and the negative variants) and the remaining 200, similarly, with motifs
from set B. In all the sequences, each motif was planted at a randomly chosen start position
inside a respective window. For CoMIK, it was then possible to determine the segment in
which the different motifs could lay. Since we later discuss results with segment-size 70nt,
columns ‘P’ and ‘N’ already give the 70nt-segment numbers (for non-shifted segments) for
each motif. Length of sequences of type (a) and (b), either positive or negative, was in the
range [300,500]nt, and [500,600]nt for type (c). All sequences were generated with uniform
probabilities for A, C, G and T and the motifs had a 0.1 mutation probability. Maintaining
equal proportions of the different kinds of positives and negatives, we held out 200 sequences
as unseen test examples (100 positives and 100 negatives) and used the remaining 800
sequences for training.

Yeast: Lubliner et al. studied yeast core promoter sequences analyzing the effect of sequence
variation in different core promoter regions [12]. Among other things, the authors showed
that location, orientation, and flanking bases are important for TATA element function. We
obtained a total of 316 118nt-long core promoter sequences ([-118,-1] relative to the TSS) for
which the core promoter activity measurements were provided and followed the procedure
in Figure 5 in [12] to classify them into two classes– sequences showing either low or high
activity (low or high expression), giving 28 positive and 288 negative sequences.

5C: In a recent study, Nikumbh and Pfeifer [14] approached the problem of predicting the
long-range interaction partners of a genomic locus (of interest) profiled in 5C experiments
in cell lines GM12878, K562 and HeLa-S3 [18] using the DNA sequence at the interacting
(positive class) and non-interacting loci (negative class) w.r.t. the locus of interest. For any
5C-profiled TSS-containing region, the distal loci that showed a significant interaction with
it in all replicates were considered as positive and the ones that did not interact significantly
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Table 2 Number of positive and negative sequences the 5C data set.

GM12878 K562 HeLa-S3
#Positives 63 46 98
#Negatives 226 105 207

Table 3 Parameters and the range of values tested for the simulated, 5C and the yeast data set.

Parameters Simulated data set 5C Yeast
#Clusters {2, 5, 7} {5, 7, 10} {2, 5, 7}
Segment size {50, 70} 50 10
Sigma (σ) for Gaussian transformation 10{−1,...,2} 10{2,4,6} 10{−1,...,2}

Oligomer length {2, 3} {2, 3} {2, 3}
Maximum distance {50, 70} 50 10
SVM-cost 10{−3,...,3} 10{−3,...,6} 10{−3,...,3}

in any replicate were considered negative. Thus, here the problem is approached as a single
binary classification task. While the authors also consider a multitask setting [14], here, for
the performance comparison, we performed experiments in the single task setting (see [14] for
more details). We fetched the positive and negative set of sequences for one region (region 0)
per cell line [14]. The number of positive and negative sequences for each of these are given
in Table 2.

4 Experimental Setup

For each data set, we performed 5-fold nested cross-validation (CV) by splitting the data
into 80%:20% for training and test, respectively. For each outer-fold, model selection was
performed with a 5-fold inner CV loop on the training set with `1- and `2-norm MKL. We
note that CoMIK accounts for any class imbalance by proportionately up-weighting the
misclassification cost for the minority class as proposed in [7]. All parameters and the range
of values tested for them are given in Table 3. Of these, #Clusters, σ and SVM-cost are
optimized by cross-validation while other parameters, namely segment size, oligomer length
and maximum distance, are assigned fixed values for each individual run. We used the
same segment-size for the shifted and the non-shifted cases. The best performing set of
parameter values obtained from the inner CV-folds was used to re-train the model using the
complete training data and make predictions on the unseen test set of examples per outer
CV-fold. We report the area under the receiver operating characteristic (ROC) curve (AUC)
for predictions on this held-out test set averaged over the five outer folds.

We compare our performance on the simulated data set to that of KIRMES (Kernel-based
Identification of Regulatory Modules in Euchromatic Sequences) [19]. KIRMES was shown
to perform well on gene sets derived from microarray experiments for identifying loss or gain
of gene function [19]. For a collection of positive and negative genomic sequences, given a set
of motifs representing transcription factor binding sites and their match-positions (obtained
by performing a motif-finding step a priori) in the sequences, KIRMES picks a fixed-size
window around the best match-position of the motif in the sequence as a representative of
the sequence for that motif. These selected, fixed-size portions from all sequences (thus,
equal length) are used to compute a WDSC kernel (weighted degree kernel with shifts and
conservation information; see [19] for complete details) corresponding to that motif. This
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procedure results in as many kernels as the number of motifs. The remaining parts of the
sequences (those not selected for any motif) are neglected.

5 Results

In the following, with computational experiments on a simulated data set, and yeast and 5C
data, we demonstrate how CoMIK can be used to uncover the features regarded important for
classification together with their locations (at the segment level) in any candidate sequence.

Simulated data set: For this data set, while KIRMES achieves an AUC of 0.9432, CoMIK
attains near-perfect classification, AUC 0.9960 ± 0.003. We surmise that the superior
performance of CoMIK is due to the sequences containing the dinucleotide repeat motif ‘GA’
(see Figure 1) which may not be captured at the motif-finding step and thus affect KIRMES’
prediction.

We provide visualizations from the run that achieved the best performance with oligomer-
length 3, segment-size 70nt, `1-norm MKL in Figure 2. The top panel visualizes the 70nt-long
segments of 50 out of the 200 test sequences horizontally. For each sequence, the non-shifted
segments are followed by its shifted segments. Per sequence, the higher-ranked segments
would be the ones where the features are located. Figure 2, bottom-left panel, is a distance-
centric visualization of the SVM weight vector and the bottom-right panel, the K-mer-centric
view. While the K-mer-centric view clearly indicates GA’s important role, the distance-centric
visualization shows that it could be periodic. Experiments using different segment-sizes can
easily uncover the fact that they are spread throughout the sequences.

Yeast: CoMIK achieved an AUC of 0.9459± 0.029 on this data set with segment-size 10nt,
oligomer-length 3 and `1-norm MKL. Furthermore, the most important features represent
motifs known as important for classification. We visualize the 3-mer pairs deemed important
by CoMIK for this classification in Figure 3, left panel. The right panel here visualizes
the sequences and their ranked segments as a heatmap. The 316 sequences are arranged
vertically from top to bottom, and their segments horizontally. For the 118nt-long sequences
in this data set, the segment-size of 10nt lead to 12 non-shifted and 11 shifted segments, and
are arranged in that order. Thus, the coordinates for the non-shifted and shifted segments in
the sequence are as marked on the top of the heatmap.

We observe that segments 3 and 9, i.e., regions [−98,−89] and [−38,−29] happen to be
ranked first consistently. Segments 15 and 21 are the best-ranked shifted segments also
corresponding to the same genomic window. And, indeed, Lubliner et al. report that the
main TSS lay at position −30 and that the regions [−118,−99] and [−98,−69] hold important
features which upon mutations greatly reduced expression [12]. In the left panel, the top-
ranked kernel shows TATA-like elements to be important for classification. Furthermore,
among the features reported by other kernels in the collection (not shown), CoMIK rightly
identifies T/C-rich K-mers to be enriched among the positive sequences as against G/C-rich
K-mers which are also reported in Supplementary Figure 4 in [12].

5C data set: Performances of CoMIK on the three cell lines are given in Table 4. For
comparison with the method by Nikumbh and Pfeifer [14] that represents the complete
restriction fragment with its ODH representation, we directly report the performances with
oligomer length 3 from Table 1 in [14]. We observe that in experiments with segment-size
50 using 3-mers, CoMIK already achieves as good or better performance. Furthermore, the
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Figure 3 Distance-centric visualization of features (left) and visualization of weights assigned to
segments per sequence for the yeast data set. As in Figure 2, the left panel shows 3-mer pairs that
were assigned the highest positive and negative weights at each distance value corresponding to the
sub-kernel with the highest weight among all sub-kernels in the collection. For easy viewing, the
K-mer-pairs at odd distances are placed on the outside and the even distances, inside. Horizontal
axis: weights, vertical axis: distances between 3-mer pairs (in basepairs). The right panel shows
all sequences in the data set as segments: Segment rankings based on the weights assigned to the
various segments are visualized as a heatmap. The rank to color mapping is as shown in the colorbar
on the extreme right.

Table 4 5C data set results: Test AUC values (mean±s.d.) for region 0 [14] in three cell lines.

Method↓/Cell lines→ GM12878 K562 HeLa-S3
Nikumbh and Pfeifer [14] 0.7417± 0.059 0.8163± 0.071 0.6914± 0.058
CoMIK 0.7829± 0.063 0.7920± 0.084 0.6993± 0.012

additional ability of CoMIK to identify important portions in the individual sequences could
give novel insights.

6 Discussion

We presented a multiple instance learning-based approach, called CoMIK (‘Conformal Multi-
Instance Kernels’), that can handle highly dispersed features in comparing variable-length
sequences in a discriminative setting. We assessed the performance of CoMIK on three
classification problems: a simulated data set and two real biological data sets including a
5C data set. Together with the visualizations, we demonstrated the efficacy of CoMIK in
all these problems. As compared to KIRMES, where the classifier completely relies on the
motif-finding step a priori for its input, CoMIK, by design, uses the complete sequence and
is able to locate the portions deemed important for the prediction problem. This enables
CoMIK to avert the risk of ignoring the low-affinity, weak binding sites in the sequences
which can be missed by KIRMES. Technically, one could use the complete sequence with
KIRMES provided the set of motifs considered are spread through-out the sequence, but that
is again controlled by the motif-finding stage. CoMIK allows positional freedom in comparing
sequences. For the 5C data set, Nikumbh and Pfeifer also used the ODH representation to
compare the restriction fragments [14], but their approach does not give any information on
the location of the features in the long restriction fragments. Our results on this data set



S. Nikumbh, P. Ebert, and N. Pfeifer 16:13

showed that in this scenario looking closely at shorter segments rather than the complete
restriction fragments can help attain better performance. Additionally, CoMIK ’s ability
to locate signal within the sequence could be useful in studying the so-called structural
interactions between the intervening chromatin [18] of the long-range interacting loci.

We note that CoMIK’s computation time is largely governed by the clustering step and
the subsequent transformation of the segments – both performed at every CV iteration,
and both of these are influenced by the choice of the segment-size. Our implementation
exploits the sparsity of short individual segments, makes use of sparse representations and
computations. Thus, while, in general, the segment-size only affects CoMIK’s running time,
for scenarios like the discussed yeast problem, shorter segments could be preferable. In the
clustering step, the buckshot heuristic is incognizant of the imbalance prevalent in the data.
This could be improved by using a stratified sample with buckshot clustering. We also note
that for scenarios wherein positional information is important, kernels like the WDS [15] or
the oligo kernel [13] could be more suitable as base kernels depending on the problem.

References
1 Francis R. Bach, Gert R.G. Lanckriet, and Michael I. Jordan. Multiple kernel learning,

conic duality, and the SMO algorithm. In Proceedings of the Twenty-first International
Conference on Machine Learning, ICML’04, page 6, New York, NY, USA, 2004. ACM.
doi:10.1145/1015330.1015424.

2 Matthew B. Blaschko and Thomas Hofmann. Conformal multi-instance kernels. In NIPS
2006 Workshop on Learning to Compare Examples, 2006.

3 Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT’92, pages 144–152, New York, NY, USA, 1992. ACM. doi:10.
1145/130385.130401.

4 Jennifer E. F. Butler and James T. Kadonaga. The RNA polymerase II core promoter: a key
component in the regulation of gene expression. Genes & Development, 16(20):2583–2592,
2002. doi:10.1101/gad.1026202.

5 Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey. Scatter-
/gather: A cluster-based approach to browsing large document collections. In Proceedings
of the 15th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR’92, pages 318–329, New York, NY, USA, 1992. ACM.
doi:10.1145/133160.133214.

6 Thomas G. Dietterich, Richard H. Lathrop, Tomas Lozano-Perez, and Arris Pharmaceut-
ical. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelli-
gence, 89:31–71, 1997.

7 Charles Elkan. The foundations of cost-sensitive learning. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence – Volume 2, IJCAI’01, pages 973–
978, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

8 Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, and Alex J. Smola. Multi-instance
kernels. In Proc. 19th International Conf. on Machine Learning, pages 179–186, Massachu-
setts, 2002. Morgan Kaufmann.

9 C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM protein
classification. In Proceedings of the Pacific Symposium on Biocomputing, volume 7, pages
566–575, 2002.

10 Christina S. Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and William Stafford Noble.
Mismatch string kernels for discriminative protein classification. Bioinformatics, 20(4):467–
476, 2004. doi:10.1093/bioinformatics/btg431.

WABI 2017

http://dx.doi.org/10.1145/1015330.1015424
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1101/gad.1026202
http://dx.doi.org/10.1145/133160.133214
http://dx.doi.org/10.1093/bioinformatics/btg431


16:14 Handling Variable-Length Sequences with Dispersed Features

11 Thomas Lingner and Peter Meinicke. Remote homology detection based on oli-
gomer distances. Bioinformatics, 22(18):2224–2231, September 2006. doi:10.1093/
bioinformatics/btl376.

12 Shai Lubliner, Ifat Regev, Maya Lotan-Pompan, Sarit Edelheit, Adina Weinberger, and
Eran Segal. Core promoter sequence in yeast is a major determinant of expression level.
Genome research, 25(7):1008–1017, 2015.

13 Peter Meinicke, Maike Tech, Burkhard Morgenstern, and Rainer Merkl. Oligo kernels for
datamining on biological sequences: a case study on prokaryotic translation initiation sites.
BMC Bioinformatics, 5(1):169, 2004. doi:10.1186/1471-2105-5-169.

14 Sarvesh Nikumbh and Nico Pfeifer. Genetic sequence-based prediction of long-range chro-
matin interactions suggests a potential role of short tandem repeat sequences in genome
organization. BMC Bioinformatics, 18(1):218, 2017. doi:10.1186/s12859-017-1624-x.

15 G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: recognition of alternatively
spliced exons in C.elegans. Bioinformatics, 21(suppl 1):i369–i377, 2005. doi:10.1093/
bioinformatics/bti1053.

16 Gunnar Rätsch and Sören Sonnenburg. Accurate splice site prediction for caenorhabditis
elegans. In Kernel Methods in Computational Biology, MIT Press series on Computational
Molecular Biology, pages 277–298. MIT Press, Cambridge, MA., 2004.

17 Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. Protein homology
detection using string alignment kernels. Bioinformatics, 20(11):1682–1689, July 2004.
doi:10.1093/bioinformatics/bth141.

18 Amartya Sanyal, Bryan R. Lajoie, Gaurav Jain, and Job Dekker. The long-range in-
teraction landscape of gene promoters. Nature, 489(7414):109–113, Sep 2012. doi:
10.1038/nature11279.

19 Sebastian J. Schultheiss, Wolfgang Busch, Jan U. Lohmann, Oliver Kohlbacher, and Gunnar
Rätsch. Kirmes: kernel-based identification of regulatory modules in euchromatic sequences.
Bioinformatics, 25(16):2126–2133, 2009. doi:10.1093/bioinformatics/btp278.

20 John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004.

http://dx.doi.org/10.1093/bioinformatics/btl376
http://dx.doi.org/10.1093/bioinformatics/btl376
http://dx.doi.org/10.1186/1471-2105-5-169
http://dx.doi.org/10.1186/s12859-017-1624-x
http://dx.doi.org/10.1093/bioinformatics/bti1053
http://dx.doi.org/10.1093/bioinformatics/bti1053
http://dx.doi.org/10.1093/bioinformatics/bth141
http://dx.doi.org/10.1038/nature11279
http://dx.doi.org/10.1038/nature11279
http://dx.doi.org/10.1093/bioinformatics/btp278

	Introduction
	Methods
	Segment Instantiation with Complementary Views
	Conformal Multi-Instance Kernels for Complimentary Set of Segments
	Multi-Instance Kernels
	Conformal Multi-Instance Kernels
	Oligomer Distance Histograms (ODH) Kernel as Base Kernel

	Choosing an appropriate segment-size
	Interpretation and Visualization of Features
	Obtaining the SVM Weight Vector for CoMIK
	Visualizing Features from the CoMIK Weight Vector


	Materials
	Experimental Setup
	Results
	Discussion

